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ABSTRACT

The excitation of trapped inertial waves (r-modes) by warps and eccentricities in the
inner regions of a black hole accretion disc may explain the high-frequency quasi-
periodic oscillations (HFQPOs) observed in the emission of Galactic X-ray binaries.
However, it has been suggested that strong vertical magnetic fields push the oscilla-
tions’ trapping region toward the innermost stable circular orbit (ISCO), where con-
ditions could be unfavourable for their excitation. This paper explores the effects of
large-scale magnetic fields that exhibit both toroidal and vertical components, through
local and global linear analyses. We find that a strong toroidal magnetic field can re-
duce the detrimental effects of a vertical field: in fact, the isolation of the trapping
region from the ISCO may be restored by toroidal magnetic fields approaching ther-
mal strengths. The toroidal field couples the r-modes to the disc’s magneto-acoustic
response and inflates the effective pressure within the oscillations. As a consequence,
the restoring force associated with the vertical magnetic field’s tension is reduced.
Given the analytical and numerical evidence that accretion discs threaded by poloidal
magnetic field lines develop a strong toroidal component, our result provides further
evidence that the detrimental effects of magnetic fields on trapped inertial modes are
not as great as previously thought.
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1 INTRODUCTION

High frequency quasi-periodic oscillations (HFQPOs), ob-
served in the light curves of Galactic black hole binaries
(BHBs), are a striking but poorly understood phenomenon.
Appearing as coherent peaks in the power density spectrum
(PDS) of these sources, HFQPOs have aroused particular
interest because their frequencies (of ~ 50 — 500Hz) are (a)
comparable to the characteristic orbital and epicyclic fre-
quencies of the inner accretion flow, (b) inversely related to
black hole mass (when known), and (c) relatively insensitive
to substantial variations in luminosity. This suggests that
they are connected to the intrinsic properties of the central
black hole, and may provide further means of probing the
structure of strongly curved space time (Remillard & Mc-
Clintock 2006).

The first HFQPO found in a BHB was a transient 67Hz
oscillation observed in the PDS of GRS 19154105 (Morgan
et al. 1997). This persistently active system exhibits frequent
HFQPOs, but confirmed observations are far less common
in other BHBs: in fact, there have only been reliable de-
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tections in 5-10 sources. Significantly, HFQPOs appear only
in outbursting states in which the flux and inferred accre-
tion rates are exceptionally high, the so-called ‘Steep Power
Law’ (SPL) or ‘very high’ state. The properties of the ac-
cretion disc during this phase are not well constrained. In
particular, it is unclear if the disc extends to the innermost
stable circular orbit (ISCO) or truncates before then in a
hot torus (Done et al. 2007). To complicate matters further,
some BHBs exhibit two HFQPOs with different frequencies.
These usually appear at different times, but have been ob-
served simultaneously in GRO J1655-40 (Belloni et al. 2012;
Motta et al. 2014a). The phenomenology of HFQPOs is rich,
and in some cases connected to the more prevalent low fre-
quency QPOs (LFQPOs). For reviews the reader might con-
sult Remillard & McClintock (2006), Done et al. (2007), and
Motta (2016).

Most of the theories offered as an explanation for HFQ-
POs are dynamical, with radiative and thermal physics yet
to be explored in great detail (but see, for example, Dex-
ter & Blaes 2014; Cabanac et al. 2010). Moreover, many
appeal to test particle dynamics. For example, the observa-
tion that multiple HFQPOs often appear with frequencies in
ratios near 3:2 led to models appealing to resonances at spe-
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cial radii where the orbital and epicyclic frequencies achieve
the same commensurability (Klizniak & Abramowicz 2001;
Abramowicz & Klizniak 2001). Separate but related is the
‘relativistic precession model’ (RPM), which associates the
orbital, apsidal precession, and nodal (or Lense-Thirring)
precession frequencies of particles near a Kerr black hole
with an upper HFQPO, a lower HFQPO and a Type-C
LFQPO, respectively (Stella & Vietri 1998; Stella et al. 1999;
Motta et al. 2014b, 2018). Neither model offers a robust ex-
planation for how these dynamical features might lead to
large amplitude modulations in emissivity.

An accretion disc, however, is not a collection of non-
interacting particles, and so the mentioned theories must
map particle oscillations onto global fluid dynamical waves.
This can be achieved, to some extent, if the accretion flow is
regarded as a slender torus of constant angular momentum
(Rezzolla et al. 2003; Blaes et al. 2006; Hordk 2008; Fragile
et al. 2016). In this case, one must assume that the geom-
etry of the inner accretion flow is indeed a hot torus, and
not a thin disc, and moreover that the oscillations are not
hindered by the Papaloizou-Pringle instability which rapidly
reshapes the torus’s angular momentum profile (Papaloizou
& Pringle 1984; Fragile 2005). The question of what ampli-
fies the modes is also not easily answered.

Alternatively, one can treat the accretion flow as a thin
disc extending to the ISCO. HFQPOs can then be associated
with the intrinsic oscillations of the thin disc, in particular
its inertial waves (here referred to as r-modes). This model
is attractive because the hydrodynamic theory predicts that
inertial waves should be confined by relativistic effects to an
annular region separated from the ISCO, and consequently
take on a global character.! Confinement in such a ‘self-
trapping region’ would both protect trapped inertial waves
from the uncertain (and probably unfavorable) conditions
at the ISCO, and also endow the lowest order, fundamental
mode with a frequency close to the maximum attained by
the horizontal epicyclic frequency, . As a consequence, the
wave frequencies would sit directly in the observed range for
HFQPOs, possess the correct scaling with black hole mass,
and depend on black hole spin in a straightforward way. Fi-
nally, and importantly, amplification of these global standing
waves to dynamically significant (and observable) levels can
be explained via a non-linear coupling with disc warps and
eccentricities (Okazaki et al. 1987; Kato 2001, 2004, 2008;
Ferreira & Ogilvie 2008). One problem with this model, at
least in its linear incarnation, is that it fails to account for
multiple HFQPOs.

This paper adopts the thin disc ‘diskoseismological’
model as a starting point and explores its generalisation to
magnetohydrodynamics (MHD). Unsurprisingly, the inclu-
sion of magnetic fields changes the dynamical behavior of
trapped inertial modes in thin discs. Fu & Lai (2009) found
that the inclusion of a purely constant, vertical magnetic
field in a local analysis drives the trapping region toward the
ISCO. In fact, the authors suggested that a constant, purely
vertical field of sufficient strength, in particular a mid-plane

1" Local oscillations are disfavoured because they would generate

a broadband frequency component rather than distinct peaks. See
Dexter & Blaes (2014), however, for a model involving a bandpass
filter.

plasma beta (ratio of gas pressure to the magnetic pressure)
of B; < 300, would force the inner turning point for the
trapped inertial waves to coincide with the inner disc edge.
Such a shift in localisation would make r-mode excitation
a less attractive explanation for HFQPOs, since the oscilla-
tions would then require reflection at the inner boundary,
and might be subject to damping by radial inflow (Ferreira
2010).

In Dewberry et al. (2018) (hereafter DLO), we ex-
panded on the local analyses of Fu & Lai (2009), solv-
ing the 2D eigenvalue problem to compute fully global r-
modes in a disc model including both vertical magnetic fields
and density stratification. Our results were in rough agree-
ment with Fu & Lai (2009) though we found the severity
of the effect was modulated by the vertical structure of the
modes and the disc temperature (trapped inertial waves are
less well-confined in hotter discs). Characteristic tempera-
tures of ~ lkeV give estimates of critical plasma betas of
Bz ~ 100 — 300 below which r-mode trapping relies on reflec-
tion at the inner disc edge.

