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Summary

Title: Inferring Determinants of Viral Transmission using Short-Read Sequence Data

Author: Casper Kaalø Lumby

Summary: In order to spread, pathogens must not only be able to grow within an
infected host, but also transmit to found new infections. In this thesis, I present a
new population genetic framework generating insights into viral transmission events
based upon genome sequence data collected before and after transmission. Previous
attempts at bottleneck estimation have neglected the underlying genetic structure of
viruses, considering instead less informative single-locus statistics.

Here I examine the problem of constructing reliable haplotypes from short-read se-
quence data, considering the performance of both exhaustive and minimal approaches
in capturing linkage characteristics of the viral population. I present a simple method
for bottleneck inference rooted in a multi-locus context supported by haplotype infer-
ence.

I next develop this model to incorporate selection for increased transmissibility, the
effects of within-host growth, and noise arising from the sequencing process. Central
to the method is a probabilistic model where unknown variables are marginalised over
using compound distributions. A maximum likelihood scheme is employed in model
selection where a machine-learning approach, referred to as adaptive BIC, was invented
for the interpretation of likelihood statistics. I rigorously validate the performance of
my model, identifying regimes wherein selection inference is feasible, and benchmark
it against current state-of-the-art bottleneck inference algorithms, demonstrating a
higher degree of realism and specificity within my approach.

I next extend the transmission model to account for advanced aspects such as selection
for within-host viral adaptation, constructing a more realistic description of within-
host growth processes. Accounting for within-host selection, I apply my transmission
model to an experimental influenza transmission dataset in ferrets, providing novel
quantitative insights.

I further explore limitations inherent to my model and consider regimes wherein the
neutral version of my algorithm may be applied. I define and infer effective within-host
selection for an influenza transmission study in pigs, employing my model to deduce
a generally narrow transmission bottleneck in these animals.

Finally, I consider an influenza human challenge study and compute an effective single-
segment within-host selection profile on the basis of an existing multi-segment char-
acterisation. I discuss the relationship between human challenge studies and influenza
infections occurring in a natural context.
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Chapter 1

Introduction

Viral transmission and within-host adaptation play key roles in the evolution and
dispersion of viruses in a population. Due to a lack of proof-reading mechanisms,
RNA viruses exhibit large mutation rates and represent ideal systems for study-
ing evolution on short time scales. Determining how transmission and within-
host growth each affect the adaptation of the virus is a crucial step towards
appreciating the underlying mechanisms of viral evolution and may provide in-
sights into development of antiviral procedures. Influenza viruses represent a
highly studied and archetypal class of RNA viruses, having large mutation rates,
short infection times and considerable virulence. In this work, I present a math-
ematical inference scheme for investigating viral transmission events, aiming on
the one hand to separate evolutionary signatures due to transmission and within-
host adaptation, and on the other hand to differentiate between stochastic and
deterministic effects. I validate my inference framework on simulated data and
apply it to datasets in ferrets, swine and humans. In this chapter I describe the
biological and population genetic context surrounding my work.

1.1 Influenza Virus

Influenza A virus is an enveloped, single-stranded, negative-sense RNA virus.
The viral genome is distributed across eight gene segments, each possessing a
distinct purpose, as seen in Figure 1.1. Water fowl represent the natural reservoir
for influenza, but the virus is known to infect a large range of hosts, including
mice, pigs, humans, horses, and even whales (Haß et al. 2011; Kawaoka et al.
1998; Ma, Kahn and Richt 2008). During infection, influenza viruses cause
inflammation of the host’s respiratory system with varying degree of severity.
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1.1. Influenza Virus Introduction

Seasonal influenza outbreaks are common and lead to mild infections which are
typically cleared within a week. Regardless, seasonal flu can be fatal for the
very young and the elderly, and it is estimated that up to 650,000 people die
from influenza each year (Pagani et al. 2015; World Health Organization 2018b).
Moreover, seasonal influenza has a considerable impact on economy through the
loss of workforce and an increased need for medical attention (Tsai, Zhou and
Kim 2014). Conversely, pandemic outbreaks are infrequent, but highly devastat-
ing. In the past one hundred years, four influenza pandemics (1918, 1957, 1968,
and 2009) have caused great mortality within humans (Garten et al. 2009). In
particular, this year marks the 100 year anniversary of the 1918-19 ‘Spanish flu’
pandemic outbreak which coincided with the end of World War I and claimed
the lives of an estimated 50-100 million people (N. P. A. S. Johnson et al. 2002).
Recently, highly pathogenic avian viruses have been under scientific scrutiny due
to evidence of sporadic transmission to humans; it is possible that the next big
pandemic is of avian origin (Nature 2008; Peng et al. 2014; Watanabe et al. 2014;
Wilker et al. 2013). In fact, the UK Cabinet Office identify influenza pandemics
as one of two most severe national risks — the other being large scale attacks,
including nuclear terrorism (UK Cabinet Office 2017).

PB2
PB1
PA
HA
NP
NA
M
NS

Figure 1.1. Diagram showing the eight RNA segments comprising the influenza
genome.

Upon infection the host’s immune system springs into action with the innate
immune response initially leading the offensive. The innate immune system is
unspecific in its nature, targeting the virus by producing a variety of cytokines,
such as interferon, which obstructs viral replication and generates resistance in
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neighbouring cells (Baccam et al. 2006; Pawelek et al. 2012). Whilst the innate
immune system limits the infection, the virus is not eliminated until the onset of
the adaptive immune response, which has been found to kick in about five days
into infection (Miao et al. 2010; Pawelek et al. 2012). By generating an immuno-
logical memory, the adaptive immune system elicits virus-specific antibodies and
T cells, which together clear the infection (Chen et al. 2018; Sandt, Kreijtz and
Rimmelzwaan 2012). A high mutation rate allows influenza viruses to evolve and
evade the host’s immune response; natural selection acts in favour of variants
conferring immune escape (Doud, Lee and Bloom 2018). In turn, this makes the
development of influenza vaccines troublesome, with seasonal influenza vaccines
having to be updated yearly to reflect antigenic drift (Carrat and Flahault 2007).
Much effort has been dedicated to the development of a universal influenza vac-
cine, most recently with the Bill & Melinda Gates Foundation pledging up to
$12 million in funding to promising research projects (The Bill & Melinda Gates
Foundation 2018). Universal vaccines are generally aimed at targeting conserved
regions within the virus, of which the so-called stem and globular head of the
influenza haemagglutinin gene are prime candidates (Sautto, Kirchenbaum and
Ross 2018). Haemagglutinin (HA) is one of two influenza surface glycoproteins,
the other being neuraminidase (NA), and as a result makes for a good immune
response target. Influenza nomenclature derives from the surface glycoproteins,
with haemagglutinin (H) and neuraminidase (N) designating influenza A virus
subtypes, e.g. H1N1 or H3N2 (Liu et al. 2009). Currently there are 18 differ-
ent haemagglutinin subtypes and 11 different neuraminidase subtypes, together
generating dozens of distinct viral strains (Centers for Disease Control and Pre-
vention 2018). From a practical perspective, haemagglutinin is responsible for
the attachment of the virion to sialic acid residues on the surface of the target
cell, whilst NA cleaves the virus from the host cell during viral budding. Two
types of sialic acid receptors exist, namely SAα2,3Gal and SAα2,6Gal receptors.
The SAα2,6Gal receptor is primarily found in mammals whilst the SAα2,3Gal
receptor pertains predominantly to birds, but may also be observed in the lower
respiratory tract of humans (Kawaoka et al. 1998; Shinya et al. 2006). Gener-
ally, avian influenza viruses bind to SAα2,3Gal whilst human influenza viruses
target SAα2,6Gal receptors, thus making the presence of specific sialic acids an
important determinant of viral host range (Cauldwell et al. 2014).

Influenza viruses propagate via three distinct modes of transmission: contact
transmission, including transmission via fomites, droplet transmission, which
refers to the propagation of viral matter by large (≥ 5µm) respiratory particles,
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and, finally, by aerosol transmission, which denotes the spread of virus via small
(< 5µm) respiratory particles (Cowling et al. 2013; Gustin et al. 2011). Viral
RNA has been found to survive in the air at distances of more than 100m away
from the source (Scoizec et al. 2018). Influenza transmission has been studied
extensively, both on local and epidemiological scales. On a local scale, the ferret
model of transmission has long been the established approach for experimental
influenza studies, owing to their small size, accurate emulation of human clinical
conditions, and high identity to the human respiratory system (Belser, Katz and
Tumpey 2011; Gustin et al. 2011). Transmission studies in ferrets and guinea
pigs have identified varying transmission bottlenecks, signatures of natural selec-
tion, and the adaptation to and transmission of highly pathogenic avian viruses
(Moncla et al. 2016; Varble et al. 2014; Watanabe et al. 2014; Wilker et al.
2013). Recently, transmission studies in humans have become increasingly pre-
valent, with data either deriving from natural infection (McCrone et al. 2018;
Poon et al. 2016; Sobel Leonard et al. 2017b) or from direct challenge by the
viral agent (Killingley et al. 2012; Sobel Leonard et al. 2016). Transmission to
humans may also occur from animal hosts; zoonotic infections due to swine and
poultry have been observed regularly, albeit without sustained transmission in
humans (Bowman et al. 2017; World Health Organization 2018a). Whilst influ-
enza viruses are believed to lack homologous recombination (Boni et al. 2008;
Chare, Gould and Holmes 2003), which is a method whereby genetic material is
exchanged between two strands of RNA, the segmented nature of their genome
facilitates a reshuffling of genes, known as reassortment, which allows for the
generation of novel viruses during replication in a multiply infected host cell.
Reassortment is believed to have played a role in the emergence of viral pan-
demic strains transmitted to humans from swine (Ma, Kahn and Richt 2008;
G. J. D. Smith et al. 2009).

On a global scale, influenza virus transmission patterns are shaped by the
dissemination of epidemics from tropical regions, especially Southeast Asia, in
which seasonal flu persists all year round (Hirve et al. 2016; Russell et al. 2008).
The dispersal of influenza between continents is dominated by air travel (Lemey
et al. 2014), whilst within-continent spread exhibits both radial patterns of spa-
tial diffusion (Charu et al. 2017), as well as highly synchronised continent-wide
outbreaks, with the specific propagation profile likely depending on the connec-
tedness of the region (Geoghegan et al. 2018). Besides air travel, climate is an
important driver of influenza epidemics in temperate regions, where seasonal
reductions in absolute humidity result in increased rates of transmission and

4



Introduction 1.2. Population Genetics

heightened viral survival (Shaman and Kohn 2009). Globally, influenza evol-
ution is governed by antigenic drift, i.e. mutations arising in genomic regions
coding for antibody binding sites. Antigenic drift allows the virus to evade the
host’s immune system, in turn forcing the immune system to update its immune
response; this continued arms race results in a rapidly evolving population and
an influenza strain tree with a distinctive spindly structure (Łuksza and Lässig
2014). Strikingly, seven single amino acid substitutions in receptor binding re-
gions have been found to collectively shape the majority of influenza antigenic
evolution (Koel et al. 2013). It has also been shown that the combination of be-
neficial and deleterious mutations, i.e. not just beneficial mutations alone, have
an important impact on evolution (Koelle and Rasmussen 2015); the mutational
background upon which a beneficial variant lands is of high importance. Finally,
as influenza transmission is governed by stochastic effects, within-host adapta-
tion and viral transmission don’t represent diverging processes (McCrone et al.
2018). Furthermore, it has recently been shown that within-host adaptation
in immunocompromised individuals to a large degree mirrors global influenza
evolution (Xue et al. 2017). This supports the idea that within-host adaptation
is the main driver of global evolution in influenza. If true for influenza, this
parallelism is likely not true for all RNA viruses. For the human immunodefi-
ciency virus (HIV), the operations of transmission and within-host adaptations
are misaligned; in the short term, within-host evolution results in a less trans-
missible viral population (Lythgoe et al. 2017). The host-specificity of immune
pressure in this virus leads to a balance between host-adaptation and reversion,
the loss of variants acquired in a previous host shifting the population towards
an ancestral, transmissible state (Zanini et al. 2015).

1.2 Population Genetics

This thesis makes use of a number of concepts in population genetic theory. Pop-
ulation genetics, which was arguably founded as a discipline by Sewall Wright,
Ronald Fisher, and J. B. S. Haldane, is a mathematical framework describing
in a quantitative manner how evolutionary forces shape an evolving population.

1.2.1 Genetic Drift

Genetic drift refers to the stochastic process whereby the genetic composition of
a population is changed over time due to the finite size of a biological population.
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In so far as the next generation of a population is produced from a finite number
of parents, the extent to which a genetic variant is present in individuals in a
population will fluctuate over time (Charlesworth 2009).

Perhaps the most straightforward framework for the mathematical modelling
of genetic drift is given by the Wright-Fisher model, as applied to a selectively
neutral, asexual population. Under this model, each generation of individuals in
the population is assumed to be distinct, instantaneously replacing the previous
generation in a single moment in time. Each individual in the population has a
unique parent, and itself has an equal probability of generating offspring, such
that each subsequent generation may be considered as a multinomial sample
drawn from that which came before it. Under this model we may consider the
evolution of the frequency of a single variant in the population.

Given a population with N individuals we consider a biallelic locus with
alleles a and A and suppose that the frequency of the allele A is given by p.
Then in the next generation the probability of observing exactly k copies of the
allele A is given by the binomial distribution:(

N

k

)
pk(1− p)N−k (1.1)

Genetic drift becomes of increasing importance in small populations, where
random changes are larger in magnitude. One scenario often considered is that
of a population bottleneck, where a small sample of individuals found a new
population. In this sudden decrease in population size, significant changes may
be observed in the genotypic composition of the population.

A simple application of genetic drift has been in the analysis of population
bottlenecks (Poon et al. 2016; Sobel Leonard et al. 2017a). We take the Wright-
Fisher model as a model of viral transmission, in which a sample from a donor
viral population gives rise to a new population. From the basic properties of a
binomial distribution, we know that the expected frequency of the allele A is
given by p, while the variance of A is given by p(1 − p)/N . As such, where pB

and pA are the observed frequencies of a variant before and after transmission,
we have that

(pA − pB)2 ≈ pB(1− pB)

NT
(1.2)

where NT is the population bottleneck at transmission, and therefore

NT ≈ pB(1− pB)

(pA − pB)2
(1.3)
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In previous studies, where multiple alleles are present in a population, the
assumption has been made that these alleles change in frequency independently
of one another during transmission. In this thesis I examine this assumption in
more detail exploring the consequences of the fact that alleles are joined together
on chromosomes.

1.2.2 Linkage and Linkage Disequilibrium

Linkage is the name given to the fact that different alleles in a genome are
physically linked together into a genome. Linkage was first proposed by Bateson,
Punnet and Saunders, when they noticed that phenotypes in pea plants fell
into non-Mendelian ratios, and suggested a physical coupling between genes
(Griffiths et al. 2000).

Given variants at multiple positions in a genome we may consider a multi-
locus variant, or haplotype. For example, given pairs of variant alleles (a,A),
(b,B) and (c,C) at different positions in a chromosome, we may consider the hap-
lotype aBc, describing an organism having these specific alleles in a chromosome
or genomic segment.

Linkage disequilibrium describes the statistical association between variants
at different positions in a genome. If within a population, having the allele a at a
given genetic locus implies that there is greater or lesser probability of having the
allele B at some other locus, then the loci are said to be in linkage disequilibrium.
Linkage disequilibrium does not imply physical linkage; for example effects such
as epistasis between alleles may lead to linkage disequilibrium.

In this thesis I make extensive use of the idea of a haplotype to describe
how genetic variants are linked together in viral genomes. I show in multiple
places that this approach, considering the physical structure of viral genomes,
is of value to approaches which seek to understand viral evolution.

1.2.3 Selection and Epistasis

In an evolutionary process, selection may act upon the genomes in a population.
Selection refers to the fact that organisms with different genomes may have, at
the moment of conception, a differing probability of producing offspring in the
next generation. Selection may act through a broad number of different pheno-
types, including in a viral context the ability of a virus to withstand changes in
temperature, the energetic landscape underlying protein folding, the ability to
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bind host receptors, and the ability to evade the host immune system. In the
bulk of this thesis, my concern will not explicitly be with viral phenotype, but
rather in the fact of selection. We say that an allele is under selection if pos-
session of that allele modifies the probability of individuals producing offspring;
this probability may be represented in terms of the ‘fitness’ of the organism.
Positive selection increases fitness, while negative selection decreases fitness.

Epistasis is a process whereby an allele modifies the fitness of an organism
in a manner which depends upon the presence or absence of another allele,
or multiple alleles, in the genome. Again, epistasis may be either positive or
negative. Taken together, we define the fitness of an organism as a sum of
single-locus and multi-locus, or epistatic effects. We may write

w =
∑
i

si +
∑

i,j
χi,j +

∑
i,j,k

χi,j,k + . . . (1.4)

where the fitness w is comprised of one-locus effects, si, dependent on the allele
at locus i, of two-locus effects χi,j, dependent upon interactions between alleles
at the loci i and j, and so on.

Mathematically, the fitness of an organism may be converted into the prob-
ability that a specific individual will be the parent of an individual in the sub-
sequent generation. Where wi is the fitness of individual i, the probability that
any given individual in the next generation is the offspring of i is given by

wi∑
j wj

(1.5)

where the sum is taken over the entire population.

The effect of genotype upon the fitness of an individual has been illustrated
with the concept of a fitness landscape (Visser and Krug 2014). A fitness land-
scape provides a description of the fitness of an individual in terms of its gen-
otype. In many cases, fitness landscapes are drawn, envisaging the space of all
genotypes as a two-dimensional continuous space, with fitness represented by
the height of a landscape covering that space. While somewhat tenuous in its
representation of a discrete space, this conveys useful concepts such as fitness
peaks, from which all changes to the genome lead to a decrease in fitness, and
fitness valleys, from which a large number of directions of change increase the
fitness of an organism.

8



Introduction 1.2. Population Genetics

1.2.4 Mutation

Mutation describes the process whereby the replication of genomes is prone to
error. Whereas selection and drift each remove genetic variation from a popula-
tion, favouring one variant over another, or stochastically changing frequencies
until they hit one or zero, mutation introduces variation into a population,
providing the genetic material upon which evolution can act.

Mutation rates may vary substantially across different organisms. Whereas
studies of human populations have suggested a mutation rate close to 0.5×10−9

per year (Scally and Durbin 2012), a recent study of influenza virus identified a
mutation rate of 1.8×10−4 per cellular generation (Pauly, Procario and Lauring
2017).

1.2.5 Recombination and Reassortment

Recombination is the process whereby genetic material from different ‘parental’
genomes is combined into new genetic material. In viral populations recom-
bination is not necessarily an inherent part of reproduction, but may occur,
for example through template switching, whereby the viral polymerase switches
from one strand of RNA to another during replication. Within influenza popu-
lations, there is limited evidence for recombination occurring during the course
of infection (Boni et al. 2008).

Reassortment is a process whereby parts of the genome not in genetic link-
age with one another are shuffled during viral reproduction. In influenza this
occurs during the process of intracellular reproduction. Different genetic seg-
ments of the virus are separated during reproduction, coming back together in
the final production of a new virus. Because of this, where distinct viruses infect
a single cell, genetic material from the two viruses can be shuffled, creating new
combinations of virus. Reassortment is a key process in the formation of novel
pandemic viral strains (G. J. D. Smith et al. 2009). Experiments conducted in
vitro and in small mammalian systems have suggested an inherently high rate of
reassortment (Marshall et al. 2013; Tao, Steel and Lowen 2014), though studies
in human infection have suggested that spatial separation of genetically distinct
viruses may lead to the effective rate of reassortment being much lower in these
cases (Sobel Leonard et al. 2017a).
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1.2.6 Evolutionary Change

The combination of mutation, selection, and genetic drift over time lead to
evolutionary changes in populations. Changes of two distinct types may be
observed. Over sufficiently long periods of time, substitutions may occur in a
population, whereby a variant becomes fixed in the population. Such changes are
often measured by changes in the viral consensus sequence; a measurement which
can be conducted by sequencing a small number of viral genomes. Regarding
HIV infection, phylogenetic methods have provided a good deal of insight into
patterns of viral spread (Leitner et al. 1996). On very short timescales fixations
in a population can be rare, albeit that changes on a smaller scale, such as
those occurring in allele frequencies, can be exploited to study viral evolution.
Population genetics, in providing a quantitative framework for the evaluation of
such changes, is of great use in such situations (Illingworth 2015); population
genetic theory is here used as the foundation for this thesis.
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Chapter 2

Haplotype Reconstruction and
Applications

2.1 Introduction

In this chapter I discuss in greater detail the principles of haplotype reconstruc-
tion. Given a viral population, described by short-read data, we define this as
the inference of the underlying full-genome-length sequences which comprise the
population, and the frequencies of these sequences within the population. For
simplicity, haplotypes are often described in terms of the combinations of al-
leles which exist at polymorphic sites within the genome, all other alleles being
preserved between haplotypes. The decomposition of populations into haplo-
types, and changes occurring in haplotype frequencies, are key concepts which
will be studied throughout this thesis. I here present studies utilising haplotype
reconstruction in the context of three separate projects to which I have made
partial contributions. These projects are further categorised into two themes:
1) haplotype inference in relation to within-host populations, and 2) haplotype
inference with a view to transmission bottleneck estimation.

2.1.1 Author Contributions

The work presented in this chapter is currently unpublished. The work described
here was carried out in collaboration with other researchers. The HIV fitness
landscape project was conceptualised by Chris Illingworth and Matthew McKay
with calculations of fitnesses being carried out by Saqib Sohail. The author
contributed to the project by developing code for the reading of SAMFIRE
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output (Illingworth 2015, 2016), inference of haplotypes and frequencies, and
discussions on optimal approaches for inference. The work presented here focuses
on the contributions made by the author.

The project on chronic influenza B infection was conceptualised by Chris
Illingworth based on (currently unpublished) data obtained by Judy Breuer and
collaborators. The population genetic analysis was a joint effort by Lei Zhao,
Chris Illingworth and the author. The work presented focuses on the work
conducted by the author, which forms part of a broader-ranging analysis of the
data.

The transmission bottleneck inference project was conceptualised by Chris
Illingworth and Daniel Weissman. Implementation of the method was carried
out by Mahan Ghafari. The author contributed to model development, including
mathematical derivations, generation of code for data simulation, and general
discussions. The writeup is based upon an unpublished draft manuscript written
in part by Chris Illingworth. Temporally, this work followed the development of
techniques for evolutionary inference which are presented in Chapters 3 and 4.
In this thesis the order of presentation is reversed as the approach described
here is in many ways a simplification of what follows.

2.2 Haplotypes and Within-Host Populations

2.2.1 Introduction

A viral population may be defined by a set of haplotypes describing the specific
alleles found at polymorphic loci within the genome. Haplotypes exist at specific
frequencies in the population; these frequencies generally change over time as
the population evolves. Upon sampling of the population, short-read sequence
data may be produced in which the reads generally cover only a subset of the loci
specified by the haplotypes. The problem of haplotype reconstruction considers
the generation of such haplotypes, and the inference of their frequencies, on
the basis of short-read sequence data. Accurate reconstruction of haplotypes
is critical for reliable inference of within-host dynamics through the estimation
of haplotype frequencies. In this section I present an exhaustive method for
haplotype inference, developed by Illingworth (2015), and discuss its ability to
infer the state of within-host populations through two projects. This approach to
haplotype reconstruction separates the two stages of haplotype reconstruction,
giving in the first place a list of haplotypes for which frequencies may be inferred
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in a subsequent calculation. The first project considers the reconstruction of
haplotypes and inference of frequencies in relation to understanding reversion
dynamics in HIV. The second project considers the analysis of time-series data
from an influenza B infection in a chronic patient. I here present mainly the
findings related to inference of haplotype dynamics.

2.2.2 Methods

2.2.2.1 Exhaustive Method of Haplotype Reconstruction

Given a set of variant loci in the viral genome we may describe a viral population
by a set of haplotypes, h = {hi}. A haplotype hi is a sequence describing the
specific alleles found at the polymorphic sites. When a haplotype describes
all the variant sites in the genome, we refer to it as a full haplotype. At any
one point in time, the set of haplotypes h is specified by an associated set of
frequencies, q = {qi}, subject to the constraint that the frequencies must sum
to unity,

∑
i qi = 1. In the event that we were to sample and sequence the viral

population, we would obtain observations x = {xi} where xi represents the
number of times haplotype hi was observed in the sample. This assumes that
sequencing reads cover the entire genomic region specified by the haplotypes.
Considering short-read sequencing approaches, this will generally not be the
case, where, instead, reads span only a subset of the polymorphic sites. As such,
short-read data cover only parts of the full haplotypes; we refer to subsets of full
haplotypes as partial haplotypes. We here outline an exhaustive method for the
reconstruction of the true haplotypes based on partial haplotype observations.

We utilise a haplotype reconstruction method developed by Illingworth (2015)
and implemented in the SAMFIRE suite (Illingworth 2015, 2016); this code
produces a list of haplotypes without inference of their frequencies. The recon-
struction method produces full length haplotypes by merging multi-locus partial
haplotypes where appropriate. In the event that all the partial haplotypes cover
just a single locus, the reconstruction method necessarily generates 2n haplo-
types where n is the number of loci. Where partial haplotypes cover multiple
loci, the number of reconstructed haplotypes is generally substantially smaller.
The merging of partial haplotypes is based on three rules: 1) a redundancy rule,
2) an overlap rule, and 3) a combination rule. The redundancy rules leads to
the removal of partial haplotypes fully contained within other partial haplotypes.
The overlap rule merges overlapping haplotypes that report identical alleles in
the overlap region. In haplotype reconstruction, rules 1 and 2 are repeated until
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no further changes are observed. At this step, if partial haplotypes spanning
l < n loci still exists, a third rule, the combination rule, is employed. The
combination rule generates all the potential full haplotypes for the l < n partial
haplotypes by combining them with the remaining haplotypes. Rigorous defin-
itions of the reconstruction rules are given elsewhere (Illingworth 2015). This
approach is exhaustive in the sense that it generates all possible full haplotypes
from which the partial haplotypes could have been omitted. As a consequence,
the set of reconstructed haplotypes will in general be greater than the true set
of full haplotypes. Figure 2.1 demonstrates how reconstruction based on partial
haplotype data from four full haplotypes results in seven potential haplotypes,
of which the original four constitutes a subset.

2.2.2.2 Inference of Haplotype Frequencies

Given an observation of the viral population and a set of reconstructed haplo-
types we next wish to infer the frequencies with which the haplotypes exist in
the population. In the ideal world, viral samples may be described by a multi-
nomial distribution in the sampling depth N and the frequencies q. In reality,
sampling is an imperfect process, and as such, an accurate representation must
necessarily account for different sources of noise. To this end, we employ a
Dirichlet-multinomial distribution with an overdispersion parameter C account-
ing for noise. Further description of the noise parameter C is outside the scope
of this chapter; an in-depth discussion is provided in Chapter 3. The probability
of obtaining an observation x from a set of frequencies q given sampling depth
N is given by

P (x|q) =
Γ(N + 1)∏
i(xi + 1)

Γ (
∑

iCqi)

Γ (
∑

i xi + Cqi)

∏
i

Γ(xi + Cqi)

Γ(Cqi)
(2.1)

where the index i denotes specific haplotypes. We note that Equation 2.1 as-
sumes a full haplotype perspective; extension to a partial haplotype framework
is straightforward, however, aiming here to provide a general overview of haplo-
type methods, we have deferred this to Section 2.3 and Chapter 3 in which an
extensive description is provided.

Noting that Equation 2.1 describes not only the probability of the observa-
tions x given q, but also the likelihood of the frequencies q given x, we may ob-
tain an estimate of the underlying frequencies by optimising this expression with
respect to q. In order to investigate the optimisation performance we inferred
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Figure 2.1. Illustration of the Illingworth (2015) haplotype reconstruction pipeline
applied to sample data. (Continued on the following page.)
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Figure 2.1. (Continued from previous page.) Four true haplotypes are sampled
leading to 17 partial haplotypes of length l ≥ 2 (single-locus partial haplotypes have
been omitted for clarity). The redundancy and overlap rules are applied iteratively
until no further changes come about. In the final step the combination rule generates
the resulting seven reconstructed haplotypes.

haplotype frequencies from simulated data given a known set of haplotypes, i.e.
without the additional complication of identifying which haplotypes exist in the
population. Simulated data were designed to mimic sampling of short-read se-
quence data from five variant loci in the HA gene of the influenza A virus. Five
different datasets were produced corresponding to nhaps = {2, 4, 8, 16, 32} num-
ber of haplotypes, with each dataset spanning 200 simulation seeds. To avoid a
situation wherein a subset of the haplotypes would substantially dominate the
viral population, a heuristically derived minimum haplotype frequency of

qmin =


1

nhaps+12
if nhaps < 22

10−4 otherwise
(2.2)

were employed. Considering the scenarios probed here, this resulted in min-
imum haplotype frequencies of qmin = {0.071, 0.063, 0.050, 0.036, 10−4} respect-
ively. For the inference of haplotype frequencies we performed a maximum likeli-
hood optimisation based around Equation 2.1, employing a simple hill climbing
algorithm in the process. A full exposition of the simulation and inference frame-
work is left for Chapter 3.

For comparison of optimisation performance we computed normalised Man-
hattan distances (`1-norms) defined as

dnorm
1 (p, q) =

∑k
i |pi − qi|
k

(2.3)

for frequencies p = {p1, p2, . . . , pk} and q = {q1, q2, . . . , qk}.
Normalised Manhattan distances were computed between A) the inferred and

the true frequencies and B) a random set of frequencies and the true frequencies.

2.2.3 Inference of Haplotype Frequencies

Results describing the performance of our method for frequency inference are
shown in Figure 2.2. The left plot displays the distribution of normalised Man-
hattan distances in the case of eight haplotypes. We observe that the inferred
frequencies are considerably closer to the true frequencies than a random set
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of frequencies are. This shows the ability of the optimisation method to infer
haplotype frequencies close to the actual values. The distances between the in-
ferred and true frequencies have a low variance suggesting that the optimisation
method performs well under most conditions.

The right plot displays the median normalised distance as a function of num-
ber of haplotypes. As the number of haplotypes are increased, both curves
approach an asymptote of about 0.03. Median distances between the inferred
and true frequencies are generally low, but increase marginally with number of
haplotypes. This may be understood as the inability of the method to properly
optimise the frequencies as the search space increases. Conversely, the distances
between the random frequencies and the true frequencies diminish as the number
of haplotypes is increased. This may be seen partly as the `1-norm’s performance
dropping as the dimensionality increases (Aggarwal, Hinneburg and Keim 2001)
as well as a tightening of the range of values each entry in the random vector
is likely to occupy. This doesn’t necessarily mean that a random set of frequen-
cies are on par with the optimised frequencies. For instance, as the number
of haplotypes increase, the haplotypes become increasingly identical. As such,
many of the partial haplotypes may be equally well represented by multiple full
haplotypes; this results in an inference that may appear sub par with respect to
distance from the true value, but which may still capture the partial haplotype
characteristics well. On the other hand, whilst the random frequency vector
might represent the frequencies of the majority of the dimensions well, it might
entirely misspecify the frequency of a key haplotype representing several partial
haplotypes.

2.2.4 Application 1: HIV Reversion Analysis

A recent approach to studying the evolution of HIV during the course of infec-
tion has been the application of matrix-based methods, which seek to describe a
global fitness landscape for the virus. In short, an alignment is constructed of a
very large number of HIV protein sequences, which together grant a represent-
ation of the global viral population. This alignment is converted into numerical
values, assigning a ‘0’ for the consensus amino acid, and a ‘1’ for any other amino
acid. A function is then constructed from the alignment, measuring the extent
to which deviation from the global sequence consensus (represented by a zero at
every position) imposes a fitness cost upon the virus. A simple one-locus version
of this metric considers the likelihood of observing a ‘1’ at any position in the
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Figure 2.2. Comparison of normalised Manhattan distances from haplotype
frequency inferences across 200 seeds. Two separate cases are shown: 1) distance
between true and inferred haplotype frequencies and 2) distance between a random
set of frequencies and the true set of frequencies. Left: Distribution of normalised
distances for the specific case of eight haplotypes. Right: Median normalised distance
for n = {2, 4, 8, 16, 32} number of haplotypes.

alignment; if amino acids are perfectly uniformly distributed at a given position,
it would be expected that close to 19/20 = 95% of records in a given position
would be represented by a ‘1’. By contrast, if an amino acid was perfectly
preserved at a given locus, none of the records would be equal to a ‘1’. The
measure thus gives an indication of sequence conservation, assigning a higher
fitness cost to deviation from a more conserved position. In practice, both one-
and two-locus fitness effects are used to generate a combined metric, sometimes
described as an energy function, which represents the fitness of a given amino
acid sequence (Barton et al. 2016; Ferguson et al. 2013; Louie et al. 2018). This
function is of potential value in the design of vaccine therapies (Ferguson et al.
2013), and in predicting within-host HIV evolution.

Traditionally, the energy function is applied to consensus sequences, each
sequence having a specific ‘energy’ or fitness. We here explore the potential for
haplotype reconstruction to be used to evaluate viral fitness effects; reconstruc-
tion allows for the use of all of the data collected from short-read sampling, and
therefore may give new insights into viral evolution.

Data from this project was collected from the paper of Zanini et al. (2015).
This publicly available dataset spans nine untreated patients and covers 5–8
years of infection with each patient being sampled 6–12 times across the period.
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The SAMFIRE software package (Illingworth 2016) was used to generate partial
haplotype reads for this dataset, based upon loci at which a minor variant allele
reached a frequency of at least 10% for at least one point during the course of
infection.

Having defined potential haplotypes, two approaches were used to haplo-
type reconstruction. In the first, a simple maximum likelihood reconstruction
was calculated, assigning frequencies to haplotypes. In a second approach, the
Akaike information criterion (AIC) (Akaike 1974) was used to reduce the num-
ber of haplotypes with non-zero frequency. Here, we penalised haplotypes with
frequencies larger than 10−8, attempting to avoid overfitting of the data and thus
obtaining a smaller set of haplotypes having non-zero frequencies. The AIC was
defined as

AIC = 2k − 2L (2.4)

where k is the number of haplotypes with frequencies larger than q = 10−8 and
L is the likelihood of the system. Optimisation of both maximum likelihood and
AIC expressions were achieved using a hill climbing algorithm, the specifics of
which are given in Chapter 3. For comparison, haplotypes were generated using
a random sampling approach, in which haplotype frequencies were produced
using a uniform distribution before normalising the sum of the haplotypes to
unity.

Reconstruction of haplotypes of fragment 1 of patient p2 at time point 3
resulted in a total of 36 full length haplotypes. We then inferred 100 sets of
associated frequencies using the three inference methods. Array plots specifying
the inferred haplotype frequencies in the 100 statistical replicates for maximum
likelihood and AIC approaches are shown in Figures 2.3 and 2.4.

For both the maximum likelihood and AIC plots, we note a degree of variance
across the statistical replicates, i.e. different starting points for the optimisation
process result in slightly different inference outcomes. This matches our ex-
pectation from simulated data (Figure 2.2). However, patterns can be observed
in the data; the maximum likelihood and AIC methods in general associate a
similar set of frequencies to the reconstructed haplotypes.

We next evaluated the extent to which different haplotype reconstructions
led to different values of the energy function. Where the energy of a sequence
s is given by E(s), we calculate the energy of a haplotype h, denoted E(h), by
combining the variants described at variable sites in the genome, as specified

19



2.2. Haplotypes and Within-Host Populations Haplotype Reconstruction

� � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ���

�

�

��

��

��

��

��

��

����������� ����������

�
�
�
��
��
�
�
�

������� ����������

���������

� ���� ���� ����

Figure 2.3. Haplotype frequencies for patient p2 from maximum likelihood
inference. The y-axis denotes the 36 reconstructed haplotypes whilst the x-axis
represents 100 statistical replicates. The colour of each grid tile represents the
frequency of a haplotype.
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Figure 2.4. Haplotype frequencies for patient p2 from the AIC inference. The y-axis
denotes the 36 reconstructed haplotypes whilst the x-axis represents 100 statistical
replicates. The colour of each grid tile represents the frequency of a haplotype.
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Figure 2.5. Distribution of haplotype energies for patient P2 at time point 3 based
on frequencies inferred using the maximum likelihood method, the AIC method, or
the random frequencies method.

by the haplotype, with consensus nucleotides at other loci in the genome, then
translate this sequence into amino acids. For a haplotype reconstruction h, in
which the haplotype hi has frequency qi, we calculate the total energy as

E(h) =

∑
i qiE(hi)∑

i qi
(2.5)

where the summation variable i denotes the individual haplotypes in h. We
note that a low energy corresponds to a sequence which is closer to the overall
consensus of the HIV sequence alignment, which indicates a higher fitness.

Outcomes of the weighted energy scores are shown in Figure 2.5. Values
are shown for each of the 100 replicate sets of haplotype frequencies generated
using the maximum likelihood, AIC, and random inference methods. The res-
ults show that while individual inferences of haplotype frequencies may differ,
they are relatively strongly conserved with respect to the energy measure. This
may be explained in a simple manner; while some degeneracy in the haplotype
reconstruction exists, specific lower-dimensional properties of the haplotype fre-
quencies, such as the frequencies of one- or two-locus variants in the dataset, are
more highly preserved. This result suggests that haplotype reconstruction may
be a viable method in calculating energy functions.

In a final analysis, we calculated changes in the within-host fitness of a HIV
population using both the consensus and haplotype reconstruction methods.
Results show firstly, that the inferred energy for the reconstructed population
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Figure 2.6. Energy values for patient P11 calculated using the consensus method
and using data from the maximum likelihood haplotype reconstruction.

is higher than that calculated for the consensus (Figure 2.6). This is somewhat
to be expected given the manner by which the statistic is calculated, indicating
that the consensus of the within-host population is closer to the global consensus
than the average sequence in the within-host population. Secondly, we note
that changes in the statistic calculated by the reconstruction method do not
always mirror those calculated from the consensus; a decrease in the consensus
energy occurring in year three of infection is matched by an increase in the
reconstructed population energy occurring at the same time point. We conclude
that the consensus method of calculating energy values is potentially not the best
approach to evaluating fitness within this alignment-based framework; use of
short read data to generate a reconstructed population more faithfully represents
the data, produces consistent results, and may differ substantially from the more
traditional statistic.
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2.2.5 Application 2: Haplotype Dynamics in Chronic In-

fluenza B Infection

We applied the maximum likelihood method of haplotype reconstruction to ana-
lyse haplotype dynamics within a case of chronic infection with influenza B.
Samples were collected at 41 time points from a child with a severe primary im-
munodeficiency. After initially failing to respond to treatment with neuramini-
dase inhibitors, the patient was treated with a combined zanamavir/favipiravir
therapy. This led to the apparent clearance of infection for a period of one
month, following which a sample showing a low positive result for influenza was
collected. No action was taken until approximately one month after this, when
the patient showed symptoms of respiratory infection. Samples collected at this
time were positive for influenza infection. A second round of treatment with
a combined zanamavir/favipiravir therapy again cured the infection, following
which no further resurgence of infection was observed.

Data describing the course of infection are shown in Figure 2.7. The periods
of initial infection and resurgence of infection can be clearly observed.

Viral sequencing was conducted, collecting data from each positive sample.
Read depths from each sample are shown in Figure 2.8. Data from each sample
were aligned to reference sequence data using BWA (H. Li et al. 2009) and
further processed using the SAMFIRE software package (Illingworth 2016).

For each sample, a consensus sequence was calculated for each segment,
joining the sequences for each segment into concatenated viral sequences. A
Bayesian phylogeny was then constructed from these data using the BEAST 2
software package (Bouckaert et al. 2014) (Figure 2.9). This phylogeny highlights
an internal structure within the population, which was divided into two clades,
which we term A and B. While the majority of the sequences formed clade A,
the two samples collected during the resurgent infection (samples 40 and 41)
were distinct from these, clustering with a sample collected before favipiravir
treatment (sample 18, indicated in Figure 2.7). The evolutionary consistency
between the samples collected after the resurgence of infection and a prior viral
population ruled out the possibility that the resurgence was caused by a re-
infection with a new influenza virus.

In order to investigate the evolution of the population in greater depth, se-
quences from the neuraminidase (NA) segment were chosen for analysis. Drug
resistance to two of the drugs dispensed to the patient, namely oseltamivir and
zanamivir, is known to occur in this segment (Hurt et al. 2009; Zürcher et al.
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Figure 2.7. The blue line here shows CT scores, indicating the extent of infection
within the patient. A low CT score indicates a higher viral load in a sample. A CT
score of 40 indicates a negative test result. Bars show periods of administration of
each drug. Selected samples are assigned numbers. The number 41 indicates the last
positive sample to be sequenced.
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Figure 2.8. Mean and standard deviations of the read depths of samples collected
from the influenza B patient. Where a standard deviation encompasses an interval
crossing zero, the corresponding line is truncated.

2006); as such, this segment was chosen for analysis. Haplotypes were recon-
structed across all time points using the SAMFIRE approach. Variant loci to be
used in the haplotype reconstruction were identified as those which were fixed
in the consensus sequences of samples 18, 40, and 41; that is, identifying loci
at which substitutions were observed in the key branches of the tree. Next,
multi-locus variants were called at these loci in the genome, constructing partial
haplotype reads. Following this, a complete set of haplotypes were construc-
ted using the method illustrated in Figure 2.1. Finally, the frequency of each
haplotype were inferred at each time point using a hill climbing optimisation
algorithm aiming to maximise the likelihood defined in Equation 2.1. Haplo-
types inferred to reach a frequency of 10% or greater in at least one sample were
identified to construct a visualisation of the haplotype reconstruction which had
the maximum identified likelihood (Figure 2.10). As the reconstruction shows,
haplotypes 13–15 and 17 were only observed in sample 18, while haplotypes 16
and 18–21 were only observed in samples 40 and 41. These haplotypes were
never inferred to reach a substantial frequency in any of the other samples, in-
dicating that this clade represents a distinct subset of samples within the viral
infection. Examination of the haplotype data showed a single putative resist-
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Figure 2.9. Bayesian phylogeny inferred from the influenza B patient data using
B\Hong_Kong\05\1972 (GISAID sequence ID: EPI_ISL_1775) as a representative
influenza B strain. Inference was conducted using BEAST 2 (Bouckaert et al. 2014)
applying the HKY substitution model (Hasegawa, Kishino and Yano 1985). MCMC
was run for a total of 10 million iterations with the first 10% of each run reserved for
burn-in rounds. The target tree was generated using TreeAnnotator and graphics
were produced with the aid of the FigTree software package (Rambaut n.d.). Within
the tree we identify two distinct clades, coloured in blue and green respectively.
Posterior levels of support greater than 0.95 are shown.
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Figure 2.10. A Maximum likelihood haplotype reconstruction across the 41 sample
points. In this plot, administered drugs are shown in green (oseltamivir), yellow
(zanamivir), red (favipiravir), and blue (nitazoxanide). A total of 21 haplotypes were
inferred to exist at a frequency of 10% or greater in at least one time point from the
course of the infection; other haplotypes are neglected in this plot. Circles show the
sizes of the respective haplotypes, having an area proportional to the frequency of
the haplotype at each sample point; colours of circles indicate the clades to which
they belong. B Overview of Hamming distance between haplotypes. Only the
shortest distance between two haplotypes are shown.

ance mutation arising in the samples 40 and 41, in the residue E117. Where the
variant E117D is known to induce drug resistance to zanamivir (Oh et al. 2018;
B. J. Smith et al. 2001), we observed the substitution E117A. Whereas the E to
D substitution results in the movement of a carboxylic acid group away from a
position in which it binds the drug zanamivir, the E to A substitution removes
this group entirely, suggesting that it has a similar effect in reducing the affinity
of the drug for the NA receptor (Figure 2.11).

