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Summary

Maternal obesity, and weight gain during or after pregnancy, are associated with adverse
perinatal outcomes, as well as long-term cardiometabolic disease in the mother and offspring.
Previous studies have demonstrated an association between maternal obesity and cardiovascu-
lar maladaptation to pregnancy. In turn, poor adaptation to pregnancy has been hypothesised
to play an aetiological role in fetal growth restriction and the development of preeclampsia.
This thesis aims to investigate the association between maternal weight dynamics and both

cardiovascular adaptation to pregnancy and related perinatal outcomes.

First, a meta-analysis was conducted summarising the existing literature on the relation-
ship between interpregnancy weight change and the risk of perinatal complications in a
subsequent pregnancy. Interpregnancy weight gain was associated with a higher risk of
gestational diabetes, preeclampsia, pregnancy induced hypertension and delivering a large-
for-gestational age neonate. In contrast, interpregnancy weight loss was associated with a
lower risk of delivering a large-for-gestational age neonate. Body mass index at the start
of the first pregnancy modified this association; women with BMI <25kg/m? had a larger

relative increase in risk than women with a BMI 225kg/m2.

To further assess the relationship between maternal weight dynamics and the risk of preeclamp-
sia and fetal growth restriction, the Pregnancy Outcome Prediction Study dataset was utilised.
This dataset comprised 4212 nulliparous women who attended the Rosie Hospital in Cam-
bridge, UK. Women underwent serial research ultrasound scans at 20-, 28- and 36-weeks
gestation, with the clinician and the patient blinded to the outcome. Additionally, pregnancy

outcomes including birth weight and perinatal complications were recorded.

In the first study, maternal cardiovascular adaptation to pregnancy was assessed through the
physiological drop in uterine and umbilical artery resistance throughout gestation. Obese
women had a significantly smaller drop in uterine artery resistance between 20- and 36-weeks’
gestation, compared to normal weight women (change -21.3% [95% confidence interval
-18.3, -24.3] versus change -25.7% [-24.3, -27.0], respectively. In contrast, maternal obesity
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did not affect the drop in physiological resistance in the feto-placental circulation.

The second study aimed to clarify the effect of the timing of gestational weight gain on
the risk of perinatal complications. Weight gain during late gestation (28-36 weeks) was
associated with a higher risk of developing preeclampsia, whereas weight gain during early
gestation (12-28 weeks) was associated with a lower risk of delivering a small for gestational

age neonate. Maternal prepregnancy BMI did not modify these associations.

While it is known that maternal obesity is associated with a lower risk of delivering a small
for gestational age neonate, the final study tested the hypothesis that maternal obesity is
associated with a higher risk of delivering a growth-restricted neonate as opposed to a
constitutionally small neonate. Consistent with previous studies, maternal prepregnancy
weight was associated with a lower risk of delivering a small for gestational age neonate.
However, this association was irrespective of the presence of ultrasonic markers of fetal
growth restriction.

In conclusion, maternal obesity is associated with impaired cardiovascular adaptation to
pregnancy, although prepregnancy weight was not associated with reduced growth potential
in the fetus. The timing of gestational weight gain was key, with late weight gain associated
with higher preeclampsia risk and early weight gain with a lower risk of delivering a small
for gestational age neonate.
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Chapter 1

Introduction



2 Introduction

1.1 Chapter summary

The obesity rate has tripled worldwide since 1975 and is now thought to kill more people
globally than undernutrition. In women of reproductive age, obesity in the UK has increased
from 11% in 1993 to 21% in 2008, and in 2009 25% of UK women are thought to enter
pregnancy obese. Maternal obesity is associated with various perinatal complications and a
higher long-term risk of cardiovascular disease in the mother. Furthermore, maternal obesity
can lead to a higher risk of childhood obesity and diabetes in the offspring via a phenomenon
known as fetal programming, in addition to the known influence of environmental factors

such as food availability and socioeconomic status on obesity prevalence.

Separate from the adverse effects of maternal obesity, gestational weight gain is also associ-
ated with perinatal complications. The Institute of Medicine in the US has issued guidelines
for the recommended weight gain during gestation, based on a woman’s prepregnancy BMI.
It is estimated that >45% of all women gain weight above the Institute of Medicine recom-
mendations. Exceeding the recommended weight gain is associated with adverse pregnancy
outcomes but can also lead to increased postpartum weight retention and subsequently enter-
ing a following pregnancy with a higher BMI.

Two of the perinatal complications explored in this thesis are preeclampsia and fetal growth
restriction, together known as the ‘great obstetrical syndromes’. Obesity is one of the
strongest risk factors for preeclampsia and there are many common background mechanisms
that link obesity and preeclampsia, such as an increased state of inflammation, endothelial
dysfunction and increased vascular resistance. The link between obesity and fetal growth re-
striction is less clear, as previous studies often have not distinguished between pathologically
small neonates and constitutionally small neonates and it was therefore difficult to study true
growth restriction. However, recent consensus on the definition (achieved by Delphi panel in
2015) aids research into this condition. It can be hypothesised that obesity leads to poorer
placentation or cardiovascular adaptation to pregnancy and therefore a higher risk of the

neonate not reaching its growth potential.

This chapter aims to identify literature gaps with regard to maternal weight dynamics and
the risk of developing preeclampsia or delivering a growth restricted neonate. To do so, it
will define and present the incidence and prevalence of maternal obesity, preeclampsia and
fetal growth restriction. In addition, pathophysiology of the ‘great obstetrical syndromes’

will be described. Further, the long-term consequences of maternal obesity on maternal and
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offspring cardiovascular health will be discussed. Finally, the aims and objectives of this

thesis will be outlined.
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1.2 Maternal weight dynamics in pregnancy

1.2.1 Maternal obesity
1.2.1.1 Definition

Obesity is defined as excessive fat accumulation and is often categorised by an individuals’s
Body Mass Index (BMI), which is calculated by dividing a woman’s weight (in kg) by her
height squared (in meters). For adults, the World Health Organisation (WHO) has defined
overweight as BMI >25 kg/m? and obesity as BMI >30 kg/m? [2]. This definition is similar
for both sexes. A person’s BMI should be considered a guide measurement, as it might not
reflect the extent of fat accumulation for all individuals.

Women who enter pregnancy with a BMI >30 kg/m? are considered to have maternal
obesity, although it can sometimes be difficult to exactly define prepregnancy obesity for
research purposes. Routinely collected weight measurements at first midwife appointments
or booking scans do not incorporate early gestational weight gain, which can therefore
overestimate a woman’s true prepregnancy BMI, albeit slightly. Another approach is to
ask for self-reported weight and height, but this can systematically underestimate weight
and overestimate height [3], leading to a lower-than-expected BMI measurement. However,
associations with maternal and fetal outcomes do not seem to be systemically biased when
self-reported BMI is used [4].

1.2.1.2 Epidemiology

Obesity has tripled worldwide since 1975 and is now estimated to cause more deaths globally
than undernutrition [2]. In the United States, obesity amongst women of reproductive age
(20-39 year) has risen from 8.9% between 1971-1974 [5] to 31.8% between 2011-2012
[6]. In Australia, incidence of both class IT and class IIT obesity (BMI >35 and >40kg/m?>
respectively) increased significantly between 1998 and 2009 (from 1.2% to 2.0%, and 2.5%
to 3.2%, respectively) [7]. Similarly, in England, the prevalence of obesity amongst women
aged 25-34 was 11% in 1993, whereas this had risen to 21% in 2008. Based on WHO and
Euro-Peristat data from 2009-2010, it is estimated that the United Kingdom has the highest
prevalence of maternal obesity (25.5%) in Europe, whereas Poland reported the lowest (7.1%)
[8] (Figure 1.1).
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Fig. 1.1 Distribution of maternal obesity (Body Mass Index >30 kg/m?) from Euro-Peristat
database and WHO. *From World Health Organisation database (2009) (globally higher rates
due to general female population aged 20 or older). Adapted from Devlieger and colleagues

[8].

There are marked differences of obesity rates depending on ethnicity and/or socioeconomic
status. In the United States, obesity rates amongst white, non-Hispanic women aged 20-39
was estimated at 27.8%, whereas the rate amongst non-Hispanic black women was 55.8%
and non-Hispanic Asian women 10.9% [6]. In the Dutch Generation R study, a prospective
cohort study following women from early pregnancy, a monthly household income in the
lowest category (<€1600) was associated with a 36% higher chance of being obese compared
with an income of >€2200/month [9]. Although not further stratified by age, the incidence
of obesity amongst women within the highest quartile of the Index of Multiple Deprivation

in England was 34% compared to 15% for women in the lowest deprivation quartile [10].

Additionally, obesity rates in lower- and middle-income countries (LMICs) have been fol-
lowing an upwards trend, particularly amongst poorer, rural communities. A shift from
manual labour to more sedentary jobs could play a role in this shift [11]. Contrary to higher
income countries, obesity seems to be more common in women than in men in most LMICs.
Unfortunately, very few studies have explored the rate of obesity amongst pregnant women
in LMICs. Using data from the Demographic Health Survey, maternal obesity rates in sub-
Saharan Africa ranged from 5% in Ethiopia to 56% in Swaziland [12]. When investigating

non-pregnant women of reproductive age, the prevalence of obesity in African countries
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nearly doubled between 1991 and 2014, with the highest prevalence seen in Egypt (44.2% in
2014) and Madagascar reporting the lowest obesity prevalence (1% in 2014) [13].

1.2.1.3 Management of maternal obesity

Maternal obesity is associated with adverse perinatal outcomes, including an increased risk of
gestational diabetes, hypertensive disorders of pregnancy, assisted deliveries and postpartum
complications such as infection and haemorrhage [14]. The management of obese pregnant
women is mainly focussed on screening and preventing these associated complications, and is
aided in the UK by the National Institute for Health and Care Excellence (NICE) guidelines
[15]. Ideally, care for these obese women would start pre-conception to achieve a healthy
lifestyle before conceiving. Very few studies have addressed pre-conception interventions
to prevent maternal obesity, and they are not conclusive on the effect of reducing perinatal
complications [16]. Dieting in pregnancy is not recommended, as this might influence the
health of the fetus, but a healthy diet and regular physical activity will benefit both mother
and baby during pregnancy and help to achieve weight loss and maintain a healthy weight
postpartum [15].

According to the NICE guidelines, all pregnant, including obese women, should be screened
for hypertension and proteinuria at their first midwife appointment. Furthermore, the World
Health Organisation and the American College of Obstetrics and Gynaecology recommend
that all women with BMI >30kg/m? should be screened for impaired glucose tolerance in
early pregnancy [17], however NICE in the UK does not recommend structural screening
in early pregnancy (17). Screening for hypertension and hyperglycemia, as markers of
preeclampsia and gestational diabetes, respectively, could be warranted, as obesity is a risk
factor for both conditions. Preeclampsia and its association with maternal obesity will be
further discussed in sections 1.3.1 and 1.4.1.

1.2.2 Gestational weight gain
1.2.2.1 Definition

Gestational weight gain (GWG) can be defined as the amount of weight gained between
conception and giving birth. Since 1990, the Institute of Medicine (IOM) in the United
States has examined nutrition in pregnancy and published recommendations for optimal ges-

tational weight gain to minimise adverse perinatal outcomes [18, 19]. The revised guidelines,
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published in 2009, were updated to include four classifications of maternal prepregnancy
BMI and to provide recommendations for total gestational weight gain, as well as a rate
of weight gain throughout the second and third trimester [19]. The current weight gain
recommendations according to the IOM can be found in Table 1.1.

Prepregnancy BMI Total recommended Rate of recommf.:nde(‘l GWG
(ke/m?) GWG (ke) (range) in second and third trimester
(kg/week) (range)
Underweight (<18.5) 12.5-18 0.51 (0.44-0.58)
Normal weight (18.5-24.9) 11.5-16 0.42 (0.35-0.50)
Overweight (25-29.9) 7-11.5 0.28 (0.23-0.33)
Obese (>30) 5-9 0.22 (0.17-0.27)

Table 1.1 Gestational weight gain recommendation, according to the Institute of Medicine
(US) [19]

As there was a lack of evidence with regards to perinatal outcomes in obesity class II
(>35) or obesity class III (>40) when the 2009 guidelines were developed, the guidelines
recommend between 5 and 9kg GWG for women of all obese’ classifications. It is shown that
weight gain below the NAM recommendations, or even gestational weight loss, could have
positive impact on outcomes in women from higher obesity classes [20, 21]. A recent study
investigating the risks associated with GWG <5kg in different obesity classes showed that
the odds for developing gestational hypertension, eclampsia or needing a Cesarean section
were lower in all obesity classes compared to GWG between 5-9kg [22], confirming maternal
health benefits in gestational weight loss and restricted weight gain [23, 24]. However,
weight gain <5kg lead to substantially higher odds for neonatal outcomes such as preterm
births and neonatal mortality [22]. Together, this evidence suggests that revisiting of the
NAM guidelines to tailor recommendations for women of all obesity classes could improve

perinatal outcomes.

1.2.2.2 Epidemiology

A large study by Deputy and colleagues reported the GWG in 30% of all pregnancies in the
US between 2010 and 2011. They found that 20.9% of all women had inadequate GWG
(lower than the IOM recommendations) and 47.2% reported excessive GWG (exceeding the
IOM recommendations) [25], highlighting the need to be able to identify at risk women and
inform much needed interventions.
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As with prepregnancy BMI, the incidence of inadequate and excessive weight gain in preg-
nancy varies by ethnicity. In general, black and Hispanic women in the US are more likely to
experience inadequate GWG and are less likely to have excessive GWG [26, 27]. Deputy and
colleagues found the same pattern in normal weight women, but not in other BMI categories
[25].However, the IOM guidelines were developed based on a population with limited ethnic

diversity, which could play a role.

In a normal pregnancy, the products of conception make up around 35% of the total GWG [28].
Total weight gain comprises approximately 8kg of water, 1kg of protein and between 1-6kg
of adipose tissue [29]. Maternal BMI becomes a poorer prediction of excess adiposity during
gestation, as the increased weight gained includes water and fetal components. However,
data published in 2016 showed that excessive weight gain in pregnancy is associated with
increased fat mass, but not with increased in lean mass [30]. This correlation changes towards

the end of pregnancy, as an increase in total body water contributes to a greater proportion of
GWG [31].

1.2.2.3 Association between maternal obesity and gestational weight gain

Obese women, on average, gain less absolute weight during gestation than normal weight
women, although more than 25% will gain more than 35 1bs (15.9kg) [32, 33]. In the study
by Deputy et al., overweight and obese women reported the highest prevalence of excessive
GWG relative to the recommendations set for them (64.1% and 63.5%, respectively), com-

pared to 20.1% of underweight and 37.3% of normal weight women [25].

The IOM guidelines were updated in 2009 to include recommendations for obese women.
Since they enter pregnancy with excess adipose tissue, the guidelines were aimed at obese
women meeting recommended water and protein accrual but simultaneously avoiding ad-
ditional adipose tissue accumulation. While some authors have suggested that weight gain
below the IOM recommendations could improve some perinatal outcomes in obese women
[34], inadequate weight gain can increase the risk of delivering a small for gestational age
(SGA) neonate [21].

Little is known about the differences between normal weight and obese women regarding
changes in body composition over the course of pregnancy. To further explore whether
differences in composition between normal weight and obese women might be causative of

perinatal complications, further research is warranted [35].
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1.3 Maternal cardiovascular adaptation to pregnancy

1.3.1 Adaptation of the peripheral cardiovascular system

The maternal cardiovascular system undergoes major adaptive changes during pregnancy.
As early as a few weeks after conception, there is a marked increase in cardiac output [36],
resulting from an initial increase in heart rate followed by an increase in stroke volume (a
result of increased plasma volume and higher venous return). The cardiac output plateaus
towards the end of the second trimester [37], and peaks at a 30-50% increase in cardiac output
compared to the prepregnancy state [38]. Simultaneously, the left ventricular end-systolic
dimension (LVESD) decreases in the first trimester, most likely due to the increased heart
rate and an increase in myocardial contractility [37]. In the second trimester, LVESD remains
unchanged, but increases slightly towards term [39]. Consequently, the left ventricular mass
increases during pregnancy [39], suggesting cardiac hypertrophy that sometimes compared
to the response seen in physical training [37]. Collectively, this suggests an increased strain
on the maternal heart during gestation.

During pregnancy, there is a fall in systemic peripheral vascular resistance, starting as early as
5 weeks gestation and continuing to fall up to 32 weeks. This drop in resistance is the result
of flow and resistance changes in various peripheral vascular beds, such as the uterine and
the renal circulations [40]. There is a disproportional large decrease in vascular resistance
in the uterine circulation, which results in a larger proportion of the cardiac output being
directed to the uteroplacental unit [41]. Towards the end of gestation, flow in the uterine
artery circulation can reach up to 500ml/min. Section 1.3.2 will explain more about the
mechanism underlying the decrease in uterine resistance. Renal blood flow can reach up
to 80% above prepregnacny levels, and this occurs simultaneously with a 50% increase in

glomerular filtration rate [40].

In a non-complicated pregnancy, maternal systolic blood and diastolic blood pressure will
drop in midgestation, to return to non-pregnant values towards term [37, 42]. From this
it follows that the mean arterial pressure (MAP, calculated as (systolic blood pressure +
diastolic blood pressure * 2)/3) is lowest in the second trimester. Furthermore, this implies
that systemic vascular resistance drops mid gestation as well, as it is the ratio of the cardiac
output and MAP. As the cardiac output remains elevated till term, the systemic vascular

resistance is also decreased until term [37].



10 Introduction

1.3.2 Adaptation of the uteroplacental circulation

The haemodynamic adjustments in the maternal peripheral circulation promote an effective
uteroplacental blood supply. One crucial part of the early adaptation of the uteroplacental
circulation to pregnancy is the remodelling of the spiral arteries. Physiological spiral artery
remodelling is thought to occur in five steps [43] (Figure 1.2): first, there is endothelial vac-
uolation and swelling of the vascular smooth muscle cells. Secondly, interstitial trophoblasts
will invade the vascular smooth muscle cells, after which endovascular trophoblast cells
appear and invade the lumen of the spiral arteries. The trophoblast will become embedded
in the fibrinoid layer, which replaces the old vascular smooth muscle structure. Lastly,
re-endothelialisation occurs. The remodelling of the spiral arteries is not only important to
ensure adequate blood supply to the fetus to facilitate growth, but also to ensure that the fetal
villi facilitating gas- and nutrient exchange are protected from high pressure and velocity

circulation [1].
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Fig. 1.2 Diagram showing the different steps in uterine spiral artery remodelling. Adapted
from Pijnenborg and colleagues [43].
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From the large mouths of the spiral artery, maternal blood will enter the intervillous space,
which resembles a large lake of blood without impedance to blood flow. The placenta
therefore acts as a large arterio-venous shunt. The maternal blood will pass over the surface
of the placental villi and materno-fetal gas-, nutrient- and waste exchange takes place. The
diameter of the end of the spiral arteries is crucial in lowering the speed with which the
maternal blood enters the intervillous space, as incoming jets with a high velocity can create
villous damage [44]. Burton and colleagues modeled that the spiral artery dilation rescued
the velocity of the blood entering the intervillous space from 3 m/s to 10cm/s, depending on

the exact radius and blood viscosity [1].

Although trophoblasts do not invade the radial arteries nor the uterine arteries, these vessels
do undergo extensive dilation during pregnancy. The uterine artery doubles in diameter every
6.5 weeks of pregnancy [45]. The non-trophoblast induced dilation in the uterine artery is
most likely the result of endocrine stimulation and flow-induced relaxation. Intraluminal
flow and subsequent shear stress are a strong stimuli for vasodilation in pregnant women
[46] and mediated by release of nitric oxide (NO) and prostacyclin. This relaxation is
dependant on pregnancy status as no dilation is observed in non-pregnant women. One
possible mechanism underlying the pregnancy-associated vascular relaxation to shear stress
is an increase in 173-Estradiol, which could either stimulates NO synthesis [47], and also
possibly alters the sensitivity to shear stress [48]. Sex steroids seem to play a major role in
the regulation of the uterine vascular tone in general, by mediating an up-regulation of the en-

dothelial production of NO via increased eNOS expression and increasing eNOS activity [49].

A summary of the uterine and placental vasculature adaptation to pregnancy, showing (i)

dilation of the uterine vasculature and (ii) spiral artery remodelling is shown in Figure 1.3
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Fig. 1.3 Diagrammatic representation of uterine and placental vasculature (red shading =
arterial; blue shading = venous) in the non-pregnant and pregnant state. Adapted from Burton
etal. [1]

1.4 The ‘great obstetrical syndromes’

The term ‘great obstetrical syndromes’ was first proposed in 2009, in an editorial board
meeting from the Journal of Maternal-Fetal and Neonatal Medicine. This term was created to
refer to conditions that have multiple aetiologies, a long preclinical period, are adaptive in na-
ture and have fetal involvement [50]. Furthermore, they are the result of complex interaction
between maternal and fetal environment and genome [S0]. The board suggests that aetiologic
heterogeneity could be followed by a common pathway leading to the complications classi-
fied as ‘great obstetrical syndromes’. Therefore, the concept suggests that there is not one
single test that will identify patients at risk of a great obstetrical syndrome, nor will there be a
single treatment [50]. Both preeclampsia and SGA fetuses are categorised as great obstetrical
syndromes, together with preterm labour, premature rupture of the membranes and stillbirth.
The following sections will discuss the epidemiology, risk factors and pathophysiology of
preeclampsia and delivering an SGA neonate in more detail.
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1.4.1 Preeclampsia
1.4.1.1 Definition

Preeclampsia is one of the hypertensive disorders in pregnancy, and is defined according to
the American College of Obstetrics and Gynaecology as (i) systolic blood pressure >140
mmHg or diastolic blood pressure >90 mmHg on two occasions, measured at least 4 hours
apart after 20 weeks of gestation, in a woman with previously normal blood pressure and
(i1) proteinuria >300 mg per 24-hour urine collection [51]. In the absence of proteinuria,
preeclampsia can be defined as new onset hypertension (as described above) in combination
with any of the following: (1) platelet count <100,000/microliter, (ii) serum creatinine con-
centrations >1.1mg/dL or doubling of the serum creatinine concentration with no history
of renal disease, or (iii) elevated blood concentrations of liver transaminases to twice the

normal concentrations [51].

Preeclampsia can be further subdivided by disease severity or by timing of presentation of
the disease. Severe preeclampsia is defined preeclampsia with any of the following features:
systolic blood pressure >160 mmHg or diastolic blood pressure >110 mmHg, thrombocy-
topenia, impaired liver function (defined as twice the normal liver enzyme concentrations)
progressive renal failure, pulmonary oedema or new-onset visual disturbances [51]. Early
and late preeclampsia are defined by the timing of development of symptoms; <34 weeks
gestation is considered early, whereas >34 weeks gestation is classified as late [52-54]. It is
hypothesised that early and late preeclampsia develop from different haemodynamics, which
will be further discussed in section 1.3.1.4 [52].

If preeclampsia is left untreated, it can further develop into eclampsia, and together they are
one of the leading causes of maternal deaths worldwide, especially in low- and middle-income
countries. The mortality rate from preeclampsia varies from 6.5/100,000 pregnancies in the
United States [55], to 140/100,000 pregnancies in Nigeria [56] and 67/100,000 pregnancies
in India [57]. Preeclampsia is also associated with fetal growth restriction and preterm birth,
both spontaneous and iatrogenic.

Most women with preeclampsia are asymptomatic, therefore the disorder is often picked
up through routine antenatal screening. In the UK, blood pressure measurements and
urinalysis for proteinuria are carried out at each antenatal visit to screen for preeclampsia [58].
Furthermore, all pregnant women are advised to seek immediate advise from a healthcare

professional if they experience any of the following symptoms of preeclampsia: severe
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headache, problems with vision, severe epigastric pain, vomiting or sudden swelling of the
face, hand or feet [58].

1.4.1.2 Epidemiology

Around 4% of first-time pregnancies are affected by preeclampsia, and around 2% of sub-
sequent pregnancies [59], although the risk in multiparous women differs significantly
depending on the history of preeclampsia in a previous pregnancy. For women without a
history of preeclampsia in their first pregnancy, the risk in a further gestation was 1%,
while the risk was 15% for women with one previously affected pregnancy and 30% for two
affected pregnancies, based on Swedish Medical Birth Register data between 1987-2004 [59].
The incidence of preeclampsia also increases with gestational age: ~0.4% of pregnancies
were affected by early-onset and .2.7% by late-onset preeclampsia in a population-based
study according to a large hospital records study in Washington State (2003-2008) [54].

The prevalence of preeclampsia in the United States has risen from 2.5% in 1987 to 3.2% in
2004 [60], mainly due to an increase in the indicence of severe preeclampsia (Figure 1.4).
Another national hospital database, including 120 million deliveries, estimated that the risk of
developing severe preeclampsia was 6.7 fold higher for women delivering in 2003, compared
to women delivering in 1980 [61]. It was hypothesised that a reduction in smoking rate and
an increase in obesity has driven this trend, but also changes in the definition of preeclampsia

might have contributed.

African American women are at higher risk of developing preeclampsia than Caucasian
women, even when corrected for other known risk factors [62, 63]. Between 1979 and 2006
the rate of preeclampsia increased more for African American women than for Caucasian
women, which Breathett and colleagues speculate could be explained by differences in
obesity prevalence [64]. The association between obesity and preeclampsia will be further

discussed in section 1.4.1.1.

1.4.1.3 Risk factors

Despite the high prevalence of preeclampsia, much of the aetiology of preeclampsia remains
unknown. However, over the last decades multiple clinical and biochemical characteristics
have been identified as risk factors. A summary of clinical risk factors and biochemical

markers can be found in Table 1.2.
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Fig. 1.4 Temporal changes in prevalence of pre-eclampsia (United States, 1980 to 2010).
Adapted from Ananth et al. [61].

Clinical characteristics

One of the strongest pregnancy-related risk factors is nulliparity [63], with estimations that
75% of all preeclampsia cases are in nulliparous women [65]. Nulliparity almost triples
the risk of preeclampsia compared to multiparity [66]. One of the popular hypotheses on
the aetiology of preeclampsia is that of immune maladaptation, as the feto-placental unit is
partially foreign due to paternal genes. Further supporting this hypothesis is the higher risk
of preeclampsia after oocyte donation, change in partner and the protective effect of exposure
to the sperm before conception [67].

Maternal systolic blood pressure and therefore also chronic prepregnancy hypertension are
associated with a higher risk for preeclampsia too, and in one study was identified as the
most predictive clinical feature [62]. This is classified as superimposed preeclampsia, and is

particularly common in women with pre-existing cardiovascular or renal disease [68].

Studies investigating the effect of BMI on the risk of preeclampsia are difficult to pool, as
many of them use different cut off values of BMI and different definitions of preeclamp-
sia, but they all showed effects in the same direction [66]. When women with a ‘raised’
BMI at their first prenatal appointment are compared to normal weight women, the risk is
increased by 50% [66], and a BMI >35 kg/m? doubles the risk of developing preeclampsia
[66]. Obesity is often associated with chronic hypertension, but even when patients with
chronic hypertension are excluded, obesity is still associated with a higher risk [69].
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Clinical risk factors

Biochemical markers

Maternal Pregnancy Maternal (Anti)angiogenic Placental
characteristics characteristics chronic disease factors factors
Age <20 or Nulliparous Chronic Soluble fms-like  Pregnancy-associated
>40 years pregnancy hypertension tyrosine kinase 1 ~ plasma protein A
mterp regnancy Diabetes mellitus ~ Placental Placental protein
Black race interval (type 1 and type 2)  growth factor 13 (PP13)
>10 years yp yp &
. . Vascular
BMI >30 kg/m? Multiple Chronic endothelial Placental
gestation renal disease polyamines
growth factor
Systolic . -
blood pressure Male fetus Antiphospholipid
syndrome
prepregnancy
Smoking Copcelved with . Systemic Lupus
B assisted reproduction
status . Erythematosus
techniques
Previous preeclampsia, Change in

FGR or
placental abruption

partner from
previous pregnancy

Table 1.2 Clinical and biochemical risk factors for the development of preeclampsia [70, 71,
66, 44]. *negatively associated with the risk of developing preeclampsia.

Surprisingly, smoking is known to be associated with a decrease in the risk of preeclampsia,
with a systematic review reporting a relative risk of 0.68 [95% confidence interval (CI)
0.67-0.69] for women smoking during pregnancy [72]. The protective effect also seemed
dose related, and similar for nulliparous and multiparous or singleton and multiple fetuses
gestation [73]. However, confounding of this relationship through a lower BMI in (heavy)

smokers can not be excluded.

As early and late preeclampsia are often seen as two different subtypes of the disease, Valen-
sise et al. investigated subtype specific risk factors [52]. They found that late preeclampsia
was associated with a higher maternal BMI and higher maternal age, whereas early preeclamp-
sia was more often associated with a normal BMI and abnormalities in haemodynamics in the
uterine artery [52]. A large population-based cohort study confirmed these findings: younger
maternal age was associated with early onset preeclampsia, whereas nulliparity was more

strongly associated with late onset disease [54].
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Biochemical risk factors

Pregnancy-associated plasma protein A (PAPP-A) is most commonly known for its use
in combination with B-human chorionic gonadotropin and nuchal translucency thickness,
to screen for Down’s, Edwards and Patau syndrome in the first trimester [74]. However,
decreased PAPP-A first trimester levels have also been associated with preeclampsia and
preterm birth. When PAPP-A is used as a screening tool for preeclampsia alone, the positive
predictive value is only 10-20% [75, 76], however when combined with Doppler ultrasound
predictive value can go up to 70% .

The anti-angiogenic factor soluble fms-like tyrosine kinase 1 (sFLt-1) is increased in the pla-
centa and serum of preeclamptic women [77]. sFLt-1 blocks placental growth factor (PIGF)
from binding to the receptor, thereby introducing endothelial dysfunction. The elevated
levels of sFlt-1 occur before the onset of symptoms and correlate with the time of onset of
the disease [77]. As the levels of the proangiogenic PIGF are decreased in women at risk for
preeclampsia, an easy way to improve prediction is to generate a ratio between sFlt-1 and
PIGF. A meta-analysis of 20 studies showed that the sensitivity and specificity for this ratio
was 0.78 and 0.84 respectively [78], with even higher Area Under the Curve (AUC) of 0.98

for the prediction of early-onset preeclampsia.

Recently, a novel predictor of preeclampsia was found in an untargeted maternal serum
metabolomics analysis; 4-Hydroxyglutamate. This metabolite was strongly associated with
early preeclampsia, independently of maternal characteristics [79], almost doubling the risk

of preeclampsia with every standard deviation increase in the serum levels.

Mitigating risk

Women in the UK identified to be either at high risk of preeclampsia at their booking ap-
pointment, or have two or more moderate risk factors for preeclampsia are advised to take
75-150mg of aspirin daily from 12 weeks gestation onwards [80]. However, a recent meta-
analysis of randomised trials including >18,000 women has shown that preventative treatment
with aspirin only reduces the risk of preterm preeclampsia, and solely if treatment is started
before 16 weeks gestation at a minimum dose of 100mg/day [81]. This meta-analysis did not

find a reduction in the risk of developing term preeclampsia after aspirin treatment.

The NICE guidelines in the UK base the ‘high-risk’ status for developing preeclampsia on
maternal characteristics such as nulliparity, previous obstetrical history and maternal age.

