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Early detection of doxorubicin-induced
cardiotoxicity in rats by its cardiac metabolic
signature assessed with hyperpolarized MRI
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Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardi-
otoxic side effects culminating in congestive heart failure (HF). There are currently no clinical
imaging techniques or biomarkers available to detect DOX-cardiotoxicity before functional
decline. Mitochondrial dysfunction is thought to be a key factor driving functional decline,
though real-time metabolic fluxes have never been assessed in DOX-cardiotoxicity. Hyper-
polarized magnetic resonance imaging (MRI) can assess real-time metabolic fluxes in vivo.
Here we show that cardiac functional decline in a clinically relevant rat-model of DOX-HF is
preceded by a change in oxidative mitochondrial carbohydrate metabolism, measured by
hyperpolarized MRI. The decreased metabolic fluxes were predominantly due to mitochon-
drial loss and additional mitochondrial dysfunction, and not, as widely assumed hitherto, to
oxidative stress. Since hyperpolarized MRI has been successfully translated into clinical
trials this opens up the potential to test cancer patients receiving DOX for early signs

of cardiotoxicity.
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agent for the treatment of adult and pediatric cancers,

such as breast cancer and lymphoma. DOX has greatly
improved cancer survival rates, however, even when limiting life-
time doses to <400 mg m~2, the incidence of developing heart
failure (HF)! as a result of DOX treatment remains at ~5%?2.
Therefore, the early detection and targeted treatment of patients
at risk from cardiotoxicity is paramount to reducing the incidence
of life-limiting DOX-HF in cancer survivors. Unfortunately, there
are currently no clinical imaging techniques or biomarkers
available to detect DOX-cardiotoxicity before the onset of func-
tional decline, and there are no specific treatments to prevent the
onset of DOX-HF.

Numerous molecular mechanisms have been proposed for
DOX-cardiotoxicity, all culminating in cardiomyocyte death®.
These mechanisms include alterations to autophagy?, mitophagy®
and mitochondrial dysfunction’. Production of mitochondrial
reactive oxygen species (ROS) by iron-dependent and indepen-
dent mechanisms is thought to be upstream of the above
mechanisms®, but these observations stem solely from preclinical
models and are challenging to assess in patients in the clinic.
Furthermore, iron-chelating agents, such as dexrazoxane, which
confer some level of cardioprotection in breast cancer patients?,
have not shown the expected efficacy should oxidative stress truly
be at the core of DOX-HF®. Furthermore, any cardioprotective
effect of dexrazoxane has recently been attributed to its interac-
tion with topoisomerase 2B (TOP2f) rather than through its iron-
binding capacity!0. It is proposed that dexrazoxane could prevent
DOX binding to TOP2B and inhibit the generation of DOX-
induced DNA double strand breaks that initiate apoptosis. In
addition, dexrazoxane is contra-indicated in children because it
can lead to cancer formation!!, further emphasizing the need for
targeted therapies to prevent DOX-HF. Studies in mice have
shown cardioprotection when Top2f!2, BNIP313 (a protein
involved in mitophagy), or iNOS!* (inducible nitric oxide syn-
thase) are knocked out. Given that these are examples of very
different and distinct pathways (DNA-damage, mitophagy,
nitrosative/oxidative stress) it is clear that, either (i) the primary
target of DOX has not yet been identified, (ii) that DOX acts on a
range of cellular targets simultaneously, or (iii) that different
model systems and treatment regimens introduce phenotypes
with underlying pathology that do not necessarily mimic DOX-
HF in patients.

Cardiac energetics are thought to play a key role in the
development of DOX-HF!> and indeed in heart failure in
generall®, Noninvasively measuring cardiac metabolism in vivo
could allow the early detection of the cardiotoxic effects of
DOX on metabolism in patients, facilitating prophylactic
treatment before the onset of irreversible functional decline.
Radiolabeled analogs of glucose and fatty acids have previously
been used with positron emission tomography/computed
tomography (PET/CT) to detect changes in substrate uptake in
the DOX-treated heart, which precede functional changes in
rats!”. However, these measurements pose a potential health-
risk to the patient due to the radioactive dose from both the
tracer and the CT image acquisition for anatomical localiza-
tion, although this is mainly a concern in pediatric patients.
Furthermore, PET only measures substrate accumulation or
dynamic uptake while true measurements of downstream real-
time metabolism have not previously been possible. Magnetic
resonance (MR) imaging and spectroscopy in turn may offer a
safe and noninvasive measure of cardiac structure, function
and substrate utilization in vivo in one imaging session.
Carbon-13 (13C) MR spectroscopy (MRS) is particularly well
suited to studying metabolism, due to the ubiquitous presence
of carbon in metabolites and the large range of relevant

