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Abstract

In response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19
Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2
genomes as part of a national-scale genomic surveillance strategy. The network
consists of universities, academic institutes, regional sequencing centres and the four
UK Public Health Agencies. We describe the development and deployment of
CLIMB-COVID, an encompassing digital infrastructure to address the challenge of
collecting and integrating both genomic sequencing data and sample-associated
metadata produced across the COG-UK network.

Introduction
Combining genomic sequencing of pathogens with epidemiology as part of a response

to an outbreak has demonstrated success in epidemiological investigations of viruses

such as Ebola, Yellow Fever and Zika [1]. Pathogen genomes are useful for reconstruct-

ing a phylogenetic history of an outbreak and are now being used in real-time to assist

epidemic response.

Established sequencing networks already exist for some infectious pathogens. As an

example, the GenomeTrakr Network is part of the US Food and Drug Administration

and connects labs across the USA and internationally to sequence foodborne bacterial

pathogens and since 2013 the project has sequenced nearly 500,000 isolates. Flu viruses

are also routinely sequenced, both through the use of Sanger and whole genome se-

quencing (WGS) techniques. Public health agencies in the UK operate seasonal influ-

enza surveillance programmes using WGS, with results reported to both governments

and international organisations such as the WHO and ECDC. While genomic data is

increasingly used within public health agencies for retrospective surveillance activities,
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the benefits of genomic epidemiology are yet to be fully realised for prospective and

proactive outbreak response. This is exemplified in the current pandemic, where the

initiation of programmes for sequencing of SARS-CoV-2 typically lagged behind plan-

ning for other parts of the pandemic response. The utility of genomic data has been

such that this should be the last pandemic where genomic epidemiology is not a core

part of pandemic planning.

Most existing public health sequencing initiatives are built around whole genome se-

quencing capacity afforded by facilities in large hospitals and public laboratories. How-

ever, with the emergence of lower capital cost sequencing instruments such as Oxford

Nanopore platforms, genomic sequencing is now available to smaller regional hospitals

and academic laboratories, vastly expanding the sequencing capacity for a hypothetical

surveillance network. Such technology is small and cost-effective enough to conduct se-

quencing of small pathogen genomes in the field, in the clinic and in the classroom.

However, with this democratisation of sequencing technologies, a new challenge

emerges in how data generated across many different laboratories can be collated, com-

pared and analysed to support outbreak/pandemic response simultaneously at local, re-

gional, national and global levels.

The COVID-19 Genomics UK (COG-UK) consortium was established in March 2020

with the aim to deliver large-scale and rapid whole-genome virus sequencing and ana-

lyse the sequences for local NHS centres and the UK government [2]. COG-UK is a na-

tional partnership of NHS organisations, the four UK Public Health Agencies, the

Wellcome Sanger Institute and over 20 academic partners. The work of the consortium

generates reports for the UK Scientific Advisory Group for Emergencies (SAGE), as

well as providing analyses and advice to the UK devolved administrations. This is the

first time that genomic epidemiology has been used at a national scale to guide a re-

sponse to a pandemic in the UK, as demonstrated in regular reports to the UK’s Scien-

tific Advisory Group for Epidemics (https://www.cogconsortium.uk/news-reports/sage-

reports/).

As well as rapidly responding to the problems of how to extract and sequence SARS-

CoV-2 genomes, another key challenge for COG-UK was to develop an infrastructure

capable of harmonising data from a network of sources to create one dataset for ana-

lysis. The development of this system posed many interesting and challenging problems

from a technical standpoint. In this article, we present several of these problems, our

solutions and what we have learned from the process. Our system provides a model

(Fig. 1) that may serve as a foundation to inform others who are faced with the chal-

lenge of designing and deploying a similar system to aid outbreak tracking in this or fu-

ture pandemics.

Results
We present a model of our system (Fig. 1), which can be broken down into three core

functions:

� Produce data, by connecting a network of regional sequencing sites (academic or

government affiliated) to a network of sampling organisations, to establish a

distributed, democratised network for sequencing SARS-CoV-2 genomes
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� Collect data by providing a system to transfer sequencing data, consensus genomes

and sample metadata that works in the same way for every member of the

consortium

� Integrate data into a single dataset by harmonising the collected sequences and