However, more recently, the Aspirin for evidence-based Preeclampsia prevention (ASPRE)
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trial that run between 2015 and 2016, identified high risk women through an algorithm,
including maternal blood pressure, uterine artery doppler and serum biomarkers at 12 weeks
gestation [82]. Women screened as high risk were then randomised into high dose (150mg)
prophylactic aspirin treatment or placebo. The ASPRE trial found that aspirin treatment in
the high risk group reduced the incidence of preterm preeclampsia by >60% compared to the
placebo group [83]. Furthermore, the screening performance by the Fetal Medicine Founda-
tion algorithm used in the ASPRE trial was far superior in identifying at-risk women than the
NICE methods (75% versus 39% for preterm preeclampsia, respectively) [84]. Secondary
analyses of this trial revealed that the beneficial effect may not apply to pregnancies affected
by chronic hypertension [85], but no interaction was detected for maternal age, parity, BMI
or (family) history of preeclampsia. This study highlights the need for the NICE guidelines to
be updated, prioritising screening for preterm preeclampsia based on maternal characteristics

plus biomarkers.

1.4.1.4 Pathophysiology

Preeclampsia is a pregnancy specific syndrome and has been named ‘the disease of theories’,
reflecting the incomplete understanding of the pathophysiology [86]. As preeclampsia only
occurs in the presence of a placenta, it is logical to link the placenta to the pathophysiology
of the disease.

Factors originating from the placenta into the maternal circulation are thought to result in the
maternal syndrome of preeclampsia [87]. Oxidative stress of the trophoblast is one of the hall
marks of preeclamspsia, as when the trophoblast is stressed it secretes e.g. pro-inflammatory
cytokines and anti-angiogenic factors into the maternal circulation. One of the main stressors
thought to disturb the tropoblasts is utero-placental malperfusion due to impaired remodelling
of the spiral arteries [44]. During non-complicated preganancies, the tropoblast will disrupt
the smooth muscle and elastin layer of the wall of the spiral arteries and replace it by fibrinoid
material [43].

Failed spiral artery remodelling has two consequences for placental perfusion [1]. Firstly,
as the terminal segments are supposed to dilate into a funnel shape, this will reduced the
velocity of the blood entering the intervillous space. If the remodelling is incomplete, ma-
ternal blood will enter the intervillous space at a much higher velocity if the spiral arteries
do not dilate at the terminal end - a so called "hose effect’. The force that comes with those

jet like streams is sufficient to drive apart villous branches and consequently intervillous
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lakes will form. Simultaneously, the distance for the blood to decelerate and mix will be
increased resulting in impaired materno-fetal oxygen exchange. It is also hypothesised that
the microscopic damage to the villi can stimulate an inflammatory response due to the release
of trophoblast segements [88]. Secondly, this remodelling takes place up to the inner thrid
of the myometrium where there are hypercontractile segments of the spiral arteries located.
Hence, if the spiral arteries fail remodelling, the smooth muscle layer will stay (partially)
intact and therefore the arteries will retain their contractility. This will lead to intermittent
perfusion of the intervillous space, exposing the placenta to ischaemia and reperfusion and

subsequent reactive oxygen species production.

Furthermore, two major factors determining placental blood flow are the size of the placental
bed, which depends on (i) the number of spiral arteries, and (ii) the depth of the spiral artery
invasion in the peripheral placenta. It is known that the degree of trophoblast invasion is less
in the periphery than the central placenta, leading to partial or absent remodelling of around
10% spiral arteries, even in non-complicated pregnancies [89]. In pregnancies affected by
preeclampsia, complete spiral artery remodelling is greatly reduced in the central placental
bed.

As in any other vascular disease, preeclampsia is characterised by an inflammatory response
after ischemia and reperfusion, including cytokine releases, activation of apoptotic pathways
and increased expression of anti-angiogenic factors (e.g. sFlt-1) [90]. sFlt-1 in turn inhibits
pro-angiogenic factors such as PIGF and VEGF, impacting endothelial derived factors such
as nitric oxide, prostacyclin, and endothelium-derived hyperpolarising factor. An imbal-
ance in the endothelial derived factors can decrease endothelial smooth muscle relaxation
and increase constriction, facilitating the characteristic hypertension [91]. Another way
of assessing endothelial function is via flow-mediated dilation (FMD) (also see section
1.3.1). A meta-analysis investigating FMD at three time points during gestation showed that
preeclamptic women had a lower FMD than normotensive women before the diagnosis of
preeclampsia, at the time of diagnosis and postpartum [92]. As mentioned in section 1.3.1,
NO is thought to mediate FMD and a reduction in NO synthesis could therefore contribute
to the diminished relaxation. Women who will develop preeclampsia are shown to have
three fold higher concentrations of asymmetric dimethylarginine, an endogenous inhibitor of

endothelial NO synthase, compared to women with a non-complicated pregnancy [93].

Although the pathophysiology of preeclampsia is complex and extensive, Redman and

Sargent tried to summarise the process [94]. In their hypothesis, the maternal immune system
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appears to be less tolerant of the allogenic trophoblasts, which causes a maldevelopment
of the spiral arteries due to impaired invasion or function. Therefore, the second stage is
characterised by poor placentation symbolised by small and muscular spiral arteries leading
to high-resistance flow into the intervillous space and intermitted ischaemia. Subsequently,
this causes endoplasmic reticulum stress and oxidative stress. In the final stage, a general
maternal inflammatory response will develop because of the poor placentation and stressed

placenta leading to endothelial dysfunction (Figure 1.5).

allogeneic trophoblast
|

Stage 2 Pre-eclampsia [ Poor placentation ]

|

- id Endoplasmic
Oxidative stress reticulum stress

Placenta

|

Stage 3 Pre-eclampsia [ Overt pre-eclampsia ]

Stage 1 Pre-eclampsia [ Partial maternal tolerance of ]

Fig. 1.5 Proposed three stage model for the development of preeclampsia. Adapted from
Redman and Sargent [94].

Early and late preeclampsia often present with different haemodynamic states [52, 95]. Early
preeclampsia is linked to failed placental vascular remodelling and is characterised by a
high vascular resistance and reduced placental perfusion [95], whereas late preeclampsia
is stronger linked to maternal constitutional factors [52]. Furthermore, although both early
and late preeclampsia are associated with altered plasma levels of angiogenic factors such as

sFLt-1 and PIGF, the differences are more pronounced in early preeclampsia [96-98].
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1.4.2 Fetal growth restriction
1.4.2.1 Definition

Fetal growth restriction (FGR) occurs when a fetus does not reach its intrinsic growth
potential. Fetal growth restriction and small for gestational age (SGA) are often used inter-
changeably, however FGR and SGA are in fact different. Small for gestational age is the
statistical deviation of fetal size from a reference (often corrected for gestational age and fetal
sex), whereas in FGR a fetus is pathologically small. It is important to distinguish SGA and
FGR neonates, as FGR neonates are at a substantial risk of perinatal morbidity and mortality
[99, 100].

Due to the major heterogeneity in the definition of FGR in the past decades, a Delphi panel
was conducted in 2015 to reach consensus for the definition [101]. The definitions for early
and late FGR based on the Delphi panel can be found in Table 1.3.

Early FGR (<32 weeks gestation) Late FGR (>32 weeks gestation)

AC or EFW <37 centile OR absent
end-diastolic flow in umbilical artery

AC or EFW <3 centile

OR OR

AC/EFW <10 centile combined with AC/EFW <10 centile combined with

UtA-PI > 95 centil AC/EFW crossing centiles >2 quartiles
- centile
on growth centiles (non-customised)

UA-PI >95 centile UA-PI >95" centile or CRP <5 centile

Table 1.3 Criteria for the diagnosis of fetal growth restriction, as per Delphi panel con-
sensus [101]. All definitions are in absence of congenital abnormalities. AC; abdominal
circumference, CRP; cerebroplacental ratio, EFW; estimated fetal weight, FGR; fetal growth
restriction, UA-PI; umbilical artery doppler pulsatility index, UtA-PI; uterine artery doppler
pulsatility index.

A further way of trying to distinguish healthy and pathological pregnancies with SGA
neonates is to adjust the estimated fetal weight or the birthweight percentile for maternal
characteristics such as parity, ethnicity and maternal height as well as fetal sex and gestational

age [102] and classify neonates born <10 centile using this correction as pathologically
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small. This could lead to the identification of SGA neonates at higher risk of complications.
However, the appropriateness of this correction is controversial as it is unclear if some of the
variables that the birthweight centiles are corrected for lie on the causal pathway between
maternal characteristics and adverse outcomes [103].

Screening for adequate fetal growth in the UK is currently done by symphysial-fundal height
measurements from 24 weeks gestation. In the case of a height <3 centile, women will
be referred for fetal growth scans [58]. Routine ultrasound scanning after 24 weeks is not
offered. A study by Sovio et al. showed that universal screening for SGA could identify a
subset of FGR fetuses at risk for neonatal morbidity. However, for every correctly identified
SGA neonate, about two additional results were false positive [104]. Clinical benefit of
screening would therefore depend on benefits for the correctly identified FGR fetuses versus
harm to the false positives.

1.4.2.2 Epidemiology

Due to the changing definition of FGR and the lack of consensus on a diagnosis before the
Delphi panel in 2015, it is difficult to estimate the incidence of pathologically small neonates

compared to constitutionally small neonates.

Since the introduction of the Delphi panel definition, incidences of FGR of 3.8-5.2% [105—
107] have been reported in large prospective cohort studies using this classification. There is
a big difference in incidence between early and late FGR; early FGR is reported in 0.5-1% of
unselected singleton pregnancies, whereas late FGR is reported in 5% [105].

Early detection of FGR is of high clinical priority, as it is one of the biggest risk factors
for non-anomalous stillbirth and early intervention might prevent adverse outcomes. The
risk of stillbirth in an FGR neonate is roughly five times greater if the FGR is not detected
antenatally compared to pregnancies with detected FGR (32.0% v 6.2%, respectively) [100].

1.4.2.3 Risk factors

Similar to preeclampsia, the aetiology of fetal growth restriction is incompletely understood.
However, multiple risk factors for delivering an SGA neonate are identified. Major risk

factors for delivering an SGA neonate (relative risk >2), as as defined by the Royal College



1.4 The ‘great obstetrical syndromes’ 23

of Obstetrics and Gynaecology in the UK [108], can be found in Table 1.4

Maternal age >35 has been associated with an increased risk of delivering an SGA neonate,
with the risk further increasing with age >40 years [109]. Smoking during pregnancy has
been identified as a major risk factor [110], with an older meta-analysis estimating that 40%
of fetal growth restriction is caused by maternal smoking [111]. However, one large cohort
study found that if women ceased smoking before 15 weeks gestation, their risk of delivering
an SGA neonate was not different from non-smokers, indicating that the effect might be

reversible if a women stopped smoking in early pregnancy [112].

. Previous pregnancy Current pregnancy
Maternal risk factors o o
complications complications
Age >40 years Previous SGA neonate  Threatened miscarriage
Current smoker Previous stillbirth Preeclampsia
Daily vigorous exercise Low maternal weight gain
Chronic hypertension PAPP-A <0.4 MoM

Diabetes
Renal disease

Antiphospholipid syndrome

Table 1.4 Major risk factors for the development of fetal growth restriction, as defined by the
Royal College of Obstetrics and Gynaecology (UK). MoM; multiple of the median, PAPP-A;
pregnancy-associated plasma protein A, SGA; small for gestational age neonate.

Women that previously gave birth to a growth restricted fetus are more than twice as likely to
deliver an SGA neonate in a subsequent pregnancy [113, 114]. Having a placenta-related
complication in past medical history, such as preeclampsia and stillbirth, also increases the
risk of a subsequent SGA neonate [115], although much of the risk associated with a previous

stillbirth seems to be linked to unacknowledged previous fetal growth restriction [116].

Additional to the major risk factors mentioned above, there are several weaker risk factors
that could influence fetal weight. Maternal weight is classified as a minor risk factor for
FGR, with a higher risk when prepregnancy BMI <20 or >25kg/m? [117, 118]. The shared
background of maternal obesity and FGR will be further discussed in section 1.4.1..

Furthermore, little is known about the association between maternal obesity and subtypes of
SGA, as SGA neonates can be divided into groups of constitutionally small or pathologically

small neonates. I will investigate these relationships further in Chapter 6, as I investigate the
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association between maternal prepregnancy BMI and the risk of delivering an SGA infant,

when SGA was sub-grouped by the presence or absence of ultrasonic markers of FGR.

1.4.2.4 Pathophysiology

Fetal growth restriction can have many causes, such as congenital abnormalities, fetal genetic
abnormalities or antenatal acquired infections. However, most cases that are not associated
with these underlying factors are thought to arise from a compromised placental development

and diminished adaptation of the uterine artery circulation [119].

As described in section 1.3.1.4, normal placental development depends on the adequate
remodelling of the uterine circulation and its spiral arteries. As with preeclampsia, FGR is
associated with deficiencies in trophoblast invasion, through malperfusion of the placenta
[89]. Remodelling is seen as a continuous spectrum, with abnormal spiral arteries seen
in healthy pregnancies, and vice versa. The causes of abnormal trophoblast invasion and
subsequent spiral artery remodelling are vast, and more than one can be at play in one single
pregnancy. For instance, excessive apoptosis in the placental bed can lead to a reduced
number of trophoblasts [120], or failure of the trophoblast to penetrate the walls of the spiral
arteries [121]. Furthermore, abnormal interactions with uterine natural killer cells could play
arole [119]. Malperfusion of the placenta is a powerful inducer of oxidative stress, leading
to damage to proteins and DNA, which can eventually lead to cell death, further inducing

abnormal placentation [122].

There is biological variation in the presentation of FGR, as FGR itself is a heterogenous
disease that can present alongside other perinatal complications. Furthermore, most studies
investigating the placental pathology in FGR have not distinguished between SGA and true
FGR, partly because of the lack of consensus on the diagnostic criteria. However, multiple
macroscopic vascular anomalies have been associated with FGR. Placental thromboses and
infarcts are amongst the most commonly found lesions in pregnancies complicated by FGR,
with and without additional preeclampsia [123, 124]. Thromboses are found inside the
intervillous space and can impair the nutrient exchange between mother and fetus. One
case series found that thrombosis involving >50% of the placental bed is associated with a
70% incidence in FGR [125]. Placental infarcts can be the result of thromboses, leading to
interrupted blood flow and eventually necrosis of the placental villi [126]. These macroscopic
lesions are often presenting with abnormally high levels of alpha-fetoprotein and human

chorionic gonadotrophin in the first trimester [127].
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Type of lesion Pathophysiology

Villous developmental defects Under perfusion or malperfusion of
(hypoplasia, dysmaturity, capillary dysplasia) intervillous space by maternal blood

Atherosis of spiral arteries Fallure of spiral artery remodelling
in placental basal plate
Oxidative stress secondary to

Villitis of unknown aetiolo . . . . .
&y ischemia-reperfusion of intervillous space

Table 1.5 Common placental microscopic lesions found in fetal growth restriction. Adapted
from Burton and Jauniaux [119].

Furthermore, various microscopic placental lesions have been linked to FGR. Many of these
are non -specific and also found in in uncomplicated pregnancies, but the extent and distribu-
tion of the lesion is thought to correlate with the severity of the complications (e.g. whether
FGR presents in the context of preeclampsia, or the gestational age at onset) [127]. Table 1.5

gives an overview of the three commonly found microscopic lesions.

Lastly, as previously mentioned, FGR is a heterogenous syndrome and can occur with other
perinatal complications. Fetal growth restriction can be divided into subtypes by gestational
age at presentation, where <32 week is labelled as early FGR and >32 weeks as late FGR.
Late FGR can still display similar uteroplacental perfusion and vascular lesions as early FGR,
but often with a less severe phenotype. There is significantly less overlap between FGR and
preeclampsia at term than in the preterm period, suggesting FGR and preeclampsia might
develop via distinct mechanisms at term [128, 129].

1.5 Maternal weight and preeclampsia & fetal growth re-

striction

1.5.1 Maternal obesity and preeclampsia & fetal growth restriction
1.5.1.1 Incidence of preeclampsia in maternal obesity

Maternal obesity is listed as a major risk factor for the development of preeclampsia, and
increases the risk for this disease by approximately 2to 3-fold [130]. The risk of preeclampsia
is thought to increase with maternal prepregnancy BMI, even when a woman is not classified

as overweight or obese [130—132], and doubles with every 5-7 kg/m? increase in prepreg-
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nancy BMI [132].

A large study in the Danish National Birth Cohort aimed to estimate the population risk
for preeclampsia associated with being overweight or obese, and found that 15-17% of
the risk of early preeclampsia is attributable to a raised maternal prepregnancy BMI [133].
Furthermore, some population studies have suggested that the increase in incidence in
preeclampsia over the last decades is in line with an increase in maternal obesity [61]. In the
United States, maternal obesity was estimated to contribute to a 5-8 fold increased risk for
severe preeclampsia in 2003, compared to women giving birth in 1980 [61]. Further evidence
that obesity could play a causal role in the development of preeclampsia is provided by the

fact that the risk of preeclampsia is lower after (extensive) weight loss [134].

1.5.1.2 Incidence of fetal growth restriction in maternal obesity

Although maternal obesity has been mainly associated with fetal overgrowth and a reduced
risk of low birthweight, a few studies report a higher risk of FGR and risk of delivering an
SGA neonate [118, 135]. Chen and colleagues reported a 17.6% incidence of SGA amongst
Chinese obese women (classified as BMI 227.5kg/m2), cumulating into a relative risk of 2.73
compared to normal weight women. However, both studies reporting a positive association
between low birthweight and maternal obesity defined FGR differentially: either as birth
weight <10 centile or <2 standard deviations under the average weight for the gestational
age. Neither took further markers of FGR as suggested by the Delphi panel into account.

1.5.1.3 Potential causal pathways

Obesity is one of the strongest risk factors for preeclampsia and there are many common

background mechanisms that link obesity and preeclampsia [136, 137].

Firstly, obesity and preeclampsia are both associated with hyperinsulinemia and insulin
resistance. Studies in a rat model showed that hyperinsulinemia is linked with shallower inva-
sion of trophoblasts and altered nitric oxide synthesis [138]. Furthermore, hyperinsulinemia
can raise blood pressure in pregnant rats independent of placental factors associated with
preeclampsia [139, 140]. In humans, hyperinsulinemia and insulin resistance precede the
clinical symptoms of preeclampsia [141].

Secondly, a state of low-grade inflammation has been reported in both conditions. Adipose

tissue produces several inflammatory mediators that can act on the endothelium and are
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thought to contribute to endothelial dysfunction in obesity and preeclampsia. C-reactive
protein is one of the acute phase proteins strongly associated with inflammation and is found
to be raised in obese individuals [142]. C-reactive protein is also found to be raised in women
who later develop preeclampsia, before clinical symptoms are evident [143, 144]. Other
proinflammatory cytokines that link obesity and preeclampsia are tumour necrosis factor-o
[145] and interleukin-6 [146]. Bodnar and colleagues estimated that 30% of the effect of
maternal prepregnancy BMI on the risk of preeclampsia was mediated by an increased
inflammatory response [144].

Thirdly, endothelial dysfunction resulting from reduced nitric oxide availability has been
suggested as a common mechanism between obesity and preeclampsia. Endothelial dys-
function is thought to underlie many of the clinical manifestations of preeclampsia, such
as hypertension and oedema [86]. Endothelial dysfunction has also been reported in obese
pregnancies; studies in pregnant obese women versus pregnant lean women show that obesity
is associated with reduced endothelium-dependent vasorelaxation in skin arteries [147, 148].
Finally, endothelial dysfunction can also be found in previously preeclamptic women, inde-
pendent of established risk factors for preeclampsia and more severe in women with recurrent

preeclampsia [149].

Fourthly, obese women and preeclamptic women have similarities in placental histopatholog-
ical changes. In term placentae, pre-gravid obesity was associated with a lower number, but
larger diameter of villi suggesting villous immaturity [150]. Furthermore, term placentae
from obese pregnancies display reduced vascular reactivity when exposed to vasoconstrictors
[151]. When specifically examining the spiral artery conversion, there is a ‘dose-dependent’
increase in risk of abnormal spiral artery conversion with an increased maternal prepregnancy

BMI [152], and poor spiral artery remodelling is one of the hallmarks of preeclampsia.

Lastly, the histological and molecular changes in the placentae of obese women can translate
into a higher vascular resistance in the uteroplacental circulation. Chen et al. found an
association between higher first trimester uterine pulsatility index (PI) and maternal prepreg-
nancy BMI [153], whereas Kim and colleagues showed a similar pattern in the third trimester
[154]. A uterine artery Doppler >95" centile (corrected for gestational age) is often used
as a clinical marker of pathological development and can be used to monitor women at risk
for abnormal fetal growth and preeclampsia [154]. Overweight and obese women have a
higher incidence of a uterine artery doppler >95" centile at the end of the second [153] and
third trimester [154]. However, little is known about the pattern of the physiological drop in
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vascular resistance in the uterine or umbilical artery in obese women. In Chapter 4, I will
investigate the maternal cardiovascular adaptation to pregnancy by examining the pattern of
the physiological drop in the uterine and umbilical vasculature and compare this adaptation
in women of different BMI categories.

The relationship between underlying mechanisms in maternal obesity and FGR is less
clear than in preeclampsia. However, FGR is thought to arise from placental insufficiency.
Impaired trophoblast invasion can be diagnosed through higher resistance in the uterine and
umbilical arteries, and abnormal umbilical artery velocity waveforms are linked to FGR
[155]. Sarno and colleagues found a higher vascular resistance in the umbilical artery at 32
weeks gestation in obese women compared to normal weight women, which could indicate
a higher prevalence of placental insufficiency [156]. However, it is unclear if obesity is
associated with other ultrasonic markers of fetal growth restriction such as uterine artery

Doppler notching or a decreased middle cerebral artery Doppler.

1.5.2 Gestational weight gain and preeclampsia & fetal growth restric-
tion
1.5.2.1 Suboptimal gestational weight gain and the incidence of preeclampsia

Several studies have shown an association between greater GWG and gestational hyper-
tension [157, 158] or preeclampsia [158-160]. Furthermore, gestational weight loss was
associated with a lower risk of developing preeclampsia in obese class II and III women in a
large study in Germany [161]. Excessive GWG according to the IOM criteria is 1.5 times
more prevalent in obese (56.4%) and overweight (59.1%) women compared to normal weight

women (38.7%) according to the US Pregnancy Nutrition Surveillance 2009 [162].

Since the IOM criteria combine prepregnancy weight and weight gain during pregnancy in
their recommendations, it is difficult to separate the effect of prepregnancy BMI and GWG
on perinatal outcomes. Additionally, women that experience hypertension in pregnancy are
more likely to develop oedema than normotensive pregnant women, which can result in
greater GWG [163]. The Norwegian Fit for Delivery trial tried to untangle this relationship
further and showed that women who develop preeclampsia gain more weight at any timepoint
during gestation, but there was no difference in fat mass between groups at 30 and 36 weeks
gestation. However, women who went on to develop preeclampsia gained an average of
3.5kg total body water more than women who did not develop preeclampsia. This weight

gain was equal to the difference of total weight gained [164], suggesting that the oedema
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could be the cause of the weight gain rather than the consequence. To further elucidate this
relationship, the timing of weight gain should be considered and will be further discussed in
section 1.4.2.3. Furthermore, I will investigate the association between timing of GWG and
the risk of developing preeclampsia or delivering an SGA neonate in Chapter 5.

1.5.2.2 Incidence of fetal growth restriction in suboptimal gestational weight gain

The first IOM guidelines on GWG, released in 1990, were mainly focussed on the reduction
of low birth weight by encouraging GWG. However, in guidelines published in 2009, it was
recognised that excessive weight gain was associated with perinatal complications too, hence

an upper and lower limit of GWG was suggested.

There is strong evidence for an association between weight gain less than the IOM guidelines
and lower birthweight [165], and low weight gain and the risk of delivering an SGA neonate
[166]. The incidence of delivering an SGA neonate when experiencing inadequate GWG
ranges from between 15-30% for underweight women [158, 167] to 6-11% in obese women
[158, 168]. Furthermore, there is moderately strong evidence that weight gain in excess of
the IOM guidelines is associated with a higher birthweight [165]. The incidence of delivering
an SGA neonate in women with excessive GWG ranges from 5-9% in underweight women
[167, 168] to 4-6% in obese women [158, 169].

To my knowledge, no published study to date has investigated the association between
GWG and FGR according to the Delphi panel definition, nor have there been studies that
investigated the relationship between GWG and abdominal circumference growth velocity or

resistance in the umbilical artery.

1.5.2.3 Timing of gestational weight gain and risk of obstetrical syndromes

Although the relationships between total GWG and preeclampsia (section 1.4.2.1) or birth-
weight (section 1.4.2.2) are well established, this approach might miss important gestational

age-related differences in risk.

Studies investigating the timing of weight gain often classify the weight gain by trimester.
For the relationship between timing of weight gain and birthweight, there is conflicting
evidence on which trimester might be most influential. Some studies suggested that the
second trimester is a key determinant of birthweight [170, 171], while others found a strong

association between weight gain in the second and third trimester with birthweight [172, 173].



30 Introduction

The difficulty when examining the relationship with first trimester weight gain is that studies
often rely on self-reported prepregnancy weight and the reliability of self-reporting varies at
the extremes of maternal weight. However, one large study recruited women in a premarital
clinic and followed them up until birth of their first child. They found that weight gain up to

18 weeks gestation was most strongly associated with infant birthweight [174].

Research into patterns of GWG and preeclampsia is sparse. One study in women with
gestational diabetes found that late excessive GWG is associated with severe preeclampsia
(odds ratio (OR) 1.89, 95% CI (1.19-2.99)) [175] and a further study in the Generation
R cohort reported that weight gain in the third trimester was associated with an increased
risk of preeclampsia (OR 1.35 (95% CI 1.08,1.69), per standard deviation of change in
gestational weight gain per week) [9]. However, caution needs to be exercised when linking
third trimester GWG and preeclampsia as it is challenging to differentiate between cause
and consequence. Preeclamptic women often develop oedema in the last stage of pregnancy

which can in turn lead to (excessive) weight gain.

1.6 Long term consequences of maternal obesity

1.6.1 Maternal weight dynamics post-pregnancy and associated risk

for subsequent pregnancies

Pregnancy itself is classified as a risk factor for developing obesity, which can in turn influ-
ence the outcomes of subsequent pregnancies and maternal health in later life. It is thought
that lifestyle changes rather than biological changes lead to an increase in weight postpartum,
which is labelled ‘postpartum weight retention’. A systematic review and meta-analysis
found that postpartum weight steeply declines in the first three months after birth, and
then continues to decrease up to 12 months postpartum [176]. A further meta-analysis that
summarised the influence of GWG on long-term weight retention showed that women that
gained more than the IOM recommendation retained 3 and 4.7kg more at 3 and 15 years
postpartum, respectively, than women experiencing GWG within the IOM recommendations
[177]. Lastly, a more recent meta-analysis showed that inadequate GWG was associated with
2.14kg less postpartum weight retention 21-years postpartum than adequate GWG according
to the IOM guidelines [178].

Excessive GWG has been reported a risk factor for postpartum weight retention, and, as

mentioned in section 1.2.2.3., obese women are at greater risk of exceeding the IOM rec-
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ommendations for GWG [25]. Furthermore, obese women are less likely to return to their
prepregnancy weight compared to normal weight women [179]. Sumithran and colleagues
found in a retrospective review of data from a tertiary hospital in Australia that substantial
weight gain between two pregnancies (>4 BMI units) occurred in 7.5% of normal weight

women, 10.5% of overweight women and 13.4% of obese women [180].

If associations between maternal prepregnancy weight and adverse perinatal outcomes are
causal, weight retention between pregnancies can influence the risk of complications in a
subsequent pregnancy. Outcomes associated with interpregnancy weight change include
an increased risk of developing gestational diabetes [181-183], hypertensive disorders in
pregnancy [181-184] and even stillbirth [183]. To further explore and summarise these
associations, I conducted a systematic review and meta-analysis on the relationship between
interpregnancy weight change and the risk of common perinatal complications in a subse-
quent pregnancy which can be found in Chapter 2.

Where maternal prepregnancy BMI and GWG are identified as risk factors for postpartum
weight retention, breastfeeding is found to contribute to postpartum weight loss. An analysis
in >36,000 women in the Danish National Birth Cohort showed that in women who breastfeed
for the recommended 6 months, and had adequate weight gain during pregnancy, weight
retention was eliminated by 6 months postpartum [185]. A meta-analysis summarising
the association between the duration of breastfeeding and weight retention showed that
breastfeeding for 6-12 months could significantly decrease weight retention compared to
bottle feeding [186]. However, breastfeeding as a mechanism of reducing weight retention
seemed to be most effective for women <30 years old, primiparous and/or with a normal

prepregnancy BMI [186].

The postpartum period has been identified as a period where women are motivated to lose
weight, with up to 81% of women reporting the plan to seek weight loss information postpar-
tum [187]. However, the majority of women report that they never spoke about postpartum
weight loss or physical activity with their healthcare providers [188]. Interventions that
help women achieve their weight loss goals have been proposed and summarised [189-192].
These reviews conclude that interventions were successful, and a combination of dietary
advise and physical activity with individualised (professional) support was the most effective.
However, due to the heterogeneity of the timing of the interventions, they could not identify

the most effective time in the post-partum period to intervene.
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The current NICE guidelines in the UK identify the 6-8-week postpartum check-up as an
opportunity to discuss a woman’s weight [15]. Healthcare professionals are encouraged
to give tailored and up to date advice on how to lose weight after childbirth, addressing a
healthy diet and physical activity. Furthermore, women are encouraged to breastfeed and are
reassured that losing weight does not impact on the quantity and quality of the breastmilk.
Women who are overweight or obese should be offered a structured weight loss program

and/or referral to a dietician [193].

1.6.2 Consequences for the offspring: Developmental Origins of Health

and Disease

In addition to the immediate perinatal complications that are associated with prepregnancy
weight, maternal obesity is seen as a major determinant of offspring health, in childhood
and adult life [194]. The recognition that the intrauterine environment can have long term
consequences on offspring health is labelled the ‘Developmental Origins of Health and
Disease (DoHaD)’ hypothesis [195]. Although the causality is difficult to study in human
observational studies, extensive work in animal models [196, 197] has linked maternal obe-
sity with an increased risk of (offspring) obesity, adverse cardiovascular outcomes and even

impaired neurodevelopment in offspring.

In humans, both maternal prepregnancy BMI and GWG are associated with an increased risk
of childhood obesity [194, 198, 199]. Several studies suggest that this is not only the case
with severe maternal prepregnancy obesity, but that maternal weight across the whole range
is associated with offspring adiposity [200, 201]. Additionally, a longitudinal study in the
Helsinki Birth Cohort suggests that maternal prepregnancy BMI is even related to offspring
BMI at age 60 [202]. When investigating the timing of the weight gain on offspring out-
comes, the ALSPAC study suggested that weight gain <14 weeks gestation is associated with
offspring adiposity [203].

