TRUSTING IN

COMPUTER SYSTEMS

William Samuel Harbison

Wolfson College

A dissertation submitted for the degree of
Doctor of Philosophy in the University of Cambridge

May 1997

Original Work

T hereby declare that this dissertation is not substantially the same as
any that I have submitted for a degree or diploma or other
qualification at any other university.

I further state that no part of this dissertation has already been or is
being concurrently submitted for any such degree, diploma or other
qualification.

This dissertation is the result of my own work and includes nothing
which is the outcome of work done in collaboration.

b

“There’s no need to give up a good theory, just because it isn’t true.” “Air America.” US film 1990.

Preface

‘The thesis of this dissertation is that there is no such thing as a
computer system. Or to be more specific, we are unable to agree with
the concept of “a computer system” as being something monolithic that
can be represented by a single conceptual model, which is internally
and externally consistent, and which behaves as a whole in a uniform
and predictable way, under all foreseen circumstances.

There may be little initial disagreement with a statement such as this
put in this way, yet we find in practice that it is just such a view which
is usually applied. The assumption that a system is a single entity
about which global statements can be made (such as “the system is
secure” or “ the system works”) is unfortunately all too common.

Many aspects of computer systems such as availability, reliability,
functionality (sometimes too much as well as too little) and ease of use
are the subject of criticism by both users and operators; and also by
many sections of the public, who although not necessarily users of the
systems directly, can be seriously affected by their operation.

This dissertation examines limitations of design in some current
distributed computer systems, and proposes approaches that can help
us that better reflect the true needs of all participants, including
operators, users and other affected parties. In particular, we have
looked at ways in which the design of systems could be improved by a
systematic approach to the identification and reconciliation of the
many different assumptions that are held by the separate parties with
a stake in the system.

We observe that the goals, objectives, concepts and assumptions of the
various parties involved in the system (such as designers,
programmers, operators and users) seldom, if ever, seem to coincide.

Work in the areas of Software Engineering' and Requirements
Analysis® has attempted to address the problem of the unambiguous

! Software Engineering is a term that was introduced in the late 1960’ in an attempt to focus attention on the
inadequacies of software development at that time. It was an attempt to suggest ways of bringing engineering style
disciplines to the software development process. A recent overview of methods and techniques can be found in [RT9G].
2 Requirements Analysis is a term that is applied to the process of establishing and documenting the user and functional
needs of a system. A good introduction to Software Requirements Analysis can be found in [D90] and [S90].

1

?—_——_

specification of software systems requirements. Several books on
Software Engineering cover the topic briefly (see, for example, [GM86],
[JT79], [P87], [S89]), and [IEEE85] provides a good overview of
Software Requirements Engineering work in the US; but there are
relatively few publications that are exclusively concerned with
requirements specification in general. It appears to be a common
‘characteristic of the techniques we have come across that they assume
a centralised approach; with the system (and, in general, only the
software component) being developed by a team with shared
understanding and a common specification.

We believe that there is a need for a more detailed characterisation of
the various participants in a computer system, and of their roles and
underlying assumptions. This would lead to better identification and
understanding of those areas where the assumptions are at odds with
one other, rely on undefined capabilities or or are open to being
understood (and therefore implemented) in more than one way.

We have sought a methodology that will allow us to better identify
those areas of possible conflict or lack of knowledge, and we have
looked for ways to improve the systems engineering approach to the
design of computer-based systems in a practical manner that can be
readily understood and easily applied.

We propose that systems are examined in a manner that analyses the
conditions under which they have been designed to perform, examines
the circumstances under which it has been implemented, and
compares the two. We believe that such an approach is essential since
in our experience we have (sadly) seldom found the two situations to be
the same. Unfortunately, we find the application of designs for one
context being applied inappropriately to another.

We are proposing that anyone planning to design a system, or part of
one, should look at it from the point of view of each of the participants.
This should encompass all of the components - including users® and
implementers - to see what is being relying on by the various parties
and to resolve differences in assumptions and approach’ .

8 For examples of approaches to the problems involving the difficulties of accommodating buman operators when
designing interactive systems see [WA9I].

* We have come across an approach that seeks to codify this ([M79], [L85]), though it appears to be poorly documented.
Other conceptual modelling rechniques are more commonly found; see, for example, [A77]. [BGM85], [DM8S],
[SR77], [YC79]. Though we should not forget that non-functional requirements tend to be so varied and complex that
natural language must be used for their expression.

ii

We begin our analysis by looking at what is being trusted in a system,
or for what a system is being trusted, and by what or whom. We
examine some approaches developed in a (military) security context
and in widespread use in commercial distributed systems. We

demonstrate how the inappropriate application of these concepts can
lead to unanticipated risks to the system and its users.

We show how the usual use of trust as a system property’ can restrict
our ability to reason about the security properties of a system. We
introduce a new concept of trust that we show to be more useful for the
analysis of the risk characteristics of a system. In particular, we show
how our approach can be extended to the analysis of sub-systems and
even to individual systems components.

We propose that trust be considered as a “relative” concept rather than
the more usual usage as a system property; and that trust is a
substitute for knowledge rather than the result of it. We show that
although the concepts originate in a security domain, they are equally
applicable to the analysis of risk throughout a commercial system, its
components and its users.

References

[A77] M.W. Alford. A requirements engineering methodology for
real time processing requirements. IEEE Transactions on
Software Engineering, Vol. SE-3, No. 1, 1977, pp. 60-69.

[BGMS85] A. Borgida, S. Greenspan and J. Mylopoulos. Knowledge
representation as a basis for requirements specification.
IEEE Computer, Vol. 18, No. 4, 1985, pp. 82-101.

[D90] A.M.Davis. Software Requirements, Analysis and
Specification. Prentice-Hall 1990.

[DM88] T. DeMarco. Structured Analysis and System
Specification. Yourdon Press, New York 1988.

[IEEE85] IEEE Computer, Vol. 18, No. 4, April 1985.

[GMS86] Narain Gehani and Andrew McGettrick (eds.). Software
Specification Techniques. Addison-Wesley 1986.

° Many approaches to requirements analysis adopt the principle: “It should only specify external system behaviour [H80).
iii

[H80]

[JT79]
[L85]

[M79]

[P87]

[RT96]

[S89]

[S90]

[SR77]

[WA91]

[YC79]

K.L.Heninger. Specifying software requirements for
complex systems. New techniques and their
applications. IEEE Transactions on Software Engineering,
Vol. SE-6, No. 1, 1980, pp. 2-13.

Randall W. Jensen and Charles C. Tonies. Software
Engineering. Prentice-Hall, Englewood Cliffs, NJ. 1979.

M. Looney. CORE - A Debrief Report. NCC Publications,
Manchester 1985.

G. Mullery. CORE - a method for controlled requirements
specification. Proceedings of the 4th. International,
Conference on Software Engineering, Munich 1979.

Roger S. Pressman. Software Engineering, A Practitioner’s
Approach. McGraw-Hill 1987.

C.V. Ramamoorthy and Wei-tek Tsai. Advances in
Software Engineering. IEEE Computer, Vol. 29, No. 10,
October 1996, pp.47-58.

Ian Sommerville. Software Engineering, Third Edition.
Addison-Wesley 1989.

D.A.Stokes. Requirements Analysis. J.A. McDermid (ed),
Software Engineer’s Reference Book.
Butterworth-Heinemann 1990.

K. Schoman and D. T. Ross. Structured analysis for
requirements definition. IEEE Transactions on Software

Engineering, Vol. SE-3, No. 1, 1977, pp. 6-15.

George R.S. Weir and James L. Alty. Human-Computer
Interaction and Complex Systems. Academic Press,
London 1991.

Edward Yourdon and Larry L. Constantine. Structured
Design: Fundamentals of a Discipline of Computer

Program and Systems Design. Yourdon Press, Englewood
Cliffs, NJ. 1979.

“Tt is much easier to get forgiveness than to get permission” - (Attribution unknown).

Acknowledgements

I would like to thank all those who have helped and encouraged me to
complete this dissertation under what turned out to be far from ideal

circumstances.

My first thanks must go to Dr. Peter Wilby and David Talbot for their
fulsome support of my initial application to Cambridge. Next, and by
no means second, is Professor Roger Needham who was prepared to
accept my application and also to become my supervisor. It was his
encouragement that led me to investigate the (then) new area of trust
and delegation in distributed systems.

I consider myself to be both lucky and privileged to have been at the
Computer Laboratory at the same time as Rafi Yahalom, Li Gong and
Mark Lomas; friends and colleagues. My thanks to them for the many
enjoyable and inspiring times; especially those at The Anchor, The
Clarendon Arms, The Eagle and occasionally the Cork and Bottle.

Throughout my time at the Computer Lab. Dr. Jean Bacon. has shown
consistent interest in and support of my research; Jean, my many
thanks. My thanks also to Professor David Wheeler for his insight,
wit, and inability to let anyone get away with a sloppy thought.

My deep gratitude goes to Professor Bruce Christianson of the
University of Hertfordshire; for hosting me there, and for taking the
time and effort to visit me to discuss my research. His continuing
interest, and efforts, in support of my work to finish this thesis have
been truly inestimable.

Without the patience, perseverance, support and understanding of
Roger Needham, this thesis would never have been completed and
submitted. Roger, my sincerest thanks.

My research has not been supported by any external body; and has
therefore, in reality, been supported by my family. My very deep
appreciation goes to my daughters, Jennifer and Catriona, for their
long-suffering patience and sacrifice over the years, and for their
continuing encouragement. Above all, for their confidence in me and
their undemanding love and support.

—

Contents

Preface i
Acknowledgements \4
Summary vii }
1. Introduction 1
2. Security in Systems Design 14
3. A Trusted Message Server 20
4. Analysis of Some Security Protocols 29
5. Trust and Computer Systems 40

6. Distributed Systems, Shared Data and Delegation 60

7. Conclusions 76
Appendix I 94
Glossary 96

Bibliography 100

“Sed quis custodiet ipsos custodes?” - Decimus Junius Juvenalis. Satires, vi. 347

Summary

We need to be able to reason about large systems, and not just about
their components. For this we would like to have conceptual tools that
will help us to understand the behaviour of these systems, and to help
us make sense of other, possibly conflicting, views.

In this dissertation we have sought to indicate the need for a new
methodology that will allow us to better identify and understand those
areas of possible conflict or lack of knowledge, and we have looked for
ways to improve the design of computer-based systems in a practical
manner that can be readily understood and applied.

In particular, we have taken the concept of trust and how this can help
us understand some of the basic security aspects of a system. We have
paid particular attention to the nature and type of assumptions that
are made both within and between computer systems when they seek
to communicate with each other.

The work contained in this dissertation has been motivated by a belief
that the design and implementation of many computer-based systems
in operation today do not meet the needs of users and operators; and
by a strong desire to identify ways in which the design and engineering
of such systems can be improved.

We note that many assumptions are frequently made on a de facto
basis and which are frequently not acknowledged or even recognised
for what they are. We show that an incomplete understanding of what
is being assumed, relied upon and trusted can lead to an inadequate
understanding of true vulnerabilities of systems. We examine various
trust aspects of systems and introduce a definition of trust that we
believe can help towards a greater understanding of system
weaknesses.

We propose that systems are examined in a manner that analyses the
conditions under which it has been designed to perform, examines the
circumstances under which it has been implemented, and then
compares the two. We believe such an approach to be essential since
we have (sadly) seldom found in our experience the two situations to be

vii

the same. It is unfortunately all too common to find the application of
a design for one context being inappropriately implemented in another.

We are proposing that anyone planning the design of a system or part
of a system should look at it from the point of view of each of the
participants, and that this should include all of the components -
including users and implementers - to see what they are relying on and
to make sure that these assumptions are compatible.

We look at this problem from the approach of what is being trusted in
a system, or what a system is being trusted for. We start from some
approaches developed in a (military) security context and in
widespread use in commercial distributed systems, and demonstrate
how the inappropriate application of this concept can lead to
unanticipated risks to the system.

We show how the usual use of trust as a system property can restrict
the ability to reason about the security properties of a system; and we
introduce a new notion of trust that we show is more fruitful for the
analysis of the risk characteristics of systems. In particular, we show
how, in contrast, our approach can be applied to the analysis of sub-
systems and systems components.

We propose that trust be considered a “relative” concept, in contrast to
the more usual usage, and that it is not the result of knowledge but a
substitute for it. We show that although the concepts arose in a
security domain, they are equally applicable to the analysis of
assumption and risk throughout a system and its components.

In contrast to the standard use of trust as a property of a system, our
notion of trust applies only within the context of a specific viewpoint
from which to judge risks. We argue that it is only after the
introduction of a specific context from which trust is to be judged, that
we can understand many of the intrinsic vulnerabilities of a
distributed system.

We have introduced the concept of there being more than one
viewpoint from which to describe the behaviour of a system, and
therefore the trust relationships that pertain. The utility of this
concept lies in its ability to enable the nature of the risks associated
with a specific participant to be measured, whether these are explicitly
recognised and accepted by them, or not.

—

We propose a distinction between trust and trustworthy, and
demonstrate that most current uses of the term #¢rust are more
appropriately to be viewed as statements of trustworthiness.

In particular we propose that trust is more properly understood and
used as a substitute for knowledge; rather than the traditional “Orange
Book” [DOD85] concept of it being the result of knowledge; where
something is trusted if it exists within the security boundary of the
system, and can violate the security policy of the system.

References

[DOD85] Department of Defence Trusted Computer System
Evaluation Criteria. DOD 5200.28-STD, US Department
of Defence, Washington, DC, USA, December 1985.

ix

£ 3

“A computer is @ machine that allows you to make more mistakes in a shorter period of time than any other human

invention except tequila.” Unknown.

Chapter 1

Introduction

11 Background

Security in computer-based systems covers a number of diverse topics
ranging from the physical protection of computers, peripherals, media
and associated support services; to the design of specialised operating
systems, communications systems, protocols and data encryption
algorithms.

The discussion of security of information systems is slightly more
restricted typically covering protection of availability, integrity and
confidentiality of information systems and their associated data. This
includes, for example:

- Access (or denial thereof) to the computer system, programmes
or data;

- Modification to or running of programmes;

- Control and sequencing of programmes and data;

- Data and programme correctness;

- Audit trails and transaction logs.

These topics are often considered together because of their reliance on
common mechanisms for their implementations within many computer
systems.

While computers and their associated peripherals were confined to the
computer room, issues of security were relatively straightforward and
consisted primarily of physical checks and barriers. These could still
be somewhat sophisticated and complex in some specialised areas;
such as military, governmental, nuclear and other hazardous
environments; but once systems and their controls moved outside a
common physical area, with significant elements being distributed, the
complexity of ensuring the security of the system as a whole increased
in a major way.

Trusting in Computer Systems 1

The connection of computers to communications networks heralded a
new era in information technology. However the advent of distributed
computing created a host of new problems for those concerned with
ensuring and assuring the correct operation of these systems.

Major conflicts of objectives now began to occur as the goal of making
computers and their facilities more accessible to users started to
conflict with requirements for the integrity of the systems and their
data, and for combating unauthorised access.

Some consider that the implementation of sophisticated access control
systems would provide for sufficient security in a system (c.f. “Orange
Book” [DOD85]); and concentration on access control mechanisms can
be seen in much of the literature.

Within military systems, the concept of “trust” is primarily associated
with access to information and the associated controls for achieving
this, and much work has been done on the design of “trusted” systems
and components which implement these concepts.

In the “Orange Book”, the concept of trust is treated essentially as
being an attribute of a system. It is implicit in its usage that there is
just one viewpoint from which trust, and the security of a system, is to
be judged. We believe this usage to have limited utility when applied
to commercial open distributed systems: and this is also possibly the
case in some military applications.

In contrast to the use of trust as being a property of a system, we
propose the notion that the concept of trust is best applied only within
the context of the specific viewpoints from which risks are being
evaluated. We argue that it is only after the introduction of such
specific contexts from which to judge trust, that we can appreciate
many of the intrinsic vulnerabilities of distributed systems.

A considerable amount of recent research has been devoted to the topic
of cryptographic protocols, with particular emphasis being placed on
public key cryptosystems. The concept of the public key cryptosystem
was introduced in 1976 by Diffie and Hellman [DH76].

A public key cryptosystem uses two keys (a key pair) - one key for
encryption and the other (different) one for decryption. Each key of the

Trusting in Computer Systems 2

TSR gE—=—

R —

pair act as a cryptographic inverse of the other, and knowledge of one

will not of itself enable determination of the other* .

Such a focus is very understandable since it was the introduction of
public key cryptography that for the first time made it possible to
communicate securely over a non-secure channel without the need to
use previously agreed keys. This was because it was no longer
necessary to resort to the approach of having to communicate a secret
key over an insecure communication channel, or by some other means
of distribution, with the resulting risks involved.

Public key systems frequently rely on third party elements for the
secure delivery and verification of important information concerning
participants, for example, their identities and public keys. This will
often be in addition to the use of these third parties in their primary
roles as active components of the system that are providing services
and facilities such as routing and message delivery.

Consideration of the security role of these third parties indicates that
the military use of the concept of trust is not strictly appropriate to
their activities. They are rightly referred to as “trusted third parties”,
but the nature of the trust involved is not easily captured using the
“Orange Book” model.

Using the concept of “trust” we introduce in this dissertation, it
becomes clear that they are trusted by many different parties and for
many different things. It also becomes apparent that not all users of
these services will understand just what it is they are trusting these
third-parties for. This is especially likely to be the case when users are
not aware that these third-parties are also undertaking other active
roles within the system; roles that might sometimes be incompatible
with the nature of the trust being placed in them.

Whatever we might feel about the effectiveness and security of current
computer systems, public or private, it is becoming more difficult to
avoid contact with them in our daily lives. For large numbers of people
it would be difficult to lead a normal life without resort to these
systems, encompassing as they do, local networks, Internet, WWW,
electronic mail services, specialised private networks and databases,
medical systems and cash dispensers, for example.

' For more detailed coverage of crypiographic rechniques the reader is referred to [K87], [P89], [W90], [S96].

Trusting in Computer Systems 3

As computer-based systems become increasingly more widespread and
pervasive, larger numbers of people are finding that they have a
specific need or requirement to use them, or have great difficulty in
avoiding them, if they are to go about their daily lives with a minimum
of hassle and disruption.

Many systems which appear to have remained unaltered over many
years, have probably been updated and are now relying on computer-
based third-parties, unbeknown to the user; and sometimes also to the
operator of the system.

It is, however, an inescapable consequence of the way distributed
computer systems are implemented, that the easier and greater the
access to them becomes, the more their vulnerability increases.

Some consider that we are moving towards an age of “information
terrorists and information assassins™ ; where disruption to commerce
is an easier and more effective way of targeting advanced industrial
nations, than the more traditional and violent methods previously
used. The target now becomes the information and associated
communications systems that underpin modern industrial societies;
the age of

.

information warfare” has already probably begun.

People and organisations are probably able to survive the destruction
of most if not all of their physical assets and possessions, which can be
repaired or replaced in most instances; and where this is not the case,
substitutes can usually be found.

However, the irretrievable loss or corruption of data can prove to be a
situation from which there is no practical means of recovery, with a
resultant disastrous outcome. For many systems, stored information
and data represent a form of active and living memory, the damage
and loss of which can never be fully compensated for.

The increasing pervasiveness, even intrusion, of computer-based
systems into the daily lives and activities of the population at large has
meant that many more people have become aware of the reliance that
organisations place on these systems. Many systems fail to live up to
the claims made for them of making life easier for those using them,
often the opposite being the case; and frequently neither the systems,

2 P. Strassman, former head of IT at the US Department of Defense, speaking at the Fifth World Congress of EDI Users.

Trusting in Computer Systems 4

T T S S

nor those who run them, appear to be accountable to those who are
required to use them.

When computer-based systems go wrong in some way, especially when
this is as a result of human error, the failures are often initially
denied. This can be the result of the operator of the system not
recognising the particular failure mode, and therefore being more
likely to blame the (“untrusted”) user rather than the (“trusted”)
system for any ensuing problems.

Examples of such problems abound, with reports of incorrect bills
(sometimes ludicrously so), invoices for goods not ordered, “phantom”
withdrawals from bank cash dispensers, and so on. Users can
encounter great difficulties in trying to prove their case in the face of
denials from the system operator and computer “experts”, particularly
when this is accompanied by a lack of knowledge of the workings of the
system and with no access to it.

In addition to the computer-based systems that are encountered on a
daily basis in dealings with industry and commerce, there are also
large numbers of other computer systems that can have a major impact
on our lives and on society as a whole, and which can have far reaching
social consequences.

The growing use of information technology in both central and local
government and their agencies has resulted in large amounts of
computer-based data being accumulated on the population at large.
Increasingly, these originally separate systems are being
interconnected, with the result that many aspects of our lives can be
affected by the use of computer-based systems in ways that are not
always clearly understood.

Nor is this situation restricted to government and official computer
systems. There are also many computer-based systems in the private
domain that hold data on large sections of the population. The
existence of many of these systems is not generally publicised.

These private systems also can have major effects on the populace,
containing as they do data on most aspects of our interactions with the
business world: mailing lists, telephone directories, purchasing
preferences and history, credit details and so on. This data, which in

Trusting in Computer Systems 5

——

- T TS WY

many instances is inaccurate as well as incomplete is increasingly

being sold and traded on a commercial basis.