Perhaps of greater significance, DLO noted that a large-
scale, net flux vertical field with mid-plane B, < 1000 is
in fact significant in that it would strongly modify out-
flows and turbulence due to the magnetorotational instabil-
ity (MRI). Such strong magnetic fields may be uncommon,
though winds observed in GRS 1915+105 in some emission
states have been taken as evidence of magnetic driving (e.g.,
Miller et al. 2016). In any case, a large-scale, smooth and
purely vertical field should be distinguished from the mag-
netic fluctuations associated with the MRI, which are small-
scale, unsteady, and generally stronger. DLO further noted
that an inertial wave pushed up against the ISCO might
still achieve coherence and observable amplitudes if forced
sufficiently strongly by a warp or eccentricity.

In this work we do not argue for or against strongly
magnetized discs. Rather, we would like to point out that
if a disc were threaded by a strong net vertical field, local
simulations, both recent and canonical, indicate that the as-
sociated MRI would produce even stronger toroidal fields, of-
ten approaching equipartition with an associated mid-plane
By ~ 1 (Hawley et al. 1995; Stone et al. 1996; Bai & Stone
2013; Salvesen et al. 2016). Similarly, global simulations sug-
gest that the mean toroidal component in an MRI turbulent
disc will be much stronger than the mean vertical compo-
nent (e.g., Zhu & Stone 2018). The question then is: does
this strong toroidal field have any effect on trapped r-modes?
Can it moderate or counter the influence of a large-scale ver-
tical magnetic field? Both Fu & Lai (2009) and DLO exam-
ined toroidal fields in isolation and found little different to
the hydrodynamical case; the ‘mixed case’ was not treated.
The overwhelming numerical and analytical evidence that
strong toroidal fields must always accompany strong verti-
cal fields provides motivation for our study.

We find that sufficiently strong toroidal magnetic fields
can restore the trapping region’s isolation from the ISCO.
Concurrently, they reduce the r-modes’ magnetically en-
hanced frequencies toward those predicted by the hydrody-
namic theory. A strong toroidal magnetic field component
significantly reduces the detrimental effects of a moderate
to strong vertical field with mid-plane B8, < 500, while for
larger B; inertial wave trapping remains minimally affected
(for any Bg4). Near-equipartition values of B¢ 2 1 may be re-
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quired to restore the r-mode trapping region when B, < 200,
but this strong a toroidal component is not unrealistic. We
interpret the effect of a toroidal magnetic field as an al-
teration of the magneto-acoustic response of the trapped
inertial modes, which increases the effective plasma beta
due to any mean vertical field. Importantly, because the ef-
fect arises from an enhancement of the effective pressure, a
strong toroidal field need not be ordered on large-scales to
impact r-modes, and hence could be supplied by a vigorous
MRI.

We first present our linearized equations and disc model
in Section 2. We then investigate the mixed case of toroidal
and vertical background fields through the local linear
WKBJ theory in Section 3, with an analysis similar in spirit
to that of Fu & Lai (2009). In Section 4, this is generalised
to global linear calculations in both cylindrical discs and in
fully stratified discs. We provide a discussion of this work’s
implications and a critical assessment of competing models
of HFQPOs in Section 5, before concluding in Section 6.

2 EQUATIONS AND DISC MODEL

In this section we introduce our magnetohydrodynamic disc
model and present the linearized equations solved through-
out the paper.

2.1 Governing equations

As in DLO, we presume that the accretion flow in the SPL
state can be modelled as a thin, centrifugally supported disc
of inviscid, non self-gravitating, ionized gas. Furthermore, it
is assumed to extend all the way to the ISCO. Our picture
might be compared to that of Nayakshin et al. (2000), but we
focus on the disc and defer consideration of a hot corona. The
flow can be approximately described by the non-relativistic,
ideal MHD equations:

a—u+u-Vu=—E—V(I)+L(V><B)><B, (1)
ot p Hop
dp
- _y. 2
" (pw), 2
%:Vx(uxB), (3)
V-B=0. (4)

Here u, p, B, and P are the fluid velocity, density, magnetic
field and gas pressure, respectively, and ® is an arbitrary
gravitational potential. For simplicity and to isolate the ef-
fects of magnetic fields, the system is closed by a globally
isothermal equation of state, P = c?p, where cg is the isother-
mal sound speed (taken to be constant throughout the disc).

2.2 Basic, equilibrium state

In cylindrical coordinates (r, ¢, z), Equations (1)-(4) admit
an equilibrium of the form u = rQ(r)$, in isorotation with
a magnetic field B = B¢(r)(ﬁ + B;(r)Z, the r-component of
Equation (1) implying
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We take B; constant and By o r~1, the latter profile giv-
ing the state of minimum magnetic energy for a given az-
imuthal magnetic flux (Ogilvie & Pringle 1996). This con-
figuration conveniently leaves the equilibrium angular ve-
locity profile unaffected by any Lorentz force. However, we
have performed vertically local calculations with alternative
power laws for By, and have found that they do not qual-
itatively change the results presented here. In short, more
negative (positive) gradients in By (B;) increase the robust-
ness of r-mode trapping.

Since the background magnetic field considered is in-
dependent of z, it does not contribute to the vertical equi-
librium. The assumption of a vertically homogeneous B is
an oversimplification, and should certainly be revisited for
any investigations aiming to connect dynamics in the disc
with a rarefied corona. For our geometrically thin disc, the
density profile is written as p = po(r)g(z/H). Here py is the
mid-plane density, H = c¢s/Q; is the isothermal scale height
(with Q, = BZZZ(I) the vertical epicyclic frequency), and g
is a dimensionless vertical profile. In the isothermal case g
adopts a Gaussian form, g = exp[-z2/(2H?)].

The effects of a background radial pressure gradient (on
both the equilibrium flow and linearized perturbations) were
considered in DLO, where it was found that a negative radial
power law in p marginally increases r-mode resistance to the
effects of a vertical magnetic field. Vertically local calcula-
tions (excluded from this work for simplicity) suggest that,
like alternative radial profiles for the magnetic field, radial
gradients in p and ¢y do not qualitatively change the effect
of the strong toroidal magnetic field component considered
here. As a result, we set py equal to a constant in what
follows. With this density and magnetic field distribution,
Equation (5) reduces to Q%(r) = (1/r)0,®.

The flow is also unstable to the MRI, and a more re-
alistic model might include some prescription for turbulent
damping of large-scale oscillations, and for turbulent heat-
ing. We do not believe this physics is essential to understand-
ing the impact of ordered magnetic fields on the geometry of
the r-mode trapping cavity, and so accretion and radiation
are omitted. Note that the effects of accretion and turbulent
damping on trapped inertial waves have been quantified by
Ferreira (2010), who found that a transonic radial inflow in-
troduces r-mode damping and a decay rate that, although
substantial for sonic points outside the ISCO, could still be
overcome by excitation by a large amplitude warp or eccen-
tricity. We defer an examination of the competition between
damping due to radial inflow/turbulence and excitation due
to non-linear mode coupling to future work.

2.3 Characteristic frequencies

For an approximate description of a relativistic flow around
a black hole, ® might be taken as a ‘pseudo-Newtonian’
Paczynski-Wiita potential of the form

q):i (6)

Vr2+zz—r5’

where rg = 2GM/c? is the Schwarzschild radius, for ¢ the
speed of light and M the black hole mass. As reviewed in
DLO, the horizontal epicyclic frequency derived from this
potential with the Newtonian formula % = 2Q (2Q + rdQ/dr)
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reproduces the non-monotonic behavior apparent in the fully
relativistic version of the epicyclic frequency (Okazaki et al.
1987).