metadata

Fig. 1 Overview of the COG-UK data flow. (Top) A network of sampling sites (e.g. hospitals and testing
centres) produce samples and sample metadata which are received by a regional sequencing centre. The
sample is extracted and sequenced and a locally run bioinformatics pipeline generates both a consensus
viral genome and an alignment of sequenced read fragments against the SARS-CoV-2 reference genome.
(Middle) The consensus sequence and alignments are uploaded via secure file transfer to be stored on
CLIMB-COVID. Metadata is securely transferred over HTTPS to an application programming interface (API)
that transforms metadata into a model to be stored in a database on CLIMB-COVID. (Bottom) The core
quality control pipeline executes every day to integrate newly uploaded samples and metadata into the
single canonical dataset of all uploaded sequences. Once this pipeline is finished, it notifies downstream
analysis pipelines through a messaging protocol to generate analysis artifacts like phylogenetic trees.
Downstream analysis pipelines also automatically deposit genomes in public databases such as GISAID
and ENA/INSDC
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An autonomous and scalable network for decentralised sequencing of SARS-CoV-2

genomes

The COG-UK consortium forms a national network of organisations that in combin-

ation collect and sequence samples. The organisations within the consortium have a

high degree of autonomy. This autonomy is valuable as sites can take advantage of their

own local expertise to make decisions on protocols and methods to use for sample col-

lection, preparation and sequencing, reducing the burden for an organisation that

wishes to participate. Some of these sampling sites have the capacity and resources to

perform their own sequencing, those that do not are connected to a regional sequen-

cing organisation, or the Wellcome Sanger Institute (WSI). Regional sequencing sites

include academic institutions, small laboratories and public health agencies. Connecting

sampling organisations to a local sequencing laboratory means sequenced genomes can

be turned around within 24–48 h of sample collection.

This two-tiered sequencing model has facilitated both a prioritised, rapid regional re-

sponse, as well as supporting lower priority, high-throughput projects such as the se-

quencing of every positive sample from the Lighthouse Laboratories (Fig. 2).

However, this autonomy comes at a cost: raising the difficult challenge of coordinat-

ing such a diverse network of sites, using a spectrum of methods for sample extraction,

PCR, library preparation, sequencing and consensus-generating bioinformatics. The

core problem we faced when tasked to build this infrastructure is one of data interoper-

ability. With geographically dispersed sequencing operations and the four public agen-

cies all producing data with a wide variety of different techniques and platforms, it was

necessary to deploy an infrastructure to collate this data into a single, consistent, ca-

nonical data set, available for everyone within the consortium and for consistent public

dissemination.

A hub model for integrating genomic and epidemiological data

We chose to form a hub model around the Cloud Infrastructure for Microbial Bioinfor-

matics (CLIMB) compute facility [3]. CLIMB is not just a pragmatic choice given the

affiliation of the authors; since it was first deployed in 2014, it has provided infrastruc-

ture to microbiologists to produce and use software for the analysis of genomic data

sets, serving over 300 research groups at more than 85 organisations spread across the

UK. It was designed as a system to support microbial bioinformatics and has been used

for pathogen outbreak analysis in the past [4].

We formed CLIMB-COVID as a ‘walled garden’ within existing MRC-CLIMB infra-

structure, for the purpose of providing a central, replicated environment for the storage

and analysis of data generated by COG-UK. CLIMB served as a trusted research envir-

onment with no affiliation to any one country or public health agency, enabling cooper-

ation across a diverse network of sequencing operations covering four countries, and

the development of a bespoke service and environment to meet the needs of the

project.

Sites participating in the consortium maintain authority over the data they generate,

interpreting and sharing it to inform a local public health response. As part of their

membership, they are responsible for transferring the sequenced consensus FASTA file,

and an alignment of the sequenced reads against the SARS-CoV-2 reference genome
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[5] as a BAM to a designated server. This simplifies analysis within CLIMB-COVID,

and also enables the hub to avoid storing human reads sequenced incidentally as part

of SARS-CoV-2 sequencing, while also providing valuable data that can be used to per-

form additional analyses for scientific or quality control purposes.

To assist with the on-boarding of new sites, including those with limited bioinformatics

support we also built a reproducible Nextflow pipeline (https://github.com/connor-lab/

ncov2019-artic-nf) that enables the processing of data for sites following the ARTIC

sequencing protocols [6].

A walled garden for fast turn around and to maintain sequence integrity

This hub model operates with a different paradigm to one suggested recently by Black

et al. [7], which recommended that raw reads would first be uploaded to the SRA, or

Illumina BaseSpace, and that the final step of any assembly pipeline would be automatic

submission to one of the International Nucleotide Sequence Database Collaboration

(INSDC) databases, or a pathogen specific initiative such as GISAID. In practice, this

paradigm would introduce unnecessary delays in the processing of data and hamper

real-time genomic surveillance efforts. In building our system, the focus has been on

generating actionable information to support public health action as rapidly as possible.

