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We show that a simple experimental setting of a locally pumped and lossy array of two-level quantum
systems can stabilize states with strong long-range coherence. Indeed, by explicit analytic construction, we
show there is an extensive set of steady-state density operators, from minimally to maximally entangled,
despite this being an interacting open many-body problem. Such nonequilibrium steady states arise from a
hidden symmetry that stabilizes Bell pairs over arbitrarily long distances, with unique experimental
signatures. We demonstrate a protocol by which one can selectively prepare these states using dissipation.
Our findings are accessible in present-day experiments.
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Introduction.—Coupling a quantum system to an envi-
ronment typically results in a loss of coherence [1], which
is a major obstacle for quantum control and information
processing [2–4]. However, a growing number of studies
have shown that a well-designed coupling can also drive the
system toward interesting and useful quantum states [5–7].
This is particularly promising in light of parallel advances
in experimental platforms where one can engineer both the
system Hamiltonian and the coupling [8–12], offering
novel out-of-equilibrium settings where interactions and
dissipation compete [13,14].
A rare phenomenon occurs when such an open quantum

system has multiple stable states owing to a symmetry that
gives a conserved quantum number [15,16]. Then the
dynamics decouple into independent sectors [17], with
the system retaining some memory of its initial state [18].
Furthermore, one can show that information encoded in the
steady-state manifold would be preserved unconditionally
[19], and one could control transport by switching between
the symmetry sectors [20]. So far, this kind of strong
symmetry has been found only theoretically in symmetric
networks [21–23] and in boundary-driven spin chains with
nonstandard dissipation [17,24], without experimental
realizations. They require special design even in noninter-
acting systems [23].
In this Letter, we identify a prototypical setting of a

simple lattice model with a routine bulk dissipation that
possesses a surprising hidden symmetry, leading to multi-
ple steady states with long-range coherence and nonlocal
Bell pairs. The steady states can be selectively prepared and
probed in existing setups. To illustrate our findings, we
model hard-core bosons on a one-dimensional (1D) lattice,
which is equivalent to an array of qubits or an (anisotropic)
spin chain. Our conclusions extend more generally to a
broad class of models of this type.
We consider hard-core bosons on a lattice with particle

injection and loss at two sites. Such a local incoherent

pump was used recently to prepare a Mott insulator of
photons [25]. When the source and sink are at the boundary,
the system can be reduced to free fermions [26–28].
However, for dissipation in the bulk, such a reduction is
not possible, and the system is strongly interacting. We
focus on the special case where the pump and loss both act
on the center site. Beyond the obvious reflection parity, we
find a dynamical symmetry that can be roughly interpreted
as conserving a total “charge” of symmetrically located
particle-hole Bell pairs. Consequently, the number of
symmetry sectors grows linearly with the system size L,
yielding an extensive degeneracy. We provide an exact
solution for the steady-state manifold and show that it
includes a maximally entangled sector with ðL − 1Þ=2
nonlocal Bell pairs. We demonstrate a procedure for
preparing the system in any given sector. Subsequent
dynamics within the sector converge to a unique steady
state, which can be discerned by measuring single-particle
or density correlations [29–31]. Additionally, in the limit of
zero pump (or loss) rate, the degeneracy is increased further
to accommodate a decoherence-free subspace, a key
ingredient for quantum computing [32].
Model.—We study hard-core bosons [33] hopping on a

1D lattice with an odd number of sites, L ≔ 2lþ 1 for
integer l, described by the Hamiltonian

Ĥ ¼ −ℏJ
Xl−1

i¼−l
ðb̂†i b̂iþ1 þ b̂†iþ1b̂iÞ; ð1Þ

where J is the hopping amplitude and b̂†i creates a boson at
site i. The hard-core condition is imposed by requiring
b̂†2i ¼ 0, which ensures there can be either 0 or 1 particle at
any given site. This regime corresponds to the strong-
interaction limit of the Bose-Hubbard model [34] and has
been realized with atoms in optical lattices [35–37] and
with photons in nonlinear resonators [25]. The hard-core
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constraint implies the commutation rules ½b̂i; b̂j� ¼ 0 and

½b̂i; b̂†j � ¼ ð−1Þn̂iδij, where n̂i ≔ b̂†i b̂i is the occupation at
site i [38]. The Hamiltonian maps onto free fermions by a
Jordan-Wigner (JW) transformation [39]:

f̂j ¼ ð−1Þ
P

i<j
n̂i b̂j; b̂j ¼ ð−1Þ

P
i<j

n̂i f̂j; ð2Þ

where f̂j are fermionic operators that satisfy anticommu-
tation, ff̂i; f̂jg ¼ 0 and ff̂i; f̂†jg ¼ δij. Thus, f̂