D oxorubicin (DOX) is a commonly used chemotherapeutic

chemical shifts in 13C MR spectra. Until recently the low
natural abundance of !3C nuclei had prevented real-time
measurements of metabolic fluxes in vivo. However, over the
last decade, hyperpolarized MRS by dissolution dynamic
nuclear polarization of 13C-labeled substrates!® has revolutio-
nized cardiac metabolic flux measurements in preclinical
models'® and in the human heart2%2!, For example, increased
lactate labeling from hyperpolarized [1-13C]pyruvate was
recently shown to be a marker of innate immune cell driven
inflammation in a rodent model of myocardial infarction?2.
Furthermore, by selective labeling of pyruvate as either [1-13C]
or [2-13C], both cytosolic anaerobic and mitochondrial oxi-
dative carbohydrate metabolism can be measured in real-
time23-24,

Here we show that hyperpolarized [1-13C]pyruvate allows early
detection of reduced mitochondrial oxidative carbohydrate
metabolism in a clinically-relevant rat model of DOX-HF. The
decrease in mitochondrial oxidative carbohydrate metabolism
was indicative of mitochondrial loss and dysfunction, which was
not caused by oxidative stress.

Results and discussion

Doxorubicin treatment in rats leads to cardiac dysfunction.
Male Wistar rats were treated either for six consecutive weeks
with sterile saline, with a low dose of 2mgkg~! DOX
(cumulative dose 12 mgkg™1) or treated for five consecutive
weeks with a high dose of 3 mgkg™! DOX (cumulative dose
15mgkg~!) (Fig. 1a). Similar i.v. doses as used in this study
have previously been shown to lead to cardiotoxicity in
rats?>26, We chose male Wistar rats as mitochondrial energy
metabolism is thought to be affected more severely in male
rather than female rats?®. We first assessed the general effects
of DOX on the rats by monitoring body weight gain
throughout the study, and measuring tibia length and epidi-
dymal fat pad weight post mortem at week 6 (Fig. 1b-e). Rats
in the low dose DOX group gained weight more slowly than
rats in the saline control group. In the high dose DOX group,
decreased weight gain was followed by weight loss starting
from week 3 (Fig. 1b). Overall, both DOX groups had a sig-
nificantly reduced average weight gain per day when compared
to the saline control group (Fig. 1c). This reduced body weight
gain was due to a decrease in body fat deposition and, poten-
tially, loss of lean mass as opposed to a general growth retar-
dation, as evidenced by a significantly increased tibia length:
body weight ratio and decreased fat pad weight post mortem in
both DOX groups compared to the saline control group
(Fig. 1d, e). High dose DOX also led to a significant increase in
plasma cardiac troponin I (¢TNI) and lactate dehydrogenase
(LDH) levels at week 6 (Fig. Sla, b). Overall, DOX treatment in
rats led to a dose-dependent effect on body weight gain and an
increase in plasma cardiac cellular damage markers indicative
of cardiotoxicity.

We next assessed cardiac function in DOX-treated rats by
performing CINE MR imaging at weeks 1, 3, and 6 of the study
(Fig. 1f-m). Cardiac left ventricular (LV) end-systolic volume was
not altered (Fig. 1g) while LV end-diastolic volume was
significantly decreased in the DOX high group at week 6 (Fig. 1h).
LV stroke volume (SV) was significantly decreased in both DOX-
treated groups at week 6 (Fig. 1i). Heart rate was decreased at
week 6 only in the DOX high group (Fig. 1j), while cardiac output
was significantly decreased in both DOX groups at week 6, and
there was a significant difference between the DOX low and DOX
high groups (Fig. 1k). After adjusting for body weight, cardiac
index was only significantly reduced in the DOX high group, both
compared to the saline control group and to the DOX low group
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(Fig. 11). LV ejection fraction, the most clinically relevant measure
of cardiac function, was reduced at week 6 in both the low and the
high dose DOX groups (Fig. 1m).