Fig. 2 COG-UK sequencing model. Samples are sourced from two “pillars”; pillar 1 samples are collected
across the NHS and Public Health Agencies, pillar 2 samples are collected at the Lighthouse Labs at
particular strategic sites in the UK. Generally, pillar 1 samples are received by NHS labs who process them
for sequencing locally or by a university sequencing lab for a fast turnaround. Pillar 2 samples are generally
shipped through to the Wellcome Sanger Institute for high-capacity sequencing
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Our approach instead takes sequence data for initial analysis inside a system hosted

on MRC-CLIMB which can only be accessed by members of the consortium. This en-

sures the data is immediately usable, as sequences can be transferred to the consortium

as soon as they have been processed locally, whereas large public databases often have

a lead time up to a few days before accessions are indexed and resources can be down-

loaded, which is incompatible with the goal to turn around sequences within 24 h.

Our model also allows our internal pipelines to be tolerant of the different error pro-

files we may expect to see given the diverse sequencing methodologies in use across

the sites. Processing data centrally allows us to perform basic quality control and en-

sure consensus genomes are internally consistent before they are distributed outside

the consortium, mitigating the risk of polluting international databases. Sequences are

only processed and integrated into the data set if they have been uploaded to CLIMB-

COVID, which enforces an environment that fosters data sharing. Consortium mem-

bers additionally benefit from sharing data via CLIMB-COVID, as we manage automat-

ically uploading data to public databases on their behalf.

A minimal metadata standard to ensure wide adoption of data collection

For the sequenced genomes to be useful, it is essential to pair them with metadata that

contextualises the time, place and circumstance of the collected sample. This context is

what allows us to use genomic epidemiology to drive an effective intervention as part

of a public health response.

There are already several well defined lists of metadata that are recommended for col-

lection, for example submissions to the European Nucleotide Archive suggest following

the ‘ENA virus pathogen reporting standard checklist’ (ERC000033), and recently, the

Public Health Alliance for Genomic Epidemiology (PHA4GE) drafted a specification for

sharing contextual data about SARS-CoV-2 genomes to advocate the openness and reus-

ability of generated data sets [8]. Although it is straightforward to construct a list of de-

sired pieces of metadata to collect, the real problem is reconciling such a standard with

the reality of how data can be collected on the ground. We defined a very small set of

mandatory fields (Table 1) that aimed to limit the burden on laboratories (for a full table

of fields refer to Table 3).

In practice, we found a sample’s identifier within the healthcare system could not be

shared.

Samples are relabelled with a central sample ID (or ‘COG ID’) which identifies a sam-

ple in the consortium and in public databases. COG-UK made pre-printed barcodes

available which are used by many collection sites, but are not mandatory.

As the expertise of the analyst groups within COG-UK is focused on viral phylody-

namics, which looks to map the evolution of sequenced viral genomes over time, our

mandatory fields are concerned with linking the date a sample was collected and the

approximate geographical location it was collected in. Initially, collection county was a

necessary but unfortunate compromise as the security assessments and contractual ar-

rangements to collect and store more fine-scale location information such as outer

postcode would take some time to organise.

Each metadata field has one of three access control levels: public, consortium and re-

stricted. Public fields are highly portable and can be deposited in databases.
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Consortium level data must be analysed inside CLIMB-COVID or a public health

agency. Access to restricted data requires a specific agreement governing the exchange

and use of the metadata to be drafted.

A unified interface for transferring and storing sequences and sample metadata

Centrally managing consortium data through application programming interfaces (APIs)

and Majora

We centralised the storage of metadata with a bespoke software application to provide

a consistent platform for validating and disseminating sample metadata. Majora

(https://github.com/SamStudio8/majora/) is the database that backs the CLIMB-

COVID digital infrastructure. It stores information about samples and files, referred to

as ‘artifacts’. Majora also concerns itself with storing information on the ‘processes’ that

have been applied to artifacts. For example, a group of sample artifacts may be pooled

to form a library; a library is sequenced to provide signal data. Bioinformatics pipelines

convert signal to reads, and reads to consensus genomes, and so on. Metadata is stored

in one of three tiers within Majora (Table 2), based on indexing and query performance

requirements. By storing a record of how each artifact comes into being, and how arti-

facts are linked together through processes, it is possible to build a full audit trail from

when a sample was collected to any files and analyses generated about it downstream.

We architected Majora as a web application so it could be easily accessed by any con-

sortium member, and developed a collection of application programming interfaces

(APIs) to avoid any human intervention delaying the validating, processing or querying

of metadata. An API allows a computer programme to interface with a human or other

computers. Metadata is submitted and queried by exchanging messages with Majora’s

API endpoints.