The numerous possibilities of things going wrong in interconnected
systems that have been individually (and usually independently)
designed - and in ways that cannot always be anticipated, let alone
recognised - leads us to ask what is being trusted, how it is being
trusted, and by whom.

Gladstone said that it was Parliament’s great duty to hold to account
those who run the country. This leads us to ask the question of who is
ultimately responsible for the actions of the computer systems we must
use, and to whom those responsible are accountable.

We see that many of today’s computer-based systems are characterised
by tension, and sometimes even conflict, between the users and the
operators of the systems. This is frequently the result of differing
expectations of what the systems should do, and how they should
behave.

At even a simple level we can see examples of systems operators who
do not trust their users, and conversely, users who do not trust the
computer systems they are often compelled to use.

We believe that considerations such as these indicate that it is not
adequate to consider there to be only one viewpoint from which the
acceptability of a computer system is to be judged. Different
participants in a system have different “stakes” in it and its correct
operation, and therefore have different things at risk.

We therefore believe that there is benefit to be gained from first
considering from which viewpoint a system is being judged, before
evaluating whether the behaviour of the system is acceptable or not.

It could be argued that all viewpoints are essentially the same and will
therefore result in broadly similar results. However, if we consider
that there are at least three main groups with a direct interest in the
working of the system: operators, users, and designers: then even in
the case where all groups belong to the same organisation, it is
probable that their respective starting points and assumptions will
differ in some significant ways from those of the others.

Trusting in Computer Systems 6

£

We maintain that this implies that they each view the risks associated
with the system in a different way, and that in turn this means that
they each must be trusting the system for different things. We note
that this is not the conventional way of treating trust in relationship to
computer systems.

12 Aims of this research

Against the background above, this dissertation sets out to examine
assumptions underlying the design, operation and use of computer-
based systems, and in particular distributed systems, where reliability
and integrity considerations are an essential part of their use and
operation.

It is clear to us that once systems and their controls are moved outside
of a common, physically secure area, with large parts of the system
being (possibly geographically) distributed, then the issues
surrounding the integrity of the system and its operation are
magnified and changed in possibly unpredictable ways.

We look at issues involving systems design, security protocols and
trust’ and ask how we can specify the properties and behaviour of the
system in such a way that all parties involved can be satisfied with its
operation; and we should perhaps note that they may all be satisfied
for different reasons.

We shall introduce a new notion of trust as it is applied to computer-
based systems and show how its use can enable us to analyse a
computer-based system from a number of different perspectives. We
show how our approach can be used to identify and measure the risks

S T T T T W T T ———

associated with the system for any particular participant.

We examine issues such as;

“What do we typically take on trust in current systems?”

|
“How can we specify the security properties of a system so as to ‘

minimise the need for trust?” ‘ |
“Is it possible to do without trust altogether?” ’
“To what extent can we make trust explicit rather than implicit?” |

3 The Concise Osxfford Dictionary defines trust as “Firm belief in reliability, honesty, veracity, justice, strength, etc. of

person or thing”. }
|
|

Trusting in Computer Systems 7

I—————————————

We look at what is trusted, by whom, and to what extent. We note that
behaviour consistent with our notion of trust, (though not necessarily
with that used as the basis of the “Orange Book”), is to be frequently
observed in many users and operators in regard to their dealings with
their computer systems.

We question whether people are always aware of the nature and exact
amount of trust that they actually place in the systems they use. In
such deliberations it is perhaps worth noting that some estimates* are
that as much as 85% of computer crime is committed by insiders with
validated access privileges.

With this as a consideration we would propose that any analysis of risk
and trust in relation to the operation of a computer-based system
should also include as necessary constituent parts, those people
involved in the operation of that system, in addition to more traditional
components such as servers and programmes.

In addition, we believe that in consideration of the nature of some
insider attacks, the inclusion of the designers and implementers as
constituent parts of the system should also be considered in any such
analysis.

We wish to investigate the implications of trust as applied in the
context of computer-based systems, their constituent parts, and the
environments in which they operate; and use this as a way of
determining critical assumptions and vulnerabilities.

The classical “Orange Book” approach to security of computer-based
systems views the system as one that can be contained within a single
boundary, with an “inside” and an “outside”, and associates “trust”
with being inside or outside this “secure” boundary.

We would not disagree with the concept of a boundary defining the
extent of a computer-based system. However, if a system is sometimes
taken to include those people involved in operating it, and sometimes
even those involved in the design and implementation of the system,
then we would argue that there is not necessarily a single and unique
boundary of a system under all considerations. A system will have a
different “inside” and “outside” for different principals and viewpoints.

P. Strassman, former head of IT at the US Department of Defense, speaking at the Fifth World Congress of EDI Users.

Trusting in Computer Systems 8

S S

We show how the introduction of the concept of “viewpoints” can be
used to distinguish the different risks that different participants have
with respect to the system.

We look at the terminology that is used to describe various
formulations of the concepts of “trust” and “belief”, and consider what
useful distinctions can be made in these and many other of the terms
that are commonly used in the specification and analysis of the
security properties of computer-based systems.

1.3 Scope of this work

The initial motivation for this research came from a desire to examine
what is meant by trusting a computer system to run correctly a
particular piece of software (a payroll programme, for example); and
the implications of such trust being misplaced.

We can be more specific and ask how we can assure ourselves that a
given piece of software operating with known characteristics and
behaviour running in a known environment over which we have direct
control, will run identically in a similar system, over which we have no
direct control.

For the purposes of this discussion we could consider a very simple
programme such as one that on being presented with an integer value
between specified limits would return the value of ©t to the number of
significant digits specified. For such software, the correctness of the
basic programme within its given environment would be known for a
wide range of input values, even if it were not possible for the
programme to be proved to be formally correct.

We wish to ask how we can trust software to behave in the same
(known) manner as in our original system, and in no other way, in a
system over which we have no control, access to or directly verifiable
knowledge. We look at the value to us of trust as a concept, and how a
proposed new usage can help us in our understanding of the behaviour
of computer systems.

We examine the nature of trust and its relationship to other commonly
used terms such as belief, reliance and delegation. We note in passing

Trusting in Computer Systems 9

—

that it is not the purpose of this dissertation to examine how to
determine the correctness of a programme in the first instance.

We have sought to analyse why the actual ways in which systems
behave differ from users’ expectations: i.e. why users are surprised
when and how the system they are using fails for other than a
straightforward hardware breakdown; and have examined the role
that trust plays in users’ expectations.

In contrast to the common approach of “trust only what you can verify |
firsthand”, we shall argue that it is preferable to consider trust to be a

substitute for knowledge, and indicate how the concept of risk can be

used to quantify the individual consequences of misplaced trust.

The initial vehicle we use to examine these ideas is that of a Trusted
Message Service. We look at a very simple model of how a trusted
message server might operate. We consider initially the simple case of
a server with only one message to deliver, and with that message to be
delivered to only one principal.

We examine what is involved in determining that the message delivery
was successful, and we show that some assumptions and observations
require additional, and sometimes conflicting, actions to be taken, if
the security of the system as a whole is to be considered. We show that
these additional actions lie outside the original basic design of the }
message server mechanism. i‘

‘ We subsequently apply the insights gained from this analysis to some
specific areas, and identify previously unconsidered vulnerabilities,
and identify the dangers of “hidden” delegation.

14 Basic considerations

Some feel that sophisticated access control mechanisms will suffice to
ensure the integrity and security of a system, indeed a key concept of
L trusted systems standards is to control rather than facilitate access to

T S

the system [KE93]. However, as we have already noted, it is estimated
that up to 85% of computer crime is committed by insiders with valid
access.

Trusting in Computer Systems

i
i
|
|
i

—

This suggests that a concentration on access control will not of itself be
sufficient to avoid incurring significant risks to the integrity of a
computer system; though it is, of course, a necessary component.
There is growing awareness that no computer system is fault free, and
increasing attention has being paid to identifying the risks associated
with such systems, and to methods of confining and controlling them.

The approach is often that it is now known that what has been
implemented does not behave correctly under certain circumstances -
representing a risk to the operation of the system; and that it is
possible to retrospectively supplement or modify the design, in order to
minimise or control the newly identified risks.

Many assumptions underlying the design of a computer system are
often made on a de facto basis and are not always acknowledged, or
even recognised, for what they are. We show how an incomplete
assessment of all the assumptions that are actually being made can
lead to an inadequate understanding of many of the vulnerabilities a
system.

We examine various trust aspects of computer systems and introduce a
definition of trust that we believe can help towards a greater
understanding of system weaknesses. We propose that risk be
considered as a measure of trust in a system; i.e. a measure of that
which cannot be directly verified; rather than as a description of
something that has bee be identified but not been provided for in the
original design.

1.5 Constitution of this dissertation

In this chapter we have outlined the subject matter of this dissertation
and provided some focus for the general topic areas covered.

In Chapter 2 we outline some of the basic ideas, issues and concerns
that can affect the operation and security of a distributed computer
system, contrasted from a number of different viewpoints.

In Chapter 3 we discuss the desired behaviour of a simple trusted
message server and use this to introduce some of the design
considerations and conflicts that can occur during implementation.

Trusting in Computer Systems 11

-

In Chapter 4 we examine a well-known cryptographic protocol and
look at some of the trust issues involved in its use.

In Chapter 5 we investigate a number of existing trust models, and
compare their assumptions and differences as a means for examining
matters of trust in computer-based systems.

In Chapter 6 we consider the conflicts that can occur in a distributed
environment between the design of system integrity and the design of
data integrity, by examining some of the implementation issues arising
from the common practice of sharing data and resources.

In Chapter 7 we summarise our findings and point to further areas of
research that can be developed as a follow-up to the work done in this
dissertation; and the implications of our research for other areas of
computer science.

References

[DH76] W. Diffie and M.E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory,
Vol. IT-22, No. 6, November 1976, pp. 644-654.

[DOD85] Department of Defence Trusted Computer System
Evaluation Criteria. DOD 5200.28-STD, US Department
of Defence, Washington, DC, USA, December 1985.

[K87] Neil Koblitz. A Course in Number Theory and
Cryptography. Graduate Texts in Mathematics 114,
Springer-Verlag 1987.

[KE93] R. Kuhn, P. Edfors, V. Howard, C. Caputo, T.S. Phillips.
Improving Public Switched Network Security in an Open
Environment. IEE Computer Vol. 26, No.8, August 1993,
pp. 32-35.

[P89] C.P.Pfleeger. Security in Computing. Prentice-Hall
International, Inc. 1989.

Trusting in Computer Systems 12

[S96] Bruce Schneier. Applied Cryptography. John Wiley and
Sons, Inc., New York 1996

[W90] Dominic Walsh. Codes and Cryptography. Clarendon
Press, Oxford 1990.

Trusting in Computer Systems

13

“A shared secret is no longer a secret.” W. S. Harbisort

Chapter 2

Security in Systems Design

2.1 Introduction |

Traditionally, computer systems have been thought of as being
comprised of hardware, software and data, and discussions of security
issues have been confined mainly to these three components.

The OECD defines an “information system” in much wider terms: as,
collectively “computers, communication facilities, computer and
communication networks and data and information that may be stored,
processed, retrieved or transmitted by them, including programmes,
specifications and procedures for their operation, use and
maintenance” [OECD92].

Security of information systems can be generally described as the
protection of the availability, confidentiality and integrity of the
systems and their constituent parts.

“Trusted Systems” were first discussed within the context of the
security of military computer systems in the United States, and
codified in the “Department of Defense Trusted Computer System
Evaluation Criteria” [DOD85] - the “Orange Book”.

This work originated in studies instituted by the US Defence Science
Board in October 1967 into computer security safeguards that would
protect classified information in remote-access, resource-sharing
computer systems.

As such it seems reasonable to expect that the considerations resulting
from this work should be of considerable relevance to many of today’s
computing environments. Indeed, the principles underlying the
“Orange Book” have been widely used in the design of many
commercial systems where security is considered to be an issue (a large

 We have subsequently discovered that Benjamin Franklin had recorded an epigram [F 733] of a similar, if somewhat

blacker, nasure: “Three may keep a secret if two of them are dead.”. This was based on a similar maxim from a
contemporary of his, Edward Everets: “If you want your secret kept, keep it”.

Trusting in Computer Systems 14

————————

S—————_

number of distributed and on-line systems in current use).

It can be argued that military models of security are not always the
most suitable basis for the design of a commercial open distributed
system, given their predominant focus on secrecy and access controls.
There is a concentration within military computer systems on the
control of access to information: and these aspects are well- described
in the “Orange Book”. However, in the world at large this singular and
specific concern is uncommon, and their are other and more general
issues of security that arise and which are not particularly well
addressed by such a restricted view® .

At the heart of the security considerations for a computer-based
system is the concept of the existence of potential threats to the proper
running and availability of the system and its data. That is, there is
an assumption that some forms of adverse elements exist that could
compromise the system in some manner, and that the security of the
system could be vulnerable to such hostile action.

We will see that different security regimes will presuppose different
kinds of threat, and will act to provide safeguards only for their
perceived vulnerabilities. It is usually clear what the perceived threats
are thought to be, although it will be seen that these threats are
seldom completely stated explicitly. —This sometimes results in
situations where particular security regimes can be shown to be
vulnerable in ways that they would probably find to be unacceptable,
were all the assumptions to be known in a complete and explicit
manner.

We will show that many security threats are made possible by an
incomplete, and sometimes erroneous, understanding of the behaviour
of the computer system by its designers, operators and users; and
where the explicitly stated assumptions represent but a fraction of the
total number of those that can affect the security of the system. This
can result in the reliance on parts of the computer system that will be
vulnerable forms of attack that otherwise would be known.

S Some aof the limitations of the “Orange Book”, particularly the need for “interpretations” to extend its applicability,
were subsequently addressed in the “Canadian Trusted Computer Product Evaluation Criteria” [CSSC93].

Trusting in Computer Systems 15

2.2 Trust and Security

It is often the case that many of the assumptions that affect the
security of a particular computer system can be deduced only from the
context in which that system’s security mechanisms operate. That is,
from observations of the actual operation of the system, rather than
from its specifications; though as we shall see later, this is not as
simple as might first appear.

Many commercially developed UNIX systems have sought validation
under the “Orange Book” criteria; and whilst this may have been
motivated initially by a desire to supply “off the shelf” systems into
sensitive government applications, such systems are also being offered
in the general marketplace. We are of the opinion that this is not
necessarily a beneficial development for commercial users.

We have looked at the implications of applying the military-derived
model of trusted systems to the more commercial world of distributed
computer systems. We found that such application can result in a
misconceived view of the overall security of a system.

In particular, we note that the inter-connection of “T'rusted Systems”
does not of itself produce a system with the same security
characteristics; and can lead to systems whose overall security is
considerably less than that of its constituent components’ .

Trust is considered by some to be a transitive property of a system’
[e.g. CB94]. We believe that to take such a view is to confuse a number
of separate and distinct concepts such as trust, belief and reliance. We
will give definitions and examples of these concepts which we believe
will illustrate the differences between them.

In particular we believe that there is confusion between the related
concepts of trust and trustworthy. We propose that there is a
distinction between these two concepts which we can summarise as:
“trust is something I do; trustworthy is something it is”.

In other words, “trust” could be considered to relate to a state of
knowledge of a principal in the system, whereas “trustworthy” relates

7 We should point out that we are concerned here to bighlight issues of bad design practice rather than with the notion of
composability (see for example [CSFW8]).
8 A relationship (-) is said to be transitive when the following holds: if A-B and B~C then A~C.

Trusting in Computer Systems 16

to a property of some entity within the system (which could include a
principal).

Another way of attempting to quantify the concept of trust is to look at
the value fo us of what is being trusted “letting us down”. We can
consider that to trust something is to “risk” the cost of what we are
trusting going wrong. That is, trust can be quantified by the (negative)
value recovering the situation.

From this viewpoint, the study of trust can be considered to include the
study of those risks that are accepted, knowingly or not, within a given
system or component part of a system.

Trust then becomes a statement about the subjective position of one
party in a system to other parties and components. It is therefore
quite possible for two or more principals to have different views on
trusting something within a system.

With better knowledge and understanding of what is being trusted in
this regard - and therefore what is being risked - we will be in a
position to make more considered judgments on the balance of risks
versus costs.

It is usual to think that we trust what we know - a good friend, our
house not to collapse, etc® . What we are “trusting” here is consistency
of behaviour: but consistency is not the same as certainty; and a
prediction is not the same as fact. We suggest that “consistency of
behaviour”, which we often see used as a measure of trust, is better
considered to be the (related) concept of “trustworthy”.

We propose that, in contrast to this view, the concept of trust is better
associated with the idea of what we don’t know rather than what we
do know. It can therefore be considered as a substitute for knowledge
instead of a representation of it. Considered together with the notion
of the existence of many different and valid viewpoints of a system,
trust can be seen to be a subjective concept.

With this in mind, we suggest that we progress in our understanding
of a system when we find ways of reducing our trust in it, of

® In bis recent book, Frances Fukuyama considers trust to be “the expectation that arises within a community of regular,
honest, and cooperative behaviour, based on commonly shared norms, on the part of other members of that community

[F95]”.

Trusting in Computer Systems 17

quantifying the costs of our (misplaced) trust and by seeking ways to
replace trust with knowledge. In order for us to do this we first must
understand the extent to which we are actually trusting the system.

It is not our aim to write a philosophical dissertation, and we therefore
do not intend to enter into a detailed discussion concerning the nature
of knowledge and truth. @ We rely, instead, on an intuitive
understanding of these terms.

It is unlikely that we can ever have complete knowledge of anything in
the real world - and we therefore have to use only as much knowledge
and reasoning as is appropriate to the given situation. As an example,
we usually “trust” a keyboard to generate the code we expect from our
in-built assumptions. If we were to depress a “Q” key on a keyboard
we would expect it to generate the appropriate code for the letter “Q”.
If, however, the keyboard had been configured to the French language
it would generate the code for the letter “A”.

When the keyboard is connected to a computer, it is usual for there to
be some kind of visual feedback which would display the letter the code
had generated; i.e. the letter “Q” or “A” would appear on a display; and
we would then have a confirmation of our input.

However, it is worth noting that this feedback is usually only logically
coupled to the key depression and is not necessarily coupled physically.
The importance of this can be shown when considering what might
happen in the case of a cash dispenser.

An intermediate (and unknown of) device could be interposed in such a
way as to relay the responses we are expecting back to us, while
having a different set of dialogues with the central computer to which
we think we are directly connected.

It is also possible that the cash dispenser itself is entirely bogus (as
shown in a recent court case [R95]) and be merely emulating the real
device, even to the extent of giving out cash.

In both of the above cases the user will have “trusted” the device to do
what was expected by the user, but it has actually done something
entirely different to those expectations.

Trusting in Computer Systems 18

e—

2.3 Summary

Being explicitly aware of what we are trusting can enable us to design
strategies for coping with possible risks. In the case of the cash
dispenser, a suitable challenge/response protocol, coupled to a
smartcard incorporating its own keyboard, can provide a high level of
protection against the risks described. Whether such strategies are
economically justifiable will vary from case to case and with the cost of
recovering the potential loss.

In summary, we propose that to understand trust we need to
understand the limitations of our knowledge. In contrast to what is
often believed, we are proposing that trust is relative; and rather than
being the result of knowledge, is in fact, a substitute for knowledge.

References

[CSSC93] The Canadian Trusted Computer Product Evaluation
Criteria. Version 3.0e. Canadian System Security Centre,
Communications Security Establishment, Government of
Canada, 1993.

[DOD85] Department of Defence Trusted Computer System
Evaluation Criteria. DOD 5200.28-STD, US Department
of Defence, Washington, DC, USA, December 1985.

[F733] Benjamin Franklin. Poor Richard’s Almanac, 1733.
[F95] Francis Fukuyama. Trust. Penguin Books 1996.

[OECD92] Organisation for Economic Co-operation and Development.
Guidelines for the Security of Information Systems., Paris
1992. OCDE /GD(92)190.

[RI5] Regina v. Hodges and Moore. Southwark Crown Court,
September 1995.

Trusting in Computer Systems 19

“Lookers-on many times see more than gamesters” - Francis Bacon. Essays, 48.

Chapter 3
A Trusted Message Server

3.1 Introduction

To understand what fundamental requirements are necessary in the
provision of a trusted message service, we begin by initially looking at
a simple system that deals only with the retrieval of a message.

So as not to complicate our understanding of the various relationships
involved, we start at the point where the message has already been
made available to the server. For the purposes of this discussion we
make the assumption that the message has been delivered to the
server in a secure manner.

We wish to examine what is meant by the statement that the message
server is trusted to deliver a message to the appropriate party® .

3.2 Single Message - Single Recipient

Let us consider the following situation. ALF is travelling away from
home base and is not in a position to establish or to maintain contact
on a reliable basis during these travels. It has therefore been agreed
beforehand that if it is necessary to contact ALF during this time, then
a message will be left at a predetermined location. ALF has
undertaken to check the agreed location at regular intervals. We refer
to this message delivery mechanism as the Trusted Message Server
(TMS).

We would like to consider what steps are necessary in order to ensure
the intended successful outcome of this process™ .

1 We shall see very shortly that this question alone is not simply determined. We need to ask from which viewpoint this
is being discussed.

