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ABSTRACT
Mendelian randomization uses genetic variants to make causal inferences about the

effect of a risk factor on an outcome. With fine-mapped genetic data, there may be

hundreds of genetic variants in a single gene region any of which could be used to

assess this causal relationship. However, using too many genetic variants in the anal-

ysis can lead to spurious estimates and inflated Type 1 error rates. But if only a few

genetic variants are used, then the majority of the data is ignored and estimates are

highly sensitive to the particular choice of variants. We propose an approach based on

summarized data only (genetic association and correlation estimates) that uses princi-

pal components analysis to form instruments. This approach has desirable theoretical

properties: it takes the totality of data into account and does not suffer from numerical

instabilities. It also has good properties in simulation studies: it is not particularly sen-

sitive to varying the genetic variants included in the analysis or the genetic correlation

matrix, and it does not have greatly inflated Type 1 error rates. Overall, the method

gives estimates that are less precise than those from variable selection approaches

(such as using a conditional analysis or pruning approach to select variants), but are

more robust to seemingly arbitrary choices in the variable selection step. Methods are

illustrated by an example using genetic associations with testosterone for 320 genetic

variants to assess the effect of sex hormone related pathways on coronary artery dis-

ease risk, in which variable selection approaches give inconsistent inferences.

K E Y W O R D S
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1 BACKGROUND

In a Mendelian randomization investigation, genetic vari-

ants that are instrumental variables for a given risk factor

are used to assess the causal effect of the risk factor on

an outcome (Burgess & Thompson, 2015; Davey Smith &
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work is properly cited.
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Ebrahim, 2003). An association between such a genetic vari-

ant and the outcome is indicative of a causal effect of the risk

factor on the outcome (Didelez & Sheehan, 2007; Lawlor,

Harbord, Sterne, Timpson, & Davey Smith, 2008). When

there are multiple uncorrelated genetic variants that are instru-

mental variables for the same risk factor, power to detect
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a causal effect is maximized by including all such genetic

variants in a single analysis (Pierce, Ahsan, & VanderWeele,

2011). However, when genetic variants are correlated, it is not

clear how to choose which variants to include in the analysis to

obtain the most efficient estimate possible without the analy-

sis suffering from numerical instabilities when there are large

numbers of highly correlated candidate variants (such as with

fine-mapped genetic data).

1.1 Theoretical viewpoint
If individual-level data are available on the genetic vari-

ants (potentially correlated), risk factor, and outcome for the

same participants, then the two-stage least squares (2SLS)

method provides the most efficient estimate of the causal

effect (among all instrumental variable estimators using lin-

ear combinations of the instruments and under conditional

homoscedasticity—the error term in the model relating the

outcome to the risk factor has constant variance conditional on

the instruments) (Wooldridge, 2009). Use of the 2SLS method

for estimating a causal effect is discussed at length elsewhere

in the literature; see Angrist and Imbens (1995) for a theoret-

ical introduction, and Didelez, Meng, and Sheehan (2010) for

a discussion in the context of Mendelian randomization.

The first stage of the 2SLS method regresses the risk factor

on all the genetic variants. As the sample size increases, the

coefficient of any variant that does not explain independent

variation in the risk factor will tend to zero, and so its contri-

bution to the analysis decreases to zero. This implies that an

optimally efficient Mendelian randomization analysis should

include all genetic variants associated with the risk factor in a

conditional analysis. The inclusion of additional variants not

independently associated with the risk factor will not have a

negative impact on the analysis asymptotically (as their coef-

ficient for contribution to the analysis will tend to zero), but

will not add to the precision of the causal estimate either. As

an aside, fitted values from the first-stage of the 2SLS method

are equivalent (up to an additive constant) to values of an

allele score (also called a genetic risk score). This implies that

the optimal weights in an allele score with correlated variants

are the conditional (multivariable) associations of the variants

with the risk factor.

1.2 Estimating a causal effect using
summarized data
The 2SLS estimate can also be obtained using summarized

data on genetic associations with the risk factor and with the

outcome from univariable regression analyses of the risk fac-

tor or outcome on each genetic variant in turn. This is impor-

tant as such summarized data from large consortia are often

publicly available, enabling Mendelian randomization inves-

tigations to be performed on large sample sizes without the

need for costly and time-consuming data-sharing arrange-

ments (Burgess et al., 2015). This estimate can also be cal-

culated in a two-sample setting, in which genetic associations

with the risk factor and with the outcome are estimated in dif-

ferent samples (Inoue & Solon, 2010).

If the genetic association with the risk factor for genetic

variant 𝑗 is 𝛽𝑋𝑗 with standard error (SE) se(𝛽𝑋𝑗), and with

the outcome is 𝛽𝑌 𝑗 with SE se(𝛽𝑌 𝑗), and assuming that genetic

variants are uncorrelated, then the causal estimate is (Johnson,

2013):

Inverse variance weighted estimate (uncorrelated variants)

=
∑

𝑗 𝛽𝑌 𝑗𝛽𝑋𝑗 se(𝛽𝑌 𝑗)−2
∑

𝑗 𝛽
2
𝑋𝑗

se(𝛽𝑌 𝑗)−2
. (1)

This is referred to as the inverse variance weighted (IVW)

estimate (Burgess, Butterworth, & Thompson, 2013). It is the

weighted mean of the 2SLS estimates using each genetic vari-

ant individually (𝛽𝑌 𝑗∕𝛽𝑋𝑗) with the inverse-variance weights

[se(𝛽𝑌 𝑗)∕𝛽𝑋𝑗]−2. The variant-specific estimates are combined

using the standard formula for a fixed-effect meta-analysis

(Borenstein, Hedges, Higgins, & Rothstein, 2009). This same

estimate can be obtained by weighted regression of the genetic

associations with the outcome 𝛽𝑌 𝑗 on the genetic associations

with the risk factor 𝛽𝑋𝑗 using weights se(𝛽𝑌 𝑗)−2 and with the

intercept term set to zero. The IVW estimate is equivalent

to the 2SLS estimate when the genetic variants are uncorre-

lated (Burgess, Dudbridge, & Thompson, 2015). This formula

does not take into account uncertainty in the genetic associa-

tions with the risk factor; however, these associations are typ-

ically more precisely estimated than those with the outcome,

and ignoring this uncertainty does not lead to inflated Type 1

error rates for the IVW estimate in realistic scenarios (Burgess

et al., 2013).