A few large studies have investigated the relationship between maternal obesity and car-
diometabolic outcomes in the child. A cohort study in Finland investigated the association
between maternal prepregnancy weight and mortality rates from coronary artery disease.
They found that for every standard deviation increase in mother’s BMI, the hazard ratio
(HR) for dying of coronary artery disease for (male) offspring was 1.24 (95% CI 1.10-1.39)
[204]. Furthermore, a record-linkage study in the UK showed that maternal BMI >30 was
associated with a higher all-cause mortality (HR 1.35 (95% CI 1.17-1.55)) and higher risk of
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hospitalisation for a cardiovascular event (HR 1.29 (95% CI 1.06-1.57)) [205].

The increase in maternal obesity has been paralleled by an increased prevalence of neurode-
velopmental problems in offspring [206]. A recent meta-analysis summarising the effects
of maternal obesity found that children born to obese mothers are at higher risk of attention
deficit disorder, autism spectrum disorders and cognitive delay [207]. Relative to children
born to normal weight women, offspring of obese women had a 50% higher risk of any
adverse neurodevelopmental outcome. Possible underlying mechanisms for this association
are the higher inflammatory state in obese women affecting brain development, but mediation
of this effect through gestational diabetes, preterm birth and/or asphyxia through birth trauma
cannot be excluded [206, 208].

Epigenetic mechanisms are thought to underly the developmental programming of poorer
offspring health in children born to obese mothers [194]. Epigenetic changes refer to
alterations in the gene function, but without changes in the DNA code. DNA methylation
is the epigenetic modification most studied in relation to maternal obesity and offspring
adiposity. The largest study investigating maternal prepregnancy BMI and offspring DNA
methylation found an increased methylation in offspring of obese women, compared to
offspring of normal weight women [209], but no association between GWG and offspring
methylation. Furthermore, a study comparing methylation in siblings born before and
after their mother experiences significant weight loss through bariatric surgery found an
improvement in the methylation levels of inflammatory and immune pathways, suggesting

that maternal weight indeed influences offspring DNA methylation [210].

1.6.3 Consequences for the mother: Risk of cardiovascular disease

As mentioned in section 1.5.1, obese women and women with excessive GWG are at risk
of postpartum weight retention and long-term obesity. Although all women are at risk of
weight retention postpartum, obese women are shown to have a tendency to develop central
fat retention [211]. In a study that examined the cardiometabolic profile of women in the
first year after pregnancy found that women who did not lose weight between 3 and 12
months postpartum have a higher blood pressure, greater insulin resistance, higher low-
density lipoprotein cholesterol [212] and lower high-density lipoprotein (HDL) cholesterol
[213]. This decrease in HDL cholesterol associated with birth was still seen 10 years after
birth [214]. Furthermore, women with excessive GWG have higher blood pressure 16 years

after pregnancy, compared to women with adequate weight gain, even after adjustment for
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maternal BMI [215].

Perinatal complications linked to obesity are also thought to put extra stress on the maternal
metabolic system in the long term [216]. For instance, women diagnosed with gestational
diabetes during pregnancy are at a higher risk of developing type II diabetes in the years
postpartum. A meta-analysis estimated the relative risk of developing type II diabetes af-
ter gestational diabetes at 4 to 12-fold, compared to normoglycemic pregnancy [217]. A
systematic review from 2016 found additional associations between type Il diabetes and a
raised fasting glucose during pregnancy and type II diabetes in women with an increased
HbA1C during pregnancy [218]. Furthermore, gestational diabetes is thought to be positively
associated with cardiovascular disease in later life, but this association could also be mediated

largely by weight gain and unhealthy lifestyle in later life [219].

Obese women are also known to have a higher risk of preeclampsia (see section 1.4.1.1),
which is known to be associated with a higher risk of cardiovascular disease in later life. It is
hypothesised that this link comes from a shared cause or because preeclampsia could lead to
vascular damage. A meta-analysis showed a higher risk of hypertension (RR 3.70 (95% CI
2.70-5.05)), ischaemic heart disease (RR 2.16 (95% CI 1.86 to 2.52)) and stroke (RR 1.81
(95% CI 1.45 to 2.27)) between 10-14 years postpartum [220]. Although most of the studies
in the meta-analysis only adjusted for age, the largest study that included more than a million
women found that the association between preeclampsia and future cardiovascular disease
was independent from prepregnancy hypertension, diabetes mellitus and obesity [221]. The
relative risk for all-cause mortality in the meta-analysis by Bellamy and colleagues was
higher in women with a history of preeclampsia compared to women without preeclampsia
(RR 1.49 (95% CI 1.05-2.14)) after 15 years follow up [220], and a consistent results was
found in an analysis with an median follow up of 30 years (RR for all-cause mortality after
preeclampsia versus no history of preeclampsia 2.1 (95% CI 1.8-2.5)) [222].

It is currently unknown if interventions to limit weight gain in pregnancy and the post-partum
period are associated with improvements in cardiovascular risk factors in the mother. If
interpregnancy weight loss could lead to a reduced incidence of perinatal complications in
a subsequent pregnancy, then this might help to mitigate the risk of cardiovascular disease
after e.g. preeclampsia. To further explore the possible benefits of interpregnancy weight
change, I conducted a meta-analysis on the associations between interpregnancy weight loss

and perinatal complications, which can be found in Chapter 2.



1.7 Aims and outline of the thesis 35

1.7 Aims and outline of the thesis

1.7.1 Objectives of the thesis

The aim of this thesis is to investigate the relationship between maternal weight dynamics
and poor adaptation to pregnancy, manifesting as preeclampsia and fetal growth restriction.
Figure 1.6 displays the framework that will be used to examine these associations. The

objectives of this thesis are to:

1. Summarise the effects of interpregnancy weight gain and loss on the risk of perinatal

complications

2. Evaluate the associations between obesity and physiological parameters of (cardiovas-
cular) adaptation to pregnancy (Relationship A)

3. Investigate the effect of the timing of gestational weight gain on the great obstetrical
syndromes (Relationship B)

4. Assess the association between obesity and fetal growth restriction (Relationship C)

C
Maternal obesity A \‘
\ Poorer (cardiovascular) ‘Great obstetrical Long-term implications
. - —_— .
/ adaptation to pregnancy syndromes’ for mother and child

Gestational weight gain
\

Fig. 1.6 Flowchart for evaluating the relationship between maternal prepregnancy BMI and/or
gestational weight gain on (cardiovascular) adaptation to pregnancy and related perinatal
outcomes.

1.7.2 Outline of the thesis

Chapter 2 investigates the relationship between interpregnancy weight change and the risk
of perinatal complications in a subsequent pregnancy through a systematic review of the
literature. Chapter 3 describes the Pregnancy Outcome Prediction Study cohort dataset,
which was used for the analysis in Chapters 4, 5 and 6. Chapter 4 evaluates the impact of
maternal obesity, fetal sex, and any interaction thereof on maternal cardiovascular adaptation
to pregnancy, by assessing the physiological drop of uterine artery doppler pulsatility and

umbilical artery doppler pulsatility index over gestation. Chapter 5 assesses the impact
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of the timing of GWG on the risk of developing preeclampsia and/or delivering an SGA
neonate. Chapter 6 determines the association between maternal prepregnancy BMI and
ultrasonic markers of FGR in SGA neonates, to determine if obese women are at higher
risk of delivering a pathologically small neonate rather than a constitutionally small neonate.
Chapter 7 summarises the findings of this thesis, explains the public health relevance and
highlights strengths and limitations of the thesis. Appendix A lists the publications I have
authored during my PhD. Appendix B shows the questionnaire all Pregnancy Outcome
Prediction Study participants were asked to fill out at the 20 week scan. Appendix C and D
provides the pre-specified analyses plans for the analyses conducted in Chapter 5 and 6.



Chapter 2

Effect of interpregnancy weight change
on perinatal outcomes: systematic review

and meta-analysis

This chapter has previously been published in BMC Pregnancy and Childbirth, including text
and all figures. Contributions for each author can be found in the Acknowledgement section
of this thesis.

Teulings NEWD, Masconi KL, Ozanne SE, Aiken CE, Wood AM. Effect of interpregnancy
weight change on perinatal outcomes: systematic review and meta-analysis. BMC pregnancy
and childbirth. 2019 Dec 1;19(1):386.
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2.1 Chapter summary

Background: Although obesity is a well-known risk factor for adverse pregnancy outcomes,
evidence is sparse about the effects of interpregnancy weight change on the risk of adverse
perinatal complications in a subsequent pregnancy. The current study aims to assess the effect
of interpregnancy weight change on the risk of developing gestational diabetes, preeclampsia,
pregnancy induced hypertension, preterm birth, or delivering a large- or small for gestational

age neonate.

Methods: Pubmed, Ovid Embase, ClinicalTrial.gov and the Cochrane library were sys-
tematically searched up until July 24", 2019. Interpregnancy weight change was defined
as the difference between prepregnancy weight of an index pregnancy and a consecutive
pregnancy. Inclusion criteria included full text original articles reporting quantitative data
about interpregnancy weight change in multiparous women with any time interval between
consecutive births and the risk of any perinatal complication of interest. Studies reporting
adjusted odds ratios and a reference group of -1 to +1 BMI unit change between pregnancies

were harmonised by meta-analysis.

Results: Twenty-three cohort studies identified a total of 671,906 women with two or
more consecutive pregnancies. Seven of these studies utilised a reference group of weight
change between -1 and +1 BMI unit between pregnancies and were therefore included in the
meta-analysis (280,672 women). Interpregnancy weight gain was consistently associated
with a higher risk of gestational diabetes, preeclampsia, pregnancy induced hypertension
and large for gestational age births. In contrast, interpregnancy weight loss was associated
with a lower risk of delivering a large for gestational age neonate. The effect magnitude
(relative risk) of interpregnancy weight gain on pregnancy induced hypertension or delivering
a large for gestational age neonate was greater among women with a normal BMI in the

index pregnancy compared to women with a starting BMI >25 kg/m?.

Conclusion: These findings confirm that interpregnancy weight change impacts the risk of
developing perinatal complications in a subsequent pregnancy. This provides evidence in
support of guidelines encouraging women to achieve post-partum weight loss, as their risk
of perinatal complications might be minimised if they return to their prepregnancy weight

before conceiving again.

This analysis was prospectively registered with PROSPERO (CRD42017067326)
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2.2 Background

Obesity is an increasing global health concern, with more than 1.9 billion adults worldwide
being overweight [223] and approximately one in two US women of childbearing age now
being considered overweight or obese [224]. Considerable evidence exists showing serious
perinatal complications associated with obesity in pregnancy including gestational diabetes
(GDM), preeclampsia (PE) and neonatal death [225]. There is also an increased risk of
complications such as fetal growth restriction and preterm birth amongst underweight women
[226]. Current National Institute for Health and Care Excellence (NICE) guidelines in the
UK recommend that overweight or obese women are referred for weight loss support at the
6-8 week postnatal check-up [227] despite limited evidence to support widespread implemen-
tation of such health promotion strategies and of benefit for future pregnancy outcomes [228].

The current study aimed to systematically synthesise the published evidence on the associa-
tions between interpregnancy weight change and common perinatal complications for both
mother and child including GDM, PE, pregnancy induced hypertension (PIH), preterm birth
(PTB), and delivery of a large and small for gestational age neonate (LGA and SGA). Addi-
tionally, we compared the risk of these complications after interpregnancy weight change
in women with a normal BMI and overweight or obese women, and where possible, we

investigated the dose-response relationships.

2.3 Methods

2.3.1 Eligibility criteria, information sources, search strategy

The electronic databases PubMed, Ovid EMBASE, ClinicalTrials.gov and Cochrane Central
were systematically searched until July 24’h, 2019. The search strategy included terms
relating to ‘interpregnancy’, ‘between pregnancy’, ‘weight change’ or ‘BMI’. These search
terms were combined with the outcomes of interest (‘gestational diabetes’, ‘preeclampsia’,
‘pregnancy-induced hypertension’, ‘preterm birth’, ‘small for gestational age’ and ‘large
for gestational age’) and synonyms of these outcomes (for full search string see Table 2.1).
Furthermore, we cross-referenced selected papers for additional articles to include. The
studies identified were uploaded onto Covidence, an online tool for screening of papers for
systematic reviews (www.covidence.org). The review protocol was designed a priori and

registered with PROSPERO under registration number CRD42017067326.
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2.3.2 Study selection

Studies were selected using the following predetermined inclusion criteria: [i] interpregnancy
weight change reported in kilograms (kg), BMI units (kg/m?) or percentage body weight
change in multiparous women with any time interval between the consecutive births, [ii] any
of the perinatal outcomes of interest in the subsequent pregnancy, and [iii] observational,
cohort or case-controlled human study design with a sample size > 50, that were reported
in English. When studies reported data from overlapping study populations, the study with
the largest sample size was selected for inclusion. Information extracted from each study
included country of research, study cohort name (if applicable), study period, sample size,
study inclusion criteria, methods of weight reporting, definition of reference group, diagnostic
criteria for perinatal outcomes and demographics that studies adjusted for. All study selection,
full text screening, and data extraction was undertaken independently by two researchers,
following PRISMA guidelines [229]. Disagreements were decided through a third opinion.

2.3.3 Data synthesis

Interpregnancy weight change was defined as the difference between prepregnancy weight in
the index pregnancy, defined as the earliest recorded pregnancy, and prepregnancy weight in
the subsequent pregnancy. Interpregnancy weight gain and loss were defined on two categor-
ical scales; (1) for the meta-analysis we utilised categories of >1 BMI unit interpregnancy
weight loss, BMI gain between 1-2 units, BMI gain between 2-3 units or BMI gain of more
than 3 units and (ii) for the dose-response analysis we utilised a BMI gain of O, 1, 2 or 3+
units. Crude odds ratios (calculated from studies providing relevant counts) and adjusted

odds ratios for each outcome of interest were extracted from the selected publications.

To allow for heterogeneity between studies, a random effects meta-analysis was used to
synthesize the odds ratios for weight change categories. To ensure a consistent reference
group, only studies that employed a reference group of interpregnancy weight change be-
tween 1-unit weight loss and 1-unit weight gain were included. Heterogeneity was assessed
using the I? statistic.

We conducted a separate analysis comparing interpregnancy weight change and the risk of
developing adverse perinatal outcomes in women with a normal BMI (<25kg/m?) versus
women with an overweight BMI (>25kg/m?)), at the start of their index pregnancy. To do
so, adjusted odds ratios for both BMI categories were extracted from the publications and
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summarised by random effects meta-analysis.

Dose-response relationships were assessed by plotting association measurements from stud-
ies providing multiple weight gain categories. Where ranges of BMI changes were reported,
the midpoint of the category was used (e.g. 1.5 BMI units change for the category weight
change between 1 and 2 BMI units).

Statistical analysis and graphical presentation were performed using the metafor package in
R for Windows, version 3.4.2. [230].

2.3.4 Assessment of risk of bias

A sensitivity analysis was undertaken to assess potential impact of bias in individual studies
by excluding studies that scored below 5 out of 9 points in the Newcastle-Ottawa Scale (NOS
[231]) quality scoring assessment (Table 2.3). Furthermore, leave-one-study-out analyses
were conducted to identify whether one study leveraged the overall effect size estimate.

2.4 Results

2.4.1 Study selection

We identified and screened 4,500 unique publications and included 194 articles for full text
review (Figure 2.1). A total of 27 studies were eligible for inclusion. Three studies were
excluded due to overlapping study populations [232-234] and one was excluded because of
a sample size <50 women [235]. From the remaining 23 studies selected to take forward,
a total of 671,906 women were identified for inclusion in the review (Table 2.2). Eighteen
studies included only nulliparous women at the index pregnancy. The proportion of women
older than 35 years varied between studies from 3% to 33%. All studies were conducted in
Western populations, although this was not an inclusion criterion. Seven studies, comprising
of 280,672 women, were included in the meta-analysis.
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Fig. 2.1 Flow diagram of studies reporting on interpregnancy weight change and perinatal

outcomes of interest.
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2.4.2 Synthesis of results

Interpregnancy weight gain of between 1-2 BMI units was associated with a 51% higher risk
of developing GDM (adjusted odds ratio (aOR) 1.51 95% Confidence interval (CI) [1.22-
1.80], I2.=70.1%), whereas an increase of 2-3 or more than 3 BMI units was associated with
an 81% and 137% higher risk (aOR 1.81 [1.20-2.41], 1>=88.4% and aOR 2.37 [1.50-3.34],
1°=91.0% respectively) (Figure 2.2).

Author, year Gestational Diabetes 2OR [95% CI]

Weight loss >1 BMI unit :
Ehrlich, 2011 —e— |

0.61[0.42, 0.90]
Knight-Agarwal, 2016 } : > 1.22[0.26, 6.36]
Lynes, 2017 —o—i 0.90[0.79, 1.02]
Sorbye, 2017 — ! 1.30 [0.90, 2.00]
Villamor, 2006 e 0.98 [0.75, 1.28]
RE Model for Subgroup (p = 0.099; I = 58.1%) e 0.89 [0.68, 1.09]
Weight gain 1-2 BMI units :
Bogaerts, 2013 b ! 1.82[1.08, 3.08]
Ehrlich, 2011 ; e 1.71[1.42, 2.07]
Lynes, 2017 L —e—i 1.23[1.08, 1.40]
Sorbye, 2017 : f { 2.00[1.50, 2.70]
Villamor, 2006 P ——— 1.32[1.08, 1.62]
RE Model for Subgroup (p = 0.016; I = 71.0%) _ — 1.51 [1.22, 1.80]
Weight gain 2-3 BMI units :
Ehrlich, 2011 f { 2.46[2.00, 3.02]
Lynes, 2017 : —e— 1.40[1.21, 1.61]
Villamor, 2006 P—— 1.67 [1.32, 2.11]
RE Model for Subgroup (p = 0.001; I? = 88.4%) —_— 1.81[1.20, 2.41]
Weight gain >3 BMI units
Ehrlich, 2011 > 3.40[2.81, 4.12]
Knight-Agarwal, 2016 + > 4.21[0.88, 29.96]
Lynes, 2017 : —e— 1.71[1.52, 1.93]
Villamor, 2006 f ! 2.09 [1.68, 2.61]
RE Model for Subgroup (p = 0.000; I? = 91.0%) —_— T 2.37[1.40,3.34]
Weight gain >1 BMI unit ——— 1.85[1.50, 2.19]

I T i T 1
0 0.5 1 2 3
Odds ratio

Fig. 2.2 Forest plot from random effects meta-analysis showing the association between
interpregnancy weight change and the risk of developing gestational diabetes in subsequent
pregnancy. All adjusted odds ratios are relative to the reference category of interpregnancy
weight change between -1 and +1 BMI units. BMI, body mass index (in kg/m?)); aOR,
adjusted odds ratio; CI, confidence interval.
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Preeclampsia
Author, year aOR [95% CI]
Weight loss >1 BMI unit
Lynes , 2017 — 0.97 [0.78, 1.20]
Wallace, 2014 f . ! 1.23[0.69, 2.20]
Villamor, 2006 0.82[0.67, 0.99]
RE Model for Subgroup (p = 0.356; I° = 13.9%) O 0.89 [0.75, 1.04]
Weight gain 1-2 BMI units
Lynes , 2017 i 1.03[0.83, 1.28]
Villamor, 2006 —eo— 1.23[1.07, 1.41]
RE Model for Subgroup (p = 0.165; I = 48.2%) O 1.14 [0.95, 1.34]
Weight gain 2-3 BMI units
Lynes , 2017 I—O—i 1.00[0.77, 1.30]
Villamor, 2006 —e—— 1.63[1.39, 1.91]
RE Model for Subgroup (p = 0.001; I = 91.0%) <i>— 1.32[0.70, 1.93]
Weight gain >3 BMI units
Lynes , 2017 f—e—— 1.60 [1.33, 1.94]
Wallace, 2014 f . 1.85[1.12, 3.04]
Villamor, 2006 p——e—rf 1.78 [1.52, 2.08]
RE Model for Subgroup (p = 0.664; I = 0.0%) _ 1.70 [1.50, 1.91]
Weight gain >1 BMI unit el 1.39 [1.14, 1.65]
I T T 1
0 0.5 1 2 3
Odds ratio

Fig. 2.3 Forest plot from random effects meta-analysis showing the association between
interpregnancy weight change and the risk of developing preeclampsia in subsequent preg-
nancy. All adjusted odds ratios are relative to the reference category of interpregnancy weight
change between -1 and +1 BMI units. BMI, body mass index (in kg/m?); aOR, adjusted odds
ratio; CI, confidence interval.

Furthermore, interpregnancy weight gain of more than 3 BMI units was associated with a
higher risk of PE or PIH (aOR 1.70 [1.50-1.91], I’=0.0% and aOR 1.71 [1.51-1.91] I’=0.0%
respectively) (Figure 2.3 and Figure 2.4). The association between interpregnancy weight
change and the risk of delivering an LGA neonate could only be estimated for a weight gain
>3 BMI units, and showed a 63% higher risk (aOR 1.63 [1.30-1.97], 12=85.6%) (Figure 2.5).
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Pregnancy Induced Hypertension

Author, year aOR [95% CI]
Weight loss >1 BMI unit

Lynes, 2017 0.83 [0.69, 1.01]
Wallace, 2014 ; 0.83[0.61, 1.14]
Villamor, 2006 S S — 1.14[0.88, 1.48]

RE Model for Subgroup (p = 0.183; 2= 37.5%)

0.90 [0.73, 1.07]

Weight gain 1-2 BMI units

Lynes, 2017
Villamor, 2006

RE Model for Subgroup (p = 0.103; 1= 62.5%)
Weight gain 2-3 BMI units

Lynes, 2017
Villamor, 2006

RE Model for Subgroup (p = 0.081; 2= 67.1%)
Weight gain >3 BMI units

Lynes, 2017
Wallace, 2014
Villamor, 2006

RE Model for Subgroup (p = 0.819; 2= 0.0%)

Weight gain >1 BMI unit

1.10 [0.91, 1.31]
1.39 [1.13, 1.70]

1.23 [0.94, 1.51]

1.10[0.89, 1.36]
1.49 [1.17, 1.91]

1.27 [0.89, 1.65]

1.66 [1.42, 1.94]
1.82 [1.40, 2.36]
1.76 [1.39, 2.23]

1.71 [1.51, 1.91]

1.44[1.21, 1.66]

Odds ratio

Fig. 2.4 Forest plot from random effects meta-analysis showing the association between
interpregnancy weight change and the risk of developing pregnancy induced hypertension
in subsequent pregnancy. All adjusted odds ratios are relative to the reference category of
interpregnancy weight change between -1 and +1 BMI units. BMI, body mass index (in
kg/mz); aOR, adjusted odds ratio; CI, confidence interval.

In contrast, interpregnancy weight loss of >1 BMI unit was associated with a lower risk
of delivering an LGA neonate, (aOR 0.79 [0.58-0.99], 12=86.1%) (Figure 2.5), but there
was no conclusive evidence of association of interpregnancy weight loss with the risk of
developing GDM, PE or PIH (Figure2.2, 2.3 and 2.4). There was an insufficient number
of studies to conduct a meta-analysis on adjusted odds ratios for the outcomes of SGA and
PTB. A meta-analysis combining the crude odds ratios (cOR) rather than adjusted ratios
showed a significantly higher risk of developing PE (cOR 1.31 [1.09-1.53], I>=75.1%), but
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Large-for-gestational age
Author, year aOR [95% Cl]

Weight loss >1 BMI unit

Wallace, 2014 i 0.57 [0.42, 0.76]

Villamor, 2006 bot | 0.84[0.76, 0.93]
Ziauddeen, 2019 i 0.94[0.80, 1.10]
RE Model for Subgroup (p = 0.004; I” = 86.1%) <> 0.79 [0.58, 0.99]

Weight gain 1-2 BMI unit

Villamor, 2006 L be 1.32[1.23, 1.41]

Weight gain 2-3 BMI unit

Villamor, 2006 —e— 1.55[1.42, 1.68]

Weight gain >3 BMI unit

Wallace, 2014 (R 1.70 [1.36, 2.13]

Villamor, 2006 —o—f 1.87 [1.72, 2.04]
Ziauddeen, 2019 —eo—| 1.34 [1.17, 1.54]
RE Model for Subgroup (p = 0.000; I = 85.6%) _ — 1.63 [1.30, 1.97]
Weight gain >1 BMI unit P 1.54 [1.33, 1.76]
T T i T 1
0 0.5 1 2 3
Odds ratio

Fig. 2.5 Forest plot from random effects meta-analysis showing the association between
interpregnancy weight change and the risk of delivering a large for gestational age neonate
in subsequent pregnancy. All adjusted odds ratios are relative to the reference category of
interpregnancy weight change between -1 and +1 BMI units. BMI, body mass index (in
kg/mz); aOR, adjusted odds ratio; CI, confidence interval.

showed similar results for the association between interpregnancy weight gain and the risk of
developing GDM, PE or PIH (Figure 2.6 for interpregnancy weight loss and Figure 2.7 for
weight gain).

For the outcomes of SGA and PTB, meta-analyses of crude odds ratios showed interpreg-
nancy weight loss of >1 BMI unit was associated with a higher risk of delivering a SGA
neonate or delivering preterm (cOR 1.53 [1.35-1.71], 2= 0.0% and cOR 1.45 [1.21-1.69],
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12=26.7%] respectively), but there was no evidence of association with interpregnancy weight

gain (Figures 2.6 and 2.7).

Figures 2.8, 2.9, 2.10 show the odds ratios for the risk of developing an adverse perinatal
outcome after interpregnancy weight gain, stratified by BMI category in the index pregnancy
(normal weight; BMI <25 kg/m? versus overweight; BMI >25 kg/m?). Women with a
normal weight at the start of the index pregnancy had a higher risk of developing GDM after
interpregnancy weight gain >3 BMI units (aOR 4.36 [2.29-6.44], 12=81.6%) compared to
women with an overweight BMI (aOR 2.26 [1.40-3.12], 1>=74.4%) (Figure 2.8). Similarly,
women with a BMI <25 kg/m? were at higher risk of delivering a LGA neonate after interpreg-
nancy weight gain >3 BMI units than women with BMI >25 kg/m? (aOR 1.80 [1.24-2.35],
1°=87.2% versus aOR 1.50 [1.35-1.66], 1>=0.0% respectively) (Figure 2.9). Women with a
normal BMI at the start of their index pregnancy were at higher risk of developing PIH in a
subsequent pregnancy after interpregnancy weight gain of 2-3 BMI (aOR 1.60 [1.04-2.16,
12=54.6%) and >3 BMI units (aOR 2.21 [1.81-2.60], *.=0.0%), compared to women with an
overweight BMI (2-3 units gain; aOR 0.95 [0.73-1.17], 12=0.0%, >3 units gain; aOR 1.37
[1.16-1.59], 1?=0.0%) (Figure 2.10). We did not find differential effects of interpregnancy
weight loss between women with a normal BMI and women with an overweight BMI on the
risk of developing GDM, PIH or delivering an LGA neonate.

There was an approximate log-linear association between interpregnancy weight gain and
the risk of developing GDM, PE or PIH and delivering a LGA neonate (Figure 2.11).

2.4.3 Risk of bias of included studies

After assessing the study selection criteria, comparability of cases and controls and outcome
assessments through the NOS, we identified four studies of poor quality (NOS score <5, Table
2.3). However, as these studies did not employ a reference group of 4+ 1 BMI unit, they were
already excluded from the meta-analyses. Leave-one-out-analyses showed that removing
the study by Villamor et al. [183] made the association between GDM and interpregnancy
weight change of 2-3 or >3 BMI units not significant, possibly due to the large sample size
(>150,000) and hence wide confidence intervals on removal of this study. We did not find
evidence that the results for the outcomes PE or PIH were driven by one study. For the
outcome of delivering an LGA neonate, leave-one-out analyses could not be conducted due

to only two studies being included in the meta-analysis.
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Author, year

Gestational Diabetes

BRARRAY = B34
flich, : .

Lynes, 2017 b—e— 1.31
Shibye 2017 S I 171

RE Model for Subgroup (p = 0.013; I” = 68.0%) > 1.07 [0.

Glazer, 2004 —e— 07
Kruse, 2015 Ho—— : 0.1

aOR [95% CI]

Weight loss

Preeclampsia

Lynes, 2017
allace, 2014 }

H Py
RE Model for Subgroup (p = 1.000; I = 75.1%) <> 1.31[1.

Getahun, 2007 i —o— 1.68 1.
Wallace, 2016 f 1.07 [

Pregnancy Induced Hypertension
Bogaerts, 2013 }

Lynes, 2017
allace, 2014 eo—

RE Model for Subgroup (p = 0.002; I = 87.6%) ——_ _—— 0.97 [O.
Wallace, 2016 r—e—1 1.10 [0.79, 1.54]
Large-for-gestational age i

Benjamin, 2019 —o— H
Wallace. 2014 T S
Ziguddeen, 2019 e

0
9
RE Model for Subgroup (p = 0.004; 1> = 80.8%) <> 0.75

Small-for-gestational age ;
Benjamin, 2019 E
Wallace, 2014 :
RE Model for Subgroup (p = 0.722; I? = 0.0%)

Cheng, 2003
Hoff. 2009 :

oy
Jain’ 2013 :ﬁ{
Walface, 2016 :
L
r

Preterm Birth

Benjamin, 2019 i
Wallace, 2014 L —— .
RE Model for Subgroup (p = 0.243; I” = 26.7%) <> 1.45[1

Chen, 2009 —Ho—
Simonsen, 2013 —e—
N~
|
1

Hoff, 2009 f
Wallace, 2016 }

Odds ratio

Fig. 2.6 Forest plot from random effects meta-analysis showing the crude odds ratios for
the association between interpregnancy weight loss and the risk for perinatal outcomes of
interest. Black, solid dots represent studies with reference group of interpregnancy weight
change between -1 and +1 BMI unit and are therefore included in the meta-analyses. White,
open dots represent studies not using a reference group of interpregnancy weight change
between 1-unit weight loss and 1-unit weight gain and are visually displayed but not included
in the meta-analysis. cOR, crude odds ratio; CI, confidence interval.
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Fig. 2.7 Forest plot from random effects meta-analysis showing the crude odds ratios for
the association between interpregnancy weight gain and the risk for perinatal outcomes of
interest. Black, solid dots represent studies with reference group of interpregnancy weight
change between -1 and +1 BMI unit and are therefore included in the meta-analyses. White,
open dots represent studies not using a reference group of interpregnancy weight change
between 1-unit weight loss and 1-unit weight gain and are visually displayed but not included
in the meta-analysis. cOR, crude odds ratio; CI, confidence interval.
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Fig. 2.11 Dose-response curve for the increase in odds ratio of developing perinatal com-
plications after interpregnancy weight gain. A Gestational Diabetes. B preeclampsia. C
Pregnancy Induced Hypertension D Large for gestational age. Where ranges of BMI changes
were reported, the midpoint category was utilised (e.g. 1.5 BMI units change for the category
weight change between 1 and 2 BMI units). aOR, adjusted odds ratio. BMI, body mass index

(in kg/m?).
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2.5 Discussion

2.5.1 Main findings

This study systematically summarises and examines the published literature on the asso-
ciations between interpregnancy weight change and several common perinatal outcomes.
Our main findings are that interpregnancy weight gain is associated with a higher risk of
developing GDM, PE, PIH and delivering an LGA neonate, while interpregnancy weight
loss is associated with a lower risk of delivering an LGA neonate. BMI at the start of the
index pregnancy possibly modifies the risk of developing GDM, PIH or delivering an LGA
neonate after interpregnancy weight gain. Furthermore, we identify an approximately positive
log-linear relationship between interpregnancy weight gain and the risk of developing GDM,
PE, PIH or delivering a LGA neonate.