This analysis, while basic in nature, illustrates the potential of haplotype
reconstruction methods to generate insights into sequence data. Our analysis
here appears to show distinct viral populations within the host, potentially with
genetically distinct viral clades at different locations within the host airway.
Intra-host diversity of this nature has been identified in bacterial infections such
as those suffered by cystic fibrosis patients (Lieberman et al. 2014), while ge-
netic diversity in spatially separated influenza populations within a host has
been found in a case post-mortem (Hamada et al. 2012). Such studies sup-
port the possibility of spatial diversity occurring in the patient from whom data
were analysed here; a population existing in one part of the airway appears to
have survived combined zanamivir and favipiravir therapy to go on to create a
resurgent infection.
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Figure 2.11. Binding interaction between the E117 amino acid in neuraminidase
and zanamivir. The amino acid and the drug molecule are shown in ball and stick
format; the potential hydrogen bond between the amino acid and the drug is
highlighted. Mutation to aspartic acid would increase the distance between the two
functional groups; the mutation we observe to alanine removes this interaction
entirely. This image was created with the VMD software package (Humphrey, Dalke
and Schulten 1996).
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2.3 Haplotypes and Viral Transmission

2.3.1 Introduction

The approach described above for haplotype reconstruction describes a two-step,
maximal approach to the inference of haplotypes. Firstly, a list of plausible
haplotypes is drawn up. Secondly, frequencies for these haplotypes are inferred,
either in a free manner, or constrained by some evolutionary model. Such a
maximal approach has the advantage of describing a large number of potential
haplotypes which may exist in a population, given the observed sequence data
from one or multiple time points. In subsequent chapters, this property will be
used for the inference of selection in viral populations; for a model to account for
selection shifting the population between haplotypes, any potential haplotype
into which the population can be shifted must be included in the model.

I here note that in cases where there is sparse partial haplotype data avail-
able to constrain the haplotype space and the number of variants is large, the
set of haplotypes generated by this approach can become massive. In some
cases the size of this haplotype space may preclude further calculations from
being performed. We therefore investigated an alternative approach to haplo-
type reconstruction, which uses model selection to seek a minimally complex
explanation for the dataset. We apply this approach to infer the bottleneck size
underlying the transmission of influenza viruses using data from a household
transmission study (McCrone et al. 2018).

2.3.2 Haplotype Inference Method

We constructed a maximum likelihood approach for haplotype reconstruction
based upon existing technologies for processing short read data (Illingworth
2015, 2016; Illingworth et al. 2017). We here assume that we have short-read
data describing a viral population both before and after a transmission event.
In a preliminary step, an allele frequency cutoff was used to identify a list of
polymorphisms which are present in the ‘before transmission’ data.

Given short-read sequence data, we next processed the reads into partial hap-
lotypes, identifying sets of partial haplotypes as sets of reads which describe the
alleles present at a consistent set of one or more polymorphic loci (Illingworth
2016). Each set of partial haplotypes represents an independent set of obser-
vations from the underlying viral population; the likelihood of this observation
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given the underlying population may be described as a Dirichlet-multinomial
distribution (Illingworth 2015). Partial haplotype data are collected for the
samples obtained both before and after transmission; we denote these datasets
as xB,Pl and xA,Pl respectively, where l denotes the partial haplotype set.

We now suppose that the viral population is comprised of a set of k haplo-
types, h = {h1, h2, . . . , hk}, with the frequencies qB = {qBi } before transmission
and qA = {qAi } after transmission. These frequencies can be converted into
partial haplotype frequencies by projection of the full haplotype space onto each
lower-dimensional partial haplotype space by means of matrices Tl. For ex-
ample, given the full haplotypes before transmission {GA,TA,GC,TC} and a
set of partial haplotypes {G-,T-}, we may write

qB,Pl = Tlq
B (2.6)

or more explicitly, (
qB,Pl,1

qB,Pl,2

)
=

(
1 0 1 0

0 1 0 1

)
qB1

qB2

qB3

qB4

 (2.7)

In this way we can construct a likelihood for the set of haplotypes and fre-
quencies, for example

logL(h) =
∑

t∈{B,A}

∑
l

logLD(xt,Pl |Tlq
t, C) (2.8)

where LD denotes the Dirichlet-multinomial likelihood

LD(x|q, C) =
Γ(N + 1)∏
i(xi + 1)

Γ (
∑
Cqi)

Γ (
∑
xi + Cqi)

∏
i

Γ(xi + Cqi)

Γ(Cqi)
(2.9)

in which N =
∑

i xi and C is a noise parameter which characterises the extent
of information provided by the data x (Illingworth et al. 2017).

To construct the set h, a set of k haplotypes are created one by one, randomly
selecting partial haplotypes and joining them until k haplotypes, each spanning
all polymorphic loci, are constructed. Following this, the inferred frequencies
{q∗i } of the haplotypes are optimised to fit the data, under the constraint that∑k

i=1 q
∗
i ≥ 0.99. This constraint allows for the inclusion of an additional, ‘cloud’
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haplotype, representing all of the haplotypes not included in h; any partial
haplotypes which do not match any of the specified full length haplotypes are
assumed to be emitted from this final haplotype. A given set of haplotypes is re-
quired to explain the data collected both before and after the transmission event;
while the haplotype frequencies are allowed to differ between these datasets, the
intrinsic set of haplotypes was preserved across transmission. Optimisation of
frequencies were performed using a hill climbing algorithm with a heuristically
derived convergence criteria defined either as the absence of an improvement in
likelihood across 50 consecutive frequency updates or as the completion of 8000
update iterations overall.

Optimisation of h was conducted by making perturbations to haplotypes in
this set, calculating a maximum likelihood set of frequencies at each instance.
Iterating this process identified the optimal set of k haplotypes given the data.
Repeating this for increasing values of k gives a series of fits to the data; we
use the Bayesian Information Criterion (Schwarz 1978) to identify the most
parsimonious explanation for the data:

BICk = −2L∗ + k logN (2.10)

where L∗ is the optimum likelihood value for a set including k haplotypes and N
is the total number of observations in the dataset. Optimisation of the haplotype
set was conducted for increasing values of k until the best set according to BIC
was identified. We refer to this as the MLHapRec approach.

2.3.3 Validation of the Haplotype Reconstruction Method

2.3.3.1 Generation of Simulated Data

Simulated data were generated using a model of influenza transmission. Viruses
were generated to have eight independent segments, of lengths equal to the
segments of the A/H1N1 influenza virus. Each segment had five uniformly
distributed polymorphic loci for which alternative and reference alleles were
assigned at random. Through a process of generating all possible combinations of
variant alleles, a total of 32 full length haplotypes were identified. Six haplotypes
were randomly chosen from this set under the constraint that each of the five loci
had to remain polymorphic, this being ensured through repeated sampling of all
six haplotypes until the criteria was met. The frequencies of these haplotypes
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were then randomly generated under the constraint of a minimum haplotype
frequency of 5%, which was guaranteed through repeated sampling.

Each transmission event was modelled as a simple multinomial draw, select-
ing a number of viruses equal to the bottleneck size from the donor population.
Identifying the new population frequencies as the rescaled transmission sample,
within-host growth was then modelled as a second multinomial draw, conferring
a 22-fold increase in the population size. Partial haplotype data were generated
from simulated short reads of each viral segment. Short reads with lengths de-
rived from a recent influenza dataset (Wilker et al. 2013) were generated (mean
read length = 119.68, SD read length = 136.88, mean gap length = 61.96, SD
gap length = 104.48, total read depth = 102825), these reads being used to
calculate the number of reads spanning each set of consecutive polymorphisms
in each segment. Given these numbers, full haplotype observations were gen-
erated using a Dirichlet-multinomial sampling process in the post-transmission
population frequencies. Finally, partial haplotype observations were calculated
by associating full haplotype draws with distinct partial haplotypes.

2.3.3.2 Results of Testing Against Simulated Data

Tested against simulated data, our method gave a reasonably good level of per-
formance. Given data from simulated transmission events in which the popula-
tion was comprised of 6 five-locus haplotypes, our method generally produced a
reconstruction with the same number of haplotypes as this, reconstructed popu-
lations having a median of six haplotypes (Figure 2.12). Of the haplotypes that
were inferred to exist, between 85% and 90% were found in the real population
at some non-zero frequency. However, our method was not perfect, with some
under- and over-calling of haplotypes, and imperfect identification of the true
haplotypes.

2.3.4 Comparison of Haplotype Reconstruction Methods

A comparison of our two methods of haplotype reconstruction showed substan-
tial differences in the number of haplotypes inferred to exist given increasingly
sparse sequence reads from a population. Here we assess sparsity in terms of
the number of variant alleles covered by a single read, defined by the mean read
length from sequencing.
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Figure 2.12. Numbers of inferred and correctly inferred haplotypes given simulated
sequence data. A total of six haplotypes were included in each of 800 simulations
tested.

To evaluate this statistic, sequence reads describing the gp41 region of a
within-host HIV population, and with an original sequence length of 324 nucle-
otides were downloaded from a recent publication (Raghwani et al. 2018). Next,
the set of reads was downsampled, removing short blocks of nucleotides of a
given length from individual reads until no sufficiently long stretches of nucle-
otides remained; this process simulates the sequencing of the population with
reads of length shorter than the original length. Finally, reads were used to
reconstruct haplotypes using the SAMFIRE algorithm applied by Lumby et al.
(2018) and using the new haplotype reconstruction method. Where longer reads
were used, the number of haplotypes inferred was very similar, for example with
12 and 15 haplotypes respectively inferred given a read length of 300. However,
at very short read lengths, SAMFIRE produced of the order 105 haplotypes
whereas our new approach explained the available data with only three haplo-
types (Figure 2.13). We note that the generation of large numbers of haplotypes
is a deliberate feature of the SAMFIRE approach, whereas our minimal recon-
struction method aims to generate a minimal number of haplotypes. Under the
approach outlined in Figure 2.1, where n biallelic loci exist in a population, and
reads describe only single loci, the code generates all 2n possible haplotypes.
While there are many advantages to this approach, this analysis shows that, in
at least some cases, an approach which infers fewer haplotypes is required for
calculations of the composition of a population to become feasible.
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Figure 2.13. Number of reconstructed haplotypes obtained by the MLHapRec and
SAMFIRE methods based on short-read sequence data from an HIV virus. An
original dataset containing reads of length 324 bases was split to produce reads of
shorter lengths before using each of the two reconstruction methods to produce an
inferred set of haplotypes.

2.3.5 Comparison of Allele-Based and Haplotype-Based

Transmission Inference Methods

Previous population genetic approaches to the inference of transmission bot-
tlenecks have exploited an approach based upon changes in allele frequencies
across transmission (Poon et al. 2016; Sobel Leonard et al. 2017a). We first ex-
plored a toy model of transmission in which bottleneck sizes were inferred using
either allele-based or haplotype-based methods. In our toy model, a population
was defined as having eight viral segments, each with two haplotypes. Before
transmission, the frequency of the first haplotype on each segment i was set to
pi = 0.5. The population was assumed to be large, and well-mixed, with com-
plete reassortment between segments implying a lack of linkage disequilibrium
between alleles on different segments. Transmission was modelled as a bino-
mial sampling process with a true bottleneck of NT = 100, in which the new
haplotype frequency p′i was defined by the probability of ni copies of the first
haplotype of segment i being transmitted. We assumed that the new haplotype
frequencies were observed in a noise-free manner:

P
(
p′i =

ni
NT

)
=

NT !

ni!(NT − ni)!

(
1

2

)NT

(2.11)

A haplotype-based inference of the bottleneck size was conducted using a
simple maximum likelihood calculation, approximating the likelihood as a nor-
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mal distribution with mean and variance equal to the binomial sampling process:

logL(N |p′i) = logN

(
p′i

∣∣∣∣0.5,
√
pi(1− pi)

N

)
(2.12)

where
N (x|µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2 (2.13)

In our haplotype-based inference, the value of N was inferred by identifying
the maximum likelihood value of

Lh =
8∑
i=1

logL(N |p′i) (2.14)

where the sum is over the eight viral gene segments.
The allele-based bottleneck inference worked in a similar manner to this

approach. Via simulation we construct a system whereby the first seven viral
segments contain a single polymorphism, but the final segment contains ten poly-
morphisms (Figure 2.14A). Under an allele-based approach to the data, these
polymorphisms are assumed to be independent. On the final segment, we note
that, as only two haplotypes exist, the linked alleles at all of the polymorphic
loci will be observed at identical frequencies. The dataset on which this inference
is performed is therefore identical to that used for the haplotype-based method,
albeit that the final haplotype frequency p′8 is observed ten times, once for each
polymorphism. This results in the allele-based likelihood

LA =
7∑
i=1

logL(N |p′i) + 10 logL(N |p′8) (2.15)

Simulated data were generated for 5000 transmission events and the optimal
population bottleneck identified in each case by evaluating likelihoods for bot-
tlenecks in the range of [1, 1000].

2.3.5.1 Results From the Toy Model

The results of a toy model showed that under idealised circumstances a haplotype-
based model of bottleneck inference outperforms an equivalent allele-based model.
In our evaluation, both the allele-based and the haplotype-based methods in-
ferred a value for the bottleneck that was correct in the mean; across 5000 infer-
ences the harmonic mean values of the inferred bottlenecks were 100.7 and 100.2
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respectively. However, the haplotype-based method gave more precise inferred
bottlenecks, with a 95% range in the inferred values between 46 and 337, com-
pared to a range between 30 and 552 for the allele-based method (Figure 2.14B).
This result can be simply understood. Transmission is a stochastic process, in
which the frequency of the haplotypes in each segment changes between the
donor and the recipient hosts. Both of our inference methods evaluate changes
in these frequencies to infer the size of the bottleneck that occurred, using a max-
imum likelihood approach. Combining the information across segments gives a
collective insight into the bottleneck. Where the population is considered as hap-
lotypes, this is achieved correctly; each segment has an equal weight in discerning
what is the true bottleneck. However, where the population is considered as a
set of independent alleles, this does not occur; the final segment is falsely given
a higher weighting in the likelihood calculation than the others. The change in
the frequency of haplotypes in the final segment thus dominates the likelihood
calculation. Changes in a single segment are more prone to stochasticity than
the combined changes across multiple segments. The allele-based method there-
fore produces inferences which have a lower degree of precision.

Estimates of the uncertainty in an inference may differ substantially between
the allele-based and the haplotype-based methods. In falsely treating allele fre-
quencies as being independent of one another, the allele-based method produces
a log likelihood that is larger in magnitude than the correct likelihood for the
system (compare Equations 2.14 and 2.15); this can lead to an over-optimistic
assessment of the confidence with which the size of the bottleneck can be es-
timated. Given a bottleneck size of 100 transmitted virions and initial haplo-
type frequencies of 50% for each segment in Figure 2.14A, the expected change
in allele frequency across the transmission event is 5%. Applying the allele-
and haplotype-based methods to simulated data describing such an event gave
correct inferences of the bottleneck in each case, but with dramatically differ-
ent confidence intervals; a cutoff of two log likelihood units in the allele-based
method gave the interval (71,136), but an interval of (30,236) was produced by
the haplotype-based model (Figure 2.15).

Having highlighted the benefit of haplotype-based approaches to bottleneck
inference, we now evaluate our new approach to this task.
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Figure 2.14. A Illustration of our toy model system used in transmission. A virus
contains eight segments. The population of each segment comprises two haplotypes,
which differ from one another at a number of loci; in seven segments the haplotypes
differ by a single polymorphism, while in the final segment the haplotypes differ at
ten polymorphisms. B Inferred bottlenecks from simulations of the transmission of
our toy model system, calculated using either a haplotype-based or allele-based
method of inference. The haplotype-based model gives a more precise inference of
the transmission bottleneck.
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Figure 2.15. Likelihood functions from haplotype-based and allele-based inference
methods for a case in which our toy transmission model describes a change in
haplotype frequency equal to the expectation for each segment for a bottleneck of
size 100. While each method correctly diagnoses the transmission bottleneck, the
allele-based method produces an overly-optimistic estimate of the confidence interval
with which the bottleneck can be inferred.

2.3.6 Full Transmission Model: Methods

A qualitative illustration of our transmission model is shown in Figure 2.16.
The population before transmission is represented by the hidden state qB; this
population transmits to form the founder population qF which grows to the after-

37



2.3. Haplotypes and Viral Transmission Haplotype Reconstruction

Transmission Within-host
growth

Donor Recipient

𝒙∗𝐴

𝒒∗∗𝑨

𝒒∗𝑨𝒒∗𝑩

𝒙∗𝐵

𝒒∗∗𝑩

𝒒∗𝑩 𝒒𝑩

𝒙𝐵 𝒙𝐴

𝒒∗𝑨

𝒒𝑨𝒒𝑭𝒒𝑩

𝒒∗𝑩

NT NG

Noise 
estimation

Noise 
estimation

Reconstructed 
Haplotype set

Sequence 
data

Figure 2.16. Overview of the transmission model.

transmission viral population qA. These respective steps are represented by the
transmission bottleneck NT and the within-host growth effective population size
NG. Populations are observed before and after transmission to give the datasets
xB and xA, from which we build the haplotype reconstruction populations q∗B

and q∗A; these give the mean values of our estimates of qB and qA.

We next assess the extent to which noise in the observation affects our hap-
lotype reconstructions. Taking each of q∗B and q∗A, we artificially simulate 100
datasets x∗Bi and x∗Ai , each having the same properties as xB and xA, and be-
ing generated as observations from q∗B and q∗A. From each of these datasets
we perform haplotype reconstruction under the assumption that the underlying
haplotypes are correct (that is, simply learning their frequencies), generating
100 inferences q∗∗Bi and q∗∗Ai . Comparing q∗∗Bi to q∗Bi and q∗∗Ai to q∗Ai , we de-
rive variances in q∗B and q∗A, which for simplicity we assume to be represented
by diagonal covariance matrices. As x∗Bi and x∗Ai were emitted from q∗Bi and
q∗Ai in a manner identical to the way xBi and xAi were emitted from qBi and qAi ,
we assume that the variances in qBi and qAi equal the variances in q∗Bi and q∗Ai .
Having thus identified mean and variances for qB and qA we employ these for
the calculation of transmission bottlenecks.

Using our reconstructed haplotype set, h, to calculate the likelihood of the
bottleneck size given data, assuming a completely neutral transmission, we take
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a similar approach to that of Lumby et al. (2018) (to be explained further in the
next chapter) by splitting the likelihood into two components:

L(NT |q∗B, q∗A, NG) =

∫
P (q∗B|qB)P (qB)dqB

×
∫
P (q∗A|qA)

{∫
P (qA|NG, qF )

×

(∫
P (qF |NT , qB)P (qB)dqB

)
dqF

}
dqA (2.16)

where the first integral corresponds to the initial observation of the system
and the subsequent ones encompass transmission, within-host growth and post-
transmission sampling.

Interpreting the quantities in Figure 2.16 as random variables, and noting
that transmission and sampling processes can be represented by multinomial
and Dirichlet-multinomial outcomes respectively, we approximate these discrete
distributions as continuous multivariate normal distributions and evaluate the
integrals in Equation 2.16 through the means of compound distributions. Given
distributions F in x and G in y, a compound distribution H takes the form

PH(x) =

∫
PF (x|y)PG(y)dy (2.17)

where the mean and variance of H are defined by the law of total expectation,

EH [x] = EG[EF [x|y]], (2.18)

and the law of total variance,

varH [x] = EG[varF [x|y]] + varG[EF [x|y]], (2.19)

respectively.

As mentioned above, for the pre-transmission component we identify

E[qBi ] = E[q∗Bi ] = µBi , (2.20)

var[qBi ] = var[q∗Bi ] =
(
σBi
)2

39



2.3. Haplotypes and Viral Transmission Haplotype Reconstruction

where the subscript i denotes haplotype i. The mean µBi is evaluated by op-
timising the frequency of the reconstructed haplotype set using the MLHapRec
approach and

(
σBi
)2

=
∑100

j=1(q∗Bi −q∗∗Bj )2/100 is the variance in the frequency of
q∗Bi calculated numerically over r = 100 replicate samples. We assumed that all
the off-diagonal elements of the covariance matrix are zero, which is equivalent
to disregarding between-haplotype correlations in specifying the uncertainty in
µBi .

Moving on to the post-transmission component of the compound distribution
in Equation 2.16, we can carry out the relevant marginalisations using the law
of total expectation and the law of total variance.

Given that the dynamics governing transmission and within-host growth are
assumed selectively neutral, the mean frequencies of the viral population are un-
changed following transmission and growth. Specifically, the transmission event
can be modelled as a single multinomial draw with NT number of trials. As a
result, the conditional distribution for the founder population can be represented
by a multivariate normal with mean

E[qFi |qBi ] = qBi , (2.21)

and variance

var[qFi |qBi ] =
qBi (1− qBi )

NT
. (2.22)

assuming that the variance can be represented by a diagonal matrix. Therefore,
marginalising over qBi yields a mean

E[qFi ] = E[E[qFi |qBi ]] = E[qBi ] = µBi , (2.23)

and variance of
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var[qFi ] = E[var[qFi |qBi ]] + var[E[qFi |qBi ]]

= E[
qBi (1− qBi )

NT
] + var[qBi ]

=
1

NT
µBi (1− µBi ) +

(
1− 1

NT

) (
σBi
)2
. (2.24)

The within-host growth dynamics can be modelled as a multinomial draw
of depth NG = gNT where g is the growth factor. The concept of the growth
factor will be discussed in detail in Chapters 3 and 4. Fixing the growth factor
as g = 22 (Lumby, Nene and Illingworth 2018), we define the conditional mean
of qAi as

E[qAi |qFi ] = qFi , (2.25)

and the variance as

var[qAi |qFi ] =
qFi (1− qFi )

NG
. (2.26)

We can subsequently marginalise over qFi to find the mean

E[qAi ] = E[E[qAi |qFi ]] = E[qFi ] = µBi (2.27)

and variance

var[qAi ] = E[var[qAi |qFi ]] + var[E[qAi |qFi ]]

= E[
qFi (1− qFi )

NG
] + var[qFi ]

=
1

NG
µBi (1− µBi ) +

(
1− 1

NG

){ 1

NT
µBi (1− µBi ) +

(
1− 1

NT

) (
σBi
)2
}

(2.28)

for the resulting moments of qAi .

As discussed above, we define the conditional moments of q∗Ai as
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E[q∗Ai |qAi ] = qAi , (2.29)

for the mean and

var[q∗Ai |qAi ] =
(
σAi
)2
, (2.30)

for the variance. Finally we may then marginalise over qAi to find the resulting
mean and variance for the post-transmission component in Equation 2.16. For
the mean we get

E[q∗Ai ] = E[E[q∗Ai |qAi ]] = E[qAi ] = µBi , (2.31)

whilst the variance expression yields

var[q∗Ai ] = E[var[q∗Ai |qAi ]] + var[E[q∗Ai |qAi ]] = E
[(
σAi
)2
]

+ var[qAi ]

=
(
σAi
)2

+
1

NG
µBi (1− µBi ) +

(
1− 1

NG

){ 1

NT
µBi (1− µBi )+ (2.32)(
1− 1

NT

) (
σBi
)2
}

where
(
σAi
)2 is the variance obtained from q∗Ai . This variance is defined in a

manner similar to that of
(
σBi
)2 and may be found numerically as

(
σAi
)2

=∑100
j=1(q∗Ai − q∗∗Aj )2/100.

Together, Equations 2.31 and 2.32 define the mean and variance of a mul-
tivariate normal distribution representing the post-transmission component of
the likelihood in Equation 2.16. Given our inferences for q∗Bi and q∗Ai , we op-
timised the likelihood with respect to NT , considering bottlenecks in the range
NT ∈ [1, 1000], producing a maximum likelihood estimate for the size of the
transmitted population.

2.3.6.1 Results From Experimental Data

Our transmission model was applied to data collected from a household study
previously published by McCrone et al. (2018). This study previously identi-
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Figure 2.17. Bottleneck sizes inferred from the data presented by McCrone et al.
Dots indicate the maximum likelihood bottleneck size inferred for each of the 43
systems described in this work. Vertical bars represent confidence intervals
equivalent to a cut-off of 2 log likelihood units.

fied narrow bottlenecks in human-to-human transmission, with all but a single
transmission being inferred to involve between one and four viral particles. Ap-
plication of our haplotype-based method generated a broader range of inferred
bottleneck values (Figure 2.17), albeit one that reflected the general pattern of
results from the first analysis. In our results, the most common inference was
that infection was initiated by a single viral particle, this being inferred in 21 of
the 43 transmission events studied. Furthermore, a collective analysis, in which
a single bottleneck was fitted to all of the data as a whole, produced an inferred
bottleneck of NT = 1. Our results differed from the original analysis in that
generally higher bottlenecks were inferred, with six events being inferred to in-
volve a bottleneck of 10 particles or more. Our inference supports a general rule
for influenza transmission in which the majority of transmission events involve
a founder population that comprises a very small number of viral particles, with
a few exceptions occurring, where the founding population is larger than this.

43



2.4. Discussion Haplotype Reconstruction

2.4 Discussion

I have here outlined a framework for the inference of haplotype frequencies from
data, based upon a likelihood scheme incorporating partial haplotype inform-
ation, and demonstrated various applications of this approach to evolutionary
inference. Our initial results demonstrated the potential to make haplotype
inferences in cases where a small number of haplotypes were present in a sys-
tem. Applied to within-host data describing HIV adaptation we showed that
the redundancies inherent to our haplotype reconstruction did not have a large
impact on the energy scores derived from a global measure of viral fitness; this
indicates the potential for such measures, applied to within-host evolution, to be
employed to generate insight into viral evolution. Our second application, to an
influenza B infection in an immunosuppressed host, highlighted the potential for
our methods to gain insight into populations going beyond what can be achieved
via consensus sequence-based methods. Here we showed that populations that
were phylogenetically distinct with regards to their consensus sequence were also
distinct when considered at the level of variants within the viral population. Fi-
nally, we outlined an approach for identifying minimal haplotype reconstructions
of data when applied to inferences of viral transmission; we showed the inher-
ent advantage of such an approach when applied to sparse sequence data, and
demonstrated that haplotype-based methods, by making a proper account of
the fact that viruses, rather than independent alleles, are transmitted, grant
an improved inference of transmission bottleneck size. Applying our method
to published data describing influenza transmission in a household study, we
achieved slightly different results from those previously published, but which
nevertheless support a general pattern of small numbers of viral particles gen-
erally founding new infections. Haplotype reconstruction therefore provides a
broadly useful tool generating biological insight into a number of systems.

Having demonstrated the potential of haplotype reconstruction methods, I
now turn in more detail to the question of viral transmission, which will underpin
the remainder of this thesis. I note that our inference of transmission bottlenecks
neglects the impacts of selection upon transmission. During a transmission
event, both selection and genetic drift may cause changes in the diversity of
a viral population. In the next chapter I outline a method to separate these
changes, inferring bottleneck sizes in the presence of natural selection.
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Chapter 3

Basic Transmission Inference
Scheme and Application to
Simulated Data

3.1 Introduction

The previous chapter considered the reconstruction of haplotypes and the infer-
ence of haplotype frequencies from short-read data. In this chapter I introduce
the basic transmission inference scheme upon which this and subsequent chapters
rely. The transmission model considers changes in genetic diversity as a means
of inferring transmission events with the viral population represented in terms
of viral haplotypes and their associated frequencies. Existing approaches for
transmission inference tend to neglect the impact of selection upon the viral
population. I here highlight a need for future methods to acknowledge the im-
portance of both selection and bottleneck effects upon viral diversity and to
define techniques for distinguishing these. In this chapter I present our solution
to this problem and investigate the performance of our algorithm when applied
to simulated data.

A handful of methods for transmission inference have been developed
(Khiabanian et al. 2015; Krimbas and Tsakas 1971; Monsion et al. 2008; Sac-
ristan et al. 2003), many of which are based upon the analysis of diversity changes
from single-locus variant data. These methods assume independence between
variant sites, which, as we have seen in the previous chapter, leads to potential
biases. I here compare the performance of our basic transmission scheme to the
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beta-binomial method of Sobel Leonard et al. (2017b), which, to our knowledge,
represents the present state-of-the-art for bottleneck inference.

3.1.1 Transmission Inference

Understanding viral transmission is a key task for viral epidemiology. The ex-
tent to which a virus is able to transmit between hosts determines whether it
is likely to cause sporadic, local outbreaks, or spread to cause a global pan-
demic (Breban, Riou and Fontanet 2013; Fraser et al. 2009). In a transmission
event, the transmission bottleneck, which specifies the number of viral particles
founding a new infection, influences the amount of genetic diversity that is re-
tained upon transmission, with important consequences for the evolutionary dy-
namics of the virus (Bergstrom, McElhany and Real 1999; Gutiérrez, Michalakis
and Blanc 2012).

Recent studies have used genome sequencing approaches to study transmis-
sion bottlenecks in influenza populations. In small animal studies, the use of
neutral genetic markers has shown that the transmission bottleneck is dependent
upon the route of transmission, whether by contact or aerosol transmission (Frise
et al. 2016; Varble et al. 2014). In natural human influenza populations, where
modification of the virus is not possible, population genetic methods have been
used to analyse bottleneck sizes. Analyses of transmission have employed dif-
ferent approaches, exploiting the observation or non-observation of variant al-
leles (Sacristan et al. 2003) or using changes in allele frequencies to characterise
the bottleneck under a model of genetic drift (Charlesworth 2009; Khiabanian
et al. 2015; Krimbas and Tsakas 1971; Monsion et al. 2008). A recent public-
ation improved this latter model, incorporating the uncertainty imposed upon
allele frequencies by the process of within-host growth (Sobel Leonard et al.
2017b). Two studies of within-household influenza transmission have provided
strikingly different outcomes in the number of viruses involved in transmission,
with estimates of 1-2 (McCrone et al. 2018) and 100-200 (Poon et al. 2016) re-
spectively, albeit that the data used to generate the latter result has recently
been challenged (Xue and Bloom 2018).

Another focus of research has been the role of selection during a transmis-
sion event; this is important in the context of the potential for new influenza
strains to become transmissible between mammalian hosts (Kuiken et al. 2006;
Lipsitch et al. 2016). Studies examining transmissibility have assessed the po-
tential for different strains of influenza to achieve droplet transmission between

46



Basic Transmission Inference Scheme 3.1. Introduction

ferrets under laboratory conditions (Herfst et al. 2012; Imai et al. 2012; Sut-
ton et al. 2014; Yang et al. 2016); ferrets provide a useful, if imperfect, model
for transmission between humans (Buhnerkempe et al. 2015; Palese and T. T.
Wang 2012). The application of bioinformatic techniques to data from these
experiments has identified ‘selective bottlenecks’ in the experimental evolution
of these viruses (Moncla et al. 2016; Wilker et al. 2013), whereby some genetic
variants appear to be more transmissible than others. In these studies, selection
has been considered in terms of the population diversity statistic π; changes in
πN/πS, the ratio between non-synonymous and synonymous diversity, have been
used to evaluate patterns of selection across different viral segments.

I here note the need for a greater clarity of thinking in the analysis of viral
transmission events. For example, analysis of genetic variants in viral popula-
tions shows that synonymous and non-synonymous mutations both have fitness
consequences for viruses (Acevedo, Brodsky and Andino 2014; Visher et al.
2016); the use of synonymous variants as a neutral reference set may not hold.
More fundamentally, in an event where the effective population size is small, the
influences of selection and genetic drift may be of similar magnitude (Rouzine,
Rodrigo and Coffin 2001). However selection is assessed, this implies a need to
separate stochastic changes in a population from selection, especially where a
transmission bottleneck may include only a small number of viruses (McCrone
et al. 2018; Varble et al. 2014; Zwart, Daròs and Elena 2011). It is possible for
the attribution of a change in diversity to the action of selection, or the attribu-
tion of allele frequency change to genetic drift to be flawed. Given the increasing
availability of sequence data, more sophisticated tools for the analysis of viral
transmission are required.

Here I observe three challenges in the analysis of data from viral transmission
events. Firstly, selection can produce changes in a population equivalent to
those arising through a neutral population bottleneck (Abel et al. 2015) (Figure
3.1A), making it necessary to distinguish between the two scenarios. A broad
literature has considered the simultaneous inference of the magnitude of selection
acting upon a variant along with an effective population size (Bollback, York and
Nielsen 2008; Feder, Kryazhimskiy and Plotkin 2014; Foll et al. 2014; Malaspinas
et al. 2012; O’Hara 2005; Terhorst, Schlötterer and Song 2015). However, such
approaches rely on the observation of an allele frequency at more than two
time points so as to distinguish a deterministic model of selection (with an
implied infinite effective population size) from a combined model of selection
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with genetic drift; such approaches cannot be directly applied to the analysis of
viral transmission.

Secondly, inferences of transmission events need to account for the haplo-
type structure of viral populations, whereby whole viruses, rather than sets of
independent alleles, are transmitted (Figure 3.1B). The low rate of homolog-
ous recombination in segments of the influenza virus (Boni et al. 2008; Chare,
Gould and Holmes 2003) implies that viral evolution proceeds at the haplotype
level (Neher and Shraiman 2009); competition occurs between collections of
linked alleles, or segments, rather than the individual alleles themselves. Under
such circumstances, fitter variants do not always increase in frequency within
a population (Illingworth and Mustonen 2012b; Koelle and Rasmussen 2015;
Strelkowa and Lässig 2012). Calculations of genetic drift, which are often de-
rived from the evolution of independent variants (Felsenstein 1971), need to
be adjusted to account for this more complex dynamics. While haplotype re-
construction as a basis for bottleneck inference was described in the previous
chapter, the need to account for selection leads to the use of a more generous
haplotype reconstruction approach, allowing for the existence of haplotypes into
which the population can move under the influence of selection.

Thirdly, noise in the measurement of a population may influence the in-
ferred size of a transmission bottleneck (Figure 3.1C). A broad range of studies
have examined the effect of noise in variant calling and genome sequence ana-
lysis (Beerenwinkel and Zagordi 2011; Dijk et al. 2014; Iyer et al. 2015; Laehne-
mann, Borkhardt and McHardy 2016; McCrone and Lauring 2016; Sandmann
et al. 2017; Varghese et al. 2010; C. Wang et al. 2007); more recently formulae
have been proposed to measure the precision with which allele frequencies can
be defined given samples from a population (Illingworth 2015; Illingworth et al.
2017; Zanini et al. 2017). Where small changes in allele frequencies are used to
assess a population bottleneck, it is important to separate the effects of noise in
the measurement of populations from genuine changes in a population.

In this chapter I describe a novel method for the inference of population bot-
tlenecks in influenza which addresses the above issues. I show that our approach
correctly evaluates changes in a population even where the data describing that
change are affected by noise. In common with the approach of the previous
chapter, it explicitly accounts for the haplotype structure of a population, using
a method of haplotype reconstruction as a framework within which to eval-
uate data present within short sequence reads. However, in addition, where
these factors can be discriminated, the method presented here distinguishes
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Case 1: Bottleneck 
size = 2

Selection for      ,Observed genotypes:

Population before 
transmission

Population after 
transmission

Observed genotypes:

Case 2: Bottleneck 
size = 104

Expected outcomes are identical

A

B

Allele frequencies unchanged

Population bottleneck

75% 55%

60% 70%

25% 45%

40% 30%

C

Population unchanged

during transmission

Sampling / Sequencing Noise

1. Incomplete sample collection

2. Noise in sequencing

3. Short read data

Sampled populations differ

Figure 3.1. Challenges arising in the inference of transmission bottlenecks from
viral sequence data. Circles represent idealised viral particles characterised by four
distinct alleles. A. Reductions in population diversity cannot necessarily be
attributed unambiguously to either a population bottleneck, or the action of
selection. In the illustrated case, either a tight bottleneck without selection or a large
bottleneck with strong selection could explain the change in the population during
transmission. B. Straightforward statistics describing a population may generate
misleading inferences of population bottleneck size. In the illustrated case, the
genetic structure of a population is changed by a population bottleneck during
transmission, but the frequency of each allele within the population does not change;
an inference of bottleneck size derived from single-locus statistics would incorrectly
be very large. C. Noise arising from the process of collecting and sequencing data is
likely to produce differences between the observed populations, even in the event that
the composition of the viral population was entirely unchanged during transmission.

49



3.2. Methods Basic Transmission Inference Scheme

between the influences on the population of selection and the transmission bot-
tleneck. Studies of viral evolution have highlighted the potential for payoffs
between within-host viral growth and transmissibility (Blanquart et al. 2016);
given sufficient data we can evaluate how selection operates upon each of these
phenotypes. Our model extends previous population genetic work on bottleneck
inference to provide a more generalised model for the analysis of data spanning
viral transmission events.

3.1.2 Author Contributions

This chapter is adapted from material which formed the basis of a published
paper (Lumby, Nene and Illingworth 2018). Nuno Nene and Christopher Illing-
worth contributed to general discussions during model development but the great
majority of the work was completed by the author.

3.2 Methods

3.2.1 Model Outline

In the recent literature, the term ‘bottleneck’ has been applied to describe a
reduction in the genetic diversity of a population (e.g. (Zaraket et al. 2015)),
whether arising from selection or a numerical reduction in the size of a popula-
tion. Here, we define a ‘bottleneck’ more strictly as a neutral process whereby
a finite number of viral particles from one population found a subsequent gen-
eration of the population, either within the same host, or across a transmission
event from host to recipient. Selection then constitutes a modification to this
process whereby some viruses, because of their genotype, have a higher or lower
probability of making it through the bottleneck to found the next generation.

Building on the haplotype inference methods described in the previous chapter,
I developed a population genetic method for making a joint inference of the bot-
tleneck size and the extent of selection acting during a transmission event. In
my basic model of transmission (Figure 3.2), I consider a setup wherein a viral
population is transmitted from one host to another with samples being collec-
ted before and after transmission. Within this model, viruses are categorised
as haplotypes according to the alleles they harbour at polymorphic sites in the
genome. Haplotypes are constructed from short-read data via the exhaustive
method (Illingworth 2015, 2016) outlined in Chapter 2. The viral population
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is then represented as a vector of frequencies of haplotypes in this set; the pop-
ulation before transmission is represented by the vector qB (B denoting ‘Before
transmission’). During transmission, a random sample of NT viruses are passed
on to the second host to give the founder population qF . Selection for trans-
missibility, whereby genetic variants cause some viruses to be more transmissible
than others, is described by the function ST . The potentially small size of the
founder population means that the population evolves within the host under the
influence of genetic drift to create the large post-transmission population qA (A
denoting ‘After transmission’); this process is approximated in our model by a
Wright-Fisher sampling process (representing genetic drift) with effective pop-
ulation size NG. Observations of the population are collected before and after
transmission via a noisy sequencing process to give the datasets xB and xA. The
extent of noise in the sampling and sequencing is characterised by the parameter
C (Illingworth 2015, 2016). Noise in our study was considered in terms of the
precision with which the frequency of a variant can be specified by viral sequence
data. Variant frequencies are measured in terms of the number of reads which
report a given allele; in the absence of noise the uncertainty in the frequency
would be that arising from a binomial distribution. Our noise parameter C de-
scribes the extent to which this uncertainty is increased. Smaller values of C
increase the variance, reaching that of a non-informative uniform distribution
at C = 0 whilst larger values represent lesser additional uncertainty, tending
towards the binomial limit as C → ∞ (Figure 3.3). The parameter C and the
absolute read depth of a sample can be converted into an ‘effective depth’ of
sequencing, see (Illingworth et al. 2017). In the limit of very deep sequencing
the variance of an allele frequency tends towards that of a binomial distribution
with sampling depth C + 1.

3.2.2 Differentiating Selection From Drift

We note that both the transmission and within-host growth events can be rep-
resented as sampling processes, with the former potentially biased by the effect
of selection. As such, given an estimate of the noise inherent to the sequen-
cing process and externally-determined estimates for NG, we can calculate an
approximate likelihood for the parameters NT and ST given the observations
xB and xA. Maximising this likelihood gives an estimate for the size of the
transmission bottleneck and the extent to which specific genetic variants within
the pre-transmission population confer increased transmissibility upon viruses.
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qB qFqF qA
Effective size NGBottleneck NT

Selection ST

Transmission Within-host growth

FounderBefore After

xB xA

Noise CNoise C

Figure 3.2. Basic model of transmission. A set of haplotypes exists at frequencies
qB from which a noisy observation xB is made. During a transmission event, a total
of NT viruses are transferred under the influence of selection ST , establishing an
infection in the next host described by qF . Growth of the viral population within the
host then occurs to produce the population qA, influenced by genetic drift
(characterised by the effective population size NG). Sampling of the final population
gives the second observation xA.
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Figure 3.3. Allele frequency distribution for a sample of read depth N = 1000
collected from a population with true allele frequency one third, with a noise-free
sampling method (C =∞) and with C values of 10, 100, and 1000.
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Recombination Transmission

Observed genotypes: Observed genotypes:

Recombination

Bottleneck NT 

Selection for
          ,

Figure 3.4. Regions of the genome which are separated by recombination or
reassortment are used to distinguish the effects of selection and a population
bottleneck. Prior to transmission, the first region contains seven different genotypes
spanning four variant loci whilst the second region harbours four genotypes covering
three loci. As recombination between these two regions leaves them unlinked,
selection acting on genotypes in one region has no impact on the fate of genotypes in
the other region. Thus, where genetic diversity is reduced in the first region, the
preservation of diversity in the second region attributes this change to the action of
selection on the first, rather than a shared, and narrow, population bottleneck.

