Concatenated slides

Introduction

XML and the Launch of Chemical Markup Language

This talk consists of 26 HTML-based slides.

- Some slides contain GIFs as thumbnails. They are outlined (probably in blue). If you click on these a fullsized image will appear. To 'go back' you may have to click the right mouse button or or use some other way to 'go back in frame'
- Some slides contain technical bits (in red). Mainly examples of CML in action. These can be skipped and read later if necessary.
- The table of contents (an important XML concept) is slide001. It may be useful to clone a window with the TOC. You can also reach this page (and other pages) from the TOC.
- Each slide contains a NUMBER under the JUMBO icon (001-026) for navigation.
- There is NO Java during the lecture. To download the JUMBO browser, wait till after the lecture and follow the JUMBO icon
- JUMBO is being released in stages (Shakespeare at present). Chemistry will follow in about a week
- Technical JUMBO queries are best left to the post-lecture discussion list
- The Open Molecule Foundation is sponsoring a free JUMBO-based CDROM of CML.
- Many thanks to Chemweb and VEI.

toc

	Title	014	XML tools (inc JUMBO) ([tools])
000	Help! ([help])	015	Basic chemical quantities ([chembits])
001	Table of contents (toc)	016	Example: Molecule ([mol])
002	Synopsis ([synopsis])	017	Example: Crystallography ([cryst])
003	HTML success and limitations ([html]	018	Example: Molecular Orbitals ([mo])
)		
004	HTML and molecules ([htmlmol])	019	Example: Protein Structure ([protein]
)
005	The reason for XML ([xml])	020	Chemistry and maths ([chemmath])
006	How XML has been developed ([xdev])	021	Chemical Publication ([chempub])

007	Who is interested in XML? ([whoxml]022	Glossaries ([gloss])
800	, The basis of XML ([xmlbasis])	023	CML and Intranets ([nets])
009	Structured documents ([structdoc])	024	The way forward ([future])
010	Adding semantics ([semantics])	025	Acknowledgements ([thanks])
011	XML and Java ([xmljava])	026	XML and CMLresources ([urls])
012	Hypermedia ([links])		
013	Searching ([search])		[DIA slides]
	/		[Biological Data]

synopsis

Chemical Markup Language

- A platform- and convention-independent specification for information interchange in the molecular sciences
- Platform and application interoperability
- Compatibility with current W3C initiatives (XML)
- The Future of scientific publishing
- Addition of semantics and hypermedia to chemistry
- Tested in conjunction with working XML software
- Supported by the first XML browser,

JUMBO

1

The Open Molecule Foundation is sponsoring a free demonstration CDROM for CML.

html

Simple, human-readable and authorable, easily learnt

Transmits text and graphics

Forgiving of errors;

Makes hypermedia (links) accessible to millions

Inspires 'memes' (spontaneous self-reproducing ideas)

Unsuited for machine2machine communication

Hyperlinks break easily and cannot be maintained

Tagset and syntax not extensible

Confusion of content and style/formatting

htmlmol

MIME provides type-stamping for files:

- text/html = HTML hypertext
- image/gif = Images (pixel maps)
- text/xml = an XML document

Browsers and other software make great use of these

• Helper applications can be set (e.g. application/postscript can call ghostscript)

Chemistry makes use of this through chemical/x-*

- chemical/x-pdb = PDB (Protein Data Bank) format [[Example]]
- chemical/x-mdl-molfile = MDL Mofile
- viewable with RasMOL or Chime (TM)

Problem: each type usually requires individual software

• Not always viewable on all platforms

Problem: few current 'standards' and little conformance

- Example: most 'PDB' files do not conform to PDB documentation
- Some file types are binary and platform-dependent

XML

The W3C language for structured documents on the WWW

• A complete solution for documents AND data

Format-free content + stylesheets

"SGML made simple"

- SGML is the most powerful document management language
- SGML is too complicated for the WWW

Major players such as SUN, Microsoft and Netscape

 Over 100 major players in the WWW Consortium, financing standards development

Targeted for browsers and servers

- All WWW software in 1998 will support XML
 Supports structure, markup, and full hypermedia
- Addresses most current problems in WWW information infrastructure
- HTML is just an introduction; XML shows the real power of SGML and hypermedia