In the linear theory, however, our arbitrary potential
® disappears entirely from the perturbed equations, leav-
ing only the characteristic frequencies x and Q. A common
practice is therefore to utilize the fully relativistic versions
of the characteristic frequencies for particles in orbit around
a Kerr black hole in an otherwise hydrodynamical or magne-
tohydrodynamical treatment. This then permits the approx-
imate inclusion of black hole spin into the problem, without
requiring a fully general relativistic, magnetohydrodynamic
treatment. In units of rg = GM/c? and wg = 3 /(GM), these
expressions are given by

1
Qg = —(r3/2 T (7)
6 8a 3d®
KG =QG\/1—;+M—F_2, (8)
4a 3a?
Qc; = Qg l—m‘f‘r—z, 9)

where a € (—1,1) is the dimensionless spin angular momen-
tum parameter.

Since Equations (7)-(9) describe the orbits of particles,
even in linear theory they would be inconsistent with a back-
ground fluid flow modified by a strong pressure gradient
or Lorentz force. However, the fully relativistic versions of
the characteristic frequencies are appropriate for use with
a background state such as the one considered here (i.e.
constant pg and B, By o 1/r), and allow for inclusion of
the effects of black hole spin. In addition, Equations (7)-(9)
have the advantages of correctly reproducing the radius of
marginal stability, the radius of maximal «, and the rates of
nodal and apsidal relativistic precession.

2.4 Linearized equations

Axisymmetric r-modes are of the most physical and ob-
servable interest. Non-axisymmetric r-modes are strongly
damped at their corotation radii where the mode frequency
w = mQ, with m the azimuthal mode number (Li et al. 2003).
While some modes might avoid this damping if their fre-
quencies are so large that the corotation radius lies outside
of the trapping region, such frequencies would be too high
for measured HFQPOs, even for small m = 1,2, ... and low
values of the spin angular momentum parameter (Wagoner
2012). Further, even if non-axisymmetric modes are an es-
sential component of the excitation mechanism considered
by Ferreira & Ogilvie (2008), any observable signature is
likely to be provided by the fundamental, axisymmetric r-
mode with simplest radial and vertical structure.

For this reason, we consider axisymmetric, Eulerian per-
turbations of the form Re{d(r, z) exp[iwt]} to the equilibrium
state. Linearizing Equations (1)-(4) and making use of the
solenoidal condition yields

oh
—iwv, =2Quy — P

1 var VA 0(rvae) 0va,
“v, - A - 1
+g Az7g, r or Vaz or |’ (10)
2
. K Va, va
oy =y + A2 D00, (1)
dh  Vag 0vag
—i = - 7 12
iwv, 2 e 9 (12)
—lll)h — —C2 La(rgvr) + la(gvz) (13)
S\rg or g 0z
0
—i@var = Va, —(;Z’, (14)
. 0 Vr
“ovae = Vaogi ()
Ive g,  dQ
Vaz =2 — Vap o 4 "y 15
+ VAz 9z A¢ 9z +dlanAr ( )
) Vaz 9(rvy)
—lwvp, = __rz —6rr , (16)

where v is the velocity perturbation, i = §P/p is the enthalpy
perturbation, VA = B/+/figpg is the mid-plane Alfvén veloc-
ity of the background magnetic field, and va = 6B/~/uopo.
We use Equations (10)-(16) to derive a local dispersion re-
lation in Section 3, calculate radially global but vertically
local normal modes in Section 4.1 and solve for fully global
solutions in Section 4.2.

3 LOCAL DISPERSION RELATION

We begin by conducting a local analysis of wave propagation
in the disc model outlined in Section 2. Local approxima-
tions are strictly inappropriate for the description of r-modes
global in nature. They do, however, provide qualitative in-
sight into why toroidal magnetic fields have a larger impact
on trapped inertial waves when considered in combination
with a poloidal field component, rather than in isolation.

We assume that the perturbations possess radial and
vertical wavelengths much smaller than the scale of variation
for the background flow, and thus prescribe the dependence
6(r, z) o< explik,r +ik;z]. Here k, and k; are assumed both to
be > 1/r and slowly varying with radius, such that their ra-
dial derivatives may be neglected. We also concentrate on a
small region at a fixed radius r in the disc. Vertical variation
in p, and terms « 1/r are hence neglected as sub-dominant
in this approximation, although «, Q, rd,Q and Va4 may
be regarded as functions of the fixed radius, varying as we
examine mode behavior at separate locations.

With these assumptions, equations (10)-(16) can be re-
duced to a bi-cubic dispersion relation

Wb - [Kz +k? (cg + Vi) + kgv;_{z] Wt a7

2
+ k;

do?

2(.2 2 2 2 2 2 2

K (cs +VA¢) +Va, (k [2Cs +VA] +m)]w
do?

dInr

>

274v,2 2y,2
_CSkZVAz (k VAz+

where k* = k7 + k2 and Vi = Vi, + Vi . Equation (17)
offers immediate insight into the physical nature of the effect

that a background toroidal magnetic field might have on
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trapped inertial waves, since Vj_z\ &

cg. The work of the background azimuthal field here may be
understood to increase the effective sound speed, which in
turn increases the effective plasma beta associated with the
vertical magnetic field (therefore reducing its detrimental
effect).

Assessing the trapping of inertial waves through a lo-
cal method reduces to a study of the local radial wavenum-
ber, as the regions of the disc in which the perturbations
may be expected to be oscillatory are those in which &, is
real, or k% > 0. The radial profile of —k% can be thought of
as an effective potential well, implying oscillatory (evanes-
cent) behavior wherever —kZ < 0 (=k2 > 0). The vertical
wavenumber, on the other hand, may be considered a free
parameter. However, as shown in DLO, prescribing the verti-
cal wavenumber k; = Kj,/H accurately reproduces dynamics
of the global r-mode spectrum, where K, are dimensionless
eigenvalues associated with the basis functions of order n
describing r-modes’ vertical structure in the presence of a
purely vertical magnetic field. We revisit this prescription
in section 4.2, but find that it remains reasonably accurate
when toroidal fields are included.

It is useful (and physically intuitive) to define the char-
acteristic frequencies wp, = k;Va, and wpag = kzVag. Then,

appears only in sum with

solving for kZ from equation (17) yields after some algebra

_ (0% = 0h )@ — 0p )W = Wy 5) - ‘“/2\45(‘“2 - wep)e?

k2 =
(Vi +c2) (w2 - w%L?)) (w2 - w%L4)
(18)
where
2 22
wppy = Kz (19)
1 do?
2 _ 2 2 2
WL = 5 |K +2a)AZ+\/I<4+4u)AZ (Kz_dlnr) , (20)
2 2
WEL3 = WAL (21)
2 2
w4 _Ck
2 Az"s
w = —, 22
LT 22
L PR teand (- 990 23
“’FL5_§K+‘“A1_ K+wAZK_dlnr , (23)

are the characteristic frequencies identified by Fu & Lai
(2009) in deriving a dispersion relation for a purely con-
stant, vertical field (cf. their equations 30-35), and we have
defined

2 2

wep =K (24)

For By = 0 or B; = 0, equation (18) reduces to Fu & Lai
(2009)’s equations (30) and (41), respectively, although we
have ignored the gradient terms appearing in the latter be-
cause of our assumption k,, k; > 1/r.

2
+wAZ.

3.1 Trapping region

We now discuss the nature of r-mode trapping. At a given
radius, the roots of Equation (18) separate regions in fre-
quency space that exhibit either oscillatory or evanescent
behavior based on whether k2 > 0 or k2 < 0 (resp.), with
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resonance at k = 0. Solving for these resonant frequencies
at all radii then provides the structure of oscillatory behav-
ior in the disc. If one root takes the same value of w? at
two nearby radii, in such a way that k% > 0 in between the
radii but k% < 0 outside, we might expect the radii to define
turning points for a trapped global oscillation.

In a purely hydrodynamic disc (VA = wa; = wpg = 0),
inertial waves being both ‘slow’, and animated by the restor-
ing force of rotation, possess frequencies less than the local
epicyclic frequency, «. The turning points then delimit a
region in which w < «. Because « varies with radius non-
monotonically, this trapping region is well-defined and sep-
arate from the inner boundary. This is shown by the dashed
curve in Fig. 1, which describes «(r). An illustrative hydro-
dynamic r-mode is superimposed as the squiggly line.