In our model we discriminate between changes in a population arising from
selection and those arising due to the population bottleneck. This is achieved
by considering regions of the genome between which recombination or reassort-
ment has removed linkage disequilibrium between alleles (Figure 3.4; compare
with Figure 3.1A). As transmission involves whole viruses, the bottleneck NT

is preserved between regions. Meanwhile, in the absence of epistasis, selection
acting upon one region of the virus does not influence the composition of the
population in other parts of the genome. As such, a calculation encompassing
multiple parts of the genome can estimate both NT and the influence of selec-
tion; in the figure the case of a loose population bottleneck, with selection acting
upon the first region is preferred. A model selection process (Kass and Raftery
1995) is used to distinguish models of neutral transmission from evolution under
selection (Figure 3.5).

3.2.3 Notation and Qualitative Overview

For clarity, I here define the notation utilised in the derivation of the basic
model, which extends that set out in the previous chapter. The viral population
is described as a set of haplotypes with associated frequencies that changes in
time during a transmission event. Given a number of (possibly non-consecutive)
loci of interest in the viral genome, the set of haplotypes h = {hi} describes a set
of sequences having specific nucleotides at these loci. Within a viral population
of finite size, the number of viruses with each haplotype hi is described by
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E[qA]E[qB]=xB

xA

E[qB]=xB

E[qA]=xA

E[qA]=E[qB]=xB

xA

Neutral model One-locus selection Two-locus selectiona. b. c.

Figure 3.5. Models of neutrality and selection are compared, as illustrated in this
simplified diagram. Black dots represent observations xB and xA while the red dot
indicates the inferred expected position of qA. The solid line joining these (b,c)
indicates the inferred action of selection, with dotted lines showing components of
this vector (c). The blue circle represents the optimised variance in the position of
qA; the length of its radius, shown as a dashed line, is inversely related to the
bottleneck size. In the neutral case, the difference between observations is explained
by the bottleneck alone. More complex models of selection fit qA more closely to xA

and with reduced variance, giving higher inferred values of NT .

the vector n = {ni}. Frequencies of each haplotype within the population are
denoted by the vector q = {qi}, while observations of the population collected
via sequencing are denoted by the vector x = {xi}, where xi is the number of
sampled viruses with haplotype hi.

The transmission event is now described according to the framework outlined
in Figure 3.2. A population of viruses qB undergoes transmission with some
bottleneck NT , creating a founder population with haplotype frequencies qF

in the recipient. Selection influencing this transmission process is described by
the function ST (q), which changes the frequency of haplotypes according to the
relative propensity of each haplotype to transmit. For example, selection may
favour the transmission of viruses containing a specific genetic variant, increasing
the expected proportion of viruses with this variant in the founder population.
Within the host, the viral population grows rapidly to create the population
qA. During this growth process, genetic drift affects the population in a manner
according to the effective population size NG. Observations of the system are
made via genome sequencing of samples collected before and after transmission,
and are denoted xB and xA respectively; the total numbers of sequence reads
in each are denoted NB and NA. Given the observations xB and xA, we wish
to estimate the size of the population bottleneck NT and the extent of selection
for transmissibility ST .

Where I consider multiple replicate transmission events, I assume that each
transmission has its own transmission bottleneck NT ; different numbers of vir-
uses may infect different hosts. On the contrary, selection is assumed to operate
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consistently between hosts; a variant which makes a virus grow more efficiently
in one host does the same in another.

3.2.4 Likelihood Framework

By interpreting the transmission model in Figure 3.2 as a directed graphical
model (Bishop 2006) we may consider the joint probability of the encircled
variables given the external quantities. According to the principle of conditional
probability we may write

P (xB,xA, qB, qF , qA|C,NT , NG, ST )

= P (xB,xA, qF , qA|qB, C,NT , NG, ST )P (qB)
(3.1)

From the graphical model it is evident that xB is conditionally independent
of the post-transmission variables given qB. Mathematically, that is,

(
xB ⊥⊥ {xA, qF , qA}

)
|qB (3.2)

which implies that

P (xB,xA, qB, qF , qA|C,NT , NG, ST )

= P (xB|qB, C)P (xA, qF , qA|qB, C,NT , NG, ST )P (qB)
(3.3)

The random variable qB represents an unknown quantity that we necessarily
need to determine in order to construct the likelihood framework. To this end
we model qB as a multivariate normal distributed random variable with mean
µB and covariance matrix ΣB. This allows us to identify a multivariate normal
probability density function with P (qB), which for completeness we now refer
to as P (qB|µB,ΣB). Noting that the true composition of the pre-transmission
population is unknown, we average over all possible values of qB:

P (xB,xA, qF , qA|C,NT , NG, ST ,µB,ΣB)

=

∫
P (xB|qB, C)P (xA, qF , qA|qB, C,NT , NG, ST )P (qB|µB,ΣB)dqB

(3.4)
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As all three probabilities depend on qB, they need to be jointly evaluated
under the integral. In turn, this results in a joint likelihood for µB, ΣB, NT and
ST . Whilst technically possible to evaluate, this approach is computationally
very intensive and results in long execution times. Instead, we use an approx-
imation wherein µB and ΣB are initially inferred using only the before data
and subsequently employed in the post-transmission framework with a view to
inferring parameters of transmission (NT and ST ). We may therefore define a
likelihood for µB and ΣB

L(µB,ΣB|xB, C) =

∫
P (xB|qB, C)P (qB|µB,ΣB)dqB (3.5)

The first term in this likelihood, corresponding to the initial observation of
the system, xB, represents a straightforward sampling of the system, drawing
from a collection of viral haplotypes qB. Such a process can be modelled us-
ing a multinomial distribution. However, as is well known (Illingworth et al.
2017), next-generation sequence data are error-prone, such that less information
is contained within the sample than would be contained in a multinomial sample
of equivalent depth to the sample. A Dirichlet-multinomial distribution may be
used to capture this reduction of information (Illingworth 2015, 2016), such that

P (xB|qB, C) =
Γ(NB + 1)∏
i(x

B
i + 1)

Γ
(∑

iCq
B
i

)
Γ (
∑

i x
B
i + CqBi )

∏
i

Γ(xBi + CqBi )

Γ(CqBi )
(3.6)

where C, which alters the variance of the distribution, characterises the extent
of noise in the data. The parameter C can be estimated given independent
observations of identical parameters, such as haplotype or single allele frequen-
cies; in the application to experimental data, time-resolved variant frequencies
derived from the sequence data were used for this purpose (Illingworth 2015).
As mentioned, P (qB|µB,ΣB) represents a multivariate normal in µB and ΣB.
Given an estimate for C, we may therefore optimise Equation 3.5 for µB and
ΣB.

Given maximum likelihood estimates for µB and ΣB, we now turn to the
post-transmission part of the framework for which we have a joint probability
of
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P (xA, qF , qA|C,NT , NG, ST ,µB,ΣB)

=

∫
P (xA, qF , qA|qB, C,NT , NG, ST )P (qB|µB,ΣB)dqB

(3.7)

Employing the rule of conditional probability repeatedly, we get

P (xA, qF , qA|C,NT , NG, ST ,µB,ΣB)

= P (xA|qA, C)P (qA|qF , NG)

∫
P (qF |qB, NT , ST )P (qB|µB,ΣB)dqB

(3.8)

In the above, the expression P (xA|qA, C) may be defined in a manner sim-
ilar to Equation 3.6 dependent here upon the haplotype frequencies qA. The
remaining parts of this equation can also be described as sampling events. A
sample of the population in the donor animal transmits to the recipient, gener-
ating a founder population, qF . The founder population multiplies within the
host, with offspring being sampled from the founder population to generate the
final population qA. As qF and qA are both unknown variables, we need to
marginalise them out:

P (xA|C,NT , NG, ST ,µB,ΣB)

=
∑
qA

P (xA|qA, C)
∑
qF

P (qA|qF , NG)∫
P (qF |qB, NT , ST )P (qB|µB,ΣB)dqB

(3.9)

The sums are over all the possible values that qF and qA may take. Despite
representing frequencies, qF and qA do in fact take on discrete values as they
arise on the basis of sampling events. Finally, if we consider NG as a known
quantity, something which will be justified shortly, as well as C, µB and ΣB,
which are all independently inferred, we may define a likelihood for the trans-
mission event:

L(NT , ST |xA, NG,µB,ΣB) =
∑
qA

P (xA|qA, C)
∑
qF

P (qA|qF , NG)∫
P (qF |qB, NT , ST )P (qB|µB,ΣB)dqB

(3.10)
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I will go on to describe the calculation of both Equations 3.5 and 3.10,
however, I will first define how selection is incorporated into our model.

3.2.4.1 Excursus: Modelling Selection

Within our model, the functions describing selection are potentially complex,
each having a number of parameters equal to the number of haplotypes in the
system. In common with previous approaches to studying within-host influ-
enza evolution (Illingworth, Fischer and Mustonen 2014) we adopt a hierarchical
model of selection whereby the fitness of a haplotype is calculated from a set of
one- or multi-locus components, describing the advantage or disadvantage of a
specific nucleotide, or nucleotides, at a single locus or set of loci. Model selection
is then used to identify the most parsimonious explanation of the data.

Formally, we denote the jth component of the haplotype hi as hij, with
hij ∈ {A,C,G, T}. In a fitness model, a parameter is defined as the pair of
values (σk, gk), where σk is a real number, denoting the difference in fitnesses
of individuals with and without the allele (Kimura 1955), and gk is a vector of
components gkj ∈ {A,C,G, T,−} denoting the haplotypes to which this selection
applies. We now define

gk · hi =
∏
j

gkj × hij (3.11)

where

gkj × hij =


1, if gkj = hij

1, if gkj = −

0, if gkj 6= −, gkj 6= hij

(3.12)

The fitness of a haplotype hi is then given as

wi = exp

(∑
k

σk(gk · hi)

)
(3.13)

where the sum is calculated over all fitness parameters k. To give an example, a
single-locus fitness parameter would have a single element of gk that was either
A, C, G, or T. Supposing this element to be at position j, it would convey the
fitness advantage σk to all haplotypes with the given nucleotide at position j in
the genome.
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3.2.4.2 Selection in a Transmission Event

Selection is incorporated into the transmission event from donor to recipient by
representing this event as a biased sampling process. As we are not considering
data here, noise is not an issue. I therefore model the population qF as arising
via a multinomial sampling process of depth NT from a set of genotypes with
frequencies ST (qB), where ST represents the role of selection in the transmission
event. We write

P (qF |qB, NT , ST ) =
NT !∏
i n

F
i !

∏
i

(ST (qB))
nFi
i (3.14)

where (
ST (qB)

)
i

=
wTi q

B
i∑

i′ w
T
i′ q

B
i′

(3.15)

defines a distorted population based on the haplotype fitnesses wT = {wTi }, rep-
resenting the relative propensity of each haplotype hi for transmission. We note
here that qFi =

nFi
NT , where the vector nF describes the number of copies of each

haplotype in the founder population. This construction makes the assumption
that selection acts immediately prior to the bottleneck event itself.

3.2.4.3 Within-Host Growth

Concerning genetic drift, we note that the number of viruses in a host grows
rapidly, with experiments suggesting that a single infected cell can produce
between 103 and 104 viruses (Stray and Air 2001). However not every such
virus is viable, and one estimate has put the number of naive cells infected
by an infected influenza cell at 22 (Baccam et al. 2006). I here approximate
the within-host growth of the virus as a single multinomial draw, compressing
growth to a single round of sampling, with the variance effective population
size NG = gNT . By default I set the growth factor g to be equal to 22. This
approach is distinct from the branching process used in another estimate of
bottleneck size (Sobel Leonard et al. 2017a); our assumption that viruses infect
different cells in the host, with competition between viruses occurring after the
release of viruses from cells, leads to a Wright-Fisher-type population model,
in which the rapid growth of the viral population leads to a smaller amount of
genetic drift than inferred in that model.
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3.2.4.4 Approximation of the Likelihood Function

I now turn to calculating the likelihood functions of Equations 3.5 and 3.10.
In the case of Equation 3.10, the likelihood for the transmission parameters,
computing this expression turns out to be effectively impossible under certain
circumstances. This is due to the summation over qF and qA, where the num-
ber of possible outcomes grows combinatorially with NT and the number of
haplotypes, in turn making this calculation intractable. Instead I consider a
continuous approximation in which the random variables of the model (Fig-
ure 3.2) are represented by multivariate normal distributions, each defined by a
mean and covariance matrix. As a result, the summations over qF and qA in
Equation 3.10 are replaced with integrals:

L(NT , ST |xA) =

∫
P (xA|qA, C)

[∫
P (qA|qF , NG)

[∫
P (qF |qB, NT , ST )P (qB|µB,ΣB)dqB

]
dqF

]
dqA

(3.16)

By ignoring higher order moments, we may then calculate the individual com-
ponents of the system by appealing to a moments based approach for the evalu-
ation of integrals arising from marginalisation over unknown variables. This step
follows multiple previous approaches to time-resolved data, in which moments-
based approximations have been used to simplify the propagation of evolutionary
models (Lacerda and Seoighe 2014; Tataru et al. 2017; Terhorst, Schlötterer and
Song 2015; Tran, Hofrichter and Jost 2014).

I now outline the conditional moments required for calculating the likelihoods
via the moments based approach. Firstly, given a sampling depth NB and
a dispersion parameter C, we describe xB as a distribution with mean and
variance derived from the Dirichlet-multinomial (Mosimann 1962):

E
[
xB|qB

]
= NBqB (3.17)

and

var
[
xB|qB

]
=

(
NB + C

1 + C

)
NB

(
Diag(qB)− qB(qB)†

)
≡ βNBM(qB) (3.18)
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where β =
(
NB+C

1+C

)
, M(q) = Diag(q) − qq† and † indicates the transpose

function.

The founder population qF is sampled from qB. Its mean is given by the
expression

E[qF |qB] = ST (qB) (3.19)

and its variance by

var[qF |qB] =
1

NT

(
Diag(ST (qB))− ST (qB)ST (qB)†

)
≡ 1

NT
M(ST (qB)) (3.20)

arising from a multinomial sample of depth NT and the selectively shifted fre-
quencies ST

(
qB
)
.

Similarly, the within-host growth process may be represented by a distri-
bution with mean E[qA|qF ] = qF and variance var[qA|qF ] = 1

NGM(qF ). As
for the pre-transmission case, a Dirichlet-multinomial likelihood with sampling
depth NA, haplotype frequencies qA and dispersion parameter C may be used
to model the sequencing of the population post-transmission. This distribution
can be approximated as a multivariate normal with mean

E[xA|qA] = NAqA (3.21)

and variance

var[xA|qA] =

(
NA + C

1 + C

)
NAM(qA) ≡ αNAM(qA) (3.22)

where α =
(
NA+C
1+C

)
is defined for notational convenience.

Having established the above distributions, we are now equipped to carry
out the relevant marginalisations (Equations 3.5 and 3.16) using the law of total
expectation and the law of total variance. Starting with the pre-transmission
compound distribution, the marginalisation over qB yields a mean of

E[xB] = E[E[xB|qB]] = E[NBqB] = NBµB (3.23)
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and a variance of

var(xB) = E[var[xB|qB]] + var[E[xB|qB]]

= E
[
βNB

(
Diag(qB)− qB(qB)†

)]
+ var[NBqB]

= βNB
(
Diag(E[qB])− E[qB]E[qB]†

)
+NB

(
NB − β

)
var[qB]

= βNBM
(
µB
)

+NB
(
NB − β

)
ΣB

(3.24)

These expressions characterise the pre-transmission compound distribution from
Equation 3.5 in terms of a normal distribution. We identify values of µB and
ΣB maximising this likelihood. The matrix ΣB has dimensionality k2 where k
is the number of haplotypes in the system, a number which may potentially be
large. Accurately determining so many parameters from the available data is
unrealistic. In preference to obtaining an ill-defined covariance matrix we make
the approximation that the off-diagonal elements of ΣB are zero, i.e. we disregard
between-haplotype correlations in specifying the uncertainty in µB. I note that
ignoring the variance component altogether results in an underestimation of the
population bottleneck (see Section 3.3.2 and Figure 3.9).

Moving on to the post-transmission process, the marginalisation over qB

results in a mean of

E[qF ] = E[E[qF |qB]] = E[ST (qB)] ≈ ST (E[qB]) = ST (µB) (3.25)

where in the penultimate step we used the first-order second-moment approx-
imation to a vector function acting on a random variable1. The law of total
variance yields

var(qF ) = E[var[qF |qB]] + var[E[qF |qB]]

= E
[

1

NT
M(ST (qB))

]
+ var

[
ST (qB)

]
=

1

NT
M(E[ST (qB)]) +

(
1− 1

NT

)
var[ST (qB)]

≈ 1

NT
M(ST (E[qB])) +

(
1− 1

NT

)(
DST

∣∣
E[qB ]

)
var[qB]

(
DST

∣∣
E[qB ]

)†
=

1

NT
M(ST (µB)) +

(
1− 1

NT

)(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(3.26)

1The extension from scalar-valued functions to vector-valued functions for the first-order
second-moment method is straightforward, see Appendix F.
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Note that (DS)ji = ∂Si
∂qj

is the Jacobian matrix arising from the first-order second-
moment approximation.

Marginalisation over qF yields a mean of

E[qA] = E[E[qA|qF ]] = E[qF ] = ST (µB) (3.27)

and variance

var(qA) = E[var[qA|qF ]] + var[E[qA|qF ]]

= E
[

1

NG

(
Diag(qF )− qF (qF )†

)]
+ var[qF ]

=
1

NG

(
Diag(E[qF ])− E[qF ]E[qF ]†

)
+

(
1− 1

NG

)
var[qF ]

=
1

NG
M
(
ST (µB)

)
+

(
1− 1

NG

)(
1

NT
M(ST (µB)) +(

1− 1

NT

)(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)
=
NT +NG − 1

NTNG
M
(
ST (µB)

)
+

NTNG −NT −NT + 1

NTNG

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
≡ γM

(
ST (µB)

)
+ δ

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(3.28)

where in the last step we defined γ =
(
NT+NG−1
NTNG

)
and δ = NTNG−NT−NG+1

NTNG .

Treating the integral over qA in a similar manner, we obtain by the law of
total expectation

E[xA] = E[E[xA|qA]] = E[NAqA] = NAE[qA] = NAST
(
µB
)

(3.29)

Analogously, the law of total variance yields
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var(xA) = E[var[xA|qA]] + var[E[xA|qA]]

= E
[
αNAM

(
qA
)]

+ var[NAqA]

= αNA
(
Diag(E

[
qA
]
− E

[
qA
]
E
[
qA
]†)

+NA
(
NA − α

)
var[qA]

= αNAM(ST (µB))

+NA
(
NA − α

)(
γM

(
ST (µB)

)
+ δ

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)
= NA

(
α + (NA − α)γ

)
M(ST (µB))

+NA
(
NA − α

)
δ
(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(3.30)

The above expressions represent mean and covariance matrices of a mul-
tivariate normal distribution resulting from the evaluation of marginalisations
in Equation 3.16. As such, this defines a likelihood for the transmission event,
from which, given the data xA and our estimates for µB and ΣB, we may infer
maximum likelihood values for NT and ST .

3.2.4.5 Excursus: A Note on Dimensionality

In the above I considered multivariate normal distributions with means and
variances defined by multinomial sampling processes. In general a multinomial
distribution with frequencies q and sampling depth N may be approximated by
a normal distribution as follows:

Multi(N, q) ≈ N (Nq, NM) (3.31)

where N (µ,Σ) denotes the multivariate normal distribution,M = Diag(q)−
qq† is a square matrix and † indicates vector transpose. This approximation
holds in the regime where N is large and q sufficiently far from the boundar-
ies (Geyer 2006).

By construction, a multinomial sample x is constrained by the requirement
that

∑k
i=1 xi = N . Effectively, this implies that a multinomial random variable

of dimension k is actually of dimension k − 1. This has implications for the
normal approximation (Equation 3.31), as the probability density function for
the multivariate normal distribution is only non-degenerate when the covariance
matrix Σ is positive-definite. To ensure this I reduce the dimensionality by one
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when evaluating likelihoods based on multivariate normal distributions. In the
remainder of this work, the notation will be overloaded such that e.g. x and q
denote both reduced and complete sets.

The dimensional reduction is furthermore a requirement for ensuring the
correct behaviour of the selection function in the limit of no selection. In par-
ticularly, we expect the variance in Equation 3.30 to collapse to the variance of
a neutral model (see Appendix C) as

(
ST (qB)

)
i
→ qBi (or equivalently, wi → 1)

for all i:

var(xA) = NA
(
α +

(
NA − α

)
γ
)
M
(
µB
)

+NA
(
NA − α

)
δΣB (3.32)

Clearly this is only the case if the Jacobian matrix correspondingly ap-
proaches the identity matrix, i.e. DST

∣∣
µB
→ 1. In the full-dimensional frame-

work, the Jacobian matrix is defined as:

(DS)ji =
∂S(q)i
∂qj

=
∂

∂qj

wiqi∑
i′ wi′qi′

=


wi∑

i′ wi′qi′
− w2

i qi

(
∑
i′ wi′qi′)

2 if i = j

− wiwjqi

(
∑
i′ wi′qi′)

2 if i 6= j
(3.33)

which does not collapse to the identity matrix as wi → 1. On the other hand,
in the reduced dimensionality framework the selection function takes form

S(q)i =
wiqi

w1q1 + w2q2 + . . .+ wK−1qK−1 + wK(1− q1− q2− . . .− qK−1)
≡ wiqi

η
(3.34)

for K haplotypes where we defined the denominator as η. Without loss of
generality we have chosen to express theKth haplotype in terms of the preceding
K − 1 haplotypes. Under this setup, the Jacobian matrix takes the form

(DS)ji =

wi
η
− wiqi

η2
(wi − wK) if i = j

−wiqi
η2

(wj − wK) if i 6= j
(3.35)

which appropriately collapses to the identity matrix as wi → 1:

lim
wi→1

(DS)ji =

1 if i = j

0 if i 6= j
(3.36)
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3.2.5 Maximum Likelihood Optimisation Method for

Transmission

In order to identify maximum likelihood parameters of transmission, a hill climb-
ing optimisation method was employed. This optimisation approach was dy-
namic in nature, utilising two variables, δ and nupdate, to determine the scope
and duration of the optimisation routine. The first parameter, δ, was initialised
to unity and responsible for tracking convergence, this being defined as δ < 0.01.
Furthermore, δ represented the magnitude of changes occurring during an up-
date step, details of which will be given in Sections 3.2.5.2 and 3.2.5.3 below.
The second parameter, nupdate, was initialised to a value of 100 update rounds
and specified the number of update iterations prior to a recalculation of δ and
nupdate itself. Recalculation was based upon an acceptance rate r defined by
the fraction of successful updates to the total number of attempted updates.
Specifically, δ was updated to δnew = δ(0.90 + r), i.e. δ increased in size if
the acceptance rate was larger than 10% and decreased otherwise. The un-
derlying rationale being that a high acceptance rate represents a low degree of
convergence which in turn warrants a higher value of δ in order to explore more
distant regions of optimisation space. To control the optimisation process, an
upper limit of δ = 5 was enforced. Similarly, nupdate was increased by a value
of 10 if r > 0.1 and otherwise decreased by an identical amount. nupdate was
constrained on [10, 500). Taken together, this defined a dynamic optimisation
process ensuring adequate sampling of optimisation regions based on acceptance
rates.

3.2.5.1 General Update Dynamics

General update dynamics were based around a set of acceptance rates. In addi-
tion to the overall acceptance rate, r, additional acceptance rates for bottleneck
updates, rNT , and for updates to selection coefficients, rsel, were employed. The
ratio of these, f =

r
NT

rsel
, was used to define the probability of performing a bot-

tleneck update; a uniform random number q, defined on [0,1), was generated
and a bottleneck update performed if q < f , otherwise a selection update was
carried out. This setup allowed for a disproportionate amount of updates of
one kind or the other, which ensured a more rapid convergence. As mentioned
above, acceptance rates and f were recalculated every nupdate rounds.
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3.2.5.2 Updating Bottleneck Values

Upon initiation, the transmission bottleneck size was set to NT = 100. The
magnitude of bottleneck updates was defined by δ and a factor c, which took
values of 1, 5, 10 and 50 depending on whether the bottleneck was below 100,
500, 1000 and 10,000 respectively. Specifically, the updated bottleneck took a
value of NT

new = NT±ceil(δ)c where ceil(x) returns the least integer greater than
or equal to x and the direction of the update chosen at random.

3.2.5.3 Updating Selection Coefficients

At the beginning of the optimisation process, selection coefficients were initial-
ised to zero. During an update, a selection coefficient was chosen at random and
it’s magnitude changed to snew = s+(q−0.5)∗δ where, as before, q is a uniform
random number on [0,1). Selection coefficients were limited to s = ±10.

3.2.6 Maximum Likelihood Optimisation Method for qB

For the inference of maximum likelihood values of µB and ΣB a highly similar
approach was taken, albeit with a few subtle differences. Here, δ was initialised
to unity and convergence defined as δ < 10−6 whilst nupdate was initialised to
1000 update rounds. Given acceptance rate r, the parameters were updated to
δnew = δ(0.95 + r) and nupdate,new = ceil(nupdate(0.95 + r)) every nupdate rounds.
An upper limit of δ < 10 was enforced whilst nupdate was restricted to the
region [100, 1000]. Collectively, this heuristically derived setup guaranteed a
rapid inference of the components of the pre-transmission population.

3.2.6.1 Update Dynamics

A simpler approach was taken to the inference of µB and ΣB than was the case for
transmission. Initially, a k-dimensional µB was initialised to µBi = 1/k whilst ΣB

was set to ΣB = Diag(a). We here employed a relatively large value of a = 0.1,
which generally represented a highly unlikely starting point, as this guaranteed a
defined move away from the initial state during optimisation. Conversely, using
a smaller value, such as a = 10−10, often resulted in an optimisation process
getting stuck in a local maximum.

During the update routine, either µB or ΣB was chosen for update, this
decision being made at random. For updating µB, a random integer i on [0, k]

was generated, designating the haplotype being altered. Next, a uniform random
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number q on [0, 1) was used for updating the ith entry of µB, namely µBi,new =

µBi + δ(q − 0.5) with the constraint that µBi,new > 10−11. Finally, µB was scaled
to have unit sum. Similarly, for updating ΣB the (i, i) entry assumed a value of
ΣB
i,i,new = ΣB

i,i + δ(q − 0.5) where ΣB
i,i,new > 10−11.

3.2.7 Reversion to a Discrete Likelihood Function

Given a mean and covariance matrix for the likelihood function, we can ap-
proximate the likelihood by the probability density function of a multivariate
normal distribution. However, where the variance of this distribution is very
small in one dimension, as can occur under an inference of very strong selection,
the density function evaluated at a point can become arbitrarily large. For this
reason a Gaussian cubature approach was used to calculate the integral of the
final likelihood over the unit cube described by each observation x, once optim-
isation had been completed. Approximate numerical integrals were calculated
using the software package cubature (S. G. Johnson n.d.).

We also note that under neutrality it is possible to derive a discrete compound
solution, i.e. a solution in which the likelihood is evaluated using a Dirichlet-
multinomial rather than a multivariate normal distribution. Such a solution
represents an improvement on the normal approximation by taking into account
skewness. The Dirichlet-multinomial is defined by a probability vector p and
a parameter vector α. In Appendix A we present a derivation for obtaining α
based on the compound mean µ and the covariance matrix Σ. In Appendix B
we have briefly examined the performance of the discrete compound solution in
a one-dimensional setting, however, it won’t be explored further in this work.

3.2.8 Extension to Partial Haplotype Data

In the calculations above I made the implicit assumption that the observations
xB and xA consist of sets of complete viral haplotypes hi. However, short-
read sequencing technologies generally result in sets of individual reads which
only cover a subset of the genetic loci of interest; I here refer to these reads as
partial haplotypes. In this framework the data represent direct observations of
partial haplotypes in the set hP = {hP

1 , . . . ,h
P
L}, where each of the sets hP

l is a
vector of haplotypes spanning a common subset of the loci spanned by the full
haplotypes in h. Population-wide observations of these partial haplotypes are
then defined by xP = {xP

1 , . . . ,x
P
L} with xP

l = {xP
li} where xP

li is the number of
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reads with haplotype hP
li. As a result, the total number of observations must now

be defined on the basis of each set of partial haplotypes, e.g. NB,P
l =

∑
i x

P
li is

the total number of observations of partial haplotypes in the set l. As each set of
partial haplotype observations is independent of the others, we may reconstruct
Equation 3.16 in the following terms:

logL(NT , ST |xA, NG,µB,ΣB) =
∑
l

logL(NT , ST |xA,Pl , NG,µB,ΣB) (3.37)

Within this construction, bottleneck sizes and selection are conserved between
partial haplotype sets, being evaluated at the full haplotype level. Each set of
partial haplotype observations xP

l is considered as a sample drawn from a set
of partial haplotypes with frequencies qP

l , these frequencies being defined via
a linear transformation of the full haplotype frequencies with matrix Tl. For
example, given the full haplotypes {AG,AT,CG,CT} and a set of partial hap-
lotypes {A-,C-}, we have

qP
l = Tlq (3.38)

or more explicitly,

qP
l1

qP
l2

 =

1 1 0 0

0 0 1 1





q1

q2

q3

q4


(3.39)

Thus, as described above, the calculation of transmission and within-host
growth under selection can be performed at the level of full haplotypes, switching
into partial haplotype space only to evaluate the likelihoods of the observations.
Re-deriving the results of Equations 3.23 and 3.24 for short-read sequence data,
we find that the compound distribution for the xB component has mean

E[xB,Pl ] = NB,P
l Tl µ

B (3.40)
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and variance

var(xB,Pl ) = βlN
B,P
l M

(
Tlµ

B
)

+NB,P
l

(
NB,P
l − βl

)
TlΣ

BT †l (3.41)

Similarly, for the xA component of the likelihood, we get a mean of

E[xA,Pl ] = NA,P
l TlS

T
(
µB
)

(3.42)

and variance

var(xA,Pl ) = NA,P
l

(
αl + (NA,P

l − αl)γ
)
M(TlS

T (µB))

+NA,P
l

(
NA,P
l − αl

)
δTl

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
T †l

(3.43)

In Equation 3.43 we used the identity TlDiag(µB)T †l = Diag(Tlµ
B) which is

true if and only if Tl consists of zeroes and ones and if every column of Tl contains
a single non-zero element, i.e. if the partial haplotype sets are independent
from one another. A derivation of this identity is given in Appendix E and an
application of it can be found in Appendix C.

3.2.9 Data From Multiple Genes

The mathematical framework outlined above utilises the haplotype information
inherent to the data, and accounts for the effect of noise in the sequencing
process (Figure 3.1B,C). However, in order to discriminate between changes
in viral diversity arising from bottlenecking and selection (Figure 3.1A) it is
necessary to consider data from different regions of the genome at which genetic
diversity is nominally statistically independent. At high doses of influenza virus
reassortment occurs rapidly, as has been observed both in vitro and in small
animal infections (Marshall et al. 2013; Tao, Steel and Lowen 2014). In our
analysis, distinct viral segments were therefore considered to be independent of
one another in this manner, albeit sharing a common transmission bottleneck
NT , each transmitted virus being assumed to contain one of each viral segment.
As such the likelihood in Equation 3.37 becomes
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logL(NT , ST |xA, NG,µB,ΣB) =
∑
m

∑
l

logL(NT , STm|x
A,P
ml , N

G,µBm,Σ
B
m)

(3.44)

where the subscript m denotes information particular to a specific genomic
region.

3.2.10 Data From Multiple Replicates

Replicate data are highly valuable for evolutionary inference (Achaz et al. 2014;
Kofler and Schlötterer 2014). Within our calculation they provide an additional
level of abstraction to the inference process. Under this framework I assumed
that replicates share a common fitness landscape, ST , whilst exhibiting indi-
vidual bottleneck values. The validity of imposing a joint fitness landscape has
been previously verified using data from a human challenge study (Sobel Leonard
et al. 2017a). As a result, the likelihood from Equation 3.44 becomes

logL(NT , ST |xA, NG,µB,ΣB) =∑
r

∑
m

∑
l

logL(NT
r , S

T
m|x

A,P
rml, N

G
r ,µ

B
rm,Σ

B
rm)

(3.45)

where the subscript r denotes information particular to a specific replicate.

3.2.11 Implementation of Sobel Leonard et al. Method

For comparison of bottleneck estimates with existing methods I implemented
the exact version of the beta-binomial inference scheme of Sobel Leonard et
al. (Sobel Leonard et al. 2017b). The likelihood function for site i was defined
as

L(NT )i =
NT∑
j=0

Pbeta-bin

(
xA,SL
i,minor|N

A,SL
i , j, NT − j

)
Pbin

(
j|NT , qB,SL

i,minor

)
(3.46)

where NT is the bottleneck size, Pbeta-bin is the beta-binomial probability mass
function, xA,SL

i,minor is the number of recipient observations for the minor allele at
site i, NA,SL

i is the total number of recipient observations for site i, i.e. NA,SL
i =

71



3.2. Methods Basic Transmission Inference Scheme

xA,SL
i,minor + xA,SL

i,major, Pbin is the binomial probability mass function, and qB,SL
i,minor is

the donor frequency for the minor allele at site i. Noting that the beta-binomial
is undefined for j = 0 and j = NT , I defined j = 10−10 and j = NT − 10−10

respectively in these cases. The original authors did not discuss this further.
I did not make use of the cumulative version of the likelihood function (Sobel
Leonard et al. 2017b) as I avoid the problem of variant calling by fixing the
number of required polymorphic loci when simulating data. The total likelihood
for each bottleneck value was computed as

L(NT ) =

nsites∑
i=0

L(NT )i (3.47)

where nsites is the number of variant loci. Bottleneck inference was defined as
the bottleneck associated with the largest likelihood value.

3.2.12 Generation of Simulated Data

Simulated data were generated in order to nominally reflect data from an influ-
enza transmission event. As such, a single transmission event was modelled as
the transmission of viruses each with eight independent segments, the lengths
of each segment being equal to the eight segments of the A/H1N1 influenza
virus. Five biallelic variant loci were introduced at random locations in each
segment, with each loci having randomly drawn alleles. Combining the variant
alleles in an exhaustive manner resulted in a total of 25 potential full haplo-
types of which eight were chosen to represent the viral population. Facilitating
comparisons across multiple simulations, each variant site was required to re-
main polymorphic in the chosen population, this being guaranteed by repeated
sampling of the eight haplotypes until the criteria was met. Subsequently, full
haplotype frequencies were generated at random, constrained by a minimum
haplotype frequency of 5%, which was ensured through the repeated sampling
of frequencies.

Transmission was modelled as a multinomial draw from the donor population
with sampling depth equal to the bottleneck size. Selection for transmission was
incorporated as a shift in haplotype frequencies as described in Equation 3.15.
Where included in the simulation, selection was assumed to act upon a single
variant in one of the viral segments with selection occurring prior to transmis-
sion. Within-host growth was modelled as a single round of replication defined
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as a multinomial draw from the founder population conferring a 22-fold increase
in population size.

Partial haplotype observations were generated on the basis of short-read data
simulated for each gene. Short-reads were modelled as randomly placed gapped
reads with mean read and gap lengths derived from an example influenza data-
set (Wilker et al. 2013) (mean read length = 119.68, SD read length = 136.88,
mean gap length = 61.96, SD gap length = 104.48, total read depth = 102825);
these estimates are conservative relative to what can be achieved with the best
contemporary sequencing technologies. Read depths were calculated for all pos-
sible sets of partial haplotypes by assigning individual reads to sets according to
the loci they cover. Based on these read depths and the post-transmission viral
population, a set of full haplotype observations were obtained using a Dirichlet-
multinomial sampling process employing a dispersion parameter C to account
for noise. Finally, partial haplotype observations were derived by summing over
contributions from each of the associated full haplotypes.

Replicate experiments were generated by considering replicate observations
of transmission events with consistent viral populations; that is, for which the
variant alleles were consistent between replicate transmission events.

3.2.13 Data Processing Within Transmission Scheme

Simulation of transmission events led to the production of multi-locus variant
data in the form of partial haplotypes. These were removed from consideration
if A) the partial haplotype did not have at least 10 observations either before or
after transmission, B) the partial haplotype exhibited a frequency of < 1% before
transmission, C) the partial haplotype had no observations before transmission
(variant assumed to have arisen de novo), D) the partial haplotype was the
only partial haplotype in its set and had no observations post-transmission.
Additionally, to avoid potential dataset errors from drastically influencing the
inference outcome, partial haplotypes were removed if found to have a single
post-transmission observation despite the presence of a large (≥ 50) overall
sampling depth. Finally, removal of partial haplotype observations may result
in individual loci becoming monomorphic (all partial haplotypes covering these
loci exhibit the same alleles). In this case, relevant partial haplotype sets were
removed with the reads being redistributed unto variant sets with fewer loci.

SAMFIRE (Illingworth 2016) was used to construct a set of haplotypes span-
ning each viral segment using the multi-locus variant calls from all time points.
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Here, potential haplotypes are identified by a process of exclusion. Given n bial-
lelic variants in a segment, there are 2n potential haplotypes, or combinations of
those variants across all loci. SAMFIRE uses observed partial haplotype reads
to constrain this set. For example, if across four loci only three of a potential
sixteen combinations of alleles are observed, this removes a large proportion of
the potential haplotype set. The haplotypes identified in this manner comprise
the space of haplotypes spanned by the vectors qB and qA. No inference of
haplotype frequencies is conducted at this point, such inference is conducted in
a subsequent step, using the likelihood framework described above.

3.2.14 Inference of Parameters

3.2.14.1 Hierarchical Selection Model

In our model, the set of potential fitness parameters is large. To simplify the
calculation, parameters modelling three- or higher-locus epistatic effects were
neglected, while parameters modelling two-locus epistasis were only considered
for addition to a model which already contained single-locus fitness parameters
for each of the two loci. In both the inferences of within-host selection and of
transmissibility, a null assumption of neutrality was used as the starting point
for an inference model, exploring successively more complex models of selection
until an optimal model, defined according to a model selection process, was
identified.

3.2.14.2 Replicate Calculations of Transmission Parameters

Both our within-host and transmission calculations are performed in a model
space of potential haplotypes. For example, in the first step of the transmission
model, I calculate an estimate for the population qB given the data xB. In many
cases, particularly where there are greater numbers of potential haplotypes and
short reads span smaller numbers of loci, it is possible that the data xB will
not uniquely specify the initial vector qB (see also Chapter 2). Here we are
concerned about inferring parameters of transmission, rather than the explicit
haplotype reconstruction. However, to check the robustness of the inference,
statistical replicate calculations were run, using different reconstructions of qB

in each case; median inferred parameters across replicates are presented in the
following. To improve the speed of the inference, haplotypes in qB with inferred
frequencies of less than 10−10 were removed from the calculation; subsequent to
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this, haplotypes were removed in increasing size of inferred frequency until no
more than 100 haplotypes remained in qB at non-zero frequencies.

I note that the inference of qB depends upon the initial identification of
a plausible set of underlying viral haplotypes using SAMFIRE. A broad set of
haplotypes is required for the comparison of different hypotheses about selection
in the system. However, where the initial set of haplotypes is very large, as might
occur where very short reads describe a great number of polymorphic loci, this
approach to haplotype reconstruction becomes computationally challenging.

3.2.14.3 Model Selection

Model selection was performed using the Bayesian Information Criterion
(Schwarz 1978):

BIC = −2 logL+K log n (3.48)

where L is the maximum likelihood obtained for a model, K is the number of
parameters in the fitness model, and n is the number of data points. A range
of potential fitness models were explored, the optimal model being identified
as that for which the addition of any single fitness parameter failed to bring a
significant improvement in BIC.

3.2.15 Adaptive BIC

Noting previous discussion of the complexity of using BIC in biological model-
ling (Fischer et al. 2014), I here adopted a machine-learning approach to the in-
terpretation of BIC statistics. Classically, a difference of 10 units of BIC has been
held to represent strong evidence in favour of the additional parameter (Kass
and Raftery 1995). Consistent with previous approaches this heuristic was used
in the inference of within-host selection; in this inference the final model para-
meters make only small refinements to the inferred fitness landscape (Illingworth
2015). In the inference of transmission, the default approach is insufficient as
successive nested models may differ substantially in the size of the bottleneck
they report. As such, using a fixed difference of 10 BIC units for model selection
resulted in an overestimation of the extent of selection with a high false positive
rate (see Section 3.3.3 and Figure 3.10). In order to generate a more robust ap-
proach to model selection, I generated and analysed simulated data to identify
the optimal interpretation of BIC differences. Given a real dataset for analysis,
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Figure 3.6. Determining BIC penalty function for bottleneck inference under
simulated data. A The ratio of the median inferred bottleneck to the true bottleneck
is plotted against the true bottleneck size. As shown in Figure 3.7, as the bottleneck
increases, our ability to infer it correctly decreases due to noise. In order to account
for this phenomenon, a straight line is fitted to the data aiming to capture the
general trend. B Heat map of the bottleneck-specific statistic plotted against BIC
penalty and bottleneck size. The plot was generated based on three datasets with
selection coefficients s = {0, 1, 2} and a simple statistic based on bottleneck
differences was employed. More specifically, the median bottleneck was computed
across 200 seeds and the bottleneck-statistic was defined as the absolute value of the
difference between the median inferred bottleneck and the true bottleneck multiplied
by the baseline determined in A). By considering bottlenecks in the range [5, 100]
and BIC penalty values in the range [10, 200], a heat map was produced and linear
and decay exponential regression were conducted seeking to minimise the sum of the
statistic across the values of NT that were considered.

simulated data was generated describing systems with equivalent numbers of
gene segments and polymorphic loci to the real dataset, being observed with an
equal number of reads spanning each set of loci, and with reads containing an
amount of information specified by the parameter C inferred for the real dataset.