Customisable, extensible and designed for interoperability

- XML will run anywhere, anywhen and 'talk' to any other XML application Simple to get started with; incredibly powerful
- If you know HTML you can start on XML tomorrow
- XML can provide much of the power of RDBs or OO systems

xdev

XML is part of the W3C effort which covers:

- Structured documents (XML)
- Hypermedia (links) (XLL)
- Stylesheets independent of content (XSL)
- Meta-data (data about documents and their structure) RDF
- Structured data (XML-data)
- Interoperability of domains (XML-name)
- Privacy, authenticity, etc.

XML is developed in an fast open collaborative process

• Editorial board WG (Working Group) meets (virtually) weekly

- 100 experts worldwide advise the WG
- A strictly managed process and timescale gives fast, high quality results
- Openness means that all particpants 'own' the result

Chemistry must learn from the XML process!

- CML is offered as a way to build on W3C/XML success
- The Chemical Markup Forum (CMF) offers its services to support this

whoxml

XML is exciting industries and activities such as:

- Banking (OFX)
- Metadata and Search engines (RDF)
- Push technology (CDF, Microsoft)
- Databases on the WWW (XML-data)
- Commerce (XML-EDI)
- Electronic drug submissions (CANDAs)
- Healthcare (HL7)
- Publishing

xmlbasis

XML provides structure and precise markup

Examples of markup are given in later slides
 Example of structure (technical, but visually important!):

Transformation of this example:

The fun of chemistry

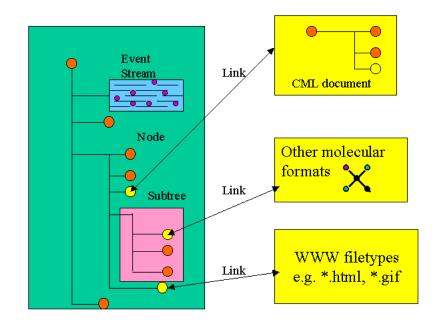
by Molly Cool

Published by Elementary Press

Senior editor Nick L. Ion

structdoc

WARNING: Technical slide!


The structural power of CML

- CML documents can have a complex internal tree structure
- They can also link to other XML (and non-XML) documents.

(NOTE: '[EventStream] ' corresponds to hypertext.)

[

Structure of a CML hyperdocument

]

Hypertext is an Event Stream

A stream of character data with event flags to switch formatting on/off

<P>This is a <I>stream</I> where the markup switches formatting on and off. Hyperlinks can include material such as text and <SRC IMG="image.gif">images. The XML format allows greater control of these as in 'click to show molecule'.</P>

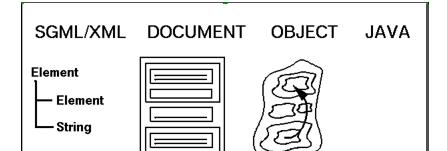
```
This is a stream where the markup switches formatting on and off. Hyperlinks can include material such as text and images. The XML format allows greater control of these as in X (molecule has been clicked)
```

semantics

Tags alone have no meaning; semantics must be added

- <A> could mean Author, Anchor, Answer...
- Some tags (e.g. <MOLECULE>) may be human-readable, but are meaningless to computers

Semantics can be added through Java


- For <MOLECULE>, run jumbo.MOLECULE.class
 Semantics can be added through hyperlinks to glossaries
- <ITEM TITLE="tryptophan" HREF="glossary.org/org/mols?tryptophan"/>
 Semantics can be added through stylesheets

xmljava

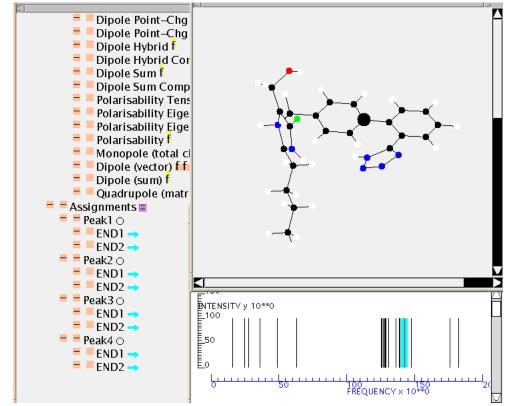
"XML gives Java something to chew on"