†
i f̂i ¼ n̂i,

and Eq. (1) is restated as Ĥ ¼ −ℏJ
P

iðf̂†i f̂iþ1 þ H:c:Þ.
However, as we show below, the dissipation mediates
interactions between these fermion operators.
We add dissipation by coupling the system of bosons to

bosonic reservoirs that inject particles at site p and remove
particles from site q. The reservoirs have a finite band-
width, such that if site p is already occupied, further
injection is suppressed by the large interaction energy. Such
local sources and sinks have been engineered using trans-
mon qubits in microwave circuits [25]. Typically, in these
photonic setups, the reservoirs relax to equilibrium much
faster than the system dynamics [40]. Under such a routine
Born-Markov approximation, the reduced density matrix ρ̂
of the system is governed by a master equation of the
Lindblad form [34,40–46]

dρ̂
dt

¼ Lρ̂ ≔ −
i
ℏ
½Ĥ; ρ̂� þ

X

α

L̂αρ̂L̂
†
α −

1

2
fL̂†

αL̂α; ρ̂g; ð3Þ

where L̂1 ≔
ffiffiffiffiffi
γþ

p
b̂†p and L̂2 ≔

ffiffiffiffiffi
γ−

p
b̂q are two Lindblad

operators, γ� being the pump and loss rates, respectively.
This dynamics could also be realized with cold atoms by
mapping the system to a spin-1=2 XX chain with local
incoherent spin flips [33]. Such a chain could be engineered
with either motional states [47] or internal states [48–50],
using local addressability to flip spins [51]. Note our main
results do not depend on the exact form of the Lindblad
operators as long as they are local.
If the pump and loss are at the ends of the chain (i.e.,

jpj ¼ jqj ¼ l), the problem reduces to a description in
which the LiouvillianL is quadratic in the JW fermions and
the system is noninteracting [26–28,52]. If either pump or
loss occurs in the bulk, this can no longer be achieved. Then
L contains terms involving string operators ð−1ÞN̂L , where
N̂L is the number of particles to the left of the dissipa-
tion site, which is not conserved by the Hamiltonian.
Consequently, L is not quadratic, and the system is
genuinely interacting.
Here, we focus on these cases where pump or loss does

not occur at the boundary. For such interacting systems,
one expects that, under generic conditions, Eq. (3) has a
unique steady state [55–57]. We find this is indeed the case
if the pump or loss occurs at any site other than the center
[59]. For p ¼ q ≠ 0, the system reaches a product state

ρ̂ ¼ ⊗i ðγþj1iih1ij þ γ−j0iih0ijÞ=ðγþ þ γ−Þ [60]. The sit-
uation is very different, however, if the pump and loss are
both at the center site, unlocking multiple “strong” sym-
metries [17] and leading to many striking effects.
Hidden symmetry.—To understand the symmetries that

arise when both pump and loss occur at the center, p ¼
q ¼ 0, consider first the reflection symmetry. Reflections
are generated by an operator R̂ that exchanges sites i and −i
for all i, such that R̂b̂iR̂ ¼ b̂−i. One can readily show that R̂
commutes with both the Hamiltonian and the dissipators:

½Ĥ; R̂� ¼ 0 and ½L̂α; R̂� ¼ 0 ∀ α; ð4Þ

the latter arising since the dissipators involve only b̂ð†Þ0 and

½b̂ð†Þ0 ; R̂� ¼ 0. Consequently, reflection R̂ generates a so-
called “strong” symmetry [17] and leads to multiple steady
states. Here, the system evolves separately in its even- and
odd-parity sectors, giving rise to (at least) two steady states
associated with the two parities.
The dynamics are far more constrained, however, by a

hidden symmetry [61] generated by another operator Ĉ2,
where

Ĉ ≔ −1=2þ
Xl

k¼−l
f̂†kf̂−k: ð5Þ

From Eq. (2), every k ≠ 0 term in Ĉ contains the factor
ð−1Þn̂0 , and the remaining terms give n̂0 − 1=2 ∝ ð−1Þn̂0 .
Thus, ½b̂ð†Þ0 ; Ĉ2� ¼ 0; i.e., Ĉ2 commutes with the dissipators
L̂1;2. Furthermore, as we show in the Supplemental
Material [62], Ĉ ¼ N̂even − N̂odd − 1=2, where N̂even and
N̂odd are the total occupations of the even and odd single-
particle energy modes, respectively, which gives ½Ĥ; Ĉ� ¼
0 [65]. Therefore, Ĉ2 generates a strong symmetry. Note
this is an exact result for the hard-core bosons. One also
finds Ĉ is symmetric under reflection about the center, and
all of its eigenspaces have a definite R̂ parity.
In general, the eigenspaces of a strong symmetry

generator Ŝ evolve independently, each having at least
one steady state [17]. This decoupling originates from con-
servation laws. In particular, using hŜi ¼ Trðρ̂ ŜÞ in Eq. (3),
one finds dhŜi=dt ¼ ih½Ĥ; Ŝ�i=ℏ −