Next, inferences were conducted on data describing neutral transmission
events with bottlenecks in the range [5, 100]. The ability to infer a correct
neutral bottleneck is impaired by noise for transmission events involving a large
number of viruses (see Section 3.3.1 and Figure 3.7). To correctly account for
this, linear regression was used to obtain a simple function describing the ratio
between the median inferred and true bottleneck sizes under neutrality (Fig-
ure 3.6A); this parameterises our expectation of the ‘correct’ inferred bottleneck
size for any given real bottleneck, once noise is accounted for.

Secondly, using this baseline to set our expectations, a parameterisation was
carried out to find a BIC penalty function that gave the largest accuracy in bot-
tleneck inference. To this end, three datasets were considered; a neutral dataset
and two datasets with single selection coefficients of s = {1, 2} respectively. BIC
penalty values in the range [10, 200] were examined, with smaller BIC penalty
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values leading to inferences with a larger number of selection coefficients and
vice versa. For each BIC penalty value, the difference between the bottleneck
inference of the optimal model (under BIC) and the baseline expectation was
summed for the three datasets to give a statistic describing the accuracy of
the inferred bottlenecks, this statistic being expressed as a function of the real
transmission bottleneck NT and the BIC penalty (Figure 3.6B). Finally, linear
and decay exponential models were fitted to this data via regression, selecting
the BIC penalty model which minimised the error in the inferred bottlenecks
from the simulation data. We note that our penalty is a function of the inferred
population bottleneck, higher penalties being inferred for tight bottlenecks and
lower penalties being inferred for looser bottlenecks.

Thirdly, the inferred data were reinterpreted to derive a BIC penalty optimal
for the inference of selection. Even with a BIC penalty function optimised for
bottleneck inference, there may still remain cases where, through the stochastic
process of transmission, the genetic composition of the population changes in a
manner consistent with the action of selection, granting a false positive inference.
A second BIC penalty was learned as above, this time maximising the accuracy
of the inference or non-inference of selection parameters, defined as

# true positives + # true negatives
# true positives + # false positives + # true negatives + # false negatives

(3.49)
This conservative BIC penalty function typically led to an underestimate for

the inferred bottleneck; the two BIC penalty functions were used in concert to
estimate NT and ST in separate calculations. The BIC penalty functions are
specific to individual datasets and, as a result, recalculation of BIC penalty func-
tions is required when considering new data. Inference of BIC penalty functions
is only necessary when attempting to jointly determine bottleneck and selection;
for inference of transmission bottlenecks only the method is remarkably simple
and fast.

As noted elsewhere, where a genomic variant fixes between two observations,
this change in frequency can be explained by the fitting of an arbitrarily large
selection coefficient; no upper bound on selection can be established (Illingworth
and Mustonen 2012a). Within our framework, if this is not accounted for, ex-
tremely strong selection may be falsely inferred to explain the loss of variants
during a transmission bottleneck. To guard against this, models of transmission
in which the inferred magnitude of selection was outside of the range (-10,10)
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were excluded from consideration. In the within-host analysis methods, haplo-
type fitness are not constrained; here, to avoid errors of machine precision, the
magnitudes of extreme fitness inferences were reduced to be within the range
(-10,10). For the same reason, elements of the mean and covariance matrix of
qB were constrained to be greater in magnitude than 10−11. While selection
coefficients outside of this range have been identified (Bull, Badgett and Wich-
man 2000), these steps greatly reduce the number of false inferences of strong
selection.

3.2.16 Analysis of Simulated Data

I validated my model through the analysis of simulated data mimicking influenza
transmission events. Potentially interesting scenarios were probed, e.g. varying
bottleneck size, selective pressures and the extent of sequencing noise. I here
briefly outline the simulation setup.

3.2.16.1 Accounting for Noise and Uncertainty

I initially analysed simulated data with a view to understanding the impact
of sequencing noise and other sources of uncertainty. I considered bottleneck
inference for scenarios wherein a range of bottlenecks were probed (NT =

{5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100}) and for which the extent of noise was
varied (C = {50, 100, 200, 500, 103, 104, 105, 106}). I next investigated the accur-
acy of bottleneck inference given an incorrect estimate of the amount of sequen-
cing noise present. Finally I considered the result of neglecting the variance
component in qB.

3.2.16.2 Inference of Bottleneck Sizes and Selection for Transmission

Accuracy in bottleneck inference was tested both under the neutral (see Sec-
tion 3.2.4.5 and Appendix C) and selective models. Bottlenecks were probed
both in the presence and absence of selection. Where present, selection was
defined to act on the third of five loci in HA with variable strengths, σT =

{0.5, 0.75, 1.0, 2.0}. True and false positive rates of selection inference were also
investigated. True positives were defined as inferences for which selection was
inferred for the selected locus in the system. False positives were defined as
inferences for which any neutral locus was predicted to be under selection. Se-
lection inferences were carried out both under a model of adaptive BIC (see
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Section 3.2.15) and one with a flat BIC penalty of 10 log likelihood units. Aim-
ing to determine magnitudes of selection inferences, smooth kernel distributions
were computed using the true positive outcomes.

3.2.16.3 Benchmarking Against Sobel Leonard et al. Method

The beta-binomial method of Sobel Leonard et al. was implemented as described
in Section 3.2.11. The neutral version of our model was compared to the Sobel
Leonard et al. method on the basis of simulated data. For this purpose neutral
simulated data were generated with C = 106, i.e. noise-less sequencing, and
growth factors of g = {1, 22}.

3.2.17 Online Repositories

Code and scripts related to transmission inference can be found online at https:
//bitbucket.org/casperlu/transmission_project/. The SAMFIRE (Illing-
worth 2015) data processing suite can be found at https://github.com/cjri/
samfire. Detailed descriptions of code options and user guides are available in
the repository README files. Scripts and instructions relevant for generating
figures may be found online as well.

3.3 Results

This section considers the results obtained from applying the basic inference
model to simulated data and from benchmarking against a current state-of-the-
art inference framework.

3.3.1 Sequencing Noise Limits the Maximum Inferrable

Bottleneck

Application of our model to simulated data describing neutral population bottle-
necks showed that a lack of sequencing noise is critical for the correct inference of
large population bottlenecks (Figure 3.7). Inferences of bottleneck sizes showed
a limit on the inferred bottleneck size governed by noise in sequencing; where
there was little noise in the data (i.e. at values of C greatly in excess of the
bottleneck), a correct inference of the true population bottleneck was generally
made. However, as noise increases, the inferred bottleneck reaches a plateau
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Figure 3.7. Influence of sequencing noise upon the ability to infer a population
bottleneck size from genome sequence data. Median inferred bottlenecks are shown,
calculated on the basis of 200 replicate simulations for each point. In the left-hand
plot, a value of 1 indicates a correct bottleneck inference; in the right-hand plot, the
absolute inferred bottleneck size is shown. Simulations were conducted under the
assumption of selective neutrality, with no attempt to infer selection from the data.

above which increases in the true bottleneck no longer affect the inferred bot-
tleneck size. This result can be understood in terms of the extent to which the
population bottleneck and noise contribute to the change in the viral population;
where large numbers of viruses are transmitted, most of this signal is likely to
result from noise. Here we note failures in the inferred bottleneck size even with
very high C; these occur due to the finite read depth in our simulations, which
was of order 104. In these calculations a neutral method, in which selection
was assumed to have no effect on the population, was used to make inferences
from neutral simulations. A consistent value of C was used for simulation and
inference purposes.

In a real dataset the extent of noise may be unknown. Further investigation
showed bottleneck estimation to be relatively robust to an incorrect estimate of
the extent of noise in a dataset, except where the extent of noise was substantially
overestimated (Figure 3.8). In general, an underestimate of the extent of noise
in a dataset led to an inferred bottleneck size that was marginally lower than the
value obtained given the true amount of noise; for example where the value C =

106 was used to infer a bottleneck from data with C = 50, a bottleneck of true
size NT = 50 was inferred as NT = 25. An overestimate of the extent of noise
led to an overestimate of the size of the bottleneck with severe overestimation
resulting in dramatically incorrect inferences. Therefore, while noise limits the
potential of a method to identify large bottleneck sizes, underestimating the
extent of noise in the data is generally the safer approach.
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Figure 3.8. Bottleneck inference under a neutral model applied to neutral data with
simulation dispersion parameters of C = {50, 106}. Inference was performed using a
range of dispersion parameters, C = {50, 100, 200, 500, 1000, 106}. Each datapoint
represents a median over 200 simulation seeds.

3.3.2 Accounting for Uncertainty in qB

Within the transmission framework we represent the pre-transmission viral pop-
ulation by a multivariate normal distribution in µB and ΣB. The matrix ΣB

is challenging to specify in full due to the limited amount of information avail-
able; we therefore define its non-diagonal entries to be zero, i.e. we ignore
between-haplotype contributions to the uncertainty in µB. An alternative para-
meterisation strategy is to consider qB as a point vector, i.e. ΣB = 0. Despite
the mathematical convenience and associated efficiency increase, this approach
resulted in considerable underestimation of bottleneck sizes as shown in Fig-
ure 3.9. This result highlights the need for sufficient account to be taken of the
level of uncertainty in variables determined from noisy data.

3.3.3 BIC Considerations

The Bayesian Information Criterion (BIC) allows for comparison of models of
differing complexity. A model of increasing complexity bringing about an im-
provement in BIC of more than 10 log likelihood units have traditionally been
considered as strong evidence in favour of this more complicated model (Kass
and Raftery 1995). Attempts at inferring selection in transmission events un-
der a fixed BIC penalty of 10 units are shown in Figure 3.10. A considerable
amount of overfitting was found as evident from a simultaneously large true and
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Figure 3.9. Median inferred bottleneck size from simulated neutral transmission
data. Inferences were made using either the standard neutral model, in which the
covariance matrix qB is diagonal, or using a simplified model ignoring the variance in
qB altogether. Each datapoint represents a median over 200 simulation seeds.

false positive rate of selection inference. Additionally, as the true bottleneck
increases, the false positive rate decreases whilst the true positive rate improves.

This overfitting arises from the nature of the problem; given only two data-
points it is possible to arbitrarily assign selection to perfectly explain the change
in the viral population across the transmission event. If selection is allowed to
explain every aspect of the diversity change, the method would effectively infer
an infinite bottleneck. Even worse, in the case of extinction events, infinitely
large selection coefficients may be inferred. We guard against this by limiting
the magnitude of selection inferences to ±10 and discarding selection models
with inferences in excess of ±9, see Section 3.2.15.

Additionally, the standard BIC framework is unable to properly account for
the amount of information contained within a biological dataset. For instance, in
the case of genomic data, two datasets may have the same read depth but exhibit
wildly different read lengths. Naturally, the dataset with longer read lengths is
more informative, but a BIC framework based around read depth alone doesn’t
capture this. Similarly, within our framework, partial haplotype datasets are
weighted evenly (see Equation 3.37) despite the fact that a partial haplotype
set covering 5 loci are considerably more informative than one covering a single
variant. In other words, a sequence read does not represent a standardised
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Figure 3.10. True and false positive rates of selection inference from 200
simulations of transmission events from single-replicate systems in which a single
variant was under selective pressure for increased transmissibility of
σ ∈ {0, 0.5, 0.75.1.0}. True positives were defined as inferences for which selection
was inferred for the selected locus in a system; false positives were defined as
inferences for which selection was inferred at any neutral locus or for multiple neutral
loci in the system. Inferences can be simultaneously true and false positive, i.e. the
true and false positives rates are not required to sum to unity. A fixed BIC difference
of 10 units were employed in the model selection process, requiring a model with a
single additional parameter to generate an improvement of at least 10 units in BIC to
be accepted. While such a difference is generally accepted as showing strong evidence
in favour of the more complex model, in our case it generated a high rate of false
positive inferences of selection.
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unit of information. Lastly, the magnitude of the BIC improvement required
to accept a model varies with bottleneck size. As the bottleneck size increases,
stochastic changes diminish allowing for a larger accuracy in selection inference,
i.e. a smaller BIC penalty is required. Taken together, we here propose the need
for an ‘adaptive BIC penalty’, accounting on the one hand for the amount of
available information and on the other for the impact changes in bottleneck size
has upon selection inference.

3.3.4 Variance in Inferred Transmission Bottlenecks

Results from individual simulations showed that the method could discriminate
between bottleneck sizes that differ by a factor of three or above (Figure 3.11
and Figure 3.14, top left plot). Obtaining precision in an estimated bottleneck
or effective population size is inherently a difficult task, relying on the estimate
of the extent of a stochastic effect from limited data (Malaspinas et al. 2012).
Across 200 simulations, the interquartile range in an inferred bottleneck spanned
close to 28% of the true bottleneck size, with inferred values spanning a range
of approximately 130% of the correct bottleneck size. A slight underestimate
in the bottleneck size for the case NT = 100 was consistent with the extent of
noise in sequencing; here and in all subsequent simulations a value of C = 200

was used, representing an extent of noise that is readily achievable from short
read sequence data (Illingworth 2015; Illingworth et al. 2017). In our inferences,
while gross differences in bottleneck size can be identified, a high level of preci-
sion is difficult to obtain from sequence data alone.

3.3.5 Inference of Population Bottleneck Sizes Under Se-

lection for Transmission

Inferences of bottleneck size showed a systematic underestimation of the bot-
tleneck when selection affected a transmission event, but a method neglecting
selection was used in the inference procedure (Figure 3.12). Simulations were
conducted in which an allele at the third of five polymorphic loci in the HA
segment of a simulated influenza virus increased the transmissibility of the virus
according to a selection coefficient σ; this model of selection was applied for all
subsequent simulations. In our simulations a value of σ = 1 is equivalent to a
change in the frequency of a variant from 50% to 73% in a single transmission
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Figure 3.11. Inferred bottleneck sizes (NT ) for true bottlenecks
NT = {5, 10, 25, 50, 100}. Results were generated by applying a neutral inference
model to neutral simulated data. Inferences are shown for 200 simulations at each
bottleneck size.

event. The relatively strong magnitudes of selection considered reflect the short
period of time (a single generation) over which selection for increased transmiss-
ibility can act and the relatively small number of viruses likely to be involved in
a transmission event.

Inferences of population bottleneck were conducted using a neutral infer-
ence method, and with a model in which selection was not constrained to be
zero. In the first case, ignoring selection led to an underestimation of the true
bottleneck size by an amount which increased according to the magnitude of
selection for transmissibility. Selection during transmission produces a shift in
the expected composition of the viral population; if this shift is interpreted as
occurring solely due to a finite bottleneck, a tighter bottleneck, inducing a lar-
ger stochastic change in the population, is inferred. This understanding explains
the more pronounced underestimates achieved at larger bottleneck sizes; larger
bottlenecks produce smaller stochastic changes in the population relative to the
change induced by selection. When the full version of our model was run, al-
lowing for a consideration of selection effects, the median bottleneck inferred
from data under selection resembled that inferred from neutral data; the small
shortfalls in the inference from neutral data are here explained by the influence
of noise.
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Figure 3.12. Median inferred bottleneck size from data simulating transmission
with a single locus under selection of magnitude σ ∈ {0, 0.5, 0.75, 1.0, 2.0}. Inferences
were made using either a neutral inference model, in which the effect of selection was
assumed to be zero, or a model incorporating selection, which allowed the presence of
selection to be inferred. Median inferences are shown from 200 simulations for each
data point.

Calculations performed for data describing multiple replicate transmission
events gave similar inferred transmission bottlenecks to those obtained from
single replicates. In each case sets of three replicate transmission events were
simulated, each event involving the transmission of virus between a distinct pair
of hosts. Simulating the use of a consistent inoculum, our transmitted pop-
ulations shared a common set of polymorphic loci in each segment. Median
inferred values are shown in Figure 3.13. Full results describing the range of in-
ferred bottleneck sizes from both one- and three-replicate populations are shown
in Figures 3.14 to 3.17.

3.3.6 Identification of Variants Under Selection

In contrast to measures of diversity, which attempt to associate selection with
a gene or segment of a virus, our method was able to correctly identify specific
variants conferring increased transmissibility. Success was more often achieved
in cases for which selection was relatively strong and the transmission bottle-
neck was relatively large (Figure 3.18). Our process for distinguishing selection
from neutrality (Figure 3.5) can be tuned to identify a greater number of true
variants under selection at the cost of making a greater number of false positive
calls; here a conservative approach to identifying selection was applied. I eval-
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Figure 3.13. Median inferred bottleneck size from data simulating neutral
transmission and transmission with a single locus under selection of magnitude
σ ∈ {0, 0.5, 0.75, 1.0, 2.0}. Inferences were made using either a neutral model, in
which the effect of selection was assumed to be zero, or a selection model, which
allowed scenarios involving selection to be identified. Median inferences are shown
from 200 simulations, each involving three replicate transmission events, for each
datapoint.

uated populations in which a single locus was under selection, determining the
potential to identify the variant. Under this approach the method retained a
false positive rate (inference of selection at a non-selected locus) of 8% or less
across the systems tested. Where a single variant was under a lower magnitude
of selection (σ ≤ 0.5), correctly identifying sites under selection was very dif-
ficult, though as selection became stronger (σ ≥ 1) loci under selection could
be identified with greater accuracy. Where selection existed the potential for it
to be identified was greater at larger bottleneck sizes. These results can again
be understood with respect to the dynamics of the system. The bottleneck has
a stochastic effect on the population of a magnitude inversely related to the
number of viruses transmitted. Inferring the presence of selection requires the
identification of changes in the population going beyond what would be expec-
ted under neutrality, biasing the population in the direction of the selected allele
or alleles. However, stochastic effects can by chance distort the population in
one direction or another by more than the expectation; this leads to false in-
ferences of selection. Genuine changes resulting from selection become easier to
identify when the changes are themselves larger (stronger selection) or where
the magnitude of the stochastic effect is reduced (higher NT ). While data from
multiple replicate simulations made little difference to the inferred bottleneck

87



3.3. Results Basic Transmission Inference Scheme



































�

��

���

���

���

��
��
��
�
�
�
�

�������












 






















�

��

���

���

��
��
��
�
�
�
�

��������� �������� = ���



 


 



























�

��

��

��

��

���

���

���

��
��
��
�
�
�
�

��������� �������� = ����






 



 









 



 







�

��

��

��

��

���

��
��
��
�
�
�
�

��������� �������� = ���














 





 


 






















�

��

��

��

��

���

��
��
��
�
�
�
�

��������� �������� = ���

�� = �

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ���

Figure 3.14. Inferred bottleneck sizes NT for a range of true bottleneck sizes.
Results were generated by applying a neutral inference model to selected simulated
data. Results are shown for 200 simulations at each bottleneck size.
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Figure 3.15. Inferred bottleneck sizes NT for a range of true bottleneck sizes.
Results were generated by applying an inference model accounting for selection to
selected simulated data. Results are shown for 200 simulations at each bottleneck
size.
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Figure 3.16. Inferred bottleneck sizes NT for a range of true bottleneck sizes.
Results were generated by applying a neutral inference model to selected simulated
data. Results are shown for 200 simulations at each bottleneck size, each simulation
describing three replicate transmission events.
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Figure 3.17. Inferred bottleneck sizes NT for a range of true bottleneck sizes.
Results were generated by applying an inference model accounting for selection to
selected simulated data. Results are shown for 200 simulations at each bottleneck
size, each simulation describing three replicate transmission events.

91



3.3. Results Basic Transmission Inference Scheme

size (see above), such data led to a more dramatic change in these results, with
the false positive rate falling to zero for bottlenecks with NT ≥ 20. The power
of replicate experiments arises from the lower probability that stochastic effects
will impose a consistent pattern of change upon multiple populations. While a
larger-than-expected stochastic change in the frequency of a variant may occur
in one system, leading to a false positive inference of selection, it is unlikely that
the same pattern would recur across multiple replicates. While the inference of
selection for transmissibility is not easy, the use of replicate experiments is of
considerable value in this task; while, under our conservative approach, not all
variants truly under selection were identified, those which were identified from
replicate data were almost universally true positive calls.

3.3.7 Estimating the Magnitude of a Selected Variant

Given the correct identification of selection acting for a specific variant, the in-
ferred magnitude of selection was marginally overestimated, with an increased
overestimate at smaller values of the transmission bottleneck NT (Figure 3.19).
The mixture of deterministic and stochastic changes in the population explains
this phenomenon; the population after transmission is equal to its expected value
plus some stochastic change. In the event that the stochastic change is aligned
with the direction of selection, the presence of selection is more likely to be
inferred, while the additional change in that direction will give an overestimate
of selection. Conversely, if the stochastic change is in a direction opposed to
the influence of selection, the presence of selection is less likely to be inferred.
Thus, selection was disproportionately inferred to exist when stochastic changes
in the population led to an overestimate of its magnitude. Inferences conduc-
ted on sets of replicate transmission events produced more accurate and more
precise estimates of selection. For example given a bottleneck of NT = 100 and
a true strength of selection of 0.75, the mean inferred selection from a single
replicate was 1.00 with variance 0.040, while the mean inferred selection from
three replicates was 0.90 with variance 0.010. (Figure 3.20)

3.3.8 The Biology of Within-Host Viral Growth May Af-

fect the Inference of Transmission Bottlenecks

Comparing our approach with a previous inference method, we found that the
biology underlying within-host viral growth can significantly affect the inferred
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Figure 3.18. True and false positive rates of selection inference from 200
simulations of transmission events from single- and three-replicate systems in which a
single variant was under selective pressure for increased transmissibility of
σ ∈ {0, 0.5, 0.75.1.0}. True positives were defined as inferences for which selection
was inferred for the selected locus in a system; false positives were defined as
inferences for which selection was inferred at any neutral locus or for multiple neutral
loci in the system. Inferences can be simultaneously true and false positive (see e.g.
Figure 3.10).
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Figure 3.19. Probability distributions of inferred selection coefficients from 200
simulations of transmission events with selective pressures σ ∈ {0.5, 0.75, 1.0, 2.0}.
Distributions were constructed for bottleneck values where the inference of selection
resulted in a true positive rate for identifying selected variants of above 5 %. Smooth
kernel distributions were computed using a Gaussian kernel function defined on
(0, 10) and Silverman’s rule of thumb (Silverman 1986, p. 48) employed for the
bandwidth size. Distributions were scaled such that their integral across the kernel
range equalled the true positive rate.

94



Basic Transmission Inference Scheme 3.3. Results

��� ��� ��� ��� ���
���

���

���

���

���

���

��������� �����������

�
��
�
�
�
���
��
�
�
�
�
���

��������� �������� = ����

��� ��� ��� ��� ��� ��� ���

���

���

���

���

��������� �����������

�
��
�
�
�
���
��
�
�
�
�
���

��������� �������� = ���

� � � � � �
���

���

���

���

��������� �����������

�
��
�
�
�
���
��
�
�
�
�
���

��������� �������� = ���

���� ����������

�� = �

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ��

�� = ���

Figure 3.20. Probability distributions of inferred selection coefficients from 200
simulations each of three transmission events with selective pressures
σ ∈ {0.75, 1.0, 2.0}. Distributions were constructed for bottleneck values where the
inference of selection resulted in a true positive rate for identifying selected variants
of above 5 %. Smooth kernel distributions were computed as for Figure 3.19
.
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population bottleneck. In so far as previous population genetic models have
not accounted for the presence of selection or noise in sequencing data (beyond
binomial variance) I applied methods to data describing neutral transmission
between a single pair of hosts under the assumption of error-free sequencing of
samples. The method of Poon et al. (Poon et al. 2016) is explicitly defined across
multiple transmission events so cannot be used to evaluate single transmission
events. For this reason comparison was performed with the method described
by Sobel Leonard et al. (Sobel Leonard et al. 2017b); I believe that this re-
cent and well-cited approach, which infers a transmission bottleneck based on
allele frequency change in a manner that accounts for within-host viral growth,
represents the present state-of-the-art for bottleneck inference.

Comparison of the two methods showed our approach to have an increased
flexibility to obtain correct inferences of population bottleneck size across a range
of biological models of within-host growth. By default, our simulation model
describes genetic drift during the within-host growth of the viral population as a
single generation of replication, according to a Wright-Fisher population model
with effective population size gNT , where g is nominally the growth rate of
the population; our inference framework was set to match the generative model
(Figure 3.21). At a growth factor of 1, both methods correctly inferred the size of
the population bottleneck. However, at our default growth factor of 22 (based
upon experimental results in influenza (Baccam et al. 2006)), the method of
Sobel Leonard et al., inferred a bottleneck size roughly double the correct value
while the performance of our model was unchanged.

This result highlights the need to correctly account for within-host growth
during the inference of a transmission bottleneck. If too much of the difference
between the populations observed before and after transmission is accounted for
by within-host genetic drift, the inferred bottleneck will be too high. By contrast,
if not enough of this difference is accounted for as drift, the inferred bottleneck
will be too low. In the approach of Sobel Leonard et al., the accounting made
for genetic drift accounts for a variance equivalent to that incurred in a Wright-
Fisher step of size NT , that is, with g = 1 (personal correspondence, Daniel
Weissman), obtaining a correct inference under these circumstances.
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Figure 3.21. Median inferred bottleneck size from data simulating neutral
transmission with the viral population undergoing either a single- or 22-fold increase
in population size during within-host replication. Inferences were made using our
approach termed the multi-locus method, which allows for specifying different growth
factors, and the method of Sobel Leonard et al. (Sobel Leonard et al. 2017b), termed
the single-locus method. Each data point represents the median bottleneck
calculated over 200 replicate simulations.

3.4 Discussion

I have here presented an approach for jointly inferring a population bottleneck
size and selection for differential transmissibility from viral sequence data de-
scribing a transmission event. While basic sampling approaches to bottleneck
inference have been improved by an accounting for drift during within-host viral
growth (McCrone et al. 2018; Poon et al. 2016; Sacristan et al. 2003; Sobel
Leonard et al. 2017a), our approach additionally accounts for noise in genome
sequence data, exploits partial haplotype data available from short-read sequen-
cing, and separates the influence of a finite bottleneck from that induced by
selection for increased transmissibility. In multiple studies, the transmission
bottleneck has been found to be narrow during natural viral spread between
hosts (Zwart and Elena 2015). While acknowledging previous evidence for the
existence of small transmission bottlenecks in viral systems, I here note that a
failure to account for selection and noise in the transmission process can decrease
the bottleneck that is inferred from sequence data. Our approach is suitable for
the analysis of acute infectious diseases such as influenza on the basis of a small
number of observed transmission events; I note that where more substantial di-
versity is present in a within-host viral population, or where data are available
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from a large number of hosts in an outbreak, phylogenetic methods of evolution-
ary inference become of increasing value (Derdeyn et al. 2004; Edwards et al.
2006; L. M. Li, Grassly and Fraser 2017).

Our study shows that the identification of variants conferring increased viral
transmissibility is difficult when the number of transmitted viral particles is
small. While improvements to our method may be achievable, this difficulty is
fundamentally rooted in the nature of a transmission event; where a low num-
ber of virions transmit, the influence of stochastic processes becomes large, with
variants fixing during transmission in a manner that cannot be distinguished
from a selective sweep. The potential to infer the presence of selection increases
at larger population size and given a greater number of replicate transmission
events. However the amount of data required to make a statistically robust
identification of a variant increasing viral transmissibility may be large. I note
that, unlike more general inferences of selection from changes in viral diversity,
our approach evaluates selection in terms of specific variants conveying an ad-
vantage or disadvantage for transmission. Where broad measures of diversity
are calculated across segments of a genome, the background of genetic diversity
across a large number of positions may be hard to separate from changes at
individual positions under the action of selection.

When it comes to modelling selection during transmission, this is made dif-
ficult by selection not representing a single, clearly defined process. Rather,
selection may occur during all aspects of the transmission process; as the virus
is cleaved from the host cell and expelled from the host respiratory system, as the
virus is airborne, and as the virus infiltrates the recipient airways and attaches
to a new cell. As such, it may not be intuitively clear as to how we formally
differentiate effects of within-host selection from those of selection from trans-
mission. For instance, one may take the view that selection for transmission
solely encompasses selection acting on the virus outside the host environment,
with all other adaptive pressures representing within-host selection. Within this
understanding, the bottleneck, which is a non-selective reduction in population
size, occurs as the virus enters the respiratory tract of the recipient host with
any subsequent adaptation following as a result of within-host selection. An
opposing view is that selection for transmission includes all adaptive processes
not directly occurring as a result of within-host growth. In this work I take this
view, being interested in accounting for all aspects of the transmission process
resulting in increased transmissibility of a virus. To this end, I model selection
as a single event occurring prior to the action of the transmission bottleneck, the
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bottleneck itself representing the founder population, i.e. the number of viruses
that successfully establish a new infection. In other words, if only a subset of
viruses are fit enough to be transmitted, the bottleneck represents a multinomial
process dictating which of these viruses ultimately make up the founder infec-
tion. I note here, that if the order of selection and bottleneck was reversed, this
would limit our ability to infer selection as the bottleneck reduces the diversity
upon which selection acts. This phenomenon will be discussed in greater detail
in the next chapter. I here make the assumption that selection acts prior to
the bottleneck, noting that, where present, selection is likely to be the primary
reason as to why a virus is either transmitted or not.

Our study provides some insight into the potential for inferring transmissib-
ility using small animal experiments. One approach to exploring transmissibility
(in influenza virus) has been the comparison, for different viruses, of the pro-
portion of distinct animal pairs between which transmission occurs (Yen et al.
2011). The statistical significance achievable in these studies is limited by the
number of animal pairs that can be examined (Linster et al. 2014; Nishiura,
Yen and Cowling 2013; Steel et al. 2009). Furthermore, the comparison between
one genotype and another may be confounded by viral heterogeneity, whereby
each population contains a cloud of genetic diversity (Dinis et al. 2016; Wilker
et al. 2013). As I have shown, data from replicate transmission events lead to
an improved ability to infer selection, in particular by reducing the false positive
rate of inference and by increasing the accuracy in inferred selection coefficients.
I note, however, that the number of viral particles transmitted in each event is
key in determining whether increased transmissibility can be identified; where
a transmission bottleneck is narrow it is inherently difficult to identify selection
against a background of large changes in the population induced by stochastic
effects. Where transmission bottlenecks are small, a large number of replicates
might be needed to make statistically well-supported inferences of increased
transmissibility. Applications of our method to simulated data could be used
to gain an insight into what might be obtained from a particular experimental
setup.

Another aspect that affects the precision of transmission inference is the
amount of available diversity. While not explicitly explored here, we can gen-
erate an intuition for the impact of donor diversity upon inference. Naturally,
a minimum amount of diversity in the donor individual is required in order to
infer a transmission bottleneck; where no diversity is present we cannot make
any predictions. Considering the minimum amount of diversity possible, i.e.
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a single locus polymorphism, this variant site harbours the largest amount of
information when at intermediate frequencies, i.e. close to 50%. The closer
the frequency is to the boundaries, the less power we have to distinguish large
changes in diversity (narrow bottlenecks or strong selection) from small changes
(loose bottlenecks or weak selection) given that the change is in the direction
of fixation. Considering multiple variants, a similar principle applies where the
more variants we have, and the closer to 50% they are, the more resolution we
have to distinguish different models of transmission. This suggests a general
principle wherein the larger the donor diversity, the more robust the transmis-
sion inference. However, where a large number of variant sites exists we reach
a point where an exhaustive approach to haplotype reconstruction results in a
large number of potential haplotypes, slowing down the inference substantially.
Instead, this regime favours a more minimal approach to haplotype reconstruc-
tion such as the MLHapRec method of Chapter 2.

In some situations, neutral markers or molecular barcodes may be added to
a viral population (Abel et al. 2015; Varble et al. 2014); without providing an
estimate of selection, sequencing these markers before and after transmission can
give a precise estimate of the population bottleneck. While our method does
not require the presence of such markers, its adaptation to include marker data
would likely be straightforward, including in a calculation a further probabilistic
term constraining the bottleneck size. Inference of selection for transmissibility
could then be conducted under this constraint; the combination of whole-genome
sequence data with such information could prove powerful for the study of viral
transmission.

While I have here considered the transmission of influenza virus, very few
steps of the approach would need to be altered for the method to be applied
to another viral population. As detailed in the Methods section, it is only
in accounting for genetic drift in the within-host growth of the virus that I
make approximations relying on biological knowledge of the influenza virus; an
alternative accounting for within-host expansion could be used. A second key
assumption in the inference of selection is the existence of regions of the virus
separated from each other by recombination or reassortment. This assumption
would be preserved in some other viruses, as noted in observations of within-host
HIV evolution (Zanini et al. 2015), if not for all influenza populations (Sobel
Leonard et al. 2017a). Where a viral genome did not exhibit recombination,
and only a single transmission event was observed, the neutral version of the
method could be applied; in this context our accounting for haplotype structure
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and sequencing noise in transmission represents an advance over methods which
ignore these factors.
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Chapter 4

Advanced Transmission Inference
Scheme and Application to
Experimental Data

4.1 Introduction

In chapter 3 I described the basic transmission model and verified its behaviour
when applied to simulated data. Benchmarking was performed with respect to
the Sobel Leonard et al. method where our approach was found to be addition-
ally flexible with respect to capturing potentially different within-host replica-
tion processes. In this chapter I extend the basic transmission scheme to allow
for more general considerations of within-host processes, including selection for
increased within-host adaptation and multiple rounds of viral growth. The abil-
ity of the method to infer selection across multiple loci is also evaluated and
relevant limitations discussed. On the basis of the advanced inference scheme
I apply our model to an experimental influenza transmission dataset in ferrets,
previously analysed by Moncla et al. (2016).

4.1.1 Author Contributions

The work presented in this chapter was previously published in Lumby, Nene
and Illingworth (2018). The majority of the work described here was carried
out by the author under the supervision of his PhD supervisor, Dr Christopher
Illingworth. The inference of fitness landscapes was undertaken by Christopher
Illingworth.
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qB qF qA
Growth size NG1

Selection SG
Bottleneck NT

Selection ST

Transmission Growth 1

Founder
t=0Before After

t=R

xB xA

Noise CNoise C

qG1

Growth size NG2

Selection SG

Growth 2

Growth size NGR

Selection SG

Growth N

t=1

Figure 4.1. Probabilistic graph model for the advanced transmission inference
scheme. This model extends the basic model given in Figure 3.2 by allowing for
multiple rounds of within-host growth and incorporating selection for increased
within-host adaptation, denoted by SG.

4.2 Methods

4.2.1 Generalised Model of Transmission

I here outline our generalised model of transmission as seen in Figure 4.1. This
model considers a general R-step within-host replication process accounting for
drift and selection for increased within-host adaptation. Given a founder pop-
ulation size of NT and a growth factor of g, the population size N(t) assumes
values N(t) = NTgt after t = 1, 2, . . . , R replication cycles. Additionally we
define qA ≡ qGR , i.e. sampling takes place after R rounds of replication. The
specific composition of the viral population at each time point is governed by
a multinomial sampling process in the viral frequencies at the preceding time
point. Selection acting for within-host growth may further alter the genetic com-
position of the population; this effect is described by the function SG, acting
once every replication cycle, and is independent of selection for increased trans-
missibility (Coombs, Gilchrist and Ball 2007). SG is identical in form to ST and
responsible for changing the frequencies of haplotypes according to their relative
propensity for within-host adaptation. Neglecting this effect could distort the
inferred value of ST ; given only data collected before and after transmission the
two terms cannot be separated. However, where samples have been collected at
distinct times from one or multiple hosts, it is possible to make an independent
estimate of SG (Illingworth 2015), such that the two forms of selection can be
discriminated.
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4.2.2 Case of R = 1

Initially we consider the simpler case of R = 1, i.e. qA ≡ qGR = qG1 . This
scenario differs from the basic transmission model only in the final sampling
step which we represent as a multivariate normal with mean (cf. Equation 3.21)

E[xA,Pl |q
A] = NA

l TlS
G(qA) (4.1)

and variance (cf. Equation 3.22)

var[xA,Pl |q
A] =

(
NA
l + C

1 + C

)
NA
l M(TlS

G(qA)) ≡ αlN
A
l M(TlS

G(qA)) (4.2)

where αl =
(
NA
l +C

1+C

)
and the subscript l denotes a specific partial haplotype set.

The within-host growth selection function is defined in a manner identical to
that of ST (Equation 3.15):

(
SG(qA)

)
i

=
wGi q

A
i∑

i′ w
G
i′ q

A
i′

(4.3)

where wG = {wGi } are this within-host haplotype fitnesses. Under the assump-
tion of two rounds of replication per 24 hours (see Section 4.3.1.2), inferred
selection coefficients (in 12-hour units) were doubled in the computation of wGi
(i.e. sk → 2sk in Equation 3.13). Selection is here assumed to act on the
population after the increase in population size.

Based on the above we may rederive the resulting distribution for the xA

component, accounting for selection for increased within-host adaptation. Re-
calling the mean and variance for the after population (Equation 3.27 and 3.28
respectively):

E[qA] = ST (µB) (4.4)

and

var(qA) = γM
(
ST (µB)

)
+ δ

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(4.5)

where γ =
(
NT+NG−1
NTNG

)
and δ = NTNG−NT−NG+1

NTNG .

Performing the compound over qA we obtain by the law of total expectation:
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E[xA,Pl ] = E[E[xA,Pl |q
A]] = E[NA

l TlS
G(qA)]

≈ NA
l TlS

G
(
E[qA]

)
= NA

l TlS
G
(
ST
(
µB
)) (4.6)

where we used the first-order second-moment method. Analogously, the law of
total variance yields

var(xA,Pl ) = E[var[xA,Pl |q
A]] + var[E[xA,Pl |q

A]]

= E
[
αlN

A
l M

(
TlS

G
(
qA
))]

+ var[NA
l TlS

G
(
qA
)
]

= αlN
A
l

(
Diag(E

[
TlS

G
(
qA
)]
− E

[
TlS

G
(
qA
)]

E
[
TlS

G
(
qA
)]†)

+NA
l

(
NA
l − αl

)
var[TlSG

(
qA
)
]

≈ αlN
A
l

(
Diag(TlS

G
(
E
[
qA
])
− TlSG

(
E
[
qA
]) (

TlS
G
(
E
[
qA
]))†)

+NA
l

(
NA
l − αl

)
Tl

(
DSG

∣∣
E[qA]

)
var
[
qA
] (

DSG
∣∣
E[qA]

)†
T †l

= αlN
A
l M(TlS

G(ST (µB))) +NA
l

(
NA
l − αl

)
Tl

(
DSG

∣∣
ST (µB)

)
×(

γM
(
ST (µB)

)
+ δ

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)(
DSG

∣∣
ST (µB)

)†
T †l

(4.7)

The above mean and variance define the resulting distribution for the post-
transmission sampling event in the presence of within-host selection assuming a
single round of within-host growth. Notice that these expressions collapse to the
special case of Equations 3.29 and 3.30 in the absence of within-host selection
(see also Section 3.2.4.5).

4.2.3 Case of R > 1

In the case of R > 1 we may consider four different scenarios: A) a neutral
transmission process, B) a transmission process under selection for transmission,
C) a transmission process under selection for within-host evolution, and D)
a transmission process under selection for both increased transmissibility and
within-host adaptation. I here derive compound distributions for scenarios A)
and B), which have closed form solutions, and refer to Appendix D for derivations
for scenarios C) and D), which have recursive solutions.
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4.2.3.1 Scenario A: Neutral Transmission Event

Considering a neutral transmission process we may define conditional expecta-
tions and variances for the random variables depicted in Figure 4.1. The pre-
transmission process, defining the likelihood for µB and ΣB (Equation 3.5), is
unchanged. The founder population is defined by

E[qF |qB] = qB (4.8)

and
var[qF |qB] =

1

NT
M(qB) (4.9)

The initial growth step has conditional mean and variance

E[qG1|qF ] = qF (4.10)

and
var[qG1|qF ] =

1

NG1
M(qF ) =

1

gNT
M(qF ) (4.11)

where NG1 = gNT .
In general, the nth growth step is defined by

E[qGn|qGn−1 ] = qGn−1 (4.12)

and
var[qGn|qGn−1 ] =

1

NGn
M(qGn−1) =

1

gnNT
M(qGn−1) (4.13)

where NGn = gnNT and n > 1.
Assuming R steps in the growth process (i.e. qA = qGR), we have

E[qA|qGR−1 ] = qGR−1 (4.14)

and
var[qA|qGR−1 ] =

1

gRNT
M(qGR−1) (4.15)

As previously, the post-transmission observation results from a Dirichlet-
multinomial sampling event:

E[xA,Pi |qA] = NA
i Tiq

A (4.16)

and
var[xA,Pi |qA] = αiN

A
i M(Tiq

A) (4.17)
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where αi =
NA
i +C

1+C
.

Given the above conditional distributions we may perform the relevant mar-
ginalisations. The integral over qB yields

E[qF ] = E[E[qF |qB]] = E[qB] = µB (4.18)

and,

var(qF ) = E[var[qF |qB]] + var[E[qF |qB]]

= E
[

1

NT
M(qB)

]
+ var

[
qB
]

=
1

NT
M(E[qB]) +

(
1− 1

NT

)
var[qB]

=
1

NT
M(µB) +

(
1− 1

NT

)
ΣB

= γ0M(µB) + δ0ΣB

(4.19)

where in the last step we defined γ0 = 1
NT and δ0 =

(
1− 1

NT

)
.

Next, for the qF integral, the law of total expectation yields

E[qG1 ] = E[E[qG1|qF ]] = E[qF ] = µB (4.20)

Next, under the law of total variance,

var(qG1) = E[var[qG1|qF ]] + var[E[qG1|qF ]]

= E
[

1

gNT

(
Diag(qF )− qF (qF )†

)]
+ var[qF ]

=
1

gNT

(
Diag(E[qF ])− E[qF ]E[qF ]†

)
+

(
1− 1

gNT

)
var[qF ]

=
1

gNT
M
(
µB
)

+

(
1− 1

gNT

)(
γ0M(µB) + δ0ΣB

)
=

(
1

gNT
+

(
1− 1

gNT

)
γ0

)
M
(
µB
)

+

(
1− 1

gNT

)
δ0ΣB

≡ γ1M
(
µB
)

+ δ1ΣB

(4.21)

where we defined γ1 = 1
gNT +

(
1− 1

gNT

)
γ0 and δ1 =

(
1− 1

gNT

)
δ0.

