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Section I provides a self-contained derivation of the charge and spin transport equations. Specifically, we start
with the definitions of particle densities from quantum field theory, and derive quasiparticle continuity equations.
The results are used to derive quasiclassical results for the charge accumulation, spin accumulation, charge current,
and spin current. Section II then uses these results to derive an analytical expression for the spin supercurrent in
materials with spin accumulation. The result is used to explain the predictions in the main manuscript. Finally, in
Section III, we discuss some technical details about the numerical model used for Figs. 2–3 in the main article.

I. CHARGE AND SPIN TRANSPORT

A. Quasiparticle accumulations

There are four relevant species of quasiparticles in the sys-
tems that we will consider: namely electrons and holes, which
each have two distinct spin projections. These have the densities
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where Ψ†σ and Ψσ are standard creation and annihilation oper-
ators. For comparison, the propagators are defined as [S1–S3]:
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where the subscripts σ and σ′ denote possible spin projections.
Combining these definitions, we see that the quasiparticle den-
sities are directly related to the equal-coordinate propagators:
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These expressions can be used to calculate the spin-resolved
density of electrons and holes, respectively. Note that holes
carry both opposite charge and opposite spin compared to
electrons [S26]. The charge and spin accumulations are then
found by multiplying each quasiparticle density with their
respective charges or spins, and summing up their contributions:
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wherewe use the convention that e is the electron charge (e < 0).
The prefactors 1/2 are required to prevent double-counting, and

can be explained as follows. If we add one physical electron
to the system, then the charge of the system increases by e.
However, the number of electrons increases by one, and the
number of holes decreases by one, meaning that the difference
between electrons and holes increases by two. Thus, when
the charge density ρe is described in terms of both electrons
and holes, we need an extra factor 1/2 to get the right physical
charge. The same logic applies to the spin density ρz . We
can rewrite the results in terms of the propagators above, and
recognize the remaining sum as a trace over spins:

ρe = −
i
2

e Tr[σ0GK], (S12)

ρz = −
i
2
~

2
Tr[σ3GK]. (S13)

There is nothing special about the spin-z axis, so it is straight-
forward to generalize this result to arbitrary spin-projections:
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where σ = (σ1, σ2, σ3) is the Pauli vector. From the definition
of the Keldysh propagator above, we can also use the identity
〈AB〉∗ = 〈B†A†〉 to show that GK∗

σσ = −GK
σσ . This means that

GK
σσ is imaginary, which makes ρe, ρs ∼ iGK manifestly real.

For later convenience, we will therefore write this out explicitly:
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B. Quasiparticle currents

Now that we know the charge and spin accumulations, the
next step is to find the corresponding currents. To derive these,
we go back to the quasiparticle densities defined in Eq. (S1):
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To rigorously derive expressions for the charge and spin currents,
we will use the definitions above to look for quasiparticle
continuity equations on the form

∂tnτσ + ∇ · jτσ = qτσ, (S20)

where jτσ is the particle- and spin-resolved current density we
are interested in, while qτσ represents possible source terms.

We start by differentiating the densities with respect to time:
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We can rewrite the above using the Heisenberg equation of
motion for the field operators. Note that any contributions to
the continuity equation arising from non-derivative terms in the
Hamiltonian—such as a superconducting gap or an exchange
field—can be incorporated into the source term q. Thus, for
the purposes of deriving current equations, it is sufficient to
consider only derivative terms. Whether or not the currents we
derive are conserved currents can be checked at the end of the
derivation, by substituting the Usadel equation into the final
quasiclassical current equations [S4, S5]. If we for simplicity
disregard gauge fields for now, the equations reduce to:
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We then substitute these back into the equations for ∂tnτσ:
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Thanks to cancellation of cross-terms, these can be factorized:
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Comparing this to Eq. (S20), we conclude that:
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As a mathematical trick, let us now use different coordinates
Ψσ = Ψσ(r, t) and Ψ†σ = Ψ†σ(r ′, t ′) for the field operators,
where we let r ′ → r and t ′ → t in the end. In this case,
the differential operators acting on the field operators can be
factored out of the expectation value without ambiguity:
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We are now ready to define the charge and spin current densities.
In correspondence with Eq. (S10), we define these as:
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Substituting Eq. (S31) into Eqs. (S33) and (S34), comparing the
results to the Keldysh propagator in Eq. (S7), and recognizing
the results as traces in spin space, we conclude:
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Generalizing to all spin projections, we obtain the final results:
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We wish to point out that these currents are manifestly real.
From the definition of the Keldysh propagator, we see that:

(∇′ − ∇)[GK∗(r, t; r ′, t ′)] = (∇′ − ∇)[−GK(r ′, t ′; r, t)]. (S39)

But which set of coordinates we chose to call (r, t) and (r ′, t ′)
was arbitrary, and should not affect the physical results, since we
are considering the limit r ′, t ′→ r, t anyway. This means that
we can interchange the coordinates (r, t) and (r ′, t ′) on the right-
hand side of the equation, as long as we do this consistently
for every factor simultaneously. The coordinate interchange
leads to a sign flip in (∇′ − ∇) which cancels the minus sign
inside the brackets, and makes the two sides of the equation
equal. This lets us conclude that (∇′ − ∇)GK∗ = (∇′ − ∇)GK,
which in turn implies that the charge and spin currents are real.
For later convenience, we can therefore rewrite the above as

Je = −e
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′ − ∇)GK], (S40)

Js = −
~

2
1

4m
Re Tr[σ(∇′ − ∇)GK]. (S41)

C. Quasiclassical and diffusive limits

To derive equations we can use together with the Usadel
equation, we now follow the standard prescription for taking
the quasiclassical and diffusive limits [S1–S3, S6]. The net
change to the Keldysh propagator and its derivative are then:

iGK →
1
4

N0

+∞∫
−∞

dε 〈gK〉F, (S42)

1
2m
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−∞

dε 〈vgK〉F, (S43)
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where v B p/m is interpreted as the quasiparticle velocity, N0
is the density of states at the Fermi level, and 〈· · ·〉F refers to
the average over the Fermi surface. From the derivation of the
Usadel equation, we also know that in the diffusive limit the
Fermi-surface averages can be written [S6, S7]

〈ǧ〉F B ǧs, 〈vǧ〉F ≈ −D(ǧs∇̃ǧs), (S44)

where ∇̃ is a gauge-covariant derivative including the electro-
magnetic vector potential and spin-orbit interactions [S6, S7,
S20], ǧs is the isotropic propagator, and D is the diffusion con-
stant. We drop the subscripts on the isotropic propagators ǧs,
and substitute the above into the accumulations and currents:

ρe = −e
1
8

N0

+∞∫
−∞

dε Re Tr[σ0g
K], (S45)

ρs = −
~

2
1
8

N0

+∞∫
−∞

dε Re Tr[σgK], (S46)

Je = +e
1
8

N0

+∞∫
−∞

dε Re Tr[σ0I
K], (S47)
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~

2
1
8

N0

+∞∫
−∞

dε Re Tr[σIK], (S48)

where we have reintroduced the matrix current Ǐ B D(ǧ∇̃ǧ).
Note that these equations only depend on the “electronic” part
of the propagators in Nambu space, which in reality contains
information about both the electrons and holes in the system.

All these results can be written as integrals over only positive
energies using the symmetries of the Nambu-space matrices

σ̂nĝ
K(ε) =

(
+σng

K(+ε) +σn f K(+ε)
+σ∗n f K∗(−ε) +σ∗ng

K∗(−ε)

)
, (S49)

σ̂n Î
K(ε) =

(
+σnI

K(+ε) +σnJ
K(+ε)

−σ∗nJ
K∗(−ε) −σ∗nI

K∗(−ε)

)
. (S50)

In other words, the negative-energy contributions can be recast
in terms of the lower-right blocks; and since take the real part
of the results, the complex conjugations are irrelevant. The
remaining structure can be recognized as a trace over Nambu
space, yielding the final quasiclassical transport equations

ρe = −e
1
8

N0

∞∫
0

dε Re Tr[τ̂0σ̂0ĝ
K], (S51)
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~

2
1
8
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∞∫
0

dε Re Tr[τ̂0σ̂ĝK], (S52)

Je = +e
1
8
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∞∫
0

dε Re Tr[τ̂3σ̂0 Î
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~

2
1
8
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∞∫
0

dε Re Tr[τ̂3σ̂ ÎK]. (S54)

Note that σ̂ ÎK should be interpreted as an outer product between
two vectors, which results in a rank-2 tensor. This is because a
general description of spin transport requires both a direction
of transport ∼ ÎK and a spin orientation ∼ σ̂.