P
α RehL̂†

α½L̂α; Ŝ�i ¼ 0;
i.e., hŜi is conserved [16,66]. Moreover, the projectors onto
each of the eigenspaces of Ŝ satisfy Eq. (4) individually and
are conserved separately [15]. In other words, the weight in
each symmetry sector is preserved.
Here, there will appear multiple steady states associated

with the different eigenspaces of Ĉ2. As we explain below,
the eigenstates of Ĉ2 comprise entangled particle-hole pairs
at sites k and −k, each carrying a quantum number taking
values �1 that we call “charge.” The full spectrum consists
of lþ 1 eigenvalues, fðηþ 1=2Þ2∶η ¼ 0;…; lg, where η is
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a measure of the total charge of all such pairs. These
eigenspaces evolve independently, and we find every sector
has a unique steady state for γ� ≠ 0, leading to an (lþ 1)-
fold degeneracy. This is in sharp contrast to the non-
interacting problem, where free bosons [67] or fermions
are subject to pump or loss at the center. Then, every
odd single-particle state is unaffected by dissipation so its
occupation number is conserved, yielding an exponentially
large decoherence-free subspace of degenerate steady
states. Later, we will use this feature for preparing the
symmetry sectors of Ĉ2.
Steady states.—We first characterize the eigenspaces

of Ĉ which is written as a sum of lþ 1 commuting parts,
Ĉ0 ≔ n̂0 − 1=2 and Ĉk ≔ f̂†kf̂−k þ H:c: for k ¼ 1;…; l.
The latter describes hopping of JW fermions between
two sites and can be diagonalized as Ĉk¼

P
s¼� sâ

†
k;sâk;s,

where âk;� ≔ ðf̂k � f̂−kÞ=
ffiffiffi
2

p
are single-particle fermion

modes. Thus, Ĉk has eigenstates
Q

s¼�ðâ†k;sÞνk;s j0i
with eigenvalue νk;þ − νk;−, where j0i is the vacuum and
νk;� ∈ f0; 1g. One can think of â†k;� as creating a particle-
hole pair of charge �1 at sites k and −k, of the form
ðj01i � j10iÞ= ffiffiffi

2
p

. The net charge is 0 for the states j00i
and j11i [68]. It follows that the eigenstates of Ĉ are
given by

jfνk;�g; n0i ≔ ðf̂†0Þn0
Yl

k¼1

Y

s¼�
ðâ†k;sÞνk;s j0i; ð6Þ

with eigenvalue λ¼ νþn0−1=2, where ν≔
P

kνk;þ−νk;−.
The integer ν measures the total charge of all Bell pairs and
varies from −l to l. Since n0 is either 0 or 1, λ can assume
2ðlþ 1Þ distinct values, f�ðηþ 1=2Þ∶η ¼ 0;…; lg with
degeneracies ð L

l−ηÞ.
The eigenstates in Eq. (6) share some general features

which will be inherited by the steady states. In particular,
using hf̂†kf̂−ki ¼ hĈki=2 and transforming back to bosons,
one finds they have an antidiagonal string order with
long-range coherences, jhb̂†kb̂−kij ¼ jνk;þ − νk;−j=2, as
illustrated in Fig. 1(a). The sectors labeled by η ¼ l
are nondegenerate and maximally entangled, containing l
Bell pairs of the same charge, with hb̂†kb̂−ki ¼ ð−1Þk=2
[Fig. 1(b)]. It can also be shown that the reflection
parity is even if η is of the form 4m or 4mþ 3 for
integer m and odd otherwise (see Supplemental Material
[62]). The same eigenstates diagonalize Ĉ2 with eigen-
value λ2 ¼ ðηþ 1=2Þ2, generating lþ 1 distinct symmetry
sectors.
To find the steady states in each sector, we define P̂η as

the projector onto the corresponding eigenspace, N̂ as the
total particle number, and P̂0

η ≔ ðγþ=γ−ÞN̂P̂η. Note that
½Ĥ; P̂0

η� ¼ 0, as Ĥ commutes with both N̂ and P̂η.
Furthermore, since Ĉ2 does not act on the center site, one

has the form P̂0
η ¼ Q̂η ⊗ ðγþj1ih1j þ γ−j0ih0jÞ, where j0i

and j1i describe the center site and Q̂η acts on the remaining
sites. These two properties imply that ρ̂η ≔ P̂0

η=TrðP̂0
ηÞ is a

steady state ofEq. (3)with the dissipators
ffiffiffiffiffi
γþ

p
b̂†0 and

ffiffiffiffiffi
γ−

p
b̂0.