When genetic variants are correlated, the IVW method

can be extended to account for the correlations between

genetic variants (Burgess, Dudbridge, & Thompson, 2016).

This can be motivated by considering generalized weighted

linear regression of the genetic associations with the out-

come on the genetic associations with the risk factor using

the weighting matrixΩ, whereΩ𝑗1𝑗2
= se(𝛽𝑌 𝑗1) se(𝛽𝑌 𝑗2)𝜌𝑗1𝑗2 ,

and 𝜌𝑗1𝑗2
is the correlation between genetic variants 𝑗1 and 𝑗2.

The causal estimate is:

IVW estimate (correlated variants)

= (�̂�𝑇

𝑋
Ω−1�̂�𝑋)−1�̂�

𝑇

𝑋
Ω−1�̂�𝑌 , (2)

where �̂�𝑋, �̂�𝑌 are vectors of the genetic associations, and 𝑇

is a vector transpose. Again, this estimate is equivalent to

the 2SLS estimate that is obtained using individual-level data

(see Appendix for proof). It therefore inherits the efficiency
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property of the 2SLS estimate as the optimally efficient causal

estimate based on all the genetic variants.

1.3 Scope of paper
In this paper, we illustrate and provide guidance on choosing

variants to include in a Mendelian randomization with fine-

mapped genetic data. We first provide a motivating example

analysis based on summarized genetic associations for hun-

dreds of correlated genetic variants in a single gene region. We

demonstrate and explain why including too many genetic vari-

ants in such an analysis can lead to numerical instabilities and

inflated Type 1 error rates. We also show that estimates based

on a few variants can be highly sensitive to the choice of these

variants. A novel approach is presented using principal com-

ponents analysis (PCA) to ensure that all variants contribute to

the analysis, but without introducing numerical instabilities.

We discuss practical implications of these findings for applied

Mendelian randomization investigations. Software code in the

R programming language for implementing the analyses dis-

cussed in the paper is provided in the Appendix.

2 MOTIVATING EXAMPLE: SERUM
TESTOSTERONE AND CORONARY
HEART DISEASE RISK

We consider an example of Mendelian randomization anal-

ysis with serum testosterone as the risk factor and coronary

artery disease (CAD) risk as the outcome using genetic vari-

ants in the SHBG gene region. The associations of 325 indi-

vidual SNPs with testosterone in 3,225 men of European

ancestry are reported by Jin et al. (2012); associations of

322 of these variants with CAD risk in 60,801 CAD cases

and 123,504 controls are reported by the CARDIoGRAM-

plusC4D Consortium (2015). Previously, in an independent

dataset, Coviello et al. (2012) demonstrated at least six sepa-

rate signals in the SHBG gene region at a genome-wide level

of significance in 21,791 individuals from 10 cohort stud-

ies, plus three more variants associated with sex hormone

binding globulin (SHBG) on adjustment for these six vari-

ants. In all analyses, correlations between variants are esti-

mated using 1,000 Genomes Phase 3 data on 503 individuals

of European descent as reference data. A further two variants

were monomorphic in the reference data; analyses are con-

ducted using the remaining 320 variants. As variants in the

SHBG gene region are associated with circulating levels of

both testosterone and SHBG, a positive Mendelian random-

ization finding would not distinguish which of these is a causal

risk factor, but would suggest that sex hormone related mech-

anisms have a causal role in cardiovascular disease.

Three approaches are taken here to choose which variants

to include in a Mendelian randomization analysis. First, we

take eight variants from the conditional analysis in the inde-

pendent dataset reported by Coviello et al. (the association

with testosterone in the data under analysis was not available

for one variant). Second, we perform a stepwise conditional

approach using the summarized associations reported by Jin

et al., selecting at each step of the analysis the variant hav-

ing the lowest P-value for association with the risk factor in

the conditional analysis. We proceed until no additional vari-

ants are associated with the risk factor at 𝑃 < 0.0001 or 𝑃 <

0.001. This approach is implemented using the GCTA soft-

ware. Third, we perform a stepwise pruning approach (Yang

et al., 2012), selecting at each step of the analysis the vari-

ant having the lowest P-value for association with the risk

factor in a marginal (univariable) analysis. Once a variant is

selected, all other variants whose correlation with the selected

variant is greater in magnitude than a given correlation thresh-

old (taken as 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95; equivalent to

an 𝑟2 threshold of 0.04, 0.16, 0.36, 0.64, 0.81, and 0.9025)

are removed from the analysis. We continue until each variant

is either selected or removed. This ensures that a set of vari-

ants is chosen for each threshold correlation such that the vari-

ants are each marginally associated with the risk factor, and

the pairwise correlations are all below the threshold correla-

tion. Although a data-driven approach to selecting variants to

include in a Mendelian randomization investigation is often

unwise (Burgess, Thompson, & CRP CHD Genetics Collabo-

ration, 2011), in this case the associations with the risk factor

and with the outcome are estimated in nonoverlapping sam-

ples, and so “winner's curse” bias in the genetic associations

with the outcome should not arise.