Overall, we established an in vivo rat model of DOX-
cardiotoxicity, using doses and administration routes that are
relevant to the clinical setting and leading to a dose-dependent

reduction in cardiac function indicative of heart failure. In
patients, DOX-induced cardiotoxicity usually presents first with
early diastolic dysfunction, followed by systolic dysfunction®?,
and the decreased end-diastolic volume in the rats in this study
may indicate a similar pattern. Thus, the rat model of DOX-HF
presented here closely mimics the pathology seen in patients and
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Fig. 1 A clinically-relevant rat model of doxorubicin-induced heart failure. a Outline of the study. Male Wistar rats were treated intravenously (i.v.) with
weekly injections of either sterile saline or doxorubicin (DOX) in three groups: saline, DOX low, DOX high. Magnetic resonance imaging (MRI) at weeks 1, 3,
and 6 consisted of cardiac function assessed with CINE MRI, and cardiac metabolic flux measurements with hyperpolarized MRI. b Rat growth curves (mean
+ SEM) and ¢ average rat body weight gain per day throughout the 6-week study. After the week 6 imaging timepoint rats were sacrificed for tissue collection.
Postmortem measurements of tibia length to assess d tibia length:body weight ratio and postmortem e epididymal fat pad weights. f Representative CINE MR
images of maximum diastole (top panel) and systole (bottom panel) in male Wistar rats from saline control, DOX low, and DOX high groups at the final
timepoint (week 6). g Left ventricular end-systolic volume h end-diastolic volume i stroke volume j heart rate k cardiac output | cardiac index and m left

ventricular (LV) ejection fraction, in rats from all three groups at weeks 1, 3, and 6. Box and whisker plots ranging from min to max value with the median
indicated by horizontal line. Some graphs do not start at y = O to allow for better visualization of the data spread. Statistical comparison by one-way ANOVA
(c-e), or two-way ANOVA (g-m) with Tukey's HSD correction method for multiple comparisons. **P < 0.01, ***P < 0.001, ****P < 0.0001 compared to saline
control group. $Statistically significant difference between DOX high and DOX low group. Source data are provided in Supplementary Data 2.

therefore allows us to assess early markers of the development of
DOX-HF.

Cardiac mitochondrial carbohydrate metabolism is impaired
in DOX-treated rats. At the time of CINE MR, rats in this study
also received two injections of hyperpolarized [1-13C]- and
[2-13C]pyruvate, respectively, to assess myocardial carbohydrate
metabolism and tricarboxylic acid (TCA) cycle flux in vivo
(Fig. 2)2324, In the high dose DOX group, there was a decrease in
the bicarbonate:pyruvate ratio due to decreased pyruvate dehy-
drogenase (PDH)?8 flux indicative of reduced carbohydrate oxi-
dation, evident from week 3 onward (Fig. 2d). Anaerobic
carbohydrate metabolism apparent through the lactate:pyruvate
ratio was unchanged (Fig. 2e). In parallel with changes to PDH
flux there was a marked decrease of tricarboxylic acid (TCA)-
cycle derived glutamate at week 6 in both DOX groups, (Fig. 2f).
Furthermore, DOX treatment led to a decrease in acetyl-carnitine
labeling indicative of reduced acetyl-CoA buffering capacity?? in
both DOX groups at week 6 (Fig. 2g). Overall, these changes in
real-time in vivo metabolic fluxes demonstrate a decrease in
oxidative mitochondrial carbohydrate metabolism in the DOX-
treated hearts, which in the high dose DOX group preceded the
onset of HF in week 6 measured by CINE MRI.

Plasma glucose levels did not change in either DOX group at
any time point (Fig. S1c), suggesting that substrate supply was not
responsible for this decrease in oxidative metabolism. At the
6 week timepoint, plasma lactate, nonesterified fatty acids
(NEFA), and B-hydroxybutyrate were increased in the DOX high
group (Fig. S1d-f). Carbohydrate oxidation in the heart is
reciprocally controlled by fatty acid oxidation via the Randle
cycle’0, and decreased PDH flux at the 6 week timepoint may be
influenced by increased fatty acid supply to the heart.
Furthermore, while there was no decrease in PDH flux in the
low dose DOX group at any time point in our study, these rats
showed a decrease in apparent TCA cycle flux (glutamate:
pyruvate ratio) after six injections at the final cumulative dose of
12 mg kg~L. This dose was reached in the high dose DOX group
already after four injections, where a decrease in PDH flux was
apparent. This suggests that higher individual DOX doses lead to
accelerated cardiac damage resulting in a greater reduction in
cardiac oxidative capacity than administration of lower doses over
a prolonged time period. Interestingly, patients with metabolic
syndrome are more likely to develop cardiac dysfunction after
DOX chemotherapy, highlighting that whole-body and not just
aberrant cardiac metabolism may play a critical role in the
pathology of DOX-induced heart failure3!.