Continuing with the marginalisation over qG1 :
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E[qG2 ] = E[E[qG2 |qG1 ]] = E[qG1 ] = µB (4.22)

and

var(qG2) = E[var[qG2|qG1 ]] + var[E[qG2|qG1 ]]

= E
[

1

g2NT

(
Diag(qG1)− qG1(qG1)†

)]
+ var[qG1 ]

=
1

g2NT

(
Diag(E[qG1 ])− E[qG1 ]E[qG1 ]†

)
+

(
1− 1

g2NT

)
var[qG1 ]

=
1

g2NT
M
(
µB
)

+

(
1− 1

g2NT

)(
γ1M

(
µB
)

+ δ1ΣB
)

=

(
1

g2NT
+

(
1− 1

g2NT

)
γ1

)
M
(
µB
)

+

(
1− 1

g2NT

)
δ1ΣB

≡ γ2M
(
µB
)

+ δ2ΣB

(4.23)

where in the last step we defined γ2 = 1
g2NT +

(
1− 1

g2NT

)
γ1 and δ1 =(

1− 1
g2NT

)
δ1.

From the above it is clear that general mean and variance expressions may
be derived for arbitrary qGn taking the form:

E[qGn ] = µB (4.24)

var(qGn) = γnM
(
µB
)

+ δnΣB (4.25)

where γn and δn obey the recurrence relations:

γn =
1

gnNT
+

(
1− 1

gnNT

)
γn−1 (4.26)

δn =

(
1− 1

gnNT

)
δn−1 (4.27)

with γ0 = 1
NT and δ0 =

(
1− 1

NT

)
.

Analytical solutions may be found:
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γn =

(−1)ng−
n2

2
−n

2

(
NT
)−n−1

(gNT ; g)n

(
g
(
NT
)2

(
n−1∑
j=0

(gNT−1)(−1)1−jg
j2

2 +
j
2−1(NT )

j−1

(gNT ;g)j+1

)
+ gNT − 1

)
gNT − 1

(4.28)

and

δn = (−1)ng−
n2

2
−n

2

(
NT
)−n−1 (

NT − 1
)

(gNT ; g)n (4.29)

where (a; q)n =
∏n−1

k=0(1− aqk) is the q-Pochhammer symbol. These expres-
sions can be readily verified for low n.

To this end, assuming R steps in the growth process, the mean and variance
of qA are those of qGR :

E[qA] = µB (4.30)

var(qA) = γRM
(
µB
)

+ δRΣB (4.31)

Finally we may compute the marginalisation over qA:

E[xA,Pi ] = E[E[xA,Pi |qA]] = E[NA
i Tiq

A] = NA
i TiE[qA] = NA

i Tiµ
B (4.32)

and

var(xA,Pi ) = E[var[xA,Pi |qA]] + var[E[xA,Pi |qA]]

= E
[
αNA

i M
(
Tiq

A
)]

+ var[NA
i Tiq

A]

= αiN
A
i

(
Diag(E

[
Tiq

A
]
− E

[
Tiq

A
]
E
[
Tiq

A
]†)

+NA
i

(
NA
i − αi

)
var[TiqA]

= αiN
A
i

(
Diag

(
TiE

[
qA
])
− TiE

[
qA
] (
TiE

[
qA
])†)

+NA
i

(
NA
i − αi

)
Tivar

[
qA
]
T †i

= αiN
A
i M

(
Tiµ

B)
)

+NA
i

(
NA
i − αi

)
Ti
(
γRM

(
µB
)

+ δRΣB
)
T †i

= NA
i

(
αi +

(
NA
i − αi

)
γR
)
M
(
Tiµ

B
)

+NA
i

(
NA
i − αi

)
δRTiΣ

BT †i

(4.33)
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where in the last step we used that TiDiag(µB)T †i = Diag(Tiµ
B) which is true if

Ti consists of zeroes and ones and if every column of Ti contains a single non-zero
element, i.e. if a full haplotype can only contribute to a single partial haplotype
in the set i. See Appendix E for proof of this identity.

We note that the expressions for γn and δn may be generalised for arbitrary
γ0 and δ0:

γn =

(−1)ng−
n2

2
−n

2

(
NT
)−n

(gNT ; g)n

(
gNT

(
n−1∑
j=0

(gNT−1)(−1)1−jg
j2

2 +
j
2−1(NT )

j−1

(gNT ;g)j+1

)
+ γ0gN

T − γ0

)
gNT − 1

(4.34)

δn = (−1)nδ0g
−n

2

2
−n

2

(
NT
)−n

(gNT ; g)n (4.35)

4.2.3.2 Scenario B: Selection for Transmission

Compound distributions for transmission processes under selection for increased
transmissibility may be derived in a manner similar to the above. The main
difference arises from the conditional mean and variance of the founder popula-
tion:

E[qF |qB] = ST (qB) (4.36)

and
var[qF |qB] =

1

NT
M(ST (qB)) (4.37)

Starting with the marginalisation over qB we obtain

E[qF ] = E[E[qF |qB]] = E[ST (qB)] ≈ ST (E[qB]) = ST (µB) (4.38)

where in the penultimate step we used the first-order second-moment approxim-
ation to a vector function acting on a random variable. The law of total variance
yields
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var(qF ) = E[var[qF |qB]] + var[E[qF |qB]]

= E
[

1

NT
M(ST (qB))

]
+ var

[
ST (qB)

]
=

1

NT
M(E[ST (qB)]) +

(
1− 1

NT

)
var[ST (qB)]

≈ 1

NT
M(ST (E[qB])) +

(
1− 1

NT

)(
DST

∣∣
E[qB ]

)
var[qB]

(
DST

∣∣
E[qB ]

)†
=

1

NT
M(ST (µB)) +

(
1− 1

NT

)(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
= γ0M(ST (µB)) + δ0

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(4.39)

where in the last step we defined γ0 = 1
NT and δ0 =

(
1− 1

NT

)
. As previously,

(DS)ji = ∂Si
∂qj

is the Jacobian matrix arising from the first-order second-moment
approximation.

Next, for the qF integral, the law of total expectation gives

E[qG1 ] = E[E[qG1|qF ]] = E[qF ] = ST (µB) (4.40)

with the law of total variance yielding

var(qG1) = E[var[qG1|qF ]] + var[E[qG1|qF ]]

= E
[

1

gNT

(
Diag(qF )− qF (qF )†

)]
+ var[qF ]

=
1

gNT

(
Diag(E[qF ])− E[qF ]E[qF ]†

)
+

(
1− 1

gNT

)
var[qF ]

=
1

gNT
M
(
ST (µB)

)
+

(
1− 1

gNT

)(
γ0M(ST (µB))

+δ0

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)
=

(
1

gNT
+

(
1− 1

gNT

)
γ0

)
M
(
ST (µB)

)
+

(
1− 1

gNT

)
δ0

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
≡ γ1M

(
ST (µB)

)
+ δ1

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(4.41)
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where we defined γ1 = 1
gNT +

(
1− 1

gNT

)
γ0 and δ1 =

(
1− 1

gNT

)
δ0.

Continuing with the marginalisation over qG1 :

E[qG2 ] = E[E[qG2|qG1 ]] = E[qG1 ] = ST (µB) (4.42)

and

var(qG2) = E[var[qG2|qG1 ]] + var[E[qG2 |qG1 ]]

= E
[

1

g2NT

(
Diag(qG1)− qG1(qG1)†

)]
+ var[qG1 ]

=
1

g2NT

(
Diag(E[qG1 ])− E[qG1 ]E[qG1 ]†

)
+

(
1− 1

g2NT

)
var[qG1 ]

=
1

g2NT
M
(
ST (µB)

)
+

(
1− 1

g2NT

)(
γ1M

(
ST (µB)

)
+δ1

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)
=

(
1

g2NT
+

(
1− 1

g2NT

)
γ1

)
M
(
ST (µB)

)
+

(
1− 1

g2NT

)
δ1

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
≡ γ2M

(
ST (µB)

)
+ δ2

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(4.43)

where in the last step we defined γ2 = 1
g2NT +

(
1− 1

g2NT

)
γ1 and δ2 =(

1− 1
g2NT

)
δ1.

From the above it is clear that general mean and variance expressions may
defined for arbitrary qGn :

E[qGn ] = ST (µB) (4.44)

var(qGn) = γnM
(
ST (µB)

)
+ δn

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(4.45)

where γn and δn obey the recurrence relations:

γn =
1

gnNT
+

(
1− 1

gnNT

)
γn−1 (4.46)
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δn =

(
1− 1

gnNT

)
δn−1 (4.47)

with γ0 = 1
NT and δ0 =

(
1− 1

NT

)
. The solutions to these recurrence relations

are given in Equations 4.28 and 4.29.

To this end, assuming R steps in the growth process, the mean and variance
of qA are those of qGR :

E[qA] = ST (µB) (4.48)

var(qA) = γRM
(
ST (µB)

)
+ δR

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(4.49)

Finally we may compute the marginalisation over qA:

E[xA,Pi ] = E[E[xA,Pi |qA]] = E[NA
i Tiq

A] = NA
i TiE[qA] = NA

i TiS
T (µB) (4.50)

and

var(xA,Pi ) = E[var[xA,Pi |qA]] + var[E[xA,Pi |qA]]

= E
[
αNA

i M
(
Tiq

A
)]

+ var[NA
i Tiq

A]

= αiN
A
i

(
Diag(E

[
Tiq

A
]
− E

[
Tiq

A
]
E
[
Tiq

A
]†)

+NA
i

(
NA
i − αi

)
var[TiqA]

= αiN
A
i

(
Diag

(
TiE

[
qA
])
− TiE

[
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where in the last step we used the identity TiDiag(ST (µB))T †i = Diag(TiS
T (µB))

(see Appendix E).

4.2.4 Analysis of Simulated Data

A number of more elaborate transmission processes were simulated and invest-
igated on the basis of the advanced inference model.

4.2.4.1 Selection Inference in the Presence of Within-Host Selection

Inferring selection for transmission in the presence of selection for within-host
growth is a difficult task. Differentiating between the two effects is impossible
given transmission data from only two time points, however, with multiple avail-
able samples one may infer selection for within-host adaptation separately from
that of selection for transmission. To determine the ability of our method to ac-
count for within-host selection, and to highlight the bias arising from the neglect
of it, I simulated and analysed data from transmission events affected by within-
host adaptive processes. I considered four different scenarios: A) the presence
of selection for transmission only, B) the presence of selection for within-host
growth only combined with an inference model not accounting for this, C) the
presence of selection for within-host growth combined with an inference model
which accounts for this, and D) the presence of selection for transmission and
within-host growth using an inference model accounting for the within-host se-
lection. Where present, selection for transmission was chosen to act on the third
(of five) loci in HA with selection for within-host growth acting on the third loci
in NA. Substantial selection of σT = σWH = 1 were applied in order to amplify
the signal and highlight the general trends obtained.

4.2.4.2 Bottleneck Inference Under Multiple Rounds of Within-Host
Growth

Following up on the results of Section 3.3.8 regarding the ability of the assumed
within-host biology to impact inference outcomes, I sought to consider a more
complicated, and perhaps more realistic, within-host growth scheme. I here sim-
ulated neutral transmission data incorporating a four-step within-host growth
process, considering a range of growth factors, g = {1, 2, 5, 10, 22}, and the
presence (C = 200) or absence (C = 106) of noise. Bottleneck inferences were
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conducted using the basic model (accounting for a single round of within-host
growth) and the advanced model (accounting for four rounds of growth).

4.2.4.3 Selection on Multiple Variants

In the previous chapter selection inference was considered only on the basis of
a single variant conferring increased transmissibility. In order to determine the
ability of our method to infer subsequent instances of selection, I evaluated sim-
ulated data with selection acting on two variant sites. I considered the difference
in inferences when the selective variants were either located within a single gene
segment or upon two different segments. Selection inferences were performed us-
ing a BIC penalty function derived using the process outlined in Section 3.2.15.
Simulated data were generated as described in 3.2.12 with selection acting either
on the second and fourth variant in HA (hereafter referred to as scenario A) or
on the third variant site in HA and NA (scenario B).

4.2.5 Experimental Sequence Data

Data were analysed from an evolutionary experiment considering airborne trans-
mission of a 1918-like influenza virus between ferrets (Moncla et al. 2016). The
specific data examined here describe two sets of viral transmissions. In the first,
denoted HA190D220D, a viral population was given to three ferrets, transmis-
sion to a recipient host being observed in one of three cases, giving time-resolved
sequence data from four ferrets. In the second, denoted Mut, a viral population
arising from the first experiment was given to three ferrets, transmission to two
recipient hosts being observed, giving data from five ferrets.

4.2.6 Processing of Sequence Data

Genome sequence data was processed using the SAMFIRE software package,
according to default settings (Illingworth 2016), calling variant alleles that exis-
ted at a frequency of at least 1% at some point during the observed infections.
For the calculation of a within-host fitness landscape, the effective depth of se-
quencing was estimated in a conservative manner, filtering out variants which
changed in frequency by more than 5% per day before using the frequencies of re-
maining variants from different time-points within the same host to estimate the
parameter C. For the within-host model, following the approach of previous cal-
culations (Illingworth 2015; Sobel Leonard et al. 2017a), potentially non-neutral
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variants were identified as those for which a model of frequency change under
selection outperformed a neutral model by more than 10 units according to the
Bayesian Information Criterion (BIC) (Kass and Raftery 1995). Variants reach-
ing a frequency of at least 5% in at least one sample were then identified before
calling multi-locus variant observations from the data; data from all time-points
for which within-host data were collected were used in this inference. The 5%
cutoff was chosen to reduce computational costs for this part of the calculation
while still reconstructing the core aspects of the within-host fitness landscape.

For the inference of transmission, data from all polymorphic sites were util-
ised, with no filtering of sites. As in the original analysis of the data (Moncla
et al. 2016), variants were identified from data collected from the final obser-
vation before transmission and the first point of observation after transmission;
these data were used to construct multi-locus observations across variants which
reached a frequency of at least 2% in at least one sample. In this inference
a revised approach to estimating the effective depth of sequencing was taken,
noting our result that estimates which overestimate noise may lead to errors in
the inferred bottleneck size. Here, in common with previous calculations, we
initially identified a conservative value of C from within-host data using the de-
fault settings in SAMFIRE. Next, variant frequencies were evaluated, identifying
potentially non-neutral changes in frequency using a single-locus analysis (Illing-
worth 2015). Finally, a more conservative estimate of C was calculated, using the
set of trajectories which were identified as being consistent with a neutral model
of frequency change. This conservative estimate reflects our finding (shown in
Chapter 3) that a conservative estimate of noise (i.e. potentially underestimat-
ing the noise) is less likely to induce a substantial error in the inferred bottleneck
than a less conservative approach, which might overestimate the extent of noise
in the data.

Additional processing of transmission data was carried out within the trans-
mission inference code according to the framework outlined in Section 3.2.13.

4.2.7 Inference of Within-Host Selection

For the experimental dataset an inference of within-host selection was conducted
according to a method previously described in earlier publications (Illingworth
2015; Sobel Leonard et al. 2017a). Under the assumption of rapid reassortment
in the system (Marshall et al. 2013) different segments of the virus were treated
independently. Our inference of selection aimed to characterise fitness so as
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to estimate SG for an inference of transmission; the HA190D225D and Mut
datasets were considered independently, with data from all animals in each set
being combined to infer within-host selection.

Our approach to the inference of selection is similar to that for transmission,
yet works under the assumption of a large population size, and may involve data
from more than two time points. Taking data from a set of animals a hierarchical
approach is again taken to the inference of selection, testing a neutral model of
evolution against successively more complex within-host fitness landscapes, such
landscapes being defined as the sum of single-locus and multi-locus (epistatic)
fitness effects. In this calculation, the application of BIC for model selection is
more straightforward; as more parameters are added into the model the fitness
landscape becomes incrementally more complex, but in a convergent manner:
Statistically each additional parameter makes a smaller change to the landscape
as a whole (Illingworth 2015). As such, a fixed threshold of 10 BIC units was
required to accept the addition of a further parameter.

4.3 Results

4.3.1 Application to Simulated Data

I investigated the performance of the advanced transmission model on simulated
data, aiming on the one hand to consider inference of selection for transmission
in the presence of within-host selection, and on the other to validate the model
under more complicated within-host growth configurations. Scenarios involving
selection for multiple polymorphic sites were also explored.

4.3.1.1 Selection for Within-Host Adaptation Bias the Inference of
Selection for Transmission

Figure 4.2, and 4.3 consider the impact of selection for within-host adaptation
on the inference of selection for transmission. Figure 4.2 shows the true and
false positive rates of inference of selection for transmission for four distinct
cases. The top left subplot corresponds to simulations for which only selection
for increased transmissibility is present. This plot is identical to the case of
σT = 1 in Figure 3.18. Next, the top right panel considers the presence of
within-host selection in the absence of selection for transmission. The inference
model aims to infer selection for transmission without correctly accounting for
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the within-host selection (σWH,ana = 0). The bottom left subplot corresponds to
an identical simulation setup, but with the inference model accurately account-
ing for the presence of within-host selection (σWH,ana = 1). Finally, the last
subplot considers the presence of both selection for increased transmissibility
and for within-host growth with the latter appropriately accounted for within
the framework.

In the top right subplot we observe a substantial false positive rate of infer-
ence of selection for transmission compared to the baseline false positive rate
(top left plot) which is less than 10%. This is due to the method attributing
diversity changes arising from within-host selection to the action of selection
during transmission. However, the false positive rate is lower than the baseline
true positive rate, where, given that the magnitudes of selection are equal, we
might expect these to be comparable. This effect can be explained by the dif-
ference in timings of the two selection impacts. Selection for transmission acts
prior to the bottleneck event whilst selection for within-host growth acts sub-
sequently to this. The population bottleneck reduces the overall diversity of
the viral population, reducing the potential for further changes in diversity to
provide the statistical support required to make an inference of selection.

In the bottom left plot we correctly account for within-host selection within
the inference model; this results in a low false positive rate. This roughly cor-
responds to what would be expected from an inference of transmission in an
event where no selection occurs. In the final scenario (bottom right) we observe
the ability to infer true positive instances of selection for transmission even in
the presence of within-host selection. We note that the true positive rate is
marginally lower than the baseline rate; again we believe this can be understood
in terms of the reduction in diversity from within-host selection limiting the
potential to identify selection from other changes in this population.

In Figure 4.3 we investigate the inferred strengths of selection for transmis-
sion. The left plot considers the baseline case and is identical to the σT = 1

outcome in Figure 3.19. As noted previously, the probability density functions
are centered around σT = 1 (or slightly above 1 as the bottleneck is decreased).
In the presence of within-host selection we observe an almost identical set of
distributions, highlighting the fact that the method not only infers the pres-
ence of selection for increased transmissibility but also captures the magnitude
correctly. The areas under the curves are marginally smaller, reflecting that a
lower fraction of true positives were inferred here compared to the baseline case.
Taken together, Figure 4.2, and 4.3 demonstrate the importance of accounting
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Figure 4.2. True and false positive rates of selection inference from 200 simulations
of transmission events with differing types of selection present and accounted for.
The four scenarios are as follows: presence of selection for transmission of strength
σT = 1 (top left), presence of selection for within-host selection (not accounted for in
model) of strength σWH = 1 (top right), presence of selection for within-host
selection (accounted for) of strength σWH = 1 (bottom left), and presence of selection
for transmission and within-host selection (accounted for) of strengths σT = σWH =
1 (bottom right). True positives were defined as inferences for which selection for
transmission was inferred for the selected locus; false positives were defined as
inferences for which selection was inferred at any neutral locus or for multiple neutral
loci in the system. Inferences can be simultaneously true and false positive (see e.g.
Figure 3.10). Where present, selection for transmission was chosen to act on the
third of five loci in HA and selection for within-host growth acting on the third of
five loci in NA.
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Figure 4.3. Probability distributions of inferred selection coefficients from 200
simulations of transmission events with selective pressures σT = 1 (left) and σT =
σWH = 1 (the latter accounted for in model, right). Distributions were constructed
for bottleneck values where the inference of selection resulted in a true positive rate
for identifying selected variants of above 5 %. Smooth kernel distributions were
computed using a Gaussian kernel function defined on (0, 10) and Silverman’s rule of
thumb (Silverman 1986, p. 48) employed for the bandwidth size. Distributions were
scaled such that their integral across the kernel range equalled the true positive rate.

for different sources of selection and the ability of our framework to correctly
capture this aspect when an estimate of within-host selection is available.

4.3.1.2 Advanced Model of Within-Host Evolution

In all previous simulation experiments I have considered a simple generative
model for which within-host growth consists of a single round of replication. In
experimental datasets the true within-host biology may differ from this; differ-
ent viruses may have different number of within-host replication rounds or the
recipient host may be sampled more sparsely leading to additional within-host
evolution. In general the within-host growth process was simulated as repeated
multinomial sampling for a total of

nrounds = ngenerations ·∆sampling (4.52)

times, where ngenerations is the number of cellular cycles per 24 hours and ∆sampling

is the number of days between sampling times. Influenza virus is believed to have
approximately two rounds of replication per day (Baccam et al. 2006; Russell
et al. 2012; Sidorenko and Reichl 2004).

In Figure 4.4 I investigated the ability of the inference model to infer bottle-
neck sizes from neutral transmission events with within-host growth processes
consisting of nrounds = 4 rounds of cellular cycles. I considered a range of growth
factors (g = {1, 2, 5, 10, 22}) and noise values (C = {200, 106}) and compared
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Figure 4.4. Median inferred bottleneck size from data simulating neutral
transmission events with four within-host growth rounds, each exhibiting a g-fold
increase in population size. Growth factors of g = {1, 2, 5, 10, 22} and noise values of
C = {200, 106} were explored. Each data point represents the median bottleneck
calculated over 200 replicate simulations.

the performance of the basic model to that of the advanced model which cor-
rectly accounts for the four rounds of within-host growth.

We find that the basic model significantly underestimates the bottleneck size
when the growth factor is low. This can be understood as the basic model not
accounting for the subsequent growth rounds which significantly alter the viral
population when g is low. This effect becomes negligible as g ≥ 5 for which the
secondary growth rounds have little impact on the change in diversity compared
to the initial round. Conversely, the advanced model does equally well for all
values of g. We note that for our standard choice of g = 22 there is virtually no
difference between the outcomes of the basic and advanced models. As demon-
strated previously, reducing the amount of noise in the system improves our
ability to infer the correct bottleneck size as NT is increased.

4.3.1.3 Inference of Multiple Sites Under Selection

I considered the ability of the model to infer multiple instances of selection with
selection acting either within a gene segment (referred to as scenario A) or on
different segments (scenario B, see Methods). Figure 4.5 compares the true and
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false positive rates of selection inferences of the two selection coefficients (σT1 and
σT2) in the two scenarios. True positives refer to inferences of selection upon the
specific variant under selection (i.e. not both), and false positive calls describe
selection inferences for neutral sites, see figure text. As expected, we observe
a qualitative similarity between the two subplots for scenario A and between
those for scenario B. Minor differences may be attributed to variability arising
from a limited number of replicate simulations as well as discrepancies in HA
and NA segment lengths resulting in differential power of inference (scenario B
only). For scenario A, we observe a lower degree of true positive calls than found
in the baseline case (Figure 4.2, top left). This can in part be ascribed to the
method employed in determining the BIC penalty function (see Section 3.2.15)
which have been tuned to identifying the first coefficient, not subsequent ones.
Secondary coefficients are likely to bring about smaller improvements in BIC (as
the first coefficient is optimised to capture as much of the diversity change as
possible) which makes the model less able to infer both coefficients. Additionally,
if the two selection coefficients act partially in the same direction it is increasingly
difficult to identify individual contributions to diversity changes and to associate
these with specific variants. In the limiting case where the selective pressures act
in parallel (or antiparallel) the method will infer a selection coefficient of σT1+σT2

(or σT1 − σT2) for one of the loci whilst neglecting the other. In other words, in
the case of completely linked alleles, we have no power to distinguish between the
two selection coefficients. By extension, the more polymorphisms available, the
more linkage information and, in turn, the more power for separating selective
effects.

Figure 4.6 displays smooth kernel distributions of the inferred selection coef-
ficients for the true positive inferences found in Figure 4.5. Once again we
observe a degree of similarity between subplots within a scenario indicating that
the method is not significantly better at inferring selection for one variant than
the other. The distributions in scenario A exhibit larger variances than those
of scenario B, which may be attributed to the inference model conferring the
accumulated selective effects of both variants onto just one of the selected al-
leles. This phenomenon is impossible in scenario B where the gene segments are
completely unlinked.

Finally I investigated the ability of the method to jointly infer the presence
of both selective effects. Figure 4.7 compares the true and false positive rates
of selection inferences where true positive calls encompass outcomes for which
selection was inferred at both of the selected loci. For scenario A we note a low
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Figure 4.5. True and false positive rates of selection inference from 200 simulations
of transmission events with two locus selective effects. In scenario A (top plots),
selection was chosen to act on the second and fourth loci in HA with strengths
σT1 = σT2 = 1. In scenario B (bottom plots), selection acted on the third loci in HA
with strength σT1 = 1 and on the third loci in NA with strength σT2 = 1. In scenario
A, true positives were defined as inferences for which selection was inferred for the
second loci (top left) or the fourth loci (top right). Correspondingly, in scenario B
true positives were defined as inferences for which selection was inferred for the
variant in HA (bottom left) or the variant in NA (bottom right). False positives were
defined as inferences for which selection was inferred at any neutral loci (i.e.
excluding both of the loci genuinely under selection).
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Figure 4.6. Probability distributions of inferred selection coefficients from 200
simulations of transmission events with two locus selective effects. Scenarios A and B
are as described in Figure 4.5. Distributions were constructed for bottleneck values
where the inference of selection resulted in a true positive rates of above 5 %.
Smooth kernel distributions were computed using a Gaussian kernel function defined
on (0, 10) and Silverman’s rule of thumb (Silverman 1986, p. 48) employed for the
bandwidth size. Distributions were scaled such that their integral across the kernel
range equalled the true positive rate.
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Figure 4.7. True and false positive rates of selection inference from 200 simulations
of transmission events with two locus selective effects. In scenario A (left), selection
was chosen to act on the second and fourth loci in HA with strengths σT1 = σT2 = 1.
In scenario B (right), selection acted on the third loci in HA with strength σT1 = 1
and on the third loci in NA with strength σT2 = 1. True positives were defined as
inferences for which selection was inferred for both of the selected loci. False
positives were defined as inferences for which selection was inferred at neutral loci.

true positive rate which only approaches the false positive rate as the bottleneck
reaches NT = 100. On the contrary, the true positive rate in scenario B is
considerably in excess of the false positive rate for NT ≥ 50. In the former case,
the method fails to distinguish the two sources of selection, whilst in the latter
case, selection acts on selectively independent alleles, leading to a significant
improvement in the joint detection rate.

4.3.2 Application to an Experimental Dataset

We applied our approach to an influenza transmission dataset obtained by
Watanabe et al. (Watanabe et al. 2014) and subsequently analysed by Moncla
et al. (Moncla et al. 2016). This dataset provides high-resolution, whole-genome
sequence data describing both the within-host evolution, and airborne transmis-
sion, of a 1918-like influenza virus, that became transmissible upon introduction
of three key mutations, PB2 E627K, HA E190D and G225D. This three-mutant
strain was denoted ‘HA190D225D’ and successfully transmitted in one of three
ferret transmission pairs. Isolation and subsequent growth in MDCK cells of
viruses from the contact ferret of the successful transmission led to the genera-
tion of the ‘Mut’ strain, which transmitted in two of three instances. A previous
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analysis of these data using linked variants on the HA segment identified an
increase in the diversity of the viral population during within-host growth, and
respectively ‘loose’ and ‘stringent’ bottlenecks in the transmission of the two
strains. In the transmission of the Mut strain, the fixation of sequence vari-
ants, potentially due to selection, was observed, while the observation of two
out of three, rather than one out of three, successful transmissions suggested
that the Mut virus may have evolved increased fitness for infection. Within and
between hosts, segment-wide and localised measures of synonymous and non-
synonymous sequence diversity π were used to assess the presence or absence
of selection, leading to the conclusion that selection affected the system during
transmission of the Mut strain.

In our study, data from serial samples from the within-host populations were
used to infer a fitness landscape describing the within-host growth of the virus
for each of the two experimental populations. Using a previously published ap-
proach (Illingworth 2015) we inferred the presence of non-neutral change in the
population in seven out of eight segments in the combined HA190D225D popu-
lation, and in four out of eight segments in the combined Mut population. The
inference of positive selection acting for multiple non-consensus viral haplotypes
in the HA segment (Figure 4.8) explains the increase in sequence diversity pre-
viously observed in these data. Further results are shown in Figures 4.9 and
4.10 and in Tables 4.1 and 4.2.

Applying our inference framework to the data identified narrow transmis-
sion bottlenecks in each case (Figure 4.11). In each of our calculations a set
of statistical replicate inferences was produced, corresponding to different po-
tential reconstructions of the population qB from the sequence data (see Sec-
tion 3.2.14.2). Within the HA190D225D population, our estimated bottlenecks
ranged from 3 to 6, with a median bottleneck size of 5, while for the Mut cal-
culations, our bottlenecks ranged from 2 to 127 and 2 to 61, with medians of 6
and 2 respectively. As such, no clear evidence was found that the HA190D225D
transmission involved a greater number of particles than the Mut transmissions.
Given the inclusion of the inferred within-host selection SG, no evidence was
found for the existence of variants making the virus more or less transmissible,
with selection being inferred in only a small number of the replicate calculations,
see Figure 4.12. Increasing the frequency cutoff at which variants were included
in the calculation led to small decreases in the inferred bottleneck sizes, see
Figure 4.13.
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Table 4.1. Inferred fitness coefficients for HA, NA, NP, and NS for the within-host
evolution of the virus within each experiment. Parameters were inferred across all
index and contact ferrets within each experiment and are reported to a single
decimal place. Only polymorphisms at which within-host selection was identified are
listed. The parameter χ denotes an epistatic interaction between variant alleles. We
note that our method infers the approximate shape of a fitness landscape based upon
a reconstruction of whole viral segments; individual selection coefficients may be
subject to variance between similar fitness landscapes.

Segment Variant Mut HA190D220D

HA

G14T 0.0 0.4
A400G 0.2 −0.3
A507C 0.5 0.4
C550A 0.3 -
T634C 0.4 -
A649G - 0.3
A651C 0.6 -
T653G 0.5 -
G741A - −0.1
G747A 0.2 -
A748G 0.3 -
A868T 0.2 0.3
T1036C - −2.1
G1263A - 0.5
C1762T −0.7 -
χ14,400 −0.3 -
χ14,507 0.2 -
χ400,507 −36.5 -
χ400,550 −32.2 -
χ400,1036 - 2.2
χ868,1263 - −0.8

NA

G440A - 0.4
G649A - 0.2

NP

G600A - 0.4
NS

G289A - 0.4
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Table 4.2. Inferred fitness coefficients for PA, PB1, and PB2 for the within-host
evolution of the virus within each experiment. Parameters were inferred across all
index and contact ferrets within each experiment and are reported to a single
decimal place. Only polymorphisms at which within-host selection was identified are
listed. The parameter χ denotes an epistatic interaction between variant alleles. We
note that our method infers the approximate shape of a fitness landscape based upon
a reconstruction of whole viral segments; individual selection coefficients may be
subject to variance between similar fitness landscapes.

Segment Variant Mut HA190D220D

PA

A781G −0.2 -
G1500T - 0.5
C1651T −0.7 -
G1880T −0.8 -

PB1

C65T - −0.4
C90A −0.3 −0.3
C835A - 0.3
G982T - 0.4
T1151G - 0.3
G2250T −1.0 -
χ90,982 - 1.0

PB2

A1199G −0.9 -
T1537C - 0.5
G2193C - −0.3
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Figure 4.8. Inferred fitness landscape for within-host growth using data from the
HA190D225D dataset. Viral haplotypes for which the inferred frequency rose above
1% in at least one animal are shown. Lines show haplotypes separated by a single
mutation.

4.4 Discussion

In this chapter I defined the advanced transmission model and used this to in-
vestigate high complexity transmission scenarios. The advanced model attempts
to distinguish between selection for increased transmissibility and selection for
within-host adaptation. Assuming an accurate estimation of within-host infec-
tion, the model was able to account for this selection by defining a baseline
amount of genetic change such that additional diversity modifications due to se-
lection for transmission were immediately apparent. When not accounted for, se-
lection for within-host adaptation was misclassified as selection for transmission.
This demonstrates that within-host selection is yet another confounding factor
that needs accounted for if a proper inference of transmission is to be achieved.
Whilst not explicitly shown, it is worth noting that incorrectly accounting for
within-host selection doesn’t just obscure selection inference, but also bottleneck
inference when utilising a neutral inference method. I note that my method is
able to account for within-host selection and infer a neutral bottleneck with re-
spect to selection for transmission. Given an estimate of within-host selection,
the neutral model is computationally efficient and doesn’t require the inference
of BIC penalty functions. As alluded to previously, when a dataset consists
of just two time points it is mathematically impossible to distinguish different
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132



Advanced Transmission Inference Scheme 4.4. Discussion

� �� �� �� �� �� ��
�

��

��

��

��

���

���

���

���

���������� (�� )

�
��
�
�
�
�
�
�

���������� ��������� ����������

� �� �� �� �� �� ��
�

��

��

��

��

���

���

���

���

���������� (�� )

�
��
�
�
�
�
�
�

���������� ��������� ���

���������� �������������_��

��� �������������_��

��� �������������_��

Figure 4.11. Histograms of bottleneck inferences for HA190D225D and Mut
transmission pairs from 200 analysis seeds. A replicate inference method was
employed for the Mut transmission pairs such that a common fitness landscape was
imposed. The Mut transmission pairs may take different bottleneck values and have
been plotted as an overlapping histogram. Bottleneck inferences larger than NT = 35
have been omitted for clarity.

sources of selection. Considering the importance of accounting for within-host
selection, I propose that future transmission studies adhere to a frequent and
regular sampling schedule, allowing for the characterisation of the within-host
fitness landscape of the viral population.

I have here made the modelling assumption that within-host growth is char-
acterised by two distinct processes, namely a stochastic increase in population
size followed by modifications due to selection. Within-host selection covers ad-
aptation across multiple different aspects of the growth process, including viral
transport to the cell nucleus, viral replication, formation of new viruses, budding
of virions, and infection of new host cells. I here argue that within-host adapta-
tion primarily occurs during or after the replication process, thereby supporting
the specific ordering wherein replication comes before selection. This is a model
choice; selection obviously takes place throughout the growth process, but, given
limited resolution to distinguish the effects further, I here make the assumption
that selection has the most effect during later stages of proliferation.

Considering more realistic within-host growth processes consisting of mul-
tiple rounds of viral replication, the basic transmission model was found to
underestimate the bottleneck size when considering small growth factors. This
may be understood as the basic model not accounting for the increase in viral
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Figure 4.12. Histograms of selection inferences for the Mut transmission pairs from
200 seeds using an allele frequency cut-off of 2%. A replicate inference method was
employed such that a common fitness landscape was imposed. Selection inferences
that resulted in at least 10% non-zero inferences are here reported by the nucleotide
position of the variant site.
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Figure 4.13. Histograms of bottleneck inferences for HA190D225D and Mut
transmission pairs from 200 random seeds using allele frequency cut-offs of
qcut ∈ {0.03, 0.04}. A replicate inference method was employed for the Mut
transmission pairs such that a common fitness landscape was imposed. The Mut
transmission pairs may take different bottleneck values and have been plotted as
overlapping histograms. Bottleneck inferences larger than NT = 35 have been
omitted for clarity.
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diversity arising from subsequent growth rounds. On the contrary, the advanced
model performed equally well for all examined scenarios. For growth factors of 5
or more, the inferences of the basic model coincided with those of the advanced
model. These results suggest a theoretical advantage in accounting for multiple
growth rounds, however, in practise this is irrelevant for more realistic growth
factor values. For simulations in general and for the analysis of real datasets I
have assumed a 22-fold growth process. In this instance it is sufficient to account
for a single ‘effective’ round of within-host growth.

As a final evaluation of the transmission model I considered the ability of
the method to infer multiple instances of selection. The method substantially
underperformed when inferring multiple selection coefficients acting within a
single gene segment. Here the method was more likely to infer a single site
under selection instead of two. A number of possible factors may contribute to
this. Firstly, the selection inference framework was optimised to find a single
instance of selection, not multiple. In theory, this could be corrected by tuning
the BIC penalty differently, e.g. by having different BIC penalty curves for
each additionally inferred parameter. Secondly, linked alleles may result in the
method partially attributing selection acting on one allele to the other. In the
limit of completely linked sites, distinguishing which allele is under selection
becomes impossible. In cases where selection acts on different segments there is
scope for inferring multiple selection coefficients, at least under the assumption
of rapid reassortment.

Separating selection from drift is an inherently difficult task. Accounting for
multiple instances of selection is increasingly difficult and generally only feasible
when specific biological considerations apply. I conclude that my method is
capable of inferring single selection coefficients when selection is strong and
stochastic effects small, but that further work on the comparison of likelihood
statistics is required in order to correctly derive more complicated selection
models. Whilst potentially possible, an extension of the adaptive BIC framework
to account for more complicated aspects of selection represents a substantial
step away from the BIC scheme and a step towards a more machine learning
oriented approach. Such approach is out of the scope of this work and will not
be considered here.

Considering our analysis of data from a recent evolutionary experiment, our
approach provides a greater precision in the inference of evolutionary statist-
ics, leading to an alternative explanation for the data observed. Where data
have previously been interpreted as implying differential transmission bottle-
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necks between strains, our approach infers bottlenecks of similar sizes ranging
from 2-6 viruses. Furthermore, where evidence has been interpreted to suggest
a differing extent of transmissibility between strains, our approach attributes
changes in the composition of the population to a mixture of stochastic effects
and selection for increased within-host adaptation. Our result does not prove the
absence of differential transmissibility among the viruses involved in this study;
at the bottleneck size we inferred, selection is very hard to identify even where
it does influence transmission. Rather, our claim is that under a parsimonious
analysis of the data, apparent evidence for increased viral transmissibility can
be explained by other evolutionary factors.
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Chapter 5

Analysis of Experimental Study on
Influenza Transmission in Pigs

5.1 Introduction

In the previous chapter I extended the basic transmission model to account
for a more detailed description of within-host growth processes. I considered
the inclusion of selection for increased within-host adaptation and derived a
general solution for a multi-step within-host growth process. It was observed
that improperly accounting for within-host selection led to a bias in the inference
of selection for transmissibility.

In Chapters 3 and 4 my analysis was based upon the assumption that viral
populations underwent a high rate of viral reassortment. Such an assumption is
supported by experimental evidence from in vitro and small animal systems, and
makes the calculations of selection and bottleneck sizes more computationally
tractable. In this and the following chapter I note that the assumption of rapid
reassortment may not always hold; in large mammalian systems the experimental
evidence does not support this assumption. In such conditions the framework I
have set out above may not be computationally feasible; for example computing
within-host fitness landscapes becomes more difficult as more polymorphic loci
exist in mutual linkage disequilibrium. I therefore examine approximations to
the above framework; a full accounting for selection is not always achievable,
but steps may be taken towards a best approximate solution, which seeks to
improve upon a model of complete selective neutrality.

In this chapter I consider the application of my model to an influenza trans-
mission study in small herds of swine. Discussing the assumptions and limita-
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tions associated with selection inference, I define an effective selection framework
accounting for within-host selection in hosts exhibiting low levels of viral reas-
sortment. After applying this method to experimental sequencing data, I discuss
the ability of consensus and sub-consensus methods for inferring transmission
networks in relation to the dataset at hand.

5.1.1 Effective Selection

The model presented so far describes a multi-locus approach to transmission
inference. Adopting a multi-locus framework allows us to identify the presence
of selection within single gene segments, with linkage disequilibrium information
being obtained through the use of partial haplotypes. By contrast, single-locus
models fail to capture the relationship between variant alleles and as a result
make it impossible to determine the effect of selection upon individual loci. By
extension, separating selective effects between different viral segments, where
linkage disequilibrium between alleles on segments may exist, requires a multi-
segment, multi-locus haplotype model. Such a model has been successfully used
by Sobel Leonard et al. (2017a) to investigate the extent of reassortment of in-
fluenza virus in human hosts, however, it results in a substantial computational
overhead when the number of loci (and in turn haplotypes) is large; the lack of
cross-segment information in short-read data means that the number of haplo-
types in the model is equal to the product of the number of haplotypes in each
viral segment. The data analysed by Sobel Leonard et al. had polymorphisms
in only four out of the eight viral segments, and in general, such multi-segment
approaches are only applicable in cases where only a handful of variants are
present. Steps to simplify the model may be required for a calculation to be
computationally possible.

In my previous analyses I made the assumption of infinite reassortment of
genes during viral replication. This assumption guarantees the removal of across-
segment linkage effects and is a key requirement for separating the contributions
of drift and selection, see Figure 3.4. This assumption is believed to hold for
in vitro and small animal studies (Ince et al. 2013; Marshall et al. 2013; Tao,
Steel and Lowen 2014; Tao et al. 2015), but it has recently been shown that
the effective reassortment rate is highly limited in human influenza infections
(Sobel Leonard et al. 2017a). In this and the following chapter I discuss possible
approaches which allow us to sidestep these restrictions by applying an effective
within-host selection framework.
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5.1.2 Swine Flu and Emergence of Pandemics

In addition to humans and birds, the natural host of flu, influenza viruses infect
a range of other mammals such as pigs, horses and dogs (Crawford et al. 2005;
Murcia et al. 2010; Webster et al. 1992). Existing in large herds and being
in frequent contact with humans, pigs represent a potential risk of animal to
human transmission of influenza virus. In fact, transmission from pigs to humans
and from humans to pigs have been extensively observed (Ma, Kahn and Richt
2008; Shortridge et al. 1977). Harbouring both SAα2,3Gal receptors, to which
avian influenza viruses preferentially bind, and SAα2,6Gal receptors, to which
human influenza viruses primarily attach, pigs are susceptible to infection by
both human and avian influenza viruses (Kawaoka et al. 1998). As a result,
pigs have been suggested to act as a ‘mixing vessel’, where, if co-infected by
human and avian influenza strains, reassortment of gene segments might lead
to the creation of novel, highly pathogenic, viral strains (Haß et al. 2011; Ma,
Kahn and Richt 2008; Shortridge et al. 1977). Studies have considered the
adaptation of potentially reassortant, avian-derived viruses for transmission in
mammals, suggesting that as few as a handful of mutations may lead to efficient
transmission in the ferret model (Herfst et al. 2012; Imai et al. 2012; Watanabe
et al. 2014; Wilker et al. 2013).