Majora is developed with the Django framework [9] and includes the APIs, a database

of bespoke models, and a web application. The website allows for easy access to limited

Table 1 COG-UK minimal mandatory metadata specification

Data item Field name Description Base access level
(public, consortium
or restricted)

Mandatory

Central sample
ID

central_sample_id A unique identifier to
refer to the sample within
the consortium

Public Yes

Date of sample
(collected)

collection_date The date the sample
was collected

Public Yes (otherwise
received_date)

Date of sample
(received)

received_date The earliest date that this
sample was known to
be checked in to a diagnostic
or sequencing laboratory

Public No (unless
collection_date
is not provided)

Country code adm1 The country in which the
sample was collected

Public Yes

County adm2 The county within the UK
in which the
sample was collected

Consortium Strongly
recommended

Sampling
strategy

is_surveillance Whether this sample was
collected as part of a
random surveillance strategy,
or a targeted outbreak analysis

Consortium Yes
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metadata and shows the history of processes that are known about a sample (Fig. 3).

For savvy users, bots and pipelines, a command line client (Ocarina, https://github.

com/SamStudio8/ocarina) has been developed that uses the API to access more ad-

vanced functionality and automate elements of metadata submission and retrieval. Ad-

vanced users can also use the API documentation to author clients of their own.

The web interface is protected by enforcing two-factor authentication on users who

wish to view any metadata. The APIs are secured with a rotating key scheme that al-

lows external applications to perform actions as a user, without the user having to pro-

vide their account password. Newer endpoints use a more straightforward, industry-

standard protocol for authorization (OAuth 2.0).

As Majora is the only interface a user has to the metadata stored by the consortium,

and that access is completely under our control, we can satisfy requirements set out by

the NHS Digital Data Security and Protection Toolkit (https://www.dsptoolkit.nhs.uk/),

enabling us to store some restricted data. For example, users are able to upload the sam-

ple identifier as it is referred to inside of the collecting site (which is considered to be re-

stricted). These restricted identifiers are hidden from consortium users, but through

Majora, users can sign an agreement that grants permission for the identifiers they have

uploaded to be shared specifically with public health agencies, allowing COG-UK se-

quences to be linked to wider health informatics data. This has allowed the majority of

samples to be linked to records held by public health agencies, who can provide supple-

mentary metadata to COG and use the genomes in their own analyses. This layer between

the users and the database where metadata is stored allows us to maintain an audit trail of

who performed what actions both on the website, and through the API.

Most public and consortium level metadata can be viewed through the Majora web

interfaces and API. Rather than granting a user permission to a particular access level,

or deploying a cumbersome case-by-case field-level permission system, we control ac-

cess to metadata by predefining a set of named views that explicitly show a subset of

the metadata fields. The view itself then acts as a permission, with users making a case

for why they should be granted permission to that view.

Table 2 Three tiers of metadata within Majora

Tier Implementation Properties Example

Primary Database model ● Fast queries via object-relational mapping
● Takes up space in database even if unused
● Significant work to add to the database
model, API and user templates

● Biosample identifier
● Patient sex, age
● Digital resource file path,
size, hash

Secondary Database model ● Fast queries via object-relational mapping
● Additional lookups necessary to link back to
the primary database model
● Cannot assume a primary model will have a
secondary

● Cycle threshold metrics for
biosamples
● BAM coverage metrics
● Patient healthcare worker
or care home status

Tertiary Key-value row in
generic model

● More difficult to manage artifacts based on
tagged properties alone
● Highly flexible
● No work required to add new tags at any
time

● Locally relevant tags not
implemented in a model
● Additional anonymised
patient information
● Additional sequencing run
information

Majora stores submitted metadata about artifacts and processes in an SQL database. Metadata is stored differently based
on its priority. Fields that are a core part of a model (for example, a sample identifier, or the name of a file) are
considered primary metadata and are stored in a distinct database model. Metrics such as the results of a PCR Ct test, or
the coverage levels of a BAM are also stored in a distinct database model and are attached to primary models through a
database foreign key. Arbitrary metadata can then be stored in key value pairs (not backed by any particular database
model) and tagged to primary and secondary models as appropriate
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Majora allows filters to be dynamically applied to the data view to produce derivative

data sets. For example, the mechanism through which we share restricted local identi-

fiers to public health agencies will filter the samples to ensure each agency can only see

samples from their own country and that the uploading user has agreed those identi-

fiers can be shared.

A unified user-friendly method for uploading and validating metadata

Metadata is collected using a CSV template containing all the fields from our metadata

specification (Table 3). CSV files are convenient as spreadsheet software is commonly

available and intuitive to a wide range of users.

The APIs for adding metadata to Majora require the fields to be arranged in a

structured text format called JSON (JavaScript Object Notation) (Fig. 4). Mes-

sages and validation errors are returned to the API user in the same format.

