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Referees' comments: 

Referee #1 (Remarks to the Author): 

Bethlehem, Seidlitz and White provide a lifespan analysis of a 120k+ MRI datasets, for which they 

should be commended. Clearly this work took a huge amount of effort to bring the many datasets 

included together, in service of the field’s mission to achieve growth charts for the brain. The 

authors leveraged GAMLSS to generate centiles for basic brain volume measures, as well as to 

address batch effects. In many ways, the work attempts to fulfill the vision (e.g., pointing to 

associations with various developmental milestones, noting diagnostic differences), has several 

impressive demonstrations of validity built in, and provides a Shiny app to facilitate others in 

extending their work. 

A challenge in reviewing the present work is that while very impressive, there are a few key concerns 

that dramatically reduce enthusiasm for publication, at least in its current form (and admittedly, may 

take a lot of work to address): 

1. The authors consciously chose to disregard meaningful quality assessment and consideration of 

data quality. As a work that is intended to be a model for the field, and to yield a resource upon 

which others can build – this is a major red flag. While data quality may not impact the median 

values for trajectories, it is hard to believe it will not impact the variance. One could argue that the 

rudimentary anatomical measures employed may be more robust to motion and other artifacts – 

that could be possible but would need to be proven (consider using the dataset employed by Ai et 

al., Franco, 2021 to do this if desired). The authors could have used Euler number, or MRIQC 

measures; or BRAINDR for visual inspection – the option to do nothing of the sort – is concerning. Do 

we really want to see this practice adopted in the field? Would the AD datasets found to be extreme 

outliers be difficult to flag by eye? Cleaning up the data could improve our ability to detect 

psychiatric disorders; and can avoid associations between data quality and psychiatric diagnosis, 

which could be confounding and are well known in the structural and functional MRI literatures. 

2. The authors attempt to account for batch effects using GAMLSS, which is reasonable. Still, it might 

be good show that an alternative approach (e.g., ComBat) could give converging results, or let one 

look explore batch effects more directly. Though, bigger picture – these samples are inherently quite 

diverse in their recruitment and resultant composition. GAMLSS is not a cure-all, and batch effect 

corrections can under/over correct. Any correction would be inherently limited with respect 

representativeness in several ways, which is ok, though merits more attention as an issue. 

4. It is unclear how uniform the preprocessing for data was, and what specific steps were carried – 

which is concerning, unless I missed it. Did the authors bring the data to a common space for 



calculation of measures? Did they need to for the measures obtained? (if alignment could be 

avoided, that could minimize introduction of potential biases related to registration error - which is 

heavily impacted by data quality). There is a lot of detail that is crucial to know to fairly evaluate the 

work, and it is not easily obtainable. 

Figure 1 should show # of datasets per site – the current depictions are not sufficient, and can be 

viewed as misleading (one can glean from distributions, but that is not trivial to 

meaningfully/accurately do). 

4. A smaller note - how are the authors accounting for variations in diagnostic practices? 

A final note is authorship – what was the criteria for data contributors, if they did not actively 

participate in the actually data analysis / manuscript? If such situations exist, is there an inadvertent 

benefit to those who are closed with their datasets? At a minimum, please consider grouping all 

those that only contributed data under a single collaborative name on the author line...then link that 

to the individuals in pubmed. This would better recognize the contributions of those who did the 

bulk of this analysis. 

Referee #2 (Remarks to the Author): 

Using data combined across several primary studies, this article presents cross-sectional lifespan age 

trends for individual differences in a small number of gross brain morphology “tissue classes” (e.g. 

total brain volume, white matter volume, subcortical grey matter volume, and ventricular volume) as 

measured by structural MRI. Rather than simply providing the mean age trends in each tissue class, 

the authors provide information about how the dispersion changes with age. Additionally, because 

mean growth is nonlinear, the authors are able to calculate ages at peak velocity for each class. This 

descriptive exercise is pitched as “brain charts” to “reference standards against which to anchor 

measures of individual differences in brain morphology,” much in the same way that “growth charts” 

are used. They provide an online tool for calculating individual however, there are several 

unsatisfying, if not concerning, aspects to this packaging. 