- Jon Bosak (SUN) Microsystems; a driving force behind XML
- XML and Java complement each other perfectly.
- Java provides the technology to deliver XML anywhere in any form
- XML allows people to "touch and feel" Java objects
- Every XML element can have a corresponding Java class
- This philosophy is implemented in JUMBO

[

]

links


XML has extremely powerful hypermedia (XML-LINK)

- allows not only simple uni-directional links (e.g. <A HREF> in HTML)
- allows the creation of robust hyperdocuments (i.e. links won't break)

XML-LINKs

- can be multi-ended and bidirectional
- can represent different views (e.g. different graphs)
- can have several types of behaviour (e.g. automatic EMBEDding)
- can be typed (e.g. 'parentOf', 'pointerToFigure')
- can be in different documents

Spectral Assigments

WARNING: Quite technical

Reactions can be described by XML-LINKs!

In the esterification reaction CH3CO2H + CH3OH = CH3CO2CH3 + H2O

<!DOCTYPE CML><CML><P>In the esterification reaction <REACTION XML-LINK="EXTENDED" TITLE="Esterification"> <VAR XML-LINK="LOCATOR" HREF="acetic.cml" > <VAR XML-LINK="LOCATOR" HREF="methanol.cml" ROLE="reactant"> <VAR XML-LINK="LOCATOR" HREF="ethylacetate.cml" ROLE="product"> <VAR XML-LINK="LOCATOR" HREF="water.cml"

</REACTION></P></CML>

search

Technical, but the facility is very exciting

TEI pointer searches in CML

tools

There are a very large number of high quality XML tools

XML will be in the major browsers, WWW database systems

For many applications you can get solutions off-the-shelf

For early adopters, see the XML-DEV list (slide 025)

For technical applications, especially molecules, JUMBO:

- is a generic XML browser
- although written to help develop CML, supports any DTD
- supports tree-structured display and editing
- supports XML-LINK
- supports TEI searches
- has over 300 Java classes
- maps XML elements onto Java classes

JUMBO 9801 has been released in alpha and is on the OMF CDROM

chembits

CML can support:

• Spectra and other instrumental output

- - -

- Crystallography
- Organic and inorganic molecules
- Physicochemical quantities (including units)
- MO calculations
- Macromolecules: Sequence protein, ligand and sequence
- Molecular Hyperglossaries : text and molecules
- Unidirectional hyperlinks and Multidirectional hyperlinks

Generic Markup

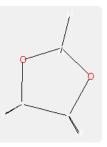
- <LIST>, <ITEM>, <ARRAY>, <TABLE>, <MATRIX>
- <PERSON>
- <BIB> (for citations)
- <UNITS>
- <INTEGER>, <STRING>, <DATE>, <URL>, <FLOAT>
- <FIGURE>
- [

ą 4 χis y 10**6	
200	
200	
-200	

 $\lfloor \frac{1}{2} \rfloor + \lfloor \frac{1}{2} \rfloor +$

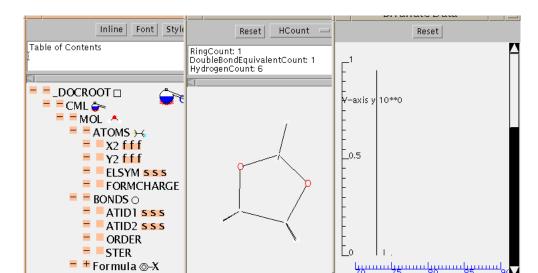
]

Chemical Markup


- <MOL>, <FORMULA>
- <ATOM> and <ATOMS>
- <BOND> and <BONDS>
- <CRYST>, <SYMMETRY>
- <SEQUENCE>, <FEATURE>

WARNING: Technical! (picture in next page)

Example:

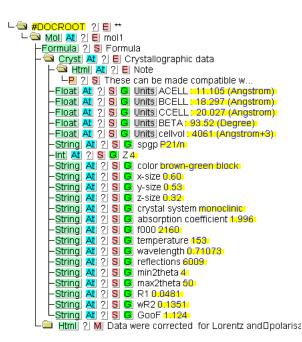

mol

A 2-D diagram can be encoded in CML

Different views of the same molecule!