After the last MRI scan rats were sacrificed, hearts were excised
and metabolites extracted for analysis by LC-MS/MS. Orthogonal
projections to latent structures (OPLS) analysis of the metabo-
lomic dataset could clearly delineate the saline treated control
group from the DOX groups (Figs. 2h and S2a). A loadings plot

of the 90 aqueous metabolites and 25 acyl-carnitine species
(Supplementary Data 1) revealed that a decrease in the cardiac
pool sizes of the TCA cycle intermediate malate and TCA cycle-
related glutamate as well as total carnitine, acetyl-carnitine and
the adenine nucleotides NAD, AMP, ADP, and ATP and the PCr:
ATP ratio in hearts from DOX-treated rats was driving this group
distinction (Figs. 2i and S2b). A progressive decrease in the
cardiac total adenine nucleotide pool was previously shown in a
dog model of pacing-induced heart failure32. Therefore, these
data further support the hypothesis that mitochondrial oxidative
metabolism and energy generation is decreased in the rat heart
following repeated DOX-treatment and that this drives the onset
of heart failure in these rats.

Mitochondrial number and metabolism are impaired in the
DOX-treated rat heart. A separate cohort of rats (cohort 2) was
treated with either saline or high dose DOX as described above,
with the rats sacrificed at week 6 and hearts excised for isolation of
sub-sarcolemmal (SSM) and interfibrillar (IFM) mitochondria. Both
SSM and IFM from high dose DOX hearts showed a decreased
oxygen consumption rate with glutamate or palmitoyl-CoA +
carnitine as substrates in state 3 but not state 4 respiration and IFM
additionally showed a significant decrease with pyruvate + malate
in state 3 (Fig. 3c—f). Electron transport chain (ETC) complex
activity assays in SSM and IFM revealed no difference in complex
[-1II activity but there was a significant decrease in complex IV
activity in both mitochondrial populations (Fig. 3g—n). In addition,
there was a significant decrease in mitochondrial number in the
high dose DOX group (Fig. 30, p). Overall this suggests that DOX-
HF is driven by a loss of mitochondria and a decrease in mito-
chondrial function driven by a decrease in complex IV activity
(Fig. 3q).

Oxidative stress is not a driving factor for cardiac dysfunction
in this model of DOX-HF. Mitochondrial oxidative stress is
thought to be a key factor for DOX-cardiotoxicity and reactive
oxygen species can inhibit the ETC and damage mitochondria33.
We therefore next wanted to established whether the
mitochondrially-targeted antioxidant, MitoQ3*, can prevent
DOX-HF. It has previously been shown in animal models that
MitoQ can protect the heart from ischemia/reperfusion injury3>,
and prevent loss of mitochondrial function associated with oxi-
dative stress in a pressure overload model of heart failure©.
MitoQ has also shown a protective effect on heart damage due to
acute high doses of doxorubicin3” and interestingly, this damage
was associated with reduced complex IV activity, which was
restored by MitoQ treatment. To test whether MitoQ was also
cardioprotective in this clinically relevant chronic model of DOX-
HF, a separate high dose DOX group received MitoQ in their
drinking water (0.5 mM) ad libitum 48 h before the first dose of
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DOX and then continuously until the end of the study. These
concentrations of MitoQ have previously been shown to lead to
steady-state levels of MitoQ in the rat heart that protects from
hypertension-induced hypertrophy>3°. Here, MitoQ reached a
tissue concentration of 3.7 +0.5 pmol g—! in the rat heart after
6 weeks and MitoQ has been shown to protect cells from