In the past one hundred years, four influenza pandemics have had devastating
impacts upon humanity. These pandemic strains derived, at least partially,
from animal reservoirs, with the latter three (1957, 1968, 2009) having been
confirmed as arising following reassortment events (Garten et al. 2009; Ma,
Kahn and Richt 2008; G. J. D. Smith et al. 2009). The recent 2009 H1N1 swine
flu pandemic spread to more than 214 countries worldwide and officially claimed
more than 18,000 lives (World Health Organization 2010). This pandemic arose
from reassortment events in pigs with the NA and M genes deriving from the
Eurasian swine linage and the remaining gene segments exhibiting identity to
those of the triple-reassortant swine lineage (Garten et al. 2009; G. J. D. Smith
et al. 2009). Alarmingly, segments with the highest similarity to the pandemic
strain were on average isolated ten years prior to the outbreak, suggesting that
the ancestral strains had been circulating undetected for a significant period of
time.

With a view to determining intra- and inter-host evolution, Murcia et al.
(2012) analysed transmission events from Eurasian avian-like swine influenza
virus of strain A/swine/England/453/2006 (H1N1) in chains of naïve and vac-
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cinated pigs. Considering variants in HA obtained from capillary sequencing of
nasal swab samples, a loose transmission bottleneck was hypothesised on the
basis of identification of multiple variants persisting across transmission events.
An analogous approach was applied in a horse transmission study with equine
influenza virus of subtype H3N8 for which a similar conclusion was reached
(Murcia et al. 2010). Additionally it was shown that the mutations required for
the establishment of infection in dogs were present in horse populations, sug-
gesting that the equine-to-canine spillover event at the start of the millennium
(Crawford et al. 2005) may have readily occurred and that adaptation to a new
species may take place in the original host prior to transmission.

5.1.3 Inference of Transmission Networks

Improving methods for solving route of transmission problems is of importance
for determining sources of infections and for developing preventive approaches
to the spread of pathogens. Traditionally, who-infected-whom problems have
been considered at the consensus sequence level, providing insight only where
viral populations have consensus sequence differences; HIV infections, in which
genetic variation accumulates over several years, provide an example where this
can be achieved (Leitner et al. 1996). Whilst informative, these approaches
are disadvantaged when considering acute infections for which the number of
consensus sequence differences may be minimal or absent.

The increasing application of next-generation sequencing to viral outbreaks
has been matched by the development of methods that identify transmission net-
works on the basis of sub-consensus measures. The enhanced resolution inherent
to short-read data allows for the evaluation of within-host diversity statistics,
considering for instance the amount of shared diversity between hosts (Worby,
Lipsitch and Hanage 2017). Where two viral populations have a large degree of
shared diversity, this is interpreted as evidence in favour of a potential transmis-
sion link. Worby et al. notes that where a transmission event is governed by a
bottleneck of a single virion, any subsequent diversity observed in the recipient
must have arisen entirely de novo.

Worby et al. carried out an in-depth analysis of the performance of con-
sensus and shared variant methods for the inference of transmission networks.
Attempting to reconstruct patterns of transmission from simulated outbreaks,
three methods were employed for assignment of transmission links: 1) A max-
imum (shared) variant tree, 2) a minimum (genetic) distance tree, and 3) a
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hybrid maximum tree. Where shared polymorphisms are present, the max-
imum variant approach identifies transmission hosts as those harbouring the
largest number of shared variants with the recipient in question. The minimum
distance approach determines host-recipient links by minimising the Hamming
distance between consensus sequences of potential transmission pairs. Finally,
the hybrid maximum method combines the above approaches, aiming firstly to
identify transmission sources by maximising the number of shared variants, and
then, if no shared variants exists, resorting to the minimum distance approach.
From simulations, the maximum variant approach was found to be effective at
bottleneck sizes of eight or larger, with hybrid and minimum distance approaches
outperforming it for narrow transmission bottlenecks. In the case of small bot-
tlenecks, a large degree of shared polymorphisms are likely to be lost, resulting
in minimum distance metrics becoming relatively more informative. Consider-
ing instead the true path distance between estimated transmission pairs, the
maximum variant approach was found to outcompete the minimum distance
method across a range of mutation rates, suggesting that the conclusions of the
study are somewhat robust and applicable to outbreaks from different infectious
diseases.

Employing a shared variant scheme, Stack et al. (Stack et al. 2013) attempted
to infer transmission networks in the horse (Murcia et al. 2010) and pig (Murcia
et al. 2012) studies described above. On the basis of an initial network, a
refined explanation was invented by employing a classification scheme utilising
known constraints, i.e. by computing importance scores for animals potentially
in contact. This process removed the majority of inconsistent edges in the
network, however, it also drastically reduced the number of consistent edges. The
authors did not comment on whether the method is potentially too conservative
in restricting the size of the network. Importantly, consensus sequence methods
were deemed ineffectual on the basis of a limited number of fixations events in
the studies.

5.1.4 Author Contributions

The work presented in this chapter is currently unpublished. The work described
here was carried out by the author under the supervision of his PhD supervisor,
Dr Christopher Illingworth. The within-host selection inference code was written
by Chris Illingworth for a previous publication (Illingworth 2015). The swine
transmission study analysed in this chapter was collected in July 2010 and is
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currently unpublished. We kindly thank the following people for allowing us to
access the data prior to publication: S. Brookes1, A. Germundsson1, C. Inman2,
M. Bailey2, S. Dunham3, G. White3, F. Garcon1, A. Núñez1, R. Saenz4, J.
Gog4, T. Freeman5, R. Kapetanovic5, A. Tomoiu5, C. Donnelly6, K-C. Chang3,
A. Archibald5, COSI7, J. Wood8, I. Brown1.

5.2 Methods

5.2.1 Effective Within-Host Selection

The fitness of a virus describes the replicative ability of the virus as a function
of its genotype and the specific host system it resides within (Sobel Leonard
et al. 2017a). Collecting fitnesses for all potential haplotypes, one can construct
a fitness landscape which is constant in time under the assumption that the
host environment doesn’t change. For the Moncla et al. dataset we assumed a
high rate of reassortment, effectively yielding the fitness of an individual segment
independent from the fitnesses of the remaining segments. Within-host selection
was estimated in terms of an underlying fitness landscape for each segment. In
the schema we use, this landscape is built up of a sum of single-locus and two-
locus fitness components; we use a process of model selection to derive the most
parsimonious explanation for the data under a maximum likelihood framework,
see Section 4.2.7.

Whilst an elevated rate of reassortment may be assumed in small animal
studies, this assumption is potentially invalid for larger mammals for which
linkage effects between viral segments may influence the within-host evolution of
individual alleles (Sobel Leonard et al. 2017a). Theoretically, a constant fitness

1Animal Health and Veterinary Laboratories Agency-Weybridge, EU/OIE/FAO Reference
Laboratory for Avian Influenza and Newcastle Disease, Addlestone, Surrey, UK. KT15 3NB

2School of Clinical Veterinary Science, University of Bristol, Langford House, Langford,
Bristol, UK. BS40 5DU

3School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington
Campus, College Road, Loughborough, Leicestershire, UK. LE12 5RD

4Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical
Sciences, University of Cambridge, Wilberforce Road, Cambridge, UK. CB3 0WA

5Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of
Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian UK. EH25 9RG

6MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease
Epidemiology, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk
Place, London, UK. W2 1PG

7Combating Swine Influenza, Wellcome Trust-MRC-BBSRC-Defra UK consortium
8University of Cambridge, Department of Veterinary Medicine, Madingley

Road,Cambridge, UK. CB3 0ES
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landscape may be constructed by accounting for multi-segment haplotypes and
by associating reassortment rates describing how fitness effects from specific
segments interfere with each other. However, this is computationally demanding
in all but the simplest of cases. For a single segment we may have e.g. five
variant loci resulting in 25 = 32 potential haplotypes. In the case of a multi-
segment framework, the number of potential haplotypes is the product of the
number of segment-specific haplotypes taken across all segments; potentially an
extremely large number. In this circumstance the inference of a fitness landscape
is impractical. As a compromise, we propose an alternative means of estimating
the within-host fitness for the purposes of our model. The fitness of a variant
can be decomposed into the sum of its own inherent fitness, which describes
the inherent advantage or disadvantage the variant contributes to the virus,
plus an interference term, which describes the influence of other variants, in
linkage disequilibrium with the first variant, upon the variant itself. The sum of
the inherent fitness plus interference can be termed the ‘effective’ fitness of the
variant (Illingworth and Mustonen 2011).

Based upon this principle, we attempt to derive an effective fitness landscape
for each segment, capturing the combination of inherent fitness plus interference
effects.

Our interest is in the manner in which within-host selection affects the virus
during the very first stage of its growth within the host. We therefore consider
data from the first two time points for which data is collected from the recipient
animal. Taking these two samples, we conduct an inference of within-host se-
lection for each segment. Although the inferred fitness landscape is a composite
of inherent selection and interference, it provides an estimation of how selection
as a whole shapes the within-host population during the early stages of viral
growth.

Our use of only two samples reflects an assumption about interference. The
selective effects of interference depend upon linkage disequilibrium between al-
leles, which itself depends upon the composition of the population. As the
genetic composition of the population changes over time, interference, and there-
fore the effective selection itself, is time-dependent. In so far as we are interested
in how within-host selection affects the virus during the very first stage of its
growth within the host, we consider data from the first two time points for
which data is collected from the recipient animal, carrying out our inference
under the assumption that selection acts in a constant manner for this period
of time. The result is an approximation of the effect of within-host selection in
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a circumstance where this would not otherwise be possible to calculate. As the
effective selection depends on the genetic composition of the population, fitness
landscapes are defined for each recipient animal individually, rather than across
all recipients as was the case for the Moncla et al. dataset.

5.2.2 Determining Route of Transmission From Bottle-

neck Inference

Considering the evidence for shared variants informing the structure of transmis-
sion networks, we hypothesised that our transmission inference method, which
is based on changes in diversity, might provide similar insights into route of
transmission problems. In fact, our method considers both shared variants and
variants unique to the host, attempting to parsimoniously explain an observed
outcome. For instance, where variants are observed only in the host, the neutral
version of our model infers a narrow bottleneck, attributing the lack of shared
variants to a founder effect. Conversely, variants unique to the recipient are
assumed to have arisen de novo and are ignored (see Section 3.2.13). To this
end we proposed that where multiple potential transmission events exist, the
more likely transmission link is that resulting in the largest inference of bottle-
neck size. Our method is potentially more sensitive than the maximum variant
method of Worby et al. (2017) as it considers specific changes in diversity rather
than simply the absolute number of shared polymorphisms. Regardless, simil-
arly to the maximum variant method, our method has low inference power for
narrow bottlenecks for which there is little resolution to distinguish true and
false transmission links.

5.2.3 Determining Route of Transmission From Sub-Consensus

Sequence Distance Metric

As an alternative to route of transmission inference based on traditional con-
sensus level minimum distance methods, we proposed a sub-consensus sequence
distance metric accounting for the subtle nuances arising from short-term evol-
ution. The metric was defined as

Θ = 0.5
∑
i

∑
j∈{A,C,G,T}

|qAi,j − qBi,j| (5.1)
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where the sum i is over all sites in the genome and | · | denotes absolute
value. The term qAi,j − qBi,j describes the difference in frequencies of the jth
allele at the ith site between the after (A) and before (B) populations. The
prefactor of 0.5 ensures that changes of an entire unit of frequency contrib-
utes exactly unity to the metric. For instance, if the before frequencies at the
ith site were qBi = {qBi,A, qBi,C, qBi,G, qBi,T} = {1, 0, 0, 0} and the after frequencies
qAi = {qAi,A, qAi,C, qAi,G, qAi,T} = {0, 0, 1, 0}, i.e. a change from allele A to G, the
metric for this site would be

Θi = 0.5
∑

j∈{A,C,G,T}

|qAi,j − qBi,j| = 0.5 (|0− 1|+ |0− 0|+ |1− 0|+ |0− 0|) = 1

(5.2)
Accounting for genome size, we may define a normalised metric:

θ =
Θ

# of sites
(5.3)

The smaller the sub-consensus sequence distance metric, the more similar
the before and after samples are. Comparing multiple potential transmission
events, the transmission with the smallest value of θ represents the most likely
true transmission.

5.2.4 Transmission Study in Pigs

As an example of transmission inference under effective within-host selection I
considered a transmission study in pigs, originally obtained by Brookes et al.
(2010) at the Department of Veterinary Medicine, University of Cambridge. The
study examined here was part of a larger influenza study in pigs consisting of
three parts, the sub-experiments denoted by A1, A2 and A3. I here consider
only the A2 study and will hereafter refer to it simply as ‘the study’.

5.2.4.1 Outline of Study

A schematics of the study design is shown in Figure 5.1. In total, the study in-
volved 22 immunologically naïve pigs aged 12 weeks. Initially, four pigs (denoted
4N) were inoculated with influenza virus of the pandemic strain A/England/195/
2009 (H1N1). At two days post inoculation (dpi), six additional pigs (denoted
6N-c1) were introduced to the four infected pigs. After two days of contact (4
dpi), the six 6N-c1 pigs were removed from the enclosure and replaced by six
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4N

6N-c1

3N-c1a
6N-c2

5N-c3

6N-c2

2 dpi

4 dpi
4 dpi

6 dpi

8 dpi

Study concluded 
at 22 dpi

+

Sampled animals:

4N: 4301, 4303, 4305
6N-c1: 4295, 4298, 4309, 4317
3N-c1a: 4297
6N-c2: 4302, 4306, 4310, 4314, 4315
5N-c3: None

6N-c1

Figure 5.1. Overview of the study design used in the pig transmission study. Four
naïve pigs (4N) were inoculated with influenza virus and introduced to six pigs
(6N-c1) at two days post inoculation (dpi). At four dpi the 6N-c1 pigs were removed
and placed in contact with three new pigs, 3N-c1a. Simultaneously, six new pigs
(6N-c2) were introduced to the original 4N pigs and subsequently removed two days
later. Finally, five naïve pigs (5N-c3) were introduced to the 4N pigs and the study
was terminated after 22 days. Sequence data is available for a subset of these
animals, see inset.

new pigs, denoted 6N-c2. The original six 6N-c1 where placed in contact with
three naïve animals (denoted 3N-c1a). After an additional two days (6 dpi),
the second group of six pigs (6N-c2) were removed from the enclosure with the
original four pigs (4N). At eight days post inoculation, a final group of five naïve
pigs were introduced to the original 4N pigs. The study was concluded after 22
days.

Samples were collected for multiple time points and paired-end read sequence
data obtained for specific cases. An overview of the available samples are shown
in Table 5.1.
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Table 5.2. Time points for the 12 potential transmission events involving the four
seeder pigs (4N) and the first set of recipient animals (6N-c1). Time points are with
respect to the time of inoculation of the 4N pigs (t=0).

Recipient 4301 4303 4305

Before After Before After Before After

4295 4 7 4 7 5 7
4298 4 7 4 7 5 7
4309 4 6 4 6 5 6
4317 4 6 4 6 5 6

Table 5.3. Time points for the four potential transmission events involving the first
set of recipient animals (6N-c1) and the secondary set of contact animals (3N-c1a).
Time points are with respect to the time of inoculation of the 4N pigs (t=0).

Recipient 4295 4298 4309 4317

Before After Before After Before After Before After

4297 8 10 9 10 8 10 7 10

5.2.4.2 Potential Transmission Events

Our transmission inference framework requires designated host and recipient
populations, i.e. knowing that individual X infected individual Y is critical to
using the method. For the Brookes et al. study we lack this information, knowing
only that e.g. any of the four seeder pigs (4N) could have infected any of the
six recipient pigs (6N-c1). Given the available data and assuming no within-
group transmission we may construct 28 potential transmission events as seen
in Tables 5.2 to 5.4. Transmissions involving recipient animal 4315 were ignored
due to low coverage.

Table 5.4. Time points for the 12 potential transmission events involving the four
seeder pigs (4N) and the second set of recipient animals (6N-c2). Time points are
with respect to the time of inoculation of the 4N pigs (t=0).

Recipient 4301 4303 4305

Before After Before After Before After

4302 4 9 4 9 5 9
4306 4 8 4 8 5 8
4310 4 9 4 9 5 9
4314 4 8 4 8 5 8
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5.2.4.3 Data Processing

Data processing for the pig transmission study was split into four steps: 1) Initial
processing using SAMtools (H. Li et al. 2009) and SAMFIRE (Illingworth 2015,
2016), 2) inference of C-values, 3) processing for within-host selection inference,
4) processing for transmission inference. Scripts for data processing can be found
in the online repository, see Section 3.2.17.

Initial Processing Firstly, .sam files were extracted from .bam sources using
SAMtools (H. Li et al. 2009). These files were then filtered using SAMFIRE
(Illingworth 2015, 2016) and single-locus trajectories were computed at a fre-
quency cut-off of 0.02. The --repq 2 flag was invoked, designating that a
polymorphism must be observed in at least two time points to be included in
a trajectory. This step filters out false positive calls of polymorphic sites which
may arise from noise in the sequencing process.

Inference of C-Values As with the Moncla et al. dataset, two noise para-
meters were inferred: A standard (C = 186.33) and a conservative (C = 60.08)
value. The standard value was computed on the basis of the single-locus tra-
jectories described above. To avoid a biased inference, I here removed duplicate
trajectories (defined as trajectories covering the same loci, i.e. multiallelic loci),
retaining the trajectory with the largest average polymorphism. The noise in-
ference was then computed using the SAMFIRE command sl_noise on the
basis of trajectories from all animals and all gene segments. The flags --dq_cut
0.90 (default 0.05) and --dep_cut 100 were invoked, forcing SAMFIRE to re-
tain trajectories changing by as much as 0.90 and to require a minimum read
depth of 100 reads at each time point.

To infer the more conservative (i.e. larger) C-value, the SAMFIRE command
sl_neutrality was employed to identify potentially non-neutral sites. A second
C-value was then computed on the basis of neutral sites only.

Processing for Within-Host Selection Inference Preparing for within-
host selection inference, data for the first two time points in the recipient animals
(4295, 4297, 4298, 4302, 4306, 4309, 4310, 4314, 4315 and 4317) were collected
and initial processing was repeated for these data. Next, the sl_neutrality

command was called with the standard C-value identifying potentially non-
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Table 5.5. Inferred within-host effective selection coefficients for the pig
transmission dataset. Parameters were inferred for each segment in each individual
recipient animal. Effective selection was estimated on the basis of the first two time
points with coefficients reported to two decimal places.

Animal Segment Variant Coefficient

4306 PB2 T230A 1.17
4306 PB2 T2129C 1.09
4309 HA A716G 0.74
4314 MP C384T 1.25
4314 NP A1250G 1.19
4314 PB1 T1509A −1.08
4317 HA A511G 1.19
4317 HA A619C 0.79

neutral trajectories. Multi-locus trajectories were then computed on the basis
of the non-neutral trajectories using call_ml and a frequency cut-off of 2%.

Processing for Transmission Inference Preparing for transmission infer-
ence, data were collected matching the potential transmission events. Here,
data from the last time point in the host were paired with data from the first
time point in the recipient. The initial processing was then repeated for these
data. Finally, multi-locus trajectories were called on the basis of the single-locus
trajectories.

5.2.4.4 Inference of Effective Within-Host Selection

Estimation of within-host effective selection was carried out using inference code
written by Chris Illingworth (Illingworth 2015). Preparing for this, within-
host selection data were split by segment in order to infer effective selection
at the level of individual genes. Given potentially non-neutral sites, an initial
neutral inference was performed defining a likelihood baseline. Progressively,
selection models of increasing complexity were constructed and evaluated, re-
taining models resulting in a BIC improvement of more than 10 log likelihood
units. Within-host selection inference was terminated when no further improve-
ments were found or if no additional models of increasing complexity could be
generated. Inferences are shown in Table 5.5. Scripts for within-host selection
inference can be found in the online repository, see Section 3.2.17.
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5.2.4.5 Transmission Inference

Transmission inference was performed for the 28 potential transmission events
under the assumption of neutral transmission and using a conservative C-value
of C = 186.33. Inference methods accounting for and ignoring within-host
selection were employed.

5.2.4.6 Phylogenetic Inference

Maximum likelihood phylogenetic trees were constructed for the transmission
and within-host consensus sequences. Consensus sequences were obtained from
SAMFIRE (Illingworth 2016) using the consensus command (SAMFIRE 1.05
and later). Phylogenetic inferences were obtained in MEGA7 (Kumar, Stecher
and Tamura 2016) using the Hasegawa-Kishino-Yano model (Hasegawa, Kishino
and Yano 1985).

5.3 Results

5.3.1 Transmission Inference

Employing an estimate of effective within-host selection, bottleneck inferences
were computed using the neutral version of our model with outcomes shown
in Figures 5.2 to 5.4. For comparison, bottleneck inferences in the absence of
within-host selection were computed and displayed in Figures 5.2 to 5.4 only
when the two outcomes differed. In general, the two approaches produced
identical results, differing only in a small number of cases. In the following, if not
specified otherwise, we refer to results obtained from accounting for within-host
selection.

For the transmission from the four seeder pigs (4N) to the first set of recip-
ients (6N-c1), narrow bottlenecks were generally inferred with medians falling
in the range of 1–8 virions. Only two potential transmission events achieved
bottlenecks of eight virions or more, namely 4301 → 4295 and 4305 → 4295,
with eight virions being the theoretical limit identified in the Worby, Lipsitch
and Hanage study, above which shared variant approaches outperform distance
metrics. Under the hypothesis that the larger of the inferred bottleneck sizes
indicates the most likely transmission link, the transmissions with the largest
median bottlenecks were printed in bold. Given the narrow range of inferred
bottlenecks it proved difficult to confidently identify true transmission events

153



5.3. Results Influenza Transmission in Pigs

with e.g. the sources of animals 4309 and 4317 being effectively unspecified.
Regardless, the method provided some evidence for animal 4305 being the in-
fector of 4298 and either 4301 or 4305 infecting 4295. Bottlenecks inferred in
the absence of selection resulted in different outcomes only for transmissions
4303 → 4309 and 4301 → 4317 for which the median inferred bottleneck was
marginally larger.

In the case of the potential transmission 4301 → 4317, an initial inference
resulted in an infinite bottleneck prediction in 75% of the statistical replicates.
Whilst biologically unrealistic, the infinite inferences are not a result of com-
putational errors, but rather can arise as an artefact of the method itself; see
Section 5.5 at the end of this chapter. Ignoring these inferences of infinity, a
bottleneck of NT = 2 was observed, whilst a re-analysis of transmission using
ΣB = 0 (see Section 5.5), resulted in a median bottleneck of NT = 1.

Considering the four potential transmission events from the 6N-c1 host an-
imals to recipient pig 4297 (3N-c1a), a more diverse range of bottlenecks were
predicted as shown in Figure 5.3. For the transmission 4295 → 4297, a mul-
timodal distribution of bottlenecks were inferred, having a median of NT = 57.
Manual inspection of the data revealed preservation of multiple variants across
transmission, supporting the inference of a potentially large bottleneck size. For
the remaining three transmissions, narrow distributions were inferred having
means of NT = 14 (4298 → 4297), NT = 5 (4309 → 4297), and NT = 6

(4317→ 4297). Taken together, this provides compelling evidence that the true
infector of animal 4297 was in fact 4295.

Finally, narrow bottlenecks with medians of 1–7 virions were inferred for
the 12 potential transmissions from the 4N seeder pigs to the 6N-c2 recipient
animals. The largest median bottleneck size, NT = 7, was inferred for trans-
missions 4301 → 4314 and 4303 → 4310. Infinite bottlenecks were predicted
sporadically for the transmission 4303 → 4314. Ignoring inferences of infinity
or reevaluating transmission with ΣB = 0 (see Section 5.5) both resulted in me-
dian bottlenecks of NT = 1. Some evidence was found for animal 4303 being
the source of infection in pig 4310 and for 4301 being the infector of 4314. Me-
dian bottlenecks of 1–2 virions were predicted for transmissions to animals 4302
and 4306, making it impossible to identify the true transmission link in these
cases. Ignoring effects of within-host selection resulted in different bottleneck
inferences in three instances, namely transmissions 4305 → 4306, 4303 → 4314

and 4305→ 4314. Only the latter case resulted in a distinctly different outcome;
here a multi-modal distribution with median NT = 12 was predicted.
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Figure 5.2. Histograms of bottleneck inferences for the 12 potential transmission
events from the 4N seeder pigs to the 6N-c1 recipient pigs. Bottleneck inferences are
based on 200 analysis seeds and inferences larger than NT = 20 have been omitted
for clarity. Inference methods either accounting for or ignoring within-host selection
were employed; where these differ both outcomes have been shown. Bottleneck
estimation for the transmission pair 4301 to 4317 (marked with an asterisk) resulted
in inferences of infinity (see text for details) when accounting for within-host
selection. Instead, analysis was repeated using a method not accounting for the
variance in qB. Bold headings represent the most likely transmission events under
the model accounting for selection.
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Figure 5.3. Histograms of bottleneck inferences for the four potential transmission
events from the 6N-c1 seeder pigs to the 3N-c1a recipient pigs. Bottleneck inferences
are based on 200 analysis seeds. Inference methods either accounting for or ignoring
within-host selection were employed and resulted in identical outcomes. Bold
headings represent the most likely transmission events.
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Figure 5.4. Histograms of bottleneck inferences for the 12 potential transmission
events from the 4N seeder pigs to the 6N-c2 recipient pigs. Bottleneck inferences are
based on 200 analysis seeds and inferences larger than NT = 20 have been omitted
for clarity. Inference methods either accounting for or ignoring within-host selection
were employed; where these differ both outcomes have been shown. Bottleneck
estimation for the transmission pair 4303 to 4314 (marked with an asterisk) resulted
in inferences of infinity (see text for details) when accounting for within-host
selection. Instead, analysis was repeated using a method not accounting for the
variance in qB. Bold headings represent the most likely transmission events under
the model accounting for selection.

157



5.3. Results Influenza Transmission in Pigs

Table 5.6. Predicted hosts for the nine recipient animals under the minimum
genetics distance approach.

Recipient Predicted host(s)

4295 4301, 4305
4297 4295, 4298, 4317
4298 4301, 4305
4302 4301, 4305
4306 4301, 4305
4309 4301, 4305
4310 4301, 4305
4314 4301, 4305
4317 4301, 4305

5.3.2 Phylogenetic Inference and Minimum Genetic Dis-

tance

Based on time points surrounding transmission, a maximum likelihood phylo-
genetic tree was constructed as shown in Figure 5.5. We observe a distinct
lack of evolutionary signal, with most samples sharing a common consensus
sequence, including seeder pigs 4301 and 4305. Of the 28 potential transmis-
sion events, 13 of them show no consensus sequence differences across trans-
mission

(
{4301, 4305} → {4295 dpi 7, 4298 dpi 7, 4309 dpi 6, 4302, 4314} and

{4295 dpi 8, 4298 dpi 9, 4317 dpi 7} → 4297
)
. Consensus sequences for the re-

maining transmission events are only a few substitutions apart
(
{4301, 4305} →

{4306, 4310} (one nucleotide difference), 4309 dpi 8 → 4297 (one difference),
4303→ {4295 dpi 7, 4298 dpi 7, 4309 dpi 6, 4302, 4314} (two differences), {4301,
4305} → 4317 dpi 6 (three differences), 4303→ 4310 (three differences), 4303→
4306 (four differences)), and 4303 → 4317 dpi 6 (five differences)

)
. Taken to-

gether, this suggests that a minimum genetic distance approach to inferring the
underlying transmission network is likely to be inconclusive. For completeness,
however, Table 5.6 shows the predicted transmission links obtained by min-
imising genetic distance between samples. This approach consistently predicts
either 4301 or 4305 as the true infectors among the 4N seeder pigs. For the
transmission to pig 4297 the method is more inconclusive, predicting either of
4295, 4298 and 4317 as the true source of infection.

The maximum likelihood phylogenetic tree for all available time points is
shown in Figure 5.6. Exhibiting a flat hierarchy and with 20 out of 29 samples
sharing the same consensus sequence, the full tree supports the absence of an
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Figure 5.5. Maximum likelihood phylogenetic tree of consensus sequences for time
points surrounding transmission events. The phylogeny was constructed in MEGA7
(Kumar, Stecher and Tamura 2016) using the Hasegawa-Kishino-Yano model
(Hasegawa, Kishino and Yano 1985). The scale bar corresponds to a single consensus
sequence difference. Some animals appear twice, e.g. 4317 for which both the
recipient (6 dpi) and host (7 dpi) time points are shown.
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Table 5.7. Absolute (Θ) and normalised (θ) sub-consensus sequence distance
metrics for each of the 12 potential transmission events involving the four seeder pigs
(4N) and the first set of recipient animals (6N-c1). The metrics corresponding to the
most likely transmissions are shown in bold.

Recipient 4301 4303 4305

Θ θ Θ θ Θ θ

4295 35.6 0.002 70 29.2 0.002 22 29.0 0.002 20
4298 31.8 0.002 41 23.1 0.001 75 21.9 0.001 66
4309 30.2 0.002 29 21.2 0.001 61 19.5 0.001 48
4317 31.8 0.002 41 22.0 0.001 67 21.1 0.001 60

evolutionary signal in the dataset. Generally, the within-host differences are as
large as the between-host distances, suggesting that the transmission processes
don’t substantially alter the diversity, thus inhibiting a clear inference of route
of transmission. Most striking, perhaps, is the within-host evolution of host
animal 4303 and of 4317 (host and recipient animal). The consensus sequence
of 4303 changes daily, starting one nucleotide difference away from the overall
consensus on day 2, then changing to the overall consensus on day 3 and finally
gaining two nucleotide differences on day 4. Similarly, for 4317 the consensus
sequence reverts to the overall consensus at day 7, having been three nucleotide
differences away on the previous day (first time point after transmission). Given
the overall lack of an evolutionary signal, this behaviour is likely to be due to
polymorphisms hovering around the 50% frequency mark.

5.3.3 Sub-Consensus Sequence Distance Metric

As an alternative to the minimum genetic distance approach, we computed ab-
solute and normalised sub-consensus sequence distance metrics for the 28 poten-
tial transmission events, as shown in Tables 5.7 to 5.9. Whereas the consensus
method predicted both 4301 and 4305 as the most likely hosts for transmis-
sions to the 6N-c1 and 6N-c2 animals, the sub-consensus method favoured 4305
over 4301. Similarly, for transmission to 4297 the minimum genetic distance
method considered 4295, 4298, and 4317 as being equally likely as host animals
whilst the sub-consensus method favoured 4295. We note, however, that many
of the sub-consensus metrics are of similar magnitudes, suggesting a degree of
uncertainty in the conclusions presented here.
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Figure 5.6. Maximum likelihood phylogenetic tree of consensus sequences for all
within-host time points. The phylogeny was constructed in MEGA7 (Kumar, Stecher
and Tamura 2016) using the Hasegawa-Kishino-Yano model (Hasegawa, Kishino and
Yano 1985). The scale bar corresponds to a single consensus sequence difference.
Time points with low coverage (4297 dpi 11, 4305 dpi 2, 4315 dpi 9) were ignored.

Table 5.8. Absolute (Θ) and normalised (θ) sub-consensus sequence distance
metrics for each of the four potential transmission events involving the first set of
recipient animals (6N-c1) and the secondary set of contact animals (3N-c1a). The
metric corresponding to the most likely transmission is shown in bold.

Recipient 4295 4298 4309 4317

Θ θ Θ θ Θ θ Θ θ

4297 30.3 0.002 30 32.3 0.002 45 32.2 0.002 44 30.6 0.002 32
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Table 5.9. Absolute (Θ) and normalised (θ) sub-consensus sequence distance
metrics for each of the 12 potential transmission events involving the four seeder pigs
(4N) and the second set of recipient animals (6N-c2). The metrics corresponding to
the most likely transmissions are shown in bold.

Recipient 4301 4303 4305

Θ θ Θ θ Θ θ

4302 32.6 0.002 47 23.0 0.001 75 22.5 0.001 71
4306 30.3 0.002 29 20.4 0.001 55 18.9 0.001 43
4310 31.8 0.002 41 22.5 0.001 71 21.3 0.001 61
4314 32.1 0.002 44 23.8 0.001 81 21.5 0.001 63

Table 5.10. Absolute (Θ) and normalised (θ) sub-consensus sequence distance
metrics based on SAMFIRE filtered variants for each of the 12 potential transmission
events involving the four seeder pigs (4N) and the first set of recipient animals
(6N-c1). The metrics corresponding to the most likely transmissions are shown in
bold.

Recipient 4301 4303 4305

Θ θ Θ θ Θ θ

4295 9.11 0.0939 6.25 0.120 5.94 0.0849
4298 8.04 0.0759 5.61 0.0891 5.02 0.0612
4309 7.05 0.0850 4.04 0.106 3.40 0.0630
4317 9.08 0.111 5.72 0.147 5.49 0.0998

Aiming to filter out potential noisy observations, we computed sub-consensus
sequence distance metrics on the basis of a filtered set of single-locus variants
identified by SAMFIRE. As shown in Tables 5.10 to 5.12, variants identified
by SAMFIRE as polymorphisms correspond on average to just over 20% of the
absolute metric across all sites. More importantly, though, the normalised met-
rics for the SAMFIRE variants are on average almost 50 times larger than the
equivalent metric across all sites. This suggests that the identified polymorph-
isms are potentially more informative with regards to transmission and that the
signal from these may be masked by noise. Additionally, it should be noted
that the unfiltered metrics may be biased as sequencing artefacts located in re-
gions of low read coverage may have a disproportionate amount of impact on
the metric. Based on the SAMFIRE variant sub-consensus metrics, identical
conclusions were drawn, but with greater confidence in the inferences; compare
for instance Tables 5.8 and 5.11. These inferences agree to a large extent with
the outcomes predicted by the bottleneck route of transmission approach.
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Table 5.11. Absolute (Θ) and normalised (θ) sub-consensus sequence distance
metrics based on SAMFIRE filtered variants for each of the four potential
transmission events involving the first set of recipient animals (6N-c1) and the
secondary set of contact animals (3N-c1a). The metric corresponding to the most
likely transmission is shown in bold.

Recipient 4295 4298 4309 4317

Θ θ Θ θ Θ θ Θ θ

4297 2.28 0.0486 2.41 0.0548 4.25 0.0817 3.37 0.0716

Table 5.12. Absolute (Θ) and normalised (θ) sub-consensus sequence distance
metrics based on SAMFIRE filtered variants for each of the 12 potential transmission
events involving the four seeder pigs (4N) and the second set of recipient animals
(6N-c2). The metrics corresponding to the most likely transmissions are shown in
bold.

Recipient 4301 4303 4305

Θ θ Θ θ Θ θ

4302 8.85 0.0972 5.88 0.128 5.24 0.0845
4306 7.69 0.0884 4.12 0.106 3.91 0.0674
4310 8.49 0.0975 5.27 0.123 5.03 0.0824
4314 7.43 0.0808 5.12 0.0985 3.80 0.0594
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Table 5.13. Number of shared variants for each of the 12 potential transmission
events involving the four seeder pigs (4N) and the first set of recipient animals
(6N-c1). The most likely transmissions are shown in bold.

Recipient 4301 4303 4305

4295 3 7 3
4298 4 3 1
4309 5 6 5
4317 6 5 4

Table 5.14. Number of shared variants for each of the four potential transmission
events involving the first set of recipient animals (6N-c1) and the secondary set of
contact animals (3N-c1a). The most likely transmissions are shown in bold.

Recipient 4295 4298 4309 4317

4297 4 4 2 4

5.3.4 Route of Transmission From Shared Variants

As a final attempt at determining route of transmission we considered the
maximum shared variant approach of Worby et al. (2017). For our purpose,
shared variants were defined as across-transmission single-locus polymorphisms
for which minor alleles at both time points accounted for a frequency of min-
imum 2% and were supported by at least 10 reads. Inferring here the most likely
transmission links by maximising the number of variants shared between host
and recipient, we obtained the results shown in Tables 5.13 to 5.15. These res-
ults differ somewhat from those of both the minimum genetic distance approach
and the sub-consensus sequence metric. Considering for instance recipient 4295
(Table 5.13), the shared variant method has a strong preference for host 4303,
whilst the sub-consensus method is in favour of animal 4305 and the minimum
distance method prefers pigs 4301 and 4305. The remaining transmission links
in Table 5.13 are less strongly predicted, with the preferred animal pair sharing
only one variant more than the alternatives.

A similarly non-specific picture was found when considering recipient 4297
(Table 5.14) for which 4295, 4298, and 4317 were equally likely infectors under
the shared variant approach. This agrees well with the findings of the minimum
genetic distance approach, which favoured the same set of host animals. Con-
versely, the sub-consensus and bottleneck approach both identified a clear signal
for 4295 being the true infector.
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Table 5.15. Number of shared variants for each of the 12 potential transmission
events involving the four seeder pigs (4N) and the second set of recipient animals
(6N-c2). The most likely transmissions are shown in bold.

Recipient 4301 4303 4305

4302 7 9 7
4306 6 10 6
4310 8 9 5
4314 8 6 8

Finally, considering the potential transmissions from the four seeder pigs to
the second set of recipient animals (Table 5.15), the maximum shared variant
method strongly favoured animal 4303 as the infector of 4306. This result was
not reflected by the sub-consensus method, which preferred 4305 as the source
of infection, and the minimum distance method, which attributed transmission
due to 4301 and 4305. For the remaining recipient animals the maximum shared
method was less convincing, with the preferred host-recipient pairs sharing one
or two more variants than the alternatives.

Overall a mixed picture emerges, suggesting either that one of the route of
transmission methods is significantly more accurate than the others, or, perhaps
more likely, that the transmission signal in most cases is too weak for reliably
estimating transmission networks.

5.4 Discussion

In this chapter I introduced the concept of effective selection and employed it for
the inference of bottlenecks in a transmission study in pigs. Within-host effective
selection was estimated by fitting a multi-locus model of evolution to the first
two time points in each of the recipient animals, thus capturing the essence of
selection by assuming the underlying fitness landscape remaining approximately
constant during short time intervals. Whilst present in only a subset of the
individuals, incorporation of effective selection allowed for a potentially unbiased
inference of bottleneck size. In general, narrow bottlenecks in the range of 1–
8 virions were inferred, being in agreement with our predictions for the ferret
dataset (Moncla et al. 2016) and current estimates for influenza transmission in
humans (McCrone et al. 2018). Two inferences resulted in substantially larger
bottleneck sizes, namely the transmissions from host animals 4295 and 4298
to recipient pig 4297 for which median bottlenecks of 57 and 14 viruses were
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predicted respectively. Manual inspection of data supported the validity of these
inferences. Whilst generally narrow, this suggests that influenza transmission
bottlenecks in mammals may occasionally be considerably larger, perhaps owing
to a close contact transmission setup. To our knowledge, this is the first time
viral bottlenecks have been quantified from transmission events in pigs.

Taking a further look at effective selection, I performed bottleneck inferences
both in the presence and absence of effective within-host selection. This resulted
in very similar inferences with the two approaches differing only in a handful
of instances. Where different, the bottleneck inferences accounting for effective
selection tended to predict a marginally narrower bottleneck size. Being unable
to account for selection for increased transmissibility, it is possible that the two
measures of selection balance each other out to a certain degree. In general, we
note that the use of effective selection warrants further investigation. As the
method attempts to simultaneously account for inherent selection and selection
due to interference, the method relies on the approximate constancy of linkage
disequilibrium during short time intervals. In the event that the amount of
linkage disequilibrium between alleles at the first two time points in the recipient
differs substantially from the linkage disequilibrium at the founder time point,
the estimate of effective selection may be incorrect. Being unable to properly
account for the underlying multi-segment haplotype structure makes it difficult
to investigate the validity of effective selection measures. Currently, I believe
that the framework outlined here represents the best possible solution to an
otherwise impossible problem.

I posited the idea of route of transmission inference based on differences in
bottleneck size estimations. In particular, where multiple potential transmis-
sion events exist, the transmission resulting in the largest inferred bottleneck
size will in general represent the most likely true transmission link. Within this
framework, strong evidence was found for animal 4295 being the true infector
of pig 4297. Additionally, the method provided moderate evidence for trans-
missions between animals 4305 and 4298, 4303 and 4310, 4301 and 4314, and
either 4301 or 4305 infecting 4295. About half of the transmission links were
undefined under this method, owing to the inference of narrow bottlenecks for
all potential transmission events. Whilst this approach warrants further invest-
igation, the ability of the method to simultaneously account for noise, selection
and within-host evolution, as well as being inherently rooted in a sub-consensus
framework, suggests the potential for the method to perform well in cases where
transmission inference results in differential bottleneck predictions.
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Seeking potential alternative explanations of the data, I explored route of
transmission inference from previously established methods. Inferring a phylo-
geny for the transmission dataset indicated a high degree of similarity at the
consensus sequence level, suggesting that minimum genetic distance approaches
may be inconclusive. Indeed, minimising genetic distance at the consensus level
resulted in identical inferences of host animals for all potential transmission links,
with inferences favouring two or more hosts. This highlights the inability of con-
sensus level methods to correctly capture route of transmission characteristics
from outbreaks of acute infectious disease.

Considering instead the shared variant approach of Worby et al. (2017),
which represents a sub-consensus approach to route of transmission inference, a
more diverse picture emerged. Here, considerable evidence was found for animal
4303 infecting 4295 and for pig 4303 being the true infector of 4306. Whilst ad-
ditional transmission links were deduced, these were less well supported due to
a limited number of differences in the number of shared variants. Interestingly,
the transmission links predicted here are in general irreconcilable with the con-
clusions drawn from the bottleneck approach. For instance, for recipient animal
4295 the bottleneck method favoured host animals 4301 and 4305 whilst the
shared variant method preferred animal 4303. Assuming the bottleneck infer-
ences themselves (NT = {8, 3, 8} for 4301, 4303 and 4305 respectively) are valid,
the inconsistency may be understood by noting that the shared variant method
underperforms in cases of narrow bottlenecks. Additionally, the bottleneck infer-
ence approach considers a significantly larger set of single locus variants (57-105
variant sites) than the shared variant method (3-7 variants). This is expected
in the case of narrow bottlenecks where most polymorphisms go extinct across
transmission. As such, the bottleneck approach is increasingly sensitive, con-
sidering vastly more data than the shared variant method. Regardless, the two
methods may potentially be used in concert; where large bottlenecks of sim-
ilar magnitudes are inferred using the bottleneck approach, the shared variant
method might be employed to further differentiate the transmission links.