" There is an implicasion here that only one of the possible outcomes is the correct one. We will resurn to this point
later. [n.b.: The measure of a successfiul outcome depends upon secondary criteria - see later discussion on whether the
message should be destroyed if the TMS is tampered with. There is a sirong case to be made, I think, that a relationship
exists between desired outcome under adverse conditions, and what is sometimes known as security policy. Clearly a
number of differing outcomes can be considered. These can be related to @ number of different security policies; whether
overtly siated, or maybe jusi implied.]

Trusting in Computer Systems 20

It should be noted that for the purposes of the following discussion, we
make no assumptions on whether the message is encrypted or
otherwise. At this stage our concern is with the correct delivery of the
message to the designated recipient. We would therefore like to
establish those criteria needed to characterise the successful outcome

of this procedure.

In an ideal world, and with no adverse conditions, a successful outcome
to the delivery of the message could be could be considered to have
occurred when:

1. Itis apparent to ALF that a message has arrived.
2. ALF’sidentity is accepted by the TMS.
3. The TMS (correctly)? delivers the message to ALF.

These are clearly necessary conditions, and by some they might be
considered to be sufficient. However, in a non-ideal world, it is
probable that not all circumstances are favourable and not all agents
are benign. Therefore, even at this stage it is instructive to look at this
situation in a little more detail.

It has been stated that we are looking for the successful outcome to
message delivery. There are, however, a number of possible viewpoints
from which to judge this outcome, namely:

i. The originator of the message.

ii. ALF.

iii. The TMS.

iv. An intruder.

V. An impartial observer, which we will refer to as DEM."

We shall examine what points of commonality there exist for these
viewpoints. If it transpires that they are not all equivalent then we
will then be faced with the problem of from which viewpoint the
outcome should be judged; and why.

Let us start by looking at the assumptions we have so far made:

2 The use of the term “correctly” here refers to the integrity of transcription of the message.
B It is assumed that the DEM has a complete view of all principals, systems and activities within this universe of
discourse.

Trusting in Computer Systems 21

Al. The existence of the Message Server.
A2. The existence of ALF at the time of delivery of the message.
A3. The existence of a non-hostile environment.

If we now examine in turn the consequences of each of these
assumptions not being true:

nAl. The absence of the message server can mean

i The message server does not exist" ;
ii. There is no message;
iili. The message server has been removed or destroyed.

nA2. The absence of ALF can mean

i. ALF has not arrived;
ii. ALF has arrived but not checked for some reason."
iii. ALF arrived but has moved-on (or returned to base);

nA3. The existence of a possibly hostile environment could lead
to a large number of possibilities' , including:

i. The message has been replaced by a substitute one;
ii. The message server has been removed or destroyed;
iii. ALF has been apprehended or destroyed.

Clearly, these are only indicative of the kind of events that could occur
under various circumstances. Our original and relatively simple
considerations seem now to have grown into something rather complex
and somewhat obscure. What are we to make of all of these

possibilities?

The problems seemed to proliferate when we started to consider events
when things might possibly go wrong. Let us go back to our original
problem.

We can see that if everything is assumed to be right and if all
necessary conditions for success are fulfilled then the conditions for the

% There are a number of reasons why this might be the case including deception.

S There are a large number of reasons that could be considered including a) ALF has got the place andor time wrong;
b) ALF has been apprebended; c) ALF has been destroyed.

18 Some of these possibilities are similar to those of the case where ALF is absent. It should be noted that depending upon
what is assumed to have happened then a different set of end conditions may be sought. Refer o subsequent discussion of
security policies.

Trusting in Computer Systems 22

! x
A i\
required outcome are quite simple and few in number. This is a

|

\\

serious number of “ifs” and might not be what we really want to rely
|

on.

We have already noted that there is not just one viewpoint from which l
to look at this situation. Therefore, in examining the issues involved

from different possible viewpoints let us start by considering two |
possible characteristics of success. The successful delivery of a
message to the server, and the successful retrieval of a message by the
rightful addressee. ;;

In looking at what constitutes successful delivery, we would like to
start by examining this from the two viewpoints of the TMS and the '
message originator, respectively. ' ;“

We could therefore consider some additional requirements, which ‘F
might be thought desirable but have not yet been stated explicitly. We |
might like to ensure that only ALF be aware that a message has h
arrived, and that only ALF has access to the message. w

Explicitly, then: \

A4, There should be no externally verifiable evidence of a
message being left (external, that is, to ALF and TMS).

A5, Only ALF should be able to retrieve the message. |

These two conditions could be regarded as adding concepts of “privacy”
5 17 I

and “secrecy”.
Thus far we have tried to outline the conditions for ALF to receive the
message “discretely” and for it not to be given out to another party by
“mistake”. If we continue to develop this line of reasoning then we
might envisage a hostile environment where others actively seek ALF
and the message. |

Attempting to counter such possible active threats might lead us to |
add the following conditions™ : if

'" By secret here we mean that the message is not readable by any party other than ALF. ‘
'8 Note that we have assumed (cf ACS) that the original message could not have been retrieved by an other parsy.
Houwever, it is possible that it may have been removed or replaced by another message. |

Trusting in Computer Systems 23

A6. ALF should be able to distinguish the situations of no
message from that of a destroyed or removed message.

AT: ALF should be able to distinguish between a correct
message and a counterfeit message.

These conditions could be considered to cover such concepts as “denial |
of service” and “message substitution”.

The seven conditions listed above are not the only ones that we might
have produced; they are, however, representative of those that need to
be considered, particularly in environments whose characteristics may I
not be ideal, and which might also be considered to be hostile.

We have now moved some way from our initial simple problem and it is “i
probably worthwhile summarising the discussion so far of our basic i
message system.

1. It appears that three simple conditions will satisfy the initial ‘1l
problem statement. i

2. Four additional conditions were then introduced to counter
possible threats that might arise if the environment in which the i
service operates, can be considered to be hostile to some degree. I

3. In addition, we have seen the usefulness of adding to such
frequently used ideas such as message, recipient, etc., the
concepts of:

C1: Outcome. |
C2: Viewpoint.
C3: Environment.

It will be seen that these three concepts will come to play an
increasingly important part in our subsequent discussions on the
nature of trust and its relationship to the various parties involved.

Trusting in Computer Systems 24 w

3.3 The TMS’ Viewpoint

In a manner similar to that of ALF’s we need to look from the point of
view of the Message Delivery Service at what constitutes the basic
requirements for successful message transmission.

M1. The TMS must be able to indicate that a message has arrived.
M2. ALF (correctly) identifies himself.
M3. ALF (correctly) receives the message.

[n.b.: The TMS should also not allow its message to be extracted by any
unauthorised means.]

These conditions mirror the first three conditions for ALF. In addition
we might also like to consider the following situations:

M4. The TMS should be able to distinguish a situation where ALF
is seeking to retrieve the message, but doing so under duress.

M5. The TMS must be able to distinguish ALF from an impostor.
M6. The TMS must ensure that following a successful retrieval by
ALF the message is no longer available® .

It is also possible to consider that under certain circumstances either
or both of the TMS and ALF may wish to prove to a third party that
the message was delivered or received (both respectively - and not), if
duplicitness is to be a consideration.

It should be pointed out at this stage that there are other viewpoints
from which an examination of this example could be conducted.

1. Ours. The (dispassionate and) remote observer.
2. An involved observer (seeking to record for future use).
3. An Intruder (seeking to alter or destroy).

An examination of any particular exchange will not necessarily result
in the same observations or conclusions®.

Y It is worth noting that in some systems the continued storage of @ message following delivery to the recipient is
considered a benefit. It must now be obvious that this can lead to additional risks if secrecy is considered to be
important.

20 See discussion of known plaintext attack of Needham-Schroeder.

Trusting in Computer Systems 25

e

3.4 Rules For Successful Delivery

The following are a set of rules that could be applied to the Message
Delivery Server (TMS) to achieve the major objective:

1. The procedure will be used once only®.
2. The message is to be delivered to ALF and to no one else.

3. Upon correct delivery the TMS will destroy itself and any
message.

4. Any message not retrieved within a given time period will cause
the TMS to destroy itself and any message.

5. Any attempt to retrieve the message by persons unrecognised by
the server will cause the TMS to destroy itself and any message.

6. Any attempt to tamper with the TMS will cause it to destroy itself
and any message.

We can reasonably deduce from the above that this set of rules
embodies the consideration that the secrecy of the message is more
important than the delivery of the message when there could be a
conflict between the two.

A system based on these rules will seek to enforce the principle that if
a threat to the integrity of the system is perceived, then it will be
preferable that no one - and that includes ALF - should retrieve the
message, than that the possibility is allowed for the message to fall
into unauthorised hands.

Clearly a different set of rules would need to be applied if it were
deemed to be more important that ALF should receive the message
than to protect it against any form of unauthorised disclosure.

It should be possible to reverse this thinking and to deduce the
particular requirements pertaining to a specific protocol
implementation from an analysis of its workings.

2 It bas been suggested that these procedures be considered on a per message” basis rather than once only. This will
lead to a significantly different and more complex protocol than that considered here.

Trusting in Computer Systems 26

Such a set of rules can be likened to the concept of a Security Policy?,
which consists of a set of rules within which the applicable process or
procedure should operate, but which do not of themselves form part of
the process or procedure.

We can see this in the example above where we can change the
security policy (rules) without changing the procedure for message
delivery. This could clearly result in a different possible overall
outcome in the event of an attack on the system or some form of system
malfunction.

3.5 Summary

The above analysis was undertaken on what is a relatively simple
security model compared to many in actual operation. What we see,
however, is that in common with other models there are a significant
number of undocumented assumptions that must be made in order for
the model to perform at all.

We have also seen that in even such a simple model as this, these
assumptions can have a major effect both on the operation of the
system, and also on the determination of the outcome; successful, or
otherwise.

There are many security protocols in regular use in large numbers of
systems and networks that are of considerably more complexity than
the ones discussed above. These protocols are all purported to provide
secure communications of one kind or another.,

We believe that a systematic analysis of these protocols in a similar
manner to that illustrated above is likely to reveal several assumptions
that have not been explicitly documented, and which are critically
necessary to the correct running of the protocol.

The lack of understanding of these fundamental assumptions when the
protocol is being implemented is, in turn, likely to leave the systems in
which they have been implemented vulnerable to (previously
undocumented) attacks.

2 The existence of an explicit and well-defined security policy enforced by the system is a requirement for a secure
computer system [DOD8S]. See also [S91] for a discussion of some of the issues concerning“Security Policies”,

Trusting in Computer Systems 27

We give an illustration of this in the analysis of the Needham-
Schroeder protocol in a later chapter.

Some of the uncertainties encountered by the use of an extremely
simple protocol in the previous discussion on the message server can be
ameliorated by making changes to the protocol. For instance, we could
extend the protocol by adding a message from the sender that states
that a message has not been been sent, if that is the case. The
question then arises as to whether this changes the trust

relationships.?

Although this would clearly be a different situation, it would look the
same using the traditional notion of trust, being an “objective” system
property; and the trust relationships would remain unaltered.

We contend, however, that the answer to the question above must be
yes; since new messages will introduce new uncertainties into the
system, as well as new information.

The consideration of trust as a property of a system can therefore be
seen to provide a less powerful concept for the analysis of security
weaknesses in computer-based systems than the concept that we have
proposed in this dissertation.

References

[DOD85] Department of Defence Trusted Computer System
Evaluation Criteria. DOD 5200.28-STD, US Department
of Defence, Washington, DC, USA, December 1985.

[S91] Daniel F. Sterne. On the Buzzword “Security Policy”.
IEEE 1991.

% This example was suggested by Roger Needham.

Trusting in Computer Systems 28

“He was a gentleman on whom I built an absolute trust. ” Shakespeare. Macbeth, I. iv

Chapter 4

Analysis of Security Protocols

4.1 Introduction

We would like to start by looking at the Needham-Schroeder Protocol
[NS78], which is one of the first, simplest and most successful of
cryptographic security protocols. It is a protocol that has been adopted
as the basis for many operational security systems. This includes the
Kerberos Authentication Server, created in the Athena Project at MIT
[T88], utilised in what is perhaps the most prominent strong
authentication service in wide use today [MNSS87, KN93].

We show how the inappropriate application of the Needham-Schroeder
protocol can allow novel attacks on the protocol to be mounted. We
have not found the two attacks discussed below to have been
considered elsewhere.

4.2 Needham - Schroeder Protocol

Needham and Schroeder [NS78] were among the first to consider the
use of cryptographic protocols for the authentication of communicating
parties where secure computer communication in large networks is
desired. Their paper states that within the context of secure computer
communications, the term “authentication” means verifying the
identity of the communicating principals to one another® .

We note that this definition of authentication does not encompass the
issue of the verification of the transactions between principals. The
linked issues of when and how sessions end are similarly outside the
scope of the publication. (We would like to return to these issues later,
as we believe them to be of crucial importance in the overall context of
secure communications in computer networks.) |

2 of COD definitions:
Secure means safe against artack, impregnable, reliable, certain not to Jail or give way.
Verify means to establish the truth or correctness (af) by examination or demonstration.

Trusting in Computer Systems 29

Three functions are discussed in the Needham - Schroeder paper: |

|

1. Establishing an authenticated interactive communication. 4
Authenticated one-way communication (such as mail). |

3. Signed communication for authentication of origin and {
integrity by a third party.

It is stated that secure communications in physically vulnerable
networks depend upon encryption of material. Assumptions made are

that an intruder can alter, copy, replay parts of, or all, messages; and
can also emit false messages.

The protocol implicitly assumes that the principals have a secure
environment in which to operate, and is designed only for those
situations where a mutual choice of secure communications has been i
made, and no forms of compulsion are involved. Mechanisms that may I

be required to enforce compliance or to restrict information flows are f_“”
not within the scope of the paper. I

Needham and Schroeder have therefore consciously restricted
themselves to looking at what could be considered to be a small and
relatively simple subset of all of the possible functions that could be
considered within the context of Secure communications in large
networks of computers.

It should be noted that Needham and Schroeder quite clearly state It i
that their protocols should be regarded as examples that expose the i
issues of authentication in large networks and should not be looked on il

as fully engineered solutions to the overall security problems of I ‘"‘"
particular applications. ! "{

r
As we shall see, even within such a restricted domain the issues }; ‘ l
involving the security of the communications between the principals
involved can get quite complicated very quickly.

Needham & Schroeder presuppose, not unreasonably, that the use of ‘ !
authentication servers is necessary for the provision of a source of ,
authoritative information on the keys belonging to the principals using
large networks. We shall see that the introduction of a third party into
the communication between principals can lead to unforeseen il
consequences for the security of that communication.

Trusting in Computer Systems

Keys are shared between the principals and the server respectively.
New session keys are generated by the server for each session. These
keys “must be unpredictable and should never have been used before”.

It is not stated how this is to be achieved. The server could
precompute keys and “remember” which key it has issued to whom; or
an algorithm could be devised which accomplishes the requirement
automatically and reliably. Professor Needham has suggested (in a
private communication) that a physical random number generator
would suffice. The adequacy of such a system would depend upon the
specific implementation and key space, since a birthday attack could be
possible [S92].

It is also not stated as to whether the session key requirements are
meant to apply only in the context of a specific pair of principals, or
whether they apply globally to all of the principals of a particular
authentication server.

4.3 Needham-Schroeder Symmetric Key Protocol

In the symmetric-key protocol, where the same key is used for both the
encryption and the decryption, authentication depends upon the two
principals being the only two who know the key that is being used.
Apart from, that is, possibly also the (“trusted”) servers.

In the following protocol descriptions the notation used will be that
described in the original paper: encryption is indicated by braces that
are superscripted with the key used.

Protocol 1.
1. A - AS: AB,Ian
2. AS - A: {I.,B,CK{CKA}xB}KRA
3. A - B: {CKA}xs

It is stated that the recipient’s name must appear in message 2. The
reason given is that otherwise an intruder could intercept message 1.
and replace B’s address with that of a different addressee (say) X. As
an exercise in understanding some of the complex issues involved in
the design and analysis of security protocols we shall examine this in
a little more detail.

Trusting in Computer Systems 31

In order to better understand the dynamics of the intrusion we have
found it useful to introduce a new notation: square brackets, [], denote
the presence and activities of an intruder in the system. This notation
is used within the following message to illustrate how the intruder,
denoted by X, might operate.

Using the notation referred to above, the substitution attack that is
possible where the recipient’s name has not been included in message
2, is represented as follows:

4. A > [X ABIlIn; X Bl AS: AXIu

5. AS — A: {Ia,CK,{CKA}X)KA

6. A — [X: {CKA}x] (which X can decrypt of course)
7. X — {message}ck A: :

In message 4 the intruder X is monitoring A’s communications. It
intercepts A’s message, substitutes its own identity for that of B, and
forwards the modified message to the authentication server.

In message 5 the authentication server sends the session key to be
used, encrypted with X’s key. Without a specific reference to the
recipient in this message from the authentication server A has no way
of knowing that the session is being set up with X and not with B.

In message 6 A sends the session key to what A believes to be B; but X
intercepts once again, and is of course able to decode the message since
it has been encrypted with X’s own key.

In message 7 X then begins transmission directly with A using the
session key requested by A for communication with B.

In fact, what we see has happened is that communication has been
established between A and X. A believes it is talking to B, and B
knows nothing about the proposed communication that A wished to
establish with B.

A could now find itself in a very difficult position. There will be no
independent record that the original request was made for
communication with B. '

If the authentication server keeps records of session key requests then
these records will show (c.f. message 4) that A (apparently) requested

Trusting in Computer Systems 32

communication with X despite what A might claim and A’s own records
might (purport to) show.

This demonstrates the importance in the analysis of protocols such as
this of considerations such as whether the authentication server does
or does not possess state. In the example of the attack discussed above
we can see that if the server has state then the initial damage done by
the intrusion can be compounded by the server seemingly being able to
verify a bogus transaction.

With the addition of the recipient’s address in the second message of
the protocol, a substitution of the recipient (as shown in message 4)
can be detected by A on receipt of that message.

4.4 Denial of Service Attack

There are other types of attack, however, to which the Needham-
Schroeder protocol may still be susceptible. With the protocol as
specified we observe that the first message is in the clear. This can
give rise to the possibility of a denial of service attack.

Let us consider the first message of the protocol; and using the same
notation as before:

8. A - X A,B,IAl 5 X A] AS: A,X,IA1
The second message of the protocol will now become:
9. AS — A: {IanX,CK{CKA}xX}ka

Upon decrypting this, A will be able to see that the recipient is now
stated to be X i.e. a different principal to that of the original request,
namely B; and will be able to deduce that something has happened to
the original request.

However, it is still not necessarily possible at this stage, for A to
conclude that the original request has been intercepted and that the
identity of X has been substituted for that of B.

Trusting in Computer Systems 33

A might conceive of the possibility that the original message has been
corrupted in some manner before being received by AS, and that this
might have resulted in the mistaken identity of the originator. A
might also conceive (perhaps more seriously) of the possibility that the
substitution has been made by the authentication server itself; either
accidentally or even deliberately.

Whatever the interpretation assumed by A of why it received a wrong
message, it is clear that if message 9 is the only response that A

receives then the only possibility for communication available to A will
be with X.

If X has control of the network it is clearly always possible for the
intruder to deny A completely the possibility of communications.
However, in the attack we have just described, we can see that it is
possible for an intruder to use the properties of a cryptographic
protocol (in this case the Needham-Schroeder Protocol) to deny A the
possibility of communication with B, without needing to have control of
the communications network.

There are clearly a number of variations on this attack, including that
where an intruder substitutes for A itself (or simply blocks the first
message from A) thereby ensuring that A is totally denied service of
any kind. An intruder can also selectively target principals with whom
A wishes to communicate, and thus deny access to specific principals or
groups of principals by A (and only A, if this is what is desired).

These attacks could conceivably be avoided by the complete encryption
of message 1. (However, it is clear that if A’s messages are blocked
completely then nothing can prevent denial of service to A. Though it
is likely to be obvious to A if this were to be the case.)

If message 1 were to be encrypted then clearly there is a penalty to
paid for this in the time taken to do the encryption; and an even
greater burden placed on the authentication server by the requirement
for the larger number of decryptions necessary to handle all of the
principals it serves.

In addition, complete encryption can cause difficulties for the
authentication server in identifying the message originator. This could
be done on the basis of a known transmission channel or transmission

Trusting in Computer Systems 34

time; or even by exhaustive search, though this is clearly not very
practical if a large number of principals are involved.

It is sometimes assumed that all encrypted messages are accompanied
by enough cleartext information to enable the authentication server to
make the appropriate key selection, and that this could apply in the
case of the complete encryption of message 1. It is clear from the above
discussion of denial of service that any information in the clear, and
especially that which could potentially identify the sender is also
capable of being subverted by an intruder.

Of perhaps more concern to the users of systems employing
cryptographic means of secure communications are those networks

where the network itself adds information identifying the originator of

the message without the knowledge of the users. In this case it is
possible for the user to erroneously believe that it can protect its
identity from intruders by such means as the complete encryption of
all messages as discussed above. If the system now adds identifying
information to the messages then there is again another opportunity
for an intruder to confound the desired communications.

In many systems it is also common for a situation to occur where the
user might know that such identifying information is added, but is not
on a position to stop such information being added. This topic is one
which is worthy of further discussion but is not within the immediate
scope of subject of this thesis.