oxidative damage previously at these levels#0. Therefore, the effect
of MitoQ would indicate whether or not oxidative stress con-
tributed to DOX-HF in this model. Surprisingly, we found no
protective effect of MitoQ on either cardiac function (Fig. S3a),
cardiac metabolic fluxes (S3b, ¢) or cardiac mitochondrial num-
ber (Fig. S3d). While we administered MitoQ ad libitum in
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Fig. 2 Effects of doxorubicin on rat cardiac metabolism measured by hyperpolarized magnetic resonance spectroscopy. a Cartoon illustrating
metabolites visible in the rat heart in vivo with magnetic resonance spectroscopy (MRS) after intravenous injection of hyperpolarized [1-13CIpyruvate
(green) or [2-13C]pyruvate (blue). Representative spectra of a cardiac hyperpolarized [2-13CIpyruvate (b) or [1-13CIpyruvate (c) scan. Spectra are the sum
of 30 s of data. d Cardiac bicarbonate:pyruvate ratio and e, lactate:pyruvate ratio of the sum of the first 30 s of MR spectra after intravenous injection
of hyperpolarized [1-13C]pyruvate in male Wistar rats treated for six consecutive weeks with intravenous weekly injections of 4 mL kg~ sterile saline or
2 mg kg~ doxorubicin (DOX low) or treated for five consecutive weeks with intravenous weekly injections of 3 mg kg~ DOX (DOX high). f Cardiac
glutamate:pyruvate ratio and g acetyl-carnitine:pyruvate ratio of the sum of the first 30 s of MR spectra after intravenous injection of hyperpolarized
[2-13CIpyruvate. h Orthogonal partial least squares discriminate analysis (OPLS-DA) of metabolomic data discriminating between the control group and

the combined group of DOX high and DOX low (parameters for the OPLS-DA model: R2(X) = 76%, R2(Y) = 99%, Q? =59%, passed the random
permutation test). i s-plot of OPLS-DA plot in h displaying metabolites according to their loadings and correlation with class membership. PCr
phosphocreatine. Where applicable, box and whisker plots ranging from min to max value with the median indicated by horizontal line. Statistical
comparison by two-way ANOVA with Tukey's HSD correction method for multiple comparisons. *P < 0.05, **P < 0.01, ****P < 0.0001 compared to saline
control group. $Statistically significant difference between DOX high and DOX low group. Source data are provided in Supplementary Data 2.

drinking water, MitoQ in other studies has been delivered twice
weekly i.p.37. This may lead to different concentrations of MitoQ
in the heart and therefore different protective capacity. Further-
more, we could not find any evidence of either long-term oxi-
dative stress (Fig. S4a-c) or acute reactive oxygen species
production (Fig. S4d) in our DOX-treated rat hearts. Likewise, we
conducted RNAseq of RNA extracts from DOX high and saline-
treated control hearts, which showed no evidence that gene sets
associated with either oxidative stress or reactive oxygen species
were altered in our model (Table S1). However, we only assessed
hydrogen peroxide production directly with MitoB but did not
assess short-lived ROS such as superoxide or peroxynitrite in our
model. Nevertheless, overall our data indicate that oxidative stress
in this chronic and clinically relevant model of DOX-HF is not
driving the pathology.

Conclusion. In summary, we have shown here that hyperpolar-
ized MRS can serve as a unique marker of mitochondrial integrity
and oxidative mitochondrial carbohydrate metabolism and
thereby detect DOX-induced cardiotoxicity before functional
decline. We furthermore show that oxidative stress in this model
of DOX-HEF is not responsible for the loss of mitochondria and
the onset of HF. The first images of real-time metabolic flux in the
human heart have been published using hyperpolarized MRI?!
and exciting clinical research is ongoing to understand the role of
cardiac metabolism in cardiovascular disease?), opening up the
potential to apply this technology to the study of both DOX-HF
and HF of other aetiologies in patients.