The Mendelian randomization estimates are presented in

Table 1. Fixed-effect analysis models that account for corre-

lations between variants are used throughout. A fixed-effect

model assumes that all genetic variants are targeting the

same causal effect parameter. This is reasonable when all the

genetic variants are in the same gene region and so are likely

to affect the risk factor in the same way. If genetic variants

in different gene regions are used in a Mendelian random-

ization investigation, then a random-effects model should be

preferred, particularly if the risk factor is a complex pheno-

type such as blood pressure, as different genetic variants influ-

encing blood pressure via different biological mechanisms

may lead to different magnitudes of change in the outcome

(Bowden, Davey Smith, Haycock, & Burgess, 2016). Despite

the two approaches using a conditional analysis and the prun-

ing approach at a threshold correlation of 0.2 including simi-

lar numbers of variants in the analysis, the causal estimates in

these three analyses differed substantially—by over two SEs,

and gave opposing substantive conclusions. In the pruning

approach, as the threshold correlation increased, more vari-

ants were included in the Mendelian randomization analysis,

and the precision of the causal estimate increased. However,

for very large values of the threshold correlation, the SE of
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T A B L E 1 Estimates in Motivating Example

Threshold Correlation
Selection Approach 𝝆 𝒓𝟐 Number of Variants Estimate (SE)
Conditional analysis in

independent dataset (Coviello)

– – 8 −0.258 (0.097)

GCTA at 𝑃 < 0.0001 – – 6 −0.009 (0.058)

GCTA at 𝑃 < 0.001 – – 19 −0.068 (0.042)

Pruning 0.2 0.04 8 −0.110 (0.094)

Pruning 0.4 0.16 20 −0.085 (0.067)

Pruning 0.6 0.36 39 −0.017 (0.051)

Pruning 0.8 0.64 62 −0.137 (0.031)

Pruning 0.9 0.81 85 −0.537 (-)a

Pruning 0.95 0.9025 104 −1.099 (0.001)

Estimates (SE) of causal effect of testosterone on CAD risk (estimates are log odds ratios per unit increase in log-transformed testosterone) from IVW method (accounting

for correlation) with variants selected using three different approaches and (for the pruning method) six different threshold correlations (measured by 𝜌 and by 𝑟2).
aThe variance estimate was negative, indicating that the weighting matrix was not positive definite, meaning that either the standard errors in the weighting matrix were

imprecisely estimated, or else were not compatible with the correlation matrix.

−0.05 0.00 0.05 0.10 0.15 0.20 0.25

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

Genetic association with testosterone

G
en

et
ic

 a
ss

oc
ia

tio
n 

w
ith

 c
or

on
ar

y 
ar

te
ry

 d
is

ea
se

 r
is

k

−0.05 0.00 0.05 0.10 0.15 0.20 0.25

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

Genetic association with testosterone

G
en

et
ic

 a
ss

oc
ia

tio
n 

w
ith

 c
or

on
ar

y 
ar

te
ry

 d
is

ea
se

 r
is

k

F I G U R E 1 Estimated genetic associations and 95% confidence intervals with testosterone (nmol/L, then log-transformed) and with coronary

artery disease risk (log odds ratios): (left) for 104 genetic variants included in Mendelian randomization analysis with threshold correlation 0.95

(𝑟2 = 0.9025); (right) for 62 genetic variants with threshold correlation 0.8 (𝑟2 = 0.64)

Note: The heavy dashed line is the IVW estimate (accounting for correlation between variants).

the causal estimate is implausibly small. With a threshold

correlation of 0.9, the SE of the causal estimate was not

defined due to the variance estimate being negative. With a

threshold correlation of 0.95, the causal estimate is clearly

spurious, as can be seen by visual inspection of the data

(Fig. 1, left panel). The result with a correlation of 0.8 is also

suspect (Fig. 1, right panel), as the variants having the great-

est associations with testosterone all lie above the causal effect

estimate. Even at lower threshold correlations of 0.4 and 0.6,

the SEs of the causal estimate are substantially lower than

those calculated using the conditional approach. This may

be due to the extra variants explaining additional variability

in the risk factor; the reduction in SE corresponds to a 97%

relative increase in variance explained by the variants at a

threshold of 0.4 compared with at 0.2, and a 240% increase

at a threshold of 0.6. It is unclear which of the estimates in

Table 1 are reliable, and therefore whether evidence supports

testosterone as a causal risk factor for coronary heart disease

risk or not.

3 CHOOSING THE RIGHT NUMBER
OF VARIANTS

To resolve the question of how to choose which variants to

include in a Mendelian randomization analysis, we explore

reasons why analyses that include too many or too few genetic

variants may go wrong, and propose a solution that incorpo-

rates associations on large numbers of genetic variants into

the analysis, but does not suffer from numerical instabilities.
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3.1 Too many variants: Near-singular genetic
correlation matrix
A matrix is singular if it cannot be inverted—formally, if the

determinant of the matrix is zero. This occurs when the rows

or columns of a matrix are linearly dependent; that is, at least

one column (or row) can be calculated as a linear sum of mul-

tiples of the other columns (known as multicollinearity). This

will occur for the genetic correlation matrix when two genetic

variants are in perfect linkage disequilibrium, or alternatively

if a small number of haplotypes are present in the data (per-

fect multicollinearity can occur even if no pair of variants is

highly correlated). In contrast, a near-singular matrix can be

inverted, but its determinant is close to zero. This occurs in

a regression model when there is substantial, but not perfect,

multicollinearity. As sample sizes for estimating genetic cor-

relations increase, singular matrices will become less com-

mon, but near-singular genetic correlation matrices are likely

to become more common. This is because a discrepant allele

count in a single individual (which could represent a genotyp-

ing error) can lead to a singular matrix becoming nonsingu-

lar. A near-singular matrix is problematic as elements of its

inverse can be very large. In the motivating example with cor-

relation thresholds of 0.9 and 0.95, the maximal element of

the inverse of the correlation matrix is over 10 million.