Although JSON can be viewed in basic text readers, or pretty printed on a com-

mand line, it is not intended for human consumption. To convert the metadata

Fig. 3 Majora web application biosample view. An example of the web interface presented by Majora to
detail a biosample artifact. The downstream artifacts section allows users to see what processes have been
applied to the biosample. In this example, the sample was incorporated onto a pooled sequencing library,
which was sequenced and basecalled. A downstream bioinformatics pipeline resulted in a FASTA and BAM.
Artifacts can be tagged with metadata and metrics. In this example, the artifact is tagged with a linkage
flag and information about the sample's cycle threshold value
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CSV files to records in Majora, a lightweight Javascript-based (Nuxt) web fron-

tend was developed.

Users log in to the uploader with their Majora credentials and can upload their filled

out metadata CSV. Data is transferred securely as the Majora API only supports secure

HTTP (https). Majora’s JSON response describes any validation errors that require the

Fig. 4 Example API request to submit a new biosample artifact to Majora. All metadata from biological
samples, to library pooling processes and sequencing runs are communicated to Majora through the
various API endpoints. These interfaces take structured data in the JSON format and process them to be
stored in the Majora’s SQL database. This example demonstrates a simplified request to add a new
biosample to Majora (a) and a reply from Majora indicating a validation error (b). Examples rendered
with @carbon_app
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user’s attention, and these are parsed and presented prominently in the uploader web

application (Fig. 5). Invalid metadata is rejected by Majora and users are immediately

aware of problems that must be addressed before successful submission. Valid metadata

is added to the database immediately and can be queried by any other member of the

consortium with access to Majora.

Harmonisation and continuous integration of uploaded sequence and metadata

Elan: autonomous, scalable, daily data integration of sequences and metadata

FASTA and BAM files uploaded to CLIMB are paired to metadata stored in Majora

through a daily automated process. Unprocessed samples are flagged to be pulled into

Elan, the inbound distribution pipeline. Elan (https://github.com/SamStudio8/elan-

nextflow/) is an open-source pipeline built with the NextFlow workflow language [10].

Elan checks the integrity of uploaded files, calculates metrics and quality information

and copies the files to an organised read-only location for downstream dissemination.

Elan updates Majora about new samples that have been processed and registers their

corresponding file artifacts using the APIs (Fig. 6).

Elan is a central component of the COG-UK digital infrastructure (Fig. 7). The Elan

pipeline is run every day and weekly reports are written based on data submitted by

Friday, providing a natural cut-off for consortium members to aim to upload their

metadata and sequences by.

Orchestrating data flows with human or machine readable messages

Automated announcements are sent to a well-populated Slack channel for COG-UK

members responsible for collating metadata and sequence data to be alerted to missing

metadata or files that should be addressed before Elan begins. When Elan has finished

daily processing, an announcement counting the number of new and cumulative se-

quences that have passed QC is broadcast (e.g. Fig. 7).

We also deployed a Mosquitto server [11] to transmit MQTT (Message

Queuing Telemetry Transport) messages between pipelines. Elan emits machine-

readable messages (Fig. 8) to notify downstream pipelines that there are new

samples to process. Using machine-readable messages to control other pipelines

reduces human workload and encourages the development of multiple pipelines

Fig. 5 Screenshot of the metadata uploader demonstrating user-facing errors. Metadata is submitted to the
consortium by uploading a filled in CSV template to the metadata uploader web application. The uploader
converts the CSV data into JSON and communicates with the Majora API. Validation errors are immediately
returned, parsed and displayed to the user as shown here
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that do their particular tasks well, rather than tasks being rolled into one mono-

lithic pipeline.

A QC-aware platform for querying sequences

Majora can be loaded with configurations that specify how quality control decisions

should be made based on the values of uploaded metadata and metrics. For example, a

mean coverage rule would specify thresholds required for a sequence to be marked as

pass, warning or failure. These basic rules are building blocks grouped together by the

configuration to form quality control tests. Tests can be applied (or not) based on

metadata stored in Majora. For example, each sequencing platform in the consortium

has its own set of rules which are conditionally applied to samples based on the plat-

form specified in the sequencing metadata. Elan uses an API endpoint to request

Majora carry out a particular QC test and store the report.