Methods

Animal studies. All animal experiments conformed to Home Office Guidance on
the Operation of the Animals (Scientific Procedures) Act, 1986 and were approved
by a local ethics committee. Most animal models of DOX-cardiotoxicity employ
high doses of DOX, far above the equivalent recommended life-time dose for
patients*!. Furthermore these are often administered intraperitoneally in a single
dose rather than infused i.v. in repeat doses as is done clinically. Intraperitoneal
injections of DOX can lead to severe, painful inflammation and fibrosis*?, which, as
well as being deleterious from an animal welfare point of view, may lead to
alterations in food intake and hence metabolic status as well as confounding DOX-
specific effects due to inflammation. We therefore chose to deliver DOX intrave-
nously through a tail vein with small individual doses administered over several
weeks to best mimic patient treatment schemes. Three separate cohorts of age and
weight-matched male Wistar rats (6-8 weeks, 238 + 36 g (standard deviation)) were
used. For cohort 1, rats were split into four groups and treated weekly for 6 weeks
with i.v. injection of either 4 mLkg™! sterile saline (n = 20) or 2mgkg~! DOX
(Apollo Scientific) dissolved in sterile saline (Dox low, n = 12) or for five weeks
with 3 mgkg~! DOX (Dox high, n =8) or 3 mgkg~! DOX + 0.5 mM MitoQ3* in
drinking water ad libitum for the duration of the study (DOX high + MitoQ, n =
6). Rats were weighed weekly during the study. At weeks 1, 3, and 6 rats were
anaesthetized with 2% isoflurane in medical oxygen and blood samples were taken
for analysis of plasma cardiac troponin I (cTNI) with a commercially available
ELISA kit (CTNI-2-HSP, Life Diagnostics, West Chester, PA, USA) and plasma
lactate dehydrogenase (LDH) with a commercially available kit (ABX Pentra,
Horiba, Irvine California, CA, USA). Glucose, lactate, nonesterified fatty acids

(NEFA), and B-hydroxybutyrate were measured in the plasma with a commercially
available kits (Randox, Crumlin, UK). Rats then underwent an MR imaging pro-
tocol (see below). At the end of the study, rats were sacrificed and their epididymal
fat pads weighed and tibia length measured. A separate cohort (cohort 2) was
treated as above with either saline or 3 mgkg~! DOX (n = 6 for both groups) and
used for mitochondrial isolation and functional analysis. Cohort 3 was treated as
above with either saline or 3 mgkg~! DOX once (n =4 each) or weekly for 5
consecutive weeks (n = 4 each) and used for measurements of intramitochondrial
hydrogen peroxide production (see “Measurements of oxidative stress” section).

Cardiac functional and metabolic analysis with MRI, MRS, and LC-MS/MS.
After blood sampling, and during the same anesthesia, rats from cohort 1 were
used for functional CINE MR imaging (MRI) and real-time metabolic flux mea-
surements with hyperpolarized [1-13C]- and [2-13C]pyruvate MRS, performed on
a7 T preclinical MRI system (Varian) as previously described*3. The order of CINE
MRI and hyperpolarized [1-13C]- and [2-13C]pyruvate MRS scans was randomized
between different rats. For the hyperpolarized experiments, 1 mL of 80 mM
[1-13C]- or [2-13C]pyruvate was injected into the tail vain over 10s. 13C MR
spectra were acquired from the heart every second for 60 s using a 72 mm dual-
tuned birdcage volume transmit H/!3C coil and a 13C two-channel surface receive
coil (Rapid Biomedical; 15° hard pulse; 13.2 kHz bandwidth for [1-13C]pyruvate
and 17.6 kHz for [2-13C]pyruvate). Multicoil spectra were manually added in
phase, and the first 30 s of spectra from the first appearance of the pyruvate peak
were summed and quantified with AMARES/jMRUI as described previously*4.
After the last MRI scan, rats from cohort 1 were sacrificed and hearts excised and
rapidly snap-frozen by freeze clamping with liquid nitrogen-cooled Wallenberger
tongs. Metabolites were extracted from 50 mg samples of the hearts from cohort 1
(excluding DOX high + MitoQ group) with 2:1 chloroform:methanol using metal-
bead containing tubes and a Precellys tissue homogenizer (Bertin Instruments,
Montigny-le-Bretonneux, France) and metabolomic analysis was performed with
liquid chromatography tandem mass spectrometry (LC-MS/MS)*°. Hearts from
rats treated with MitoQ were extracted with 60% acetonitrile containing 0.1%
formic acid using metal-bead containing tubes and a Precellys tissue homogenizer,
and MitoQ levels were assessed by LC-MS/MS*®.