If a matrix is exactly singular, then it cannot be inverted,

and the analysis will report an error. If a matrix is near-

singular, then the analysis may report an estimate without giv-

ing any indication that the estimate may be misleading (as

observed in Fig. 1). In conjunction with discrepancies in the

genetic association estimates, near-singular behavior can lead

to overly precise as well as highly misleading estimates. Dis-

crepancies may occur because of the rounding of association

estimates (particularly for summarized genetic associations

taken from the literature), inaccuracy and uncertainty in cor-

relation estimates, and genetic association estimates and/or

correlation estimates being estimated in different samples.

When multiplied by the large numbers in the inverse of a

near-singular genetic correlation matrix, small discrepancies

in association estimates are magnified. Overprecision in the

causal estimate will occur when genetic association estimates

that should be similar based on the correlation matrix are more

dissimilar than expected.

3.2 Too few variants: Unstable estimates
Although theoretical considerations suggest that a Mendelian

randomization analysis should be based on only variants asso-

ciated with the risk factor in a conditional analysis, in practice

this results in a Mendelian randomization estimate that only

uses data on a small number of variants. In the motivating

example, the conditional analyses suggest that less than 10

variants should be included in the analysis; associations with

the remaining over 300 variants are ignored. In some cases and

in particular in the motivating example, the causal estimate is

highly sensitive to the choice of which variants are included in

the analysis. This leads to unstable Mendelian randomization

estimates—if one of the selected variants in the conditional

analysis happened not to be measured, or failed quality con-

trol (QC) criteria, then a different set of variants would have

been obtained from the conditional analysis, resulting in a dif-

ferent Mendelian randomization estimate.

3.3 Just right? Principal components analysis
One potential solution for resolving the problem of mul-

tiple correlated variants is PCA. The use of PCA has

been previously suggested for reducing the dimensional-

ity of the instrumental variable space to resolve issues of

weak instrument bias (Winkelried & Smith, 2011), and

as a tool for grouping variants in a fine-mapped gene

region (Cai et al., 2013). We perform unscaled PCA on a

weighted version of the genetic correlation matrix Ψ𝑗1𝑗2
=

𝛽𝑋𝑗1𝛽𝑋𝑗2 se(𝛽𝑌 𝑗1)−1 se(𝛽𝑌 𝑗2)−1𝜌𝑗1𝑗2 . The diagonal elements

of this matrix are the inverse-variance weights, and so each

is equal to the precision of the causal estimate based on that

variant alone.

Assuming that associations for all variants are estimated

in the same sample size, these diagonal elements are propor-

tional to the amount of variance in the risk factor explained by

the genetic variant. This can be seen as the SEs of the associa-

tions with the outcome will be directly proportional to the SEs

of the associations with the risk factor, which in turn relate to

the minor allele frequencies 𝑀𝐴𝐹𝑗 : if the variant is a diallelic

SNP, then se(𝛽𝑋𝑗)−2 ∝ 𝑀𝐴𝐹𝑗(1 −𝑀𝐴𝐹𝑗) (Burgess et al.,

2016). (The proportion of variance in the risk factor explained

by genetic variant 𝑗 is 𝛽2
𝑋𝑗

×𝑀𝐴𝐹𝑗(1 −𝑀𝐴𝐹𝑗), where 𝛽𝑋𝑗

is measured in standard deviation [SD] units.) Hence, if the

variants were uncorrelated, then the first principal component

would be the genetic variant that explained the largest pro-

portion of variance in the risk factor, and so on. For corre-

lated variants, the first principal component represents a linear

combination of variants that explains the largest proportion of

variance in the risk factor, and each subsequent principal com-

ponent is the linear combination of variants that explains the

next largest proportion of variance while being orthogonal to

the previous principal components.

This choice of matrix should be advantageous for

Mendelian randomization investigations over PCA

approaches on the unweighted matrix of genetic corre-

lations. If two variants are perfectly correlated, but the

estimates for one are measured in a larger sample size, then

the precision of the association with the outcome (se(𝛽𝑌 𝑗)−1)

will be greater for this variant, and so it will (correctly) be

preferentially selected. The number of principal components

to be included in the analysis can be chosen based on a
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threshold of variance in the weighted genetic correlation

matrix. Once the principal components have been selected,

we multiply the vector of genetic associations with the risk

factor by the matrix of principal components, we multiply

the vector of genetic associations with the outcome by the

matrix of principal components, and pre- and postmultiply

the genetic correlation matrix by the matrix of principal

components. The IVW method is then performed on the

transformed vectors of genetic associations and the trans-

formed correlation matrix. If the matrix Ψ = 𝑊 Λ𝑊 𝑇 , where

𝑊 is the matrix of eigenvectors (or loadings), and Λ is the

diagonal matrix with the eigenvalues 𝜆1 > … > 𝜆𝐽 on the

diagonal, then let 𝑊𝑘 be the matrix constructed of the first 𝑘

columns of 𝑊 . Then we define:

�̃�𝑋 = 𝑊 𝑇
𝑘
�̂�𝑋 as the transformed genetic associations

with the risk factor;

�̃�𝑌 = 𝑊 𝑇
𝑘
�̂�𝑌 as the transformed genetic associations

with the outcome; AND

Ω̃ = 𝑊 𝑇
𝑘
Ω𝑊𝑘 as the transformed weighting matrix.