2.5.2 Comparison with existing literature

Our study confirms the associations between interpregnancy weight gain and the risk of
developing GDM and LGA, as also shown in a recent meta-analysis [254], despite the
slight difference in reference groups. Furthermore, our research additionally summarises
the effect of interpregnancy weight change on the risk of developing hypertensive disor-
ders in pregnancy. Our meta-analysis is to the authors knowledge the first meta-analysis
to show that gaining weight between pregnancies increases the risk of developing hyper-
tensive disorders in the subsequent pregnancy. The observation that starting BMI possibly
modifies this association is important for women with a healthy BMI at the start of their
index pregnancy, as research often emphasises the risk associated with being overweight
or obese, and women with a healthy BMI might not be aware of the risk that comes with
(small) interpregnancy weight gain. Although the risks of (excessive) gestational weight gain
[166] and high prepregnancy BMI [132, 255] on perinatal outcomes are well understood, the
effects of interpregnancy weight gain are relatively unknown and are essential to understand

in order to guide women in periconception and perinatal weight management.

Our study shows an approximate log-linear association between BMI gain and the risk of
developing GDM or hypertensive disorders in pregnancy. This result contributes towards
understanding the association between maternal weight and pregnancy complications. Linear
dose-response associations are established between obesity and the incidence of GDM, PE
and PIH [256], between adiposity and preeclampsia [257], as well as maternal weight and
preeclampsia [132] and GDM [255]. Our identified associations emphasise the detrimental
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effects of (small amounts of) weight gain, additional to the influence of absolute BMI. This
can contribute towards understanding the importance of post-partum weight management

and highlights the need for the development of clinical guidelines.

As many guidelines recommend prenatal weight loss for overweight and obese women, the
postpartum period could be an optimal target for reducing postpartum weight retention and
therefore possibly mitigate the higher risk of adverse perinatal outcomes in a subsequent preg-
nancy. A recent systematic review focusing on postnatal weight management in overweight
and obese women showed that a dietary or physical activity intervention was associated
with greater weight loss in the postpartum period than no intervention [191]. Two further
meta-analyses focusing on women of all weight categories showed that diet-and-exercise
interventions that use self-monitoring result in the greatest weight loss postpartum; the
pooled weight loss was 2.3kg up to 36 months from baseline [258]. Importantly, diet and
exercise together resulted in double the weight loss compared to an exercise intervention
alone [259]. Further randomised trials are proposed and will be assessing feasibility and cost-
effectiveness of access to a slimming group (SWAN trial) [260] and delivering an (evidence
based) intervention via text messaging (intervention adaptation and SMS feasibility RCT)
[261].

2.5.3 Strengths and limitations

A strength of our study is we ensured a homogeneous reference group (i.e. a BMI change
<1kg/m?) for our meta-analysis rather than including studies with different reference groups
[254]. Furthermore, we only harmonised studies reporting adjusted odds ratios, which all
considered maternal age, country of origin, social economic status and smoking status as

potential confounders.

Nevertheless, our study has several limitations. First, between-study heterogeneity remained,
arising from differences in outcome definitions and demographics, such as parity and age,
and potentially differences in length of interpregnancy intervals and prevalence of perinatal
complications. Of the studies selected for meta-analysis, only Lynes et al. [182] did not
restrict to nulliparous women, although removing this study had little impact on the results.
Second, GDM, PE and PIH were either not defined in publications or the definitions of
these adverse outcomes differed between studies, hence caution is needed when comparing
effect estimates between studies. Third, it was not possible to consistently assess the impact
of previous pregnancy complications, which may lead to excessive interpregnancy weight

changes and a higher risk of subsequent pregnancy complications. Fourth, studies varied in
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the way they measured prepregnancy weight, with the majority of studies using self-reported
weight (and height) to calculate BMI and interpregnancy weight change. Although evidence
suggests that maternal reports of prepregnancy weight are in general consistent with clinical
records [262], bias due to systematic over- or under-reporting cannot be excluded. We can
also not exclude the possibility of publication bias, as this could not be assessed due to
the small number of studies available per adverse outcome and funnel plot assessment is
generally not recommended with less than 10 studies [263]. Lastly, we were unable to make
the distinction between spontaneous preterm birth and medically induced preterm birth. We
hypothesise that an increased risk of preterm birth is at least partly related to the increased
risk of carrying an SGA neonate, as (suspected) growth restriction is one of the main causes
of medically induced premature birth [264]. However, inadequate nutrition in the context of
severe maternal weight loss could also contribute to a higher risk of both SGA and preterm
birth [265].

2.5.4 Conclusion

Our study highlights the importance of postpartum weight management, but also identifies
opportunities for future research. Effective strategies for postpartum weight management are
being elucidated, with future trials focusing on easy-access and cost-effectiveness of evidence
based dietary- and exercise interventions. Furthermore, it will be particularly important to
encourage postpartum weight loss in normal weight women, as this group might not be the
focus of current research and interventions, yet may be at highest risk of adverse outcomes

from interpregnancy weight gain.

In conclusion, we show that interpregnancy weight gain impacts on the risk of developing
perinatal complications in a subsequent pregnancy and it is possible that BMI at the index
pregnancy modifies these associations. These findings highlight the need to encourage
women to return to their prepregnancy weight before conceiving again in an effort to reduce
the risk of perinatal complications. Future work should focus on defining the most effective

strategies to achieve this outcome.



Chapter 3

Description of the Pregnancy Outcome
Prediction Study
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3.1 Chapter summary

The aim of this chapter is to describe the data set used for the analyses in Chapters 4, 5 and 6.
This is the Pregnancy Outcome Prediction (POP) study, conducted in the Rosie hospital in
Cambridge, UK between January 2008 and July 2012.

The POP study is a prospective cohort study, phenotyping nulliparous women who were
recruited at their dating scan (.12 weeks gestational age). They underwent serial research
ultrasound scans, as well as phlebotomy measurements, across all three trimesters of preg-

nancy. This was performed in parallel with their normal perinatal care.

A unique characteristic of the POP study is that women and clinicians were blinded to the
outcome of the research scans, thereby avoiding extra interventions based on participation
in the study. This also facilitated an excellent opportunity to identify effective ultrasonic
screening methods for common perinatal complications, such as fetal growth abnormalities.
Furthermore, the longitudinal phlebotomy samples facilitated the identification of novel

biomarkers for perinatal complications.

Most POP study publications so far, including the ones in this thesis, have focused on perinatal
complications associated with placental dysfunction, e.g. preeclampsia and fetal growth
restriction. Major findings of previous POP study publications include the identification of
novel biomarkers 4-hydroxyglutamate for screening of preeclampsia, delta-like homologue-1
for identification of fetal growth restriction and the polyamine N1,N12-diacetylspermine
for which opposite associations between these two conditions were shown for the first
time. Furthermore, more evidence on the effectiveness of universal screening for fetal
growth abnormalities was gathered. However, implementation of such screening depends on
confirmation of effectiveness in randomised trials and availability of suitable interventions or

treatments.
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3.2 Background of the POP Study

3.2.1 Aims of the POP study

The POP study is a prospective cohort study which included unselected nulliparous women
who attended the Rosie Hospital in Cambridge UK between 14" January 2008 and 31* July
2012 with a viable singleton pregnancy. The rationale behind the POP study was to provide a
study design with the primary aim of generating clinically useful methods to screen women
and assess their risk of adverse perinatal outcomes [266]. This aim was further split into (i)
evaluating known biomarkers of serial ultrasonography assessments of fetal and maternal

well-being, and (i1) identifying novel biomarkers [267].

The motivation of only including nulliparous women was that they have a higher absolute
risk of perinatal complications compared to multiparous women, and lack information on
previous pregnancy outcomes, which is indicated as one of the most important risk factors

for adverse outcomes in subsequent pregnancies.

Routine antenatal care in the United Kingdom for women in their first pregnancy consists
of 10 routine midwife visits [70], however, this intense schedule reflects a poor discrimina-
tion of risk, as most adverse perinatal outcomes occur in women who are deemed low-risk
at their booking appointment. Furthermore, the primary screening methods implemented
by the midwifes is measurement of the symphyseal-fundal height, routine blood pressure
checks and urine test for proteinuria [70], which tend to have low sensitivity for perinatal
complications. The POP study was developed with the aim to contribute to the development
of more personalised antenatal care, where frequency and timing of visits is proportion-
ate to the individual risk, estimated by a combination of clinical records and biomarkers [267].

A unique characteristic and major strength of the POP study was that clinicians and patients
were blinded to the ultrasound results, unless one of the following were detected: (i) major
congenital abnormalities, (i) placenta praevia, (iii) severe oligohydramnios or (iv) breech

presentation at 36 weeks gestational age (WkGA).

3.2.2 Recruitment and research visits

A total of 8,028 women were eligible for inclusion in the POP study, and 4,512 (56%) gave
informed consent for participation. Eligible but non-recruited women were younger, more

often of non-white ethnicity, more likely to be current smokers, and more often delivered a
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growth restricted neonate than eligible women who were recruited to the study [267]. Of the
eligible and recruited women, 4,212 (93.4%) completed the study protocol. Sixty-seven par-
ticipants withdrew consent over the course of the study and 223 women delivered elsewhere.

A full study flow diagram can be found in Figure 3.1

Women were recruited when attending the Rosie hospital for their dating scan (.12 weeks
gestational age [WkGA]), and after inclusion attended a further three research appointments
8 weeks apart (.20 wkGA, .28 wkGA and .36wkGA). Additionally, women followed the
standard antenatal care for nulliparous women in the United Kingdom. Participating women
had blood taken at all four research visits. On the visits at 20, 28 and 36 wkGA, research
ultrasound scans were performed to assess fetal biometry and Doppler flow velocity in the
umbilical and uterine arteries. At the 20 wkGA appointment, women were asked to fill out
a questionnaire about their demographics and medical history. If a partner was present at
the 20 wkGA research visit, a sample of their DNA was taken, and their height and weight
measurements collected. The final research visit at 36 wkGA was intended to screen for
complications that arise at term and for which early intervention can prevent worsening of

the condition of mother and fetus.

Alongside the clinical data and the ultrasonic measurements used in this thesis, DNA samples
from both parents, maternal bloods samples and placentae were collected. The maternal
blood samples were taken on the same days as the research scans and immunoassays for
potential markers of perinatal complications (e.g. Alpha Fetoprotein, Pregnancy Associated
Plasma Protein A) were run. Although not used in the analysis in this thesis, the POP study
extensively collected placentae for morphological assessment and of which a subset been
biopsied and cut for microscopy. An overview of data collected in the POP study can be
found in Figure 3.2
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Visit 1 (~12 wkGA, N=4,512)
. Informed, written consent
*  Phlebotomy

N=70 lost to follow up

> 47 withdrew

\ 4 23 delivered elsewhere
Visit 2 (~20 wkGA, n=4,442)

. DNA sample of partner

*  Phlebotomy

. Fetal biometry

*  Uterine & umbilical artery Doppler
. Questionnaire

N=45 [ost to follow up

» 15 withdrew

v 30 delivered elsewhere
Visit 3 (~28 wkGA, N=4,397)

*  Phlebotomy

*  Fetal biometry

*  Uterine & umbilical artery Doppler

N=72 lost to follow up

» 5 withdrew

v 67 delivered elsewhere
Visit 4 (~36 wkGA, N=4,325)

*  Phlebotomy

*  Fetal biometry

* Uterine & umbilical artery Doppler

.| N=113 lost to follow up
113 delivered elsewhere

Delivery: Placental sampling

Y

Post delivery: Retrieval of outcome data

l

N=4,212 in study

Fig. 3.1 Flow chart of the Pregnancy Outcome Prediction Study. Adapted from Gaccoli et al.
2017 [267]. WKGA; weeks gestational age
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3.3 Definitions in the POP study relevant for this thesis

The definitions of outcomes, exposures, and covariates in the POP study relevant for this
thesis are defined in Table 3.1 and described below.

3.3.1 Maternal weight

Maternal weight (in kg) was recorded for the first time at booking scan (~ 12 wkGA). The POP
study did collect data on self-reported prepregnancy weight, but due to small numbers and
low accuracy the 12 wkGA measurement was used in all analyses as a proxy for prepregnancy
weight. Maternal weight was subsequently recorded at all other research visits. Body Mass
Index (BMI) was calculated with the formula:

Weight (kg)

For further analyses in this thesis, BMI was classified according to the World Health Organi-
sation BMI categories, where BMI <18.5 kg/m? is classified as underweight, 18.5-24.9 kg/m?
as normal weight, 25.0-29.9 kg/m? as overweight and >30 kg/m? classified as obese [268].
As the group with underweight BMI was too small for inception (n=68), this group was
merged with normal weight women. Seven participants (0.2%) had no information available
on their prepregnancy BMI.

3.3.2 Maternal characteristics

Most of the maternal characteristics listed in Table 3.1 were collected via self-reporting
questionnaire at the 20-week scan. This could not have been done earlier, as women were only
recruited at their booking scan (.12 wkGA). Questions included maternal age, marital status,
occupation and partners occupation, age at completing full time education, smoking status,
alcohol units per week currently, current prescription medication, current medical conditions,
previous miscarriages and use of contraceptive pill in the 3 months before conceiving. See

Appendix 2 for the self-reporting questionnaire form.

3.3.3 Umbilical and uterine artery Doppler measurements

The pulsatility index of the uterine and umbilical arteries were recorded at .20-, .28- and

~36 wkGA. All sonographers undertaking uterine artery doppler measurements attended
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Research data
Antenatal questionnaire

Circulating Post-natal revjew of case notes Astraia
nucleic acids N=4,212 Untrasound scan
Badgernet
Metabolome Neonatal intensity care unit
n=3,196
Maternal blood :e‘,‘;‘:‘ec"
Roche cobas e411 12 wkGA, N=4,099 =r e —iry
AFP, hCG, PAPP-A, 20 wkGA, N=4,029 Clinical data
PIGF. sFit-1 28 wkGA, N=4,007 N=4.212 Protos
n=15,874/assay 36 wkGA, N=3,767 Delivery unit
Histology Placenta \9 Ultrasonography
€D14, CD3, CD31, Rapid collection, N=1,476 20 wkGA, N=4,169
CD4, CD79a, CDB, Basic collection, N=2.414 28 wkGA, N=4,104
Elastase, H&E 36 wkGA, N=3,876 4
n=855 placentas Fetal biometry
abdominal & head circumference,
biparietal diameter,
Morphology
Size and shape estimated fetal weight, femur length
n=2,120
DNA
Child, N=3,870 Uterine & Umbilical
High throughput sequencing Mother. N=4,060 Doppler
DNA, DNA modifications, Father, N=3,956 uterine artery and umbilical artery
RNA, pathogens pulsatility index

HLA and KIR genotyping
n=6,512

Fig. 3.2 Overview of data collected in the POP study. Adapted from from Gaccoli et al. 2017
[267]

training sessions and were assessed as competent to perform uterine artery doppler by the
head of the Rosie Ultrasound Department. The uterine artery measurements were taken
on both the left and right side, and any notches were recorded. In the umbilical artery, the

pulsatility index and the presence of end diastolic flow was recorded.

3.3.4 (Repeated) fetal growth measurements

Fetal biometry was assessed in the 20-, 28- and 36- week scan. Biparietal diameter, head
circumference, abdominal circumference and Femur length were recorded. From these
measurements, estimated fetal weight was calculated, using coefficients from the Gestation-
Related Optimal Weight (GROW) calculator (version 6.7.3.13). Abdominal circumference
growth velocity was calculated as the difference in abdominal circumference Z score, com-
paring the last scan before birth and the scan at 20 weeks [104].
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Description of the Pregnancy Outcome Prediction Study

Normal weight Overweight Obese p-value Total cohort*
(n=2444) (n=1187) (n=574) (n=4212)
Baseline characteristics
Gestational age at 12.6 (0.8) 126 (0.8) 12609 051  12.6(0.9)
booking scan (w)
Maternal age (y) 29.9 (4.8) 30.4 (5.3) 29.3(5.7)  <0.001 30.0 (5.1)
Maternal weight at 60.5(6.6) 73567 923(127) <0.001 685 (13.5)
booking scan (kg)
Maternal height (cm) 165.6 (6.5) 164.7(6.4) 1644 (6.2) <0.001 165.2(6.4)
Systolic BP at 1064 (11.2)  109.5(11.0) 1145 (11.3) <0.001  108.4 (11.5)
booking scan (mmHg)
Maternal ethnicity 0.02
White 2239 (91.6) 1111 (93.6) 544 (94.8) 3900 (92.6)
Non-white 158 (6.5) 58 (4.9) 23 (4.0) 240 (5.7)
Unknown 47 (1.9) 18 (1.5) 7(1.2) 72 (1.7)
Marital status <0.001
Married 1713 (70.1) 798 (67.2) 346 (60.3) 2863 (68.0)
Not married 731 (30.0) 389 (32.8) 228 (39.7) 1349 (32.0)
Smoking status <0.001
Non-smoker 1547 (63.3) 658 (55.4) 292 (50.9) 2503 (59.4)
Quit pre-pregnancy 613 (25.1) 371 (31.3) 178 (31.0) 1163 (27.6)
Quit during pregnancy 166 (6.8) 106 (8.9) 63 (11.0) 335 (8.0)
Current smokers 118 (4.8) 52 (4.4) 41 (7.1) 211 (5.0)
Deprivation score 0.09
1 (lowest) 595 (24.3) 301 (25.4) 121 (21.1) 1018 (24.2)
2 571 (23.4) 293 (24.7) 135 (23.5) 1002 (23.8)
3 589 (24.1) 289 (24.3) 138 (24.0) 1018 (24.2)
4 (highest) 593 (24.3) 250 (21.1) 158 (27.5) 1002 (23.8)
Unknown 96 (3.9) 54 (4.5) 22 (3.8) 172 (4.1)
Pre-existing diabetes 4(0.2) 10 (0.8) 2(0.3) 0.008 16 (0.4)
Pre-existing
) 69 (2.8) 76 (6.4) 75 (13.1)  <0.001 220 (5.2)
hypertension
Perinatal outcomes
Fetal sex 0.86
Male 1225 (50.1) 596 (50.2) 294 (51.2) 2118 (50.3)
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Normal weight Overweight Obese Total cohort*
(n=2444) (n=1187) (n=574) p-value (n=4212)
Female 1217 (49.8) 583 (49.1) 278 (48.4) 2080 (49.4)
Unknown 2(0.1) 8 (0.7) 2(0.3) 14 (0.3)
Gestational
weight gain®
12-20w 34(2.2) 3.3(2.6) 2.6 (2.5) <0.001 32(24)
20-28w 4.6 (2.3) 4.9 (2.2) 4.0 (2.3) <0.001 4.6 (2.3)
28-36w 4.3 (2.2) 4.6 (2.4) 4.2 (2.7) <0.001 4.3 (2.3)
12-36w 12.3 (3.7) 12.7 (4.4) 10.8 (5.5) <0.001 12.2 (4.2)
Gestational diabetes <0.001
Yes 62 (2.5) 68 (5.7) 60 (10.5) 191 (4.5)
No  2380(97.4) 1115(93.9) 514 (89.5) 4015 (95.3)
Unknown 2(0.1) 4(0.3) 0(0.0) 6 (0.1)
Preeclampsia <0.001
Yes 99 (4.1) 84 (7.1) 90 (15.7) 273 (6.5)
No 2342 (95.8) 1101 (92.8) 484 (84.3) 3934 (93.4)
Unknown 3(0.1) 2(0.2) 0(0.0) 5(0.1)
Gestational
hypertension <0.001
Yes 31(1.3) 30 (2.5) 24 (4.2) 85 (2.0)
No 2410 (98.6) 1155 (97.3) 550 (95.8) 4122 (97.9)
Unknown 3.1 2(0.2) 0(0.0) 5(0.1)
Spontaneous 042
preterm birth
Yes 64 (2.6) 37 (3.1) 12 (2.1) 113 (2.7)
No 2366 (96.8) 1134 (95.5) 557 (97.0) 4058 (96.3)
Unknown 14 (0.6) 16 (1.3) 5(0.9) 41 (1.0)
Small for 0.05
gestational age
Yes 239 (9.8) 90 (7.6) 43 (7.5) 372 (8.8)
No 2196 (89.9) 1084 (91.3) 528 (92.0) 3809 (90.4)
Unknown 9(0.4) 13 (1.1) 3(0.2) 31(0.7)
Large for <0.001
gestational age
Yes 95 (3.9) 51 (4.3) 51 (8.9) 197 (4.7)
No 2340 (95.7) 1123 (94.6) 520 (90.6) 3984 (94.6)
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Normal weight Overweight Obese I Total cohort*
-value
(n=2444) (n=1187) (n=574) P (n=4212)
Unknown 9(0.4) 13 (1.1) 3(0.2) 31 (0.7)
Uterine artery PI >95"
61"1116 artery PI1 >9 0.66
centile at 20wkGA
Yes 122 (5.0) 58 (4.9) 23 (4.0) 203 (4.8)
No 2266 (92.7) 1084 (91.3) 525 (91.5) 3876 (92.0)
Unknown 56 (2.3) 45 (3.8) 26 (4.5) 133 (3.2)
Umbilical artery PI >95"" 0.87
centile at 36wkGA '
Yes 105 (4.3) 50 4.2) 27 (4.7) 182 (4.3)
No 2160 (88.4) 1021 (86.0) 495 (86.2) 3677 (87.3)
Unknown 179 (3.2) 116 (1.3) 52(9.1) 353 (8.4)
Birthweight™ (g) 3368 (513) 3430 (548)  3485(571) <0.001 3401 (534)
Placental weight® (g) 451 (96) 470 (108) 489 (111)  <0.001 461 (103)

Table 3.2 Baseline and birth characteristics in the Pregnancy Outcome Prediction Study.
Data are presented as mean (SD) or number (%). Difference in characteristics were tested
using chi-squared and Kruskal-Wallis tests, as appropriate. *Seven women had missing
information on BMI. *Gestational weight gain was available for 2409 women with normal
weight, 1167 with overweight and 563 obese women between 12-20 weeks gestational age;
for 2343 women with normal weight, 1130 with overweight and 549 obese women between
20-28 weeks gestational age; and for 2226 women with normal weight, 1055 with overweight
and 511 obese women between 28-36 weeks gestational age. TBirthweight was available for
2437 women with normal weight, 11176 with overweight and 571 obese women, “Placental
weight was available for 2243 women with normal weight, 1090 women who are overweight
and 514 women who are obese. BP; blood pressure, PI; Pulsatility index, wkGA; weeks
gestational age.

3.4 Baseline and birth characteristics in the POP Study

The most relevant baseline and birth characteristics for this thesis from women participating in
the POPS cohort, stratified by maternal BMI category, are described in Table 3.2. Overweight
and obese women had a higher systolic blood pressure at booking scan than normal weight
women. Furthermore, they tended to be more often of white ethnicity, not married and
were more likely to be current smokers. Overweight and obese women more often suffered

from pre-existing condition such as diabetes and essential hypertension than normal weight
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women and were also more likely to develop perinatal complications (gestational diabetes,
gestational hypertension, and preeclampsia). Additionally, overweight and obese women
delivered larger babies than normal weight women, which is reflected in a higher mean

birthweight and a higher incidence of large for gestational age births.

3.5 Review of the published literature of the POP Study

As mentioned in section 3.1, the main aim of the POP study was to identify clinically useful
methods to screen women for adverse perinatal outcomes, by ultrasound assessment as well
as scrutinising known and identifying novel (ratios of) biomarkers. The main outcomes of
interest in the published POP study literature have been the risk of preeclampsia and/or fetal
growth restriction. In this section I discuss the published POP study literature relevant for
this thesis.

3.5.1 Maternal weight dynamics

No previous study in the POP cohort focused on the consequences of maternal obesity or
gestational weight gain on perinatal outcomes. However, many analyses in the POP cohort
reported on outcomes for which maternal obesity is a (major) risk factor, hence some relevant
lessons can be learned from these related studies. Firstly, although National Institute for
Health and Care Excellence (NICE) guidelines in the UK only consider women with a BMI
>35 at moderate risk for preeclampsia, a simple risk prediction score based on the ASPRE
trial model reveals that BMI along the whole spectrum is associated with an increased risk of

preeclampsia [271].

Furthermore, maternal obesity was found to be negatively associated with placental efficiency.
Salavati and colleagues concluded that, in the POPS cohort, maternal obesity was associated
with a decreased birthweight-to-placental weight ratio (Figure 3.3) [272]. This ratio is of-
ten used to describe adequate placental nutrient supply, and a small ratio (i.e. a relatively
large placenta) is associated with an increased risk of delivering a small for gestational age
(SGA) neonate, suggesting that obese women have a less efficient placenta which in turn
could lead to an increased risk of delivering an SGA neonate. The association between ma-

ternal obesity and the risk of delivering a small baby will be further investigated in Chapter 6.
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Fig. 3.3 Relative risks for low birth weight to placenta weight-ratio (Quintile 1 vs. Q2-Q4).
Adapted from Salavati et al. 2018 [273]

3.5.2 Preeclampsia

As mentioned in Chapter 1, there are several well established biochemical (risk) factors
related to preeclampsia. Due to the POP study being a prospective study on nulliparous
women, without a previous history of preeclampsia, it provides an ideal opportunity to

confirm and/or develop new screening markers for this complication.

Both soluble fms-like tyrosine kinase 1 (sFlt1) and placental growth factor (PIGF) are recog-
nised biochemical markers for preeclampsia; an increased sFlt1 and a decreased PIGF are
positively associated with preeclampsia. Sovio and colleagues tested the screening perfor-
mance of a ratio of these two markers and divided the screening potential by low- or high-risk
women based on the NICE guidelines [51, 274]. Women with a BMI >35 in the POP study,
will fall in NICE’s high risk category, as they are all nulliparous as well [70]. At 28 wkGA,
this ratio has a positive predictive value (PPV) of 30.8% for preeclampsia with preterm
delivery in high risk women, similar to the PPV for low-risk women. However, at 36 wkGA
the score performs better for high risk compared to low-risk women (PPV of 20.3% vs 6.4%
respectively) in predicting preeclampsia with severe features [274].

Furthermore, the metabolite 4-hydroxyglutamate was identified within the POPS cohort as a
novel biomarker for preeclampsia and further validated in the Born in Bradford cohort. 4-
Hydroxyglutamate was particularly predictive for preterm preeclampsia (<37 weeks delivery)
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Fig. 3.4 Receiver operating characteristic curve analysis of the sFlt-1:PIGF ratio and 4-
hydroxyglutamate in relation to pre-term and term pre-eclampsia. The ROC curve for (A)
addition of 4-hydroxyglutamate to sFlt-1:PIGF ratio at 28 wkGA and pre-term pre-eclampsia
and (B) addition of 4-hydroxyglutamate to sFlt-1:PIGF ratio at 36 wkGA and term pre-
eclampsia. Dashed lines represent the sFlt-1:PIGF ratio measurements on their own and solid
lines represent the models that include both sFlt-1:PIGF ratio and 4-hydroxyglutamate. AUC;
Area under the curve, PIGF; Placental growth factor, sFLT; Soluble fms-like tyrosine kinase
1. Adapted from Sovio et al. [79]

at both 12, 20 and 28 wkGA [79] (Figure 3.4). Although maternal prepregnancy BMI is
thought to be a stronger risk factor for preterm than term preeclampsia, the findings in this

case-control study were independent of maternal (baseline) characteristics.

3.5.3 Fetal growth restriction

As fetal growth restriction is a major determinant of adverse perinatal outcomes, screening
methods for effectively identifying fetuses at risk is of high priority. Due to the blinded
nature of the POP study, it is very suitable for testing and developing adequate screening

methods, both biochemically as well as ultrasonically.

In one of the first published studies from the POPS cohort, the effectiveness of universal

versus selective ultrasound screening for the detection of SGA neonates was examined.
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The study showed that, while selective ultrasonography detected one in five infants with
birthweight <10 centile, universal screening at 28 and 36 wkGA tripled the detection of
SGA neonates [104]. However, this was at a cost of reduced specificity (98% for selective
and 90% for universal screening). No distinction was made in the screening effectiveness
in normal weight or obese women, although it is known that ultrasonic fetal (biometry)

measurements are less sensitive in obese women [275, 276].

Delta-like homolog 1 (DLK1) has been previously identified to shift nutrient metabolism
towards fatty acid oxidation. However, for the first time, it was shown within the POP cohort
that there is an association between DLK1 levels and the risk of delivering an SGA neonate.
Additionally, this analysis split SGA neonates further in pathologically small and consti-
tutionally small neonates and found that mothers carrying a pathologically small neonate
had lower levels of circulating DLK1, while this association was not significant for women
carrying a constitutionally small neonate [277]. Although not the focus of this study, it would
have been of great interest to perform a sub-analysis to investigate whether this association

holds up for women in different BMI categories.

As the sFIt1:PIGF ratio (described in section 3.5.2 for the detection of preeclampsia) is
thought to reflect a degree of placental insufficiency, the association between this ratio and
an ultrasonically suspected SGA neonate was tested in the POPS cohort at both 28 and 36
wkGA. This revealed that the combination of an ultrasonically suspected SGA neonate with
an elevated sF1t1:PIGF ratio (>85" centile) could identify a proportion of women at a higher
absolute risk of adverse outcomes [278]. The definition for fetal growth restriction (FGR)
as per Delphi panel procedure, that will be used for the analyses in Chapter 6, had a much
lower positive predictive value for preterm delivery of an SGA neonate or term delivery of
an SGA neonate plus an adverse outcome [278].

Although the sFlt1:PIGF ratio adds predictive value to ultrasonic screening alone, a further
metabolite ratio predictive of term FGR was identified and validated in the POP cohort. The
ratio between two strongly positive associated metabolites (1-(1-enyl-stearoyl)-2-oleoyl-
GPC (P-18:0/18:1) and 1,5-anhydroglucitol) and two negatively correlated metabolites
(Sa-androstan-3a,17¢-diol disulfate and N1,N12-diacetylspermine) had roughly double the
discrimination capacity for term FGR, compared to the sF1t1:PIGF ratio (AUC 0.78 versus
0.64 respectively) [279]. Additionally, this ratio worked similarly irrespective of maternal
BMI.
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3.5.4 Concurrent mechanisms between preeclampsia & fetal growth

restriction

As pregnancy-associated plasma protein A (PAPP-A) and alpha fetoprotein (AFP) are both
associated with placentally-related adverse outcomes, and as they are often routinely mea-
sured during pregnancy for the risk prediction of fetal aneuploidy, a simple ratio between the
two markers was tested for its predictive value for preeclampsia, FGR and stillbirth. A cut
off for the ratio >10 was found to be associated with all these outcomes, without requiring
correction for maternal characteristics such as weight [280]. The AUC of the uncorrected
models varied from 0.674 for FGR, 0.651 for severe SGA and 0.716 for the combination of

preeclampsia and delivering an SGA neonate.