We routinely run two QC tests: basic QC is a highly tolerant test which must be

passed in order for a sequence to be made available to downstream pipelines within the
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Fig. 6 CLIMB-COVID inbound data architecture diagram. Local sites (grey, top left) generate consensus
FASTA and alignment BAM for each sequenced sample. Corresponding metadata is collected and managed
into a CSV using the consortium template. FASTA and BAM are uploaded to CLIMB using scp or rsync.
Metadata is converted from CSV to JSON by the metadata uploader tool and passed to the Majora API to
be processed (purple, right). The Elan inbound pipeline (green, left) queries the Majora metadata database
using the Ocarina command line client (yellow, right). Elan matches Majora metadata to uploaded files on
CLIMB (blue, left) and conducts quality control. Quality metrics are passed to Majora through Ocarina.
Outbound distribution pipelines (orange, centre) are able to query Majora using Ocarina and package high-
quality sequences for GISAID. ENA and INSDC databases (red). Downstream pipelines (green, centre) such as
Datapipe and Phylopipe generate alignments, trees and other analysis artifacts that are shared within the
consortium and made publicly available via CLIMB-COVID’s S3 storage (red). Programmes in yellow boxes
indicate software built specifically for CLIMB-COVID
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consortium; high-quality QC has a much stricter threshold and was initially used to de-

termine whether samples would be shared in public databases. As Majora stores these

QC results, the API endpoints that retrieve data can filter for samples that have passed

(or failed) a particular QC test. Majora is able to handle QC results from different plat-

form tests with equivalence, meaning that ‘basic QC’ for Illumina data can have

Fig. 7 An automated Slack message announcing the start of Elan pipeline. The Elan inbound distribution
pipeline is operated transparently by providing a series of courtesy messages before and after it has run.
Slack messages are sent programmatically through a web hook to announce samples that appear to be
missing metadata or a genome sequence. This example, dated April 24, 2020, announces that Elan was
about to process the 10,000th sample

Fig. 8 Automated machine-readable messages exchanged between pipelines from a messaging queue. To
assist orchestration of pipelines, we run a message broker service that allows different pipelines within
COG-UK to send messages and interact with each other. This example shows Elan’s first message on July
17, 2020, emitted to announce it has successfully completed, and the phylogenetics pipeline responding to
say it has started as a result of the new data to be processed
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different rules and thresholds when compared to Oxford Nanopore data; but users

need not know which test was applied when requesting data that passes or fails basic

QC.

Routine alignment and phylogenetic analysis of the unified data set

Datapipe, a variant calling and alignment pipeline (https://github.com/COG-UK/

datapipe), is initiated by a machine-readable from Elan. Datapipe is a Nextflow [10]

pipeline that combines a downsampled set of non-UK SARS-CoV-2 sequences from

GISAID with the complete set of COG-UK sequences that have passed basic quality

control. It applies more stringent sequence quality and metadata filtering, adds PANGO

lineage assignments [12], conducts a multiple sequence alignment and calls variants.

The MSA and curated metadata are published daily within the consortium and artifacts

(with sensitive data removed) are made publicly available via CLIMB-COVID’s S3 ob-

ject store.

Elan also triggers the Grapevine phylogenetics pipeline (https://github.com/COG-

UK/grapevine). Grapevine is a Snakemake pipeline [13] used to build a phylogenetic

tree that captures the evolutionary relationships between the sampled viruses, placing

UK sequences in the global context (Fig. 9). Metadata is updated with phylogenetically

inferred metrics and both the tree and metadata are made available to the consortium

and via CLIMB-COVID’s S3 object store.

As the size of the input data has increased, the phylogenetics pipeline has had to

adapt. In January 2021, sequences were filtered by collection date for tree construction,

initially including sequences from the most recent 6 months and more recently restrict-

ing to the last 100 days. To cope with the scale, a new phylogenetics pipeline (Phylo-

pipe, https://github.com/cov-ert/phylopipe) is under active development. To make the

tree building tractable, Phylopipe first performs diversity-aware downsampling of se-

quences before tree building, then attempts to place excluded sequences back into the

tree with UShER [14].

Cluster investigations using civet

The global tree, associated metadata and cleaned alignment produced by Grapevine are

processed using the Cluster Investigation and Virus Epidemiology Tool (Civet, https://

github.com/artic-network/civet). Civet is written in Python and uses Snakemake [13] to

orchestrate its analysis steps. Civet allows users to summarise the global and UK-wide

diversity of SARS-CoV-2 into interpretable information relevant to their investigation.

Users can query the dataset using sample COG IDs, a FASTA file of sequences (that

may not yet passed through Elan), or query more broadly with criteria such as date and

location. Civet produces a customisable report containing summaries of the local

phylogenetic diversity between the sequences of interest, as well as figures describing

the genetic, temporal and spatial context of the samples (Fig. 10).