As a final approach to route of transmission inference we proposed a sub-
consensus sequence distance metric, aiming on the one hand to account for sub-
consensus signatures and, on the other, to provide a computationally efficient
alternative to the bottleneck inference method. Considering both genome-wide
data and a smaller set of filtered variants, the sub-consensus metric gave identical
conclusions, albeit with the filtered variants providing additional support for
the specific findings. Interestingly, the method agreed well with the bottleneck
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inference approach, differing only in the identification of transmission sources
for animals 4310 and 4314. The latter inconsistency may be explained by the
presence of within-host selection for animal 4314; by neglecting selection, the
sub-consensus sequence distance metric may incorrectly identify 4305 as the
most likely infector of 4314. Indeed, when bottleneck inference was carried out
without accounting for within-host selection, this method also predicted 4305
to be the true infector of 4314. Regardless, strong evidence was found for 4295
being the infective source of 4297, suggesting that the two methods are aligned
where the signal is strong. In conclusion, the sub-consensus sequence metric
provides a simple alternative to performing an in-depth transmission analysis
when simply aiming to elucidate transmission networks. A subsequent detailed
analysis of transmission may still be required in order to correctly account for
the many factors potentially impacting viral transmission.

5.5 Appendix on Infinite Bottleneck Inferences

Occasionally the transmission inference method may predict infinitely large bot-
tlenecks. This may occur if the observations of the system before and after
transmission are very similar; as observed previously, if the extent of noise in
the observations, coded by C, is overestimated, the observed difference between
samples collected before and after transmission may be smaller than the expec-
ted difference between samples arising by noise; in such a case an arbitrarily
high inferred bottleneck is the result.

In the calculations of this chapter, we sometimes identified cases where the
bottlenecks inferred under different replicate calculations, with different recon-
structions of the pre-transmission population, gave either a low bottleneck of
order around 10, or an infinitely high bottleneck. We here show that a high
bottleneck may be inferred from a ‘bad’ reconstruction of the pre-transmission
population. Considering a one-dimensional system with pre-transmission mean
µB and standard deviation σB, the compound distribution for the founder pop-
ulation under a neutral transmission becomes (cf. Equation C.4)

var[qF ] =
1

NT
µB(1− µB) +

(
1− 1

NT

)(
σB
)2 (5.4)

The variance in qF is made up of two components; one accounting for the
uncertainty arising from the binomial transmission step, 1

NT µ
B(1−µB), and one

due to the variance inherent in qB,
(
1− 1

NT

) (
σB
)2. The bottleneck NT defines
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the balance between these two components. When the bottleneck is small, the
variance is primarily due to the bottleneck itself and the first term is dominant,
i.e. 1

NT >
(
1− 1

NT

)
for small NT . Conversely, when the bottleneck is large, the

compound variance in qF is defined by σB, i.e. the precision with which µB is
specified, rather than the binomial variance.

In a one-dimensional system we generally expect the compound variance
to decrease as NT is increased. From inspection, this is the case only when
µB(1 − µB) >

(
σB
)2. For a single dimension this criteria can be controlled for

during the optimisation of µB and σB, however, in a multi-dimensional setting a
similar criteria cannot be established, lacking the ability to compare magnitudes
of matrices. Regardless, it can easily be appreciated that certain sub-dimensional
projections result in a similar criteria, where, as a result, the compound variance
of qF increase with NT for specific optimisations of µB and σB.

Infinite bottleneck inferences may therefore, in some cases, be an entirely
mathematical artefact arising from unrealistic optimisations of µB and ΣB. As
a consequence, when infinite bottleneck inferences were encountered, I reevalu-
ated the transmission event using a pre-transmission population with ΣB = 0.
I have previously shown that this approach is valid, albeit leading to slight
underestimations of bottleneck sizes for large NT , see Section 3.3.2.
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Chapter 6

Analysis of Transmission Data
From Human Challenge Study

6.1 Introduction

In the previous chapter I demonstrated the ability of my inference method to es-
timate population bottlenecks from transmission events in small herds of swine.
Accounting for potentially modest levels of viral reassortment, inferences con-
sidered differing within-host haplotype fitnesses by appealing to a framework
of effective selection. In this chapter I consider transmission inference from
influenza infections arising from human challenge studies, presenting here a
mathematically elegant approach to within-host selection rooted in an exist-
ing multi-segment, multi-locus inference of a fitness landscape. Based on this, I
demonstrate the ability of my method to infer important parameters of trans-
mission from human infections, discussing potential limitations and challenges
associated with transmission inference from experimental data.

6.1.1 Human Challenge Studies

Human challenge studies (also known as controlled human infection model stud-
ies, deliberate exposure, etc.) have obtained an increased focus in recent years.
Human challenge studies refer to the purposeful exposure of human volunteers
to infectious agents in a controlled and carefully monitored environment (Dar-
ton et al. 2015). Challenge studies provide a range of scientific and clinical
advantages that the alternatives, such as animal models, simply do not possess;
while animal models can replicate many aspects of human infection, they may
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fall short of the reality in other ways. A key use of human challenge studies
is for the identification of vaccine candidates and estimation of vaccine efficacy
(Darton et al. 2015; McArthur and Shirley 2011). Surpassing traditional clin-
ical trials, challenge studies allow vaccines to be developed at a rapid pace, and
enable the identification of unviable vaccine candidates at an early stage, saving
time, money and resources. Human challenge studies are particularly useful for
host-restricted pathogens, for which an appropriate animal model may not exist,
and in cases where infection in animal models does not properly emulate disease
progression in humans. One example of this is dengue virus, where the infection
of non-human primates result in asymptomatic infections (Thomas 2013).

Human challenge studies allow disease development to be studied under
highly controlled conditions, by fixing environmental surroundings such as tem-
perature and humidity, the degree of interaction with other study participants,
and restricting or allowing contact with the outside world. They may be of rel-
evance where natural disease outbreaks occur either infrequently or sporadically,
or where study of a disease in its natural host is limited by pathogen seasonality
(Hirve et al. 2016). Taking a more fundamental view, challenge studies may be
employed for the verification of cause-and-effect relationships between a patho-
gen and a clinical disease, providing the most direct approach for demonstrating
Koch’s postulates of disease causation (Darton et al. 2015; Koch 1876, 1984).

In recent years, human challenge studies have aided the development of vac-
cines, for example by reducing the need for time-consuming phase III trials
(Darton et al. 2015; McArthur and Shirley 2011). One 2017 human challenge
study considered the efficacy of a typhoid conjugate vaccine as an alternative
to currently licensed typhoid vaccines. Powered by 103 adult study individuals,
the conjugate vaccine was found to have an efficacy of 87%, which was consid-
erably larger than the 52% efficacy obtained for the comparator, an established
Vi-polysaccharide vaccine (Jin et al. 2017). This study prompted the World
Health Organization to update its position on typhoid preventives, now identi-
fying the conjugate vaccine as the preferred vaccine for individuals of all ages
(World Health Organization 2018c). With a view to vaccine development, the
Wellcome Trust has recently called for an expansion of the number of human
challenge studies (The Wellcome Trust 2018a,b).

Human challenge studies are by no means a new concept, with challenge stud-
ies dating as far back as the 18th century (Darton et al. 2015). A key milestone,
of course, was the invention of vaccines, with which Edward Jenner is often cred-
ited based on his work on smallpox in the late 1700s. By directly inoculating a
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young boy, James Philips, with cowpox virus, Jenner proved that exposure to
cowpox generates protection against the significantly more dangerous smallpox
virus (Riedel 2005). Historically, human challenge studies have also been carried
out in the context of influenza (Carrat et al. 2008), of which the most striking
experiments involved direct inoculation of volunteers with virus deriving from
the 1918 pandemic (Wahl, White and Lyall 1919; Yamanouchi, Sakakami and
Iwashima 1919).

As illustrated by the above examples, human challenge studies raise im-
portant ethical questions regarding patient safety; at its core, challenge studies
are at odds with fundamental Hippocratic principles of non-maleficence. As a
consequence, modern human challenge studies have strictly defined ethical and
safety guidelines, with the safety of volunteers, staff and the general population
being the primary concern (Bambery et al. 2016; The Academy of Medical Sci-
ences 2005). For example, challenge studies aren’t to be conducted in diseases
for which no effective treatment exists (Bambery et al. 2016).

Finally, whilst generally versatile, a handful of limitations must be considered
in relation to human challenge studies. Firstly, challenge studies often takes
place in developed countries wherein the challenge population consists of healthy,
adult volunteers, who generally haven’t been exposed to the disease prior to the
experiment. This may result in a substantial gap between the study and target
populations when considering diseases that primarily infect individuals in devel-
oping countries. For instance, in the case of cholera, where the target population
includes children living in unsanitary, impoverished regions where the disease is
endemic, vaccine efficacy may be overestimated (McArthur and Shirley 2011).
Secondly, the experimentally induced infection may differ substantially from the
naturally occurring infection. Often, to ensure successful infection, a large in-
oculation dose may be applied, sometimes consisting of strains with an increased
severity compared to the wild type. Studies in ferrets and humans suggest that
influenza infection initiated by intranasal inoculation may not sufficiently rep-
resent natural infection, e.g. with intranasal inoculation resulting in decreased
viral shedding, limited aerosol transmission and differing degrees of infection of
the lower respiratory tract (Carrat et al. 2008; Gustin et al. 2011). While in
some ways ferrets provide a valuable model of human influenza infection (Buh-
nerkempe et al. 2015), the study upon which this chapter builds highlighted a
difference in the rate of reassortment between human and small animal infec-
tions arising from the apparent local density of infectious particles at the onset
of host infection. In this chapter I investigate data from a human challenge
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study in influenza and consider the inherent degree of realism achieved by these
studies when compared to infections arising from natural viral transmission.

6.1.2 Author Contributions

The work presented in this chapter is currently unpublished. The work described
here was carried out by the author under the supervision of his PhD supervisor,
Dr Christopher Illingworth.

6.2 Methods

6.2.1 Weighted Within-Host Selection

Given a limited number of polymorphic loci, methods exist for the inference of
within-host selection during influenza infection, accounting for between-segment
correlations by jointly fitting selection and viral reassortment rates (Sobel Le-
onard et al. 2017a); such a calculation indicated that the effective within-host
rate of reassortment is low in the individuals studied. This poses a challenge for
our transmission model; in the previous chapters the assumption of rapid reas-
sortment facilitated our approach to modelling within-host selection. To model
within-host selection in this case we devised the principle of weighted selection.
Similarly to the previous chapter we derived an effective within-host fitness for
each segment within each host. However, in this case our effective fitness val-
ues were derived from a known within-host fitness landscape and reconstructed
whole genome frequencies using a weighted mean approach.

From the previous analysis of the data, described in Sobel Leonard et al., we
have an inferred multi-segment fitness landscape σMS, in which the parameter
σMS
i describes the within-host fitness of the multi-segment haplotype i. Further-

more, for each host j we have the inferred within-host multi-segment haplotype
frequencies qMS,j(t), describing the evolution of each within-host population in
terms of multi-segment haplotypes, under the influence of selection, mutation,
and reassortment.

From these previously derived statistics, we wish to calculate the effective
within-host fitness of each single-segment haplotype within each host. This
statistic, being a function of the inherent fitness of the haplotype and linkage
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disequilibrium with selected variants on other segments, will change over time
as the population evolves. To consider within-host growth immediately follow-
ing transmission we wish to evaluate this statistic at the earliest time point for
which we have data.

In the individual j we calculate the weighted selection for a single-gene hap-
lotype hi as

σi,j(t) =

∑
k:hi⊂hMS,j

k

qMS,j
k (t)σMS

k∑
k:hi⊂hMS,j

k

qMS,j
k (t)

(6.1)

where the sum is over all multi-segment haplotypes k which have the same alleles
as the single-segment haplotype hi. For example, if hi described the alleles AT in
haemagglutinin, the sum would be conducted over all multi-segment haplotypes
with these alleles in haemagglutinin, irrespective of which alleles they contained
in other segments. Noting the time-dependence of the statistic, the calculation
of σi,j(t) is performed in each case at the first time t for which a reconstruction
of the viral population in individual j has been calculated; this is equal to the
first time following transmission at which sequence data describing the viral
population was collected.

6.2.2 Human Challenge Study

The analysis performed by Sobel Leonard et al. was conducted on data from
two experiments, described respectively by Zaas et al. (2009) (experiment 1)
and McClain et al. (2016) (experiment 2). Data from the former experiment,
which extend far beyond those collected by viral sequencing, have been studied
extensively, primarily for the classification of respiratory viral infections by host
signatures based on microarray or RT-PCR gene expression profiling (Huang et
al. 2011; Woods et al. 2013; Zaas et al. 2009, 2013), but also for the comparison of
experimental infection and infection induced by vaccination (Moody et al. 2011)
and for relating T cell responses to disease severity (Wilkinson et al. 2012).
An earlier analysis of the data used changes in sequence diversity to identify
the presence of selection acting at some point in the transmission process in
experiment 1 (Sobel Leonard et al. 2016). This earlier study did not attempt to
analyse the population bottleneck active in the transmission process.
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6.2.2.1 Outline of Study

The first experiment, conducted in 2009, involved the challenge of 17 immunolo-
gically naive individuals with a H3N2 influenza of strain A/Wisconsin/67/2005.
The viral stock was created from a detailed passaging pipeline, with the virus
first passaged in avian primary chicken kidney cells, then in embryonated chicken
eggs, and, finally, in GMPVero cells (Sobel Leonard et al. 2016). The viral stock
was sampled prior to human challenge; we refer to the pre-challenge time point
as t = 0. Volunteers were then intranasally challenged with the stock virus,
dosages varying between 103.08 and 106.41 TCID50 (Moody et al. 2011). Nasal
washes were collected from individuals on a daily basis and oral oseltamivir was
administered on day 6 (Zaas et al. 2009). Of the 17 patients in the study, seven
of these had at least one successfully sequenced sample of which four individuals
(P1001, P1006, P1012, and P1013) accounted for multiple time points. The
samples for which sequence data are available are shown in Table 6.1. The viral
stock contained 45 variants with frequencies above 2% (HA: 6, MP: 11, NA: 1,
NP: 2, NS: 2, PA: 13, PB1: 7, PB2: 3), the variants being well distributed across
the genome (Table 6.2).

In the second experiment, conducted in 2016, 21 immunologically naive vo-
lunteers were intranasally inoculated with influenza A virus, the viral stock being
identical to that of the first experiment. The inoculation dose was fixed at 106

TCID50 and nasal lavage samples were obtained on a daily basis. In order to
compare treatment procedures, oral oseltamivir was administered either at 36
hours after inoculation or at 5 days post inoculation (McClain et al. 2016). Se-
quencing of nasal wash samples resulted in sequence data from ten of the 21
patients of which nine were sampled at multiple time points (Sobel Leonard et
al. 2017a). An overview of the available samples for experiment 2 can be found
in Table 6.3.

6.2.2.2 Calculation of Weighted Within-Host Selection

In a previous examination of the human challenge data, an advanced model
of within-host evolution was employed for the estimation of a multi-segment
characterisation of within-host fitness (Sobel Leonard et al. 2017a, Table 3 and
Fig 3). The fitness landscape was produced from sequence data processed by
SAMFIRE (Illingworth 2016) using a frequency cut-off of 2%. Additionally,
multi-segment haplotypes and associated frequencies were estimated across the
available time points. Using the frequencies at the first available time point, we
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Table 6.1. Sampling times for individuals in experiment 1 of human challenge
study. Times are with respect to inoculation (time=0). Individuals are denoted by
their four digit patient ID, e.g. P1001.

Time 1001 1006 1008 1010 1012 1013

1 × × . . . .
2 × . × . × ×
3 . × . × × ×
4 . . . . . .
5 . . . . . .
6 . . . . × .

Table 6.2. Inoculum variant sites with frequencies in excess of 2%.

HA MP NA NP NS PA PB1 PB2

V
ar
ia
nt

si
te
s

530 10 826 357 337 85 1383 659
641 12 . 898 552 88 1614 704
1217 31 . . . 100 2265 706
1272 55 . . . 130 2279 .
1360 272 . . . 139 2282 .
1584 725 . . . 145 2284 .
. 945 . . . 1549 2291 .
. 1016 . . . 1690 . .
. 1018 . . . 2002 . .
. 1020 . . . 2035 . .
. 1021 . . . 2038 . .
. . . . . 2116 . .
. . . . . 2122 . .

Table 6.3. Sampling times for individuals in experiment 2 of human challenge
study. Times are with respect to inoculation (time=0). Individuals are denoted by
their four digit patient ID, e.g. P5001.

Time 5001 5002 5004 5006 5007 5017 5018 5019 5020 5021

1 . . . × × . × × × ×
2 × × × × . × × × × .
3 × × × × . . . × × ×
4 . . × . . . . . × ×
5 × . × . . . . . . ×
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here computed weighted within-host selection coefficients for each of the human
challenge subjects by appealing to the framework outlined in Section 6.2.1. In-
ferences are shown in Tables 6.4 to 6.6. We note that the selective pressures are
generally negative (with respect to the variant, i.e. non-consensus, haplotypes).
This is in agreement with Sobel Leonard et al. (2017a) who found selection to
be of a purifying nature; a number of polymorphisms are allowed to accumulate
during initial passaging, but are subsequently found to be unfit when the virus
enters the human host.

6.2.2.3 Data Processing

Pre-processed data from the previous study (Sobel Leonard et al. 2017a) were
used for this analysis. As described in the paper, filtering of aligned reads was
conducted using the SAMFIRE package, which was further used to infer the
extent of noise in the data for the within-host analysis.

For the purposes of this study single-locus variants were identified using a fre-
quency cut-off of 2%. An appropriate value of noise for the transmission analysis
was derived as in previous chapters (C = 138.86; value for within-host analysis
C = 44.28). To avoid a biased inference, duplicate trajectories (defined as tra-
jectories covering the same loci, i.e. multiallelic loci) were removed, retaining the
trajectory with the largest average polymorphism. The noise inference was then
computed using the SAMFIRE command sl_noise on the basis of trajectories
from all individuals and all gene segments. The flags --dq_cut 0.90 (default
0.05) and --dep_cut 100 were invoked, forcing SAMFIRE to retain trajectories
changing by as much as 0.90 and to require a minimum read depth of 100 reads
at each time point.

To infer the more conservative (i.e. larger) C-value, the SAMFIRE command
sl_neutrality was employed to identify potentially non-neutral sites. A second
C-value was then computed on the basis of neutral sites only.

Processing for Transmission Inference Preparing for transmission infer-
ence, data from the inoculum sample were paired with data from the first avail-
able time point in each of the study subjects. The initial processing was then
repeated for these data. Finally, multi-locus trajectories were called on the basis
of the single-locus trajectories.
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Table 6.4. Weighted within-host selection coefficients for patients P1001-P1013.
Selection coefficients (σ) are with respect to (potentially gapped) single-segment
haplotypes defined by the variant loci in HA, NP, and PA. For example, any viral
haplotype in patient P1001 exhibiting an A at position 545 and a G at position 1287
is under selective pressure by σ = −1.62.

Patient ID HA NP PA

545 920 1287 σ 372 762 913 σ 1704 σ

P1001

A - G −1.62 T G - −4.05 C −7.78
A - A −8.78 T A - −7.18 T −2.13
C - G −1.05 C G - −6.09 . .
C - A −9.62 C A - −22.13 . .

P1006

A - G −1.87 T G G −10.64 C −12.61
A - A −12.24 T G A −2.21 T −2.13
C - G −1.06 T A G −0.87 . .
C - A −20.35 T A A −6.59 . .
. . . . C G G −3.01 . .
. . . . C G A −6.36 . .
. . . . C A G −0.96 . .
. . . . C A A −6.36 . .

P1012

A C G −2.16 T A G −0.87 C −16.37
A C A −3.10 T G G −8.77 T −2.29
A T G −1.75 T A A −11.16 . .
A T A −12.42 C A G −1.09 . .
C C G −0.97 C G G −13.28 . .
C C A −20.55 C A A −21.42 . .
C T G −0.86 . . . . . .
C T A −11.25 . . . . . .

P1013

A - G −2.00 T - G −1.91 C −11.55
A - A −5.44 T - A −2.42 T −2.30
C - G −0.36 C - G −20.10 . .
C - A −15.97 C - A −21.44 . .
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Table 6.5. Weighted within-host selection coefficients for patients P5001-P5007.
Selection coefficients (σ) are with respect to (potentially gapped) single-segment
haplotypes defined by the variant loci in HA, NP, and PA. For example, any viral
haplotype in patient P5001 exhibiting an A at position 545 and a G at position 1287
is under selective pressure by σ = −2.09.

Patient ID HA NP PA PB2

545 632 1287 w 264 372 913 1080 w 1704 w 912 w

P5001

A - G −2.09 - T G - −5.60 C −16.88 . .
A - A −3.11 - T A - −12.15 T −2.33 . .
C - G −0.60 - C G - −21.35 . . . .
C - A −21.17 - C A - −21.42 . . . .

P5002

A G G −1.40 - T G - −11.93 C −17.74 . .
A G A −20.14 - T A - −20.15 T −1.06 . .
A A G −1.76 - C G - −3.10 . . . .
A A A −15.22 - C A - −19.18 . . . .
C G G −0.86 . . . . . . . . .
C G A −16.59 . . . . . . . . .
C A G −0.06 . . . . . . . . .
C A A −16.85 . . . . . . . . .

P5004

A - G −2.15 - T G - −9.09 C −10.00 . .
A - A −9.98 - T A - −5.79 T −2.45 . .
C - G −1.09 - C G - −1.16 . . . .
C - A −20.26 - C A - −1.16 . . . .

P5006

A - G −1.68 - T G - −3.75 C −6.35 . .
A - A −5.83 - T A - −9.15 T −2.42 . .
C - G −1.06 - C G - −4.36 . . . .
C - A −12.73 - C A - −21.92 . . . .

P5007

A - G −2.21 - T G - −8.34 C −17.33 . .
A - A −17.72 - T A - −20.32 T −2.14 . .
C - G −1.07 - C G - −13.35 . . . .
C - A −21.01 - C A - −21.09 . . . .
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Table 6.6. Weighted within-host selection coefficients for patients P5018-P5021.
Selection coefficients (σ) are with respect to (potentially gapped) single-segment
haplotypes defined by the variant loci in HA, NP, and PA. For example, any viral
haplotype in patient P5018 exhibiting an A at position 545 and a G at position 1287
is under selective pressure by σ = −1.54.

Patient ID HA NP PA PB2

545 632 1287 w 264 372 913 1080 w 1704 w 912 w

P5018

A - G −1.54 A T G C −5.68 C −9.51 . .
A - A −5.93 A T A C −21.35 T −2.21 . .
C - G −1.00 A T G T −0.38 . . . .
C - A −20.18 G T G C −0.56 . . . .
. . . . G T A C −6.59 . . . .
. . . . G T G T −0.38 . . . .
. . . . A C G C −4.02 . . . .
. . . . A C A C −22.16 . . . .
. . . . A C G T 0.00 . . . .
. . . . G C G C −6.39 . . . .
. . . . G C A C 0.00 . . . .
. . . . G C G T −6.25 . . . .

P5019

A - G −1.87 - T G - −10.16 C −17.00 . .
A - A −15.13 - T A - −6.60 T −1.95 . .
C - G −0.84 - C G - −12.24 . . . .
C - A −20.66 - C A - −1.16 . . . .

P5020

A - G −1.94 - T G - −4.54 C −12.18 G−7.70
A - A −3.71 - T A - −3.73 T −2.22 T−7.56
C - G −1.09 - C G - −14.87 . . . .
C - A −16.88 - C A - −21.42 . . . .

P5021

A - G −1.91 - T G - −4.79 C −8.05 . .
A - A −1.86 - T A - −20.07 T −1.83 . .
C - G −0.87 - C G - −2.00 . . . .
C - A −9.18 - C A - −2.10 . . . .
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Table 6.7. Median inferred bottleneck sizes for the human challenge study
accounting for within-host selection. Median values of NT > 100 have been quoted
as ‘100+’, noting that the inference method is unable to properly distinguish
bottlenecks of this magnitude.

Patient ID Median bottleneck

1001 100+
1006 100+
1008 2
1010 2
1012 100+
1013 7
5001 2
5002 9
5004 11
5006 2
5007 2
5017 10
5018 33
5019 2
5020 2.5
5021 2

6.2.2.4 Transmission Inference

Transmission inference was performed for the 16 transmission events using the
conservative C-value of C = 138.86. Inference methods accounting for and
ignoring within-host selection were employed.

6.3 Results

6.3.1 Transmission Inference

Employing estimates of weighted selection to describe within-host selection where
applicable (Tables 6.4 to 6.6), we inferred transmission bottlenecks both in the
presence and absence of selection for within-host evolution. Using a model of
selective neutrality with respect to transmission, outcomes from both methods
are shown in Figures 6.1 to 6.3 in the form of overlapping histograms. Median
bottleneck sizes are reported in Table 6.7.

Generally we find that accounting for within-host selection leads to trans-
mission inferences with similar or larger bottlenecks than those obtained from
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Figure 6.1. Histograms of bottleneck inferences for patients P1001–P1013 of the
human challenge study. Inference methods either accounting for or ignoring
within-host selection were employed with results displayed as overlapping histograms.
Inferences were computed for a total of 200 analysis seeds. Outcomes were placed in
bins with boundaries at NT = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, 104}.
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Figure 6.2. Histograms of bottleneck inferences for patients P5001–P5017 of the
human challenge study. Inference methods either accounting for or ignoring
within-host selection were employed with results displayed as overlapping histograms.
Inferences were computed for a total of 200 analysis seeds. Outcomes were binned as
described in the figure text of Figure 6.1.
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Figure 6.3. Histograms of bottleneck inferences for patients P5018–P5021 of the
human challenge study. Inference methods either accounting for or ignoring
within-host selection were employed with results displayed as overlapping histograms.
Inferences were computed for a total of 200 analysis seeds. Outcomes were binned as
described in the figure text of Figure 6.1.
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inferences ignoring selection. Exceptions to this rule include individuals P5007
and P5021 for which the neutral model predicts the largest bottleneck sizes.
Additionally, no within-host selection was inferred for patients P1008, P1010
and P5017, and, as a result, the two methods provided identical bottleneck in-
ferences for these individuals. Collectively, bottleneck inferences in the absence
of within-host selection exhibited median bottlenecks in the range of 2–22 viri-
ons whilst inferences in the presence of selection covered all possible values (as
NT = 104 was chosen as the maximum inferrable bottleneck size).

Inferences accounting for within-host selection showed a larger variability
in estimated bottleneck sizes. This is especially true for bottleneck sizes of
NT > 100, inferred for the individuals P1001, P1006, and P1012, which may be
explained by the model’s inability to properly discriminate between bottleneck
sizes of this magnitude. Using simulated data we have previously shown that
estimation of bottleneck sizes in this regime leads to a considerable variance in
inferences (Figure 3.11). This is due to increasing bottleneck sizes only bringing
about marginal improvements in likelihoods, thus leaving the final bottleneck
estimation highly dependent on the specific optimisation of qB generated in
the current statistical replicate. Whilst we are unlikely to feasibly differentiate
between inferences of e.g. NT = 200 and NT = 2000, it is, nonetheless, fair
to assume that these large estimated values arise from a true bottleneck of
NT > 100.

As experiment 1 involved inoculation with varying degrees of virus concen-
tration, it is of relevance to consider whether there is a correlation between
dosage size and founder population. Four inoculation dosages were used in
the experiment: 106.41 TCID50 (P1001), 105.25 TCID50 (P1006, P1008), 104.41

TCID50 (P1010, P1012), and 103.08 TCID50 (P1013) (Moody et al. 2011). We
here observe only a weak link between dosage and bottleneck size with both
P1001 (high dose) and P1006 (medium high dose) having bottleneck inferences
of NT > 100, and P1010 (medium low dose) and P1013 (low dose) showing me-
dian bottlenecks of NT = 2 and NT = 7 respectively. However, neither P1008
(medium high dose, median NT = 2) nor P1012 (medium low dose, median
NT = 104) fit well into this picture. Furthermore, all of the individuals in ex-
periment 2 received an identical, but high, challenge dosage of 106 TCID50, yet
median bottleneck inferences vary between 2–33 virions.

Finally we observe a handful of transmissions resulting in bottleneck infer-
ences of NT = 104, i.e. the maximum inferrable bottleneck size under our model.
Whilst in the case of the Brookes et al. data we generally inferred narrow bot-
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tlenecks, we here observe much larger bottlenecks, making these inferences of
NT = 104 more plausible, e.g. in the case of P1001 and P1006. Regardless, in
the case of P1012, accounting for within-host selection results in an unrealist-
ically large bottleneck size; if we perform the analysis using a method ignoring
the variance in qB (see Section 5.5) we instead obtain an inference of NT = 1. It
has previously been noted that the data for individual P1012 have particularly
low coverage in all but the MP and NS genes (Sobel Leonard et al. 2016), which
may also contribute to an unrealistic bottleneck inference.

6.4 Discussion

In this chapter I introduced the concept of weighted selection and employed it for
transmission inference in a human challenge study. Weighted selection represents
an advancement of the principle of effective selection in cases where a multi-
segment, multi-locus characterisation of selection exists. Accounting for within-
host selection I here inferred a range of bottleneck values with multiple challenge
subjects exhibiting founder populations of more than 100 virions. Conversely,
not accounting for within-host selection lead to substantially lower estimates of
bottleneck size with median bottlenecks here ranging from 2–33 virions.

The bottleneck sizes observed here are larger than what has previously been
found in natural influenza infection in humans (McCrone et al. 2018). This sug-
gests that infection by direct inoculation may differ in a quantitative manner
from natural infections. Previous work in ferrets have utilised barcoded virus to
demonstrate a significantly looser bottleneck associated with direct inoculation
than with natural infection (Varble et al. 2014); our results here suggest that a
similar effect may be found in humans. I note that where this previous calcula-
tion relied upon the use of a barcoded virus, our study has exploited the genetic
variation naturally present in the virus; use of artificially engineered viruses,
while providing a higher resolution picture of the transmission bottleneck, may
be ethically challenging in human hosts.

The existence of higher bottlenecks in challenge studies than in natural in-
fection would have consequences for what might be observed in the course of an
experiment. A higher bottleneck increases the chances of minor variant alleles
being preserved within the infecting population. Such alleles provide standing
variation within the viral population, in turn supplying the material upon which
selection can act. As such, phenomena such as resistance to antiviral drugs which
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might not be observed in natural infections might more readily be observed in
challenge studies if the corresponding alleles were to exist at low frequency in
the viral inoculum. Such a phenomenon implies that challenge studies grant a
conservative picture of what might happen during infection, undesirable events
such as resistance having an increased likelihood of occurrence.

I note that the design of the specific study analysed here gave rise to an
increased potential for evolutionary inference. In this study a human-adapted
influenza virus was passaged through egg and cell culture before being admin-
istered to human hosts. During the period of growth in culture medium the virus
gained in sequence diversity through the growth of adaptive mutations confer-
ring culture-specific adaptation. Following the inoculation of human hosts, these
variants were observed to revert, selection favouring the original human-adapted
strain. This process of adaptation, occurring at a few loci within the genome,
provided the genetic signals responsible for earlier inferences of reassortment rate
and, in this case, inferences of the transmission bottleneck. Such a strategy, of
inducing variation into the virus, might be of assistance in future studies of
evolutionary dynamics within influenza infections.

While it is tempting to propose a potential correlation between inoculation
dose and bottleneck size, our results were unable to confirm this. To further
validate this would require a multitude of study subjects receiving a range of
different inoculum dosages. Ultimately, whilst our method represents the best
possible population genetic model for the data at hand, the only way to conclus-
ively verify such a correlation would require the use of barcoded virus in human
challenge studies, something which has yet to be seen.

I here obtain bottleneck inferences forming narrow and wide distributions
and with estimates sampling the full range of inferrable bottleneck sizes. Such
results, which are more diverse in nature than those obtained for the ferret ex-
periment of a previous chapter, raise questions about the extent of the reliability
of my inference method in this context. I note that the wide distributions ob-
served for many of the individuals may be explained by an increasing degree of
unspecificity as the bottleneck size increases. Furthermore, some of the extreme
results may be explained by low coverage or lack of diversity, making inferences
prone to error. Regardless, for a few of the inferences, e.g. P5001 and P5002, the
method predicts either narrow or large bottlenecks, dependent upon the specific
haplotype reconstruction arrived at by the method. Further work is needed to
understand the underlying causes of these outcomes. As the method has been
thoroughly tested using simulated data, any unusual outcomes are likely to arise
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from a difference between the simulated data and the data obtained from an ac-
tual experiment. For example, sequencing errors may produce diversity artefacts
which are difficult to capture using an overdispersed multinomial. Additionally,
experimental data may derive from genotypes with very low frequencies, some-
thing which wasn’t explored in simulations; this may impact the optimisation of
qB. I note that gaining an increased understanding of the underlying optimisa-
tion procedure is challenging; the large dimensionality of the problem and the
use of multiple evaluation spaces (both full and partial haplotype space) make it
difficult to attribute a specific bottleneck inference to a certain genomic charac-
teristic in the population. The possibility of an oversight in the code might also
be considered, despite it proving robust to a broad range of previous testing.
Additional software may be required to disentangle the different components of
the model and to illuminate potential issues or options for improvement.

Finally I note that Sobel Leonard et al. (2016) predicted the presence of
selective bottlenecks during their analysis of data from experiment 1 of the
challenge study. In the previous chapter I was unable to reliably infer selection
for increased transmissibility on the basis of potentially limited reassortment in
the host animals. In this case, considering the direct inoculation of challenge
subjects with stock virus, I have assumed a high rate of reassortment in the
pre-transmission ‘host’, in line with experimental results from in vitro systems,
combined with a low rate of reassortment in the human host post-transmission.
Future work should aim to examine the possibility of selection for increased
transmissibility in this dataset, while perhaps conducting further validation of
the method’s performance under an effective selection regime.
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Chapter 7

Conclusion

In this thesis I have presented novel population genetic approaches to the in-
ference of viral transmission events on the basis of short-read sequence data.
Next-generation sequence data represents an inherent challenge to the inter-
pretation of population dynamics, providing only limited insights into the un-
derlying viral population. I first discussed approaches for the inference of full
length viral haplotypes from sets of processed short-read data, something I, and
previous authors, have referred to as partial haplotypes. I first considered an
exhaustive approach to haplotype inference, using here a set of simple rules to
construct a, generally large, set of haplotypes guaranteed to represent all the
available partial haplotypes. I then demonstrated a degree of degeneracy in
specifying a HIV population through maximum likelihood optimisation of hap-
lotype frequencies; where an exhaustive set of haplotypes are used, multiple
sets of inferred frequencies may be produced, each describing the partial haplo-
type observations equally well. Regardless, general trends were observed across
optimisations and the method outperformed a random approach to frequency
inference. Next, I employed haplotype reconstruction methods for the analysis
of an influenza B time-series dataset, illustrating here the ability of haplotype
methods to provide further insights than those available from conventional con-
sensus sequence methods. The advantages of haplotype methods are likely to be
of additional benefit in acute infections for which consensus sequence changes
are minimal or non-existent. Finally, I presented a minimal approach to hap-
lotype reconstruction, rooted in a simultaneous optimisation of haplotypes and
frequencies, and demonstrated its ability to reduce the number of haplotypes
given sparse partial haplotype data. Developing a maximum likelihood model
of viral transmission, I illustrated biases inherent to single-locus variant ap-
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proaches to transmission inference, here arising from a lack of accounting for
within-segment linkage effects. Lastly, I employed the transmission model for
the inference of bottleneck sizes from human influenza data, here obtaining gen-
erally narrow bottlenecks interspersed with occasionally larger inferences. This
supports previous findings of narrow bottlenecks in humans, albeit suggesting
infrequent exceptions to the rule.

Next, I present the statistical framework underlying my basic transmission
model, which was used throughout the thesis. This framework takes a prob-
abilistic approach, averaging over unobserved random variables resulting in a
likelihood function for the variables of interest, here bottleneck size and extent
of natural selection. The method is highly multi-dimensional, both at the level
of full and partial haplotypes, its foundation being based on an exhaustive set of
haplotypes. Evaluation using multivariate normal distributions ensures efficient
computation, comparing with discrete methods, whilst accounting for between-
haplotype correlations. I here thoroughly demonstrated the performance of the
method for transmission inference, showing the ability of the method to jointly
infer bottleneck size and extent of selection in transmission. I highlighted minor
biases, such as the inherent underestimation of bottleneck sizes in the presence of
noise, and, more importantly, identified severe biases arising from the neglect of
accounting for noise or selection. I also discussed the challenges of model selec-
tion in biological data, here presenting a framework of adaptive BIC in which I
employed a machine learning type approach for the evaluation of model selection
penalties. Finally, I compared my model to the current state-of-the-art single-
locus bottleneck inference algorithm of Sobel Leonard et al. Employing different
growth factors, representing the rate at which the founder population expands,
I obtained accurate bottleneck inferences for both the single- and multi-locus
methods under neutrality and a growth factor of unity. Conversely, for increas-
ing values of the growth factor, I observed substantial bottleneck overestimation
under the single-locus method, something not found with my method. This
demonstrates a high degree of flexibility within my framework for modelling a
range of growth processes.

I then extended my model, allowing for a more realistic description of within-
host growth processes, including the incorporation of selection for increased
within-host adaptation. I here demonstrated that neglecting within-host selec-
tion resulted in bottleneck inference biases similar to those observed when neg-
lecting selection for transmission; in order to separate the two effects of selection,
I performed an independent estimation of the extent of within-host selection on
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the basis of auxiliary time-series data. Considering drift, I observed that prop-
erly accounting for multiple rounds of within-host growth is important in the
case of small growth factors, but has diminishing returns for a growth factor
of 22, which is the default value employed in this thesis. Finally, I employed
my transmission inference framework to an experimental study in ferrets, here
accounting for within-host selection, resulting in narrow bottleneck inferences
and no evidence of selection for increased transmissibility. Representing the
first quantitative approach to bottleneck inference for this dataset, my results
provide a qualitatively different interpretation of the data, noting that previ-
ous investigations predicted both narrow and loose bottlenecks, as well as the
presence of selection.

Having established my transmission framework, I then explored limitations
to my model and potential strategies for circumventing these. For the inference
of selection I have previously assumed a large reassortment rate, allowing for
the treatment of individual gene segments as independent. This is an important
assumption, permitting the use of a single-segment haplotype model as opposed
to a multi-segment approach; an across-segment model results in large numbers
of potential haplotypes in all but the simplest cases, in turn making transmission
inference infeasible. Large reassortment rates have been demonstrated in model
animals, but have recently been found absent in humans. Erring on the side
of caution, I here assumed a lack of reassortment in large mammals in general,
including swine. Whilst the neutral model of my method could be applied in
cases of low reassortment, I have previously identified strong biases in bottleneck
inference from neglecting selection. As such, I developed an effective approach
for the estimation of within-host selection, in which across-segment linkage ef-
fects renders selection time-dependent, and, for the task of within-host selection
estimation, the effective selection is evaluated at the first two time points in the
recipient. Producing an estimate for effective within-host selection, I applied my
transmission model for the inference of bottleneck sizes in an experimental study
on herds of swine. I here observed generally narrow bottlenecks in the range of
1–8 virions, but with occasional inferences as large as 57 transmitted viruses.
This represents the first time a quantitative evaluation of transmission bottle-
necks in pigs have been carried out. As the dataset is unspecific with respect to
route of transmission, I computed bottleneck values for all transmission events
that may potentially have taken place. Additionally, I also investigated methods
for the inference of route of transmission networks, aiming to identify genuine
transmission links in the dataset. I posited that large bottlenecks might be good
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indicators of transmission, and thus identified the most likely transmission links
in the dataset, of which only one transmission suggested a strong link. Com-
paring with existing methods of route of transmission inference, I found that
estimations due to consensus and shared variant methods were either unspecific
or prone to error due to narrow bottlenecks. Finally, I examined a rapid, sub-
consensus minimum genetic distance approach, which showed good agreement
with the results obtained from the full examination of transmission, suggest-
ing that this might make for a useful preliminary investigation tool for route of
transmission inference.

As a final frontier to transmission inference, I applied my model to an in-
fluenza transmission study in human challenge subjects. With model animals
being limited in their ability to represent natural infection in humans, human
challenge studies, wherein study subjects are directly inoculated with a patho-
gen, are of increasing value and use. Based on a multi-segment characterisation
of a within-host fitness landscape, I presented an alternative approach for com-
puting effective selection, here rooted in performing a weighted average across
haplotypes. Assuming the multi-segment characterisation is well specified, this
provides an accurate and mathematically aesthetic alternative to the effective
selection approach mentioned above, not at least because the weighted approach
is evaluated at a single time point only. Employing an estimate of within-host
selection, I inferred a range of bottleneck sizes in the human challenge study,
with multiple subjects exhibiting bottlenecks of more than a hundred virions.
Whilst the majority of the bottlenecks are still narrow, I here observed a higher
proportion of large bottlenecks than found by McCrone et al., suggesting that
infection by direct inoculation differs quantitatively from natural infection. Des-
pite some signatures, I was unable to confirm a correlation between inoculation
dosage and bottleneck size; differently designed studies or the use of barcoded
virus might be required to verify this.

Reflecting on the project as a whole, I note that my inference framework
is significantly more advanced than existing methods, considering a range of
confounding factors such as noise, multiple sources of selection and within-host
growth; an important finding from this thesis is the identification of a range
of sources that may potentially bias bottleneck inference. As shown here, it
may not always be possible to account for all of these factors, for instance in
cases where no auxiliary time-series data exits for the estimation of within-host
selection. Rather than discounting methods not considering these confounding
factors, I instead urge the scientific community to reflect on the possible biases

194



Conclusion

encountered when using simpler algorithms for bottleneck inference. Regardless,
I note that even in cases where the more advanced aspects of my model may be
inapplicable, the neutral version is still remarkably fast, not requiring adaptive
BIC, providing a useful alternative to existing single-locus methods which do not
account for haplotype structure and noise. Similarly, upon further development
and scrutiny, our minimal haplotype transmission method is a likely candidate
for becoming the state-of-the-art approach to neutral transmission.