Similarly, the cortisol-to-cortisone ratio was tested for its association with both preeclampsia
and FGR, as it is hypothesised to reflect placental function. Both these conditions have
previously been shown to be associated with reduced levels of 11--Hydroxysteroid dehy-
drogenase type 2, therefore it can be hypothesised that an increased cortisol-to-cortisone
ratio could be predictive of both diseases. However, the opposite association was found in
the POP cohort; there was a negative association between the cortisol-to-cortisone ratio and
the risk of preterm and term preeclampsia, as well as preterm FGR [275] (Figure 3.5). No
association with term FGR was found. As circulating cortisol levels are shown to be lower
in (severe) obese pregnancies [281], it would be of great interest to see if this association is

similar for normal weight and obese women.
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Fig. 3.5 Cortisol-to-cortisone ratio at 12, 20, 28, and 36 wkGA in healthy pregnancies,
women that developed preeclampsia, and women who delivered a grwoth restricted infant.
FGR; fetal grwoth restriction, PE; preeclampsia, wkGA; weeks gestational age. Adapted
from Jayasuriya et al. 2019 [275]

3.5.5 Divergent mechanisms between preeclampsia & fetal growth re-

striction

Although preeclampsia and fetal growth restriction share a common background in placental
dysfunction, the mechanisms leading to these conditions are not fully understood. It is
unknown why placental dysfunction can lead to preeclampsia without fetal growth restriction
and vice versa. An analysis of the placental methylome, transcriptome and maternal serum
metabolome aiming to elucidate this showed that the maternal serum metabolite N1,N12-
diacetylspermine had opposite associations with preeclampsia and fetal growth restriction.
When classified in quintiles, having N1,N12-diacetylspermine levels in the highest quintile
lead to a .5-fold higher risk of developing preeclampsia compared to the lowest quintile,
whereas N1,N12-diacetylspermine levels in the lowest quintile lead to a .5-fold lower
risk of FGR compared to the highest quintile [282] (Figure 3.6). However, the number
of pregnancies affected by both conditions simultaneously was too small to elucidate this
relationship further. Nevertheless, this is the first biomarker to show opposite associations
between these two conditions and could be a key finding in untangling the pathways leading

to preeclampsia or fetal growth restriction.
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Fig. 3.6 Maternal serum levels of DiAcSpm by pregnancy complications. Adapted from
Gong et al. 2018 [282]

3.6 Strengths and Limitations of the POPS cohort

The main strength of the POP study is that clinicians and patients were blinded to the results
of the research scans and phlebotomy measurements. If results of these tests had not been
concealed, they could have biased assessment and clinical treatment based on these research
findings. Further justification of the concealment was that NICE does not recommend these
universal scans to be offered routinely [70]. Naturally, women still had their regular perinatal

care parallel to the POP study research scans.

Furthermore, another strength is that the serial research scans and phlebotomy measurement
span all three trimesters of pregnancy. Ideally, data would also be available on maternal
measurements and lifestyle before pregnancy, but this was unfeasible as this (1) would involve
recruiting a large number of women and many of them might not follow through with a
pregnancy in the time allocated for the study and (ii) information on prepregnancy health and
subsequent health was out of the scope of the POP study.

A limitation of the POP study is that only nulliparous women were included in recruitment.
Although there were valid reasons to do so (e.g. to limit complications of modelling with
history of perinatal complications, as well as non-independence if women have more than
one pregnancy in the study period [266]), nulliparous women have a higher rate of perinatal
complications compared to multiparous women [283, 284]. Conclusions drawn from POP
study analysis can therefore not be generalised to a multiparous population. However, as

women included in the POPS study have no information available on previous perinatal
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complications, a large proportion of them will be classified as ‘low-risk’, and there is an

urgent need for improved risk prediction in this population.

Although the POPS cohort is a largely white and affluent population, this does not necessarily
have to be a limitation. Due to the relative homogeneous characteristics of this population
(e.g. nulliparous, white), we might be able to pick up a relatively ’clear’ signal in analyses
that is less diluted or interrupted by confounders. The signals picked up in a homogeneous
population, like the POPS, can then be tested on further populations, to confirm associations
in a wider population. A few POP study publications have validated their findings in the

Born in Bradford cohort, a multi-ethnic and less affluent cohort.

3.7 Clinical implications of findings in the POPS cohort

Although studies in the POP cohort have identified and strengthened screening performance
for preeclampsia and fetal growth restriction, none of the identified markers have yet been
adopted into regular antenatal care. Low-cost, automated and relatively simple analyses
platforms might not be available across all healthcare facilities and will differ between
biomarkers. Furthermore, screening is only defendable if there is a suitable intervention or
treatment available to mitigate the risk. For both preeclampsia and fetal growth restriction,
the only intervention possible to date is to induce labour. This is more safely and easily
performed near term. However, a balance needs to be struck between potential damage from
iatrogenic (late) preterm birth and benefits of early intervention.

Randomised trials will have to be conducted to evaluate the effectiveness and outcomes of
screening for preeclampsia and/or growth restriction. A previous randomised trial has shown
an improved outcome after immediate induction of labour in women with preeclampsia near
term [285], but limited data are available on earlier interventions. To further understand the
benefits and disadvantages of interventions in women that screen as high risk, the POP 2
study started recruiting participants in early 2020. The aim of this observational study is to
collect more data from new nulliparous women to investigate effective screening methods.
Additionally, screening results will be revealed at 36 weeks and women will be asked to
participate in a randomised trial for early labour induction when screened high risk for

perinatal complications.
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3.8 Conclusion

The POP study has generated a large dataset, with thorough phenotyping throughout. To date,
the published literature from the POP cohort has mainly focussed on developing effective
screening methods for placentally related perinatal complications. However, randomised
trials will have to establish the clinical benefits of screening versus harm caused by (early)

intervention before implementation into clinical practice.

In this thesis, I will leverage the extensive POP dataset to investigate the relationship between
maternal weight dynamics and ultrasonic measurements of adaptation to pregnancy (Chapter
4) and placentally related complications (Chapter 5 and 6) with the aim of advising perinatal
care for overweight and obese women. Further definitions, strengths and limitations for these

analyses will be separately discussed in their respective chapters.






Chapter 4

Independent influences of maternal
obesity and fetal sex on maternal
cardiovascular adaptation to pregnancy

This chapter has been published in the International Journal of Obesity, including text and all
figures. Contributions for each author can be found in the Acknowledgement section of this

thesis.

Teulings NEWD, Wood AM, Sovio U, Ozanne SE, Smith GC, Aiken CE. Independent influ-
ences of maternal obesity and fetal sex on maternal cardiovascular adaptation to pregnancy:

a prospective cohort study. International Journal of Obesity. 2020 Jun 15:1-0.
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4.1 Chapter summary

Background: Successful pregnancy requires creation of low resistance utero-placental and
feto-placental circulations and incomplete remodelling of this vasculature can lead to ma-
ternal or fetal compromise. Maternal BMI and fetal sex are known to influence vascular
compliance and placental development, but it is unknown if these are independent or syn-
ergistic effects. Here we aim to investigate the impact of maternal obesity, fetal sex, and
any interaction thereof on maternal cardiovascular adaptation to pregnancy, by assessing the
physiological drop of uterine artery doppler pulsatility (UtA-PI) and umbilical artery doppler
pulsatility index (UA-PI) over gestation.

Methods: Nulliparous women with a singleton pregnancy participating in a prospective
cohort study (n=4212) underwent serial UtA-PI and UA-PI measurements at 20-, 28- and 36-
weeks gestation. Linear mixed regression models were employed to investigate the influence
of maternal BMI, fetal sex and interactions thereof on the magnitude of change in UtA-PI
and UA-PL

Results: Throughout gestation, UtA-PI was higher for male fetuses and UA-PI was higher
for female fetuses. The physiological drop of UtA-PI was significantly smaller in overweight
(change -24.3% [95% confidence interval (CI) -22.3, -26.2]) and obese women (change
-21.3% [-18.3, -24.3]), compared to normal weight women (change -25.7% [-24.3, -27.0])
but did not differ by fetal sex. The physiological drop in UA-PI was greater for female than
male fetuses (—32.5% [-31.5, -33.5] vs. -30.7% [-29.8, -31.7]) but did not differ by maternal
BMI. No interactions between maternal BMI and fetal sex were found.

Conclusion: Maternal cardiovascular adaptation to pregnancy is independently associated
with maternal BMI and fetal sex. These results imply sexual dimorphism in both maternal

cardiovascular adaptation and feto-placental resistance.



4.2 Background 91

4.2 Background

Successful pregnancy requires the de novo creation of low resistance utero-placental and
feto-placental circulations. Incomplete remodelling of the maternal spiral arteries or fail-
ure to form a sufficiently low-resistance placental circulation results in fetal and maternal
compromise, and subsequent adverse outcomes, including preeclampsia [286, 287, 121] and
fetal growth restriction [121, 288, 127]. Doppler ultrasonography can be used in pregnancy
to assess the utero-placental and feto-placental circulation, with the uterine artery doppler
pulsatility index (PI) reflecting vascular resistance on the maternal side of the placental
circulation [289] and the umbilical artery PI reflecting the vascular resistance on the fetal side
of the placenta [290, 291]. In the non-pregnant state, obesity impairs vascular compliance and
is associated with increased arterial stiffness [292, 293]. In pregnancy, high maternal BMI is
associated with increased systolic blood pressure, increased left ventricular mass, and higher
stroke volume [294-296], even in pregnant obese women without perinatal complications
[297, 298]. Women with a higher BMI have a ‘dose-dependent’ increased risk of incomplete
spiral artery conversion during pregnancy, which is likely to impair the formation of an

appropriately low-resistance utero-placental circulation [152]

Fetal sex is also increasingly recognised as a key modulator of both placental development
and maternal adaptation to pregnancy [299, 282, 300]. Recent evidence suggests that fetal
sex differences influence the production of maternal angiogenic and fibrinolytic factors (e.g.
sFlt-1, PIGF), wthat are known for their associations with placental development and pla-
cental vascular adaptation to pregnancy [301, 302]. Broere-Brown and colleagues observed
sex differences in ultrasonographic measurements of maternal vascular resistance; women
pregnant with a male fetus had higher uterine artery pulsatility index (UtA-PI) in the second
and third trimester compared to women carrying a female fetus [303]. Further evidence
suggests that the umbilical artery pulsatility index (UA-PI) is higher in pregnancies where
the fetus is female compared to male [304].

The aim of the present study was to define the longitudinal impact of maternal BMI and
fetal sex on resistance in the utero-placental and feto-placental circulation, and in particular
whether these are synergistic or independent factors. Crucially, both of these factors can
vary between different pregnancies in the same woman. BMI changes between subsequent
pregnancies are relatively common and alter the risk of an adverse pregnancy outcome [254].
Fetal sex is determined as-if-at-random for each pregnancy and is also an important influence
on pregnancy success [305, 306]. Our findings may therefore help to explain variability in

pregnancy complications experienced by women in successive pregnancies.
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4.3 Methods

Women from the Pregnancy Outcome Prediction Study (POPS) were included in this analysis.
The description of the POPS study design, inclusion criteria and general definitions can be

found in Chapter 3.

4.3.1 Definitions specific for this analysis

Uterine artery dopplers were quantified at the 20, 28- and 36-weeks scan as the mean PI of
the left and right uterine arteries. Umbilical artery dopplers were quantified at the 20, 28- and
36-weeks scan. The cut off values for clinically relevant reference ranges of the pulsatility
indices (PI) used were (i) uterine artery PI >95" centile at 20 wkGA (ii) umbilical artery PI
>95'" centile at 28 wkGA and (iii) umbilical artery PI >95'" centile at 36 wkGA.

4.3.2 Doppler measurements

The UtA-PI was assumed to reflect the resistance in the utero-placental circulation and thus
the efficacy of spiral artery remodelling [286], with a higher UtA-PI indicating narrow and
stiff spiral arteries [307]. The UA-PI was assumed to primarily reflect resistance in the

feto-placental circulation (although it will also depend on fetal cardiac function [308, 309]).

4.3.3 Data analysis

As the Doppler measurements for the UtA-PI and UA-PI were not normally distributed, they
were log-transformed before used in the model. To account for non-independence of the
repeated measured pulsatility indices (multiple measurements in the same woman), linear
mixed regression analyses were used to model the absolute log-transformed UtA-PI or UA-PI
measurements to assess the changes in UtA-PI or UA-PI levels over gestation. The linear
mixed models included a random intercept per woman, fixed effects for BMI category and/or
fetal sex (and interactions thereof) at the estimated gestational age at each research scanning
time (i.e. 20, 28 or 36 weeks). Further adjustment was made for maternal systolic blood
pressure measured at 12 weeks, maternal ethnicity, maternal age, marital status, maternal
smoking status and deprivation index. Covariates were selected based on clinical relevance.
The B-coefficient output from the mixed linear model was transformed to a percentage
change between scanning timepoints to allow for easier interpretation. The model used to
estimate the unadjusted log transformed levels of UtA-PI over gestation by BMI categories

can be represented as:
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log(UtA — Pl;;y = NORMAL WEIGHT; x ¥3_, Bo;di; + OVERWEIGHT; x Y3_, By jd;; + OBESE; x Y2_, Bo;d;; @1

where d;; equals the estimated gestational age at the 20-week scan minus 20, d;; represents
the estimated gestational age at the 28-week scan minus 28 and d;3 represents the estimated
gestational age at the 36-week scan minus 36; u; represents the random intercept and e;;
represents residual error for individual i and scanning time j for j=1,...,3. This parameterisa-
tion allows easy interpretation, for example, By, Bo2 and Bo3 represent the log-transformed

values in UtA-PI at exactly 20, 28 or 36 weeks, respectively for normal weight women.

As a sensitivity analysis, we repeated the analyses to (i) include glucose measurement at
28 weeks, (ii) add gestational weight gain as covariates and (iii) exclude women who ex-
perienced any perinatal complication during pregnancy (gestational diabetes, preeclampsia,
gestational hypertension or preterm birth.

Statistical analyses were preformed using R [310] with the Ime4 package [311] for performing

mixed linear models. Figures were produced using the ggplot2 package [312].

4.4 Results

A total of 4512 women enrolled in the POP study, with 300 women lost to follow up. For
this analysis, we excluded women with missing information on maternal BMI and/or fetal
sex (n=19), with a stillbirth or miscarriage (n=33), with missing information on covariates
(n=351) and who were underweight (n=67), since the underweight group was underpowered
for inference (Figure 4.1).
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Fig. 4.1 Flow diagram showing in- and exclusion criteria. The final population available for
analysis was 3742 women. POPS; Pregnancy Outcome Prediction Study, BMI; Body Mass
Index.

A total of 3742 women were included in the analyses, of whom 57.8% had a normal weight
(BMI 18.5-24.9 kg/m?), 28.3% were overweight (BMI 25.0-29.9 kg/m?), and 13.9% were
classified as obese (BMI >30.0 kg/mz) (Table 4.1). Women with higher maternal BMI were
more likely to be smokers, and have pre-existing and gestational hypertension, as well as
preeclampsia and gestational diabetes. Neonates born to overweight and obese women were
more likely to have higher birthweight and placental weight compared to babies born to
normal weight women (Table 4.1).There were no significant differences in maternal baseline
characteristics or perinatal complications between fetal sexes. Male neonates had on average

about 125g higher birthweight compared to female neonates (Table 4.2).
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Normal weight Overweight Obese Total
n=2164 n=1059 n=519 n=3742

Maternal age (y) 30.0 (4.8) 30.4 (5.3) 29.3 (5.7) 30.0(5.1)
Gestational age at first scan (week) 12.6 (0.8) 12.6 (0.8) 12.9 (0.6) 12.9 (0.9)
Gestational weight gain* (kg)

Total weight gain 12.4 (3.7) 12.8 (4.5) 10.8 (5.4) 12.3 (4.2)

From 12 to 20 weeks 34 (2.1 32(2.2) 2.6(24) 32222

From 20 to 28 weeks 4.7(2.2) 4.9 (2.3) 4.0 (2.3) 4.6 (2.3)

From 28 to 36 weeks 4.3 (2.3) 4.6 (2.4) 4.2 2.7 44 (2.4)
Smoking status

Non-smoker 1381 (63.8) 592 (55.9) 266(51.3) 2239 (59.8)

Quit prepregnancy 536 (24.8) 330 (31.2) 161 (31.0) 1027 (27.4)

Quit during pregnancy 143 (6.6) 93 (8.8) 58 (11.2) 294 (7.9)

Current smokers 104 (4.8) 44 (4.2) 34 (6.6) 182 (4.9)
Systolic BP (12 wkGA (mmHg)) 106.5 (11) 1094 (11)  114.5(11) 108.4 (11)
Fetal sex

Male 1090 (50.4) 531 (50.1) 264 (50.9) 1885(50.4)

Female 1074 (49.6) 528 (49.9)  255(49.1) 1857 (49.6)
Maternal ethnicity

White 2027 (93.7) 1005 (94.9) 498 (96.0) 3530 (94.3)

Other 137 (6.3) 54 (5.1) 21 (4.0) 212 (5.7)
Marital status

Married 1535 (70.9) 718 (67.8) 316 (60.9) 2569 (68.7)

Not married 629 (29.1) 341(32.2) 203(39.1) 1173 (31.3)
Deprivation score

1 (lowest) 555 (25.6) 282 (26.6) 112(21.6) 949 (25.4)

2) 518 (23.9) 276 (26.1) 128 (24.7) 922 (24.6)

3) 541 (25.0) 271 (25.6) 132(25.4) 944 (25.2)

4 (highest) 550 (25.4) 230 (21.7)  147(28.3) 927 (24.8)
Pre-existing diabetes

Yes 4(0.2) 10 (0.9) 2 (0.4) 16 (0.4)

No 2160 (99.8) 1049 (99.1) 517 (99.6) 3726 (99.6)
Pre-existing hypertension

Yes 64 (3.0) 68 (6.4) 67 (12.9) 199 (5.3)

No 2100 (97.0) 991 (93.6) 452 (87.1) 3543 (94.7)
Gestational hypertension

Yes 24 (1.1) 23 (2.2) 20 (3.9) 67 (1.8)

No 2138 (98.8) 1035 (97.7) 499 (96.1) 3672 (98.1)

Unknown 2(0.1) 1(0.1) 0(0.0) 3(0.1))
Preeclampsia

Yes 95 (4.4) 76 (7.2) 84 (16.2) 255 (6.8)

No 2067 (95.5) 982 (92.7) 435(83.8) 3484 (93.1)

Unknown 2(0.1) 1(0.1) 0(0.0) 3(0.1))
Gestational diabetes

Yes 58 (2.7) 62 (5.9) 57 (11.0) 177 (4.7)

No 2105 (97.3) 993 (93.8) 462 (89.0) 3560 (95.1)

Unknown 1 (0.0) 4(0.4) 0(0.0) 5(0.1)
Birthweight (g) 3380 (498) 3444 (519) 3498 (569) 3414 (516)
Placental weight (g) 451 (93) 473 (102) 490 (489) 463 (99)

Table 4.1 Baseline and birth characteristics stratified by maternal BMI category. Data are
represented as mean (SD) or as number (%). BP; blood pressure, wkGA; weeks gestational
age. Differences in baseline characteristics were tested using chi-square tests and Kruskal-
Wallis tests. *n-number for gestational weight gain at (i) 12-20wk; normal weight 2139,
overweight 1048 and obese 515, (i1) 20-28wk; normal weight 2085, overweight 1024 and
obese 503, (iii) 28-36 wk; normal weight 1991, overweight 955 and obese 465, (iv) 12-36wk;
normal weight 2021, overweight 965 and obese 471.
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Male fetus  Female fetus Total
n=1885 n=1857 n=3742
Maternal age (y) 30.1 (5.1) 299 (5.1) 30.0 (5.1)
Gestational age at first scan (w) 12.7 (0.8) 12.6 (0.9) 12.9 (0.9)
Gestational weight gain* (kg)
Total weight gain 12.4 (4.3) 12.1 (4.1) 12.3 (4.2)
From 12 to 20 weeks 3.3(2.2) 3.2(2.1) 3.2(22.2)
From 20 to 28 weeks 4.7 (2.3) 4.6 (2.2) 4.6 (2.3)
From 28 to 36 weeks 44 (2.4) 4.3 (2.3) 44 (2.4)
Smoking status
Non-smoker 1151 (61.1) 1088 (58.6) 2239 (59.8))
Quit prepregnancy 486 (25.8) 541 (29.1) 1027 (27.4)
Quit during pregnancy 149 (7.9) 145 (7.8) 294 (7.9)
Current smokers 99 (5.3) 83 (4.5) 182 (9.8)
Systolic BP (12 wkGA (mmHg))  108.5 (12) 108.3 (11) 108.4 (11)
Maternal BMI category
Normal weight 1090 (57.8) 1074 (57.8)  2164(57.8)
Overweight 531 (28.2) 528 (28.4) 1059 (28.3)
Obese 264 (14.0) 255 (13.7) 519 (27.9)
Maternal ethnicity
White 1773 (94.1) 1757 (94.6) 3530 (94.3)
Other 112 (5.9) 100 (5.4) 212 (5.7)
Marital status
Married 1297 (68.8) 1272 (68.5) 2569 (68.7)
Not married 588 (31.2) 585 (31.5) 1173 (31.3)
Deprivation score
1 (lowest) 495 (26.3) 454 (24.4) 949 (25.4)
2) 452 (24.0) 470 (25.3) 922 (24.6)
3) 465 (24.7) 479 (25.8) 944 (25.2)
4 (highest) 473 (25.1) 454 (24.4) 927 (24.8)
Pre-existing diabetes
Yes 7(0.4) 9(0.5) 16 (0.4)
No 1878 (99.6) 1848 (99.5) 3726 (99.6)
Pre-existing hypertension
Yes 106 (5.6) 93 (5.0) 199 (5.3)
No 1779 (94.4) 1764 (95.0) 3543 (94.7)
Gestational hypertension
Yes 35(1.9) 32(1.7) 67 (1.8)
No 1848 (98.0) 1824 (98.2) 3672 (98.1)
Unknown 2(0.1) 1(0.1) 3(0.1))
Preeclampsia
Yes 138 (7.3) 117 (6.3) 255 (6.8)
No 1745 (92.6) 1739 (93.6) 3484 (93.1)
Unknown 2(0.1) 1(0.1) 3(0.1))
Gestational diabetes
Yes 96 (5.1) 81 (4.4) 177 (4.7)
No 1786 (94.7) 1774 (95.5) 3560 (95.1)
Unknown 3(0.2) 2(0.1) 5(0.1)
Birthweight (g) 3477 (529) 3350 (494) 3414 (516)
Placental weight (g) 465 (99) 461 (99) 463 (99)

Table 4.2 Baseline and birth characteristics stratified by fetal sex. Data are represented as
mean (SD) or as number (%). BP; blood pressure, wkGA; weeks gestational age. Differences
in baseline characteristics were tested using chi-square tests and Kruskal-Wallis tests. *n-
number for gestational weight gain at (i) 12-20wk; male fetus 1866, female fetus 1836 (ii)
20-28wk; male fetus 1814, female fetus 1800, (iii) 28-36 wk; male fetus 1709, female fetus
1702, (iv) 12-36wk; male fetus 1732, female fetus 1725.
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The absolute values of UtA-PI were similar between normal, overweight and obese women at
the 20-week scan (Figure 4.2). The physiological drop in UtA-PI between 20 and 36 weeks
was lower in obese women compared to women of normal weight (mean drop -21.3% [95%
CI-18.3, -24.2] vs -25.7% [-24.3, -27.0], respectively, p<0.001) (Table 4.3), which remained
after correction for maternal variables including maternal BMI, systolic blood pressure at 12
weeks gestation, marital status, maternal age, maternal ethnicity and deprivation index. This
overall decrease in physiological drop is due to a diminished fall in resistance in the early
phase (20 to 28 weeks), rather than the later phase (28 to 36 weeks).

UtA-PI was higher throughout gestation for women carrying a male versus female fetus
(Figure 4.2). Fetal sex did not significantly influence the magnitude of the drop in uterine
artery PI over gestation (Table 4.4). There was no evidence of an interaction between fetal
sex and maternal BMI on UtA-PI over gestation (Table 4.5).

Women carrying a female fetus had a higher UA-PI throughout all of gestation compared to
women carrying a male fetus (Figure 4.3). The overall drop in UA-PI between 20 and 36
weeks was greater in women carrying a female fetus compared to a male fetus (-32.5% [-31.5,
-33.5] vs -30.7% [-29.8, -31.7], respectively, p<0.001) (Table 4.6). We did not observe any
differences in umbilical artery pulsatility indices or the drop in UA-PI between maternal
BMI categories (Figure 4.3 and Table 4.7). We did not find any sexual dimorphism in the
relationship between UA-PI and maternal prepregnancy BMI (Table 4.8).

A total of 5% of women had a UtA-PI value >95 centile at 20 wkGA; 5.3% of normal
weight women were above the reference range, while 4.9% of overweight and 4.0% of obese
women had UtA-PI values >95'" centile at 20 wkGA (chi-square test p-value =0.50). At 28
wkGA, 5.0% of women had a UA-PI value >95" centile; 4.4% of the women carrying a
male fetus and 5.6% of the women carrying a female fetus were above the reference range
(chi-square test p-value =0.28). The same pattern was seen at 36 wkGA for a UA-PI value
>95!" centile; 4.7% of all women, 4.3% of women carrying a male fetus and 5.1% of women
carrying a female fetus had a UA-PI >95” centile at 36 wkGA (chi-square test p-value = 0.78).

Results for the sensitivity analysis investigating the influence of glucose levels at 28 weeks
gestation or gestational weight gain, as well as excluding women with gestational diabetes,
preeclampsia, gestational hypertension and preterm birth were unchanged from the main
analysis (Tables 4.9, 4.10 and 4.11).
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4.5 Discussion

4.5.1 Main findings

We assessed the impact of maternal obesity and fetal sex on both utero-placental and feto-
placental resistance over the course pregnancy, with the aim of improving understanding of
the variability in risk of complications in successive pregnancies. We show that resistance in
the utero-placental circulation is independently influenced by both maternal BMI and fetal
sex. The physiological drop in uterine artery PI over the course of gestation was attenuated
in women who were overweight or obese compared to women whose BMI was in the normal
range. The impact of maternal BMI on utero-placental resistance became greater as the
pregnancy progressed. By contrast, the impact of fetal sex on utero-placental resistance was
consistent throughout gestation. Women carrying a male fetus had consistently higher uterine

artery doppler PI compared to women carrying female fetuses at every measured time-point.

Resistance in the feto-placental circulation was independent of maternal BMI but influenced
by fetal sex. Pulsatility index in the umbilical artery was higher in women carrying a female
fetus compared to women carrying a male fetus at all time-points, but the magnitude of

difference between sexes reduced with increasing gestation.

Previous studies have shown similar patterns when investigating fetal sex differences in the
absolute values of UtA-PI in the second and third trimester [303], and between maternal
prepregnancy BMI and higher UtA-PI in the third trimester [313]. However, in contrast to
our study, prior research did not assess the physiological change in vascular resistance over

the course of gestation or a possible interaction between maternal BMI and fetal sex.

4.5.2 Strengths and Limitations

A major strength of the current work is the detailed phenotyping and completeness of the
data available regarding pregnancies in the POP cohort [267]. In particular, longitudinal
ultrasonographic measurements of both the uterine and umbilical artery pulsatility indices
from 20 weeks of pregnancy through to 36 weeks are available on a large cohort of nulliparous
women. Moreover, the detailed set of covariates in the POP study dataset allowed adjustment
of the models for other relevant maternal characteristics. A limitation of this study is the
lack of availability of other Doppler parameters (e.g. resistance index) as well as the lack

of longitudinal blood pressure data, as previous studies have shown a significant effect of
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maternal weight [314, 315] as well as fetal sex [303] on the systolic and diastolic blood

pressure.

4.5.3 Interpretation

Our study confirms the finding of previous research that the UtA-PI steadily declines over
gestation [316, 317]. Up to halfway in pregnancy, this process is thought to reflect the
conversion process of the spiral arteries [318]. Additionally, there are several possible ex-
planations for the further reduction in resistance in the uterine artery in the second half of
pregnancy [316]. Firstly, trophoblast invasion and further remodelling of the spiral arteries
could continue in the second and third trimester. Secondly, the uterine artery will dilate
throughout gestation, most likely induced by activation of nitric oxide synthase by estrogens
and higher shear stress as a result of of increased flow resulting from increased cardiac output
[46]. Together with other maternal haemodynamic changes such as lower blood viscosity
and reduced peripheral resistance this can lead to a reduction in vascular resistance in the

uterine artery.

Obese women had higher absolute UtA-PI values at 20 wkGA compared to normal weight
and overweight women, possibly reflecting poorer spiral artery remodelling up to that point in
gestation [318]. Uterine natural killer cells, involved in the spiral artery remodelling process,
exhibit functional changes in gene expression and growth factor signalling when exposed to
maternal obesity [319] and could therefore restrict the adaptation process. Additionally, a
previous study has found a ’dose-dependent’ increase in the risk of abnormal spiral artery
conversion with an increase maternal prepregnancy BMI [152].

Remodelling of the uterine vasculature is one of the major changes required to provide ade-
quate utero-placental perfusion and subsequently facilitate fetal growth [320]. As mentioned
above, poorer maternal haemodynamic adaptation to pregnancy in obese women could be
underpinning the diminished drop in UtA-PI. For instance, obese women have a decrease in
cardiac output in the third trimester [321]. Outside of pregnancy, flow-mediated vasodilation
also seems reduced in brachial artery of obese women compared to lean women [322]. As
mentioned above, in pregnancy, flow-mediated dilation of the uterine artery is mediated
by the release of nitric oxide (NO) [46]. Moreover, endothelial-dependent vasodilation is
significantly lower in obese women during pregnancy at each trimester compared to normal
weight women [147]. There is an extensive literature suggesting that obesity impairs NO

availability (reviewed in [323-325]), suggesting that reduced NO availabilty might play a
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role in impaired (flow-mediated) vasodilation and subsequently higher UtA-PI values.

Few previous studies have examined differences in utero-placental vascular resistance by fetal
sex. Widnes and colleagues reported no differences in uterine artery resistance at 22-24 weeks
gestation between fetal sexes [304], whereas, Broere-Brown reported a systemically higher
UtA-PI in the second and third trimester in women carrying a male fetus [303], consistent
with the findings in this analysis. The mechanism by which fetal sex can influence pulsatility
index in the uterine artery is not known, however, placental sex has a profound effect on
the placental transcriptome, largely mediated by genes which escape from X chromosome
inactivation. These differences include both previously recognised and placental-specific
escapees and these changes in turn alter the maternal serum metabolome [282]. Hence, it
is plausible that fetal sex may alter maternal cardiovascular adaptation to pregnancy [326].
However, there are also morphological differences in male versus fetal placentas, for example
placental weight, capillary density and trophoblast differentiation [327, 328], which may
be reflected in a direct difference in placental vascular resistance affecting flow in both the

utero-placental and feto-placental circulations.

4.5.4 Conclusion

This analysis implies that higher BMI and male fetal sex are independent risk factors for
higher resistance in the uterine artery, which act through distinct pathways. Previous re-
ports suggest that there is a higher incidence of placenta-mediated pathologies, for example
preeclampsia, in pregnancies with male rather than female fetuses [329], which could be
linked to the observed differences in utero-placental and feto-placental blood flow. Fur-
thermore, maternal prepregnancy BMI is also a known risk factor for pathologies linked to
impaired utero-placental blood flow, for example FGR and preeclampsia [132, 330]. The
finding that higher maternal BMI is associated with attenuation of the physiological drop
in pulsatility index of the uterine artery across gestation provides impetus for further work
exploring interventions that can improve utero-placental blood flow in mothers with higher
BMI. Pulsatility index in the uterine artery is a key predictor of adverse pregnancy outcomes,
such as preeclampsia and fetal growth restriction [287, 331], hence these findings give new

insight into the independent risks posed by high maternal BMI and male fetal sex.