- The LHS is the TOC
- The RHS is the calculated isotopic distribution of the parent peak in MS
- The Centre shows several queries to the molecule
- [

This is the CML representing it: (Technical)


cryst

1

JUMBO converts the following on-the-fly

- CCDC BIB/CON/DAT
- CIF (small molecule and mmCIF)
- PDB

The crystallographic data from the RSC Chem Comm:

- Note that many quantities have UNITS
- The CRYST object can calculate reciprocal cell, orthogonalisation matrix, etc.
- SYMMETRY can be managed

And this is how hypertext is integrated

• The hyperlinks (in blue) are active in the JUMBO browser

Data were corrected for Lorentz and polarisation effects and a semi-empirical absorption correction, based on [upsilon]-scans, was applied (T_{max} = 0.980, T min = 0.558).The structure was solved by direct methods^{ref14} and refined by full matrix least-squares on F², using all 5278 independent reflections (R_{int} = 0.0583). All the non-hydrogen atoms were refined with anisotropic atomic displacement parameters and hydrogen atoms bonded to carbon were inserted at

mo

ſ

XML is very good for formatting ANY complex output

Reset

Eigenvalues

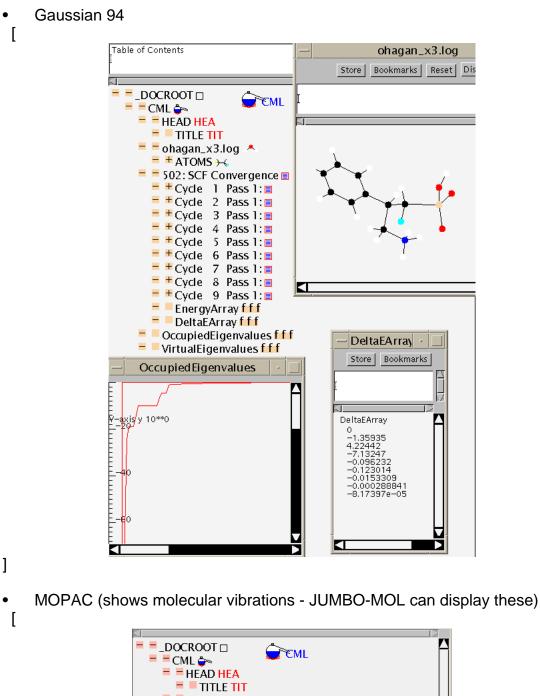
Control info

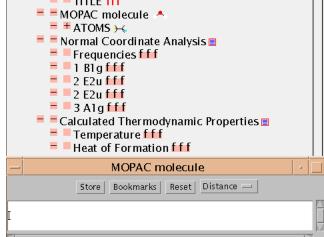
NAO-PC T=3600.0 AM1

20


-20

₩--axis y 10**0


- Note the UNITS are marked up (and can be converted on-the-fly) •
- Numbers can also be plotted graphically
- Much of this comes 'for free' with XML/CML/JUMBO


Three examples follow (VAMP, G94, MOPAC)