First, is that there is no way to be confident in the use of these reference norms given that scanner 

to scanner variation can lead to tremendous mean differences in inferred volumes. Without first 

calibrating an MRI relative to the norms, nearly everyone scanned in a particular MRI might be 

classified as abnormal. Even if the norms were only used to make comparisons across samples rather 

than individuals, it would not be clear of the samples actually differed in mean volumes or scanners 

were simply miscalibrated. 

Second, the contributing samples are not necessarily population representative. This makes 

calculation of centile scores exceedingly hard to interpret. 

Third, norms may become outdated over time. In cognitive testing this is known as the Flynn Effect, 

and it forces test companies to renorm their tests ever ~10 years. It is unclear how up to date these 

norms are, or whether they will remain up to date. This isn’t an argument against the norms, but is 

does underscore the need for front work on this topic. 



Fourth, is that the tissue classes are extremely gross. Normally, MRI research capitalizes on the fine 

grain spatial nature of the imaging, e.g. in the form of Region of Interest (ROI) analyses. This is 

important because abnormal growth or atrophy in different regions can have tremendously different 

implications for whether, and what, functions are clinically affected. Clinicians regularly make these 

appraisals in individual evaluations. The current submission would seem to add greater 

quantification and precision (in contrast to clinical judgement) to such work, but allowing for the 

calculation of centile scores. But in order to calculate these scores, anatomical specificity is nearly 

entirely sacrificed. For example, it would be impossible to distinguish various forms of 

neurocognitive disorders of aging (e.g. frontotemporal dementia vs. Alzheimer’s disease) without 

the spatial information that is being thrown out. 

Fifth, calculating centile scores may not be of much use without a clear understanding of the 

functional implications of different scores. Having the location on the distribution is not enough 

without understanding the clinical and functional correlates of those locations. As per the above 

point, this may be a difficult endeavor at the low level of spatial resolution provided. 

Sixth, the cross-sectional nature of the data and potential differences in protocols across individuals 

or cohorts of different ages, prevents strong inferences regarding development and aging. Are there 

age differences in motion that may bias estimates? Are there period, or cohort effects in the data 

that would suggest that these trends plotted are not indices of “velocity” of growth or shrinkage 

within person, but instead differences associated with year of birth or historical time of imaging 

assessement? 

Finally, it would be very interesting to conduct a correlational analysis of the different “tissue 

classes.” Are they highly correlated? An excellent model for how such an analysis might be 

conducted is https://doi.org/10.1038/ncomms13629 (see especially Figs. 7-8). 

Referee #3 (Remarks to the Author): 

The manuscript “Brain charts for the human lifespan” by Bethlehem et al. is an impressive and 

ambitious effort on several fronts. They aggregate a massive amount of structural neuroimaging 

scans (>122k scans, across >100k individuals) across 96 individual studies and then use sophisticated 

modeling (GAMLSS) to derive lifespan curves of 4 morphometric phenotypes (gray matter, white 

matter, subcortical gray matter, and ventricular volume) from 115 days post-conception to 100 years 

old. That endeavor alone is worthy of publication in a high-profile journal. The resulting age curves 

largely agree with existing literature, and thus for the most part aren’t particularly novel in 

themselves, although they note some deviations from prior reports. Using centile scoring as a means 

of normalizing across studies, they then investigate the impact of various clinical diagnoses. While 

interesting, and certainly suggesting venues for further study, that aspect of the paper is entirely 

focused on group comparisons, and relies heavily on p-values, which will be driven to significance by 

the large sample sizes. Reporting of the effect sizes involved would be helpful and would provide at 

least an indirect sense of the potential of centiled brain charts within the context of “personalised” 

or “precision” medicine. But the truly groundbreaking potential of aggregating such a large data set, 

combined with the flexible modeling approach, is the proposed ability to estimate centile scores 



meaningfully and reliably in “out-of-sample” data, in the context of *non-harmonized* MR data that 

would typically be subject to a host of interpretational challenges (e.g., different pulse sequences, 

protocols, scanner strength and vendor, etc). Indeed, the manuscript is the planned reference for an 

interactive online resource (www.brainchart.io) that would allow researchers to extract centile 

scores for new datasets. In this regard, I feel that the manuscript, as currently constituted, falls short 

of convincingly demonstrating that the challenge of out-of-sample estimation with highly variable 

MR data has been solved. If this concern can be addressed, I feel that the approach and online 

resource proposed in this manuscript has intriguing potential and would warrant the visibility that 

publication in Nature would provide. 