Now let us include a purely vertical field (wa, #
0,wap = 0). Fu & Lai (2009) showed that the r-mode res-
onances and consequent trapping regions are modified, and
this is clear from the numerator in (18). The natural fre-
quency upon which resonance occurs (i.e. k, = 0) increases
from k to wpr,2, which can be significantly larger because of
magnetic tension (see Equation 20). Now when w = wpr,2,
the inertial wave comes not into resonance with a hydro-
dynamic epicycle but a rotationally modified Alfvén wave,
propagating vertically. An important consequence of this in-
crease is that the inner turning point for an r-mode of a given
frequency shifts inward, toward the ISCO. This is illustrated
by the black curves in both panels of Fig. 1, which describe
the frequency wgr,2(r) for two different treatments of verti-
cal structure. Under certain conditions, in particular when
the field is very strong, w%LQ can lose a maximum distinct
from the ISCO. The inner disc edge must then provide an
inner reflection point if the r-modes are to remain confined
(see bottom panel in Fig. 1).

Adding an azimuthal field further alters the resonances,
via the last term in the numerator of Eq. (18). Its effect is
complicated and not easy to distentangle. What is clear is
that the azimuthal field introduces a coupling between the
epicyclic and Alfvenic response of the disc, on one hand, and
its acoustic response, on the other (see Section 3.2). The lat-
ter is absent when there is only a vertical field, as can be
seen by the absence of ¢y in the expression for wgy,s. We shall
see, in the following sections, that this acoustic coupling de-
creases the resonant frequency, moving the trapping region
away from the ISCO and back towards its hydrodynamical
location.

3.2 Asymptotic analysis for a weak poloidal field

We consider the limit in which the vertical magnetic field
component is assumed weak (i.e., B; > 1), while the toroidal
field is allowed to take any value. Expanding the frequency
as w = wo + ﬁz_lwl + O(ﬁz_z)7 the dispersion relation reduces
at zero’th order in ,BZ_I to

[ - (c} + VRo) h -2
(3 +V3)

This dispersion relation is nearly identical in form to the hy-
drodynamic dispersion relation for axisymmetric modes (cf.
equation 1 in DLO). It describes magneto-acoustic oscilla-

k2 =

(25)
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tions that propagate where w? > k%(c% + Vlil/)), and r-modes,
which are unaffected by the toroidal magnetic field and re-
main trapped where w? < 2.

Dispensing with the magneto-acoustic oscillation, we
choose one of the r-modes by setting wgy = k and compute the
next order correction due to the magnetic field. In summary,
we find

+...,

402 k2c2 — 2
wZ:K2+wiz 1+(— S (26)

K2) 2(3+V3,) -

where we have used the expression % = 2Q(2Q + rdQ/dr),
which is only approximate for characteristic frequencies de-
fined by Equations (7)-(9).

A number of things can be said about Eq. (26). First,
the magnetic correction to the frequency is always positive.
This can be proven by noting that the vertically local ap-
proximation requires k; > 1/H = Q;/cs, and that in a rel-
ativistic disc Q% > k. Thus k%cg - > Qg - &% > 0, and
the numerator is positive. It follows that the denominator is
also positive.

Second, though the magnetic correction enhances the
resonant frequency, increasing the azimuthal field Vg re-
duces this effect, as it only appears in the denominator.
Moreover, the mid-plane azimuthal Alfvén speed only ap-
pears squared in a sum with C_%, i.e. as an intensification of
the effective pressure in the disc (as pointed out earlier by
direct inspection of the dispersion relation 17). It is clear
that the azimuthal field couples the thermal response of the
disc to the r-mode oscillations, providing an additional ef-
fective acoustic response. In so doing it reduces the resonant
frequency defining the r-mode trapping region.

We find that a strong toroidal magnetic field compo-
nent results in an altered effective plasma beta of the ver-
tical magnetic field, 8, > B;. Heuristically, for 8y 2 1,
implementing a purely vertical field with

Bze = Bz(1+2/By)

produces similar results (in both local and global calcula-
tions) to the corresponding mixed field.

(27)

3.3 General trapping region calculations

A brute force approach to confirming the asymptotic anal-
yses of Section 3.2 is to solve the bi-cubic appearing in the
numerator of Equation (18) numerically at each radius. Do-
ing so provides radial profiles for the resonant frequencies
described in Section 3, one of which can be easily identified
as defining the r-mode trapping region. Trapping regions
calculated in this way are plotted with colored solid lines in
Fig. 1 for a = 0.5, a fixed value of 8; = 300 and increasing
azimuthal field strength.

Fig. 1 (top) shows profiles calculated with k; o< 1/H and
the approximation of a scale height H = H(rigco) constant
with radius, and Fig. 1 (bottom) shows calculations made
with H = H(r). Assuming a constant H = H(rigco) is incon-
sistent with a globally isothermal equation of state, while a
scale height H(r) = cs/Q;(r) increases more rapidly with ra-
dius than might be expected in the radiation-pressure domi-
nated inner regions of a black hole accretion disc. We provide
calculations made with both approximations for comparison,
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Figure 1. Numerically calculated r-mode trapping regions for
a = 0.5, Bz =300 and increasing values of azimuthal magnetic field
strength (decreasing B¢ ). The top (bottom) plot shows calcula-
tions with k; = K|/H(risco) (kz = K1/H(r)), where K| ~ 1.158
(see Section 4.1). The red and black dashed lines mark the ISCO
and the hydrodynamic trapping region, respectively. Angular fre-
quencies w in wg = ¢3/(GM) are given on the left, while the cor-
responding frequencies v in Hz calculated with the assumption
MpH = 10Mg are given on the right.

positing that the two cases may bracket reality. For By = 0
the local estimate of the trapping region is defined by wpi,2,
but increasing the toroidal field strength drives the r-mode
trapping region back toward the hydrodynamic profile given
by k. In other words, a toroidal field reverses the effect of
the vertical field.

Figs. 2 (top) give heatmaps of the maximal frequen-
cies associated with radial profiles calculated as in Fig. 1
with increasing vertical and azimuthal field strengths, while
Figs. 2 (bottom) show the radii at which this maximum is
achieved, denoted as rmax. The maximal frequency provides
an estimate of the frequency of the fundamental r-mode with
the simplest radial structure, and the radii at which it is
achieved predicts this mode’s region of localisation. Once
rmax ~ r"sco (rnsco ~ 4.233rg for a = 0.5), the inner turn-
ing point has been eliminated and trapping isolated from
the ISCO is no longer possible. However, along with Fig. 1,
Figs. 2 indicate that the isolation of the trapping region from
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the inner disc edge is restored as larger and larger toroidal
magnetic field strengths are introduced.

Figs. 1 and 2 confirm the predictions of our asymptotic
analyses, suggesting that a sufficiently strong toroidal field
reduces the frequency enhancement provided by a net ver-
tical field, and may even restore the independence of the
r-mode trapping region from the inner disc edge. Trapping
regions calculated with radial scale height variation show a
similar reduction in maximal frequency, but a less drastic
increase in maximal radius for large B;. However, as indi-
cated in Figs. 1 (bottom), for values of B, ~ 100 — 300 that
are actually rather strong for a large-scale ordered vertical
magnetic field, an azimuthal magnetic field component of
equipartition strength still restores the isolation of the trap-
ping region from the ISCO.

4 GLOBAL CALCULATIONS

In this section we explicitly calculate global r-mode solu-
tions, confirming the predictions made through local analy-
ses in Section 3 that strong toroidal magnetic fields reduce
the frequency enhancement and inward forcing caused by
purely vertical fields. Vertically local but radially global cal-
culations are discussed in Section 4.1, and fully global cal-
culations in Section 4.2.