Then, the PCA-IVW estimate is given by:

(�̃�𝑇

𝑋
Ω̃−1�̃�𝑋)−1�̃�

𝑇

𝑋
Ω̃−1�̃�𝑌 . (3)

For the example of testosterone and CAD risk, 99% of

the variance in this matrix was explained by the first eight

principal components, and 99.9% by the first 17 principal

components. The corresponding estimates using these prin-

cipal components as instruments were −0.065 (SE 0.099) and

−0.045 (0.083), respectively. These estimates are similar in

precision to that using the previous conditional analysis for

variable selection, but less precise than those calculated using

the GCTA method on the data under analysis or a liberal cor-

relation threshold in the pruning method.

Overall, the conclusion from this motivating example

is that there is no strong evidence of a causal relation-

ship between sex hormone related pathways and coronary

heart disease risk on the basis of the genetic evidence

presented here. The more extreme estimates suggesting a

causal relationship come from the less reliable methodolog-

ical approaches, and these estimates should not be trusted.

A more detailed analysis could be performed using genetic

variants previously associated with either SHBG or testos-

terone from other gene regions, although the specific rele-

vance of other variants to sex hormone related pathways is

not always clear. Additionally, it could be argued that these

analyses should be performed in men and women separately.

An authoritative analysis conclusively judging the causal rel-

evance of sex hormone related pathways to coronary heart

disease risk is beyond the scope of this methodologically

focused paper.

4 SIMULATION STUDY

We illustrate statistical issues arising from using too many and

too few variants in a series of simulation studies based on the

motivating example. Again, fixed-effect analysis models are

used throughout.

4.1 Sensitivity to choice of genetic variants
First, we repeated the analyses of the motivating example

except using only 180 of the 360 genetic variants at a time.

This represents a scenario in which only a subset of the genetic

variants in the analysis were measured. Sets of 180 variants

were chosen at random 10,000 times.

4.2 Sensitivity to correlation matrix
Second, we repeated the analyses of the motivating example

except varying the correlation matrix. We took a bootstrap

sample of the reference data (same size sample as the original

data, sampled with replacement), and calculated a correlation

matrix based on this sample. This procedure was performed

10,000 times.

For each of these simulation analyses, we performed the

pruning method for selecting genetic variants at a threshold

correlation of 0.2, 0.4, 0.6 and 0.8, and the PCA method using

components that explained 99% and 99.9% of the variance in

the summarized association matrix. Results are presented in

Table 2. In both simulation studies, as the threshold in the

pruning approaches increased, the mean SE of the causal esti-

mates decreased, and the mean causal estimate also changed

substantially. For a threshold correlation of 𝜌 = 0.8, causal

estimates were unstable, and were particularly sensitive to

changes in the correlation matrix. In contrast, estimates using

the PCA approach were not so precise, but they were far less

variable between iterations.

4.3 Rounding of association estimates
Finally, we simulated genetic associations with the risk fac-

tor and with the outcome directly. Genetic associations with

the risk factor were drawn for 320 variants from a mul-

tivariable normal distribution with mean vector the mea-

sured genetic associations with testosterone from the moti-

vating example and variance-covariance matrix Ω𝑋 , where

Ω𝑋𝑗1𝑗2
= se(𝛽𝑋𝑗1) se(𝛽𝑋𝑗2)𝜌𝑗1𝑗2 . The associations with the

outcome are drawn from a multivariate normal distribu-

tion with mean zero and variance-covariance matrix Ω,

where Ω𝑗1𝑗2
= se(𝛽𝑌 𝑗1) se(𝛽𝑌 𝑗2)𝜌𝑗1𝑗2 as defined above. This
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T A B L E 2 Simulations Varying Choice of Variants and Correlation Matrix

Varying Choice ofVariants Varying Correlation Matrix
Selection Approach Mean Estimate SD Mean SE Mean Estimate SD Mean SE
Pruning at 𝜌 = 0.2 −0.100 0.044 0.094 −0.114 0.035 0.090

Pruning at 𝜌 = 0.4 −0.093 0.032 0.078 −0.074 0.027 0.065

Pruning at 𝜌 = 0.6 −0.009 0.049 0.060 −0.018 0.052 0.046

Pruning at 𝜌 = 0.8 −0.024 0.402 0.048a -b – –

PCA at 99% of variance −0.053 0.028 0.098 −0.051 0.027 0.096

PCA at 99.9% of variance −0.045 0.025 0.084 −0.047 0.017 0.083

Means of estimates, SDs of estimates, and mean SEs for 10,000 iterations based on motivating example: (i) varying the choice of variants and (ii) varying the correlation

matrix. Six approaches for selecting genetic variants are performed: four based on pruning at different correlation thresholds (𝜌) and two based on PCA.
aExcluding 536 iterations in which the standard error was not defined.
bEstimates were highly variable and the standard error was not defined for a large proportion of iterations.