1. Currently, the out-of-sample validation with “real-world” is limited to just 4 datasets. The results 

of that particular analysis are impressive (Fig. 4B and S1.7.2). But the use of only 4 datasets means 

that the out-of-sample validation is an impoverished sampling of the universe of possible MR 

studies, given the wide variety of ways in which MR studies can differ. Given that the authors have 

already amassed a much broader sampling of that universe (96 studies contributing to the model), it 

isn’t clear to me why they didn’t assess the generalizability of the GAMLSS + centiles modeling 

approach across that full study universe by conducting the same out-of-sample analysis using a 

“leave-one-study-out” (LOSO) modeling approach applied to every available study (i.e., treat every 

available study as if it is a part of the out-of-sample validation analysis). Indeed, a LOSO analysis is 

mentioned in Supplement (SI) Section 2.2.1, but that’s only in the context of showing the variability 

in the resulting overall lifespan trajectories. It seems to me that what’s needed additionally is a way 

to assess the likelihood that the estimated centiles for a given study may not be well fit, and 

correspondingly the study parameters potentially influencing that poor fit (per item (2) below), since 

that’s what an individual investigator interested in applying the model to one particular new study 

needs to be able to evaluate. 

2. Relatedly, the manuscript mentions that “biological” and “technical” covariates are included as 

part of the fixed effects modeling, but the actual covariates used in the modeling do not appear to 

be listed anywhere. Also, no analysis is provided (even in the SI) of the estimated effect of these 

covariates, which seems important for understanding the inner workings of the estimation. Last, 

understanding the space spanned by the covariates seems important for making assessments about 

the generalizability of the model to new out-of-sample data. In that regard, I think an SI table that 

lists the covariate values for each study, as well as other possibly relevant technical scanning details 

(e.g., imaging parameters) seems like a valuable and important addition. 

3. Multiple studies have demonstrated that thickness and surface area are more pertinent measures 

than cortical GMV, given that cortical GMV is determined entirely by thickness and area, but 

thickness and area are themselves under independent genetic control. Given that, what is the 

rationale for not including mean cortical thickness and total surface area as part of the phenotypes 

investigated, both of which are readily available since all the data was processed through FreeSurfer, 

and would just need to be modeled? 

4. Notwithstanding the reference to ‘“personalized” or “precision” medicine’ in the 2nd sentence of 

the introduction, most of the results are organized around group differences. There is clearly much 

value in the ability to make group comparisons in an appropriately normalized fashion across MR 



studies collected with disparate imaging protocols. However, it feels like some discussion is 

warranted, in the main text, of whether the results in the manuscript provide any direct support for 

the notion (or aspiration) that the centilized brain chart outputs have value for individualized 

prediction. 

5. The group comparisons throughout the manuscript are primarily structured in the language of 

statistical significance (p-values), with minimal presentation of effect sizes. Effect sizes should be 

provided whenever a viable effect size measure exists, so as to provide information on the 

magnitude of the effect independent of the sample size. 

6. The quality and added value of the Supplemental material is uneven. Some of it adds considerable 

value, but some of it is also of marginal quality or seems unnecessary. A number of the supplemental 

figures have poorly labelled axes or titles. In general, the captions of the SI figures need to be 

expanded to provide more clarity/details on what is being shown, and the captions or associated 

text can do a better job of explaining the purpose of the analysis and conclusion to be drawn within 

the SI. An appreciable number of specific comments/examples related to this point are provided 

below. 

7. The font sizes in some of the figures tend toward being too small. 

Other more minor or specific comments and suggestions follow: 

8. It would be helpful if the SI included some discussion of model convergence and how that is 

assessed within GAMLSS – p. 9 of the SI mentions model instability and lack of convergence but no 

details are provided on how that was assessed. 

9. Order of presented phenotypes should be the same across all figures, both in the main text and SI. 

E.g., Figure 1 is ordered as GMV, WMV, sGMV, Ventricles, so that order should be maintained across 

all figures, both in the main text (e.g., Figure 4B differs) and Supplement (which uses a variety of 

orders – e.g., Fig S1.2, S2.2.3). 

10. Even though the code is available in GitHub, it would be helpful to include brief code snippets of 

the GAMLSS modeling in R within the SI as a mechanism to concisely, but technically, explain some 

of the modeling. This will help knowledgeable individuals quickly see exactly what was done, without 

needing to slog through a (potentially complicated) code base. 