Mitochondrial analysis. Rats from cohort 2 were sacrificed under terminal iso-
flurane anesthesia (5% in medical oxygen) at week 6 and their hearts excised. A
~100 mg piece of the heart apex was freeze clamped and from the remaining tissue
subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria were isolated47.
Oxygen consumption rates were assessed in mitochondria (0.15 mg mitochondrial
protein per experiment) at 30 °C with a Clarke-type oxygen electrode (Strathkelvin
Instruments Ltd, Glasgow, UK) using pyruvate + malate, glutamate or palmitoyl-
CoA + carnitine as substrates. Mitochondrial complex I-IV activities were assessed
in the same isolated mitochondria spectrophotometrically as previously descri-
bed*8. From the frozen apex, 30 mg were used for DNA extraction using a DNeasy”
blood and tissue extraction kit (Qiagen, Venlo, Netherlands). Quantitative real-
time PCR was performed using the Power SYBR Green PCR Master Mix and a
Step-one Plus Real-Time PCR system (Thermo Fisher Scientific) to assess copy
numbers for the mitochondrial gene cytochrome b (cytB) and the nuclear-encoded
gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Primer sequences
(5’-3") were as follows: GAPDH sense, AGTATGTCGTG GAGTCTACTGGTG;
GAPDH anti-sense, TGAGTTGTCATATTTCTCGTGGTT; cytB sense, GGGTAT
GTACTCCCATGAGGAG; cytB anti-sense, CCTCCTCAGATTCATTCGAC. The
data were analyzed with the comparative C; method*® with relative cytB copy
number as a marker of mitochondrial number. The remaining heart apex tissue
was ground to a fine powder under liquid nitrogen and used for protein extraction,
and citrate synthase activity measurements using spectrophotometric analysis as
described previously*S.
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Measurements of oxidative stress. Oxidative stress in the heart was assessed in
three separate ways: Heart tissue from cohort 1 were analyzed for long-term oxi-
dative stress with commercially available ELISA kits for nitrotyrosine residues as a
marker of protein nitrosylation and for 8-hydroxy-2’-deoxyguanosine as a marker
of DNA oxidation (ab113848 and ab201734, abcam, Cambridge, UK). In vivo
intramitochondrial hydrogen peroxide levels were measured in cohort 3 with the
mitochondrially targeted hydrogen peroxide-sensor, MitoB>(. Rats were

anaesthetized with 2% isofluorane in medical oxygen and injected intravenously
with 1 nmol g~! body weight MitoB in sterile saline either immediately after i.v.
injection of saline or 3 mg kg~! DOX (acute stress) or 48 h after injection of saline
or 3mgkg~! DOX in week 1, 3, and 5 (chronic stress). Rats were re-anaesthetized
4h after MitoB injection with 5% isoflurane in medical oxygen and hearts excised
and rapidly freeze-clamped with liquid nitrogen-cooled Wallenberger tongs.
Around 50 mg of heart tissue were extracted with ice-cold 60% acetonitrile
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Fig. 3 Cardiac mitochondrial function and number in doxorubicin-treated rats. a Cartoon depicting intracellular localization of sub-sarcolemmal (SSM)
and interfibrillar (IFM) mitochondria inside cardiomyocytes. b Schematic showing mitochondrial oxygen consumption measurements where state 2
respiration is the background respiration in isolated mitochondria with substrate alone, state 3 depicts ADP-stimulated respiration and state 4 ADP-limited
respiration after all ADP has been phosphorylated to ATP. e¢-f Oxygen consumption measurements (Clarke-style electrode) performed in isolated SSMs
and IFMs (week 6) from male Wistar rats treated for 6 consecutive weeks with intravenous weekly injections of 4 mLkg~" sterile saline or treated for 5
consecutive weeks with intravenous weekly injections of 3 mg kg=! DOX (DOX high). State 3 and state 4 respiration with pyruvate + malate (PM),
glutamate (G) or palmitoyl-CoA + carnitine (PCC) as a fuel in SSMs (¢, d) and IFMs (e, f). Complex I-1V activity in the same SSMs (g-j) and IFMs (k-n)
measured with spectrophotometric assays. Mitochondrial number assessed by o, gPCR analysis of a mitochondrial gene (cytochrome B; cytB) compared to
a nuclear gene (glyceraldehyde-3-phosphate dehydrogenase; GAPDH) in genomic DNA-extracts from heart tissue and by p, citrate synthase activity in
protein extracts from heart tissue. q Proposed mechanism that DOX treatment leads to mitochondrial loss and concomitant inadequate substrate oxidation
leading to heart failure. Box and whisker plots ranging from min to max value with the median indicated by horizontal line. Some graphs do not start at y =
0O to allow for better visualization of the data spread. Statistical comparison by two-way ANOVA (c-f) with Tukey's HSD correction method for multiple
comparisons or by paired t-tests (g-p). *P < 0.05, **P < 0.01 compared to saline control group. Source data are provided in Supplementary Data 2.

containing 0.1% formic acid using metal-bead containing tubes and a Precellys
tissue homogenizer (Bertin Instruments, Montigny-le-Bretonneux, France).
Extracts were analyzed as previously described by LC-MS/MS°?, with the ratio of
the hydrogen peroxide-dependent oxidized product MitoP and MitoB as a marker
of mitochondrial hydrogen peroxide levels.