D. Higher-order gauge contributions

The equations of motion for the field operators also include
first-order derivative terms in systems with electromagnetic
[S6, S9] or spin-orbit [S7, S10, S11, S20] gauge fields. If
we ignore all other terms in the Hamiltonian, these derivative
terms give the following Heisenberg equations:

∂tΨσ =
1
m
Aσσ′ · (∇Ψσ′), (S55)

∂tΨ
†
σ =

1
m
(∇Ψ

†

σ′) · Aσ′σ, (S56)

where we implicitly sum over the spin index σ′. Going through
the same kind of derivations as without the gauge fields, we find
that we basically just have to make the following replacement
in the results right before taking the quasiclassical limit:

pGK →
1
2
{GK, p − A}. (S57)

Note that the gauge fields also affects charge and spin transport
in a different way, since they also appear as covariant deriva-
tives ∇̃( · ) = ∇( · ) − i[A, · ] in the matrix current Ǐ = Dǧ∇̃ǧ.

II. NONEQUILIBRIUM SUPERCURRENTS

A. Supercurrents vs. resistive currents

As shown in previous sections, the total spin current Js can
in the quasiclassical limit be calculated as an energy integral,

Js =
~

2
N0

∫∞
0

dε js, (S58)

where the spectral spin current js B Re Tr[τ̂3σ̂ ÎK]/8 and the
matrix current Î B Dǧ∇ǧ. If we substitute the parametrization
ĝK = ĝR ĥ − ĥĝA into the definition of the matrix current, we
find that its Keldysh component can be expanded as

ÎK =D[(ĝR∇ĝR)ĥ − ĥ(ĝA∇ĝA)]

+D[(∇ĥ) − ĝR(∇ĥ)ĝA].
(S59)

The terms on the first line may be finite even for a homogeneous
distribution function ĥ, and produces spin currents even in equi-
librium. Furthermore, they are sensitive to the phase-winding
of the superconducting condensate via ĝR∇ĝR and ĝA∇ĝA. We
therefore identify this as a supercurrent contribution. The
terms on the second line, however, are proportional to ∇ĥ. This
current contribution both requires an inhomogeneous distribu-
tion function, and is insensitive to the phase-winding of the
superconducting condensate, and has to be a resistive current.
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In this work, we are primarily interested in generating a
spin supercurrent from a nonequilibrium spin accumulation.
We therefore limit our attention to systems with a position-
independent distribution function ĥ that has an excited spin
mode. Since we assume ∇ĥ = 0, the second line of Eq. (S59)
disappears, and only the supercurrent contribution remains:

js =
1
8

Re Tr
[
ĥτ̂3σ̂(ĝ

R∇ĝR) − τ̂3σ̂ ĥ(ĝR†∇ĝR†)
]
. (S60)

As for the distribution function, it can be parametrized as

ĥ = h0σ̂0τ̂0 + hs · σ̂τ̂3, (S61)

where hs points along the net quantization axis of the accumu-
lated spins, and the magnitudes of the modes above are

h0(ε) =
1
2 tanh[(ε + eVs)/2T] + 1

2 tanh[(ε − eVs)/2T], (S62)

hs(ε) = 1
2 tanh[(ε + eVs)/2T] − 1

2 tanh[(ε − eVs)/2T]. (S63)

Note that the energy mode h0 and spin mode hs are odd and
even functions of energy, respectively. We have parametrized
the spin mode in terms of a spin voltage Vs B (V↑ − V↓)/2,
where Vσ are the effective potentials experienced by spin-
σ quasiparticles [S12–S14]. The spin mode hs is related
to the spin accumulation in Eq. (S52) by an energy integral
ρs ∼

∫
dε N(ε) hs(ε), where N(ε) is the density of states [S13].