Chapter 5

Timing of gestational weight gain and the
risk of developing preeclampsia or
delivering a small for gestational age
neonate; a prospective cohort study

The work in this chapter, including text and all figures, has been submitted to the British

Journal of Obstetrics and Gynaecology for publication.
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5.1 Chapter summary

Background:Gestational weight gain (GWGQG) is recognised to be a modifiable risk factor for
adverse maternal and fetal perinatal outcomes. However, studies only assessing weight gain
across the total gestational period might miss important gestational age-related differences in
risk. Furthermore, although preeclampsia (PE) and small for gestational age (SGA) neonates
share a background in placental dysfunction, studies suggest that higher weight gain in
associated with a lower risk of SGA neonates, but a higher risk of developing PE. The aim
of this study is therefore to investigate the association and timing of GWG on the risk of
developing PE and delivering an SGA neonate.

Methods: Logistic regression quantified odds ratios for the associations between estimated
weight gain per gestational age period (12-20 weeks of gestational age [WkGA], 20-28wkGA
and 28-36wkGA) and preeclampsia (PE), SGA, or their combination.

Results: GWG at all gestational periods was associated with a lower risk of delivering an
SGA neonate, and associations were stronger with earlier GWG (adjusted odds ratio (aOR)
per 1 kg GWG 0.85 (95% confidence interval [CI] 0.80-0.91) at 12-20wkGA versus 0.94
(0.90-1.00) at 28-36wkGA, p-value for heterogeneity=0.02). Weight gain between 28 and
36wkGA was associated with a higher risk of developing PE (aOR 1.25; CI 1.18-1.33)
and the risk of developing PE and having an SGA neonate simultaneously (aOR 1.18; CI
1.04-1.32). Associations were consistent across maternal pre-pregnancy body mass index
categories.

Conclusion: GWG is differentially associated with the risk of developing PE and delivering
an SGA neonate; the associations are in opposite directions and differ across gestation
periods. Interventions targeted at second trimester weight gain may reduce the risk of SGA,
without increasing the risk of PE.
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5.2 Background

Gestational weight gain (GWG) is recognised to be a modifiable risk factor for adverse ma-
ternal and fetal perinatal outcomes and long-term cardio metabolic health in offspring [332].
Effects of total GWG across gestation are well studied [166, 333], exposing an association
between excessive GWG (according to the National Academy of Medicine (NAM) criteria,
previously known as the Institute of Medicine IOM) guidelines) and common perinatal
complications such as hypertensive disorders in pregnancy and delivering a large for gesta-
tional age neonate. However, studies only assessing weight gain across total gestation might
miss important gestational age-related differences in risk. Moreover, weight gain in early
pregnancy is thought to reflect maternal fat deposition, whereas later GWG can be attributed
to growth of the fetus, placenta and uterus [334], possibly having differential effects on fetal
and maternal outcomes. Furthermore, if patterns of GWG are better understood, they could
be employed as monitoring tools for clinicians when interventions during gestation are still
possible.

Preeclampsia (PE) and delivering a small for gestational age (SGA) neonate share a back-
ground of placental dysfunction, possibly based on an increase in oxidative stress [274, 278].
Maternal obesity is known to be associated with an increase in oxidative stress [335, 336], but
less is known about the effects of GWG on the placental function. Previous studies suggest
that excessive weight gain according to the NAM guidelines would be protective of delivering
an SGA neonate, but is associated with a higher risk of developing PE. The association
between timing of GWG and neonatal size has previously been studied [172, 337-339],
but research on the association between trimester-specific weight gain on preeclampsia are
sparse. To clarify the effects of the timing of GWG on these placental syndromes, we aimed
to investigate the association and timing of GWG on the risk of developing PE, delivering
an SGA neonate or these two complications combined (PE + SGA), using data from a

prospective cohort of nulliparous women.

5.3 Methods

Women from the Pregnancy Outcome Prediction (POP) study were included in this analy-
sis.The description of the POPS study design, inclusion criteria and general definitions can
be found in Chapter 3.
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5.3.1 Definitions specific for this analysis

All definitions used in this chapter can be found in Chapter 3.

5.3.2 Gestational weight gain

Gestational weight was measured at approximately 12, 20, 28 and 36 wkGA, with actual
timing of visits ranging by average differences of around + 4 days. Observed gestational
weight was recalibrated to exactly 12, 20, 28 and 36 wkGA from a single linear regression of
observed maternal weight on observed actual visit time, allowing for different intercepts and
slopes for the four visits, and a random intercept for each mother to allow for dependency
between repeated measures. Gestational weight gain in kg was then estimated for 12-20,
20-28, 28-36 and 12-36 wkGA, which was further classified as ‘adequate’, ‘inadequate’ and
‘excessive’, as per NAM guidelines [15]. Inadequate GWG was classified as weight gain less
than 0.35, 0.28 or 0.22 kg/wkGA for normal, overweight and obese women, respectively.
Excessive GWG was considered as weight gain more than 0.50, 0.33 or 0.27 kg/wkGA for

normal, overweight and obese women, respectively.

5.3.3 Outcomes

Preeclampsia was defined as per 2013 classification of the American College of Obstetricians
and Gynecologists (ACOG) [340]. Small for gestational age was defined as birthweight
<10 centile, using fetal sex and gestational age adjusted reference standard derived from a
UK population [341].

5.3.4 Statistical analysis

The predefined analysis plan for this study can be found in Appendix 2. In summary, a

two-step modelling approach was used.

In the first step of the analysis, gestational weight gain for each women was corrected to
an estimated weight gain for exactly 12-20, 20-28 28-36 and 12-36 wkGA using a mixed
effect linear model to take into account the repeated measurements per woman. The model
regressed weight on the difference in gestational age between the planned and the actual visit

and the random intercept accounts for the dependency between measurements.

In the second step, separate ordinary logistic regression models were used to calculate odds

ratios (ORs) for the associations between the new estimated weights from step 1 for each
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gestation period (12-20, 20-28, 28-36 and 12-36wkGA) and (i) all PE (vs all non-PE, includ-
ing SGA) (i1) all SGA (vs all non-SGA, including PE) and (iii) the combination of PE and
SGA (vs all non-PE and non-SGA, including PE or SGA alone).

Effect modification by maternal body mass index (BMI) category was assessed using GWG
and BMI interaction terms. Odds ratios (ORs) between gestation periods were formally
compared using further single logistic models with GWG and gestation interaction terms
and robust standard errors (to account for the dependencies of repeated measurements within
each mother).

All models were fitted with and without adjustment for maternal BMI at 12 wkGA, maternal
age, deprivation index, marital status, smoking status, maternal ethnicity and age at leaving
fulltime education. All analyses were performed within R for windows, version 3.4.2. [310]

5.4 Results

5.4.1 Subject characteristics

A total of 4,512 women enrolled in the POP study, of whom 300 were lost to follow up. For
this analysis, women with missing pre-pregnancy BMI (n=7), who were underweight (n=68,
since this group was too small for interpretation) or with missing covariate information (n=
349) were excluded (Figure 5.1). Of the remaining 3788 women, 2190 (57.8%) had a normal
BMI, 1070 (28.2%) were overweight and 528 (13.9%) were obese. Estimated GWG was
available for 3730 women between 12-20 wkGA, for 3623 women between 20-28 wkGA, for
3423 women between 28-36 wkGA and for 3468 women between 12-36 wkGA (Figure 5.1).
GWG between 12-36 wkGA was lower in obese women than in normal weight women (Table
5.1). Women with higher prepregnancy BMI were more likely to be younger, smokers, and
have pre-existing hypertension and diabetes (Table 5.1). The incidences of adverse outcomes
in this cohort study were: all PE 6.6%, all SGA 8.9%, and PE + SGA simultaneously 0.7%.

5.4.2 Rate of weight gain in perinatal complications

The mean rate of GWG was 0.38 kg/week between 12-20 wkGA, 0.59 kg/week between
20-28 wkGA and 0.55 kg/week between 28-36 wkGA. Women who developed PE during
pregnancy had a higher rate of GWG (in kg per week) between 28-36 wkGA compared to
women without PE (0.72 kg/week vs. 0.53 kg/week respectively) (Figure 5.2). The rate
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Normal weight ~ Overweight Obese Total
n=2190 n=1070 n=528 n=3788
Maternal age (y) 30.0 (4.8) 30.4 (5.3) 29.4 (5.7) 30.0(5.1)
Gestational age at visit (uncorrected)
12 weeks 12.6 (0.8) 12.6 (0.8) 12.6 (0.9) 12.6 (0.9)
20 weeks 20.3 (0.5) 20.4 (0.5) 20.6 (0.5) 20.4 (0.5)
28 weeks 28.3(0.4) 28.3(0.4) 28.3 (0.4) 28.3(0.4)
36 weeks 36.2 (0.4) 36.2(0.4) 36.2 (0.4) 36.2(0.4)
Ethnicity
White 2048 (93.5%) 1016 (95.0%) 507 (96.0%) 3571 (94.3%)
Non-white 142 (6.5%) 54 (5.0%) 21 (4.0%) 217 (5.7%)
Deprivation score (quartile)
1 (lowest) 562 (25.7%) 282 (26.4%) 113 (21.4%) 957 (25.3%)
2 535 (24.4%) 278 (26.0%) 129 (24.4%) 942 (24.9%)
3 546 (24.9%) 275 (25.7%) 133 (252%) 954 (25.2%)
4 (highest) 547 (25.0%) 235(22.0%) 153 (29.0%) 935 (24.7%)

Non-smoker 1405 (64.2%) 590 (55.1%) 266 (50.4%) 2261 (59.7%)

Quit pre-pregnancy 538 (24.6%) 341 31.9%) 170 (32.2%) 1049 (27.7%)

Quit during pregnancy 5146 (6.7%) 94 (8.8%) 58 (11.0%) 298 (7.9%)

Current smokers 5101 (4.6%) 45 (4.2%) 34 (6.45%) 180 (4.8%)
Marital status

(Married) 1553 (70.9%) 719 (67.2%) 324 (61.4%) 2596 (68.5%)

(Not married) 637 (29.1%) 351 (32.8%) 204 (38.6%) 1192 (31.5%)
Maternal weight (estimated, kg)

12 weeks 60.9 (6.4) 73.4 (6.7) 92.0 (12.6) 68.8 (13.3)

20 weeks 64.1 (6.8) 76.5 (7.1) 94.2 (12.4) 71.8 (13.2)

28 weeks 68.8 (7.2) 81.4 (7.6) 98.4 (12.6) 76.5 (13.3)

36 weeks 73.2 (7.8) 86.2 (8.3) 102.5 (12.9) 80.8 (13.6))
Gestational weight gain® (estimated, kg)

12-20 weeks 32 2.1 3.1 (2.6) 22(2.4) 3.0(2.3)

20-28 weeks 4.7 (4.7) 5.0(2.3) 4.3(2.2) 4.7 (2.2)

28-36 weeks 4.3 (2.3) 4.6 (2.4) 4.2 (2.7) 4.4(2.3)

12-36 weeks 12.2 (3.7) 12.6 (4.5) 10.6 (5.3) 12.1 (4.2)
Pre-existing diabetes

Yes 4 (0.2%) 10 (0.9%) 2 (0.4%) 16 (0.4%)

No 2186 (99.8%) 1060 (99.1%) 526 (99.6%) 3772 (99.6%)
Pre-existing hypertension

Yes 63 (2.9%) 64 (6.0%) 68 (12.9%) 195 (5.1%)

No 2127 (97.1%) 1006 (94.0%) 460 (87.1%) 3593 (94.9%))
Preeclampsia

Yes 91 (4.1%) 73 (6.7%) 85 (16.1%) 249 (6.6%)

No 2097 (95.8%) 996 (93.1%) 443 (83.9%) 3536 (93.3%)

Unknown 2 (0.1%) 1 (0.1%) 0 (0.0%) 3 (0.1%)
Small for gestational age

Yes 218 (10.0%) 83 (7.8%) 38 (7.2%) 339 (8.9%)

No 1964 (89.7%) 975 (91.1%) 487 (92.2%) 3426 (90.4%)

Unknown 8 (0.4%) 12 (1.1%) 3 (0.6%) 23 (0.6%)
Birthweight (g) 3376 (516) 3430 (554) 3496 (575) 3408 (537)
Placental weight (g) 451 (96) 469 (107) 490 (112) 461 (102)

Table 5.1 Baseline and birth characteristics stratified by maternal BMI category. Data are
represented as mean (SD) or as number (%). Differences in baseline characteristics were
tested using chi-square tests and Kruskal-Wallis tests. “Estimated gestational weight available
for 3730 women 12-20wkGA, 3623 women 20-28wkGA, 3423 women 28-36wkAG and
3468 women 12-36wkGA.
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| 4212 women in POPS database |
*4 7 women missing BMI| |

| 4205 women with BMI available |

A-| 68 women with BMI <18.5 |

‘ 4137 women with BMI 218.5 |

Covariates
0 women missing maternal age
170 women missing deprivation score

0 women missing marital status

67 women missing ethnicity

0 women missing smoking status

124 women missing age up until in full
time education

3788 women included in analysis |

-| 3730 women with GWG available 12-20 wkGA |

'| 3623 women with GWG available 20-28 wkGA |

-| 3423 women with GWG available 28-36 wkGA |

. >| 3468 women with GWG available 12-36 wkGA |

Fig. 5.1 Flow diagram showing in- and exclusion criteria. Amount of women that have
information available on GWG decreased during gestation due to preterm birth and/or missed
research appointments. 3766 women had at least one GWG measurement available. BMI;
Body mass Index. GWG; gestational weight gain, wkGA; weeks gestational age.

of weight gain was lower for women who delivered an SGA neonate during all gestation
periods compared to women delivering a non-SGA neonate (0.31 kg/week vs. 0.38 kg/week
for 12-20 wkGA, 0.53 kg/week vs. 0.60 kg/week for 20-28 wkGA and 0.50 kg/week vs.
0.55 kg/week for 28-36 wkGA, respectively) (Figure 5.2). Women who developed PE and
delivered an SGA neonate simultaneously had a higher rate of GWG between 28-36 wkGA
compared to women who did not have these combined complications (0.54 kg/week vs. 0.73

kg/week, respectively) (Figure 5.2).

5.4.3 Timing of gestational weight gain per kg weight gain in relation

to perinatal complications

Weight gain at any gestation period was associated with a lower risk of delivering an SGA
neonate. The associations were strongest at 12-20 wkGA (adjusted odds ratio (aOR) per
1 kg GWG 0.85, 95% CI 0.80, 0.91), intermediate at 20-28wkGA (aOR 0.89 (0.85-0.94),
p=0.30 for comparison with 12-20 wkGA) and weakest at 28-36wkGA (aOR 0.94 (0.90-1.00),
p=0.02 for comparison with 12-20wkGA) (Figure 5.3. Weight gain between 28-36 wkGA
was associated with a higher risk of developing PE (aOR 1.25 (1.18-1.33), p<0.001 for
comparison with 12-20wkGA) (Table 5.2 and Figure 5.3). Weight gain between 28-36wkGA

was also associated with a higher risk of developing PE and delivering an SGA neonate
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simultaneously (aOR 1.18 (1.04-1.32), p<0.001 for comparison with 12-20wkGA) (Figure
5.3. The associations for GWG were not modified by maternal BMI for any of the outcomes
of interest, at any gestation period (Figure 5.4). Total GWG between 12-36 wkGA was also
associated with a lower risk of delivering an SGA neonate (aOR 0.91 (0.89-0.94), Figure
5.3) and a higher risk of developing PE (aOR 1.10 (1.07-1.14), Figure 5.3). The associations

did not change on adjustment for potential confounders (Table 5.2).
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5.4.4 Timing of gestational weight gain according to the NAM guide-

lines in relation to perinatal complications

Excessive weight gain between 12-36 wkGA, according to the NAM guidelines, was associ-
ated with a higher risk of developing PE (aOR 1.59 (1.14-2.23), Table 5.3). This appeared to
be attributed to excessive late GWG between 28-36 wkGA (aOR 2.15 (1.36- 3.59)), with no
associations at earlier gestation. In contrast, excessive weight gain between 12-20 wkGA and
between 28-36 wkGA was associated with a lower risk of delivering an SGA neonate (aOR
0.72 (0.52- 0.99) and aOR 0.71 (0.53-0.96), respectively). There was no evidence of associ-
ation between inadequate weight gain and the risk of developing PE although inadequate
weight gain over the total course of gestation was associated with a higher risk of delivering
an SGA neonate (aOR 1.83 (1.38- 2.43)). The associations did not change on adjustment for
potential confounders (Table 5.3).
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A) Small-for-gestational age
Time interval N aOR [95% CI]
12-20 wkGA 333 o 0.85[0.80, 0.91]
20-28 wkGA 323 @ 0.89 [0.85, 0.94]
28-36 wkGA 303 »—0—' 0.94 [0.90, 1.00]
12-36 wkGA 308 L 0.91[0.89, 0.94]
| | | | |
0.6 0.8 1 1.2 1.4
Odds ratio [95% CI] per kg estimated weight change
B) Preeclampsia
Time interval N aOR [95% CI]
12-20 wkGA 245 =@ 1.05[1.00, 1.10]
20-28 wkGA 236 —o— 1.02 [0.96, 1.09]
28-36 wkGA 214 —e— 1.25[1.18, 1.33]
12-36 wkGA 217 - 1.10[1.07, 1.14]
[ T T T !
0.6 0.8 1 1.2 1.4
Odds ratio [95% CI] per kg estimated weight change
C) Small-for-gestational age and preeclampsia
g 9 P P
Time interval N aO0R [95% CI]
12-20 wkGA 28 »—0—-—~ 0.85[0.73, 1.03]
20-28 wkGA 25 ._.__. 0.89[0.78, 1.06]
28-36 wkGA 21 —e——  1.18[1.04, 1.32]
1236 WkGA 21 —— 1.02[0.91, 1.13]
| | T | 1
0.6 0.8 1 1.2 1.4

Odds ratio [95% CI] per kg estimated weight change

Fig. 5.3 Forest plot for the risk of delivering a (A) small for gestational age neonate (SGA),
developing (B) preeclampsia (PE), or (C) SGA and PE simultaneoulsy, stratified by tim-
ing of gestational weight gain. P-value for heterogeneity compared to 12-20wkGA time
period: SGA 20-28wkGA: 0.30, 28-36wkGA p=0.02. PE 20-28wkGA p=0.65, 28-36wkGA
p<0.001. PE + SGA 20-28wkGA p=0.62, 28-36 wkGA p<0.001. aOR; adjusted odds ratio,
CI; confidence interval, N; number of cases, wkGA; weeks gestational age.
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5.5 Discussion

5.5.1 Main findings

We assessed timing of weight gain during pregnancy on the risk of developing PE or SGA,
two common perinatal complications, with the aim of understanding risk patterns across
gestation. Our main findings suggest that weight gain during late gestation is associated
with a higher risk of developing PE and weight gain at any gestation stage, but especially
during earlier gestation, is associated with a lower risk of delivering an SGA neonate. These
associations were consistent for GWG characterised as kg weight gained, when classified

according to the NAM criteria, and across maternal prepregnancy BMI categories.

5.5.2 Strengths and limitations

Our study included only nulliparous women, thereby limiting the influence of parity on
perinatal outcomes. To limit confounding, this study adjusted for a variety of risk factors. To
correct for variation in observed timings of maternal weight measurements around planned
visits, calibration methods which enabled accurate estimation of weight gain within pre-
specified gestation periods were used, accounting for multiple measurements and allowing
each woman’s trajectory to vary about the population average [342]. Furthermore, it was
possible to account for effect modification by maternal BMI, allowing for the estimation of

effects of prepregnancy BML.

Nevertheless, the study has some potential limitations. First, it was not possible to study
weight gain in relation to PE up to time of diagnosis, due to unavailable data on time of
diagnosis or repeated measurements of blood pressure (which would have enabled censored
follow-up at the latest blood pressure within the normal range) [343]. The latest weight
measurements were observed at around 36wkGA, which preceded the diagnosis of most
PE. To further elucidate this, a sensitivity analysis was conducted separating PE in preterm
and term diagnosis, by gestational age at delivery (preterm defined as delivery <37wkGA),
which did not alter our results (data not shown). Second, SGA neonates are a heterogeneous
group of neonates, including constitutionally small and pathologically small neonates. It is
important to separate these groups, as truely growth restricted neonates are known to have
worse outcomes. Although it is very difficult to properly distinguish these subgroups, a
sub-analysis which divided SGA into SGA in the presence or absence of ultrasonic markers
of growth restriction, based on a Delphi panel consensus of the diagnosis [101], did not alter
the results (data not shown). Third, pre-pregnancy weight was not measured and therefore
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it was not possible to assess the first trimester GWG. Fourth, the cohort were mostly white
and from relatively affluent areas, and thus results may not generalise to other populations,
although recent studies have shown weight gain patterns are similar across different local
populations [344]. Fifth, the number of women affected by both complications (PE and SGA)
simultaneously was too small to draw meaningful conclusions. Sixth, strict classification of
GWG into the NAM categories places women with a wide range of weight gain in the same
group. Method of GWG calculations (e.g. using preconception weight, first trimester weight
and/or correction for gestational age) have a large influence on the category that women fall
under [345]. However, the associations between GWG and outcome in the current study
were consistent regardless whether GWG was classified according to the NAM criteria or

characterised per 1 kg weight gained.

5.5.3 Interpretation

This study has highlighted the complex and diverse potential mechanisms by which weight
gain may exert on perinatal outcomes. Both PE and fetal growth restriction (a subset of SGA)
are associated with placental dysfunction and resistance patterns in the uterine and umbilical
artery [346, 347], however, it is unclear why abnormal placental function in some cases
leads to fetal growth restriction and other times to PE. The opposite associations with GWG
may be a clue to divergence of the pathways leading to these conditions. The potential for
divergent metabolic pathways was highlighted by the observation that maternal serum levels
of the polyamine, N1,N12-diacetylspermine, were positively associated with preeclampsia
but negatively associated with SGA [282]. Our study confirms the established observed
association between GWG over the full course of pregnancy and the risk of developing PE
[333], and strengthens emerging evidence that it is weight gain in later pregnancy which is
most important [9, 175]. However, the direction of a possible causal mechanism remains
unclear. Preeclamptic pregnancies are characterised by vascular permeability and subsequent
oedema, which could explain rapid and excessive weight gain. This is supported by the
observation that the difference in total GWG at 36 wkGA between women with and without
PE was almost equal to the difference in total body water [164].

Weight gain during pregnancy is thought to include an increase in maternal fat mass, lean
mass and body water, additionally to the increase in weight from fetal (derived) tissues. Few
studies have focused on the relationship between patterns of GWG and changes in maternal
body composition. Hence, little is known about the influence of these individual components
on perinatal outcomes. Several studies have shown an association between second trimester
weight gain and neonatal size [172, 173, 348, 170, 174, 349, 350]. More recently, a study
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showed an association between the rate of GWG in the second trimester and greater maternal
fat mass, which was subsequently associated with neonatal size [334]. However, Butte and
colleagues showed an association between total maternal lean mass and a higher birthweight
[351], but not between total maternal fat mass and birthweight. Clarifying these associations
between separate components of GWG and birthweight could shed light on possible mech-
anisms by which GWG influences fetal growth and perinatal complications. Furthermore,
early detection of excessive or inadequate gain of these elements may be predictive of future

complications, e.g excessive water retention might precede a diagnosis of PE [352].

The opposite direction of associations between GWG and SGA and PE suggest that interven-
tions to enhance weight gain might reduce the risk of SGA at the expense of increased risk of
PE, if causality is assumed. A key finding of the present study is that the possible protective
effect of GWG on SGA is most marked prior to 28wkGA and that there is no association
between GWG and PE at this interval. These data indicate that if interventions to reduce the
risk of SGA through increased weight gain are considered, they may be optimally targeted
at the second trimester of pregnancy (12wkGA to 28wkGA). However, women typically
demonstrate a wide range of weight gain during gestation. This complicates the design of an
intervention to prevent the risk of SGA and questions clinical feasibility of such an interven-
tion. A large meta-analysis investigating the effect of dietary- and exercise interventions in
pregnancy on GWG and subsequent perinatal outcomes showed that dietary interventions
can reduced total GWG@G, while simultaneously lowering the risk for preeclampsia without a
higher risk of delivering an SGA neonate [353]. However, to my knowledge, no (randomised)
trial has investigated the opposite; whether increased weight gain in early pregnancy can

prevent SGA neonates, and what the effect on other perinatal outcomes is.

5.5.4 Conclusions

In conclusion, weight gain during late gestation is associated with a higher risk of developing
PE, and weight gain especially during earlier gestation is associated with a lower risk
of delivering an SGA neonate. The opposite direction of these associations suggests a
mechanism influenced by GWG that diverges a pregnancy down the PE or SGA route,
despite a shared pathophysiology in placental dysfunction. The associations at differential
timings suggest the second trimester as an optimal target for weight interventions to reduce
the risk of PE, without increasing the risk of SGA.
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6.1 Chapter summary

Background: Maternal obesity is thought to be associated with a higher risk of delivering a
pathologically small neonate as opposed to a constitutionally small neonate, due to subopti-
mal placental function. The aim of the current study is therefore to determine the association
between maternal prepregnancy body mass index (BMI) and the risk of delivering a small
for gestational age (SGA) neonate in the presence or absence of ultrasonic markers of fetal
growth restriction (FGR).

Methods: The analysis included 3,633 nulliparous women that delivered >37 weeks gesta-
tion, from the Pregnancy Outcome Prediction study, a prospective cohort study conducted
in Cambridge, UK, between 2008 and 2012. The women had fetal growth measurements
available from serial ultrasonic scans. Fetal growth restriction classification was based on
birthweight (BW) centile (population-based, corrected for fetal sex and gestational age) and
components of a Delphi panel consensus for growth restriction. A multinomial regression
model was used to quantify and formally compare the associations between maternal prepreg-
nancy BMI (per one unit higher BMI and categorised as normal, overweight or obese) and the
risk of delivering an SGA neonate in the presence (cases = 188) or absence (cases = 125) of
ultrasonic FGR markers, with adjustment for confounders. Sensitivity analyses investigated
different FGR definitions.

Results: Maternal prepregnancy BMI was similarly associated with a lower risk of deliv-
ering an SGA neonate in the presence of FGR markers (adjusted odds ratio (aOR) 0.96
[95% confidence interval (CI) 0.92-0.98], per one unit higher BMI), and a lower risk of
delivering an SGA neonate in absence of FGR makers (aOR 0.95 [0.92-1.00]) (p-value for
difference=0.70). Further, compared to women with a normal BMI, obese women had a lower
risk of delivering an SGA neonate in the presence of FGR markers (aOR 0.54 [0.33-0.91])
and absence of FGR markers (aOR 0.76 [0.36-1.19] (p-value for difference = 0.65). Use
of customised BW centiles attenuated the association between maternal prepregnancy BMI
and the risk of delivering an SGA neonate in the presence or absence of FGR markers (aOR
1.00 [0.97-1.03] and aOR 1.04 [1.0-1.07], respectively). Different definitions of FGR did not

materially change these associations.

Conclusion: Maternal prepregnancy BMI is similarly associated with a lower risk of deliver-
ing an SGA neonate in the presence or absence of ultrasonic markers of FGR at term. Obese

women are not at higher risk of delivering a pathologically small neonate at term.
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6.2 Background

The prevalence of obesity in pregnancy is rising worldwide. Maternal prepregnancy body
mass index (BMI) and obesity are known to be associated with a higher risk of delivering a
large for gestational age (LGA) neonate [333]. However, there are conflicting results with
regards to maternal obesity and the risk of delivering a small for gestational age (SGA)
neonate [333, 118].

Many studies use definitions of SGA and fetal growth restriction (FGR) interchangeably,
though SGA neonates are a heterogeneous group that can be divided in constitutionally
small or pathologically growth restricted fetuses. Distinguishing these two forms of SGA is
important, as fetuses affected by FGR have a higher risk of perinatal morbidity [354] and
mortality [99], as well as a higher risk of long term adverse consequences on cardiovascular
[355, 356] and neurodevelopmental health [357]. It is hypothesised that obese women have a
higher risk of delivering a pathologically rather than a physiologically small baby, as they
are thought to have suboptimal placental function that in turn could impair fetal growth,
possibly due to increased inflammation and impaired spiral artery remodelling[358, 359, 319].
Furthermore, SGA neonates born to obese women have poorer perinatal outcomes compared

to SGA neonates born to normal weight women[360].

Limiting factors for research into FGR are the numerous definitions used, as well as the lack
of longitudinal ultrasound data. In 2015, a Delphi panel was conducted to aim for consensus
of the definition and to aid research into FGR. The consensus definition reached is based on
biometric as well as functional parameters [101]. The Pregnancy Outcomes Prediction (POP)
study had the unique opportunity to gather longitudinal ultrasonic measurements on fetal
growth and uteroplacental Dopplers, while clinicians and patients were blinded to the results
of the research scans. This allowed for distinction between healthy but small neonates or

pathologically small neonates, based on the Delphi panel consensus.

Therefore, the aim of the current study was to determine the association between maternal
prepregnancy BMI and the risk of delivering an SGA infant, where SGA was sub-grouped

by the presence or absence of ultrasonic markers of FGR.
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6.3 Methods

Women from the Pregnancy Outcome Prediction (POP) study were included in this analy-
sis.The description of the POPS study design, inclusion criteria and general definitions can
be found in Chapter 3.

6.3.1 Definitions specific for this analysis

All definitions used in this chapter can be found in Chapter 3.

6.3.2 Outcomes

The primary outcome was SGA neonates born >37 wkGA, in the presence or absence of
ultrasonic markers of FGR. Small for gestational age was classified as birthweight <10
centile using a fetal sex and gestational age adjusted reference standard based on the UK
population [341]. Fetal growth restriction was defined as either (A) birthweight <3’ centile
based on the UK population standard or (B) birthweight <10 centile and at least one of
the following two criteria (1) slow growth velocity, defined as abdominal circumference
crossing >2 quartiles from 20 wkGA visit to 36 wkGA visit or from 28 wkGA visit to
36 wkGA visit (equivalent to a change in z score of less than -1.35 in the POP study)
(ii) pulsatility index of the umbilical artery >95 percentile at 36 wkGA using Acharya
reference [361]. This definition of FGR is based on a Delphi panel consensus [101]. The
reference group was neonates born at a non-SGA weight (defined as birthweight >10""
centile) regardless of the presence or absence of ultrasonic markers of FGR. To further
investigate the components of the FGR definitions, we used a previously defined [104]
abdominal circumference growth velocity (ACGYV), a difference between the exact gestational

age-adjusted z scores in abdominal circumferences measured at 20 and 36 wkGA.