Linking and visualising consortium data with Microreact

Microreact is a web application that facilitates interpretation of biological data by pre-

senting linked data within a single interactive view [15]. For COG-UK, coarse location

metadata from is cleaned and geocoded by analysts, and locations are linked to
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aesthetic labels with Data-flo (https://data-flo.io). Data-flo provides the ability to ma-

nipulate data programmatically and reproducibly using declarative data flows consisting

of modular adaptors that perform discrete steps in the overall transformation. The lo-

cation metadata is combined with the Newick phylogeny from the phylogenetics pipe-

line to output the COG-UK Microreact instance (Fig. 11), which includes both the

COG-UK data and worldwide data from GISAID (https://microreact.org/project/

cogconsortium).

Microreact enables querying the data in a visual way that can help inform public

health intervention and scientific hypothesis generation. For example, selecting a

monophyletic group of genetically very similar samples will update the map and time-

line and demonstrate if these samples are co-located in time and space and therefore

represent a putative outbreak or transmission chain. The tree viewer is capable of scal-

able rendering of hundreds of thousands of leaves using Phylocanvas, the WebGL tree

viewer developed by the Centre for Genomic Pathogen Surveillance.

Distributing sequences and metadata outside the consortium

An important goal for the consortium is to provide other projects and scientists outside

of COG-UK access to the sequences and limited metadata to be able to perform

Fig. 9 Example tree from Grapevine. A phylogenetic tree of COG-UK sequences (coloured) against a
background subset of non-UK sequences from GISAID (grey) from the last 100 days, produced by
Grapevine. All UK sequences are coloured by the week in which they were sampled
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analysis of their own. This poses another interoperability problem, as sequences and

metadata must be converted into a format acceptable by external databases in order to

be deposited.

We archive the raw sequencing reads in the European Nucleotide Archive (ENA)

using our pyENA (https://github.com/SamStudio8/pyena) command line client. ENA

makes the data available internationally through the International Nucleotide Sequence

Database Collaboration (INSDC). Making raw reads available is an important step for

external researchers to be able to corroborate findings as well as analyse properties of

the reads that are lost when only the consensus genomes are available. Our ENA sub-

mission pipeline takes care to mitigate the risk of inadvertently sharing human data by

using the Dehumanizer tool (https://github.com/SamStudio8/dehumanizer).

For consensus sequences, the pre-existing usage of GISAID (the Global Initiative on

Sharing All Influenza Data [16]) amongst public health laboratories meant that it

quickly gained traction as the de facto database to deposit SARS-CoV-2 sequence data.

There has been some debate in the wider scientific community about the openness of

Fig. 10 Example Civet report based on a simulated outbreak. The customisable preamble can contain
information such as a description of the outbreak, number of sequences of interest and authors of the
report (A). The report also includes summary tables of the input data, split by whether the queries are in
the COG-UK dataset or have been provided by the user (B). Civet displays summarised subtrees of the local
phylogenetic diversity surrounding sequences of interest, with tips coloured by administrative level one
region by default (C). Optionally, a timeline of the sequences can be displayed (D), and a ‘Snipit graph’
which highlights nucleotide changes from a defined reference genome sequence amongst the sequences
of interest (E). Descriptive maps show the geographic distribution and the genetic diversity of SARS-CoV-2
circulating in the local area (F)
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GISAID and the rules around data access and use; however, within the global health

community, GISAID is a trusted route for sharing data. We use the Ocarina command

line client to request a subset of the metadata from Majora and automatically generate

a suitable CSV and corresponding FASTA file and deposit them daily through the re-

cently released GISAID API client.

We recently developed a mechanism to automate submission of consensus sequences

to the INSDC via EMBL-EBI, leveraging the ENA webin client (https://github.com/

SamStudio8/elan-ena-nextflow).

Discussion and conclusion
We have described the end-to-end compute infrastructure we developed for the

COVID-19 Genomics UK (COG-UK) consortium. Our platform addresses the needs of

a distributed democratised network for sequencing SARS-CoV-2 genomes, providing a

unified interface for transferring, storing and sharing sequences and metadata. New

metadata is constantly integrated through the Majora API, and downstream sequence

and tree datasets are frequently rebuilt by automated pipelines. CLIMB-COVID pro-

vides a platform for harmonisation and continuous integration of uploaded sequence

and metadata which has underpinned the activities of COG-UK, enabling analysis of

over half a million SARS-CoV-2 genomes since its inception.