B. Expansion in Pauli matrices

Once we substitute Eq. (S61) into Eq. (S60), there are a few
subtleties to be careful about. To handle these, without yet
introducing all the details of the singlet/triplet-decomposition,
we first expand ĝR∇ĝR directly in terms of Pauli matrices:

ĝR∇ĝR B α · σ̂τ̂3 + β · σ̂τ̂0 + γ σ̂0τ̂3 + δ σ̂0τ̂0 + ε̂ . (S64)

The first four terms parametrizes a general block-diagonal
matrix, while the last term ε̂ represents off-block-diagonal
parts. Since the distribution ĥ can always be chosen to be
block-diagonal, ε̂ does not contribute to the trace in Eq. (S60).
The other coefficients are found by taking appropriate traces:

α =
1
4

Tr[σ̂τ̂3ĝ
R∇ĝR], β =

1
4

Tr[σ̂τ̂0ĝ
R∇ĝR],

γ =
1
4

Tr[σ̂0τ̂3ĝ
R∇ĝR], δ =

1
4

Tr[σ̂0τ̂0ĝ
R∇ĝR].

(S65)

We parametrize ĝR†∇ĝR† using coefficients α, β, γ, δ that are
defined in the same manner as above.
We will now argue that the parameter δ is identically zero.

By differentiating the normalization condition (ĝR)2 = 1, one
can show that the retarded propagator anticommutes with its
gradient, {ĝR,∇ĝR} = 0. This identity can be rewritten

ĝR(∇ĝR) = −(∇ĝR)ĝR. (S66)

Let us now trace both sides of the equation, and use the cyclic
rule Tr[ÂB̂] = Tr[B̂ Â] on the right-hand side,

Tr[ĝR(∇ĝR)] = −Tr[ĝR(∇ĝR)]. (S67)

Since σ̂0τ̂0 is an identity matrix, we see from Eq. (S65) that:

δ = −δ. (S68)

In other words, δ = 0 is always satisfied, as any other conclusion
would violate the normalization condition (ĝR)2 = 1.

Next, to clarify another subtlety, we need to derive some
trace identities. By explicitly writing out the matrix products
and using σ̂ = diag(σ,σ∗), one can show that

Tr[(a · σ̂)(b · σ̂)σ̂τ̂0] = Tr[(a · σ )(b · σ )σ ]
+ Tr[(a · σ∗)(b · σ∗)σ∗], (S69)

Tr[(a · σ̂)(b · σ̂)σ̂τ̂3] = Tr[(a · σ )(b · σ )σ ]
− Tr[(a · σ∗)(b · σ∗)σ∗]. (S70)

Products of spin matrices in general satisfy (a · σ)(b · σ) =
(a · b)+ i(a × b) · σ; multiplying by σ and taking the trace, we
find the associated trace rule Tr[(a · σ)(b · σ)σ] = +2i(a × b).
However, if we complex-conjugate before taking the trace, we
uncover another identity Tr[(a · σ∗)(b · σ∗)σ∗] = −2i(a × b).
A geometric motivation for the sign difference is that if the basis
σ = (σ1, σ2, σ3) defines a right-handed coordinate system, then
σ∗ = (σ1,−σ2, σ3) has to define a left-handed one—and this
inverts the right-hand rule that cross-products usually satisfy.
With the aid of the results above, we see that

Tr[(a · σ̂)(b · σ̂)σ̂τ̂0] = 0, (S71)
Tr[(a · σ̂)(b · σ̂)σ̂τ̂3] = 4i(a × b). (S72)

This is the subtle trap alluded to above: due to the way we
define σ̂ = diag(σ,σ∗), the generalization of the Pauli cross-
product identity to matrices in Nambu space requires an extra
factor τ̂3 in the trace to produce a nonzero result.

We now substitute Eqs. (S61) and (S64) into Eq. (S60). With
the identities above, we see that the only contributions are:

js =
1
2 h0 Re

[
α − α

]
+ 1

2hs × Im
[
α + α

]
. (S73)

By multiplying Eq. (S66) by appropriate Pauli matrices, taking
traces, and using Tr[Â†] = Tr[Â]∗, one can show that α = −α∗.
Thismakesα−α real andα+α imaginary, so both contributions
are compatible with the normalization condition. We could also
use this information to eliminate the underlined coefficients,
but this would make it harder to see how mixed singlet/triplet-
terms cancel later in the derivation. Interestingly, all spin
supercurrent contributions depend on the same coefficient α,
and do not couple to the other traces of ĝR∇ĝR.
The physically observable spin supercurrent is found by

integrating the spectral current over all positive and nega-
tive energies. We also know that h0 and hs are odd and
even functions of energy, respectively. We can therefore let
α (+ε) → ∓α (−ε) = ∓α̃ ∗(+ε) in the spectral current without
changing the total spin supercurrent:

js =
1
2 h0 Re

[
α + α̃ ∗

]
+ 1

2hs × Im
[
α + α̃ ∗

]
. (S74)