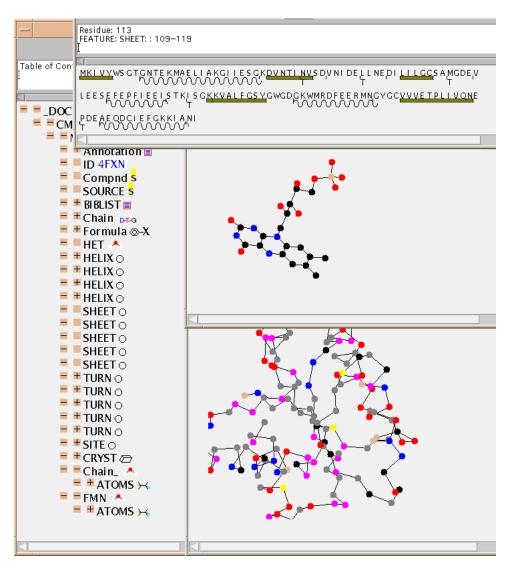
VAMP Search Inline Font Style S Table of Contents CML = CML 👉 HEAD HEA = MY_MOL 🔺 = + Formula ⊚-X = 🕂 SYMMETRY 🗷 = + ATOMS 🕂 = = Job details 🔳 Control info Computation time 2424.17 second SCF calculations 378 Calculated molecular properties Predicted C13 shifts was FREQUENCY fff INTENSITY **fff** Heat of formation 171.172 kilocalorie/mole Electronic energy –43417.7 electronvolt Core-core repulsion 38326.7 electronvolt Total energy –5090.93 electronvolt _ Gradient norm 0.383358 RMS force 0.029577 Ionization potential 6.81616 electronvolt filled levels 78 _ Accessible Surface Area 457.258 angstrom+2 -Eigenvalues fff -Atomic orbital electron populations fff _ Dipole Point-Chg 4.623 debye

1

protein

]

PDB files are not "flat" but highly structured

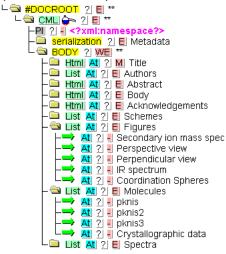

They contain many "objects" such as:

- <BIB>
- <FEATURE>
- <MOL>
- <SEQUENCE>

Here is a typical PDB file rendered in an early JUMBO

- NOTE: The TOC identifies many components
- The ligand and protein are separated
- The HELIX <FEATURE> is automatically mapped onto the <SEQUENCE>

chemmath


1

```
Example of final display:
[
]
The hydrolysis of (I) can obey the
kinetics: (1)
dx/dt = -kx
<P>The hydrolysis of <A
HREF="mol.xml" XML-LINK=
"SIMPLE"> molecule(I)</A> can obey
the kinetics <A HREF="eqn.xml"
XML-LINK= "SIMPLE"
ACTUATE="AUTO"
SHOW="EMBED">
<!DOCTYPE MATHML><MATHML>
<EQN><EXPR><DIFF/>x<BVAR>t</BVAR></EXPR>
<EQ/><EXPR><MINUS/>k<TIMES/>x</EXPR></EQN></MATHML>
<!DOCTYPE CML><CML><MOL
TITLE="Methyl
ARRAY BUILTIN="ELSYM">C
/ARRAY></ATOMS><BONDS><ARRAY
BUILTIN="ATID1">1</ARRAY><ARRAY
BUILTIN="ATID2">2</ARRAY><ARRAY
BUILTIN="ORDER">1</ARRAY></MOL></CML>
```

chempub

Complete chemical publications are possible in CML

- This is an example from The Royal Society Of Chemistry's Chem. Comm.
- It appeared as CML on the CDROM of the latest ECTOC proceedings (thanks to RSC, Henry Rzepa and colleagues)
- This is the TOC (TableOfContents). Note that hypertext and data are integrated
- The green arrows are Hyperlinks (XLL) to other files. These files are both XML and non-XML. The latter are converted to XML on-the-fly.
- Note the metadata (in RDF format)

Some components of this paper

- Metadata
- Structure (Abstract, Body, Paragraphs, etc.)
- Schemes and Figures (with integrated captions/HTML)
- Molecules
- Crystallographic Data
- Spectra
- Citations

Molecular Hyperglossaries

[The hyperglossary concept]

Semantic information can be added from glossaries

- tryptophan
- This can be added to any element in a CML document
- UNITS can linked:
- <ITEM TITLE="pressure" UNITS="glossary.org/units?pascal">23.27</ITEM>
 A typical entry in a molecular hyperglossary