4.1 Cylindrical calculations

In the cylindrical model, density stratification and vertical
gravity are ignored (i.e., g = 1 = p = pg) with the appli-
cation of a vertically local approximation and the assump-
tion that axisymmetric perturbations have the dependence
8(r, z,t) o 6(r) explik;z — iwt]. This model, a radial analogue
of the stratified shearing box, focuses on the mid-plane of
the disc, and is attractive from a numerical standpoint. A
continuum spectrum of modes in k; does introduce ambigu-
ity, and misrepresents the discrete spectrum uncovered with
fully global calculations in DLO. However, as mentioned in
Section 3, with a particular choice of k; = K;/H, where
K; ~ 1.158 (see the Appendix and DLO), the cylindrical
model very closely reproduces the dynamical features of the
fundamental r-mode calculated in a model including density
stratification.

Within this simplified framework, derivatives with re-
spect to z in Equations (10)-(16) are replaced by ik, and
the system reduces from a set of partial differential equa-
tions to a set of ordinary differential equations. Scaling time
by a)gl, lengths by rg and velocities by ¢, these ODEs can be
re-formulated as a generalized eigenvalue problem for the fre-
quency w, which we solve using a Chebyshev pseudo-spectral
method (Boyd 2001).

The system is of second order and so requires two
boundary conditions, one at each radial boundary. With the
choice of a constant k; = Kj/H(rigco) (consistent with the
cylindrical model), we find that the potential barrier sepa-
rating r-modes and the outer disc is very large, and wave
leakage negligible. We therefore implement a purely rigid
outer boundary condition in this case. We also consider a
radially varying k, = K1/H(r) for comparison with previous
calculations, ignoring the coupling of vertical modes that
comes from radial variation in the scale height H. In this
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case we implement a wave propagation boundary condition
and impose 8, v, = ik, v, at the outer radius, where k; is de-
termined using Equation (18) with w taken as the maximal
frequency from a trapping region calculated as in Section
3.3.

For well-confined trapped inertial modes, the inner
boundary condition also makes no difference. However, suf-
ficiently strong vertical magnetic fields cause the r-modes to
rely on reflection at the inner boundary. In DLO, we (some-
what arbitrarily) identified this critical field strength as that
at which frequencies deviated by 0.01 per cent (the level of
accuracy allowed by our numerical technique) for modes cal-
culated with the inner boundary conditions v, = 0 versus
0;6B; = 0, and we do the same here. Motivated by Kersale
et al. (2004), we also consider an inner boundary condition
in which the total pressure II = P + BZ/(2u) is held con-
stant (i.e., 6II = 0). This boundary condition results in a
slightly more pronounced effect of By on localisation at high
B, than the more neutral condition d,0B, = 0, but provides
very similar estimates of critical vertical magnetic strengths
as determined by frequency divergence.

4.1.1  Results

Fig. 3 shows representative radial profiles of the radial ve-
locity (top) and enthalpy (bottom) perturbation for r-modes
calculated with a vertical field providing a mid-plane plasma
beta of B; = 200 and increasingly stronger azimuthal mag-
netic field strengths. As shown, a strong By counteracts
the effects of the vertical field, forcing the fundamental r-
mode outward into the disc, and lowering its frequency back
toward hydrodynamic values. Additionally, increasing az-
imuthal field strength alters the compressible nature of the
r-modes; As shown in Fig. 3 (bottom), the enthalpy pertur-
bation (as well as v;) goes from having a radial quantum
number of / = 1 to [ = 0 for near equipartition Bg.

Fig. 4 shows heatmaps of the frequencies w (top) and
the maximal radii rmax (bottom) of the radial velocity per-
turbation for the fundamental r-mode, calculated using the
cylindrical model with the prescriptions k; = K;/H(risco)
(left) and k; = Ky /H(r) (right), c¢s = 0.005¢, a = 0.5 and the
inner boundary condition 9,6B, = 0. The calculated mode
frequencies are close to the frequencies predicted by our cal-
culations of the trapping region from the local dispersion re-
lation regardless of inner BC (cf. the local calculations given
in Fig. 2), although when both By is near equipartition and
B; is strong they are nominally larger than the WKBJ pre-
dictions. The global r-modes’ locations can vary with the
choice of inner boundary condition, however. In particular,
for the inner boundary condition 6I1 = 0, rypax separates from
risco at lower By than predicted by local calculations, while
a stronger By is required for the condition 8,,6B, = 0.

Fig. 5 shows, for different k, prescriptions and at a given
azimuthal magnetic field strength, the critical strengths of
the vertical field at which inertial wave trapping begins to
rely on reflection at the inner boundary. Points in the param-
eter plane that fall above (below) a given curve yield r-modes
that are pushed up against (isolated from) the ISCO. As in
DLO, we quantify one type of critical field strength curve
(marked with triangles) by fixing B4 and finding the value
of B, at which r-mode frequencies disagree for different inner
boundary conditions. We also include critical curves deter-
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Figure 2. Heatmaps showing the maximal frequencies and radii at which they are obtained for radial profiles of the resonant WKBJ
frequency (as illustrated in Fig. 1), calculated with a = 0.5, varying vertical (8;) and azimuthal (84) field strengths, and both k; =
Ki/H(risco) (left) and k; = K;/H(r) (right). These quantities can be associated with the frequencies and regions of localisation for the
fundamental r-mode with the simplest radial structure (resp.). For reference, the ISCO is located at r ~ 4.233r¢ for a = 0.5.

mined by equating the inner turning point (set by k2 = 0)
with the ISCO (marked with dots). For both metrics, the
estimates of critical magnetic field strength are largely inde-
pendent of which inner boundary conditions are used. Fig. 5
shows that for a given f8;, increasing azimuthal field strength
and moving from left to right can result in passage from a
regime in which r-mode trapping requires reflection at the
ISCO to a regime in which the trapping is independent.

Varying the spin parameter a changes frequency and
localization only as it might in hydrodynamic calculations,
by modifying the relativistic versions of the characteristic
frequencies, and the location of the ISCO. The sound speed
has little impact on the frequency or localization. However,
as discussed in DLO, a larger value of ¢5 widens the effective
potential well. With the inclusion of radial variation in H,
this results in modest decay rates for sound speeds 2 0.005¢
that are larger in amplitude with larger B;. Larger values of
¢s also make interaction with the inner disc edge possible at
lower vertical magnetic field strengths.

4.2 Fully global calculations

In this section we present fully global calculations of ax-
isymmetric r-modes, with the goal of validating the choice
of vertical wavenumber k; = K|/H made for the local and
radially global analyses presented in Sections 3 and 4.1. It is
convenient to trade the enthalpy perturbation for I = §p/p
and the variables vay and vp, for

dvar  Vag 90vag) v Avaz

A=V, , 28

Az a9z r or Az ar (28)
av

0= 2 (29)
az

A is proportional to the radial and ® to both the azimuthal
and vertical components of the Lorentz force perturbation.
The evolutionary equations for these variables (Equations
A6 and AT) then replace Equations (15) and (16).

Scaling velocities by ¢, lengths by rg, frequencies and
O by wg = 3/(GM), and A by cwg, we solve the verti-
cally stratified Equations (A1)-(AT7) using the same hybrid
pseudospectral-Galerkin method as in DLO (see Appendix
for details). The vertical and radial structures are more
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Figure 3. Real parts of the radial velocity (top) and enthalpy
(bottom) perturbations for r-modes calculated in the cylindrical
model with constant ¢y = 0.003¢c, a = 0.5, k; = K;/H(r1sco),
Bz =200, the inner boundary condition 9, 6B, =0, and increasing
values of the azimuthal magnetic field (the black dash-dotted line
shows the radius of maximal «). With increasing By the radial
quantum number of the enthalpy perturbation changes from / = 1
to [ =0 and grows in relative amplitude (not shown), indicating
an increasingly compressible mode.

strongly coupled with the inclusion of a toroidal magnetic
field component. However for moderate azimuthal magnetic
field strengths we find converged solutions using this nu-
merical method. Each calculation produces a spectrum of r-
modes with spatial structure discrete in both r and z, which
we characterize with the vertical quantum numbers [ and n
(resp.) that best describe the radial velocity perturbation.
Example heatmaps illustrating the r — z dependence of the
fundamental / = 0,n = 1 mode are shown in Fig. 6, calcu-
lated with B, = 100, and both By = 0 (left), and By = 12.5
(right).