This form of the result will be useful later, as it makes it clearer
which parts of the non-underlined and underlined coefficients
cancel for symmetry reasons. Conveniently, this also makes
the h0 and hs contributions take very similar forms.
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C. Expansion in singlets and triplets

We now proceed with an expansion of the propagators in
terms of physically meaningful components. Following the
same kind of parametrization as Ref. S15, we can write

ĝR =

(
(gs + gt · σ) ( fs + ft · σ)iσ2
−iσ2( f̃s − f̃t · σ) −σ2(g̃s − g̃t · σ)σ2

)
. (S75)

Here, fs represents the spin-singlet pair amplitude, while ft is
the spin-triplet amplitude. On the other hand, we can interpret
gs and gt as the spin-independent and spin-dependent parts
of the density of states, respectively [S15]. In our notation,
this means that the density of states for particles with spin-
projection p is given by N = N0 Re[gs + gt · p]. In equilibrium,
the spin accumulation is found by integrating h0gt over energies,
giving another interpretation of gt . Outside of equilibrium,
we of course get another kind of spin accumulation due to a
nonzero spin mode hs, which we are interested in here.

Using Eq. (S75) and the identity σ2σσ2 = −σ
∗, we find that

the diagonal components of ĝR∇ĝR in Nambu space are[
ĝR∇ĝR]

1,1 = (gs + gt · σ)∇(gs + gt · σ)

+ ( fs + ft · σ)∇( f̃s − f̃t · σ),[
ĝR∇ĝR]

2,2 = (g̃s + g̃t · σ
∗)∇(g̃s + g̃t · σ

∗)

+ ( f̃s + f̃t · σ
∗)∇( fs − ft · σ

∗),

(S76)

where the subscripts [· · · ]i, j are matrix indices in Nambu space.
Using the identity (a ·σ)(b ·σ) = (a · b)+ i(a × b) ·σ and its
conjugate (a ·σ∗)(b ·σ∗) = (a · b) − i(a × b) ·σ∗, we can sort
the above into spin-independent and spin-dependent terms,[

ĝR∇ĝR]
1,1 =

(
gs∇gs + gt∇gt + fs∇ f̃s − ft∇ f̃t

)
+

(
gs∇gt + gt∇gs + ft∇ f̃s − fs∇ f̃t

)
σ

+
(
gt × ∇gt − ft × ∇ f̃t

)
iσ,[

ĝR∇ĝR]
2,2 =

(
g̃s∇g̃s + g̃t∇g̃t + f̃s∇ fs − f̃t∇ ft

)
+

(
g̃s∇g̃t + g̃t∇g̃s + f̃t∇ fs − f̃s∇ ft

)
σ∗

−
(
g̃t × ∇g̃t − f̃t × ∇ ft

)
iσ∗.

(S77)

Since we define σ̂ = diag(σ,σ∗), Eq. (S65) tells us that the
coefficient α that we require can be expressed as

α =
1
4

Tr
{
σ[ĝR∇ĝR]

1,1 − σ
∗[ĝR∇ĝR]

2,2

}
. (S78)

Together with the expansion of ĝR∇ĝR above, and standard
trace identities for Pauli matrices, we then obtain

2α = gs∇gt + gt∇gs − g̃s∇g̃t − g̃t∇g̃s

+ ft∇ f̃s − fs∇ f̃t − f̃t∇ fs + f̃s∇ ft
+ igt × ∇gt + i g̃t × ∇g̃t
− i ft × ∇ f̃t − i f̃t × ∇ ft .

(S79)

Let us now calculate the corresponding coefficient α from the
matrix ĝR†∇ĝR†. Taking the complex-transpose of Eq. (S75),

ĝR† =

(
(g∗s + g∗t · σ) ( f̃ ∗s − f̃ ∗t · σ)iσ2

−iσ2( f ∗s + f ∗t · σ) −σ2(g̃
∗
s − g̃∗t · σ)σ2

)
, (S80)

we see that ĝR† changed as follows compared to ĝR:

gs → +g
∗
s, gt → +g

∗
t , fs → + f̃ ∗s , ft → − f̃

∗
t .