6.3.3 Exposure and confounder definitions

Maternal weight at booking scan (.12 wkGA) was used as a proxy for prepregnancy weight.
BMI was calculated from maternal prepregnancy weight and maternal height. Maternal BMI
categories are based on the World Health Organisation categories, with BMI <24.9 kg/m? as
normal weight, 25-29.9 kg/m? as overweight and >30 kg/m? classified as obese. Covariates
were selected based on clinical relevance. Maternal age was defined as age at recruitment.
Age at leaving full time education (as a proxy for social-economic status) and ethnicity were
self-reported by questionnaire at the 20 wkGA scan. Gestational age was based on ultrasonic
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estimation at first scan. Deprivation score was based on the Index of Multiple Deprivation

2007 [269], which is based on census data from the area of the mother’s postcode.

6.3.4 Data analysis

The predefined analysis plan for this study can be found in Appendix 3. In summary, differ-
ences in baseline characteristics were compared using chi-square tests and Kruskal-Wallis
test, where appropriate. As the SGA outcome has multiple levels (non-SGA, SGA in the
presence of ultrasonic FGR makers and SGA in the absence of ultrasonic FGR makers),
multinomial regression analyses rather than a simple logistic regression model were used to
quantify odds ratios for the associations between maternal prepregnancy BMI and the risk of
delivering an SGA neonate in the presence of ultrasonic FGR markers, or an SGA neonate in
the absence of FGR markers. The non-SGA group was set as the comparison level. For the
outcome "All SGA’ a simple logistic regression analysis was used o quantify the association
between maternal prepregnancy BMI and any SGA (i.e. in presence or absence of ultrasonic
FGR markers).

Adjustment was made for maternal systolic blood pressure measured at 12 weeks, maternal
ethnicity, maternal age, marital status, maternal smoking status and deprivation index. The
differences in odds ratios were formally assessed using a Wald test.

To investigate the association between maternal prepregnancy BMI and ACGYV, odds ratios
from logistic models were used to quantify the associations between BMI categories and
lowest or highest decile of ACGV, and regression coefficients from a linear model were used
to quantify the associations between BMI categories and the ACGV z-score. The reference
group for women with ACGV in the lowest decile (D1) were women with an ACGV in
D2-D10, the reference group for women in the highest ACGV decile (D10) were women
with an ACGV in D1-D9.

As sensitivity analyses, we repeated the analyses using customised birthweight centiles to
define SGA (based on the Bulk calculator GROW, version 6.7.8.1, from the Perinatal insti-
tute, Birmingham, UK), excluded LGA neonates (BW >9(0" centile) from the control group,
utilised SGA plus complications (defined as perinatal mortality, morbidity or preeclampsia)
as outcome, as well as SGA plus low Placenta Growth Factor (PIGF) levels (defined as lowest
decile (D1) of GA and maternal weight corrected MoM of PIGF concentration within the
POP Study cohort versus D2-D10).
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All odds ratios for overweight and obese women are relative to normal weight women, unless

otherwise stated. Statistical analyses were preformed using R, version 3.4.2. [310].

6.4 Results

6.4.1 Subject Characteristics

The POP Study recruited 4,512 women, of whom 4,212 remained in the study and were
followed through to delivery (most of the 300 women lost to follow up ended up delivering
elsewhere). For this analysis, the following were excluded: women with missing information
on BMI (n=7), women with stillbirth or miscarriage (n=45), women who delivered before
37 weeks gestational age (WkGA) (n=179), as most of them would not have attended the 36
wkGA research appointment and women with missing information on potential confounders
(n=348, Figure 6.1). Of the remaining 3,633 women, 188 (5.1%) delivered an SGA neonate
in the presence of ultrasonic FGR markers and 125 (3.4%) delivered an SGA neonate in the
absence of FGR makers (Table 6.1). Women delivering an SGA neonate in the presence of
FGR markers were more likely to be current smokers and be of white ethnicity than women
delivering an SGA neonate in the absence of FGR markers. Neonates born SGA had a lower
birthweight than neonates not born SGA, as well as a lower placental weight (Table 6.1).

6.4.2 Maternal prepregancy BMI and the risk of an SGA neonate in
presence or abscence of FGR markers

Maternal prepregnancy weight was associated with a lower risk of delivering an SGA neonate
(adjusted odds ratio (aOR) 0.95 [95% confidence interval (CI) 0.93-0.98], per one-unit higher
prepregnancy BMI) (Table 6.2). When SGA was sub-divided by the presence or absence
of ultrasonic markers of FGR, maternal prepregnancy BMI was similarly associated with
a lower risk of delivering an SGA neonate in the presence of FGR markers (aOR 0.96
[0.92-0.98]) (Table 6.2), and of delivering an SGA neonate in the absence of FGR makers
(aOR 0.95 [0.92-1.00]). There was no evidence of a difference in these odds ratios (p=0.70).
The associations did not change on adjustment for confounders.

Obese women had a lower risk of delivering an SGA neonate in the presence or absence
of FGR markers (aOR 0.54 [0.33-0.91] and aOR 0.76 [0.36-1.19], respectively, p-value
for difference = 0.65) (Table 6.2). An overweight BMI was not associated with the risk of
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delivering an SGA neonate in the presence (aOR 0.76 [0.53-1.07]) or absence of ultrasonic
FGR markers (aOR 0.80 [0.52-1.23]) (p-value for difference = 0.83) (Table 6.2). These

associations did not change on adjustment for confounders.

| 4212 women in POPS database |

—>| 7 women missing BMI |

k.

| 4205 women with BMI available |

—-{ 45 women had stillbirth/miscarriage ‘
A

| 4160 women with live birth |

"| 179 women with birth <37weeks ‘

A4

| 3981 women with term birth I

Covariates

0 women missing maternal age

0 women missing marital status

0 women missing smoking status

66 women missing ethnicity

165 women missing deprivation score
119 women missing age up until in full
time education

12 unknown SGA and/or FGR status

Y

3633 women included in analysis

------- » 188 SGA neonates + FGR markers

——————— » 125 SGA neonates — FGR markers

i-----» 3320 non SGA neonates

Fig. 6.1 Flow diagram for studying the relationship between maternal BMI and the presence or
absence of ultrasonic markers of fetal growth restriction in fetuses born small for gestational
age. BMI; Body Mass Index, FGR; fetal growth restriction, POPS; Pregnancy Outcome
Prediction Study, SGA; small for gestational age.

6.4.3 Maternal prepregancy BMI and fetal abdominal circumference

growth velocity

The risk of experiencing an abdominal circumference growth velocity (ACGV) in the lowest
decile (irrespective of eventual birth weight) was about 40% lower for overweight and obese
women (aOR 0.62 [0.47-0.88] and aOR 0.56 [0.38-0.80], respectively) (Figure 6.2). In
contrast, the risk of having an ACGV in the highest decile was about 50-80% higher for
overweight and obese women (aOR 1.79 [1.40-2.29] and aOR 1.52 [1.10-2.11], respectively).
These correspond to about 0.1-0.2 standard deviation higher ACGV z-score amongst over-

weight and obese women.
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SGA in absence  SGA in presence Overall baseline
Non-SGA p-value for o
of FGR markers of FGR markers . characteristics
(n=3320) differences
(n=125) (n=188)) (n=3633)
Maternal age (y) 30.0 (5.1) 30.2(5.4) 30.1 (5.1) 0.51 30.0 (5.1)
Maternal BMI (k/m?) 0.15
<25 1935 (5.3) 81 (64.8) 123 (65.4) 2139 (58.9)
25-29.9 916 (27.8) 31(24.8) 47 (25.0) 994 (27.4)
>30 469 (14.1) 13 (10.4) 18 (9.6) 500 (13.8)
Ethnicity 0.03
White 3137 (94.5) 111 (88.8) 176 (93.6) 3424 (94.2)
Non-white 183 (5.5) x14 (11.2) 12 (6.4) 209 (5.8)
Smoking status <0.001
Non-smoker 2003 (60.3) 78 (62.4) 97 (51.6) 2178 (60.0)
Quit pre-pregnancy 921 (27.7) 32 (25.6) 53 (28.2) 1006 (27.7)
Quit during pregnacy 260 (7.8) 10 (8.0) 11 (5.9) 281 (7.7)
Current smokers 136 (4.1) 5(4.0) 27 (14.4) 168 (4.6)
Deprivation quartile 0.13
(lowest) 1 841 (25.3) 30 (24.0) 49 (26.1) 920 (25.3)
2 839(25.3) 27 (21.6) 40 (21.3) 906 (24.9)
3 827(249) 24 (19.2) 53 (28.2) 904 (24.9)
(highest) 4 813 (24.5) 44 (35.2) 46 (24.5) 903 (24.9)
Married 0.20
Yes 2271 (68.4) 77 (61.6) 123 (65.4) 2471 (68.0)
No 1049 (31.6) 48 (38.4) 65 (34.6) 1162 (32.0)
Preexisting DM 0.72
Yes 11 (0.3) 0(0.0) 1(0.5) 12 (0.3)
No 3309 (99.7) 125 (100.0) 187 (99.5) 3621 (99.7)
Essential hypertension 0.54
Yes 165 (5.0) 6(4.8) 6(3.2) 177 (4.9)
No 3155(95.0) 119 (95.2) 182 (96.8) 3456 (95.1)
Preeclampsia 0.73
Yes 202 (6.1) 7(5.6) 14 (7.4) 223 (6.1)
No 3116(93.9) 117 (93.6) 174 (92.6) 3407 (93.8)
Unknown 2(0.1) 1(0.8) 0(0.0) 3(0.1)
Pregnancy. Induced 0.61
Hypertension
Yes 56 (1.7) 2(1.6) 52.7) 63 (1.7)
No 3262 (98.3) 122 (97.6) 183 (97.3) 3567 (98.2)
Unknown 2(0.1) 1(0.8) 0(0.0) 3(0.1)
Gestational Diabetes 0.11
Yes 155 (4.7) 1(0.8) 73.7) 163 (4.5)
No 3160 (95.2) 124 (99.2) 181 (96.3) 3464 (95.3)
Unknown 5(0.2) 0(0.0) 0(0.0) 5(0.1)
Birthweight (g) 3526 (418) 2923 (204) 2708 (297) <0.001 3463 (457)
Placental weight*(g) 474 (95) 380 (63) 372 (72) <0.001 466 (97)

Table 6.1 Baseline and birth characteristics stratified by small for gestational age status.
Data are presented as mean (standard deviation) or as number (%). Differences in baseline
characteristics were tested using chi-square tests and Kruskal-Wallis tests, as appropriate.
BMI; Body Mass Index, DM; diabetes mellitus, FGR; fetal growth restriction, SD; standard
deviation, SGA; small for gestational age. *Placental weight was available for a sub-sample
and the numbers were 3,057, 117 and 166, respectively.
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6.4.4 Sensitivity analyses

Where customised birthweight centiles were used to classify SGA neonates, maternal prepreg-
nancy weight was associated with a higher risk of delivering an SGA neonate in the presence
of ultrasonic FGR markers (aOR 1.04 [1.00-1.07], per one unit higher prepregnancy BMI)
and not associated with the risk of delivering an SGA neonate in the absence of FGR markers
(aOR 1.00 [0.97-1.03]) (p-value for difference = 0.07) (Table 6.3). The associations did not

change on adjustment for confounders.

Removing LGA neonates from the reference group did not change the associations between
maternal prepregnancy weight and the risk of an SGA neonate in the presence or absence
of FGR makers (aOR 0.96 [0.92-0.99] and aOR 0.95 [0.92-1.01] respectively) (p-value for

difference = 0.70) (Table 6.3). The associations did not change on adjustment for confounders.

There was no evidence of associations between maternal BMI and severe SGA (classified as
birthweight <3 centile) (aOR 0.99 [0.94-1.04]), SGA plus perinatal morbidity (aOR 0.97
[0.91-1.03]) or SGA plus low PIGF (aOR 0.96 [0.90-1.02]) (Table 6.4). The associations did

not change on adjustment for confounders.
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A

Prepregnancy

BMi category No cases aOR [95% CI]
Normal weight 243 O 1.00 [1.00, 1.00]
Overweight 75  —@—— 0.62 [0.47, 0.82]
Obese ¥ —e— 0.56 [0.38, 0.80]

I T i T T 1

B 0.5 0.75 1 1.25 1.5 1.75

Prepregnancy

BM| category No cases aOR [95% Cl]
Normal weight 169 O 1.00 [1.00, 1.00]
Overweight 129 —— & 1.79[1.40, 2.29]
Obese 56 ° 1.52[1.10, 2.11]

| | I ] | |
05 075 1 125 15 175

C

Prepregnancy

BMI category No cases delta z-score [95% Cl]
Normal weight 169 -~ -0.12 [-0.17, -0.07]
Overweight 129 —— 0.20[0.12, 0.28]
Obese 56 —— 0.12[0.01, 0.23]
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-05 -0.25 0 025 05 075

Fig. 6.2 Forest plots for the risk of carrying a fetus with abdominal circumference growth
velocity (ACGV) between 20- and 36 weeks gestational age in (A) lowest decile or (B) the
highest decile stratified by maternal prepregnancy BMI category. (C) Forest plot for change
in ACGV z-score between 20-36 weeks gestational age stratified by maternal prepregnancy
BMI category. BMI; Body Mass Index, CI; Confidence Interval.
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Unadjusted Model Adjusted Model
N
© OR (95%CI) p-value OR (95%CI) p-value
cases
(i) SGA defined as BW <37
percentile
1.00 0.99
P BMI* 75 0.94 0.71
repregnancy (0.95-1.05) (0.94-1.04)
BMI categories
N | weight 49 1.00 1.00
ormal wei - -
g (ref) (ref)
0.69 0.63
Overweight 16 0.20 0.12
(0.38-1.19) (0.35-1.11)
Obese 10 087 0.69 074 0.40
(0.41-1.65) (0.35-1.43)
(ii) SGA plus perinatal complications*
0.98 0.97
Prepregnancy BMI* 56 0.60 0.37
(0.93-1.04) (0.91-1.03)
BMI categories
N | weight 37 1.00 1.00
ormal wei - -
& (ref) (ref)
0.74 0.64
Overweight 13 0.34 0.18
(0.37-1.35) (0.33-1.20)
Obese 6 067 0.36 057 0.21
(0.25-1.48) (0.21-1.27)
(iii) SGA plus lowest decile of PIGF*
0.97 0.96
Prepregnancy BMI* 58 0.27 0.24
(0.91-1.02) (0.90-1.02)
BMI categories
1.00 1.00
Normal weight 36 - -
(ref) (ref)
1.05 1.00
Overweight 18 0.87 0.99
(0.57-1.83) (0.55-1.76)
Obese 4 045 0.14 045 0.13
(0.14-1.15) (0.13-1.14)

Table 6.4 Association between prepregnancy body mass index and composite outcomes of
small for gestational age neonates. Odds ratios and 95% Confidence Intervals shown for
the risk of (i) delivering a severely small for gestational age neonate (defined as BW<3rd
percentile relative to population cohort) (ii) small for gestational age neonate with perinatal
morbidity (defined as defined as perinatal mortality, morbidity or preeclampsia) (iii) small
for gestational age plus lowest decile of PLGF levels (defined as lowest decile of gestational
age and maternal weight corrected mean of median of PIGF concentration within the POP
study). *Odds ratio per one-unit higher prepregnancy BMI. Control group for shown analyses
consisted of all non-SGA neonates (n=3,320). Adjusted models were corrected for maternal
age, marital status, smoking status, maternal ethnicity, deprivation score and age at leaving
fulltime education. BW; birthweight, CI; confidence interval, OR odds ratio, PIGF; placenta
growth factor
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6.5 Discussion

6.5.1 Main findings

In this study, the relationship between maternal prepregnancy BMI and the risk of FGR was
investigated. Consistent with many previous studies [333, 362], it was found that obese
women were less likely to deliver an SGA infant. However, higher prepregnancy BMI was
found to be similarly associated with a lower risk of delivering an SGA neonate irrespective
of the presence or absence of ultrasonic markers of FGR. These associations were similar

regardless of the FGR classification.

6.5.2 Strengths and limitations

The main strength of this study was that clinicians were blinded to the results of the ultrasonic
assessment of fetal growth and hence did not interfere based on these results of the biometry
scans. We had longitudinal data available on all biometric and functional parameters that were
needed to diagnose FGR according to the Delphi panel consensus. We additionally tested
other definitions of FGR (e.g. birthweight <3 centile or based on biochemical markers).
Furthermore, the detailed set of covariates that were available allowed for correction of
relevant maternal characteristics. Nevertheless, this study had several limitations. The study
was confined to nulliparous women, who are known to have higher risks of delivering an
SGA neonate than parous women [283]. Additionally, the women in the POP study were
mostly of white ethnicity and from affluent areas, but it is known that there are differences in

SGA incidence and fetal growth velocity between ethnicities [363, 364].

6.5.3 Interpretation

Fetal growth restriction is known to be associated both with perinatal complications in the
short term [99], and with poorer developmental outcomes in the child [355-357]. Though
SGA neonates born to obese mothers have a higher risk of perinatal morbidity and mortality
than SGA neonates born to women of healthy weight [360], these results indicate that this is
not explained by a greater proportion of these SGA neonates being affected by FGR.

Fetal growth restriction is thought to originate from poor placentation and impaired (cardio-
vascular) adaptation to pregnancy [362]. Recently, Tay and colleagues have shown that the
uterine artery Doppler change is abnormally elevated in pregnancies affected by FGR [365].
Furthermore, as shown in Chapter 4, the physiological drop in the uterine artery pulsatil-

ity index is impaired in obese women [366]. Although these studies together suggest that
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maternal obesity could be associated with impaired adaptation to pregnancy and subsequent
FGR, the current study shows no higher risk of delivering an SGA neonate in the presence of
ultrasonic FGR markers in obese women. There could be multiple reasons for the lack of
association; (i) the impaired adaptation to pregnancy might not be severe enough to induce
sufficient growth restriction or (ii) mechanisms other than impaired cardiovascular adaptation
play a greater role in the development of FGR. Additionally, ‘overnutrition’ of the fetus in
obese women [367, 368] could mask a possible association too, as growth restricted fetuses

might not drop their birthweight <10" centile.

The overnutrition hypothesis suggests that high maternal plasma concentrations of glucose
and free fatty acids permanently change neuroendocrine function and energy metabolism in
the fetus during development which can consequentially lead to obesity in the (later life of)
offspring [369, 368]. As prepregnancy BMI is positively correlated with glucose tolerance
and higher concentrations of free fatty acids, overweight and obese mothers are more likely
to ’overnurture’ their fetuses [370]. Although the concept of overnutrition does not require
an increased birthweight [368], it is well established that maternal obesity is associated
with an increased birthweight in the offspring which one could hypothesise could be due to
exposure to high glucose and fatty acid concentrations during gestation. Although some of
these neonates might be affected by poor placental function and subsequently not live up to
their growth potential, some of this might be masked by a higher weight due to overnutrition.
These fetuses might not be identified under the current Delphi panel consensus definition of
FGR and form a *masked’ group of growth restricted neonates which are not <10" centile
but which may display the biometric and functional markers of FGR. No definition for FGR

in appropriate-for-gestational age neonates has been established to date.

Placental insufficiency is associated with the majority of FGR cases, although there are
various causes of FGR that might lead to placental insufficiency but are not primarily caused
by it. These may include maternal etiologies (e.g. cardiac or hypertensive disease, low
socio-economic status, maternal age and race) and fetal etiologies (e.g.congenital malforma-
tions, infections and genetic abnormalities) [371]. Maternal obesity is associated with a large
number of these factors, such as an increased rate of congenital malformations [372], a high
rate of preexisting medical conditions [373, 374] and an higher risk of hypertensive disorders
in pregnancy [132]. Eventually, no matter the cause, FGR is usually the consequence of
inadequate substrates for fetal metabolism and growth, and decreased oxygen availability.
[375].
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The lack of association could also depend on the restriction of the current study to late FGR,
as only neonates born after 37 weeks gestation were included to assure that ultrasonic data at
36 wkGA was available. Diagnosis of early FGR (<32 weeks) relies on the availability of
ultrasound data around that gestational age, and the POP study only had data available at 28
or 36 wkGA . Early FGR is associated with impaired placentation, severe fetal hypoxia and
high rates of perinatal morbidity [119, 376], whereas late FGR is thought to be milder with
lower morbidity and mortality rates [377]. It could be hypothesised that the background of
poor placentation and increased inflammation in obesity would be associated with an earlier
FGR phenotype than investigated in the current study.

Unexpectedly, when SGA neonates were defined by customised birthweight centiles rather
than population-based standards, we found an attenuation for both SGA in the presence and
SGA in the absence of FGR markers. As customisation includes adjustment for maternal
prepregnancy weight, there is a risk of a circular argument. Furthermore, it was expected that
the association between maternal obesity and SGA in the absence of FGR markers would
attenuate on customisation, while the association between SGA in the presence of FGR
markers was thought to persist when customised birthweight cut-offs were utilised. This
finding adds to the debate of the appropriateness of customisation [378, 103], as it suggests

that maternal weight may be associated with pathological growth impairment.

Detection of FGR in utero remains challenging, even with the Delphi panel consensus on
ultrasonic markers of FGR. Functional MRI could be an other option in studying FGR, as
MRI studies are well suited to the analysis of the placental vascular function and physiology,
such as blood flow and oxygenation [379] whereas ultrasound measurements only provide an
indirect estimated of placental function. Blood flow, perfusion and oxygenation determined
by MRI could serve as biomarkers for detrimental changes at every stage of pregnancy, how-
ever, to date there is no MRI-based definition of pathological placental function. Additionally,
most evidence on functional MRI of the placenta is derived from animal studies, although
Chen and colleagues found that FGR was associated with peripheral hypovascularity and
hypercellularity in an Intravoxel Incoherent Motion MRI study in term human fetuses [380].
This type of imaging might also be suitable to distinguish *overnurtured’ growth restricted
fetuses in obese women based on placental function, without solely relying on birthweight
as a criterion for FGR. The clinical value and feasibility of functional MRI studies and
consensus on definition of normal placental function will need further investigation, but
could aid research into the condition.
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The findings in this study have several implications for clinical practice. Although obese
women are at risk of poorer perinatal outcomes, enhanced surveillance for diagnosis of
FGR is unnecessary in this demographic. It could be hypothesised that poorer outcomes in
obese women could be due to a higher rate of congenital abnormalities [372], a higher risk
of perinatal complications, such as preeclampsia [132] and gestational diabetes [381], or a
higher proportion of pre-existing medical conditions [373, 374]. Consequently, this group
of women would benefit from enhanced prenatal screening for comorbidities and increased

surveillance for these perinatal complications to improve outcomes.

6.5.4 Conclusion

The rise in obesity worldwide has increased the importance of understanding the outcomes
of obese pregnancies. As FGR is linked with many adverse short- and long-term outcomes,
identifying neonates at risk can be greatly beneficial. Here we show that maternal prepreg-
nancy BMI was similarly associated with a lower risk of delivering an SGA neonate in
the presence or absence of ultrasonic FGR, and obese women were not at higher risk of

delivering a pathologically small neonate.
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7.1 Chapter summary

Maternal obesity is an increasing problem, with up to 25% of women in the UK entering
pregnancy while obese. Pre-, peri- and postnatal weight is not only associated with adverse
perinatal outcomes in the current and possible subsequent pregnancies, but also impact on
long-term maternal and offspring health. Understanding the associations between maternal

obesity, perinatal complications and possible underlying mechanisms is therefore crucial.

There are several key findings from this thesis. Firstly, maternal obesity was associated with
impaired cardiovascular adaptation to pregnancy, as shown by a diminished drop in uterine
artery vascular resistance. Although fetal growth restriction is thought to originate from poor
adaptation to pregnancy, this thesis found a negative association between maternal obesity
and the risk of fetal growth restriction. Secondly, gestational weight gain was differentially
associated with the risk of developing preeclampsia or fetal growth restriction, adding to
the growing body of evidence for divergent mechanisms of these two conditions, despite
a common association with underlying placental dysfunction. Lastly, a meta-analysis of
published literature found a higher risk of perinatal complications after interpregnancy weight
gain while interpregnancy weight loss did not reduce the risk of complications in a subse-
quent pregnancy. Interestingly, the relative risk of complications was higher in women who
started the index pregnancy with a normal BMI, compared to women who were considered
overweight or obese at the start of the index pregnancy.

These findings highlight the importance of pre-, peri- and postnatal weight management in
women of all BMI categories, in trying to reduce the burden of adverse perinatal outcomes
and improve offspring long-term health. This final chapter summarises the main findings of
this thesis, discusses the strengths and limitations and highlights the public health relevance

of the main findings.
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7.2 Framework and approaches

The framework for evaluating the relationship between maternal weight dynamics and both

poor adaptation to pregnancy and related perinatal outcomes is shown in Figure 7.1.

C
Maternal obesity A \‘
\ Poorer (cardiovascular) N ‘Great obstetrical Long-term implications
/ adaptation to pregnancy syndromes’ for mother and child

Gestational weight gain /
\

Fig. 7.1 Preliminary framework for evaluating the relationship between maternal pre- and
perinatal weight, cardiovascular adaptation to pregnancy and the risk of preeclampsia or
delivering a growth restricted neonate.

Four approaches were utilised in this thesis: (1) summarising the relationship between inter-
pregnancy weight change and the risk of developing perinatal complications in a subsequent
pregnancy (Chapter 2, not shown in the framework), (ii) evaluation of the relationship
between obesity and physiological parameters of cardiovascular adaptation (Chapter 4, rela-
tionship A in the framework), (iii) investigation of the association and the effect of the timing
of gestational weight gain (GWG) and the risk of developing preeclampsia or delivering a
small for gestational age neonate (SGA) (Chapter 5, relationship B in the framework) and
(iv) assessment of the association between maternal prepregnancy weight and the risk of fetal

growth restriction (Chapter 6, relationship C in the framework).

7.3 Summary of main findings

7.3.1 Risk of perinatal complications after interpregnancy weight change

Chapter 2 reported a meta-analysis of seven studies, including a total of 280,672 women.
Interpregnancy weight gain of >3 BMI units was associated with a higher risk of developing
gestational diabetes (adjusted odds ratio (aOR) 2.37 [95% confidence interval 1.50-3.34]),
developing preeclampsia or pregnancy induced hypertension (aOR 1.70 [1.50-1.91] and aOR
1.71 [1.51-1.91], respectively) and delivering a large for gestational age neonate (aOR 1.63

[1.30-1.97]). In contrast, interpregnancy weight loss was associated with a lower risk of
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delivering a large for gestational age neonate (aOR 0.79 [0.58-0.99] for loss >1 BMI unit).

Since the publication of the meta-analysis in Chapter 2, two further meta-analyses have
been published. The first analysis specifically focuses on hypertensive disorders in pregnancy
[382], the second analysis reported on similar perinatal outcomes as the analysis in this thesis,
but additionally summarised the relationship between interpregnancy weight change and the

risk of Caesarean section in a subsequent pregnancy [383].

The study by Martinez-Hortelano and colleagues [382], reporting on hypertensive disorders
in pregnancy, stated a similar direction of association between interpregnancy weight gain
and the risk of preeclampsia (odds ratio (OR) 1.39 [95% confidence interval (CI) 1.18-1.60])
as the study in this thesis. However, Martinez-Hortelano and colleagues utilised a hetero-
geneous reference group and additionally pooled crude and adjusted odds ratios together.
Furthermore, a study by Mostello and colleagues [233] reporting a slightly lower OR (1.29
[1.20-1.38]) was incorporated in their analyis but excluded from the meta-anlysis in this
thesis due to overlapping study populations. This could explain why the association reported

in their publication is slightly lower than the one observed in this thesis.

The study by Timmermans and colleagues [383] also employed a different reference group
to the analysis in this thesis, alternating between a reference group of interpregnancy weight
change between -1 and +1 BMI unit and -2 and +2 BMI units. This resulted in an OR for
preeclampsia of 1.77 [1.53-2.04] for >3 kg/m? interpregnancy weight gain. Furthermore,
this definition of the reference groups made it possible for them to statistically summarise
the effects of interpregnancy weight change on the risk of delivering a small for gestational
age neonate and delivering preterm. In their study, BMI loss >1 kg/m? was associated with a
lower risk of delivering a small for gestational age neonate (OR 1.58 [1.26-1.98]), although
weight loss >2 BMI units was not associated with SGA risk. Similarly, weight loss >1 BMI
unit was associated with a higher risk of preterm birth (OR 1.40 [1.08-1.83]) while weight
loss >2 BMI units was not associated with a higher risk of delivering preterm. Due to the
homogenous reference group defined in the meta-analysis in this thesis, we were only able to
summarise the crude risk of delivering an SGA neonate or delivering preterm for the group.
We employed a reference group of interpregnancy weight change between -1 and +1 BMI
unit, defined the risk of delivering an SGA neonate or delivering preterm for women gaining
>1BMI unit and found very similar associations (crude odds ratio (cOR) 1.53 [1.35-1.71]
and cOR 1.45 [1.21-1.69], respectively).
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Differences in included time ranges could have contributed to the heterogeneity of results
between the meta-analysis in this thesis, and those published by Martinez-Hortelano et al.
and Timmermans et al.. While the study in this thesis included women from as early as 1986
[184], the above-mentioned meta-analyses [382, 383] included women recruited as far back
as 1959. As described in Chapter 1, the incidence of maternal obesity has increased signifi-
cantly in the past decades and more recent studies could have included a higher proportion of
overweight and obese women. Subgroup analyses by maternal BMI category at the start of
the first pregnancy, as well as defining weight loss or gain as a percentage change rather than
as absolute value could further elucidate this association.

Chapter 1 described the U-shaped trajectory of postpartum weight retention; most women
lose (part of) the weight gained over gestation in the 3-12 months postpartum [176]. However,
in the longer term (>12 months), excessive GWG was associated with increased postpartum
weight retention [177]. A short (>18 months) or long (>60 months) interpregnancy interval is
known to be associated with a higher risk of perinatal complications too [384]. It is unclear
what the role weight change plays in this association. It could be hypothesised that part of
this association is due to a shorter interpregnancy interval being associated with insufficient
time to lose the weight gained during gestation, and an increased risk of weight retention in

the long term. This association needs further clarification.

7.3.2 Association between maternal weight dynamics and both cardio-

vascular adaptation to pregnancy and perinatal outcomes
7.3.2.1 Maternal obesity and fetal growth restriction

The results reported in Chapter 4 showed that maternal cardiovascular adaptation to preg-
nancy was impaired in obese women compared to normal weight women, as demonstrated
by a diminished drop in vascular resistance in the uterine circulation. Although fetal growth
restriction is thought to have a background in poor placentation and impaired cardiovascular
adaptation to pregnancy, the results reported in Chapter 6 did not show a higher risk of fetal

growth restriction in obese women.

Both maternal obesity (Chapter 6) and gestational weight gain (Chapter 5) were negatively
associated with the risk of delivering a small for gestational age neonate. Before the start
of the study, we hypothesised that maternal obesity would be associated with a higher
risk of delivering a growth restricted small neonate rather than a constitutionally small

neonate, through poor placentation and impaired adaptation to pregnancy. However, maternal
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obesity was equally associated with a lower risk of delivering a constitutionally small or
pathologically small neonate. One of the arguments explaining the negative relationship
between maternal obesity and small for gestational age neonates could be that obese women
would expose their fetus to ‘overnutrition’, which could increase overall birth weight and
the incidence of delivering a large-for-gestational age neonate as observed in many previous
studies. It is possible that the effect of obesity on FGR is not completely captured by assessing
growth potential through SGA neonates. A combination of poor adaptation to pregnancy and
overnutrition in obese pregnancies could impair a fetus’ growth potential, but not lead to
birth weight falling below the cut off for defining an SGA neonate (10" centile). It could
be hypothesised that there is ‘unidentified’ growth restriction in non-SGA neonates born to
obese mothers. However, there is currently no consensus for the definition of (mild) growth
restriction in neonates born slightly above the 10 centile and therefore no suitable way to
study this relationship.