Fig. 6 illustrates the azimuthal magnetic field’s mod-
ification of the trapped inertial modes. To begin, there is
a mild shift of the mode localisation outward in the disc,
in accord with our previous calculations. This shift is less
dramatic than that shown in Fig. 3 because of the weaker
By = 12.5. Most noticeable, however, is the transformation of
the modes’ magneto-acoustic properties. While in the case of
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a purely constant vertical field the global r-modes have even
or odd symmetry about the mid-plane, with an azimuthal
magnetic field of strength By = 12.5 the vertical velocity, en-
thalpy and Lorentz force perturbations become asymmetric
in z. This breaking of symmetry for the oscillations is not
surprising, since the background magnetic field considered
is helical, and asymmetric with respect to the mid-plane.

The numerical method used in DLO loses utility for
strong toroidal fields with B4 < O(10), the regime in which
we found the effects of toroidal magnetic fields on epicyclic-
Alfvénic r-modes to be most pronounced in Sections 3.3 and
4.1. This is likely due to the alteration of the magneto-
acoustic nature of the r-modes by the toroidal field. The
Alfvénic restoring force provided by a purely vertical mag-
netic field does little to change the nearly incompressible
nature of hydrodynamic r-modes, and so we found in DLO
that in the presence of such a field MHD r-modes’ vertical
structure is well-described by basis functions derived as the
eigenfunctions of anelastic MRI channel modes by Latter
et al. (2010). As the inertial waves become more compress-
ible, it is natural that their vertical structure can no longer
be as closely associated with that of essentially incompress-
ible MRI modes.

Importantly, however, the lengthscale of variation (with
respect to the scale height) does not appear to change sig-
nificantly with increasing By, and the frequencies are still
close to the predictions made with cylindrical calculations
and the k; prescription k; = Kj/H. This suggests that the
calculations made in Sections 3 and 4.1 should provide a
reliable window into the behavior of MHD r-modes in the
presence of strong toroidal magnetic fields.

5 DISCUSSIONS

In this section we provide theoretical and observational con-
text for our findings. All of the theoretical models offered to
explain HFQPOs in black hole binaries thus far face signif-
icant difficulties. In describing only particles or single fluid
elements, the original 3:2 resonance models of Abramowicz
& Klizniak (2001) and Kluzniak & Abramowicz (2001) re-
sult in a very narrow radial extent for the mechanism, which
would be unlikely to produce significant changes in emissiv-
ity (Rezzolla et al. 2003). In applying particle dynamics to a
description of a relativistic plasma, the relativistic precession
model faces a similar issue, although the theory has been ex-
tended to describe the precession of a rigid disc (Motta et al.
2018).

With regard to the related models involving the oscil-
lations of accretion tori, it should first be stated that the
geometry of the disc in the SPL state is uncertain. A torus
might be thought of as a proxy for a hot, thick flow inte-
rior to a standard thin disc that is truncated far from the
ISCO (Fragile et al. 2016). But measurements from reflec-
tion spectra suggest that at least for GRS 19154105, the
disc truncation radius remains stationary at the ISCO dur-
ing transitions in and out of high flux emission states (e.g.,
Zoghbi et al. 2016). Further, oscillations in a torus are likely
to be damped by both the Papaloizou-Pringle and magne-
torotational instabilities, and to have frequencies sensitive
to the torus’s non-Keplerian angular momentum distribu-
tion (Fragile 2005; Fragile et al. 2016). Torus oscillations
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Figure 4. Radially global calculations analogous to the local ones given in Figs. 2: Frequencies calculated for the fundamental r-mode
with varying B, and B4 are given in the top plots, while the radii at which the modes’ radial velocity perturbation achieves its maximum,
rmax, are given on the bottom (cg/c = 0.005¢, a = 0.5, k; = K|/H(risco) on left, k; = Ki/H(r) on right, inner boundary condition
8r6B; =0). For reference, the ISCO is located at r ~ 4.233rg for a =0.5.

finally lack a convincing mechanism for their excitation to
large amplitudes.

Although we have shown in this work that the effects
of magnetic fields on trapped inertial waves may not be as
detrimental as originally thought, diskoseismic oscillations
also face challenges in their explanation of black hole HFQ-
POs. For one thing, the theory requires a geometrically thin
disc extending nearly to the ISCO. Additionally, even if ax-
isymmetric r-modes are robustly excited by disc deforma-
tions, the linear theory does not in isolation explain the
appearance of HFQPOs in pairs with frequencies in near-
integer ratios. However, as mentioned by Reynolds & Miller
(2009), there are a number of physical processes not related
to resonant phenomenon that might give rise to integer ra-
tios.

Indeed, Remillard & McClintock (2006) noted that in
three of the sources exhibiting 3:2 ratios the upper and lower
HFQPOs occur in states of weaker and stronger power-law
flux (resp.). As suggested by Ferreira (2010), this might indi-
cate that separate but correlated mechanisms, one of which
could be r-mode excitation, are responsible for each oscilla-
tion. Alternatively, simulations or a dynamical systems ap-
proach might reveal a non-linear interaction between differ-

ent diskoseismic modes that could give rise to oscillations
with frequencies in near-integer ratios, as was preliminarily
investigated with a toy model by Ortega-Rodriguez et al.
(2014).

From an observational standpoint, the alteration of r-
mode frequencies by poloidal magnetic fields presents an ad-
ditional challenge in probing the black hole’s spin angular
momentum. However, the results of this work suggest that
the enhancements shown in DLO can be considered upper
bounds, as the strong toroidal magnetic field component
generated by any net vertical field will drive the frequencies
back toward hydrodynamic values. Further, due to an associ-
ation with magnetic pressure, the effects of a strong toroidal
field may translate more readily from our idealized model to
a realistic accretion disc than the effects of a vertical field
(which are associated with magnetic tension): the MRI, in
the presence of a strong ordered vertical flux, generates even
stronger fluctuating fields (both toroidal and vertical). Both
the toroidal and vertical components of the spatially and
temporally varying field will provide an effective magnetic
pressure. However, the fluctuating vertical magnetic field is
unlikely to provide the same magnetic tension as an ordered
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Figure 5. Plots of critical mid-plane vertical magnetic field
strengths (y-axis), as a function of azimuthal magnetic field
strength (x-axis) found using cylindrical normal mode calcula-
tions. The dots indicate the values of B (right) or Va./cs (left)
at which the inner turning point where kZ(w) = 0 coalesces with
the ISCO, while triangles show the critical vertical field strengths
at which frequencies of r-modes calculated with different inner
boundary conditions diverge by 0.01 per cent (cs = 0.005¢, a = 0.5,
k; = K1/H(risco) for black, K;/H(r) for red).

vertical field of the equivalent strength, as its spatial and
temporal coherence will be limited.