(S81)
Other than these transformations, the parametrization is clearly
identical, and the derivation of α becomes identical as well. If
we in the end results also choose to let ε → −ε , corresponding
to a combination of complex-conjugation and tilde-conjugation,
the net transformation rules become

gs → +g̃s, gt → +g̃t, fs → + fs, ft → − ft . (S82)

We can therefore simply perform the changes above to Eq. (S79)
to get the corresponding equations for α̃ ∗:

2α̃ ∗ = g̃s∇g̃t + g̃t∇g̃s − gs∇gt − gt∇gs

− ft∇ f̃s + fs∇ f̃t + f̃t∇ fs − f̃s∇ ft
+ i g̃t × ∇g̃t + igt × ∇gt
− i ft × ∇ f̃t − i f̃t × ∇ ft .

(S83)

We are now ready to calculate the spectral spin supercur-
rent in terms of the singlet/triplet-decomposition. Adding up
Eqs. (S79) and (S83), we see that all mixed singlet/triplet terms
drop out, and we are left with only the cross-product terms:

α+ α̃ ∗ = +igt×∇gt+i g̃t×∇g̃t−i f̃t×∇ ft−i ft×∇ f̃t . (S84)

Substituting this into Eq. (S74), we immediately see that:

js = −
1
2 h0 Im

[
gt × ∇gt + g̃t × ∇g̃t − ft × ∇ f̃t − f̃t × ∇ ft

]
+ 1

2hs×Re
[
gt × ∇gt + g̃t × ∇g̃t − ft × ∇ f̃t − f̃t × ∇ ft

]
.

(S85)
Since h0 and hs are odd and even functions of energy, and
the observable spin current is the energy integral of the above,
we can let h0 Im[Ã] → h0 Im[A] and hs Re[Ã] → hs Re[A]
without changing any results. Applied to the above, we can
summarize our results in the tidy and compact form

js =− Im
[
gt × ∇gt − ft × ∇ f̃t

]
· h0

−Re
[
gt × ∇gt − ft × ∇ f̃t

]
× hs.

(S86)

We have shown earlier in the derivation that both contributions
are compatible with the normalization condition. The fact
that they did not cancel during the last simplification above,
shows that both contributions are compatible with the energy
symmetries of h0 and hs. Finally, we know that the contents of
the brackets gt × ∇gt − ft × ∇ f̃t can be nonzero, since this is
the source of equilibrium spin currents.
The final result shows that if one in equilibrium has a spin

supercurrent j
eq
s , then a nonequilibrium spin mode hs gives

rise to a new component jneqs ∼ j
eq
s × hs. This can intuitively

be interpreted as the injected spins hs exerting some kind of
torque on the spins transported by the equilibrium current jeqs ,
thus producing a component j

neq
s that is spin-polarized in a

direction perpendicular to both. This analogy is not perfect: it
leaves out the Im and Re operations in Eq. (S86), and the fact
that the cross-product relation is between spectral currents and
accumulations. However, the intuition provided by this picture
is sufficient to explain the results in the main manuscript.
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III. NUMERICAL MODEL

As summarized in the main article, we perform the numerical
calculations using the Usadel formalism [S1–S3, S13, S16].
This is formulated in terms of the 8×8 quasiclassical propagator

ǧ B

(
ĝR ĝK

0 ĝA

)
, (S87)

which satisfies the identities ĝK = ĝR ĥ− ĥĝA and ĝA = τ̂3ĝ
R†τ̂3.