RNA extraction and RNAseq library preparation. RNA was extracted with
RNeasy® Fibrous Tissue Mini kit (Qiagen, Manchester, UK) using ~30 mg of snap-
frozen heart tissue from the saline and DOX high group of cohort 1. Material was
quantified using RiboGreen (Invitrogen) on the FLUOstar OPTIMA plate reader
(BMG Labtech) and the size profile and integrity analysed on the 2200 (Agilent,
RNA ScreenTape). RIN estimates for all samples were above 7. Input material was
normalized to equal input of 100 ng prior to library preparation. Polyadenylated
transcript enrichment and strand specific library preparation was completed using
NEBNext Ultra II mRNA kit (NEB) following manufacturer’s instructions.
Libraries were amplified on a Tetrad (Bio-Rad) using in-house unique dual
indexing primers (based on https://doi.org/10.1186/1472-6750-13-104). Individual
libraries were normalised using Qubit, and the size profile was analysed on the
2200 or 4200 TapeStation. Individual libraries were normalised and pooled toge-
ther accordingly. The pooled library was diluted to ~10 nM for storage. The 10 nM
library was denatured and further diluted prior to loading on the sequencer. Paired
end sequencing was performed using a HiSeq4000 75 bp platform (Illumina, HiSeq
3000/4000 PE Cluster Kit and 150 cycle SBS Kit), generating a raw read count of 22
million read pairs per sample.

RNAseq mapping and counts. RNAseq read pairs were aligned to Rattus nor-
vegicus reference genome, Rnor_6.0 using a splice-aware aligner, Hisat2 version-
2.0.4%1, Gene annotation files were downloaded in GTF format from Ensembl,
release 81°2. Read fragments mapping to annotated exon features were quantified
with featureCounts®?, part of subread-v1.5.0%%, using default parameters. Values for
duplication rates and median 3’ bias were estimated using MarkDuplicates, and
CollectRnaSeqMetrics respectively, both implemented in Picard tools v1.92°°.
Normalized read counts and count based metrics were obtained using in-house R
scripts®®, R core tools v3.1.0. Count tables were then analysed with freely available
gene set enrichment analysis (GSEA) software (Broad Institute, Inc., Massachusetts
Institute of Technology, and Regents of the University of California) using the
Molecular Signatures Database v7.0 (gene set C5 Biological Processes).

Statistics and reproducibility. Statistical analysis was performed in Prism 6.0
(GraphPad, La Jolla, CA, US). Unpaired Student’s t-tests, one-way or two-way
ANOVA with Tukey’s HSD adjustment method for multiple comparisons was used
and performed as indicated in the figure legends. Significance was assumed at P <
0.05. Only significances from multiple comparisons are displayed in the figures and
not the ANOVA interactions. Multivariate statistics for metabolomic analysis was
performed within Simca version 15 (Umetrics, Umea, Sweden). Initially principal
components was performed to identify samples that were outliers. To maximize
separation associated with class membership (e.g., control group versus drug-
treated groups), orthogonal partial least squares discriminant analysis (OPLS-DA)
was performed. Model validity was assessed by random permutation tests and the
metabolites most important for class discrimination identified using the S-plot
showing the OPLS-DA loadings against the correlation coefficients for class
membership. Significance in gene set enrichment between DOX high and saline
control groups were assumed at a false discovery rate (FDR) g-value < 0.25 with a
more stringent cut off at a family-wise error rate (FWER) p-value < 0.05. All
experiments were either in vivo or derived from animal tissue and individual data
points are shown in graphs. Multiple animals were used per group as indicated in
the “Methods” section but ex vivo experiments were only performed once with an
appropriate n-number and not replicated in separate identical experiments. Figure
legends display details on statistical tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The source data underlying Figs. 1b-e, g-m, 2d-g, 3c-p, Sla-f, S3a-d, and S4a-d are
provided in Supplementary Data 2, which furthermore contains the full GSEA data set
underlying Table S1 (GSEA C5 Biological Processes). The full RNAseq dataset can be
accessed from Gene Expression Omnibus using the accession code GSE154603. All other
data are available from authors upon reasonable request.
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