11. Abstract mentions 122123 scans from 100071 individuals. Figure 1 caption says 120685 scans. 

Summing the N column in SI Table 1.1 yields 121163. Summing the ‘total.cn’ column (cross-sectional 

N?) in that same table yields 92081. Why the differences? And if Figure 1 is based on the cross-

sectional data only, shouldn’t the number of scans be closer to the total number of individuals rather 

than greater than 120k? 

12. The convention of denoting panels as “A|” rather than “A.” or “A)” seems odd to me, and leads 

to situations (in the Supplement) where it visually appears to be “AI” (A-eye, rather than A-bar). 

13. It seems like Figure 1B should use some sort of density plot, rather than simply plotting symbols 



on top of each other. If necessary, the attempt to color code individual studies can be dropped (in 

that figure and other SI figures) as its impossible to map a color to a given study anyway. 

14. Figure 1C: The 95% centile boundaries are supposed to be “dotted” but mostly appear to be solid 

lines. 

15. Figure 2: In the lower half of the figure, the “top grey section” isn’t very clear. Why are the 

“empirical age-range (dark grey)” ranges so disparate from the “diagnostic age ranges (black 

outlines)”, and more broadly, what is the point being made by that distinction? Also, it’s inherently 

confusing to have a ‘key’ with the text “From literature” with a black outline but the same interior 

color of gray that represents the overall age range of the current study (which itself seems rather 

unnecessary to include, as the overall age range simply spans the same range as the top portion of 

the figure). 

16. Fig 3: Panel B: Doesn’t really provide much intuition as to how the CMD is calculated, or what it 

represents. Panel D: Why are error bars only present for some of the data points? Are they too small 

to be seen? If so, that should be stated. Also, are the bars STD’s or SEM’s? A similar comment applies 

to the error bars elsewhere (e.g., Fig S9.2). 

17. Are all the probability density plots throughout the manuscript computed in a similar manner 

(e.g., same kernel approach or degree of smoothing) using the same analytical tool? A description of 

the specifics of the density plot construction in the SI methods seems warranted given the 

prominence of density plots throughout the manuscript. 

18. I would suggest breaking the section header “Longitudinal centile changes and novel data” in the 

main text into two distinct section sub-headings, as the two cover completely different topics. 

19. Main text, p. 8 (“Longitudinal centile changes and novel data” section): It is unclear if the 

quantification in the first paragraph (“all median <5%” and “~5% median difference”) reflects a 

percent difference (and if so, relative to what), or a percentage *point* difference (i.e., a 0.05 

difference in centile values). 

20. Fig 4C – too little detail to quickly grasp what was done. What is a cloned NSPN? 

21. Minor grammatical/syntactical errors in Supplement. (e.g., “each terms of the generalized 

gamma distribution”; lack of space between symbols/equations and following text). Other little 

errors in various places. The SI needs a careful proof-read before re-submission by a someone with 

an eye for these issues. 

22. Inconsistent formatting of “i.e.” and “e.g.” – both should always be followed by a comma. 

23. Fig S1.1: Is “relative AIC” based on a *ratio* or *difference* to the lowest AIC value? If a ratio 

(which is what “relative” inherently implies) then seems odd that there is such a pronounced 

difference with the reference model. E.g., For GMV, all models except for “Generalized Beta type 2” 

had an AIC that was ~ 3000 times greater (or more) than the “Generalized Gamma”. 



24. Fig S1.2: The y-axis labels are completely cryptic. Some ‘key’ is needed in the caption for 

understanding the naming convention. Also, caption should mention that the model being 

investigated is the generalized gamma. Additionally, the order of the phenotypes in Fig. S1.2 should 

match those in S1.1, and the figure titles should be simplified. Last, why the switch to BIC as a 

criterion vs. AIC? 

25. SI Section 1.3: The brief description of the “Model simulations” is generic and inadequate to 

understand what exactly was simulated. 

26. Fig S1.3.[1-2]: Not clear what is being shown, or the point of these figures. Cryptic titles. Tiny font 

sizes. 

27. SI Section 1.4: What is the value/purpose of computing centile normalized z-scores rather than 

simply using the centile estimate itself? Per the text on p. 13, the latter accounts for study random-

effects, while the normalized z-scores do not. Isn’t it a good thing to account for the study random-

effects and thus wouldn’t the centile scores be preferable to the normalized z-scores? 