Together, these identities show that we have to determine
two 4 × 4 matrices to know ǧ: the retarded propagator ĝR,
which determines the spectral properties of a material; and
the distribution function ĥ, which describes the occupation
numbers of the states in the material. Both of these matrices
can be functions of position r and quasiparticle energy ε .
In general, the distribution function ĥ follows from solving

a kinetic equation that can be derived directly from the full
8 × 8 Usadel equation. We present a complete derivation of a
kinetic equation and relevant boundary conditions in Ref. S12,
which is valid for quite general superconducting structures.
The result is formulated as an explicit and linear differential
equation, which can be easily and efficiently implemented in
a numerical Usadel solver. Related derivations can be found
in Refs. [S2, S3, S13, S17–S19]. However, instead of solving
the kinetic equation explicitly, we have made two simplifying
assumptions about the distribution function ĥ. The first is that
it is roughly constant throughout the superconductor, which
is reasonable as long as the superconductor is not too thick
compared to its spin relaxation length. The second is that the
distribution function can be modelled using a spin voltage,
which we justify in the Discussion in the main article. These
assumptions imply that we can treat ĥ as a constant parameter,
which simplifies our model system from a 2D to 1D geometry,
thus making it much more feasible to attack numerically.
Since we treat ĥ as a parameter, we only have to solve the

Usadel equation for ĝR. In an effectively 1D superconductor,
such as the model system in the main article, this takes the form

iξ2∂x(ĝ
R∂x ĝ

R) = [∆̂ + ε τ̂3, ĝ
R]/∆0, (S88)

where ∆̂ = antidiag(+∆,−∆,+∆∗,−∆∗) incorporates the super-
conducting order parameter ∆(x), τ̂3 = diag(+1,+1,−1,−1) is
a Pauli matrix in Nambu space, ∆0 is the bulk zero-temperature
order parameter, and ξ is the superconducting coherence length.
In the numerical simulations, we also approximate the effect of
inelastic scattering using a Dynes parameter: ε 7→ ε + 0.01i∆0.
The ferromagnetic insulators in our model system were

treated as spin-active interfaces, i.e. boundary conditions that
account for spin-dependent phase shifts for quasiparticles in

the superconductor that are reflected from the insulating
interface [S21–S24]. This boundary condition takes the form

± 2L(ĝR∂x ĝ
R) = −i(Gϕ/Gn) [m · σ̂, ĝ

R], (S89)

where the plus and minus signs describe boundary conditions
at the left and right interfaces of the superconductor, respec-
tively. Here, L is the length of the superconductor along the
x-axis, Gn is the bulk conductance of the superconductor in
its non-superconducting state, Gϕ describes the effect of spin-
dependent phase shifts when quasiparticles are reflected from
a magnetic interface, and m is a unit vector that describes the
magnetization direction at the same interface.
In addition to the equations above, we need to solve a self-

consistency equation for the order parameter ∆(x) [S20],

∆(x) =
1

4 log(2ωc/∆0)

∫ +ωc

−ωc

dε f K
s (x, ε). (S90)

Here, f K
s is the singlet part of the anomalous part of the Keldysh

propagator ĝK. In practice, it can be evaluated at all energies
from the calculated ĝK at positive energies using the identities

f K
s (x,+ε) =

1
4

Tr
[
(−iσ̂2) (τ̂1 − iτ̂2) ĝ

K(x,+ε)
]
, (S91)

f K
s (x,−ε) =

1
4

Tr
[
(+iσ̂2) (τ̂1 + iτ̂2) ĝ

K(x,+ε)
]∗
. (S92)

These follow from parametrizing ĝK in a similar manner as
Eq. (S75), then invoking the definition of tilde-conjugation
f̃s(x, ε) B f ∗s (x,−ε), and finally using standard trace identities.
The actual numerical implementation was done using the

Riccati parametrization of the retarded propagator [S20, S25],

ĝR =

(
+N 0
0 −Ñ

) (
1 + γγ̃ 2γ

2γ̃ 1 + γ̃γ

)
, (S93)

where γ is a 2 × 2 complex matrix, and N B (1 − γγ̃)−1. This
matrix structure is defined in a way that automatically satisfies
the normalization condition (ĝR)2 = 1, and accounts for the
particle–hole symmetries of the propagator, thus reducing
the number of independent variables one has to solve for
numerically. This parametrization also has the additional
benefits that the Riccati parameter γ is single-valued and has
a bounded norm, thus resulting in a more stable numerical
solution procedure. How to reformulate the equations for ĝR

in terms of γ is described in e.g. Ref. S20. In practice, we
alternate between calculating γ from Eqs. (S88) and (S89), and
updating ∆(x) using Eqs. (S90)–(S92), until they converge to
a satisfactory degree. The simulation code itself is publicly
available from github.com/jabirali/geneus.

https://github.com/jabirali/GENEUS
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