It is worth noting that the detrimental effects of mag-
netic fields on r-modes may actually prove useful in bridg-
ing the gap between theory and observations. A problem
that perhaps all models must contend with is the fragility of
the HFQPO mechanism. Considering that the features ap-
pear only in a handful of sources, and only during specific
emission states, most models for HFQPOs are too robust.
Trapped inertial waves, for example, might also be expected
to provide a signal in the classical high/soft state, when
the thin disc unambiguously connects to the ISCO. Con-
versely, the oscillations of a hot torus might be expected to
drive HFQPOs in the low/hard state, when the thin disc
is thought to truncate well before the ISCO. In the former
case, Ferreira & Ogilvie (2009) provided a differentiating fac-
tor with their investigation of warp and eccentricity propa-
gation. They found that such deformations are much more
likely to overcome damping and travel to the inner disc re-
gions (a requirement for r-mode excitation) when accretion
rates are high, close to Eddington. However, magnetic fields
might still provide some explanation for the paucity of oc-
currences across multiple sources.

Finally, throughout we have discussed (vertical) mag-
netic fields only negatively, solely as an impediment to the
theory. But an ordered poloidal magnetic field might be
viewed more positively if recognised as a means by which
the power in coherent disc oscillations could be transferred to
plasma in the corona. It is the corona, after all, that is associ-
ated with the high energy ‘tail’ in which the HFQPOs are ob-
served (Done et al. 2007). Trapped inertial waves will drive
oscillations in any vertical field threading the disc, which on
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penetrating the coronal plasma might in turn drive activity
in its tangled fields. In particular, reconnection driven by
the interaction of r-modes with the corona through a ver-
tical magnetic field could lead to time periodic dissipation
and hence emission. This is an idea worth exploring, and
permits the extension of the theory from its current, purely
dynamical form.

If trapped inertial wave excitation proves a robust ex-
planation for HFQPOs, the features might offer a window
into the presence (or lack thereof) of strong magnetic fields
in systems for which the spin is already constrained. How-
ever, the controlled analytical and numerical experiments
presented in this work constitute only one piece of the puz-
zle. Development of the theory to include non-linearity and
more complete treatments of vertical structure and both ra-
diative and thermal physics are required before observations
can be confronted with certainty.

6 CONCLUSIONS

We have explored the effects of large scale magnetic fields
with both toroidal and poloidal components on trapped in-
ertial waves (r-modes) in MHD models of relativistic accre-
tion discs, through both local analyses and global normal
mode calculations. Previous studies (Fu & Lai 2009; Dew-
berry et al. 2018) suggested that purely azimuthal magnetic
fields affect r-mode trapping minimally. However, we find
that when considered in conjunction with, rather than in
isolation from, a poloidal field component, toroidal magnetic
fields have a greater impact. Far from remaining passive,
a background azimuthal magnetic field reduces the effects
of a vertical one on trapped inertial waves, moving r-mode
trapping regions and frequencies back toward their hydro-
dynamic values. This finding is not in opposition to Fu &
Lai (2009) or Dewberry et al. (2018); the purely azimuthal
and purely vertical magnetic fields considered in those works
can be seen as special cases of the field configurations inves-
tigated here.

Quantitatively, for any toroidal field strength the radial
geometry of inertial wave trapping is only marginally af-
fected by weak to moderately strong vertical magnetic fields
with mid-plane plasma betas B; 2 500. The detrimental
effects of stronger vertical fields are greatly reduced by az-
imuthal fields with By > B, and the isolation of the trap-
ping cavity from the ISCO can even be restored for 8, < 200
by toroidal magnetic field components contributing 84 < 10.
Global and local MHD simulations suggest these conditions
are not unreasonable near the disc mid-plane (e.g., Salvesen
et al. 2016; Zhu & Stone 2018), although the vertical pro-
file for the azimuthal magnetic field will certainly be more
complicated than that considered here.

Further, we have shown that the effect of a strong az-
imuthal component of a helical magnetic field is to modify r-
modes’ magneto-acoustic nature, while a purely vertical field
modifies r-modes primarily through a restoring force due to
magnetic tension. This suggests that the restorative effects
of a strong toroidal component will translate easily from
our simplified model assuming smooth, large-scale magnetic
fields to a more realistic disc with magnetic fields that are
disordered.

The model presented in this paper is necessarily ide-
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Figure 6. Heatmaps showing the r, z/H-dependence for the real parts of the MHD variables of global r-modes calculated with 8, = 100,
and both By = 0 (left-hand column), and B4 = 12.5 (right-hand column) (c¢s = 0.001c, a = 0.5, H = H(r;sco)). The boundary condition
9,6B, =0 is imposed at risco, while a wave propagation boundary condition is imposed at r,,; to account for weak coupling with a
2D inertial-acoustic component. The white and black dashed lines mark the radius of maximum epicyclic frequency.
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alised, ignoring the effects of radial inflow and radiation
pressure, both of which ought to be relevant in the emission
states in which HFQPOs are observed. The vertical struc-
ture of both the disc and the background toroidal field it-
self should also be considered more carefully, as the latter
will significantly impact the former for plasma betas ap-
proaching or surpassing thermal strengths (Terquem & Pa-
paloizou 1996). However, the qualitative result that back-
ground toroidal magnetic fields reduce the detrimental ef-
fects of vertical magnetic fields on trapped inertial waves
should translate to more complicated treatments of vertical
structure. The survival of trapped inertial waves in a re-
alistic accretion flow is most likely to be determined by a
competition between excitation by global disc deformations
and damping by radial inflow and turbulent fluctuations.
More sophisticated analytical and numerical models will be
required to determine if r-modes can provide a robust ex-
planation for HFQPOs.
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APPENDIX A: NUMERICAL METHOD FOR DENSITY STRATIFICATION

To solve Equations (10)-(16) for fully global r-mode solutions, we first trade variables, as described in Section 4.2. We
additionally make a change of coordinate, exchanging z for n(r, z) = z/H(r). Retaining radial variation in the scale height, the
full set of equations is then

0 dlnH 9 1

—lwv, =2Qvg - 2 o dr oy + EA, (A1)

2
. _ kK Va;
—iwvy = 2er+ 2 0, (A2)
2
. c2or Va
—lwv, = —ES% - qu@, (A3)
or 2 L3 dnH 1) 1 aGsv:) A1)
r or dr g dlnp gH 0n
. VAZ vy
—lwvp, = ——, A5
"= " o (A5)
. 1 0 1 2 2 2 2 62 10 r 6V¢ 1dInH 62V¢
—iwA = —Lg——+ — H — - -——=—-= A
1w {LAJ’ 7 g (VAZ *VA@H)n ) o) VAV \ L\ E T | T E Mo (A6)
2 9 (1dv;\ 1dnH 8%, v L_dgdea )
Ad \or \H on H ar on? A\ qnr dr dlngy Ar
ro0% (vey Var0%ve  Vag 0%v, 1 dQ dva,
Sw® = -V ——— (L) 4 22 22 — A
@ A"’Hanar(r) H o2 H2 o2  Hdlnr an (AT)
where we have defined the purely radial differential operators
0?1 a1
— (V2 2 2 2
LA_(VA¢+VAZ)m+;(VAZ_VA¢)(5_;)’ (AS)
L o , \ dH > [,dH d »d (1 dH
= - - —_— - 2—— +H — | —=— A
Lu r (VA¢’ VAZ) o AVPa et H2 dr )’ (49)
dQ 0 1d dQ
= —+—-— . Al
Lo dlnrar+rdr (rdlnr) (A10)
We expand the perturbations as
() = O um ), ve(rm) = Y v En(m),  wr(rn) = > wan(r)F_1 (1), (A11)
m=0 m=0 m=1
var(m) = D VRGN = Y An()Gm(), O ) = Y. Ou(r)g)Fn(n), (A12)
m=0 m=0 m=0

where {F, ()} and {G,(n)} are orthogonal sets of dimensionless basis functions characterized by a vertical quantum number n
and corresponding eigenvalue Kj,. They describe the vertical structure of the horizontal velocity and magnetic field components
(resp.) of magnetorotational channel modes in the anelastic approximation (Latter et al. 2010), and can be normalised such
that