T A B L E 3 Simulation Rounding Association Estimates

Unrounded Three Decimal Places Two Decimal Places
Selection Approach SD Mean SE Power SD Mean SE Power SD Mean SE Power
Null causal effect

Pruning at 𝜌 = 0.2 0.080 0.079 5.0 0.080 0.080 4.9 0.086 0.077 7.3

Pruning at 𝜌 = 0.4 0.067 0.066 5.0 0.067 0.066 5.1 0.073 0.063 9.2

Pruning at 𝜌 = 0.6 0.049 0.049 5.0 0.050 0.050 4.9 0.066 0.047 16.5

Pruning at 𝜌 = 0.8 0.027 0.022 10.5 0.175 0.022 40.8 0.418 0.020 62.2

PCA at 99% of variance 0.089 0.090 4.6 0.090 0.090 4.6 0.094 0.083 8.0

PCA at 99.9% of variance 0.075 0.075 4.6 0.075 0.076 4.5 0.079 0.069 9.0

Positive causal effect of 0.1

Pruning at 𝜌 = 0.2 0.080 0.079 24.8 0.080 0.080 24.6 0.086 0.077 27.9

Pruning at 𝜌 = 0.4 0.067 0.066 33.6 0.067 0.066 33.2 0.073 0.063 37.0

Pruning at 𝜌 = 0.6 0.049 0.049 54.3 0.050 0.050 51.9 0.066 0.047 53.1

Pruning at 𝜌 = 0.8 0.027 0.022 88.8 0.172 0.022 86.7 0.644 0.020 79.3

PCA at 99% of variance 0.089 0.090 19.6 0.090 0.090 19.5 0.095 0.083 25.1

PCA at 99.9% of variance 0.075 0.075 26.1 0.075 0.076 25.6 0.079 0.069 32.6

SD of estimates, mean SEs, and empirical power based on the 95% confidence interval for 10,000 simulated datasets using six approaches for selecting genetic variants.

Results are also given on rounding the association estimates to a fixed number of decimal places.

represents a null causal effect. We also set the mean of the dis-

tribution of the associations with the outcome as 0.1 times the

associations with the risk factor, representing a causal effect of

0.1. We simulated 10,000 datasets for each value of the causal

effect, and calculated the Mendelian randomization estimate

using the same six approaches for variant selection as above.

Additionally, we repeated the analyses but first rounding the

genetic associations (and their SEs) to three and two decimal

places.

4.4 Results
Results are presented in Table 3 for the SD of estimates, the

mean SE, and the empirical power of the 95% confidence

interval (the proportion of datasets in which the confidence

interval excluded the null; this is the Type 1 error rate for a

null causal effect). The mean estimates (not presented) were

close to the true causal effect throughout for all approaches.

As in the previous simulations, estimates from the pruning

approach became more precise as the threshold correlation

increased, although Type 1 error rates were above nominal

levels for 𝜌 = 0.8 even when the association estimates were

not rounded. Rounding exacerbated false-positive findings,

and inflated Type 1 error rates were present in all methods

when associations were rounded to two decimal places. Cov-

erage rates were least affected when pruning at a threshold

correlation of 𝜌 = 0.2 or 0.4 and for the PCA approaches.

With a positive causal effect, power increased as the threshold

increased, although judging estimators by power estimates is

misleading when Type 1 error rates are inflated. Power of the

PCA approaches was similar to that using a pruning thresh-

old of 𝜌 = 0.2, but lower than that at a threshold of 𝜌 = 0.4,

and was greater using principal components that explained a

greater proportion of the weighted correlation matrix.
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5 DISCUSSION

As the cost of high-density genome sequencing continues to

fall, additional signals are likely to be identified within known

loci. There will be growing demand for methods to exploit

correlated instruments in Mendelian randomization, as the

addition of correlated variants can improve power to detect

a causal effect. In this paper, we first connected previously

known results together to show from theoretical arguments

that genetic variants included in a Mendelian randomization

analysis should be those that are associated with the risk fac-

tor in a conditional analysis. If the variants are combined in an

allele score, then the conditional (multivariable) associations

with the risk factor should be used as weights in the allele

score to obtain the most efficient analysis. If only summarized

data are available, then the same analysis can be replicated

with the marginal (univariable) associations using an exten-

sion to the IVW method to account for correlations between

variants.

However, difficulties arise when there are many correlated

genetic variants in a single gene region that are associated with

the risk factor (fine-mapping genetic data). Including too few

genetic variants in an analysis means that estimates are less

precise, but also highly variable, in that different approaches

to choosing variants can lead to markedly different estimates.

However, including too many variants can lead to numerical

instabilities and overly precise estimates with inflated Type

1 error rates. These numerical instabilities are not compu-

tational issues, but arise due to inconsistencies in the data:

for example, if association estimates are rounded to a fixed

number of decimal places, or if association or correlation esti-

mates are obtained in different samples. It is difficult in prac-

tice to judge at what threshold these numerical issues begin to

occur, although in the simulation examples considered, prob-

lems regularly occurred when pruning variants at a threshold

correlation of 0.8 (𝑟2 = 0.64), and occasionally occurred at a

threshold correlation of 0.6 (𝑟2 = 0.36). We note as well that

𝑟2 is not always a good measure of correlation between genetic

variants; near-singular matrices can occur when the pairwise

correlations measured by 𝑟2 are low, but there are haplotypes

represented in the data, or when the minor allele frequencies

of variants differ, but a common variant “tags” a rare variant

(high D-prime, but low 𝑟2).

As an alternative approach, we have proposed a method

for selecting instruments based on PCA of a weighted ver-

sion of the genetic correlation matrix. This approach con-

structs instruments as linear combinations of genetic vari-

ants. As the linear combinations are orthogonal, the approach

does not suffer as much with respect to numerical instabil-

ities. Additionally, the method incorporates data on all the

genetic variants into the analysis, and consequently causal

estimates from the approach are less variable. Estimates from

the PCA approach are less precise than those from the variable

selection approaches considered here (GCTA and pruning);

however, they are less variable with respect to choices of how

to implement the analysis (in particular the choice of variants).