Numerically, we find this is the only steady state in each
sector [69], up to the largest systems tractable by exact
diagonalization. Within the respective eigenspace, ρ̂η
describes an infinite-temperature state with chemical
potential μ ¼ lnðγþ=γ−Þ. Note, however, that such a
state can have high spatial entanglement, as we discuss
below. For numerics, we compute ρ̂η by generating all

eigenstates of Ĉ2 by repeated applications of â†k;�
[Eq. (6)] and then forming P̂0

η. A general steady state is
given by ρ̂∞ ¼ P

η wηρ̂η with
P

η wη ¼ 1, where wη ≥ 0,
since ρ̂must be positive semidefinite. The coefficientswη can
be identified as the weights hP̂ηi in different symmetry
sectors, which are the constants of motion. This gives a
mapping from an initial state, characterized by hP̂ηi, to the
final state [70]:

ρ̂∞ ¼
Xl

η¼0

hP̂ηi
ðγþ=γ−ÞN̂P̂η

Tr½ðγþ=γ−ÞN̂P̂η�
: ð7Þ

Note that ρ̂∞ is fully determined by the weights hP̂ηi and the
pump-to-loss ratio, irrespective of the tunneling J.
Properties.—The steady states ρ̂η have unique signatures

in the one-particle correlations hb̂†kb̂−ki, which can be
measured experimentally [29–31] and have closed-form
analytic expressions derived in Supplemental Material [62].
In particular, the end-to-end coherence grows steadily

FIG. 1. (a) Schematic setup showing coherent tunneling J and
incoherent pump and loss γ� at the center. The system has a
strong dynamical symmetry that stabilizes long-range entangled
particle-hole pairs at reflection-symmetric sites. (b) Single-
particle density matrix hb̂†i b̂ji in the steady state with maximum
number of Bell pairs. The center has occupation γþ=ðγþ þ γ−Þ.
(c) End-to-end coherence for different symmetry sectors η.
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with η (in magnitude), hb̂†l b̂−li ¼ ð−1Þηðηþ 1=2Þ=L for
γþ ¼ γ−, with a weak dependence on γþ=γ−, as shown
in Fig. 1(c). Similar signatures appear in the density-density
correlations (see Supplemental Material [62]). Note the
correlations are symmetric under the exchange γþ ↔ γ−.
The occupations are hn̂ki ¼ 1=2 for γþ ¼ γ− and grow
monotonically with γþ=γ−, such that hn̂k≠0i ¼ ½1� ð1 −
η=lÞ�=2 for γ∓ → 0.
To quantify the degree of entanglement in the (mixed)

steady states, we numerically compute the log negativity
EN , which gives an upper bound on the number of dis-
tillable Bell pairs between two halves of the system
[71–73]. As shown in Fig. 2, it rises monotonically from
EN ¼ 0 for η ¼ 0 to EN ¼ l for η ¼ l. Other measures
of coherence [74] give similar results (see Supplemental
Material [62]).
Experimental preparation.—Preparing this system of

hard-core bosons in different symmetry sectors requires
a controlled generation of entanglement. As we now show,
this can be done by dissipative means [75–78] if one can
engineer loss of the JW fermions from the center site. For
bosonic systems, such a process necessitates the application
of a string operator, f̂0 ¼ ½Qi<0ð−1Þn̂i �b̂0, i.e., a boson loss
accompanied by a collective phase. This can be realized
efficiently in hardware with superconducting qubits
coupled to ancilla cavities, as detailed in Ref. [79]. For
a spin realization with cold atoms, it would be more
challenging but could be implemented, in principle, with
a projective measurement of the spin coupled with local
Zeeman fields.
We target states in each sector that are made up solely

of negatively charged Bell pairs,
Q

l
k¼1ðâ†k;−Þνk;− j0i withP

k νk;− ¼ η. Such states span the space of odd fermionic
wave functions with occupation Nodd ¼ η, i.e., a total of η
JW fermions occupying the odd modes, which are linear
combinations of fâ†k;−g (recall that Ĉ¼ N̂even− N̂odd−1=2).
These modes are stable if one only has loss of the (now
free) JW fermions at the center site. The same loss can be
used to produce odd states with a given particle
number, as follows. We start from a symmetric Fock state,