The funding of CLIMB was a prudent investment, setting the scene for the compute

and personnel to be readily available to establish CLIMB-COVID so quickly. CLIMB is

probably still the largest dedicated compute infrastructure for microbial genomics in

the world. The shared nature of the platform was critical for immediate sharing and

analysis across the four nations in the UK. Within 3 days of booting the first virtual

machine, we were receiving uploads of sequence data. Within a week, 260 complete ge-

nomes from 7 sequencing centres had been uploaded and processed by our inbound

Fig. 11 Screenshot of the COG-UK Microreact instance. 1 A map view showing the place of sample
collection. 2, 3 Normalised and standard timelines showing the proportion and number of each lineage
found in the samples sequenced over time respectively. 4 A phylogeny derived from the analysis described
in the section above. 5 Panel allowing quick filtering by lineages of interest. 6 A metadata table view
allowing filtering and sorting of data. These views are generated with COG-UK data that has been
processed by Elan and the phylogenetics pipeline
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distribution pipeline—already more genomes than any other country in the world other

than China at the time. Within 2 months, COG-UK was responsible for half of all the

international SARS-CoV-2 sequences deposited into GISAID.

Although Black et al. [7] recently suggested it “would be easier to licence databasing

software for the metadata database than to build it from scratch”, we had the expertise

in place to rapidly develop appropriate software that was unlike anything on the mar-

ket. Architecting our own database has allowed the metadata definitions, metadata tem-

plates and database to evolve together with the changing demands of the consortium.

This was especially important given the diverse array of wet and dry laboratory proto-

cols used across the consortium. Our work focussed on building a minimal viable prod-

uct to address the current needs of the consortium, and then building incremental

improvements. This agile methodology allowed us to move quickly, but it does not

mean we compromised on functionality: our platform has been built from the ground

up by people with domain knowledge. The success of this system speaks to the close

working relationship between analysis teams, sample laboratories, the template authors,

the authors of the uploading tool and the author of the Majora API. Pipeline developers

formed a working group (github.com/COG-UK/dipi-group) to agree, set and communi-

cate standards for transferring data and messages between pipelines and maintain a

centralised issue tracker and a log of notable changes to CLIMB-COVID software. If

we were given the opportunity to start over, we would make many of the same design

choices again.

In our model, data generation and metadata collection are federated across the con-

sortium, but storage and dissemination of data is centralised. This blended model al-

lows us to flexibly support organisations across the country to generate data in a way

that leverages their local expertise while offering a single trusted point to immediately

validate, access and analyse that data. Our API centred data exchange model has en-

abled metadata collection and analysis queries to scale to the order of hundreds of

thousands of samples.

The availability of single, unique, shareable identifiers across a geographically and or-

ganisationally dispersed consortium has been one of the largest obstacles to our work.

Our difficulties in obtaining sample and anonymised patient identifiers made it more diffi-

cult to link genome sequences to infected people and collate multiple samples from the

same individual. Delays in security assessments and contractual arrangements for using

granular geographic data left analysts with the unfortunate task of munging various differ-

ent representations of counties and cities within the UK, and made it more difficult to

usefully interrogate phylogenetic data. These metadata issues highlight a need for future

readiness, not just for technical solutions, but regulatory ones too. To be ready for the

next pandemic, we need a standard methodology for generating shareable identifiers and

sharing data between public health agencies, hospital trusts, public and private laborator-

ies backed by a legal framework and capable technical infrastructure.

Establishing the principle of automated and rapid data sharing early on in pandemic

response has meant that the UK has become a reliable source of surveillance data and

relied upon by other countries to track SARS-CoV-2 lineage dynamics. Established

early as part of a surveillance protocol, such a model helps prevent data sharing being

latterly suppressed by concerns around political ramifications of data sharing such as

sensitivities around border policy.
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The infrastructure we have presented here is generalizable to future novel pathogens, but

could also be expanded to cover metagenomics and environmental sampling. CLIMB-

COVID is a proven model, evidenced by the success of the COG-UK consortium (Fig. 12).

As of writing, COG-UK has produced over 550,000 public sequences, has contributed more

than 20 reports to the government and 50 academic publications and supported hundreds

of outbreak investigations across the UK. CLIMB-COVID has enabled high profile analyses

including within-host diversity of SARS-CoV-2 [17], the effects of SARS-CoV-2 Spike Mu-

tation D614G on transmissibility and pathogenicity [18] and lineage dynamics of the SARS-

CoV-2 epidemic in the UK [19]. COG-UK was instrumental in the identification of the

SARS-CoV-2 B.1.1.7 lineage in December 2020 [20], which was Public Health England’s first

designated variant of concern (VOC 202012/01) [21].

Our efforts have enabled us to go from a blank slate to an integrated infrastructure

that coalesces the sequence and metadata from multiple sequencing centres spread

across four distinct healthcare systems. The model we present here should be an ex-

ample for those who have similar objectives, as well as presenting a very different vision

to those who would suggest that data should be centralised into databases that sit apart

from analysis tools and detailed medata.
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