If we return to the discussion of the consequences of an authentication
server possessing state, then it is easy to see from discussions similar
to those outlined above for the case of an intruder, that it would be
possible for the server itself to masquerade as any one of the principals.

4.5 Known-plaintext Attack

Whilst Needham & Schroeder caution against regarding their protocols
as fully engineered solutions to the overall security problems of
particular applications, they also mention that the protocols provide an
adequate solution to the authentication problems specified by them.

Trusting in Computer Systems 35

They go on to note that their protocols would need elaboration to meet
a number of other security goals and go on to specifically mention that
of “withholding all matching cleartext-ciphertext pairs from an
eavesdropper”.

It is clearly of importance to understand the problems that can occur
from attacks that can be made by intruders in a system. We feel that
(especially) within the context of this thesis, it is of considerable
importance to understand that attacks can also be made by legitimate
participants in the system. These participants have the potential to
subvert the system in a very serious manner - and at a very different
level of trust - using the protocol’s own capabilities to achieve this, and
often with no possibility of detection.

Within this context, the Needham-Schroeder protocol is vulnerable to a
known-plaintext attack that can be made by one principal to discover
the key of another principal within the system.

Looking at the first two messages of the protocol we see that A is in a
position to make a known-plaintext attack on B’s key at the point
where the second message is decrypted. The protocol could allow A to
accumulate a large number of known plaintext/ciphertext pairs for
subsequent analysis of B’s key, by requesting many sessions from the
authentication server. If A discontinues each session at message 2
then B is never in a position to know what A is attempting.

If the authentication server possessed state then it could be possible to
determine that such an attempt had been made by a subsequent
analysis of the authentication server’s logs. In this case state can help
to disclose the attack.

It is clear from this that the various participants in - as well, of course,
as the designers and implementers of - this system believe that a large
number of elements of the system will behave in quite specific ways in
specific circumstances® . The correct operation of the system relies on
these beliefs being true.

2 Jris perhaps more correct to say that the participants behave in ways that are consistent with holding these beliefs. In
general it is not possible to know what is actually believed, but only to deduce this from what is stated or from observed
behaviour. It is always possible, of course, for a participant to believe one thing but to behave as if other beliefs were
true, for the purposes of deception.

Trusting in Computer Systems 36

|

Assumptions would appear to be made by participating parties that
systems elements also possess specific properties, and to trust them in
these regards. Most of these assumptions and beliefs are specified
neither by the protocol nor by explicit description of the system.

Within the context of our concept of trust we could state the
vulnerability to a known-plaintext attack as described above as: “a
principal in the system trusts all other principals in the system not to
mount a known-plaintext attack on their key”.

4.6 Summary

Discussions like these suggest that when we see a protocol statement
such as:

P1. A - B : {message},

we should perhaps ask the question: “what is the meaning of this
statement?”; for we have already observed that it can mean different
things to different people. In particular, it is not clear that it has a
common and unambiguous meaning to:

i. the protocol designer,

ii. the protocol implementer,

iii. A,

iv. B,

v. an intruder (X)

vi. a (disinterested) third-party observer.

As a simple example:

i. the protocol designer might have intended that the statements
should read as “A sends a message to B which B receives”;

ii. the protocol implementer may implement this as “A sends
message to B”;

iii. A may understand the statement as “A sends a message to B
which no one else reads”;

Trusting in Computer Systems 37

—————————— A ———

o]

~ iv. B might understand the statement to mean that the message
sent to B is guaranteed to have come from A”;

v. Anintruder such as X might believe that the message is
encrypted with A’s key shared with B.

vi. A disinterested third-party might observe that all that is
intended is that A originates a message which is intended to be
transmitted to B by some unspecified communication channel.

References

[DS81] D.E. Denning and G.M. Sacco. Timestamps in Key
Distribution Protocols. Communications of the ACM Vol.
24, No. 8, August 1981, pp. 533-536.

[KN93] J.T. Kohl and B. Clifford Neuman. “The Kerberos Network
Authentication Service”, Internet RFC 1510, M.L.T. Project
Athena, Cambridge, Massachusetts, September, 1993.

[LGSN89] T.M.A. Lomas, L. Gong, J.H. Saltzer and R.M. Needham.
Reducing Risks from Poorly Chosen Keys. Proceedings of
the 12th. ACM Symposium on Operating Systems
Principles, Litchfield Park, Arizona, December 1989.
Published as ACM Operating Systems Review Vol. 23,
No. 5, pp. 14-18.

[MNSS87] S.P. Miller, B.C. Neuman, J.1.Schiller, J.H. Saltzer.
Section E.2.1: Kerberos Authentication and Authorisation
System, M.I.T. Project Athena, Cambridge, Massachusetts,
December 21, 1987.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for
authentication in large networks of computers.
Communications of the ACM Vol 21, No. 12, December
1978, pp. 993-999.

[OR87] D. Otway and O. Rees. Efficient and Timely Mutual
Authentication. Operating Systems Review Vol.21, No. 1,
January 1987, pp. 8-10.

Trusting in Computer Systems 38

[S92]

—<ﬁ

G.J. Simmons (ED). Contemporary Cryptology. IEEE I

Press, New York, 1992, Ch. 4, Appendix F, pp. 257-258.

Trusting in Computer Systems 39

|
|

"Put not your trust in Princes, nor in any child of man” - (Psalms exlvi. 2)

Chapter 5

Trust and Computer Systems

5.1 Introduction

We have chosen to discuss the concept of trust as it relates to an
analysis of the security of computer-based systems. One of our
contentions, which we develop below, is that the term is not always
used in a consistent manner. We refer to Appendix I for illustration of
some of the ways in which the term “trust” is used®.

We believe that there is sometimes merit in noting the distinction
between a formal definition of a term and its somewhat more colloquial
usage. It is often the case that the (different) usages relate to different
views of the system: for example, the manner in which the system is
defined to behave by the designer, and the manner in which it is
observed to behave by the user. In our experience, these viewpoints
are seldom co-incident.

We would maintain that a definition seeks to embody a viewpoint. It’s
importance is not that all must necessarily agree with the particular
viewpoint, but that (significantly) different viewpoints should require
distinctly different definitions.

The adoption of a particular (and related) set of definitions gives rise to
a specific model of a system whose description it is sought to provide.
It is the relationship of any such model (that is, its value) to perceived
experience (that is, perceived “reality”), that is used to judge the
ultimate usefulness of the model (that is, the consistency between
experience and belief).

We present below two basic and different models of trust as applied to
computer-based systems. Although we have observed a recent increase
in the discussion of trust and computer systems [e.g.” BFL96], the
overwhelming deliberations over the past few years have concentrated
on the application of the “Orange Book” model to commercial open

2 This particular collection is courtesy of Michael Roe.

Trusting in Computer Systems 40

distributed computer systems.

We think that the application of the military model of computer
security as presented in the “Orange Book” is seldom appropriate to
commercial open distributed systems, and we present our arguments
below.

5.2 Trusted Computer Systems

Trusted systems were first discussed within the context of the security
of military computer systems in the United States; as described in the
“Department of Defense Trusted Computer System Evaluation Criteria’
[DOD85] - the “Orange Book”.

This work originated in studies instituted by the US Defence Science
Board in October 1967 into computer security safeguards that would
protect classified information in remote-access, resource-sharing
computer systems. As such it would be reasonable to expect that the
considerations resulting from this work should be of considerable
relevance to many of today’s computing environments.

There is, however, a concentration within military systems on the
control of access to information. Within the world at large this
singular focus is uncommon, and more general issues of security arise
which we note later and which are not particularly well addressed by
such a restricted view of what constitutes security in a computer-based
system.

We find that the presentation of trust in the “Orange Book”, treats
trust as being essentially a system-based concept. We also observe
that it is implicit in the way the concept is used in the context of the
“Orange Book” that there is considered to be just one viewpoint from
which trust, and the security of a system, is to be judged.

Within military systems adhering to the “Orange Book” precepts, trust
is directly associated with access to information, and the associated
controls for achieving this. Much work has been done on the design of
“trusted” systems and components which implement these concepts,
and many feel that the implementation of sophisticated access control
systems provides for sufficient security of a computer-based system.

Trusting in Computer Systems 41

;
:
|
|

The principles underlying the‘Orange Book’ have also been widely used
in the design of many commercial systems where security is considered
to be an issue. We believe, however, that military models of security,
with their predominant emphasis on secrecy and access controls, are
not always the most suitable basis for the design of an open distributed
commercial system.

The ‘Orange Book’ sets out to deal with security issues relating to
“remote-access, resource-sharing computer systems”. However, in
comparison to commercial systems of similar nature, the military
systems are more likely to be closed systems in the way that they are
implemented. They will derive from a common design; implementing
similar security policies, design rules and control structures.

The “Orange Book” model relies upon there being a well-defined
security boundary around the system; with a clear differentiation
between what is trusted being inside the security boundary, and what
is not trusted being on outside of it.

In a commercial environment, it is often the case that considerations of
integrity, reproducibility, verifiability and availability of information
are frequently as important as considerations of secrecy and control of
access to information that are the paramount concerns to be found in
the military environment.

As a case in point, we can observe that concentration on secrecy may
result in an environment where concealment of behaviour that can
threaten the security of the system can be quite easy to accomplish. It
might be argued that in many circumstances, a concentration on
openness and verifiability, rather than secrecy, will result in systems
that are intrinsically more secure against many of the threats that are
found to occur within typical commercial environments.

One of the fundamental motivating factors behind the implementation
of open distributed computing systems is the desire to share common
resources between different users. It is inevitable that different users
will have different requirements and priorities, and it is therefore
unavoidable that at the outset of the design of such systerhs there will
be a conflict of interests. The idea of a common security boundary in
this context could therefore be of only limited value.

Trusting in Computer Systems 42

|
|
|
l

It seems to us that the idea that it is the system boundary that defines
what is trusted and what is not has little match with the realities of
the requirements of the different users, principals and systems
components in open distributed computer systems.

Systems which are designed, implemented and operated by separate
organisations, are unlikely to have a common, unique boundary, with a
single “inside” and “outside”. It is therefore likely that the primary
source of threat to such systems will arise from the activities of a
participant who is, for certain specific purposes, an “insider”.

The “enemy within”, a participant within the system - though not
necessarily inside any specific component of the system, with
knowledge of how the system works and where the absence of
uniformity of interpretation and control has resulted in weaknesses in
the security of the overall system, will be in a strong position to
threaten the security of the system.

It is worth examining what is typically taken on trust in current
systems: servers of various kinds, shared libraries and software
components, shared data bases, communications networks, etc. We
observe that different participants will consider different things to be
trusted in a distributed system; and most, if not all, of these
components will outside the direct control of most users.

Trust, by definition, is not a guarantee. Therefore an approach to
understanding trust is also one of assessing risk. This leads us to
question whether trust should be a local or a global consideration; and
whether it is an objective or a subjective concept.

The “Orange Book” approach is to seek to put all of the security-related
aspects of a computer system inside a “Trusted Computer Base’ (TCB)
whose features are considered to be “operative, correct, tamperproof
under all circumstances”. This is stated to be achieved variously
through rigorous analysis, the design and implementation structures,
and testing. Systems conforming to the “Orange Book” are considered
“trusted”.

We question the utility of these concepts being applied to commercial
open distributed computer systems. We believe that the contexts to
which the “Orange Book” precepts apply differ significantly from those

Trusting in Computer Systems 43

in which commercial distributed systems are implemented.

The TCB idea of placing all security related components inside a
common boundary and then of verifying the “trustworthiness” of this
construct does not seem to us to be particularly relevant to the design
of open distributed systems; indeed it might well be considered to be
the very antithesis of the open distributed concept.

In a distributed system, it is very likely that different states of
knowledge will exist in different parts of the system. There will be
distinct designs, operators and users, and different assumptions will be
made in the the use of protocols and (where it is used) cryptography.

We observe that it is a specific characteristic of an open distributed
system is that it will exhibit independent failure modes. Different
parts of the system can fail in ways that not only are not related to
each other, but are not necessarily detectable, for what they are, by
other components.

The appropriateness of applying a system designed for one context to a
different context, without very careful analysis, must be open to
serious objections. There can be large differences in the assumptions
underlying the applicability and operation of the two systems; and this
can introduce elements of risk, and also give rise to operational
behaviour and failure modes, that are not properly understood by the
system’s implementers, operators and users, either collectively or
individually.

This is particularly so in the design of open distributed systems, where
distributing what was originally a “closed” system operation can
dramatically increase the complexity and risks involved. For example,
replicating Trusted Computing Bases (TCBs), and linking them by
networks (even ones that are encrypted) does not of necessity result in
a system as secure as the original, closed TCB.

This can result in an insecure system being constructed from
individually secure components. An illustration of this was given at
the 1994 Cambridge Workshop on Security Protocols by Mark Lomas
(not yet published) on how the back-to-back use of two different and
individually secure protocols can introduce weaknesses that were not
to be found in either of the original protocols.

Trusting in Computer Systems 44

P =

T

= —

in which commercial distributed systems are implemented.

The TCB idea of placing all security related components inside a
common boundary and then of verifying the “trustworthiness” of this
construct does not seem to us to be particularly relevant to the design
of open distributed systems; indeed it might well be considered to be
the very antithesis of the open distributed concept.

In a distributed system, it is very likely that different states of
knowledge will exist in different parts of the system. There will be
distinct designs, operators and users, and different assumptions will be
made in the the use of protocols and (where it is used) cryptography.

We observe that it is a specific characteristic of an open distributed
system is that it will exhibit independeni failure modes. Different
parts of the system can fail in ways that not only are not related to
each other, but are not necessarily detectable, for what they are, by
other components.

The appropriateness of applying a system designed for one context to a
different context, without very careful analysis, must be open to
serious objections. There can be large differences in the assumptions
underlying the applicability and operation of the two systems; and this
can introduce elements of risk, and also give rise to operational
behaviour and failure modes, that are not properly understood by the
system’s implementers, operators and users, either collectively or
individually.

This is particularly so in the design of open distributed systems, where
distributing what was originally a “closed” system operation can
dramatically increase the complexity and risks involved. For example,
replicating Trusted Computing Bases (TCBs), and linking them by
networks (even ones that are encrypted) does not of necessity result in
a system as secure as the original, closed TCB.

This can result in an insecure system being constructed from
individually secure components. An illustration of this was given at
the 1994 Cambridge Workshop on Security Protocols by Mark Lomas
(not yet published) on how the back-to-back use of two different and
individually secure protocols can introduce weaknesses that were not
to be found in either of the original protocols.

Trusting in Computer Systems 44

We believe that in much of the analysis of the security of distributed
systems, the role of the medium - usually a communications network -
utilised for interconnection and the interchange of messages between
component parts of the system has been largely ignored. The role of
the network could be considered to be that of an active system
component, or a set of such components; or as an intermediary (trusted
third party, even), or a set of intermediaries; or even some mixture of
the two.

We maintain that whichever consideration is taken, including that of
ignoring the role of the network entirely, there will be major, and
different, implications in the analysis of the trust relationships of those
involved in the message interchanges in the system, and these will
change between the various cases.

In contrast to the “Orange Book” we believe that there is value in
considering security issues, and trust in particular, from a local,
subjective viewpoint rather than from an intrinsic and global system-
based viewpoint.

The importance of considering a specific context and viewpoint to the
understanding of trust can be illustrated by observing that two
participants may trust an implementation of a system, but for different
reasons, and because of these differences they will each have different
vulnerabilities with respect to the system.

What one participant has to trust the system for can be very different
to that which another participant has to trust it for; for example, a
service user compared to a service provider. As an example, let us
consider the interaction between a bank and an account holder in a
transaction involving the withdrawal of cash from an Automatic Teller
Machine (ATM).

The objectives from a customer’s viewpoint could be stated to be that
they do not get charged for the withdrawals of others, and that they do
get the cash they ask for when they ask for it.

The objectives from the bank’s point of view can be stated as to ensure
that it is not defrauded, and that wrong amounts of cash are not given
out nor cash given to a wrong person.

Trusting in Computer Systems 45

We believe that it is therefore inappropriate to use one’s trust
assessment for the purposes of judging the other’s level of risk - as
bank customers who have been victims of “phantom” withdrawals from
their bank accounts will have found out to their cost.

The inappropriateness of considering trust to be a global property in
distributed computer systems was nicely demonstrated in [CL95].
This paper concludes “In real life there is no global trust, and protocols
should not be designed which unnecessarily require principals to trust
their certification authorities.”

The above considerations lead us to conclude that there is merit in
considering a different notion of trust to that used in the “Orange
Book” and the various systems that seek to implement it.

In the following section we propose a new way of looking at trust which
we believe has considerable advantages over the “Orange Book”
approach, particularly in the consideration of security issues in open
distributed computer systems.

Our approach allows for individual participants to assess their own
level of risk. They are in a much stronger position to choose the level
of risk that they are prepared to bear.

We show how our approach can be used to examine the vulnerabilities
of different participants in these systems, and how this can lead to a
greater understanding of the risks that are being assumed.

We also show how these concepts can be applied to sub-systems and
component parts of distributed systems, and to stand-alone systems in
a way that can allow for an understanding of individual failure modes.
We do not believe that this can be done using the “Orange Book” model
because the TCB concept of system-wide trust sidesteps the basic ideas
required to conduct an analysis at the sub-system level.

5.3 Trust and Knowledge

“Truth” could be considered to be a constant and not subject to change,
it is only how it is perceived - or perhaps we should say, how it is
misperceived - that changes. To (mis)quote Shakespeare: “Truth is
not truth that alters when it alteration finds”: though there is a

Trusting in Computer Systems 46

dépendency on the passage of time, since something may once have
been true but have now ceased, or will in the future cease, so to be.

We could say that almost the exact opposite might be said of trust. It
can be argued that the more information that becomes available in a
trusted environment, then the more the perception of the original trust
could be expected to change® . This would mean that the trust will be
strengthened, confirmed, weakened or destroyed; but that almost
certainly it will be changed in some way.

As we have previously noted, trust is, by definition, not the same as
certainty. It has been observed® that trust is usually used in
situations where “facts” are missing, but are needed in order to
complete a process or procedure. Trust can be seen to change as
knowledge of the situation changes.

Our considerations lead us to the conclusion that trust is essentially an
epistemic concept; that it relates to a state of knowledge and not to a
state of a system [CH96]. We contrast this approach to the more
traditional one found in the “Orange Book”® .

The concept of trust being “knowledge-based” rather than being
“system defined” leads us to believe that it would be useful to consider
the idea of trust being relative to a base of knowledge.

To illustrate how this could be acceptable at an intuitive level, let us
consider the following situation, using a general understanding of the
meaning of trust.

I have a financial officer of whom I have had personal knowledge for
very many years. I have no doubts about his honesty. I am however
aware that he has what is euphemistically called a “drinking problem”;
and it is not unknown for the numbers coming from his department
following a long lunch hour to need subsequent “updates”.

I am therefore be in a position where I do not necessarily question a
person’s honesty (i.e. I “trust” them, the person), yet I do not believe
that the numbers I have been given by them are correct (i.e. I do not
“trust” them, the numbers).

2T See later discussion of trustworthiness.
S This was suggested during a private conversation with Professor RM. Needham.
% This is also different from the concept of trust as extolled by Francis Fukuyama in his recent book, “Trust” [F95].

Trusting in Computer Systems 47

This example illustrates that to trust someone for one thing - e.g. not
deliberately falsifying the accounts - is not the same as trusting them
for something else, albeit related: in this case, delivering the correct
accounts.

We believe that it is important to our understanding of trust that
many different things may be being trusted in any given circumstance -
in the above example these are honesty and competence, respectively.
This leads us to consider trust in a different way to that usually
presented in discussions of security of computer-based systems; where
trust is considered to be a property of the system per se.

As a consequence of our line of argument we believe that there is
considerable merit in the consideration of trust as being a statement
about relative” , and local, knowledge; in contrast to the more usual
usage of trust as an objective concept applied on a system-wide basis.

When we examine how the concept of trust has traditionally been
applied to computer-based systems, we see that it has not always been
used in a common, or even a consistent manner.

Probably the most widespread use of the concept of trust has been in
the context of “Trusted Systems” (c.f “Orange Book”). It has been
stated that within the “Orange Book” context, a “trusted” component of
a system is regarded as one that is capable of violating the security
policy of that system.

Trust is thus perceived as a predetermined property relating to the
system as such, and discussion of trust is therefore limited to a
discussion of the security policy of the system, and the relationship of
individual system components to that security policy.

We believe it to be a significant shortcoming in the “Orange Book” that
the secure operation of a compliant system is dependent upon the
“correct input by administrative personnel of parameters related to
security policy”; and where it is not stated what is the relationship of
these personnel to the security policy itself, nor to how their actions
affect whether a system is to be trusted or not.

% By relative here, we mean relative to a specific local kenowledge base - however i may be stated, and whether explicit
or only implied.

Trusting in Computer Systems 48

——

What we have is a situation where system-defined criteria for the
security of the system are administered by individuals who are neither
included as components in the definition of the system, nor in the
criteria for determining whether the system is to be trusted or not.

We find this concept of trust to be of only limited utility in the analysis
of the security vulnerabilities of open distributed computer systems.
We contend that it is essential to an understanding of the security
properties of a distributed system to include the administrators of the
system as an essential part of the system itself,

We would, in fact, go even further than this. We believe that it is
essential to also include the designers, implementers and users of any
computer-based system in the analysis of its security properties.