A typical entry in a molecular hyperglossary

- The textual entry (uses ISO12620 terms) gives a definition, etc.
- links to other resources

```
[
```

```
VirtualHyperGlossary Technology

Glossary: The PPS Glossary (1995)

ID: tryptophan

Term: tryptophan

Tryptophan is an aromatic, hydrophobic and neutral

amino acid. It is found buried in protein

structures. It is one of the essential amino acids.

Keywords

PARTOFSPEECH: n

ABBREVIATION: trp

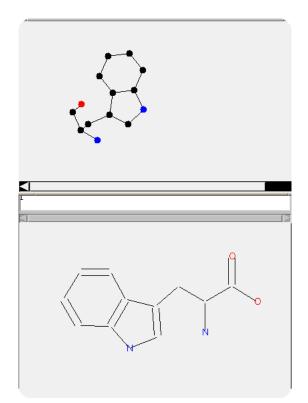
ABBREVIATION: W

URLs

Structure (Klotho) 

Entrez

aminoacid (XREF)


3DStructure (chemical/x-pdb-fuzzy)

2DStructure (chemical/x-mol)
```

]

[

- The molecular information is both 2D and 3D
- Because it's in XML it can be searched, extracted for calculations, etc.

]

XML/CML and Intranets

XML is set to become the language of intranets

XML has major attractions in production environments

E-journal publication, e.g. complete Chem. Comm.

Database entry input/output

Data capture and instrument control

Program control and output postprocessing

Future-proofing of data in legacy systems

Representation of large scale documentation (e.g. regulatory)

Precise delivery of critical information (patents, safety, etc.)

Non-textual approaches (e.g. compound data cards)

The future of CML

- CML is a starting point, not a finished product.
- CML can support many philosophies and allow interconversion between them
- CML is supported by the Open Molecule Foundation, a consortium for interoperability.
- The OMF is sponsoring a free run-anywhere CDROM showing the potential of
- CML will interoperate with MathML and XML metadata standards
- CML can be developed Virtually (like XML)
- CML is not bound to any software platform
- JUMBO and JUMBO-MOL are freely available for collaborative development

The molecular community is certain to need XML soon

- Support communal development
- Make your requirements known. XML/CML can probably address many of them
- Get involved with prototypes; learn the power of XML
- Develop interfaces to XML-based systems

The OMF is sponsoring a free CDROM with CML/JUMBO

Join the OMF/CML effort!

Thanks and acknowledgements

Many thanks to the following

- Henry Rzepa for constant encouragement, promoting CML, especially at ACS 1997. And his long-suffering colleagues.
- The Open Molecule Foundation for support for CML and for the CDROM
- Colleagues in the VSMS and Nottingham
- A huge number of virtual friends in the XMI community. Many have contributed ideas, given webspace and mirrors, etc. Especially Jon Bosak who gave the first public demo of Jumbo
- Venus Internet for continued support and web pages
- The Royal Society of Chemistry for invitations into the CLIC project and allowing me to use their material for markup experiments
- Adam Precious (MDIS) and Moni Pangali (SUN Microsystems) for their vision, support and promotion of CML
- Chemweb and VEI for giving me this opportunity

URLs and other resources

Some Resources

- XML-FAQ. ([http://www.ucc.ie/xml/]) run by Peter Flynn.
- XML ([http://www.sil.org/sgml/xml.html]) maintained by Robin Cover and updated almost daily.
- XML-DEV. ([http://www.lists.ic.ac.uk/hypermail/xml-dev]) Henry Rzepa and I run a discussion list for anyone interested in developing XML applications. Highlights are identified at XML-Jewels ([http://www.vsms.nottingham.ac.uk/vsms/xml/jewels.htm])
- CML ([http://www.venus.co.uk/omf/cml/]) and [http://www.vsms.nottingham.ac.uk/vsms/java/cml] Chemical Markup Language, shortly to be circulated on CDROM.
- VHG ([http://www.venus.co.uk/vhg]) glossaries and terminology in XML, especially created for hyperlinked semantics.

- •
- JUMBO ([http://www.vsms.nottingham.ac.uk/java/jumbo/]) and feel free to contact me at [peter@ursus.demon.co.uk] or [peter.murray-rust@nottingham.ac.uk] [http://www.ch.ic.ac.uk/omf] •
- •