5.1 Comparison with previous work
The IVW method presented here is a simple application of

generalized weighted linear regression, and is not unique to

Mendelian randomization. The same method has been used in

a variety of contexts including discovery genetics (Zhu et al.,

2016), and prediction and model selection (Chen et al., 2015;

Benner et al., 2016; Newcombe, Conti, & Richardson, 2016).

A number of different solutions have been proposed to the

problem of highly correlated variants, including pruning and

clumping at a threshold correlation, and adding a small posi-

tive number to the diagonal of the correlation matrix (Gusev

et al., 2016). In the applied example of the paper at a correla-

tion threshold of 𝜌 = 0.8, adding 0.1 to the diagonal of the cor-

relation matrix changed the causal estimate from −0.137 (SE

0.031) to −0.065 (0.057). Although the substantial change in

the causal estimate is indicative of near-singular behavior, it

would seem preferable for estimation to simply use a stricter

correlation threshold rather than misspecifying the correla-

tion matrix (and better still to use the principal component

approach presented in this manuscript).

We believe that Mendelian randomization differs some-

what from other analysis contexts, as an instrumental variable

analysis relies on inferences from a single-gene region (e.g.,

for a protein risk factor where the gene region is the coding

region for the risk factor) or a small number of gene regions.

Another feature of Mendelian randomization is the prevalence

of the summarized data and two-sample settings, in which dis-

crepancies in genetic associations are likely to arise.

PCAs have been suggested before for fine-mapping data,

with Wallace demonstrating that 70% of the variance in the

genetic correlation matrix could be explained by an average

of seven components for 49 test gene regions (Wallace, 2013).

A key innovation here is weighting the genetic correlation

matrix, meaning that principal components with the greatest

eigenvalues will be those that explain the most variance in the

risk factor. This means that it is more likely that an analysis

based on a small number of principal components will have

reasonable power to detect a causal effect. For example, if

there is only one causal variant in the gene region, then 100%

of the variance would be explained by one principal compo-

nent, even if there were other uncorrelated variants in the gene

region.

We advocate the PCA method proposed in this paper as

a worthwhile approach to analyze fine-mapped genetic data

for Mendelian randomization. It provides estimates that may

be less precise compared with those from variable selection

approaches such as GCTA, but are more robust to seemingly

arbitrary choices in the variable selection step.
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APPENDIX A

A.1 Software code
We provide R code to implement the methods discussed in this paper. The genetic variants are represented by g (a matrix of allele

counts for the genetic variants), the risk factor by x, and the outcome by y. Weights for the allele score are represented by wts.

The associations of the candidate instruments with the risk factor are denoted betaXG with SEs sebetaXG. The associations

of the candidate instruments with the outcome are denoted betaYG with SEs sebetaYG. With a continuous outcome, these

associations are usually estimated using linear regression; with a binary outcome, using logistic regression.

The two-stage least squares (2SLS) method can be implemented using the sem package:

library(sem)

beta_2sls = tsls(y, cbind(x, rep(1,parts)), cbind(g, rep(1,parts)),
w=rep(1, parts))$coef[1]

# w are the weights in the two-stage least squares method
# (w is set to one for all individuals)
# the cbind(..., rep(1,parts)) ensures that a constant term is
# included in both regression stages of the 2SLS method

se_2sls = sqrt(tsls(y, cbind(x, rep(1,parts)), cbind(g, rep(1,parts)),
w=rep(1, parts))$V[1,1])

Genetic variants can be collapsed into an allele score, and the score can be used in the 2SLS method:

library(sem)
score = g%*%wts
beta_score = tsls(y, cbind(x, rep(1,parts)), cbind(score, rep(1,parts)),

w=rep(1, parts))$coef[1]
se_score = sqrt(tsls(y, cbind(x, rep(1,parts)), cbind(score, rep(1,parts)),

w=rep(1, parts))$V[1,1])

If the genetic variants are perfectly uncorrelated, and the weights are the coefficients from univariable regression analyses of

the risk factor on each of the genetic variants in turn, then these two analyses are equivalent.

IVW estimate (ignoring correlation):

beta_IVW = summary(lm(betaYG∼betaXG-1, weights=sebetaYG^-2))$coef[1]
se_IVW.fixed = summary(lm(betaYG∼betaXG-1, weights=sebetaYG^-2))$coef[1,2]/

summary(lm(betaYG∼betaXG-1, weights=sebetaYG^-2))$sigma
se_IVW.random = summary(lm(betaYG∼betaXG-1, weights=sebetaYG^-2))$coef[1,2]/

min(summary(lm(betaYG∼betaXG-1, weights=sebetaYG^-2))$sigma,1)

https://doi.org/10.1002/gepi.22077
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Although fixed-effects models are used throughout this paper, the (multiplicative) random-effects analysis is preferred when

heterogeneity between the causal estimates from each genetic variant is expected (provided that there are enough genetic variants

in the model to obtain a reasonable estimate of the heterogeneity). Heterogeneity would generally be expected when using

genetic variants from multiple gene regions that may have different mechanisms of influencing the risk factor, but not when

using multiple variants in the same gene region that should have similar mechanisms of effect.