We have already shown that there are a number of possible viewpoints
from which to judge the security of a system, and we would ask what
are the considerations that should determine which viewpoint should
be used for the analysis of the system.

It is not at all obvious to us why, of all the viewpoints that are
available, the military criteria should choose that of the system itself
for what is to be trusted and what is not.

Such a consideration would seem to embody the view that it is only the
behaviour of the (abstract) hardware and software components of a
computer-based system that can in some way be made constant and
therefore used as a basis for a (fixed) determination of trust. We do not
believe that such a fixed focus is particularly useful in understanding
the security weaknesses of commercial open distributed computer
systems.

In particular, we note that an abstract viewpoint, namely that of the
system, has been chosen; rather than, say, that of the security policy
formulator, or the policy’s administrator. (We use the singular because
it is our contention that if more than one administrator is involved,
then the application of the security policy will differ between them
because they will have different trust sets.)

It is tempting to speculate that the choice of an abstract concept such
as that of the computer system to form the base from which trust is to

Trusting in Computer Systems 49

be judged was made in the belief that it was possible to abstract the
concept of trust, embody this concept in the system design, and then
(figuratively) to put a wall around this embodiment. Such an approach
would seem to imply that a man-made artifice, such as a computer
system is to be trusted more than its specifiers, designers,
implementers, operators, administrators.

We observe that in many (non-military) situations where the concept of
trust is used, it is most commonly used as a substitute for knowledge.
As we have previously noted, trust is invoked instead of knowledge in
situations where there is the need for a particular piece of knowledge
to complete a transaction within the system, but for some reason this
knowledge is lacking.

We can obviously conceive of a number of possibilities why such
essential knowledge might be lacking. These can include the difficulty
and cost of obtaining the knowledge, the length of time it might take to
obtain it, the availability of the knowledge, or even its very existence.

We propose, therefore that trust be considered essentially as a
statement about the position of one party in a system to other parties
or system components. It is quite conceivable for different principals to
have different views on the matter of the trust of the same aspect of
their common system.

It seems to us, therefore, that the “Orange Book” usage of the terms
“trust” and “trusted” are better understood when associated with the
related, but different, concepts of reliance and trustworthy.

We do not believe the concept of trust as we have presented it, to be an
atomic notion, to be treated as a discrete entity which either exists or
does not. We show how it is possible to construct a notion of trust from
a combination of statements of belief, that follows the intuitive use of
the concept.

We demonstrate this by introducing the following little ‘calculus™ we
have formulated, and using it to examine the concepts of trust and
reliance.

N Wirh apologies and thanks to Burrows, Abadi and Needham [BAN89Y], as appropriate.

Trusting in Computer Systems 50

D —

It is our intention only take this discussion far enough to demonstrate
our conjecture that trust is not an atomic notion, and also how it
differs from other, similar, concepts such as reliance.

5.4 A Simple Definition of Trust

We start by presenting a working definition of trust, as it pertains to I

the principals of a system. In the following, A, B are principals, and S |

is a statement of some knowledge. This could be a cryptographic key I

or the state of a system, part of a system, or a system variable, for
example.

Defn: Trust

A trusts B aboutS means

If “
B says S il
then I
I

B believes S

A believes _ ’
Il ‘\

We write thisas .- AZ B . i

We propose that this is different to a statement about belief involving
principals, which we see as follows:

Defn: Belief
A believes B about S means

If

B says S
then

A believes S .

We would like to emphasise that what we are concerned with here are
statements that can be made about the principals in a system, and not
with statements about knowledge or belief, per se.

Trusting in Computer Systems 51

,—<—

We would like to demonstrate the use of this calculus by applying it to
to an specific example® Let us consider the earlier tale of the
accountant and his boss.

We start by noting that there are two different things that are stated
as being trusted in this example: the person; and the person’s output.
These could be characterised as the person’s honesty and their
competence, respectively. |

Let us try to formulate what we mean when we say that we “trust the
person”. This is usually taken to mean that we believe that they are
not lying; that is, that they believe what they are saying:

A trusts B ’s Honesty:

If

B saysS
then

A believes

B believes S .
Which we note is our proposed definition of trust.

In a similar way, a formulation of “trust of output” could be said to
mean that we believe what they give us, that is:

A trusts B ’s Competence:

If

B says S
then

A believes S .

Which is our definition of “belief”.

We can see that what was called “trust” in the two cases can be shown
to be two separate and distinct concepts.

2 We are indebtzd to Bruce Christianson for suggesting this approach.

Trusting in Computer Systems 52

“Honesty” is related to a state of mind, and it can therefore change;
although the state of the system can remain unchanged. “Competence”
occurs where it is believed that might be a fact involved.

We believe that, without resorting to the realms of philosophy, a
meaningful distinction can be made between different usages of the
term “trust” and to what that term has been applied. These
distinctions can be useful in the anélysis of the security properties of a
computer-based system as they can be used to illustrate different
states of knowledge and perceptions of the principals in the system.

Treatments of trust as a fixed property of a system, such as those

contained in the “Orange Book”, cannot allow such distinctions to be
made.

We believe that the simple concepts presented above are capable of

being extended and developed further, however this has been left for
further work.

5.5 Further Considerations

One of the ways in which this calculus can be extended is to consider to
what extent deductions can be made from observations of the
behaviour of principals using these and other, formalisms.

As an example, let us consider our earlier definition of belief, but
examine the behaviour from another viewpoint. Observations from
this viewpoint could be presented as follows:

If (it is observed that)
B says S (to A)

and (A behaves in a way consistent with)
A believes S

then (to what extent can we say that)

A believes B (for S).

Trusting in Computer Systems 53

Further work will be undertaken to expand on this approach; again
with the focus of different viewpoints and local knowledge. To the
extent that belief is an internal state of a principal, then the question
arises of to what degree it can ever be deduced from a principal’s
behaviour.

It is our contention that an analysis of the security properties of a
system, that ignores deceit; which will include bluffing, lying and
misrepresentation, for example; will be unable to identify all of the
major vulnerabilities of the system.

The ability to handle deceit is central to the risks facing a computer-
based system, its users, and proprietors. It is this capability and
perspective that is missing from the “Orange Book”, and which we
believe to be so important in our approach.

In the case just given it is possible, for example, that A may know S by
some other means than having just been told by B; A may have told B
S, in some, other, unobserved, manner. Indeed, it could be possible
that A and B are in collusion with each other to establish an alibi of
some nature.

Clearly, what can be deduced from observations alone may be very
restricted and flawed. However, for many of the principals - and
others with a stake in a system - subjective observation may be the
only means available to them to examine the security characteristics of
the system as these characteristics affect them.

It is a major difference in our approach to those incorporating the
“Orange Book” principles, that such a relativity of view is not only
readily accommodated, but is at the very basis of considerations.

We would reiterate that the calculus presented above is intended at
this stage to be applied only to relationships between principals. It
cannot be applied, as it stands, to relationships between principals and
statements per se.

By way of illustration we would point out that although it might look
to some as if our definition of belief between principals could be
considered to be transitive in nature, this could only be the case if

Trusting in Computer Systems 54

statements such as A believes S and A says S were equivalent.
Clearly, such a proposition does not allow for the analysis and
understanding of duplicity and misrepresentation by a principal.

We therefore maintain that careful consideration is given to the
distinctions already made concerning the application of these various
concepts to “active” components of a system (e.g., principals), and
“passive” components of a system such as cryptographic keys.

It is just as obvious from our presentation of our concept of trust that
as proposed, it is not transitive; and we believe that the precise nature
of security attributes that are professed to exhibit the property of
transitivity need very careful examination.

Intuitively, notions of trust are usually concerned with actions, i.e.,
“behaviour”, and notions of belief are more normally associated with
information, i.e., “facts”.

We believe that there has been some confusion between the concepts of
trust and “reliance”, just as there has been between the concepts of
trust and belief,

Reliance is not the same as trust. Something is relied on if it is
necessary for the completion of an activity. Reliance can involve both
“facts” (=belief) - the value of a particular piece of information may be
necessary; and “behaviour” (=trust) - the particular actions of a
principal may be necessary.

We note that the concept of reliance, although apparently composite,
exhibits the property of transitivity. For if A relies on B for S and B
relies on C for S, then A relies on C for §. This is true irrespective of
whether A agrees to B’s reliance on C, or is even aware of it. It seems
to us that this is the notion being considered when transitivity of trust
is proposed.

Other related terms are also to be found in the literature, such as
“trustworthy”, “authority”, “speaks for” and “jurisdiction”, though not
all of these terms are well-defined.

The BAN logic does not use the concept of trust; instead it uses the
concept of “jurisdiction”, defined as follows:

Trusting in Computer Systems 55

Jurisdiction:

if
A believes B has jurisdiction over S

then

if
A believes (B believes S)

then
A believes S.

We observe that this definition contains a mixture of statements about
“competence” (B has jurisdiction over S) and “honesty” (B believes S).

It is still not clear to us the precise manner in which these different
contexts are compounded. We would also note the similarity of the
second clause (A believes (B believes S)) to our definition of trust.

We would point out that the concept of jurisdiction as defined is not
sufficient to replace the concept of trust as we have presented it, since
of itself the concept of jurisdiction does not allow for the analysis of
corrupt, malign, or incompetent, principals within a system.

We observe again that many of the established methods of analysing
the security properties of a system assume that the system has been
installed, and is being operated, according to overall design principles
that will require some level of internal system integrity. It will
therefore be the case that any failure of the system to adhere to these
integrity assumptions, for whatever reasons, are not capable of being
detected within this framework.

We would like to return for one final reflection on the relationship of
transitivity and trust.

In a recent publication ([(CB94], p. 54), Cheswick and Bellovin make
the statement that “Transitive trust may also be an issue” when
referring to a situation of interconnected computers independently
extending their (so called) trust relationships unbeknown to other
computers with which it is interconnected.

Trusting in Computer Systems 56

They present a situation where A trusts B for something and
unbeknown to A, B trusts C for (part of)this. A is then said to be
trusting C, without A’s approval or knowledge.

As we have covered above we believe that this is to confuse trust with
other, and distinct, concepts: either reliance, or, perhaps in this case,
delegation; depending upon the extent of specific knowledge and
consent. There are clearly major issues regarding trust, and the
evaluation of risk, in those situations where delegation occurs.

There is an ostensible relationship between delegation and trust, and
in many situations it is clear that we delegate to those we trust; but it
is also clear that the converse is sometimes also true, and we “place
trust” in something or somebody is a statement of effective delegation.

What is not always so clear is the nature of what is being delegated.
Sometimes it is the role (i.e., Departmental Manager), and sometimes
it is the authority (i.e., approve invoices up to £xxx amount).

We believe that the topic of delegation deserves a significant study in
its own right, and in particular the relationship of the roles of the
delegator and, for want of a better word, the delegate. The person
doing the delegating and the person receiving the delegated powers
will have different trust sets, that is they will trust different things in
different ways.

The situation surrounding delegation will be compounded where there
is any form of delegation occurring that is not known to the (putative)
delegator. Hidden delegation can present major problems and risks
for the principals in a system; not the least of which is the
determination of when it is occurring.

We would point out at this stage that we believe there are implications
of this research for ongoing research in other areas, for example we
think that analogies can be made to the case of conventional computer
systems and to the relative situations of system designer and system
user, who could be said to have “delegated” the design of the system
Our experience shows that the two parties rarely have identical sets of
belief and trust.

Trusting in Computer Systems 57

i

B e

In a similar way a user running of a piece of software could be
considered to be delegating a task to the system when the programme
is run. There a clearly many opportunities for hidden delegation to be
occurring within the confines of an computer system and its system
software.

A similar argument can be made for the process of communicating data
from one system to another, where the nature of the communications
network can clearly add some complexity to the analysis of what is
being trusted and by whom.

Another topic that can be linked to the concepts of trust and delegation
is that of “trusted third parties”. We think that the discussions of trust
and delegation above indicate the topic of trusted third parties as being
a more complicated subject than is sometimes presented.

We believe that the examination of what is involved in behaviour such
as “trusting a key-server to deliver a unique and secure key”, using our
approach, will point to many areas where the underlying assumptions
have not previously been considered relevant to the security analysis.

There are many situations where third parties are being used, and
inevitably trusted, without the knowledge or conscious awareness of
the user. We would argue that in many distributed systems the
network itself is often viewed as “invisible”, and we believe that it
should be treated as a trusted third party in any security analysis. In
general, we have not found this to be the case.

5.6 Summary

We think that our approach to trust as representing a statement of
relative knowledge, compared to the more usual use of the concept as a
property of a system, allows for the analysis of the security properties
of participants and components within the systems boundaries.

Our approach to associating risk with knowledge, rather than with the
design of the system, allows us to handle in a consistent manner the
actual operational characteristics of a system, and to allow for different
principals having different perspectives of the system.

Trusting in Computer Systems 58

The “Orange Book” approach to the concept of trust imputes

responsibilities to participants in the system that are necessary for the

correct functioning of the system. In contrast it might be said that our

approach could be likened to “every one for them self”. We believe that
our view is particularly important for the analysis of corrupt, malign,
or even incompetent, principals or servers, for example.

Systematic comparisons of a number of different viewpoints can lead to

a much better understanding of the system vulnerabilities, and can

allow different principals to choose their own levels of trust in
relationship to their knowledge base; and therefore to have some

control over the levels of risk that they are prepared to tolerate.

References

[BANS89]

[BFL96]

[CB94]

[CH96]

[CLI5]

[DODS85]

[F95]

Michael Burrows, Martin Abadi, and Roger Needham. A
Logic of Authentication. DEC SRC Research Report 39,
February 28, 1989

Matt Blaze, Joan Feigenbaum and Jack Lacey.
Decentralised Trust Management. Proceedings of the IEEE
Conference on Security and Privacy, Oakland, Ca.,

May 1996.

W.R. Cheswick and S.M. Bellovin. Firewalls and Internet
Security. Addison-Wesley 1994, p. 54.

B. Christianson and W.S. Harbison. Why Isn’t Trust
Transitive? Security Protocols, Lecture Notes in Computer
Science 1189. Springer 1996, pp. 171-1786.

B. Christianson and M.R. Low. Key-spoofing attacks on
nested signature blocks. IEEE Electronics Letters Vol.31,
No. 13, 1995, pp. 1043.

Department of Defence Trusted Computer System
Evaluation Criteria. DOD 5200.28-STD, US Department
of Defence, Washington, DC, USA, December 1985.

Francis Fukuyama. Trust. Penguin Books 1996.

Trusting in Computer Systems 59

“Faf now we see through a glass, darkly; but then face to face.”. I Corinthians ch.13, v. 11

Chapter 6

DISTRIBUTED SYSTEMS, SHARED DATA
AND DELEGATION

6.0 Introduction

Distributed systems combine potentially large numbers of independent
components comprising hardware, software and communications into
an apparently single operating unit. Services are provided by
mechanisms whose internal workings are usually (deliberately) hidden
from the end users of the system, by means of abstract interfaces,
protocols and procedures. Indeed, it is commonly held that one of the
key design objectives of a distributed system is to provide what is
referred to as “transparency”® [ANSA89,IS092]. We shall see that the
implementation of this concept can lead to serious and unforeseen
consequences for users of the system at all levels.

Transparency is a consequence - though by no means an inevitable
consequence - of the separation® of the component parts of a
distributed system. Separation of components is an inherent attribute
of a distributed system [CDK94], and it is this separation that provides
for the parallel execution of programmes and for the multiple
concurrent access to resources and data.

It is the separation of components that allows a distributed system to
be expanded and contracted as required - both physically and
functionally - without disruption to the operation of the system as a
whole. This is also often associated with the concept of “openness™.

While not being a prerequisite for a distributed system, openness
allows for a more general sharing of resources in a way that can be

% Transparency is defined as the the “concealment from the user and the applicarion programmer of the separation of
components in a distributed system, so that the system is perceived as @ whole rather than as a collection of independent
components”. [CDK94]

* We will restrict our discussion here to Physical separation, but the arguments can easily be extended to include logical
and functional separation.

% We use the term open here in the Insernational Standards Organisation’s (ISO) reference model for Open Systems
Interconnection (OSI) sense [ISO81]. The term is also used in the sense of an open operating system[LS79] which deal
mainly with the concept of minimal operating system Junctions (e.g. lightweight kernels), which are not specifically the
subject of this dissertation.

Trusting in Computer Systems 60

independent of a particular operating system or specific computer
hardware.

The ISO Reference Model for Open Systems Interconnection [ISO81,
ISO92] has been developed as a standard conceptual framework for the
definition of communication protocols that would meet the
requirements of an open system; and it has become increasingly
common for distributed systems to be designed specifically in an
hierarchical and layered way that provides for both the logical and
physical separation of functionality.

A consequence of this design approach is that a number of common
interfaces will occur at different levels within a system, from that of
low-level physical and logical components to that of large-scale
application programmes running on multiple (and often different)
hardware platforms.

These interfaces are provided to allow transparent access to specified
levels of the system without the need to have knowledge of other parts
of the system. We shall see that major, and unforeseen, consequences
can result from the separation of the components of a system, and this
can happen at many, if not all, of the levels within the system.

A distributed system may include components (operating at the same
or at different levels) that have been provided by, or are operated by,
disparate organisational entities. These entities may be part of the
user’s organisation, but also they may be completely separate legally
and organisationally.

In either case, responsibility for the correct working of the system is
likely to be split between different organisations, and this can lead to
conflicts in the management and control of the overall system.

The separation of the components of an open distributed system
coupled with possibly different ownership, implementation, and control
can lead to inconsistent results in operation, testing and fault-finding.

Fragmentation of supply can also give rise to inconsistencies which can
result from incomplete or inaccurate interfacing between disparately
provided services. There is also the possibility of conflicting overlaps
in the provision of services, with ensuing unpredictable of outcome.

Trusting in Computer Systems 61

The chances of this occurring with a small, well-managed in-house
system, under single system management control, is likely to be quite
small. However, within large-scale systems where functional and
operational capabilities span many separate areas of management,
geography and control, attempts to maintain consistency at one level of
the system can conflict with parallel activities at other levels and by
other, overlapping, functions.

Some form of overall system management is needed in order to avoid
these types of problem and to furnish a common set of user interfaces
and services while at the same time maintaining consistency of the
system’s behaviour as seen by the user.

The provision of facilities expected in distributed system such as fault
tolerance and isolation, dynamic reconfiguration, component recovery
and the enforcement of security and protection regimes will require the
system management functions to have capabilities for the control of
communications channels and for the selective isolation of users and
components throughout the system .

For system management controls to operate effectively, they will need
autonomous communications capabilities that are separate to normal
user service functions, and which can provide independent
communications channels (both physical and logical) that are not
accessible, or known, to other parts of the system.

We can see how in an open system, the requirements for maintaining
overall system integrity and fault tolerance can be used to justify an
approach that hides the existence and detailed operation of sub-
systems and components from other sub-systems, components, end-
users, and even the systems managers of other operational domains.

Unfortunately, the ability to subvert such a system, with its multiple
levels and interfaces, is greatly enhanced by being able to hide what is
going on within the system, thereby constraining the knowledge of
users of what activities are occurring across the system.

In the following sections of this chapter we look at the consequences of
using a distributed system for resource sharing. We use the example
of a commercially available system to illustrate the potential risks to
users in systems of this type, and how the principles of transparency

Trusting in Computer Systems 62

and openness can undermine system integrity and lead to users being
vulnerable to many forms of attack without their knowledge or ability
to avoid.

6.1 Distributed Systems and Shared Resources

In a distributed system with a client-server architecture, a server is
generally considered to be a component of the system that manages a
particular type of resource [CDK94], be it a physical resource such as a
printer, or a logical resource such as a file. A physical server may also
sometimes have more than one logical function, such as being both a
file server and a boot server.

The concept of a resource is abstract and somewhat arbitrary but can
be considered to be any object which can be allocated within the system
[TB74]. Such objects can encompass a wide range of computer
components including hardware items such as printers, processors and
disc drives as well as software and system components such as
programmes and processes, files and data bases, and mixed hardware
(firmware) / software functions such as system and remote booting.

Services provided by such a distributed system must be able to
reconcile the different requirements imposed by the need to operate
with multiple clients “simultaneously”. There will be a requirement
that there be a minimum of interference between the separate
operations performed on behalf of different clients (or even multiple
invocations from the same client), whilst at the same time being able to
retain the necessary underlying ability to share the resource or data;
and also to maintain overall integrity over the resource.

With multiple clients accessing a common server, the possibilities of
conflicts and inconsistencies are many. Different techniques have been
devised in order to minimise or eliminate such conflicts as they occur
with different types of resource.

In the following discussion we will concentrate on techniques that are
in widespread use for the avoidance of inconsistencies of data items
shared by clients on a common server: though we note that these
techniques do share many attributes with those used for other types of
resource.

Trusting in Computer Systems 63

1
|
|
:
|

6.2 Shared Resources and Concurrency Control

A server performs a series of operations on behalf of a number of
clients, and does so in a manner that seeks to preserve the integrity of
the data involved, whilst still allowing the maximum concurrency of
access to data items consistent with this.

The mechanisms most usually found in controlling concurrent access to
data by different client operations involve the application of read and
write locks to the data items. These locks can usually be applied at a
number of different levels, from the highest logical and physical levels,
to that of an individual record or field, depending on the type of
application and data involved.