jfnkgi ≔
Q

l
k¼1ðb̂†kb̂†−kÞnkðb̂†0Þn0 j0i. Transforming to JW

fermions, one finds such a state has Nodd ¼
P

l
k¼1 nk

(see Supplemental Material [62]). Under JW fermion loss,
only the even modes are depleted, so with the odd ones
preserved the system will be driven to the sector
η ¼ P

k nk. Thus, one can selectively prepare all different
sectors simply by setting the initial occupations. In par-
ticular, a fully filled lattice evolves to the maximally
entangled state, η ¼ l.
Simulations of this preparation scheme, using exact

diagonalization, are shown in Fig. 3. The oscillations
describe breathing-type back-and-forth motion of the
Bell pairs under the Hamiltonian. Once a given sector is
prepared, one can switch from the JW fermion loss to the
original boson pump and loss, converging to the steady
state ρ̂η. Note the preparation takes a few tens of tunneling
time, much faster than the on-site disorder and residual
dissipation in a recent experiment [25]. We analyze these
timescales further in Supplemental Material [62].
No-pump (or no-loss) limit.—If one has only boson loss

at the center (γþ ¼ 0), all the odd JW fermionic modes
become immune to dissipation. This is because they have
no particle at the center site and are eigenmodes of Ĥ.
Hence, any superposition of these modes evolves unitarily
under Ĥ, yielding a decoherence-free subspace [32]. The
same is also true for the loss of JW fermions at the center.
However, the full dynamics are very different for the two
cases [80]. For the boson loss, hĈ2i is conserved, not the
occupation of odd modes, as the string in Eq. (2) couples
odd and even modes. Thus, an initially filled lattice
approaches the vacuum at long times, not the maximally
entangled state in Fig. 3. With boson pump instead of loss,
the particle and hole states are interchanged, and one again
finds a decoherence-free subspace.
Robustness.—The observable Ĉ2 remains a generator of

strong symmetry for a large class of 1D systems. First, it is

FIG. 2. Log negativity EN , measuring entanglement between
left and right halves, in steady states corresponding to different
symmetry sectors η and number of sites L, with γþ ¼ γ−.

FIG. 3. End-to-end correlation during a selective preparation
of different symmetry sectors η for L ¼ 7. The shaded region
shows the generation of Bell pairs from symmetric Fock states,
b̂†0

Qη
k¼1 b̂

†
kb̂

†
−kj0i, driven by the loss of JW fermions at the center

with rate γF ¼ 3J. The white region shows subsequent dynamics
with boson pump and loss rates γ� ¼ 2J.
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unaffected by dephasing [43] or any Lindbladian dissipa-
tion at the center site. Second, as we show in Supplemental
Material [62], Ĉ commutes with any Hamiltonian that is
quadratic in the JW fermions and reflection symmetric,
½Ĥ; R̂� ¼ 0. This includes symmetric trapping potentials,
anisotropic XY spin-1=2 chains [27], and the quantum Ising
model which maps onto the Kitaev chain [81]. Third, the
results are unaltered for periodic boundary conditions (with
an odd number of sites; see Supplemental Material [62] for
more details). Furthermore, since ½Ĉ; n̂j þ n̂−j� ¼ 0 for all
j, any interactions or dissipation that depend only on such
“pair occupations” commute with Ĉ. The symmetry is,
however, broken for generic dissipation away from the
center and for nearest-neighbor interactions of the form
Ĥ0 ¼ ε

P
j n̂jn̂jþ1 (see Supplemental Material [62]), as

found by mapping an XXZ chain to hard-core bosons.
In such cases, the steady states are robust to linear order in
Hamiltonian perturbations ε [62,82].
Conclusions.—We have identified a paradigmatic experi-

mental setting of a qubit array with local dissipation that
exhibits a striking hidden symmetry, leading to stable long-
range coherence that is both unusual and desirable. The
symmetry stabilizes Bell pairs over arbitrarily long dis-
tances and is surprisingly robust. Consequently, the system
has an extensive set of exactly solvable steady states
characterized by an antidiagonal string order, from mini-
mally to maximally entangled. We have shown how one
can selectively prepare these states using dissipation and
discern them by correlation measurements, accessible in
existing photonic [25] and atomic setups. The controllable
generation and preservation of long-range entanglement in
an open platform would be valuable for quantum informa-
tion processing and metrology [19,73,74,83,84]. Our find-
ings of these special features in a simple paradigmatic
model strongly motivate experimental investigations of
symmetry in open systems, shedding light on the subtle
relation between symmetry and conservation laws in a
nonunitary setting [15,16].
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