28. Fig S1.4: What is the point of this figure? What do the x and y-axes represent? Figure doesn’t 

appear to be referenced anywhere in the text. Also, another example where is it impossible to map 

the colors to a specific study. 

29. Main text refers to “SI1.6” for description of the CMD, but that definition is actually in SI1.5. 

Related to this, the main text says the CMD was somehow computed relative to the “CN median”, 

but SI1.5 says that the (usual) mean was used. 

30. SI Section 1.6: I would argue its debatable whether interquartile range is “well defined for two 

[or more] observations”, which forms the vast majority of the longitudinal samples in the study. (A 

number of on-line calculators require at least 3 values, and even with 3 values the notion of “IQR” 

seems sketchy. The appropriateness of IQR with such a small number of values seem to merit 

additional justification. 

31. Fig S1.6.[1-2]: These results will be highly dependent on the specifics of the simulation, but per 

above, sufficient details on the simulation aren’t provided to interpret these figures properly. 

Another example of cryptic axis labels and captions that are insufficient to understand the purpose 

of the figure. 

32. SI Section 1.7: Presumably, the ‘F’ in the equations on p. 19 represents the fixed effects (and not 

the ‘F’ of the CDF defined on p. 12)? Also, it’s not defined what it means to make a “clone” of a study 

in the simulation. 

33. Fig S2.1.1: Some context for how to interpret a “detrended transformed Owen’s plot” would be 

helpful (more obscure than Q-Q plots). 

34. SI Section 2.2.2. Were the stratified bootstrap samples generated by sampling relative to the 



proportion of the strata in the original data? If so, wouldn’t the results be primarily sampling the 

variability of the UK-Biobank and ABCD data since the bootstraps would always be dominated by 

data selected from ABCD and UK-Biobank? 

35. Fig S2.2.3: Why are the studies ordered in reverse alphabetical order, rather than alphabetical 

order, which would be more intuitive? 

36. SI Section 2.3: The following statement is a bit imprecise: “whereas in the reference prediction 

curves the freesurfer contribution is equivalent to the grand-mean across all versions (across all 

studies), meaning the reference prediction curves do not represent any specific freesurfer version”. 

Namely, the grand-mean would weighted by the proportion of given FS versions, and thus 

depending on those proportions, might be close to a specific FS version. Indeed, SI Table 1.3 shows 

that the vast majority of cases were processed with FS 6.0 (either T1 only, or T1+T2), so the 

reference prediction curve would be strongly weighted to FS 6.0 (to the extent that FS version has a 

meaningful impact – see Item (2)). 

37. Fig S2.4: In panel (B), why is “Model derived TBV” shown on the x-axis, whereas in all the other 

panels, the “model derived” value is shown on the y-axis? 

38. Fig S4.1.1: The precision on the x-axis for the “Late midfetal” and “Late fetal” windows is 

insufficient to ascertain the actual time window being plotted (i.e., evidenced by the fact that 

multiple ticks display the same x-axis value). 

39. Fig S4.1.2: Why, in a number of the panels, is the solid line seemingly outside of the dashed lines 

representing the 95% CI? 

40. Fig S5: I would suggest using ‘Centile’ rather than ‘Quantile’ for the y-axis label, consistent with 

the terminology in the caption, and the use of ‘centile’ throughout the manuscript. (Not only does 

the caption not use the term ‘quantile’, but ‘quantile’ isn’t used a single time throughout the main 

text or SI text). Also, averaging across phenotypes is not strictly the same as computing a centile 

score for the single summary TCV measure – thus I would suggest avoiding the imprecise claim that 

it is “akin to computing a centile score for TCV”. (If you want the true centile score for TCV, compute 

them directly). Similarly, labels in Fig S9.4 use the term quantile rather than centile. 

41. In the main text, SI7 and SI8 are referenced before first mention of SI4-6. It would be preferable 

if the SI material is numbered and ordered such that it can be introduced sequentially within the 

flow of the main text. 

42. SI Section 7.1: What symptomology variables and criteria were used for assigning the ABCD and 

UK-Biobank data into clinical (“non-CN”) cohorts? 

43. Fig S7.1 and S9.3.1: Preferably, the colors used would be matched to those in Figure 3 for 

consistency in presentation. 