The use of different levels (the granularity) of locking, can give rise to
significant differences in the observed performance characteristics of a
system, both at the individual server and also the client application;
and the manner in which conflicting demands from client processes are
balanced, can result in unequal treatment of different processes, with
the possibility of certain users being advantaged or disadvantaged
compared to others.

The server will usually balance conflicting locking demands using a
number of means directly available to it, such as suspending processes,
queuing processes in one of a number of ways, or even by terminating
them and requiring that they be restarted.

The undetected manipulation of locking mechanisms in a distributed
system is possible as a consequence of the implementation of the
transparency design principle. Undetected tampering can also take
place as a consequence of layering in open systems, where each layer
represents a specified level of abstraction, and uses services provided
by lower layers utilising this abstract interface (see for example [B93]).

Hardware resources are seldom shared in the sense that several
processes are simultaneously accessing the same device. Rather, the
resource is said to be shared when exclusive control is given to each
process for only a particular interval of time.

The allocation of a resource in this way will clearly slow down the
service for any given process, but it does allows the utilisation of the

Trusting in Computer Systems 64

resource to be that much greater than a totally dedicated resource.

In order to allow this sharing of resource whilst at the same time
méeting some overall system goals for performance, consistency and
integrity there must be some form of overall system control of the
resources involved.

The synchronisation of concurrent access to shared resources in a
client-server system is performed by processes that run on the servers.
These processes control the management of locking schemes and
mechanisms and are referred to collectively as lock management
services.

In the following section we look at a specific example of the
implementation of a lock manager in an existing and well-documented
distributed system. We examine some of the ramifications of this
particular implementation, and the potential impact the design
decisions can have on the operation and integrity of the system as a
whole.

6.3 A Distributed Lock Manager

Digital Equipment Corporation’s VAXcluster environment
incorporating the VMS operating system is regarded by many as an
exemplary implementation of a distributed system. Its design
objectives include, as well as the generic capabilities of a distributed
system, the characteristic that members of a cluster can boot and fail
in an manner which is independent of each other component of the
system.

This environment consists of a highly integrated organisation of
computer systems whose members share resources, queues and disk
storage under a single security and management domain. Although
most cluster resources may be shared, user processes and system
memory are node specific, and failures to the node will require the
processes to be recreated by the user on possibly another node in the
cluster. |

This description, and those following come from the VMS System
Management Manuals [DEC88]. These documents are intended to

Trusting in Computer Systems 65

;
!

et~ o=

[EEpR

g‘uide VMS systems managers through the processes and procedures
necessary to set up and tailor a cluster operating environment. There
are a number of software components used to implement the cluster
functions, but we restrict our initial attention to the operation of the
VMS Lock Management System Services.

The Distributed Lock Manager provides facilities enabling the support
of system wide synchronisation functions for control of access to shared
resources. This is accomplished by the use of support services that
implement the locking and unlocking of resource names, and the
provision of queuing mechanisms.

The resources controlled by the lock management system can be any

entity recognised by the VMS operating system (for example, files, data

structures, databases, and executable routines). We shall concentrate
our discussions on data resources, and in particular file locking.

The first point of note is that the lock manager is only effective
between cooperating processes. The name that is specified by a process
represents the resource that is being locked. “Other processes that
need to access the resource must refer to it using the same name.”

It is stated in the VMS System Management Manual covering Lock
Management Services that “The correlation between the name and the
resource is a convention agreed upon by the cooperating processes”.

From this it would appear that the system is relying on agreements
between user processes rather than on formal and enforceable policy
regimes. If two processes were to refer to the same (or part of the
same) data structure using different names, then the lock management
processes are likely to be ineffective with regard to that data.

No system-wide mechanism for enforcing names is presented, nor any
system-wide facility for data management that might provide for or
support the provision of unique names for data items. Even the use of
the lock manager itself would appear to be entirely at the discretion
of the user processes themselves.

It is possible for individual System Managers to seek to enforce a set of
standards and conventions when setting up processes for which they
are directly responsible or over which they have some form of direct

Trusting in Computer Systems 66

control. It is unlikely however, that all accesses to shared data by
processes within a distributed system can be foreseen, and
enforcement of access controls to data will not be possible without the
explicit and precise cooperation of all processes involved®.

Even allowing for the goodwill and cooperation of the various users
that share specific systems resources, it is still quite possible that
different processes will have been established at different times and by
possibly different parties, and that different models and assumptions
will have been used which could result in the inadvertent bypassing of
important system conventions and controls, and thereby affect shared
data in ways that are both unknown and unanticipated by other users.

The accidental and unplanned bypassing of systems conventions and
controls is always a potential problem in systems that have more than
one author and whose operations have been constructed and modified

over a period of time.

The lack of mandatory enforcement mechanisms is a serious omission,
however, for the moment let us assume the case of a well ordered and
centrally managed system, where we might feel fairly confident in the
presumption that all processes are well-behaved and will always use
agreed systems conventions and services.

We might initially feel more confident that such an implementation
could be considered secure against the problems associated with
deliberate manipulation of the system to the benefit of one or other of
the parties involved. With tampering unable to take place, or at least
not in an undetected manner.

In the next section we look at ways in which typical locking
mechanisms®* are implemented. We shall see that not only are there
opportunities for deception and manipulation of data at a number of
levels within a distributed system; but tampering can take place in
ways which can be concealed from users.

Such tampering can be done in ways that are unverifiable by users,
and even made to appear to have been done by parties other than the
perpetrator, including users themselves.

% “Many database administrators know that application security can be bypassed, but keep quit for an easy life”. Neil
Hutton [CS97].
87 A comprehensive account of file locking techniques can be found in [CDK94].

Trusting in Computer Systems 67

6.4 Distributed Systems and Delegation

One observation we can already make from what we have seen above is
that significant portions of the operation of a distributed system lie
quite specifically outside of the ability of a user to control, monitor or
even verify.

Of particular interest to us in these considerations is the integrity® of
the data within a distributed system. In practice, this data is held on
behalf of a client by a server, and the only way usually open for the
client to access and verify the data is to invoke one or more of the
server’s operations; operations over which the client has no direct
control.

The client has effectively handed over whatever independent
capabilities it might have had regarding the data, and has, in essence,
delegated its responsibilities to the server.

It is therefore a consequence of using shared resources in a distributed
system that control is being delegated, often unintentionally, and this
will result in users and their applications having to rely on the servers
within the system for the availability and integrity of those resources,
whether they wish to or not.

If we consider the implementation of locking mechanisms for shared
data, as discussed earlier, then we might conclude that these processes
will operate only in favour of the server.

This should not be taken to imply that any ultimate benefit to be
gained from the specific application of locking and queuing
mechanisms will necessarily accrue to the server; but rather that the
server is in a unique position to enable such benefit, however that may
be measured.

We can envisage situations (for example, in the areas of currency and
securities trading) where the selective operation of locks could be used
to disadvantage one user over another. There could be serious
financial implications for a trader unable to access the current, real
time, value of a share or currency exchange rate, or who is given as a
current value one which has been subsequently updated.

% Integrity is used in the meaning that only authorised modifications can be made, and only by parties authorised to
make them [P89]. There is also the issue of the modifications being made correctly.

Trusting in Computer Systems 68

If, in addition to the user being given inaccurate or untimely data, the
situation is deliberately hidden by the server and is unknown to the
user, then the impact of any unfavourable effects could be greatly
magnified. Even in those situations where a user is aware of
something being wrong with the system, as could happen in the
extreme case of denial of access, their ability to protect against possible
adverse effects will be very limited.

The above considerations lead us to ask the question: “On whose behalf
does a server operate?”. We have seen that it is not difficult for the
selective use of read and write locks within a server to advantage or
disadvantage different clients of that server. This could especially be
the case when users are in direct competition with each other, while at
the same time they are (“cooperatively”) sharing a common data base.

This raises the issue of precisely how a client should treat a server. In
looking back at our discussion of a trusted message server in Chapter 3
we can see that there are a number of roles that could be considered:

1. An extension® of the client and its associated processes;
2. An independent * executor of instructions.

3. A hired” third party.

4. An agent” of a second party.

5. An independent intermediary®.

We have not specifically referred to the notion of a “trusted third
party” in our examples. This is because we do not find there to be an
exclusive meaning to this concept. Examination of the above shows
that they are all in effect “third parties”, and they each will be
“trusted” to some extent or another, depending on the way in which
they are used.

% This is the easiest case to consider, since the objectives and controls of the server should be coincident with those of the
client(s), and therefore verifiable as such.

“ It is always important to ask of what or whom something is independent. In establishing independence we need to
kenow who or what is defining or guaranteeing such an attribute, and how it might be verified and monitored. Is an
independent entity to be considered a part of the system or to stand outside of it. Without complete and unambiguous
specification, any discretionary capabilities, whether exercised or not, will be unclear and unknown.

“ We have in mind here a fucility that is specifically available 1o the user to undertake a given set of tasks or
responsibilities directly Jor a specific user, and to an agreed performance level as a consequence of a commercial
agreement between the two. In such an arrangement it is important that there is a clear understanding of what is being
contracted for: the server or the service, what is individual and what is shared, etc. Without this, a true understanding
of what is being trusted and relied on cannot be obtained,

2 An agent can be considered 1o be a representative of a party. It usually has responsibility for conducting negotiations
and agreements on behalf of its principal. However, the exact nature of the legal relationship between the two is usually
secret, and therefore the precise relationship with an agens, and the capacity in which it is operating can be obscure.

S This is used to denote an entity that, uniike those above, has an equal relationship to both the user and server.

Trusting in Computer Systems 69

We have seen that the operation of a client-server relationship requires
the client to delegate responsibilities, de facto, to the server. In order
to.understand more fully the implications of delegation, whether it has
been implemented knowingly or otherwise, we feel that it is important

to establish more detail about certain aspects of the relationship*, for
example:

i) how a delegation relationship is established,;
ii) how long it is to last;

iii) how operation of the relationship is monitored;
iv) how the relationship is made known to others.

As a deeper understanding is gained of the role delegation plays within
a distributed system, more detailed abstractions that are more closely
fitted to specific situations will be proposed.

All we need say at this stage is that there is clearly a relationship
between delegation and trust; and that in many situations delegation
can be considered to be the “reverse” side of trust.

As of writing we are considering the following working form for the
representation of delegation:

I [give/transfer/allow use of], [uniquely/irrevocably/until/unless/
for a period/for a task],

my [authority/power/knowledge]

to [someone/something/(ones/things)]

under [these conditions: 1

We believe that there is considerable scope for development of the
concepts introduced above. Further work will yield additional research
results, and a deeper understanding of the workings and failings of

distributed systems designs. This work is, however, beyond the scope
of this dissertation.

8 Foran example of how some authors have treated delegation refer to [GDI0)].

Trusting in Computer Systems 70

6.5 Transparency and Trust

As already noted, distributed systems are motivated by a requirement
to share resources of one kind or another. Different operational and
design models will be used for the various operations of these systems,
such as communications, data storage and processing capabilities.
Also, different trust models will apply to different parts of a system as
viewed by other, dependent, parts of the system.

We have seen that within a client-server system, the only way for a
client to access data items stored on a server, is by invoking one of the
server’s operations. We note that, in general, a server will be
operating on behalf of a number of client processes, each possibly
unaware of the others’ existence, and whose requests for service will
probably be interleaved.

To maximise concurrency, the server will have to serialise [P79, BG81]
access to the data items, and will do this using its available
mechanisms of resource locking and transaction queuing. It will even
terminate process transactions in some instances, such as when
deadlocks [H72] occur.

It is clear that the server has primary control over the shared data,
and is in a position to effect its contents at any one time, as well as
being able to control the order in which operations are allowed to
change the data. The manner in which a server has been configured,
and many of the algorithms by which it operates will not be visible to
users of the system.

We have seen that transparency is used as a guiding principle in the
design of distributed systems to provide a consistent and unified view
of the system to its users. The implications of implementing this
concept of transparency are quite far reaching, and from some
viewpoints could be considered to have the potential for an extremely
harmful influence on the design and behaviour of a distributed system.

In the context of our discussions on servers we might conclude that the
application of the principle of transparency is likely to result in
mechanisms that hide how the system has been implemented, and the
way in which it has been designed to work.

Trusting in Computer Systems 71

Hiding what a system actually does is probably the exact opposite of
what a typical user would expect transparency to mean. It is much
more likely that they will take it to denote complete visibility of what
and how something is happening.

It is understandable that an application programmer, wishing to
concentrate on the functional details of an application, might welcome
a common and “ransparent” system interface with which to
communicate. However, unforeseen consequences can result from lack
of knowledge of how a system is configured and behaving at a given
point in time.

In many systems, especially those which are transaction based,
applications, as well as data, will be shared. Ignorance of the details of
a system’s operations can have a major impact on the understanding of
timing and performance issues of an application.

Many assumptions will be made about the environment within which
an application is presumed to operate. Some of these assumptions will
be correct, others could be completely unwarranted, yet determination
of which is which can be (made to be) very difficult.

We have seen how the implementation of transparency can provide an
environment whereby designers are able to conceal possibly hostile
components and activities from users and applications. Such activities
can include, for example: eavesdropping, replay of messages,
impersonation of selected users and selective denial of service.

These risks, which result from the decision to implement a distributed
system in a transparent manner, are not always clearly understood by
users and application programmers (amongst others). The perceived
relationship to the system and its components can be quite different to
the actual one, resulting in undeterminable effects particularly with
regard to inconsistencies and failures in the operation of an
application.

Undetected manipulation of the system by legitimate members of the
shared community can occur, in a manner similar to that described in
Chapter 4. Unfortunately, as we have already seen, the ability to
conceal the nature of such attacks is also an integral attribute of the
implementation of the principle of transparency.

Trusting in Computer Systems 72

It is in such unforeseen ways that designs whose primary aim is to
provide integrity at the level of the overall system can be in conflict
with the integrity at the level of the individual user. Flexibility at the
system level can override a user’s requirements for independent and
local reassurance, verification and validation.

6.6 Summary

In previous chapters we have shown that by introducing a number of
different conceptual viewpoints from which to view the operation of a
system, we can highlight dependencies of one part of a system on other
(possibly unknown) parts.

The process of establishing what is actually known and what is being
“taken on frust” from a particular viewpoint, allows for qualitative
judgments to be made about the system that can represent an
“individualisation” of risk as seen from that point,

Application of the concept of transparency in the design of distributed
systems, as discussed earlier, makes qualitative assessment of
individual risk difficult to achieve. Only one viewpoint can be
presented, apart from the “standard” user defined by the interfaces,
namely that of the central system as assumed to be implemented. The
correctness of this viewpoint cannot be checked, even post hoc, since
this is exactly what transparency prevents®,

We recall that transparency allows, or more correctly requires, the
actual workings of the implementation of the system to be concealed
from users, and we can conclude that transparency is not the same as
integrity or accountability.

In summary, given the way in which distributed systems are designed,
we conclude that in the presence of transparency:

1. There is no defence against insider attack:
the system may be corrupt and the user cannot prove it;
the user cannot differentiate between accident and malice.

© It is desirable that the global infrastructure and other bigher level infrastructures (the supporting physical and logical
environment layers of a system) should conceal the details of transparency mechanisms Jrom objects operating within the
service environment layers”. From the ANSA reference manual [ANSA87].

Trusting in Computer Systems 73

2. The converse is also true:
the basic system can be innocent of bad behaviour, but a user
may be corrupt and the system cannot prove its own innocence.

3. Logging and audit rely on locking services that can be subverted
and therefore cannot be used as a reliable record of events, no
matter how good the locking service specification.

4. The use of replidation relies on the correct implementation of
even more complicated protocols (such as Byzantine agreement
[LSP82]), and therefore cannot be verified either.

We have seen when analysing different operational possibilities in the
comparatively simple case of the message server discussed in Chapter
5, that the complexity of situations and outcomes can escalate very
quickly. Our conclusions establish the necessity for analysing specific
distributed system implementations from various viewpoints, with
representative combinations of systems components, users, designers,
public interest, etc. This is, however, beyond the scope of this
dissertation.

References

[ANSA87] ANSA Reference Manual, Release 00.03. Advanced
Network Systems Architecture, Hills Road, Cambridge,
United Kingdom, ANSA Project, 1987.

[ANSA89] ANSA (1989). The Advanced Network System Architecture
(ANSA) Reference Manual. Castle Hill, Cambridge,
England: Architecture Project Management, 1989.

[BG81] P.A. Bernstein and N. Goodman. Concurrency Control in
Distributed Database Systems. ACM Computing
Surveys, Vol 13, No.2, 1981, pp. 185-222.

[CDK94] G. Coulouris, J. Dollimore and T. Kindberg. Distributed
Systems Concepts and Designs. Addison-Wesley 1994.

[CS9T7] Neil Hutton. Security? What Security? Client/Server
Magazine. Reed Business Publishing. Jan/Feb 1997.

Trusting in Computer Systems 74

* S

[DEC88] VMS System Management Manuals, AA-LAxxA-TE.
Digital Equipment Corporation, Maynard, Massachusetts
April 1988.

[GD90] Morrie Gasser and Ellen McDermott. An Architecture for ‘
Practical Delegation in a Distributed System. IEEE 1990.

Systems. Computing Surveys, Vol. 4, No. 3,

: | |
[H72] Richard C. Holt. Some Deadlock Properties of Computer ‘[
|

|

September 1972. |

|

[ISO81] ISO-7498 (1981). ISO Open Systems Interconnection,
Basic Reference Model International Standards
Organisation, 1981. ’

[[SO92] International Standards Organisation (1992). Basic
Reference Model of Open Distributed Processing, Part 1: |
Overview and guide to use. ISO/IEC JTC1/SC212/WG7 \
CD10746-1, International Standards Organisation, 1992. I

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem, ACM Transactions on Programming I
Languages and Systems, Vol. 4, July 1982, pp. 382-401.

i

[LS79] B.Lampson and R.F.Sproull. An open operating system for l w‘
a single user machine. In ACM 7th. Symposium on I V

Operating Systems Principles, December 1979. |

[P791] C.H. Papadimitriou. The Serialisability of Concurrent I
Database Updates. Journal of the ACM, Vol. 26, NO. 4, ‘
1979, pp. 631-635. I

[P89] C.P.Pfleeger. Security in Computing. Prentice-Hall i
International, Inc., 1989.

[TB74] D.C. Tsichritzis and P.A. Bernstein. Operating Systems.
Academic Press 1974.

Trusting in Computer Systems 75

Never ascribe to malice that which can adequately be explained by stupidity”. Unknown

Chapter 7

Conclusions

7.0 Synopsis

The thesis of this dissertation is that there is no such thing as a
computer system. Or to be more specific, we find that we are unable to
agree with the concept of “a computer system” as being something
monolithic that can be represented by a single conceptual model, which
is internally and externally consistent, and which behaves as a whole
in a uniform and predictable way, under all foreseen circumstances.

There may be little disagreement with a statement such as this put in
this way, yet we find in practice that it is just such a view which is
usually applied. The assumption that a system is a single entity about
which global statements can be made (such as “the system is secure or
“ the system works”) is unfortunately all too common.

The treatment of a collection of (usually) co-operating entities as a
single, uniform and consistent whole is misleading. It is to imply that
there is, or can be, a single valid point of observation from which all
activity can be seen to be deterministic,

Different components of a system - which should be taken to include
designers, users, programmers and system managers, as well as
clients, servers, operating systems, applications programmes, software
and hardware sub-systems and networks will all need to be considered.

They will all have different views of what they perceive to be the
system and its associated behaviour. In a very real sense, the
behaviour of a system will be relative to the viewpoint of a particular
component at a particular time.

We need to be able to reason about large systems, and not just about
their components. For this we would like to have conceptual tools that
will help us to understand the behaviour of these systems, and to help
us make sense of other, possibly conflicting, views.

Trusting in Computer Systems 76

e

We have sought to indicate the need for a new methodology that will
allow us to better identify and understand those areas of possible
conflict or lack of knowledge, and we have looked for ways to improve
the design of computer-based systems in a practical manner that can
be readily understood and applied.

We propose that anyone planning the design of a system, or part of a
system, should look at it from the point of view of each of the
participants, and that this should include all of the components -
including users and implementers - to see what they are relying on and
to make sure that these assumptions are compatible.

We believe that a more detailed characterisation of the various

participants in a computer system, and of their roles and underlying'

assumptions, will lead us to a better understanding and identification
of those areas where these assumptions rely on undefined capabilities,
or are at odds with one other or are capable of being understood (and
therefore implemented) in more than one way.

To this end we have introduced the concept of “trust”, and defined it in
a way that enables qualitative judgments to be made. The additional
concepts of “reliance” and “delegation” are introduced, and highlight
the dependency of one part of a system on other parts of the system,
including those that are unknown and possibly even unknowable.

We conclude that trust is best considered as a localised concept used as
a substitute for knowledge, and that considering a computer system to
be a discrete entity with global characteristics can be dangerous and
damaging to the “health” of computer operations and their users.

7.1 Summary

The principal goal of our work has been to identify new systems
engineering approaches that can help in the design and construction
of computer systems that more closely reflect the expectations of users.
In particular, we have examined ways in which the design of computer
systems could be improved by a systematic approach to the
identification and reconciliation of the many assumptions that are held
by the different parties with a stake in the system.