7.3.2.2 Gestational weight gain and fetal growth restriction

The negative association between gestational weight gain and the risk of delivering an SGA
neonate shown in Chapter S, might highlight a similar ‘overnutrition of the fetus’ hypothesis.
Firstly, weight gain during first and second trimester of pregnancy is associated with an
increase in adipose tissue in the mother, whereas weight gain during the third trimester seems
most likely due to growth of the fetus. The results showed that the association between
weight gain and SGA neonates became less strong over the course of gestation, which is
consistent with the idea that (early) excess adipose tissue could lead to overnutrition in the
fetus and subsequently leads to a higher birth weight. Secondly, as placentation and the first
stages of cardiovascular adaptation to pregnancy occur in the first trimester, GWG might not
be able to influence these processes. Sensitivity analyses in Chapter 4 showed no influence
of GWG on the relationship between maternal prepregnancy obesity and cardiovascular
adaptation to pregnancy. However, we could only assess the impact of GWG from 12 weeks
gestation onwards. This could suggest that prepregnancy obesity is more important for
impaired cardiovascular adaptation to pregnancy than weight changes during gestation. How-
ever, to my knowledge, no studies directly investigating the association between GWG and

(physiological parameters of) cardiovascular adaptation to pregnancy have been conducted.

The analyses in Chapter S did not distinguish between constitutionally small and patho-
logically small neonates when assessing the relationship between GWG and SGA neonates.
Previous studies have established a negative relationship between GWG and birthweight (see
Chapter 1), but no study to date has reported the association between GWG and ultrasonic
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markers of fetal growth restriction as proposed by the Delphi panel [101]. However, it would
be of great interest to establish whether the negative associations are equal for the risk of
delivering a constitutionally small and pathologically small neonates, as interventions to
reduce the risk of growth restricted neonates through increased weight gain could then be
explored.

7.3.2.3 Gestational weight gain and preeclampsia

Maternal prepregnancy obesity has previously been identified as one of the main risk factors
for the development of preeclampsia [130]. Obesity and preeclampsia are thought to share
pathways that link the two conditions, such as a low-grade inflammatory state and endothelial
dysfunction (see Chapter 1). However, the influence of GWG on the development of
preeclampsia is less clear. The observed association in Chapter 5, between late (28-36
weeks gestational age) weight gain and preeclampsia might not be causal, as preeclamptic
women are known to develop oedema, which could in turn lead to weight gain. Furthermore,
as hypothesised above, GWG might not influence the underlying mechanisms of preeclampsia
(i.e. impaired spiral artery remodelling, endothelial dysfunction, and oxidative stress) as
spiral artery remodelling is initiated shortly after implantation and might be completed before

any significant weight gain could occur.

7.3.2.4 Divergent associations between preeclampsia and fetal growth restriction

Although both preeclampsia and fetal growth restriction (FGR) are thought to have underlying
placental dysfunction, it is unclear why abnormal placentation in some cases leads to FGR
and in other cases to preeclampsia. This thesis and other published studies provide several dif-
ferent leads for divergent mechanisms. Firstly, a recent study by Gong and colleagues based
on the same POP study showed a divergent metabolic pathway leading to either preeclampsia
or FGR. N1,N12-diacetylspermine, a maternal serum polyamine, was positively associated
with preeclampsia but negatively associated with FGR [282]. Secondly, the analyses in this
thesis highlighted a further two divergent associations between preeclampsia and FGR: (i) the
relationship between maternal obesity and preeclampsia is well established, but Chapter 6
showed a negative association between maternal weight and the risk of FGR and (ii) Chapter
S revealed associations in opposite directions between GWG and these great obstetrical
syndromes. Lastly, a recent study by Tay and colleagues [365] investigated the relationship
between maternal cardiovascular adaptation to pregnancy and both preeclampsia and FGR.
They found that the mean uterine artery pulsatility index (corrected for gestational age) was

higher in pregnancies affected by FGR or simultaneously affected by FGR and preeclampsia,
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but not in pregnancies affected by preeclampsia alone. Although this study did not utilise
the definition of FGR defined by the Delphi panel, they did incorporate ultrasonic markers
of FGR into the definition. The results of the Tay et al. study only reflect maternal vascular
resistance at one timepoint in gestation, but this result warrants further investigation into
the relationship between the physiological drop in the uterine artery pulsatility index and
both preeclampsia and FGR to shed further light on the divergent pathways leading to these
conditions.

As an alternative hypothesis to placental dysfunction being the main cause of FGR, one
could hypothesise that a poor state of the peripheral circulation might contribute to poor
fetal growth. As discussed in Chapter 1 and Chapter 4, remodelling of the uterine artery
circulation is one of the key determinants of adequate utero-placental perfusion, through
e.g. flow-mediated or endothelial-induced vasodilation [147, 322]. As both mechanisms
seem to be impaired in obese women, this could suggest poor peripheral adaptation to
pregnancy in obesity. Additionally, obese women described in Chapter 4 had higher UtA-PI
values at 20wkGA compared to normal weight women, suggesting less adequate spiral artery
remodelling in obese pregnancies [318, 316]. When spiral arteries retain some of their
smooth muscle layer, vasocontriction can still occur and lead to ischaemia-reperfusion injury
in the placental with subsequent oxidative stress. This might cause further damage to the
placental development. Together, this suggests that the poor cardiovascular state in obese

women might lead to poor adaptation and subsequently lead to compromised fetal growth.

7.3.2.5 Alternative framework

To summarise the findings in this thesis, in combination with known associations from
the literature, the framework proposed in Figure 7.1 must be divided further. Firstly, the
relationship between maternal obesity and both preeclampsia and FGR is proposed as in
Figure 7.2.

This thesis has shown the positive relationship between maternal obesity and impaired ma-
ternal cardiovascular adaptation to pregnancy (Chapter 4). Whether this poor adaptation
leads to a higher risk of preeclampsia or fetal growth restriction has not been explored in this
thesis, but this has been previously established in the literature. Furthermore, in Chapter
6, we showed a negative association between maternal prepregnancy BMI and the risk of
fetal growth restriction. From this, we can hypothesise that either (i) maternal obesity does
not affect the adaptation to pregnancy sufficiently to induce growth restriction, or (ii) growth

restriction emerges from different underlying mechanisms.
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(+)

{+) Preeclampsia

+ Poorer (cardiovascular)
Maternal obesity adaptation to pregnancy

{+) Fetal growth restriction

Fig. 7.2 Developed framework of the relationship between maternal obesity, cardiovascular
adaptation to pregnancy and the risk of preeclampsia or delivering a growth restricted
neonate. Relationships indicated with a + are found to be positive associations in this thesis,
relationships indicated with a - are found to be negative, and relationships indicated with a
(+) are known positive associations from the literature.

Secondly, the relationships between GWG and both preeclampsia and FGR are summarised

in Figure 7.3.

+

(+) Preeclampsia

Gestational ? Poorer {cardiovascular)
weight gain adaptation to pregnancy

{(+) Fetal growth restriction

Fig. 7.3 Developed framework of the relationship between gestational weight gain, cardiovas-
cular adaptation to pregnancy and the risk of preeclampsia or delivering a growth restricted
neonate. Relationships indicated with a + are found to be positive associations in this thesis,
relationships indicated with a - are found to be negative, relationships indicated with a (+)
are known positive associations from the literature and relationships indicated with a *?” are
currently unknown.

This thesis did establish a positive association between GWG and preeclampsia, yet a
negative association between GWG and FGR (Chapter 5). As discussed above, these
associations are observational and will need to be further explored to confirm or refute
causality. Additionally, it would be of great interest to establish whether GWG is associated
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with poorer adaptation to pregnancy, as if there is a causal association intervention through

adequate weight management can be considered.

7.4 Strengths & Limitations

Specific strengths and limitations have been discussed within each chapter, however there

are some factors that are applicable to most analyses in this thesis.

7.4.1 Strengths

A major strength of the POP study is the blinded nature of the ultrasound scans. As both
clinicians and patients were blinded to the results of the research scans (at 28- and 36 wkGA)
and the research elements of the 20 week scan, the study itself did not interfere with perinatal
outcomes. This facilitated the assessment of screening methods for perinatal outcomes, and
we could observe physiological patterns of adaptation to pregnancy across the full spectrum

without the observations themselves becoming reason for intervention.

Another strength was that the POP study was limited to nulliparous women, as they are
known to have a higher incidence of perinatal complications including preeclampsia. The
current analyses therefore had enough power to identify associations (it should be noted
that power calculations were carried out in the setup for the POP study and were not part
of this thesis [266]). Furthermore, one of the strongest predictors of a pregnancy outcome
is whether a woman has experienced this outcome in a previous pregnancy. Assessing only
nulliparous women makes sure that any observed association is not confounded by a previous

adverse complication and therefore requires less adjustment.

The predefined analyses plans in Appendix C and D are a further strength of this thesis.
In general, but specifically in observational studies, it is wise to develop an analysis plan
before exploring the data. The interpretation of observational studies is at risk of bias (e.g.
confounding, selection bias) and uncertainty of the role of any unmeasured variables [385].
An previously defined analysis plan, defining the variables of interest, subgroup and sensitiv-
ity analyses and statistical methods for analysis, can help reduced the impact of bias on the
interpretation. If done correctly and prospectively, observational studies are shown not to
overestimate (treatment) effects compared to e.g. randomised trials [386].
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7.4.2 Limitations

Although the POP study comprising only nulliparous women was a strength, the exclusion
of multiparous women reduces the generalisability of the findings to the overall population.
Furthermore, the women in the POP dataset were predominantly white and from a relatively
affluent area around Cambridge. As described in Chapter 1, there are differences in inci-
dence of preeclampsia and FGR between ethnicity (i.e. the risk of preeclampsia is higher in
black women compared to white women), and it could be hypothesised that disparities in
adaptation to pregnancy, for example, could underlie these observations. It would therefore
be of great interest to explore heterogenous populations, or to repeat these analyses in a
cohort of predominantly non-white women. Similarly, incidences of obesity and patterns of
weight gain can differ between different demographics, and this is an area that needs to be
further explored as well. Despite the limited diversity in the POP study, other findings that
have arisen from this cohort have been successfully replicated in an ethnically diverse and
less affluent population from Bradford [279, 79]

Unfortunately, longitudinal data on maternal blood pressure was not available, as only a
single value at 12 weeks gestation was recorded for all women. It Is known that maternal
prepregnancy BMI can influence blood pressure and blood pressure changes throughout
gestation [314], which can also influence maternal cardiovascular adaptation to pregnancy.

Ideally, this relationship would have been explored in this thesis.

We were unable to properly distinguish between early and late preeclampsia in our analysis,
due to unavailability of the time of diagnosis. As described in Chapter 1, early and late
preeclampsia are thought to have different background mechanisms [52], and therefore it
would have been of great interest to study these subtypes separately. Gestational age at birth
was available and has been used as a proxy for early and late preeclampsia in this thesis
(Chapter 5) and in earlier POP study publications [267, 279].

Similarly, we could not discriminate between early and late growth restriction. The Delphi
panel established different definitions for early (<32 weeks gestation) or late (>32 weeks
gestation) FGR, but as the POP study only conducted research scans at 28- and 36-weeks’
gestation, it was impossible to distinguish, as the time cut off for diagnosis is between these

scans.

As with all observational studies, there is a risk that uncontrolled or residual confounding

influences the results. Although analyses in this thesis were adjusted for seemingly clini-
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cally relevant variables, self-reported variables (such as ethnicity) may have had an impact.
Furthermore, maternal weight at the booking scan was used as a proxy for prepregnancy
weight. Although women are advised to only gain up to 2 kg in the first trimester, according
to the IOM guidelines, if there was substantial weight gain during the first trimester, maternal
weight and therefore BMI could have been overestimated.

A person’s BMI is widely adapted as it is a simple and cost-effective way of tracking obesity
at a population level and has formed the backbone of obesity classification and surveillance.
However, BMI does have several limitations [387]. Firstly, obesity is defined as excess
accumulation of body fat, and it is the excess in fat mass that is the cause of the comorbidities
rather than the excess weight. However, BMI is only a surrogate measure for body fat
mass. From this, one can argue that the actual body fat percentage should be assessed to
develop population standards against which individuals can be compared. Secondly, in some
cases, BMI provide misleading information on body fat content. This includes a progressive
increase in body fat to lean body mass ratio with aging and a differential relationship between
BMI and body fat for different ethnicities. Due to the limitations of BMI, it could be argued
that the categorisation of BMI into classifications is unsatisfactory. As large epidemiological
studies on body fat content are sparse and no normative standards are developed for compari-

son of individuals fat mass, BMI is currently the best surrogate measure.

The use of BMI as a measurement of health in pregnancy can also be disputed for the
same reasons as mentioned above. Additionally, it has proven challenging to assess body
composition throughout pregnancy and separate the various components of GWG [35].
However, mean maternal weight and mean body composition values remain unchanged
in the first trimester of pregnancy [388], justifying the use of maternal BMI measured at
booking scan as a surrogate measure for prepregnancy BMI. Furthermore, in non-obese
women, the correlation between BMI and body fat remains significant throughout pregnancy,
although it presents with large confidence intervals [389]. Several equations are available
for estimating fat and lean mass throughout pregnancy, however these are rarely corrected
for gestational age. Recently, a study by Nassr and colleagues has shown that Body Fat
Index’ (pre-peritoneal fat x (subcutaneous fat divided by height)) was a better predictor of the
development of gestational diabetes than BMI [390], but this involved ultrasonic assessment

of peritoneal fat and therefore implementation on large scale would be challenging.
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7.5 Public Health relevance

7.5.1 Interventions to prevent or reduce maternal obesity

Obesity is a worldwide problem and predicted to worsen over the next decades [391, 392].
It is estimated that >30% of the population in England will have a BMI >30kg/m? in the
year 2025 [393], and women of reproductive age will undoubtedly be affected too. Maternal
obesity is not only associated with perinatal complications, but also with long-term offspring
health and increased cardiovascular risk in the mother [202, 205]. If we assume causation
and as prepregnancy weight is modifiable, programs and interventions preventing women
from being overweight or obese at conception could not only have short term health gains

but improve long-term population health.

In their 2016 review, Hanson and colleagues make a case for a public health approach to
the obesity crisis [394], as the focus on obesity prevention in women of reproductive age is
consistent with the need to address the obesity crisis in the general population. They argue
that persistent obesogenic environments make it very hard for individuals to mount effective
contra-behaviours and to avoid excess weight gain. A population-based approach to obesity
prevention will be needed, to not solely focus in individuals willpower and capability to lose

weight, but to stimulate general health [395].

A Cochrane review focussing on effective prepregnancy interventions to promote weight
loss in overweight and obese women failed to identify any randomised trials on this topic
[396]. Furthermore, a 2014 study investigating how women in London (UK) prepare for
pregnancy found that, despite a high level of planned pregnancies, very few women were
aware of their preconception health [396]. Amongst healthcare professionals it is unclear
where the responsibility for preconception care lies. Most healthcare professionals pointed
towards primary care, although general practitioners felt that they are seldom involved in
preconception care [397]. Together, this highlight a critical need for high quality evidence to
support preconception care.

7.5.2 Identification of increased perinatal complication risk in normal
weight women after interpregnancy weight gain
As analyses in Chapter 2 revealed, normal weight women who gain weight between preg-

nancies are at a relatively higher risk of adverse perinatal outcomes after small increments

of weight gain than women who started the index pregnancy overweight or obese and gain
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small amounts of weight. This finding is somewhat surprising as normal weight women are
usually not identified as being at risk. The National Institute for Health and Care Excellence
(NICE) guidelines in the UK only recommend discussing weight with overweight or obese
women at their 6-8 weeks postpartum check-up and does not mention postpartum weight
management in women who entered pregnancy with a healthy BMI. Making normal weight
women aware of the risk of perinatal complications after small amounts of weight gain, could

impact outcomes in a subsequent pregnancy.

Although awareness about preconception health among women is low, many women are
motivated to adopt healthier lifestyles around pregnancy [398]. This is illustrated by reduced
smoking rates in women trying to conceive [396], as well as the resolution of women to seek
weight loss information in the postpartum period [187]. However, little is known how this
perception and motivation differs between women of different BMI categories. It would be
of great interest to investigate awareness amongst normal weight women and healthcare pro-
fessionals on the perception of risk for adverse perinatal outcomes in a subsequent pregnancy,

to be able to provide preconception and postpartum weight guidance in these women.

The analyses in Chapter 2 did identify the risks associated with interpregnancy weight gain
but failed to show a positive association of interpregnancy weight loss on perinatal outcomes.
Recommendations for interpregnancy weight management could therefore mainly focus
on weight maintenance as opposed to weight loss. As discussed in Chapter 1, postpartum
weight management seems to be most effective when combination of individual dietary
advice and physical activity under professional supervision was offered [191]. For both
preconception as well as postpartum interventions the optimal timing is unclear. Lastly,
although perinatal outcomes are important to consider, the effects of weight management on
cardiovascular adaptation to pregnancy are also key and will contribute to our understanding
of the pathophysiology of short-term and long-term maternal outcomes. These should be

taken into account in future studies addressing preconception and postpartum health.

7.5.3 Healthcare costs associated with maternal obesity and perinatal

outcomes

Lastly, in addition to the health of the mother and neonate, the costs to the healthcare
system relating to the management of adverse outcomes should also be considered. For
instance, preeclampsia is associated with a mean incremental cost of $28,603 (~£23,000) per
mother—infant pair compared to uncomplicated pregnancies, as identified by an American
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study [399]. As 15% of all early preeclampsia cases are estimated to be attributable to
maternal prepregnancy weight, a reduction in the incidence of maternal obesity can not only

improve health outcomes, but also lighten the financial burden on healthcare systems [133].

An individual participant meta-analysis by the National Institute for Health Research aimed
to investigate the cost-effectiveness of diet- and exercise-based interventions in pregnancy
[400]. Their model predicted that perinatal care for women in the intervention arm would cost
£147 more than care for women without intervention. Although the intervention prevented
cases of preeclampsia, gestational diabetes and pregnancy induced hypertension, the cost
of avoiding one case of preeclampsia was £306,000, which is significantly higher than the
willingness to pay threshold in the UK [401]. A secondary analysis of the cost-effectiveness
of perinatal diet- and exercise-interventions in women of different BMI categories revealed
that, although the cost of avoiding one major perinatal complication was lowest in obese
women, not one subgroup reached the willingness to pay threshold. Further development
of evidence-based interventions to prevent excessive GWG or reduce postpartum weight

retention should take the cost of interventions into account to aid nationwide implementation.

7.6 Conclusions

Maternal obesity is associated with impaired cardiovascular adaptation to pregnancy, although
prepregnancy weight is not associated with a higher risk of FGR. Gestational weight gain is
associated with a lower risk of delivering an SGA neonate and a higher risk of developing

preeclampsia, and the timing of the weight gain has a significant impact on these associations.

As maternal obesity is also differentially associated with preeclampsia and the risk of FGR,
it could be hypothesised that the pathophysiology of these syndromes differs, despite shared
backgrounds in placental dysfunction. Further research into the divergent pathways of these
two conditions is needed. If causality is assumed, interventions that are aimed at reducing
the SGA incidence without increasing the risk of preeclampsia are optimally targeted in the
second trimester of pregnancy.

To conclude, weight management pre-, peri- and postnatally is of great importance in reducing
the burden of adverse pregnancy outcomes and optimising the long-term health in the mother
and the offspring. Further research is needed to identify the optimal methods and periods of

interventions to reduce weight gain and obesity in women of reproductive age.
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DEMOGRAPHICS

pregnancy
outcome
prediction
study

9

Addressograph Label

Current age

Marital status Married Cohabiting Single
Occupation

Partners Occupation

What age did you complete full time education.

Smoking status Never Quit ( before preg ) Quit (during preg)
Currently smoking  per day

Alcohol (units per week )currently

Current prescription medication

Current medical conditions

Previous miscarriages of less than 20 weeks Y /N Date weeks

Were you using the contraceptive pill in the three months before your pregnancy
Yes

No

Date of last menstrual period

Certain  Yes No
Duration of menstrual cycle (eg 28 days)
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Menarche/OCP questions

| Age periods started

Please circle any methods of contraception you have used and for how long
a. Combined Pill years
b. Mini pill years
c. Hormonal inter-uterine device  years
d. Norplant or Depo-Provera (injection)  years

e. Other methods ( e.g. condoms) years

How many years have you used contraception in total

How long has it taken you to become pregnant from stopping contraception?






Appendix C

Predefined analysis plan to investigate
the association and timing of gestational
weight gain on adverse perinatal
outcomes in the Pregnancy Outcome
Prediction Study cohort

C.1 Aim

To investigate the association and timing of gestational weight gain on adverse perinatal
outcomes in the Pregnancy Outcome Prediction Study cohort

C.2 Exposure

C.2.1 Primary exposure

Primary exposure will be the rate of gestational weight gain. Maternal weight was measured
by research midwives at the first, second, third and fourth scanning appointment, equating
to 12-, 20-, 28- and 36-weeks’ gestation respectively. We will investigate the weight gain
between two consecutive appointments (e.g. between 12 and 20 weeks, between 20 and 28
weeks and between 28 and 36 weeks).
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Total weight gain Incremental weight gain during second and third trimester
Preconception BMI Range (kg) Range (Ibs)  Mean (range) in kg/week Mean (range) in lbs/week
Underweight (<18.5 kg/m?) 12.5-18 28-40 0.51 (0.44-0.58) 1(1-1.3)
Normal weight (18.5 - 24.9 kg/m?) 11.5-16 25-35 0.42 (0.35-0.50) 1(0.8-1)
Overweight (25.0 - 29.9 kg/m?) 7-11.5 15-25 0.28 (0.23-0.33) 0.6 (0.5-0.7)
Obese (>30 kg/m?) 5-9 11-20 0.22 (0.17-0.27) 0.5 (0.4-0.6)

Table C.1 Institute of Medicine gestational weight gain recommendations throughout pregnancy [15]

Gestational age (GA) varied around the planned appointments (e.g., the 12-week planned
appointment took place between 10-14 weeks GA etc.). Preliminary data analyses have
shown that maternal weight varied very little by GA at the 12-week planned appointment, but
it did vary by GA later in pregnancy. To address the issue of variable GA around the planned
visits, we will estimate the weight gain per 8-week GA interval (ie, 12-20 weeks, 20-28
weeks and 28-36 weeks) for each mother using a mixed effects linear regression model.

C.2.2 Secondary exposure

Secondary exposure will be similar to the primary exposure, but rather than gestational
weight gain per GA interval it will be defined as total gestational weight gain (i.e. weight

gain between 12- and 36-weeks).

C.2.3 Alternative classification of exposure

Furthermore, we will investigate gestational weight gain classified as inadequate, adequate
or excessive, as classified by the National Academy of Medicine [15]. These exposures will
be defined 1) between 12 weeks and 36 weeks, and 2) between each set of two consecutive
appointments. See C.1 for reference of total weight gain and weight gain rates per trimester.
The classifications of ‘inadequate’, ‘adequate’ and ‘excessive’ will be extracted from the
model predicting the gestational weight gain rate (see primary exposure) to account for

gestational age at appointments.

C.3 Outcomes of interest

C.3.1 Primary outcome

The primary outcomes will be:
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 Small-for-gestational age (defined as birthweight <10’/ centile, using fetal sex and
gestational age adjusted reference standard derived from a UK population and described
in described in [341])

* Preeclampsia (defined as per 2013 ACOG classification)

C.3.2 Secondary outcomes (if time permits)

 Uterine artery doppler values measured at 20-, 28- and 36-weeks gestation

* Physiological drop of the uterine artery doppler, defined as the difference in absolute
values between the earlier scan and a later scan (e.g. value at 20 weeks minus the value
at 36 weeks).

* Abnormal uterine artery dopplers, defined as a uterine artery pulsatility index above
95th centile at the 36-weeks scan using the distribution within the POPS cohort.

C.3.3 Effect modifiers

We will investigate maternal BMI as a possible effect modifier. Maternal BMI will be
considered as a continuous variable, as well as being classified as per WHO definitions
(underweight as BMI <18.5 kg/m?, normal weight as BMI 18.5-24.9 kg/m?, overweight as
BMI 25-29.9 kg/m? and obese as BMI >30 kg/m?).

C.4 Analytical approach

Summary statistics will be used to describe the characteristics of the women by exposure of

interest.

We will use a two-step modelling approach. In step 1 we will estimate the weight gain
per GA interval (ie, 12-20 weeks, 20-28 weeks and 28-36 weeks) for each mother using a
mixed effects linear regression model. The mixed model will regress weight on the difference
in GA between the planned and actual visit (fixed effect), and a random intercept for each
mother will be estimated to account for the dependency between repeated measures. The

model can be written as:

Yij=aj+Dbjdij+ui+ej
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where
Y,; is the weight for mother i=1,... n at scan visit j=1,... 4

d;; is the difference in GA between the observed GA (t;;) and planned GA (eg, d;| =
ti1-12, dip = ti2 -20, d;3 = t;3 -28, d;p = tjg -36)

a;j denotes the average maternal weight at scan visit j=1,...,4 at the planned GA 12, 20,
28 and 26 weeks respectively.

b; denotes the linear change in weight around scan visit j=1,...,4
u; denotes a mother-specific weight across all scan visits, assume u; ~N(0,064%)
e;j denotes the residuals, assume €;; ~N(0,5¢%)

A corrected weight (ij) for the planned scan can be simply estimated as Y*;; = Y;; - b;
d;;. Similarly, estimated weight gains per GA interval can be estimated, e.g. for 12-20 weeks
Yino_12) = (Yiz =ba di)- (Yir — by din).

In step 2, associations between the estimated weight gain per GA interval and primary
outcomes of interest will be quantified using hazard ratios from Cox proportional hazard
models, using gestational age as the time scale or using odds ratios from the logistic model.

We will also explore possible non-linear associations (e.g. using fractional polynomials).

If time permits, the relationship between uterine artery dopplers or physiological drop in

uterine artery pulsatility index will be assessed by mixed linear regression models.

Effect modification by maternal BMI category will be assessed by using the y? test for
heterogeneity. Confounders that will be considered are maternal age, fetal sex, maternal
ethnicity and deprivation index.

For all outcomes, except gestational diabetes and preterm birth, we will investigate the
relationship between the rate of gestational weight gain between 12-20 weeks, 20-28 weeks
and 28-36 weeks. However, as the diagnosis for gestational diabetes is usually made at

around the 28-week timepoint, we will only investigate the relationship between gestational
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diabetes and the rate of weight gain between 12-20 weeks and between 20-28 weeks.

For statistical analysis and data presentation we will use R for windows, version 3.4.2 The
analysis will be conducted on an anonymised dataset. The anonymised data provided by the
POP study will be held in encrypted files and analysed within the Cambridge Biomedical
Research Campus. The proposed analyses are covered by ethical approval granted to the
POP study (REC Ref: 07/H0308/163).

C.5 Presentation of results

At the end of the analysis, we plan to submit a paper to a peer-reviewed journal in the field of
perinatal health. The analysis will be included in a PhD thesis funded by the British Heart
Foundation. Any additional costs associated with performing the analysis will be met by the

British Heart Foundation studentship awarded to Noor Teulings.






Appendix D

Analysis plan for assessing the
relationship between maternal
prepregnancy BMI and ultrasonic
markers of fetal growth restriction in
small-for-gestational age fetus in the
Pregnancy Outcome Prediction Study

D.1 Aim

To investigate the relationship between maternal BMI and the presence of ultrasonic of

markers of fetal growth restriction in fetuses born small-for-gestational age.

D.2 Exposure

D.2.1 Primary exposure

Primary exposure will be maternal BMI (calculated as maternal weight at 12-week research
appointment divided by maternal height squared). As the primary exposure, maternal BMI
will be considered as a continuous variable.



214 Predefined analysis plan for Chapter 6

D.2.2 Secondary exposure

Maternal BMI will be classified as normal weight as BMI <25.0 kg/m?, overweight as BMI
25-29.9 kg/m? and obese as BMI >30 kg/m?.

D.3 Outcomes of interest

D.3.1 Primary outcome

Primary outcome will be fetus born small-for-gestational age (SGA) in the presence or ab-
sence of (ultrasonic markers of) fetal growth restriction (FGR). Small-for-gestational age will
be classified as BW <10th percentile using fetal sex and gestational age adjusted reference
standard based on the UK population [341].

FGR will be defined based on birthweight percentile [341] and two components of the
Delphi panel consensus [101] as either
(i) birthweight <3’ percentile
(ii) birthweight <10’h percentile PLUS either

(a) slow growth velocity, defined as AC AND/OR EFW crossing percentiles > 2
quartiles from 20 weeks gestation to 36 weeks gestation visit or from 28 weeks

gestation visit to 36 weeks gestation visit (equivalent to a change in z score of
less than -1.35 in the POP study) OR

(b) pulsatility index of the umbilical artery above 95th percentile at 36 wkGA using
Acharya reference [361]

The reference group will be babies born at a healthy weight (BW >10" percentile [341])
with or without markers of fetal growth restriction (as classified above).

Women with preterm birth (<37 weeks), will be excluded from this analysis, as most of them

did not have a scan at 36-weeks’ gestation.

D.3.2 Secondary outcome

We will repeat the above analysis
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(i) using a severe SGA criterium (BW <3rd percentile)

(ii) using BW <10 percentile + two components of the Delphi panel consensus [101].

D.4 Analytical approach

Summary statistics will be used to describe the characteristics of the women by exposure of
interest. Continuous variables will be compared using the Kruskal-Wallis one-way analysis

of variance and categorical variables with the chi-square test.

Possible confounders will be explored by assessing the relationships between maternal char-
acteristics and maternal BMI and SGA with and without FGR markers.

Logistic regression analysis will be used to explore the relationship between maternal BMI
(continuous and categorical) and (i) the risk of delivering an SGA neonate without markers
of FGR during gestation (ii) the risk of delivering an SGA neonate showing any or specific
markers of FGR during gestation, with adjustment for potential confounders. To formally
assess whether the presence of FGR ultrasonic markers modifies the relationship between
maternal BMI and SGA, a further logistic regression analysis will be performed on the SGA
outcome, with an interaction term between maternal BMI and the presence of FGR markers.

We will execute some sensitivity analyses:
* Exclude large-for-gestational age neonates from the control group

» Repeat the analysis, but have severe SGA (classified as BW <5'h percentile) as the
outcome

* Repeat the analysis using customised birthweight centiles based on the Bulk calculator
GROW from the Perinatal institute.

* Repeat the analysis but using SGA plus or minus severe perinatal complications as
outcome [104].

* Investigate the relationship between maternal BMI and an SGA neonate plus low PIGF

levels, classified as the lowest decile within the POPS cohort.

Analysis will be done in RStudio for Windows, version 1.1.423.



216 Predefined analysis plan for Chapter 6

D.5 Presentation of results

At the end of the analysis, we plan to submit a paper to a peer-reviewed journal in the field of
perinatal health. The analysis will be included in a PhD thesis funded by the British Heart
Foundation. Any additional costs associated with performing the analysis will be met by the

British Heart Foundation studentship awarded to Noor Teulings
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