My transmission model has a few drawbacks, primarily related to the ex-
haustive nature of the haplotype reconstruction method used within. When
short-read data is sparse, the exhaustive method generates haplotypes in the
thousands. As the method relies on repeated computation of matrix multiplic-
ations of dimension equal to the number of haplotypes, this is problematic. I
here employed a filtering algorithm, removing haplotypes of increasing frequency
until less than a hundred haplotypes remain. This number was chosen arbitrar-
ily, although rooted in a substantial drop in computational efficiency when the
number of haplotypes were in excess of this. Additionally, when haplotype re-
construction resulted in a large number of haplotypes, the optimisation of the
pre-transmission population was subject to being underspecified; in the extreme
case a total of 200 parameters needed fitting. Some of the spurious results re-
ported here, e.g. unrealistically large bottleneck inferences, are likely to be due
to a misrepresentation of the pre-transmission population. Finally, a large di-
mensionality might lead to errors of machine precision when a large array of
small numbers are multiplied together. Ultimately, there is a need for a min-
imal approach to haplotype inference guaranteeing that all partial haplotypes
are represented by a full haplotype; a requirement which our current minimal
haplotype transmission method does not meet. Mathematically, this is known
as the set cover problem, which is an NP-complete problem. There exists greedy
algorithms for this problem, however, these aren’t guaranteed to produce a set
of haplotypes significantly smaller than those produced by our exhaustive hap-
lotype reconstruction method. Conclusively, this may be a very difficult issue
to address. Another important drawback is the adaptive BIC inference method.
Whilst integral for accurate inference of selection, the optimisation of BIC pen-
alties is a time consuming process as it requires the generation of a significant
amount of simulated data.

Overall, I have identified generally narrow bottlenecks in influenza transmis-
sion events, suggesting that this presents a general picture in mammals. From
simulated data I noted a difficulty in identifying selection for transmission in
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the presence of narrow bottlenecks. Given estimates of bottlenecks generally
less than ten virions, it is likely that inference of selection in natural influenza
transmission is close to being an impossible task. I note that there is a poten-
tial for inferring selection in the human challenge study, for which a handful of
bottlenecks were of considerable magnitude. Future work should explore this
possibility.

I have developed two measures of effective selection, aiming to estimate
within-host selection in the presence of reassortment. I note that, whilst math-
ematically sound, there may be cases where these inferences cannot be trusted.
In particular, the methods rely on approximate constancy of linkage disequilib-
rium during short time intervals. Given that I evaluate effective selection at
the first available time points after transmission, it is possible that this doesn’t
correspond well with the selection present at the founding of the infection. Re-
gardless, I believe the currently proposed methods provide the best possible
approach to an otherwise impossible problem. In conclusion, bottleneck infer-
ences using effective selection should be considered as a whole, rather than by
taking individual inferences at face value.

Finally I note that my method lacks the ability to account for mutation.
Currently I filter away partial haplotypes observed only after transmission, con-
sidering these to have arisen de novo. Whilst generally unlikely to impact the
bottleneck inference appreciably, future work could consider means of incorpor-
ating mutation into the framework. Lastly, I note that whilst my method has
been developed for the inference of influenza transmission events, the majority
of the algorithm is general in nature. The main aspect linking the project to
flu transmission is the assumption of a segmented genome, from which inference
power arises. Potentially, given appreciable homologous recombination capable
of breaking up linkage, this assumption could be reformulated for different viral
species. At the very core of my method lies the compound distribution approach.
I consider this to be an extremely powerful method and I believe that it warrants
further use in studies where marginalisation over unknown quantities is a key
objective.
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Appendix A

Discrete Compound Solution

A.1 Introduction

Given a resulting mean vector, µ, and a covariance matrix, Σ, arising from a
series of compounding events, we may use these moments for computing like-
lihoods under a multivariate normal scheme. Alternatively, under certain cir-
cumstances, it may be possible to revert to a discretised solution by associating
the resulting moments with the mean and variance of a Dirichlet-multinomial
distribution. Here I first present a derivation of the parameter α describing
the Dirichlet-multinomial compound solution, noting potential limitations with
regards to discretisation. Next, I perform a derivation of the shape parameters
α and β of the beta-binomial distribution, exploring here in detail discretisation
constraints in the one-dimensional setting.

A.2 Discrete Solution - Multi-Dimensional Set-

ting

The mean and variance of a Dirichlet-multinomial distribution are related to the
parameter α as follows:

µ = n
α

α0

(A.1)

and

Σ = n

(
Diag

(
α

α0

)
−
(
α

α0

)(
α

α0

)†)(
n+ α0

1 + α0

)
(A.2)
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A.2. Multi-Dimensional Solution Discrete Compound Solution

where α0 =
∑k

i αi.
From the equation for the mean we have that α = α0µ

n
, which we may

substitute into the equation for the variance:

Σ = n

(
Diag

(µ
n

)
−
(µ
n

)(µ
n

)†)(n+ α0

1 + α0

)
=

(
Diag (µ)− 1

n
µµ†

)(
n+ α0

1 + α0

) (A.3)

Now defining M̃(n,µ) =
(
Diag (µ)− 1

n
µµ†

)
, the matrix M̃ is invertible if

Det(M̃) 6= 0. Given a k-dimensional problem, i.e. µ = {µ1, . . . , µk}, then

Det(M̃) =

(
k∏
i=1

µi

)
1

nk

[
−

k∑
i=1

µin
k−1 + nk

]
(A.4)

so Det(M̃) = 0 is true only if
∑k

i=1 µi = n. Now, for k dimensions, this is
always true.

Given that the mean can be described fully by k − 1 dimensions, i.e. the
kth dimension being µk = n−

∑k−1
i=1 µi, we can reduce the dimensionality of the

problem and as a result the determinant will be non-zero for all cases. As such,
M̃ is invertible.

Having found M̃−1, we can rewrite the equation for the covariance matrix as
follows:

Σ = M̃(n,µ)

(
n+ α0

1 + α0

)
M̃−1(n,µ)Σ =

(
n+ α0

1 + α0

)
Ik−1

(A.5)

where Ik−1 is the k − 1 dimensional identity matrix.

Defining Q = M̃−1(n,µ)Σ, then Q must be diagonal in some vector q = {qi}.
In fact, all the qi must be identical, which introduces constraints on µ and
Σ, these constraints arising from the Dirichlet-multinomial being a more rigid
distribution than e.g. the multivariate normal distribution. In turn, it is only
possible to generate a discretised solution for a specific category of µ and Σ, this
aspect being explored further in the one-dimensional setting below.

As such, with out loss of generality, we may compute α0 from Q1,1:
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Discrete Compound Solution A.3. One-Dimensional Solution

Q1,1 = q1 =

(
n+ α0

1 + α0

)
q1(1 + α0) = n+ α0

α0(1− q1) = q1 − n

α0 =
n− q1

q1 − 1

(A.6)

And substituting into the equation for the mean (Equation A.1) yields

α =
n− q1

n(q1 − 1)
µ (A.7)

A.3 Discrete Solution - One-Dimensional Setting

I here attempt to derive and analyse a discrete solution in one dimension. In
this case we have a mean µ and a variance σ2 and aim to derive parameters α
and β describing a beta-binomial distribution with a fixed n.

A.3.1 Derivation of α and β

For the beta-binomial distribution we know that

µ =
nα

α + β
(A.8)

and

σ2 =
nαβ(α + β + n)

(α + β)2(α + β + 1)
(A.9)

Solving the first equation for β gives

β =
α(n− µ)

µ
(A.10)

Substituting this into the equation for the variance and simplifying gives
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A.3. One-Dimensional Solution Discrete Compound Solution

σ2 =
nαβ(α + β + n)

(α + β)2(α + β + 1)

=
nαα(n−µ)

µ
(α + α(n−µ)

µ
+ n)

(α + α(n−µ)
µ

)2(α + α(n−µ)
µ

+ 1)

=
nα2 (n−µ)

µ
(αµ+α(n−µ)+µn

µ
)

(αµ+α(n−µ)
µ

)2(αµ+α(n−µ)+µ
µ

)

=
nα2 (n−µ)

µ
n(α+µ)

µ

(αn
µ

)2(αn+µ
µ

)

=
n2α2 (n−µ)(α+µ)

µ2

(αn)2(αn+µ
µ3

)

=
(n− µ)(α + µ)

(αn+µ
µ

)

=
µ(n− µ)(α + µ)

αn+ µ

(A.11)

We may rearrange this for α

αn+ µ =
µ(n− µ)(α + µ)

σ2

αn+ µ =
µ(nα− µα + nµ− µ2)

σ2

αn =
µ(nα− µα)

σ2

µ(nµ− µ2)

σ2
− µ

αn+
µ(µα− nα)

σ2
=
µ(nµ− µ2)

σ2
− µ

αnσ2 + αµ(µ− n)

σ2
=
µ(nµ− µ2)− µσ2

σ2

α(nσ2 + µ(µ− n)) = µ(nµ− µ2)− µσ2

α =
µ(nµ− µ2)− µσ2

nσ2 + µ(µ− n)

α =
µ2(n− µ)− µσ2

nσ2 + µ(µ− n)

(A.12)

or more expressively,

α =
−µ3 + µ2n− µσ2

µ2 − µn+ nσ2
(A.13)

which in turns gives a β of
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Figure A.1. Plots of α and β as a function of the compound variance σ2 under a
beta-binomial parameterisation, here shown with µ = 3 and n = 10. A vertical
asymptote is observed at σ2 = 2.1, with horizontal asymptotes occurring for α, β < 0.
Intersection with the x-axis is observed at σ2 = 21 for both α and β.

β =
α(n− µ)

µ

β =
−µ3 + µ2n− µσ2

µ2 − µn+ nσ2

(n− µ)

µ

β =
(µ− n)(µ2 − µn+ σ2)

µ2 − µn+ nσ2

(A.14)

A.3.2 Limitations on the Variance

We immediately note that α and β have the same denominator. This denomin-
ator gives rise to a vertical asymptote in α and β at σ2 = µn−µ2

n
. As such, this

equation sets a limit on how small the variance can be for the parameterisation
of α and β to be sensible (the regime wherein they take finite, positive values).
Therefore we cannot necessarily convert any mean and variance into parameters
for a beta-binomial; some restrictions apply. A graphical depiction of the ver-
tical asymptote is shown in Figure A.1 for µ = 3 and n = 10. We here note that
the asymptote is at µn−µ2

n
= 2.1 in this specific case.

Additionally we note that α has a horizontal asymptote at −µ
n

whilst β has
an asymptote at −µ(n−µ)

nµ
= −(n−µ)

n
. We note that both asymptotes lie below the
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A.3. One-Dimensional Solution Discrete Compound Solution

x-axis provided that µ < n, which should in general be true for the compound
solutions we consider. The horizontal asymptotes for µ = 3 and n = 10 can be
seen in Figure A.1. We may also deduce the points at which the graphs for α
and β cross the x-axis. For α, this occurs at

α =
−µ3 + µ2n− µσ2

µ2 − µn+ nσ2
= 0

0 = −µ3 + µ2n− µσ2

σ2 = µn− µ2 = µ(n− µ)

(A.15)

whilst for β it occurs at

β =
(µ− n)(µ2 − µn+ σ2)

µ2 − µn+ nσ2
= 0

0 = (µ− n)(µ2 − µn+ σ2)

0 = µ3 − µ2n+ µσ2 − µ2n+ µn2 − nσ2

0 = µ3 − 2µ2n+ µn2 − (n− µ)σ2

σ2 =
µ3 − 2µ2n+ µn2

n− µ

σ2 =
µ(µ2 − 2µn+ n2)

n− µ

σ2 =
µ(n− µ)2

n− µ
σ2 = µ(n− µ)

(A.16)

i.e. the same intersect as α. For µ = 3 and n = 10 the intersect is at σ2 = 21 as
can be seen in Figure A.1.

As such, we have defined lower and upper bounds of the variance which
allows for positive α and β, namely σ2 ∈

(
µn−µ2
n

, µ(n− µ)
)
. Variance-mean

configurations outside this range represents compound solutions that cannot be
represented using a discrete parameterisation.
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Appendix B

Examination of One-Dimensional
Discrete Solution

B.1 Introduction

In Appendix A I derived a one-dimensional beta-binomial framework for evalu-
ating compound solutions defined by a mean µ and variance σ2. In this appendix
I employ the solution in a simple transmission setup, comparing its performance
to a Gaussian approach.

B.2 Transmission Model and Compound Solution

We employ a transmission model similar to that of Figure 3.2, the only difference
being that we now consider a one-dimensional problem. To this extend the
likelihood framework of Chapter 3 is unchanged, differences occurring only in the
compound solutions. For a purely neutral setup, the one-dimensional solution
has mean

E[xA] = NAµB (B.1)

and variance

var(xA) = NA
(
α + (NA − α)γ

)
µB(1− µB) +NA

(
NA − α

)
δ
(
σB
)2 (B.2)

where γ =
(
NT+NG−1
NTNG

)
, δ = NTNG−NT−NG+1

NTNG and α = NA+C
1+C

as previously.
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B.3. Comparison of Beta-Bin and Gaussian Examination of Discrete Solution

These expressions may be straightforwardly derived by following an approach
similar to that described in Appendix C. Alternatively, the expressions are read-
ily obtained simply by comparing with the final two equations of Appendix C.

Under selection for transmission the compound solution has mean

E[xA] = NAST
(
µB
)

(B.3)

and variance

var(xA) = NA
(
α + (NA − α)γ

)
ST (µB)

(
1− ST (µB)

)
+NA

(
NA − α

)
δ

((
ST
)′∣∣∣

µB

)2 (
σB
)2

(B.4)

with γ, δ and α as above and with prime (′) denoting differentiation with respect
to qB in

(
ST (qB)

)
=

wT qB

wT qB + (1− qB)
(B.5)

where wT is the fitness effect of harbouring the haplotype corresponding to the
frequency qB. Fitnesses are evaluated in a manner similar to that outlined in
Section 3.2.4.1.

These expressions may straightforwardly be derived by following an approach
similar to that described in Chapter 3, or simply by comparison with Equa-
tions 3.29 and 3.30.

B.3 Comparison of Beta-Binomial and Gaussian

Solutions

In the following we consider a number of different transmission scenarios and
compare the beta-binomial solution (Appendix A) to the Gaussian solution.

B.3.1 Neutral Transmission

First we consider three neutral transmission events with varying parameters of
transmission. In the first instance we consider the transmission of a population
with before frequency qB = 0.3 under a bottleneck of size NT = 20. The effective
growth size and sampling depth are set to NG = NA = 100 whilst the extend of
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Figure B.1. Likelihood profile for the true distribution, the normal distribution and
the beta-binomial distribution for a transmission with qB = 0.3 and NT = 20. The
sampling depths are NG = NA = 100 and the extent of noise is C = 200. For the
compound solution we used C inf = C, µB = qB and

(
σB
)2

= 10−6.

noise is C = 200. For the compound solution we employ an inferred C-value of
C inf = C, a mean of µB = qB and a variance of

(
σB
)2

= 10−6, i.e. we are very
certain in our inference of the before population. The likelihood profiles for the
true distribution, the normal distribution and the beta-binomial distribution are
shown in Figure B.1. The true and beta-binomial distributions have been plotted
as continuous curves in order to improve readability and facilitate comparison.
We here observe that the three distributions are very similar, but that the beta-
binomial approach is marginally better at approximating the true distribution
than the normal method is. This is because the beta-binomial distribution takes
into account skewness, whereas the normal distribution is entirely symmetric.

In Figure B.2 we consider an identical setup, except that the true and inferred
before frequencies are changed to qB = µB = 0.1. As expected, the three
distributions are now shifted towards xA = 0. The true distribution displays
a peak around xA = 6 and a spike at xA = 0. This may be understood as
an increased probability of extinction when the before population lies near the
boundary. The normal distribution does not account for this, having a peak at
xA = 10. The beta-binomial distribution attempts to account for this behaviour,
having a peak at around xA = 3. Regardless, both distribution perform poorly
near the boundaries.
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Figure B.2. Likelihood profile for the true distribution, the normal distribution and
the beta-binomial distribution for a transmission with qB = 0.1 and NT = 20. The
sampling depths are NG = NA = 100 and the extent of noise is C = 200. For the
compound solution we used C inf = C, µB = qB and

(
σB
)2

= 10−6.

In Figure B.3 we consider a setup identical to that of Figure B.1, but here we
alter the uncertainty in our inference of µB, increasing the variance to

(
σB
)2

=

0.01. Here, the normal distribution becomes distinctly wider, but keeps the
mean fixed. Conversely, the beta-binomial distribution is shifted considerably
to the left. This may be explained by the beta-binomial distribution translating
variance into skewness. This suggests that the beta-binomial method only works
under the assumption of complete knowledge of µB.

B.3.2 Selection for Transmission

Finally we examine a case of a transmission event governed by selection for
transmission. Here we consider the transmission of a population with before
frequency qB = 0.3 under a bottleneck of sizeNT = 20. We here employ selective
pressure of magnitude σT = 2, i.e. a shift in frequency towards xA = NA. The
effective growth size and sampling depth are set to NG = NA = 100 whilst the
extend of noise is C = 200. For the compound solution we employ an inferred C-
value of C inf = C, a mean of µB = qB, a variance of

(
σB
)2

= 10−6 and inferred
selection of σT,inf = σT . The likelihood profiles are shown in Figure B.4. As
expected, the three distributions are shifted towards xA = 100. We here notice
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Figure B.3. Likelihood profile for the true distribution, the normal distribution and
the beta-binomial distribution for a transmission with qB = 0.3 and NT = 20. The
sampling depths are NG = NA = 100 and the extent of noise is C = 200. For the
compound solution we used C inf = C, µB = qB and

(
σB
)2

= 0.01.

that the beta-binomial method slightly outperforms the Gaussian approach as
it is able to account for skewness.

B.4 Summary

In conclusion, I observe that the beta-binomial method has some distinct ad-
vantages over the Gaussian approach, primarily due to its ability to correctly
account for skewness. However, a major flaw is the inability of the beta-binomial
method to account for uncertainty in the inference of µB. Furthermore, as I have
shown in Appendix A, the beta-binomial discretisation framework is only valid
for a certain regime of µ and σ (not to be confused with µB and σB). As a
result, I have not explored discrete approaches further.
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Figure B.4. Likelihood profile for the true distribution, the normal distribution and
the beta-binomial distribution for a transmission with qB = 0.3, NT = 20 and
σT = 2. The sampling depths are NG = NA = 100 and the extent of noise is
C = 200. For the compound solution we used C inf = C, µB = qB,

(
σB
)2

= 10−6 and
σT,inf = σT .
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Appendix C

Compound Solution for Basic
Model Under Neutrality

C.1 Introduction

The resulting mean and variance of the likelihood expression defined in Equa-
tion 3.16 may be derived in the absence of selection. This may be regarded as
a special case of Equations 3.29 and 3.30. Under neutrality the founder popula-
tions has mean

E[qF |qB] = qB (C.1)

and variance
var[qF |qB] =

1

NT
M(qB) (C.2)

with the remaining conditional moments as given in Chapter 3.

C.2 Derivation

The marginalisation over qB results in a mean of

E[qF ] = E[E[qF |qB]] = E[qB] = µB (C.3)
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whilst the law of total variance yields

var(qF ) = E[var[qF |qB]] + var[E[qF |qB]]

= E
[

1

NT
M(qB)

]
+ var

[
qB
]

=
1

NT
M(E[qB]) +

(
1− 1

NT

)
var[qB]

=
1

NT
M(µB) +

(
1− 1

NT

)
ΣB

(C.4)

Marginalisation over qF yields a mean of

E[qA] = E[E[qA|qF ]] = E[qF ] = µB (C.5)

and variance

var(qA) = E[var[qA|qF ]] + var[E[qA|qF ]]

= E
[

1

NG

(
Diag(qF )− qF (qF )†

)]
+ var[qF ]

=
1

NG

(
Diag(E[qF ])− E[qF ]E[qF ]†

)
+

(
1− 1

NG

)
var[qF ]

=
1

NG
M
(
µB
)

+

(
1− 1

NG

)(
1

NT
M(µB) +

(
1− 1

NT

)
ΣB

)
=
NT +NG − 1

NTNG
M
(
µB
)

+
NTNG −NT −NT + 1

NTNG
ΣB

≡ γM
(
µB
)

+ δΣB

(C.6)

where in the last step we defined γ =
(
NT+NG−1
NTNG

)
and δ = NTNG−NT−NG+1

NTNG .

Treating the integral over qA in a similar manner, we obtain by the law of
total expectation

E[xA] = E[E[xA|qA]] = E[NAqA] = NAE[qA] = NAµB (C.7)

Analogously, the law of total variance yields
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var(xA) = E[var[xA|qA]] + var[E[xA|qA]]

= E
[
αNAM

(
qA
)]

+ var[NAqA]

= αNA
(
Diag(E

[
qA
]
− E

[
qA
]
E
[
qA
]†)

+NA
(
NA − α

)
var[qA]

= αNAM(µB) +NA
(
NA − α

) (
γM

(
µB
)

+ δΣB
)

= NA
(
α + (NA − α)γ

)
M(µB) +NA

(
NA − α

)
δΣB

(C.8)

These equations replace Equations 3.29 and 3.30 in the absence of selection.
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Appendix D

Derivation of Compound
Distributions for N-Step Drift
Process

D.1 Introduction

This considers the derivation of compound distributions for a general N -step
drift process in the presence of selection for A) within-host adaptation and B)
both transmission and within-host evolution. This appendix follows on from
Section 4.2.3.

D.2 Selection for Within-Host Adaptation

Deriving compound distributions under selection for within-host adaptation is
a little more challenging. Two approaches can be taken: A) We assume that
selection only acts after all the growth steps, i.e. it acts in the qA compound.
This can straightforwardly be derived by combining results from Section 4.2.2
with the coefficients γn and δn. B) We assume that selection acts once every
12 hours of growth, i.e. we have interleaving drift and selection processes:
qF → qG1 → SG(qG1) → qG2 → SG(qG2) → . . .. In the below we use the
latter approach to derive compound solutions in the absence of selection for
transmission.

231



D.2. Selection for Within-Host Adaptation N -Step Drift Process

We now outline the conditional distributions required for computing the
compound solutions. As previously we have a founder population defined by

qF ∼ N
(
qB, 1

NTM(qB)
)

(D.1)

where N denotes the multivariate normal distribution.
First we have a round of growth during which no selection applies:

qG1 ∼ N
(
qF , 1

NG1
M(qF )

)
= N

(
qF , 1

λNTM(qF )
)

(D.2)

where we defined NG1 = λNT .
Next we have a growth round during which selection acts (prior to growth):

qG2 ∼ N
(
SG(qG1), 1

NG2
M(SG(qG1))

)
= N

(
SG(qG1), 1

λ2NTM(SG(qG1))
)
(D.3)

where SG is in 12-hour units and NG2 = λ2NT .
In the same manner, every subsequent growth round will incorporate both

growth and selection with selection acting first. In general we have that

qGn ∼ N
(
SG(qGn−1), 1

NGnM(SG(qGn−1))
)

= N
(
SG(qGn−1), 1

λnNTM(SG(qGn−1))
) (D.4)

with NGn = λnNT for n > 1.
Assuming N steps in the growth process (e.g. if one step = 12 hours, then

N = 2 steps would correspond to a 24 hour difference between donor and recip-
ient sampling times), we have

qA ∼ N
(
SG(qGN−1), 1

NGN
M(SG(qGN−1))

)
(D.5)

Finally, as always, the post-transmission sampling step is defined by

xA,Pi ∼ N
(
NA
i TiS

G(qA), αiN
A
i M(TiS

G(qA)
)

(D.6)

where αi =
NA
i +C

1+C
. Note that selection acts prior to sampling here. This ensures

that there are equally many drift and selection steps during viral growth.
Turning now to the evaluation of compound distributions, the marginalisa-

tion over qB leads to
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E[qF ] = E[E[qF |qB]] = E[qB] = µB (D.7)

and,

var(qF ) = E[var[qF |qB]] + var[E[qF |qB]]

= E
[

1

NT
M(qB)

]
+ var

[
qB
]

=
1

NT
M(E[qB]) +

(
1− 1

NT

)
var[qB]

=
1

NT
M(µB) +

(
1− 1

NT

)
ΣB

= γ0M(µB) + δ0ΣB

(D.8)

where in the last step we defined γ0 = 1
NT and δ0 =

(
1− 1

NT

)
(for reasons that

will become clear later).
Next, for the qF integral, the law of total expectation yields

E[qG1 ] = E[E[qG1|qF ]] = E[qF ] = µB (D.9)

Next, under the law of total variance,

var(qG1) = E[var[qG1|qF ]] + var[E[qG1|qF ]]

= E
[

1

λNT

(
Diag(qF )− qF (qF )†

)]
+ var[qF ]

=
1

λNT

(
Diag(E[qF ])− E[qF ]E[qF ]†

)
+

(
1− 1

λNT

)
var[qF ]

=
1

λNT
M
(
µB
)

+

(
1− 1

λNT

)(
γ0M(µB) + δ0ΣB

)
=

(
1

λNT
+

(
1− 1

λNT

)
γ0

)
M
(
µB
)

+

(
1− 1

λNT

)
δ0ΣB

≡ γ1,1M
(
µB
)

+ δ1ΣB

(D.10)

where in the last step we defined γ1,1 = 1
λNT +

(
1− 1

λNT

)
γ0 and δ1 =

(
1− 1

λNT

)
δ0

(to become clear later).
Continuing with the marginalisation over qG1 :

E[qG2 ] = E[E[qG2|qG1 ]] = E[SG(qG1)] ≈ SG(E[qG1 ]) = SG(µB) (D.11)
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where the approximation in the penultimate step was due to the first-order
second-moment method.

Next, under the law of total variance,

var(qG2) = E[var[qG2|qG1 ]] + var[E[qG2|qG1 ]]

= E
[

1

λ2NT

(
Diag(SG(qG1))− SG(qG1)(SG(qG1))†

)]
+ var[SG(qG1)]

=
1

λ2NT

(
Diag(E[SG(qG1)])− E[SG(qG1)]E[SG(qG1)]†

)
+

(
1− 1

λ2NT

)
var[SG(qG1)]

=
1

λ2NT
M
(
E[SG(qG1)]

)
+

(
1− 1

λ2NT

)
var[SG(qG1)]

≈ 1

λ2NT
M
(
SG(E[qG1 ])

)
+

(
1− 1

λ2NT

)(
DSG

∣∣
E[qG1 ]

)
var
[
qG1
] (

DSG
∣∣
E[qG1 ]

)†
=

1

λ2NT
M
(
SG(µB)

)
+

(
1− 1

λ2NT

)(
DSG

∣∣
µB

) (
γ1,1M(µB)

+δ1ΣB
) (

DSG
∣∣
µB

)†
=

1

λ2NT
M
(
SG(µB)

)
+

(
1− 1

λ2NT

)
γ1,1

(
DSG

∣∣
µB

)
M(µB)

(
DSG

∣∣
µB

)†
+

(
1− 1

λ2NT

)
δ1

(
DSG

∣∣
µB

)
ΣB
(
DSG

∣∣
µB

)†
= γ2,2M

(
SG(µB)

)
+ γ2,1

(
DSG

∣∣
µB

)
M(µB)

(
DSG

∣∣
µB

)†
+ δ2

(
DSG

∣∣
µB

)
ΣB
(
DSG

∣∣
µB

)†
(D.12)

where we defined γ2,1 =
(
1− 1

λ2NT

)
γ1,1, γ2,2 = 1

λ2NT and δ2 =
(
1− 1

λ2NT

)
δ1.

We notice that we can define the mean and variance of an arbitrary time
step n as

E[qGn ] = (SG)n−1(µB) (D.13)

and
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var(qGn) = δn

(
DSG

∣∣
µB

)n−1

ΣB

((
DSG

∣∣
µB

)†)n−1

+
n∑
j=1

γn,j

(
DSG

∣∣
µB

)n−j
M
(
(SG)j−1(µB)

)((
DSG

∣∣
µB

)†)n−j
(D.14)

where (SG)k(µB) denotes k applications of SG, e.g.

(SG)3(µB) = SG(SG(SG(µB))) 6= (SG(µB))3 (D.15)

and
(
DSG

∣∣
µB

)k
describes the product of k Jacobian matrices,

(
DSG

∣∣
µB

)k
=

k∏
j=1

(
DSG

∣∣
(SG)k−j(µB)

)
(D.16)

take for instance

(
DSG

∣∣
µB

)3

=
(
DSG

∣∣
(SG)2(µB)

)(
DSG

∣∣
(SG)(µB)

)(
DSG

∣∣
µB

)
(D.17)

We define (SG)0(µB) = µB and
(
DSG

∣∣
µB

)0

= 1 where 1 is the identity
matrix.

The coefficients γn,j and δn obey the recurrence relations:

γn,j =


(
1− 1

λnNt

)
γn−1,j, if j < n

1
λnNT , if j = n

δn =

(
1− 1

λnN t

)
δn−1 (D.18)

for n > 1 with γ1,1 = 1
λNT +

(
1− 1

λNT

)
1
NT and δ1 =

(
1− 1

λNT

) (
1− 1

NT

)
.

The marginalisation over qA may be performed in a manner similar to that
employed in deriving Equations 4.6 and 4.7.
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D.3 Selection for Transmission and Within-Host

Adaptation

In this section we consider selection both for increased transmissibility and for
within-host adaptation. First we outline the conditional distributions required
for computing the compound solutions. Here we have a founder population
characterised by selection for transmission:

qF ∼ N
(
ST (qB), 1

NTM(ST (qB))
)

(D.19)

where N denotes the multivariate normal distribution.

In terms of viral growth, we first have a round of expansion during which no
selection applies:

qG1 ∼ N
(
qF , 1

NG1
M(qF )

)
= N

(
qF , 1

λNTM(qF )
)

(D.20)

where we defined NG1 = λNT .

Next we have a growth round during which selection acts (prior to growth):

qG2 ∼ N
(
SG(qG1), 1

NG2
M(SG(qG1))

)
= N

(
SG(qG1), 1

λ2NTM(SG(qG1))
)

(D.21)
where SG is in 12-hour units and NG2 = λ2NT .

In the same manner, every subsequent growth round will incorporate both
growth and selection with selection acting first. In general we have that

qGn ∼ N
(
SG(qGn−1), 1

NGnM(SG(qGn−1))
)

= N
(
SG(qGn−1), 1

λnNTM(SG(qGn−1))
) (D.22)

with NGn = λnNT for n > 1.

Assuming N steps in the growth process (e.g. if one step = 12 hours, then
N = 2 steps would correspond to a 24 hour difference between donor and recip-
ient sampling times), we have

qA ∼ N
(
SG(qGN−1), 1

NGN
M(SG(qGN−1))

)
(D.23)

236



N -Step Drift Process D.3. Selection for Transmission and WH Adaptation

Finally, as always, the post-transmission sampling step is defined by

xA,Pi ∼ N
(
NA
i TiS

G(qA), αiN
A
i M(TiS

G(qA)
)

(D.24)

where αi =
NA
i +C

1+C
. Note that selection acts prior to sampling here. This ensures

that there are equally many drift and selection steps during viral growth.

Turning now to the evaluation of compound distributions, the marginalisa-
tion over qB leads to

E[qF ] = E[E[qF |qB]] = E[ST (qB)] ≈ ST (E[qB]) = ST (µB) (D.25)

where in the penultimate step we used the first-order second-moment approxim-
ation to a vector function acting on a random variable. The law of total variance
yields

var(qF ) = E[var[qF |qB]] + var[E[qF |qB]]

= E
[

1

NT
M(ST (qB))

]
+ var

[
ST (qB)

]
=

1

NT
M(E[ST (qB)]) +

(
1− 1

NT

)
var[ST (qB)]

≈ 1

NT
M(ST (E[qB])) +

(
1− 1

NT

)(
DST

∣∣
E[qB ]

)
var[qB]

(
DST

∣∣
E[qB ]

)†
=

1

NT
M(ST (µB)) +

(
1− 1

NT

)(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
= γ0M(ST (µB)) + δ0

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(D.26)

where in the last step we defined γ0 = 1
NT and δ0 =

(
1− 1

NT

)
. We also note that

(DS)ji = ∂Si
∂qj

is the Jacobian matrix arising from the first-order second-moment
approximation.

Next, for the qF integral, the law of total expectation yields

E[qG1 ] = E[E[qG1|qF ]] = E[qF ] = ST (µB) (D.27)

whilst the law of total variance gives
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var(qG1) = E[var[qG1|qF ]] + var[E[qG1 |qF ]]

= E
[

1

λNT

(
Diag(qF )− qF (qF )†

)]
+ var[qF ]

=
1

λNT

(
Diag(E[qF ])− E[qF ]E[qF ]†

)
+

(
1− 1

λNT

)
var[qF ]

=
1

λNT
M
(
ST (µB)

)
+

(
1− 1

λNT

)(
γ0M(ST (µB))

+δ0

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)
=

(
1

λNT
+

(
1− 1

λNT

)
γ0

)
M
(
ST (µB)

)
+

(
1− 1

λNT

)
δ0

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
≡ γ1,1M

(
ST (µB)

)
+ δ1

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(D.28)

where in the last step we defined γ1,1 = 1
λNT +

(
1− 1

λNT

)
γ0 and δ1 =

(
1− 1

λNT

)
δ0

(to become clear later).

Continuing with the marginalisation over qG1 :

E[qG2 ] = E[E[qG2|qG1 ]] = E[SG(qG1)] ≈ SG(E[qG1 ]) = SG(ST (µB)) (D.29)

where the approximation in the penultimate step was due to the first-order
second-moment method.

Next, under the law of total variance,

var(qG2) = E[var[qG2|qG1 ]] + var[E[qG2|qG1 ]]

= E
[

1

λ2NT

(
Diag(SG(qG1))− SG(qG1)(SG(qG1))†

)]
+ var[SG(qG1)]

=
1

λ2NT

(
Diag(E[SG(qG1)])− E[SG(qG1)]E[SG(qG1)]†

)
+

(
1− 1

λ2NT

)
var[SG(qG1)]

=
1

λ2NT
M
(
E[SG(qG1)]

)
+

(
1− 1

λ2NT

)
var[SG(qG1)]

(D.30)
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≈ 1

λ2NT
M
(
SG(E[qG1 ])

)
+

(
1− 1

λ2NT

)(
DSG

∣∣
E[qG1 ]

)
var
[
qG1
] (

DSG
∣∣
E[qG1 ]

)†
=

1

λ2NT
M
(
SG(ST (µB))

)
+

(
1− 1

λ2NT

)(
DSG

∣∣
ST (µB)

)(
γ1,1M

(
ST (µB)

)
+ δ1

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)(
DSG

∣∣
ST (µB)

)†
=

1

λ2NT
M
(
SG(ST (µB))

)
+

(
1− 1

λ2NT

)
γ1,1

(
DSG

∣∣
ST (µB)

)
M(ST (µB)

(
DSG

∣∣
ST (µB)

)†
+

(
1− 1

λ2NT

)
δ1

(
DSG

∣∣
ST (µB)

)(
DST

∣∣
µB

)
ΣB

×
(
DST

∣∣
µB

)† (
DSG

∣∣
ST (µB)

)†
= γ2,2M

(
SG(ST (µB))

)
+ γ2,1

(
DSG

∣∣
ST (µB)

)
M(ST (µB))

(
DSG

∣∣
ST (µB)

)†
+ δ2

(
DSG

∣∣
ST (µB)

)(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)† (
DSG

∣∣
ST (µB)

)†

where we defined γ2,1 =
(
1− 1

λ2NT

)
γ1,1, γ2,2 = 1

λ2NT and δ2 =
(
1− 1

λ2NT

)
δ1.

We notice that we can define the mean and variance of an arbitrary time
step n as

E[qGn ] = (SG)n−1(ST (µB)) (D.31)

and

var(qGn) = δn

(
DSG

∣∣
ST (µB)

)n−1 (
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†((
DSG

∣∣
ST (µB)

)†)n−1

+
n∑
j=1

γn,j

(
DSG

∣∣
ST (µB)

)n−j
M
(
(SG)j−1(ST (µB))

)((
DSG

∣∣
ST (µB)

)†)n−j
(D.32)

where (SG)k(ST (µB)) denotes k applications of SG, e.g.
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(SG)3(ST (µB)) = SG(SG(SG(ST (µB)))) 6= (SG(ST (µB))3 (D.33)

and
(
DSG

∣∣
ST (µB)

)k
describes the product of k Jacobian matrices,

(
DSG

∣∣
ST (µB)

)k
=

k∏
j=1

(
DSG

∣∣
(SG)k−j(ST (µB))

)
(D.34)

take for instance

(
DSG

∣∣
ST (µB)

)3

=
(
DSG

∣∣
(SG)2(ST (µB))

)(
DSG

∣∣
(SG)(ST (µB))

)(
DSG

∣∣
ST (µB)

)
(D.35)

We define (SG)0(ST (µB)) = ST (µB) and
(
DSG

∣∣
ST (µB)

)0

= 1 where 1 is the
identity matrix.

The coefficients γn,j and δn obey the recurrence relations:

γn,j =


(
1− 1

λnNt

)
γn−1,j, if j < n

1
λnNT , if j = n

δn =

(
1− 1

λnN t

)
δn−1 (D.36)

for n > 1 with γ1,1 = 1
λNT +

(
1− 1

λNT

)
1
NT and δ1 =

(
1− 1

λNT

) (
1− 1

NT

)
.

The marginalisation over qA may be performed in a manner similar to that
employed in deriving Equations 4.6 and 4.7.

240



Appendix E

Proof that TDiag(q)T † = Diag(Tq)

E.1 Introduction

In our derivations of compound distributions we use that the identity TDiag(q)T †

= Diag(Tq) is true for a J × K matrix T and a K dimensional vector q if T
consists of zeroes and ones and if every column of T contains a single non-zero
element, i.e. if a full haplotype can only contribute to a single partial haplotype
in the partial haplotype set. Here we have suppressed the subscripts denoting
partial haplotype sets to avoid confusion in the subsequent derivation.

E.2 Proof

Considering first the right hand side of the identity, we see that

Diag(Tq)i,j =

Ti,kqk, if i = j

0, if i 6= j

where we have used implicit summation over the k index.

Considering the left hand side of the identity, we may examine the cases of
i = j and i 6= j separately. For i = j we can write the left hand side as

(
TDiag(q)T †

)
i,i

= Ti,kDiag(q)k,lT
†
l,i = Ti,kδk,lqlT

†
l,i (E.1)

where there is no summation over the i indices. Additionally, we have repres-
ented Diag(q)k,l as δk,lql where δk,l is the Kronecker delta/the identity matrix.
Here there is no summation over l, even though, slightly confusingly, the sum-
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mation over l is implied in Diag(q)k,lT
†
l,i. In other words, ql may be thought of

as an index-valued scaling factor to the summed over matrix δk,l.

Using T †l,i = Ti,l and the replacement properties of the Kronecker delta yields

(
TDiag(q)T †

)
i,i

= Ti,kδk,lqlTi,l = Ti,kqkTi,k = qk (Ti,k)
2 (E.2)

As all entries of T are zeroes and ones, we must have that (Ti,k)
2 = Ti,k.

Thus,

(
TDiag(q)T †

)
i,i

= Ti,kqk (E.3)

as required.

Considering the case of i 6= j:

(
TDiag(q)T †

)
i,j

= Ti,kDiag(q)k,lT
†
l,j = Ti,kδk,lqlT

†
l,j = Ti,kδk,lqlTj,l = Ti,kqkTj,k

(E.4)
Now we use the property that each column of T must have exactly one non-

zero entry. This implies that Ti,kTj,k = 0 if i 6= j. Thus, for i 6= j,

(
TDiag(q)T †

)
i,j

= 0 (E.5)

as required. This proves the identity.
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Appendix F

First-Order Second-Moment
Method for Vector Functions

F.1 Introduction

Consider a random vector X with probability density function fX(x) and real-
isation x ∈ Rk, then, given a vector-valued function g(x) : Rk → Rk, it is of
interest to find approximations to the mean, E [g(x)], and variance, var [g(x)],
of the function.

F.2 Derivation

The function of interest may be approximated by a Taylor expansion of the form

g(x) = g(µ) +Dg(µ)(x− µ) +O(x2) (F.1)

where µ is the mean of X and Dg(x)ji = ∂gi
∂xj

is the Jacobian matrix.

The mean of g(x) is given by

µg = E [g(x)] =

∫ ∞
−∞
g(x)fX(x)dx (F.2)

Approximating the mean by the Taylor expansion to first order yields
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F.2. Derivation First-Order Second-Moment Method for Vector Functions

µg ≈
∫ ∞
−∞

[g(µ) +Dg(µ)(x− µ)] fX(x)dx

=

∫ ∞
−∞
g(µ)fX(x)dx+

∫ ∞
−∞

Dg(µ)(x− µ)fX(x)dx

= g(µ)

∫ ∞
−∞

fX(x)dx︸ ︷︷ ︸
1

+Dg(µ)

∫ ∞
−∞

(x− µ)fX(x)dx︸ ︷︷ ︸
0

= g(µ)

(F.3)

This is the first order approximation to the mean.

The variance is given by

var [g(x)] = E
[
g(x)2

]
− µ2

g =

∫ ∞
−∞
g(x)2f(x)dx− µ2

g (F.4)

Inserting the Taylor expansion (to first order) gives

var [g(x)] ≈
∫ ∞
−∞

(g(µ) +Dg(µ)(x− µ))2 f(x)dx− µ2
g

=

∫ ∞
−∞

(g(µ) +Dg(µ)(x− µ)) (g(µ)

+Dg(µ)(x− µ))† f(x)dx− µ2
g

=

∫ ∞
−∞

(g(µ) +Dg(µ)(x− µ))
(
g(µ)†

+(x− µ)†Dg(µ)†
)
f(x)dx− µ2

g

=

∫ ∞
−∞

(
g(µ)2 +Dg(µ)(x− µ)g(µ)† + g(µ)(x− µ)†Dg(µ)† (F.5)

+Dg(µ)(x− µ)2Dg(µ)†
)
f(x)dx− µ2

g

= g(µ)2

∫ ∞
−∞

fX(x)dx︸ ︷︷ ︸
1

+Dg(µ)

∫ ∞
−∞

(x− µ)fX(x)dx︸ ︷︷ ︸
0

g(µ)†

+ g(µ)

∫ ∞
−∞

(x− µ)fX(x)dx︸ ︷︷ ︸
0

Dg(µ)†

+Dg(µ)

∫ ∞
−∞

(x− µ)2fX(x)dx︸ ︷︷ ︸
cov[x,x]≡Σ

Dg(µ)† − µ2
g
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First-Order Second-Moment Method for Vector Functions F.2. Derivation

= g(µ)2 +Dg(µ)ΣDg(µ)† − µ2
g

≈ µ2
g +Dg(µ)ΣDg(µ)† − µ2

g

= Dg(µ)ΣDg(µ)†

This is the first order approximation to the variance.
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