Trusting in Computer Systems 77

Experience leaves us with the abiding impression that the goals,
objectives, concepts and assumptions of the various parties who are
involved in a computer system (i.e., systems designer, programmer,
operator and user) are seldom, if ever, coincident*,

We frequently hear today, criticism of many computer-based systems
that the needs of users in particular are inadequately realised, or even
ignored. Many aspects of computer systems such as reliability,
availability, functionality - sometimes too much, as well as too little -
and ease of use have been under attack by both users and operators;
and also by members of the public who, although not necessarily
directly involved with the system can often be seriously affected by its
operation [CWC].

We have sought to identify and examine ways in which the design and
engineering of distributed computer systems can be improved,
particularly with regard to their users. The predictability of operating
characteristics from the point of view of a user has been a particular
concern.

We have looked at ways in which users of a system can survive system
faults. Significant effort has gone into the design of “fault tolerant”
systems (see for example, [C91], [CDK94], [M93] and [A97]), but
exactly what is being tolerated, and by whom or what, is not always
apparent. |

We would like to be able to understand the behaviour of large systems
in totality and not just their components, and we have sought to
establish a conceptual framework for reasoning about the integrity of
computer systems and their component parts. We have used this
conceptualisation to gain insight into the nature of possible computer
systems failure modes and to examine ways for systems to survive
certain classes of failures.

We do not believe, however, that there is a unique point from which it
is universally valid to judge the adequacy of a system. Whilst it is
probably most common to find that the system itself has been used as
just such a point (c.f.H80), the behaviour and security of a system
depends upon the point of view from which it is being judged.

 John Shore’s article “Why I never met a programmer I could trust” [S88] highlights many of the issues in a thought-
provoking, somewhat amusing, way.

Trusting in Computer Systems 78

We have looked at ways to identify and evaluate risks from specific
and different perspectives rather than from that of an abstract and
idealised concept of a system as a whole. We have been looking for
ways to change our view of what is happening from that of the system
“looking out” to that of the user “ looking in”.

We have sought to analyse why the actual ways in which systems
behave differ from users’ expectations: i.e. why users are surprised
when and how the system they are using fails for other than a
straightforward hardware breakdown; and have examined the role
that trust plays in users’ expectations.

We have shown that what can be deduced from observation of the
behaviour of a system depends upon the the point of view of the
observer; and we have developed a concept of viewpoints that assists in
the understanding of expectations of different participants. We have
shown that the implementation of large systems will almost inevitably
result in conflicts between different viewpoints.

Attempts to conceal the workings of a system from users - such as
transparency and layering - do not allow for the development of
different viewpoints. The diversity of the different participants is
effectively collapsed into the single position of an idealised system as
conceived by the designers.

To give focus to our investigations, we began by considering the
security aspects of a distributed system and its components. In the
context of a distributed computer system, security is not just about
protection from invasive elements or the divulging of secrets: it is at
least as much about correctness of operation and consistency of
observed behaviour.

We have found that a lack of clear and agreed definitions of many
security concepts has hindered coherent and consistent discourse of
many aspects of system failure. We have introduced some new
concepts in an attempt to clarify some of the important issues.

Traditionally, security of computer systems has been based on
considerations that have originated in military models of thinking [e.g.
BL73]. This model is primarily concerned with secrecy of information
and the prevention of unauthorised disclosure.

Trusting in Computer Systems 79

This is clearly, in itself, not sufficient to maintain the security of a
system, and a counterpart model dealing with the integrity of
information was subsequently proposed by Biba [B77]. Together these
two models have provided the basis of the U.S. Department of Defense
Trusted Computer System Evaluation standard [DODS85]; also known
as the “Orange Book” because of the colour of its covers.

The principles underlying the “Orange Book” have been widely used in
the design of many commercial systems where security is considered to
be an issue. However, military models of security with their
predominant emphasis on secrecy and access controls, are not always
the most suitable basis for the design of an open distributed
commercial system.

Attempts have been made to separate the issues involved between
military and commercial requirements, and an example of this can be
found in [CW87], where Clark and Wilson set out to present a security
policy for data integrity that was based on commercial data processing
practices.

In a commercial environment we observe that integrity,
reproducibility, verifiability and availability of information are
frequently more important considerations than the major concerns of
secrecy and access control found in military settings.

In particular, we note that concentration on secrecy could result in an
environment where concealment of behaviour that threatens the
security of the system is quite easy to accomplish. It can be argued
that in many circumstances, openness and verifiability result in
systems that are intrinsically more secure against many of the typical
threats to be found within commercial environments.

The “Orange Book” sets out to deal with “remote-access, resource-
sharing computer systems”. However, in comparison to commercial
systems, military systems are most likely to be closed systems rather
than open in their implementation. The model relies upon there being
a security boundary around the system. with a clear differentiation
between what is inside and therefore trusted, and what outside and
therefore not trusted?.

4 We have previously noted the Canadian effort to extend security eriteria to a wider range of “products [CSSCI3].

Trusting in Computer Systems 80

One of the fundamental motivating factors behind the concept of open
distributed computing systems is the desire to share common resources
between different users. It is inevitable that different users will have
different requirements and priorities, and it is therefore unavoidable
that at the outset of the design of such systems there will be a conflict
of interests.

When we consider the design of commercial open distributed computer
systems, we are considering systems whose commonality lies in their
starting point of some standard or definition of the system to be
produced. It seems inevitable that different designers and
implementers will produce systems that will sometimes behave
differently in similar circumstances as a result of their individual
interpretations of a system’s specifications®.

Systems which are designed, implemented and operated by separate
organisations, are unlikely to have a common and unique boundary,
with a simple “inside” and “outside”. It is therefore understandable
that the primary source of threat to such systems can arise from the
activities of a participant who is in some respect an “insider”.

The “enemy within”, a participant of the system with knowledge of how
it works, and where absence of uniform and consistent interpretation
and control has resulted in weaknesses in the overall security of the
system, will be in a strong position to threaten it,

In addition, absence of common control structures can result in failures
of independent, component parts of the system going unrecognised or
being misinterpreted by other parts of the system. Although this is not
the same class of threat as the putative “enemy within”, the rogue
activities of such “insiders” can have effects on the system that are
arguably of even more serious consequence.

We have already noted that systems designed in one context can be
implemented in another. Whenever this is done, careful evaluation of
an appropriate threat model is necessary to ensure that the design
assumptions of the system being implemented match those of the
system to which they are being applied.

*® The task involved is not to be underestimated. Bell et all [BBD77] reported that the requirements document fora
ballistic missile defence system contained over 8000 distinct requirements and was 2500 pages long.

Trusting in Computer Systems 81

We have also seen the importance of ensuring that all of the
assumptions underlying the design of a system are clearly documented.
Without this the implementers are unlikely to realise that such
assumptions have been made; which can result in unpredictable
behaviour of the system that is difficult to trace and analyse.

The appropriateness of applying a system designed for one context to a
different context, without very careful analysis, must be open to
serious questioning. There can be large differences in the assumptions
underlying the applicability and operation of the two systems. This
can introduce unforeseen elements of risk and give rise to operational
behaviour and failure modes that are not properly understood by the
system’s designers, implementers, operators and users, collectively or
individually*,

This can be particularly the case in the design of distributed systems,
where incorporating what was originally a “closed” system into an open
and distributed operation can dramatically increase the complexity of
the system and the associated risks. For example, replicating trusted
computing bases (TCBs), and linking them by networks (even ones that
are encrypted) is likely to result in a system that is less secure than
the original (see Figure 1)

When we look at Figure 1 we note that in the open system
implementation of this model that the TCB has dual roles, sometimes
acting as a TCB and sometimes acting as a user. Indeed, we can see
from this diagram that it could be acting in both roles simultaneously.
We can also see that a TCB could be acting in one role towards one
TCB, and in an entirely different role towards another.

We note that the concept of a Trusted Path is an essential component
of the “Orange Book” trusted system. The interconnections between
replicated TCB’s in an open system version of a trusted system will not
be Trusted Path’s as understood in the “Orange Book” context, and the
integrity of the originally conceived secure system will already have
been compromised.

*® Sommerville notes in bis book [S89] that It is very difficult to formulate a definitive specification Jor large software
systems. Thus, it should be assumed that instial system requirements will be both incomplete and inconsistent. ”* How
much more so, then, will this be the case in an open distributed system.

% Jn this example the secure operation of the trusted system depends upon the link between the Trusted Computing Base
(TCB) and the User being a Trusted Path (TCP). A trusted Path is defined in the “Orange Book” as “A mechanism by
which a person at a terminal can communicate directly with the Trusted Computing Base and cannot be imitated by
untrusted sofiware”,

Trusting in Computer Systems 82

“ORANGE BOOK”

ADMIN

TCP

Trusted System

TCB

ToB TCB

TCB

General Open Distributed System

Figure 1.

Trusting in Computer Systems 83

We have deliberately not complicated this diagram by trying to
represent the “real” users of such a distributed system.

To help ﬁs to focus our discussion we propose the following definitions:

A distributed system consists of a collection of processors, together
with their ancillary peripherals, systems and applications
software, connected by a communications network® .

An open distributed system is one where the interconnection
between the different levels and components of the system is
achieved through implementations that are not necessarily
identical, but which are designed to a common set of specified
interfaces.

Let us consider, as an example, the complexity of the security problems
that might be involved in an open distributed computer systems
concerned with the management of the storage and retrieval of multi-
media data. Where text documents, images, video sequences, maps
and other complex objects are stored in independent databases, that
may be physically separated, and which are interconnected by a
network of communications links.

In a typical open distributed system such as this, it is very likely that
different states of knowledge will exist in different parts of the system.
There will be distinct designs, operators and users, and different
assumptions will be made in the the use of protocols and (where it is
used) cryptography.

It is not at all clear to us that a direct analogy can be made in cases
such as these to the more simple model presented in the “Orange
Book”. Going even further, we would maintain that representing
complex systems such as these by the simple replication of the “Orange
Book” model will only mislead in any analysis of the systems security
properties.

We have separately demonstrated that the proper operation of
cryptographic protocols depends upon their context and environment.
The use of a protocol outside of its specified (or implicitly specified)
environment can lead to unanticipated and undesirable behaviour.

S In some discussions the network is included as part of the distributed system.

Trusting in Computer Systems 84

SRS —

Some protocols are specific about the environment in which they are
designed or presumed to operate (for example, Needham-Shroeder’s
trusted principals), and these assumptions are explicitly stated.
Attacks on these protocols often are successful because the protocols
have been implemented in in an environment that in some way
violates or differs from that presumed by the designers of the protocol.

It is sometimes obvious what some of the designers’ assumptions are:
some are made quite explicit, while others have been made implicitly
obvious, for example, by reference to another protocol they are seeking
to improve. However, there frequently are others that are not stated,
or even acknowledged, and in these cases the discovery of various
attacks on the protocols illustrates the constraints, (and also some of
the hidden assumptions) that need to be considered if the protocol is to
be successfully implemented.

We have also shown that the outcome of a particular protocol
(successful or not) will usually depend upon information or criteria
that are not part of the protocol itself,

This raises the issue of how far it is desirable to go, outside of the
specific description of the message interchange itself, in order to
ensure that the protocol can terminate in a known outcome or state. It
seems to us that many protocols appear to be designed on the basis
that they always work; and that if something adverse happens - a
wrong key, wrong message or reply, for example - then the protocol
may just terminate in some indeterminate state. It is not clear to us
that this is a reasonable approach to take.

All of which can result in an insecure system being constructed from
individually secure components. An illustration of this was given at
the 1994 Cambridge Workshop on Security Protocols by Mark Lomas
(not yet published) on how the back-to-back use of two different and
individually secure protocols can introduce weaknesses that were not
to be found in either of the original protocol.

We should point out that we are not here seeking to introduce the
notion of composability, and its application to the security properties of
a system - for a discussion of this topic and some of the issues involved,
we refer you to the session on Composition at 8th. IEEE Computer
Security Foundations Workshop [CSFWS].

Trusting in Computer Systems 85

Our deliberations could be seen as being orthogonal to those being
worked on in the area of Composition, where attention is more
focussed on issues of properties that may be invariant between
systems. We are concerned with considerations of a subjective nature:
it is a consequence of our line of argument that there is considerable
merit in looking at trust as being associated with relative, and local,
knowledge; in contrast to the more usual usage of trust as an objective
concept applied on a global basis.

Clearly the considerations of the two approaches are related, but what
we seek to illustrate here are the local consequences of using a system
component, considered to be secure in one environment, but which is
not secure when implemented in another, different, environment.

We observe that a specific characteristic of an open distributed system
is that it will exhibit independent failure modes®. Different parts of
the system can fail in ways that not only are not related to each other,
but are not necessarily detectable, for what they are, by other
components.

The importance of context and viewpoint to the understanding of trust
can be illustrated by observing that two participants may trust an
implementation of a system, but for different reasons, and because of
these differences they will each have different vulnerabilities with
respect to the system.

What participant A has to trust the system for can be very different to
that which participant B has to trust it for; for example, a service user
compared to a service provider. It is therefore inappropriate to use
one’s trust assessment for the purposes of judging the other’s level of
risk - as bank customers who have been victims of “phantom”
withdrawals from their bank accounts will have found out to their cost.

This can be considered another example of where from one viewpoint it
is the system that is trusted but not the user, and from the other
viewpoint it is the user who is trusted but not the system. Other
viewpoints exist where, for example, neither is trusted.

%2 We are also aware that the occurrence of “common mode” failures in complex systems can also cause unpredictable

Jailures that are difficult to isolate [C97].

Trusting in Computer Systems 86

|

Militafy systems attempt to define security boundaries where those
components that are inside are considered “trusted” and those outside
the boundary are not to be considered “trusted”. Using the “Orange
Book” concept of trust something is trusted if it can violate the security
policy of the system; that is, if it exists within the security boundary of
the system. We have noted that in the commercial environment, it is
much more likely that a threat to the security of the system will come
from within rather than from outside.

In the “Orange Book”, trust is treated essentially as an intrinsic,
system-based concept. It is also implicit in its usage that there is just
one viewpoint from which trust, and the security of a system, is to be
judged. We have shown that this usage has somewhat limited utility
when applied to commercial open distributed systems.

In contrast to the standard use of trust as a property of a system, our
notion of trust applies only within the context of a specific viewpoint
from which to judge risks. We argue that it is only after the
introduction of a specific context from which trust is to be judged, that
we can understand many of the intrinsic vulnerabilities of a system.

We have introduced a concept of trust that is directly related to
individual participants in the system and to their lack of knowledge
about it. In this regard, then, we propose that trust is therefore not to
be treated as a property of the system at all, but as an attribute of
individual participants. We have shown how this approach can be
used to identify and measure the risks associated with the system for
any particular participant.

We have proposed that we consider trust to be related to what we have
not directly verified and therefore what we do not know. Our
understanding of trust is as a measure of the current limitations of our
knowledge. Trust can thus be seen as a substitute for knowledge.

When this has not been explicitly realised, then this can lead to things
being trusted that perhaps should not be so treated. Also we note that
within our considerations, trust is not to be seen as a constant, but
something that can change as knowledge changes.

Trusting in Computer Systems 87

We have introduced the concept of there being more than one

viewpoint from which to describe the behaviour of a system, and il
therefore the trust relationships that pertain. The utility of this |
concept lies in its ability to enable the nature of the risks associated ‘ j\
with a specific participant to be measured, whether these are explicitly I
recognised and accepted by them, or not. ‘

All systems are of necessity, trusted in some way. We propose that our
goal should be not to have to trust a system; we argue that we should
attempt to systematically replace trust with knowledge in those areas ‘
that are of a critical nature to us. Our goal should be that we should |
try to reach the position where “we know (or can verify that) it works” i
replaces “we trust it”. i

In those situations where we are consciously aware of trusting
something, we should endeavour to identify mechanisms that will |
validate its behaviour. i

The extent to which we will be able to pursue this goal, and the | | /
associated costs of this approach, will vary with the anticipated costs of “ |
failure in the system. The level of trust we are prepared to assume is J
thus directly related to the level of risk that we are prepared to accept, |
using our notion of trust.

Our approach is not restricted to particular participants - for example,
system and user - but can be extended to any component, module and
sub-system that has well-defined interfaces. This allows trust models |
for individual parts of the system to be considered, along with those of i
the suppliers and users of the system. i

This enables us to analyse a system from a number of different
perspectives, and therefore to build a more complete understanding of |
the nature of the assumptions - many of which may never have been
explicitly stated, recognised, or even understood - which underlie its
design and operational behaviour. Different assumptions result from
different levels of trust. If trust models are not identical then different
risks will be being assumed®,

53 As software engineers, we tend io neglect models. In other scientific disciplines, models act to unify and explain,
Pplacing apparently disjoint events in a larger, more understandable Jramework. The lack of models in software
engineering is symptomatic of a much larger problem: a lack of systems focus. Few software engineers understand the
need to define a system boundary or explain how one system interacts with another [PJCK97].

Trusting in Computer Systems 88

Our treatment of trust as being associated with specific viewpoints, to
be seen as not a system-wide property but rather as an attribute of a
participant in a system (whether this be user, operator, designer or
even a sub-system or component part), and which can differ for
different participants and also at different times for the same
participant, enables us to examine, for example, the vulnerabilities of
one part of a system to failures in another part. This could be then be
extended to the detection of suspicioils behaviour of either a system
component or system user.

We believe our analysis to have shown the limitations of applying even
relatively simple security models outside of a well-understood and pre-
defined environment; and the risks that can occur in applying them
outside of the context in which they were designed.

This has led us to propose a method for codifying and comparing the
risks inherent in any computer-based system, and how this can enable
the level of risk at any particular level in the system to be understood
and managed at that level.

We have shown that it is insufficient to take the viewpoint of just one
of the involved parties as the basis for defining a system’s behaviour,
and to judge the system from only that particular viewpoint (the one
usually taken being that of the designers of the system). It is essential
to any comprehensive understanding of the system that the separate
roles of the implementer and the user are also included; with the
assumptions about the system from their viewpoints being
documented and taken fully into account in any analysis of the
system’s behaviour. These assumptions can then be examined, and
verified, in detail, and compared for ambiguities and conflicts.

We think that far too many assumptions are made that are implicit,
and understood by only one of the parties. Examples of this are: “I
expect the ATM to give me my money, and not to give it to anyone
else”; “I expect the system not to give out money in a way that would
make the bank liable to lose money”; “I expect the compiler to compile
my code accurately and efficiently, and not to add any code of its own”
(c.f. Ken Thompson’s Turing Award Lecture [T84]). |

Trusting in Computer Systems 89

Each role, and each participant in that role, can be expected to have
assumptions about the operation and behaviour of the system from
their own viewpoint. Our experience has shown that these sets of
assumptions are unlikely to coincide, and are more likely to conflict in
major ways in many areas of critical importance to the participants.

We argue that each party should understand what it is that it relies on
from other parties and parts of the system, and that its “trust set”
should be explicitly stated and compared with that of the other
relevant participants at whatever particular level the analysis is being
undertaken.

We maintain that not only will this highlight the “hidden” assumptions
of one party on other parts of the system, but it also enables the
identification of those areas where the assumptions do not match, or
where there are major conflicts. We believe that it is only from a study
of the behaviour of each of the relevant parties that a thorough
understanding can be attained of what each party may be implicitly
assuming.

We believe that the adoption of our approach will allow for the
identification of the extent and type of assumptions that each
component in the system is making and relying on for the correct
operation of the system from its viewpoint, and for the detection of
incompatible and conflicting goals.

We are proposing that trust be considered as a relative concept, and
that it is not the result of knowledge but a substitute for it, and that
adopting our viewpoint is fruitful for the analysis of security risks in
computer-based systems.

We hope that our approach will give a new meaning to the words
“trusting the computer” - and will result in fewer examples of the
inappropriate application of a design from one context being applied to
a different and unsuited context. We would like to see computer
systems “trusted” less and “known” more.

Trusting in Computer Systems 90

7.2 Fﬂture Work

Our investigations have pointed to some exciting areas of future
research. We believe that the further development of conceptual
models based upon our ideas can lead to better understanding of the
reasons why computer systems fail in the way that they do*®. This can
lead to improvements in the design of distributed systems that will
allow the viewpoints of the users and operators of these systems to
assume a more prominent place in the design considerations.

The concepts of trust, reliance and delegation are capable of further
development and applicability. The development of a rigorous method
by which the behaviour of a computer system can be evaluated from
different perspectives and at different levels within the system, as well
as from without, will provide a powerful tool for systems engineers in
the future.

The application of the ideas we have developed to specific computer-
based services such as trusted and untrusted third parties, electronic
notary services and even networks themselves could lead to greater
understanding of the local component of computer operations This in
turn can help us to understand the relationship of the computer
system to the environment in which it is required to operate.

We would like to see the tying together of the computer system itself,
the operational environment and the policies by which the system
including the users are to conform.

References

[A97] Algirdas Avizienis. Toward Systematic Design of Fault-
Tolerant Systems. IEEE Computer Vol. 30, NO. 4, April
1997, pp. 51-58.

[B77]1 K. Biba. Integrity considerations for Secure Computer
Systems. US Air Force Electronic Systems Division, 19717.

% We note established interest in related areas such as the analysis of software design faulss [G86].

Trusting in Computer Systems 91

[BBD77] T.E. Bell, D.C. Bixler and M.E. Dyer. An extendible | |
approach to computer aided software requirements |
- engineering. IEEE Transactions on Software Engineering,

Vol. SE-3, No. 1, 1977, pp. 49-60.