/ gFnFrndn = 6nm, / GnGmdn = 6nm.- (A13)
—00 —00

Since the F,; go to a constant as n — oo and Gy to zero, the expansions (A11)-(A12) implicitly place boundary conditions
on the perturbation variables’ behaviors far above and below the disc; namely, we assume that in the rarefied, magnetically
dominated atmosphere the velocity components and I' = §p/p are stabilized and forced to go to constants. For the true Alfvén
velocity perturbation va,/+/g to remain bounded va, must go to zero. With regard to the Lorentz force perturbations, we
adopt a hot halo model (Sano & Miyama 1999) and assume that far from the mid-plane the magnetic field achieves a force-free
configuration, such that A and ® — 0.
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Substituting Expansions (A11)-(A12) into Equations (A1)-(A7), and using the orthogonality relations (A13) to project onto
an arbitrary vertical order n leaves the coupled equations

. dr;,
—iwuy, = 2Qv, — c%d— 28 H Z RonVamDTm + Z HUnmAm» (A14)
r m=0 m=0
K2
—iwv, = ~5gln* VazOn, (A15)
—iwwy = —c2 Z Rinén—1.mTm — Vag©n-1, (A16)
m=0
. 1 d(run) . RS
—iwly, = =4 OrInH Z Anmitm + Kn Z Em—1.nWm (A17)
m=0 m=1
—iwvk = KnVazlin, (A18)

[ee)
. 1d
—iwA, = Z {llmn-CA + Km’)’nmLH K (VAZEmn + VA (arH) a’mn)} um — VapVaz (_d_ (Kn"Vn) +0r-H Z K2 mYmnVm
m=0

m=0
d n dQ
Vg |3 (Ruwnsr) + o1 Z et | = Vag | Lav + 5 0rH Z R | (A19)
m=1
& d (u dQ
—iwO, =~V mZO Ronbtm —— ( ;") VacKvn + VagRawns) = Rn =V, (A20)
where the sums are over finite coupling integrals defined by
(o] (o] (o)
Hnm = / FyGpdn, €nm = / gFnGmdn, Anm = / &Fm (Fn + 1K, Gy)dn, (A21)
—c0 —00 —00
Ynm = / nG,Gpdn, Vam = / ngF,Gpmdn, U = / r]ngnGmdn. (A22)
—0 —00 —00

The equations are most heavily coupled by the sums in Equations (A14) and (A20) that involve the integrals pym, which
increase in importance with increasing By. As a consequence of the symmetry breaking by the mixed magnetic field components,
the vertically structured r-modes are coupled to 2D, n = 0 components. This coupling, which cannot be described by a
cylindrical model in which the vertical wavenumber is either zero or non-zero, allows for some wave leakage out of the
trapping region (this leakage is treated with a wave propagation boundary condition, although the decay rates it introduces
are minimal).

Despite this stronger coupling, solving Equations (A14)-(A20) as a generalized eigenvalue problem for the radially varying
coefficients and reconstructing the full solutions from Equations (A11)-(A12) (see DLO for more details) produces frequencies
and eigenmodes that converge with truncation of the summation terms at increasingly large m = M (see Tables Al and A2).
However, for strong By with B4 < 10 this convergence is too slow for this pseudospectral-Galerkin method to be useful, as the
toroidal magnetic field changes the r-modes’ compressibility and renders the {F,} and {G,} basis functions innapropriate.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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Vag/cs 0.1 0.15 0.2 0.25 0.3 0.35 0.4

~ B¢ 200 88.9 50 32 22.2 16.3 12.5

M=2 0.04032  0.04029 0.04025 0.04020 0.04013 0.04006  0.03998
M=3 0.04033  0.04029 0.04025 0.04020 0.04014 0.04006  0.03998
M =4 0.04036  0.04033 0.04029 0.04024 0.04018 0.04011  0.04004
M =5 0.04036  0.04033  0.04029 0.04024 0.04018 0.04011  0.04004
M=6 0.04037  0.04034 0.04030 0.04025 0.04020 0.04014 0.04007
M =1 0.04037  0.04034 0.04030 0.04025 0.04020 0.04014  0.04007
M =38 0.04037  0.04034 0.04031 0.04026 0.04021 0.04015 0.04010
M =9 0.04037  0.04034 0.04031 0.04026  0.04021  0.04015  0.04009
M =10 0.04037  0.04035 0.04031 0.04027 0.04022 0.04017  0.04012
M =11 0.04037  0.04035 0.04031 0.04027 0.04022 0.04017  0.04012
M =12 0.04037  0.04035 0.04031 0.04027 0.04023 0.04018 0.04014
M =13 0.04037  0.04035 0.04031 0.04027 0.04023 0.04018 0.04014
M =14 0.04037  0.04035 0.04032 0.04028 0.04023 0.04019 0.04019
Cyl (k; =K /H) 0.04040 0.04037 0.04032 0.04025 0.04017 0.04007 0.03996

Table Al. Frequencies of fully global, fundamental r-modes, for Va./cs = 0.06 (B, ~ 555) and varying values of Bg, calculated as
solutions to a series of coupled eigenvalue problems with a constant scale-height approximation, truncated at different vertical orders
m =M (cs = 0.002c, a = 0.5, N = 150 Gauss-Lobatto grid-points, r € [4.2331,10.2331]rg). The bottom row gives the frequencies
calculated using the cylindrical model with the same parameters and k; = K|/H(r;sco). Modes are calculated with the boundary
conditions 8,68, = 0 at rip, and 8,v, = ik, v, at rout (radial wavenumber k, determined for the 2D, n = 0 component which weakly
couples r-modes to inertial-acoustic oscillation outside of the trapping region).

Vaglcs 0.1 0.15 0.2 0.25 0.3 0.35 0.4

~ B¢ 200 88.9 50 32 22.2 16.3 12.5

M=2 0.03768  0.03765 0.03760 0.03755 0.03749 0.03742 0.03733
M =3 0.03769  0.03765 0.03761 0.03756 0.03749 0.03742 0.03734
M =4 0.03771  0.03768 0.03764 0.03759 0.03753 0.03746 0.03739
M =5 0.03771  0.03768 0.03764 0.03759 0.03753 0.03746  0.03738
M =6 0.03771  0.03769  0.03765 0.03760 0.03754  0.03748 0.03741
M =1 0.03771  0.03769  0.03765 0.03760 0.03754 0.03748 0.03741
M =38 0.03772  0.03769  0.03765 0.03761 0.03755 0.03749  0.03743
M =9 0.03772  0.03769 0.03765 0.03761 0.03755 0.03749 0.03743
M =10 0.03772  0.03769 0.03766 0.03761 0.03756  0.03750  0.03744
M =11 0.03772  0.03769 0.03766 0.03761 0.03756 0.03750 0.03744
M =12 0.03772  0.03769 0.03766 0.03762 0.03757 0.03751  0.03746
M =13 0.03772  0.03769 0.03766 0.03762 0.03757 0.03751 0.03746
M =14 0.03772  0.03770  0.03766 0.03762  0.03757  0.03752  0.03747
Cyl (k; =K/H) 0.03776 0.03772 0.03767 0.03760 0.03752 0.03743  0.03732

Table A2. Frequencies of fully global, fundamental r-modes, for Va./cy = 0.06 (8, = 555) and varying values of By, calculated as
solutions to a series of coupled eigenvalue problems with the extra coupling provided by a radially varying scale-height, truncated at
different vertical orders m = M (c¢s = 0.002c, a = 0.5, N = 150 Gauss-Lobatto grid-points, r € [4.2331,10.2331]rg). The bottom row
gives the frequencies calculated using the cylindrical model with the same parameters and k, = K|/H(r). Modes are calculated with the
boundary conditions d,6B, =0 at riy and 8,v, =ik, v, at rout (radial wavenumber k, determined from the full dispersion relation for
non-zero kz, which dominates leakage outside of the trapping region when vertical scale height variation is included).
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