IVW estimate (accounting for correlation):

Omega = sebetaYG%o%sebetaYG*rho
beta_IVWcorrel = solve(t(betaXG)%*%solve(Omega)%*%betaXG)*t(betaXG)%*%solve(Omega)%*%betaYG
se_IVWcorrel.fixed = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))
resid = betaYG-beta_IVWcorrel*betaXG
se_IVWcorrel.random = sqrt(solve(t(betaXG)%*%solve(Omega)%*%betaXG))*

max(sqrt(t(resid)%*%solve(Omega)%*%resid/(length(betaXG)-1)),1)

The matrix rho comprises the pairwise correlations between the genetic associations (in particular, the genetic associations

with the outcome). Provided that are genetic associations estimated in the same participants, these are equal to the correlations

between the genetic variants themselves.

IVW estimate (accounting for correlation) using principal components:

Phi = (betaXG/sebetaYG)%o%(betaXG/sebetaYG)*rho

summary(prcomp(Phi, scale=FALSE))
K = which(cumsum(prcomp(Phi, scale=FALSE)$sdev^2/sum((prcomp(Phi, scale=FALSE)$sdev^2)))>0.99)[1]

# K is number of principal components to include in analysis

# this code includes principal components to explain 99% of variance in the risk factor

betaXG0 = as.numeric(betaXG%*%prcomp(Phi, scale=FALSE)$rotation[,1:K])
betaYG0 = as.numeric(betaYG%*%prcomp(Phi, scale=FALSE)$rotation[,1:K])
Omega = sebetaYG%o%sebetaYG*rho

pcOmega = t(prcomp(Phi, scale=FALSE)$rotation[,1:K])%*%Omega%*%prcomp(Phi, scale=FALSE)$rotation[,1:K]
beta_IVWcorrel.pc = solve(t(betaXG0)%*%solve(pcOmega)%*%betaXG0)*t(betaXG0)%*%solve(pcOmega)%*%betaYG0

se_IVWcorrel.fixed.pc = sqrt(solve(t(betaXG0)%*%solve(pcOmega)%*%betaXG0))

The IVW method accounting for correlation can also be performed using the standard linear regression command after weight-

ing the data by the Cholesky decomposition:

Omega = sebetaYG%o%sebetaYG*rho
c_betaXG = solve(t(chol(Omega)))%*%betaXG
c_betaYG = solve(t(chol(Omega)))%*%betaYG

beta_IVWcorrel = lm(c_betaYG∼c_betaXG-1)$coef[1]
se_IVWcorrel.fixed = sqrt(1/(t(betaXG)%*%solve(Omega)%*%betaXG))

se_IVWcorrel.random = sqrt(1/(t(betaXG)%*%solve(Omega)%*%betaXG))*max(summary(lm(c_betaYG∼c_betaXG-1))$sigma,1)

A.2 Proof of equality of 2SLS and IVW estimates
A.2.1 Variants uncorrelated
If the we write the risk factor as 𝑋 (usually an 𝑁 × 1 matrix, although the result can be generalized for multiple risk factors),

the outcome as 𝑌 (an 𝑁 × 1 matrix), and the instrumental variables as 𝑍 (an 𝑁 × 𝐽 matrix), then the two-stage least squares

estimate of causal effects is:

𝛽2𝑆𝐿𝑆 = [𝑋𝑇𝑍(𝑍𝑇𝑍)−1𝑍𝑇𝑋]−1𝑋𝑇𝑍(𝑍𝑇𝑍)−1𝑍𝑇 𝑌 .

This estimate can be obtained by sequential regression of the risk factor on the instrumental variables, and then the outcome on

fitted values of the risk factor from the first-stage regression.

Regression of 𝑌 on 𝑍 gives beta-coefficients 𝛽𝑌 = (𝑍𝑇𝑍)−1𝑍𝑇 𝑌 with SEs the square roots of the diagonal elements of the

matrix (𝑍𝑇𝑍)−1𝜎2 where 𝜎 is the residual SE. If the instrumental variables are perfectly uncorrelated, then the off-diagonal
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elements of (𝑍𝑇𝑍)−1𝜎2 are all equal to zero. Regression of 𝑋 on 𝑍 gives beta-coefficients 𝛽𝑋 = (𝑍𝑇𝑍)−1𝑍𝑇𝑋. Weighted

linear regression of the beta-coefficients 𝛽𝑌 on the beta-coefficients 𝛽𝑋 using the inverse-variance weights (𝑍𝑇𝑍)𝜎−2 gives an

estimate:

[𝛽𝑇
𝑋
(𝑍𝑇𝑍)𝛽𝑋]−1𝜎−2𝛽𝑇𝑋(𝑍

𝑇𝑍)𝜎2𝛽𝑌

=[𝑋𝑇𝑍(𝑍𝑇𝑍)−1(𝑍𝑇𝑍)(𝑍𝑇𝑍)−1𝑍𝑇𝑋]−1𝑋𝑇𝑍(𝑍𝑇𝑍)−1(𝑍𝑇𝑍)(𝑍𝑇𝑍)−1𝑍𝑇 𝑌

=[𝑋𝑇𝑍(𝑍𝑇𝑍)−1𝑍𝑇𝑋]−1𝑋𝑇𝑍(𝑍𝑇𝑍)−1𝑍𝑇 𝑌

=𝛽2𝑆𝐿𝑆

The assumption of uncorrelated instrumental variables ensures that the regression coefficients from univariate regressions (as

in the regression-based methods) equal those from multivariable regression (as in the two-stage least squares method).

A.2.2 Variants correlated
If the variants are correlated, then the same argument holds, except that the weights in the weighted linear regression of the

beta-coefficients 𝛽𝑌 on the beta-coefficients 𝛽𝑋 are (𝑍𝑇𝑍)𝑃𝜎−2, where 𝑃 is the (symmetric) correlation matrix.