[BL73] D. E. Bell and L. J. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. MITRE Report
MTR 2547, v2, Nov. 1973.

[C91] F. Cristian. Understanding Fault-Tolerant Distributed
Systems. Communications of the ACM Vol. 34, No. 2,
February 1991.

[CI7] Richard I. Cook. Observations on RISKS and Risks. |
Communications of the ACM Vol. 40, No. 3, March 1997, ‘
p. 122.

[CDK94] G. Coulouris, J. Dollimore and T. Kindberg. Distributed
Systems Concepts and Designs. Addison-Wesley 1994.

[CSSC93] The Canadian Trusted Computer Product Evaluation I “\
Criteria. Version 3.0e. Canadian System Security Centre, ‘
Communications Security Establishment, Government of
Canada, 1993.

[CW8T] D. D. Clark and D. R. Wilson. A comparison of Commercial
and Military Computer Security Policies. Proceedings of

the 1987IEEE Symposium on Security and Privacy
Oakland, Ca., 1987, pp. 184-194. i

[CWC(C] Almost any issue of Computer Weekly or Computing.

[DOD85] Department of Defence Trusted Computer System
Evaluation Criteria. DOD 5200.28-STD, US Department
of Defence, Washington, DC, USA, December 1985.

[G86] J. Gray. Why Do Computers Stop and What Can be Done
About it? Proceedings of the Fifth Symposium on
Reliability in Distributed Software and Database Syétems, |
Computer Society Press, Los Alamitos, Ca., 1986, |
pp. 13-17. |

Trusting in Computer Systems 92

complex systems. New techniques and their applications.
IEEE Transactions on Software Engineering, Vol. SE-6, I
No. 1, 1980, pp. 2-13. H

|
[H80] K.L.Heninger. Specifying software requirements for | f

[M93] S. Mullender (Ed). Distributed Systems, Second Edition.
Addison-Wesley 1993. ‘}

[PJCKI7] S.L. Pfleeger, R. Jeffery, B. Curtis and B. Kitchenham. ‘ ’
Status Report on Software Measurement. IEEE Software !
Vol. 14, No. 2, March/April 1997, pp. 33-43. '

[S88] John Shore. Why I never met a programmer I could Trust. “
Communications of the ACM Vol 31, No. 4, April 1988, | \‘
pp. 372-375. |

|

[S89] Ian Sommerville. Software Engineering, Third Edition. il

Addison-Wesley 1989. | [
I
J

[T84] Ken Thompson. Reflections on Trusting Trust. ‘
Communications of the ACM Vol 27, No. 8, August 1984, |

pp. 761-763. i

|

\

Trusting in Computer Systems 93

“A definition is the enclosing a wilderness of idea within o wall of words.” Samuel Busler. 1912 \

Appendix I i

Trust il

From the Pocket Oxford Dictionary:

“¢rust. 1.n. Firm belief that a person or thing may be relied upon, | ‘J
state of being relied upon.”

“take on trust: accept as true &c without testing” }

“in @ position of trust: having duties that can be neglected without
immediate detection”

From ISO 9594-8:1993: I I

“trust: Generally, an entity can be said to 'trust’ a second entity
when it (the first entity) makes the assumption that the second i\
entity will behave exactly as the first entity expects. This trust ‘ J
may apply only for some specific function. The key role of trust in

the authentication framework is to describe the relationship

between an authenticating entity and a certification authority; an

authenticating entity shall be certain that it can trust the f
certification authority to create only valid and reliable certificates.” i /

From CD 10181-1.2: i

“trust: a relationship between two elements, a set of activities
and a security policy in which element x trusts element y if and
only if x has confidence that y will behave in a well defined way |
(with respect to the activities) that does not violate the given |
security policy.” ‘ J

“A security sub domain element can be told by a security super
domain security authority to trust elements of other security
domains.” I

Trusting in Computer Systems 94

e . —— L e

& P

“Tfust is based on assurance which can be obtained either by i |
something elements of security domains are told or by something |
they know.”

|
From section 26.24, part I of the ODP Reference Model: |

“Trustis a relationship between agents where agent A delegates ! ‘\‘
agent B to carry out certain roles under rules determined by A and
agreed by B.” | “

From the Orange Book: il |

“Trusted Computing System: A system that employs sufficient

(I
hardware and software integrity measures to allow its use for | 1
processing simultaneously a range of sensitive or classified il ;

information” f (
|

“Trusted Computing Base: The totality of protection mechanisms |
within a computer system - including hardware, firmware and i
software - the combination of which is responsible for enforcing a 0

security policy.” |)

From the ITSEC:

The term “trust” is conspicuous by its absence in the ITSEC. L

Trusting in Computer Systems 95 il

“Some word that teems with hidden meaning - like Basingstoke.” W. S.Gilbert. Ruddigore, 1887 i

GLOSSARY I (

We briefly define some of the terms that are used in this dissertation. i

Aﬁthenticate. “1. To invest (a thing) with authority; to render
authoritative.” [OED71] (

Authority. “4. Power to influence the conduct and actions of |
others; personal or practical influence.” ibid.

Confidence. “6. The confiding of private or secret matters to
another.” ibid.

Confidential. “4. Enjoying the confidence of another person,; |
entrusted with secrets; charged with secret service.” ibid. i f

Confidentiality. “Confidential quality; state of being ‘3 ,
confidential.” ibid. J

Covert Channels. A programme that transmits information {
about itself, the data it operates on or other aspects of the
computer system to unauthorised individuals.

Cryptography. The writing of things in a secret or disguised T
manner. This is usually done in order to hide data from ‘
unauthorised view. It is also used in the provision of ‘digital P |
signatures’ and message authentication. ’

Denial of Service. The prevention of legitimate access to a
computer system. [

DES. The Data Encryption Standard (DES) was developed for the
government of the USA for use by the general public for sensitive | |
information. It is based on an algorithm developed by IBM known
as Lucifer and now more properly as DEA (Data Encryption |
Algorithm). It uses a combination of substitutions and |
permutations applied for a repeated number of cycles, usually 16,
to encrypt plaintext using a 64-bit key into 64-bit blocks.

Trusting in Computer Systems 96

Digital Signature. The digital analogue(!) of a written signature.

Integrity. “2. The condition of not being marred or violated;
unimpaired or uncorrupted condition; original perfect state;

soundness.” ibid.

Non-repudiation. The attribute that enables a message to be
proved to have originated from the sender it purports to come from.

Privacy. The property of preventing the unauthorised extraction
of data.

Public Key System. A cryptographic system which relies on a

separate key for encipherment and decipherment respectively: one
of which is publicly disclosed; the other of which is held secret by W: |
the user. | ’

RSA. RSA encryption is named after its three inventors: Rivest,
Shamir and Adelman. It is a public key algorithm which uses
two keys, one for encryption, the other for decryption, that work in
symmetric pairs. It is based on the difficulty of factoring the I
product of two large prime numbers. ‘

Secrecy. “l. The quality of being secret or of not revealing secrets;
the action, practice or habit of keeping things secret..” [OED71].

Secret. “A. adj. 1 Kept from knowledge or observation; hidden,
concealed. a. Predicatively (esp. in to keep secret). Kept from

public knowledge, or from the knowledge of persons specified; not “ i
allowed to be known, or only by selected persons.” ibid.

Security. It is perhaps interesting to note that the the term
secure originally had a different meaning that that in common use |
today. The origin of the word is from the Latin and means ‘
‘without care’. The Oxford English Dictionary [OED71] notes the i
original usage and meaning:

“A. adj.
I. Feeling no care or apprehension.
1. Without care, careless; free from care apprehension or

anxiety, or alarm; over-confident.

Trusting in Computer Systems 97

In early instances often contrasted with safe.

1641 QUARLES Enchir, iv. Ixiii, (1654) T 1, The way to be safe
is never to bee secure.” f

The current meaning is: I

|
“II. Having or affording ground for confidence; safe; (objectively) I
certain.” ibid. | ’

It is perhaps ironic that many of todays systems are probably ‘”
secure in this original sense rather that the more modern : H
meaning. H

Symmetric Key System. One in which the participants share a "
secret key known only to themselves Also known as a shared-key |

or private key.

Trap Door. A concealed entry-point to software in a computer |
system.

|
Trojan Horse. Software that does one thing (usually destructive) |
while appearing to do another. i

Virus. A segment of self-replicating code that attaches itself to
application programmes or to other executable system components. J‘
These code segments move from programme to programme and ;
machine to machine. They can replicate an indefinite number of f
times. [MH89]. | }'
\

|

|

References

Computing Surveys Vol. 26, No. 3, September 1994, \
pp.211-254.

[MH89] J. McAfee and C. Haynes. Computer Viruses, Worms, Data
Diddlers, Killer Programs, and Other Threats to Your
System, St. Martin’s Press, New York 1989.

v ‘
[LBMC94] A Taxonomy of Computer Program Security Flaws. ACM |
|
|
|

Trusting in Computer Systems 98

[OECD92] Guidelines for the Security of Information Systems.
Organisation for Economic Co-operation and Development.
Paris 1992. OCDE | GD(92)190.

[OED71] Ozxford English Dictionary, Oxford University Press 1971. [

Trusting in Computer Systems 99

“Why should I gzve my readers bad lines of my own, when good ones of other people’s are so plenty?” Benjamin Franklin

Bibliography

[A77]

M.W. Alford. A requirements engineering methodology for
real time processing requirements. IEEETransactions on

" Software Engineering, Vol. SE-3, No. 1, 1977, pp. 60-69.

[A97]

[ANSA87]

[ANSA89]

[B77]

[BANS89]

[BBD77]

[BFL96]

[BG81]

Algirdas Avizienis. Toward Systematic Design of Fault-
Tolerant Systems. IEEE Computer Vol. 30, NO. 4, April
1997, pp. 51-58.

ANSA Reference Manual, Release 00.03. Advanced
Network Systems Architecture, Hills Road, Cambridge,
United Kingdom, ANSA Project, 1987.

ANSA (1989). The Advanced Network System Architecture
(ANSA) Reference Manual. CastleHill, Cambridge,
England: Architecture Project Management.

K.Biba. Integrity considerations for Secure Computer
Systems. US Air Force Electronic Systems Division, 1977.

Michael Burrows, Martin Abadi, and Roger Needham. A
Logic of Authentication. DEC SRC Research Report 39,
February 28, 1989

T.E. Bell, D.C. Bixler and M.E. Dyer. An extendible
approach to computer aided software requirements
engineering. IEEE Transactions on Sofiware Engineering,
Vol. SE-3, No. 1, 1977, pp. 49-60.

Matt Blaze, Joan Feigenbaum and Jack Lacey.
Decentralised Trust Management. Proceedings of the IEEE
Conference on Security and Privacy, Oakland, Ca.,

May 1996.

P.A. Bernstein and N. Goodman. Concurrency Control in
Distributed Database Systems. ACM Computing Surveys,
Vol 13, No.2, 1981, pp. 185-222.

Trusting in Computer Systems 100

[BGMS5] A. Borgida, S. Greenspan and J. Mylopoulos. Knowledge |
representation as a basis for requirements specification.
IEEE Computer, Vol. 18, No. 4, 1985, pp. 82-101.

[BL73] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. MITRE Report
. MTR 2547, v2, Nov. 1973.

[CI1] F. Cristian. Understanding Fault-Tolerant Distributed
Systems. Communications of the ACM, Vol. 34, No. 2,
February 1991.

[CI7] Richard I. Cook. Observations on RISKS and Risks.
Communications of the ACM Vol. 40, No. 3, March 1997, |
p. 122. ‘ \

[CB94] W.R. Cheswick and S.M. Bellovin. Firewalls and Internet |
Security. Addison-Wesley 1994, p. 54. \‘

[CDK94] G. Coulouris, J. Dollimore and T. Kindberg. Distributed ‘
Systems Concepts and Designs. Addison-Wesley 1994.

[CH96] B. Christianson and W.S. Harbison. Why Isn’t Trust
Transitive? Security Protocols, Lecture Notes in
Computer Science 1189. Springer 1996, pp. 171-176.

[CL95] B. Christianson and M.R. Low. Key-spoofing attacks on
nested signature blocks. IEEE Electronics Letters Vol .31,
No. 13, 1995, pp. 1043.

[CS97] Neil Hutton. Security? What Security? Client/Server
Magazine. Reed Business Publishing. Jan/Feb 1997. |

[CSFW8] 8th. IEEE Computer Security Foundations Workshop. ‘

[CSSC93] The Canadian Trusted Computer Product Evaluation
Criteria. Version 3.0e. Canadian System Security Centre, ‘
Communications Security Establishment, Government of
Canada, 1993. | |

Trusting in Computer Systems 101

[CW8T]

[D90]

[DEC88]

[DH76]

[DM88]

[DOD85]

[DS81]

[H72]

[F733]

[F95]

[G86]

'D. D. Clark and D. R. Wilson. A comparison of Commercial

and Military Computer Security Policies. Proceedings of
the 1987 IEEE Symposium on Security and Privacy,
Oakland, Ca., 1987, pp. 184-194.

A M.Davis. Software Requirements, Analysis and

~ Specification. Prentice-Hall 1990.

VMS System Management Manuals, AA-LAxxA-TE.
Digital Equipment Corporation, Maynard, Massachusetts,
April 1988.

W. Diffie and M.E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory,
Vol. IT-22, No. 6, November 1976, pp. 644-654.

T. DeMarco. Structured Analysis and System
Specification. Yourdon Press, New York 1988.

Department of Defence Trusted Computer System
Evaluation Criteria. DOD 5200.28-STD, US
Department of Defence, Washington, DC, USA,
December 1985.

D.E. Denning and G.M. Sacco. Timestamps in Key
Distribution Protocols. Communications of the ACM
Vol. 24, No. 8, August 1981, pp. 533-536.

Richard C. Holt. Some Deadlock Properties of Computer
Systems. Computing Surveys, Vol. 4, No. 3,
September 1972.

Benjamin Franklin . Poor Richard’s Almanac, 1733.
Francis Fukuyama. Trust. Penguin Books 1996.

d. Gray. Why Do Computers Stop and What Can be Done
About it? Proceedings of the Fifth Symposium on
Reliability in Distributed Software and Database Systems,
Computer Society Press, Los Alamitos, Ca., 1986,

pp. 13-17.

Trusting in Computer Systems 102

[GD90]

[GMS86]

[H80]

[IEEES85]

[ISO81]

[1S092]

[JT79]

[K87]

[KE93]

[KIN93]

[L85]

Morrie Gasser and Ellen McDermott. An Architecture for
Practical Delegation in a Distributed System. IEEE 1990.

Narain Gehani and Andrew McGettrick (eds.). Software
Specification Techniques. Addison-Wesley 1986.

K.L.Heninger. Specifying software requirements for

complex systems. New techniques and their
applications. IEEE Transactions on Software Engineering,
Vol. SE-6, No. 1, 1980, pp. 2-13.

IEEE Computer, Vol. 18, No. 4, April 1985.

ISO-7498 (1981). ISO Open Systems Interconnection,
Basic Reference Model International Standards
Organisation, 1981.

International Standards Organisation (1992). Basic
Reference Model of Open Distributed Processing, Part 1:
Overview and guide to use. ISO/IEC JTC1/SC212/WG7 CD
10746-1, International Standards Organisation, 1992.

Randall W. Jensen and Charles C. Tonies. Software
Engineering. Prentice-Hall, Englewood Cliffs, NJ. 1979.

Neil Koblitz. A Course in Number Theory and
Cryptography. Graduate Texts in Mathematics 114,
Springer-Verlag 1987.

R. Kuhn, P. Edfors, V. Howard, C. Caputo, T.S. Phillips.
Improving Public Switched Network Security in an Open
Environment. IEE Computer Vol. 26, No.8, August 1993,
pp. 32-35. -

J.T. Kohl and B. Clifford Neuman. The Kerberos Network
Authentication Service, Internet RFC 1510, M.1.T. Project
Athena, Cambridge, Massachusetts, September, 1993.

M. Looney. CORE - A Debrief Report. NCC Publications,
Manchester 1985.

Trusting in Computer Systems 103

[LBMC94]

[LS79]

[LSP82]

[M79]

[M93]

[MH89]

[MNSS87]

[NS78]

[OECD92]

[OED71]

C.E. Landwehr, A.R. Bull, J.P. McDermott and W.S. Choi.
A Taxonomy of Computer Program Security Flaws. ACM
Computing Surveys Vol. 26, No. 3, September 1994,

pPp. 211-254.

B.Lampson and R.F.Sproull. An open operating system for
a single user machine. In ACM 7th. Symposium on
Operating Systems Principles, December 1979.

L.Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem, ACM Transactions on Programming
Languages and Systems, Vol. 4, July 1982, pp.382-401.

G. Mullery. CORE - a method for controlled requirements
specification. Proceedings of the 4th. International
Conference on Software Engineering, Munich 1979.

S. Mullender (Ed). Distributed Systems, Second Edition.
Addison-Wesley 1993.

J. McAfee and C. Haynes. Computer Viruses, Worms, Data
Diddlers, Killer Programs, and Other Threats to Your
System, St. Martin’s Press, New York 1989.

S.P. Miller, B.C. Neuman, J.1.Schiller, J.H. Saltzer.
Section E.2.1: Kerberos Authentication and Authorisation
System, M.I.T. Project Athena, Cambridge, Massachusetts,
December 21, 1987.

R.M. Needham and M.D. Schroeder. Using encryption for

authentication in large networks of computers.
Communications of the ACM , Vol. 21, No. 12, December
1978, pp. 993-999.

Guidelines for the Security of Information Systems.
Organisation for Economic Co-operation and Development.
Paris 1992. OCDE | GD(92)190.

Oxford English Dictionary, Oxford University Press 1971.

Trusting in Computer Systems 104

[OR87]

[P79]]

[P87]

[P89]

[PJCKI7]

[PSL80]

[R95]

[RT96]

[S88]

[S89]

[S90]

D. Otway and O. Rees. Efficient and Timely Mutual
Authentication. Operating Systems Review , Vol.21, No. 1,
January 1987, pp. 8-10.

C.H. Papadimitriou. The Serializability of Concurrent
Database Updates. Journal of the ACM, Vol. 26, NO. 4,
1979, pp.631-635.

Roger S. Pressman. Software Engineering, A Practitioner’s
Approach. McGraw-Hill 1987.

C.P.Pfleeger. Security in Computing. Prentice-Hall
International, Inc. 1989.

S.L. Pfleeger, R. Jeffery, B. Curtis and B. Kitchenham.
Status Report on Software Measurement. IEEE Software
Vol. 14, No. 2, March/April 1997, pp. 33-43.

M. Pease, R. Shostak, and L. Lamport. Reaching
Agreement in the Presence of Faults. Journal of the ACM,
Vol. 27, No. 2, April 1980, pp. 228-234.

Regina v. Hodges and Moore. Southwark Crown Court,
September 1995.

C.V. Ramamoorthy and Wei-tek Tsai. Advances in
Software Engineering. IEEE Computer, Vol. 29, No. 10,
Oct. 1996, pp. 47-58.

John Shore. Why I never met a programmer I could Trust.
Communications of the ACM Vol 31, No. 4, April 1988,
pp. 372-375.

Ian Sommerville. Software Engineering, Third Edition.
Addison-Wesley 1989.

D.A.Stokes. Requirements Analysis. J.A. McDermid, (ed),
Software Engineer’s Reference Book.
Butterworth-Heinemann 1990.

Trusting in Computer Systems 105

[S91] Daniel F. Sterne. On the Buzzword “Security Policy”.
IEEE 1991.

[S92] G.J. Simmons (ED). Contemporary Cryptology. IEEE
Press, New York 1992, Ch. 4, Appendix F, pp. 257-258.

[S96] 'Bruce Schneier. Applied Cryptography. John Wiley and
Sons, Inc., New York 1996

requirements definition. IEEE Transactions on Software

|

|

[SR77] K. Schoman and D. T. Ross. Structured analysis for | } |
I

|

Engineering, Vol. SE-3, No. 1, 1977, pp. 6-15. ;

[T84] Ken Thompson. Reflections on Trusting Trust.
Communications of the ACM , Vol. 27, No. 8, August 1984, \
pp. 761-763.]

I

[TB74] D.C. Tsichritzis and P.A. Berstein. Operating Systems. |
Academic Press 1974. fl

[T88] G.W.Treese. Berkeley UNIX on 1000 Workstations,
ATHENA changes to 4.3BSD. Proc USENIX, Winter 1988.

[W90l Dominic Walsh. Codes and Cryptography. Clarendon
Press, Oxford 1990.

|

[WA91] George R.S. Weir and James L. Alty. Human-Computer | \
Interaction and Complex Systems. Academic Press, ‘

London 1991. f

\

YC79] Edward Yourdon and Larry L. Constantine. Structured
Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Yourdon Press, Englewood
Cliffs, NJ. 1979.

Trusting in Computer Systems 106

FINIS

CAMBRIDGE
UNIVERSITY LIBRARY

Attention is drawn to the fact that the copyright
of this dissertation rests with its author.

This copy of the dissertation has been supplied
on condition that anyone who consults it is
understood to recognise that its copyright rests with
its author. In accordance with the Law of Copyright
no information derived from the dissertation or
quotation from it may be published without full
acknowledgement of the source being made nor any
substantial extract from the dissertation published
without the author’s written consent.