44. Fig S7.2.[1-3]: Very complex, with minimal guidance as to what is being shown. 



45. Fig S7.4, panel B: Would be more intuitive if larger absolute mean differences were shown in the 

“hot” color (yellow), rather than the “cool” color (blue). 

46. Fig S7.5.[1-3]: Not clear what point is being made with the inclusion of these figures. 

47. Fig S8.[1-2]: Needs a more detailed caption explaining what is being shown. e.g., What do 

“years” and “total” represent? Also, why is no clustering shown for S8.1 – was k=1 the optimal 

clustering? 

48. Fig S9.1: Second column is labelled “Age range (log-transformed)”. Age-range of what? What are 

the units (day, weeks, years)? 

49. SI Section 9.3 (p. 49): Text refers to “Fig. S9.1.3.3”. Should be “Fig. S9.3.3”. 

50. Given that Infant FreeSurfer is the sole means by which data was obtained for individual less 

than 2 years old, some additional discussion of the validity of Infant FreeSurfer, and the confidence 

in the those values, seems warranted. The authors already comment that the values it generated for 

subcortical GMV didn’t seem continuous with those generated by FreeSurfer for 2 years and older. 

Was there any evidence (milder) of similar concerns for the other 3 phenotypes? 

51. It would be helpful if the SI Methods detailed exactly which FS measures were used for the 

definition of each of the 4 studied phenotypes. 

52. It’s “FreeSurfer”. Not “Freesurfer” or “freesurfer”. The inconsistent formatting is careless and 

could be seen as disrespectful to its creators/developers/maintainers. 

53. Overall, the dataset descriptions in SI are quite inconsistent in what is covered. e.g., Not all of 

them even mention the number of individuals. Any information that can be conveniently provided in 

tabular format should be removed and placed in an SI spreadsheet (e.g., # individuals, scanner 

platforms, T2 availability, imaging parameters, FS processing version). This spreadsheet should also 

make clear whether the FS processing was done de novo for the current study, or whether the 

current study used FS data already generated/provided by the study itself. The text descriptions of 

the studies can then be limited to a brief overview of the study, as well as any particularly salient 

points that cannot conveniently be captured in the proposed spreadsheet. 

54. The “OpenPain” study has a very long description in the SI relative to the other studies. Is there a 

particular reason that is merits such considerable detail relative to the other studies? (It reads like an 

unedited cut-and-paste from other documentation). 

55. Issues related to the SI Tables: 

a. The meaning of some of the variables in the SI tables is not clear. (e.g., ‘total.cn’, ‘percentage.cn’ 

in SI Table 1; ‘V1’, ‘V2’ in SI Table 5). A key/dictionary of some sort is necessary, for at least some of 

the variables. 

b. Table1.5: First row has no label for ‘dx’. 



c. Table1.6: Identical to Table1.5 

d. Inconsistent naming schema of the individual tabs within a table (e.g., “Table1.1” vs. “2_1”). Also, 

given the Excel character limit on tab name length, make sure that the name of each tab is clearly 

interpretable. 

e. Please remove the annoying Excel “warning” (and associated green triangle) about “Number 

stored as text” by converting the cells from text to number. 

f. SI Section 10 (“Sex differences”, p. 52) mentions a “SI table 2.9”, which doesn’t appear to exist. 

g. Are SI Tables 4 and 7 mentioned anywhere in the main text or SI text? If so, I couldn’t find the 

references to them. 

h. All the tabs in SI Table 6 are identical.
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We would like to thank all the reviewers for their extensive reviews of our manuscript and 

supplementary materials. Their valuable comments and suggestions have stimulated us to further 

refine and validate our work, and we believe these revisions have significantly strengthened the 

impact and quality of the paper. Specifically, we now include new analyses explicitly designed to 

address concerns related to quality control, between-site harmonisation, and stability and validity 

of out-of-sample centile estimation. Additionally, we now provide lifespan trajectories for an 

extended suite of MRI phenotypes, including total cerebrum volume, mean cortical thickness and 

total surface area, as well as regional cortical volumes. 

 

We note that we have excerpted relevant changes to the main text or supplementary information 

in response to each reviewer comment, for ease of reference, although this entails some repetition 

of excerpted material (green text) in the cases that different reviewers have made related points.  
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Referee #1: 

Bethlehem, Seidlitz and White provide a lifespan analysis of a 120k+ MRI datasets, for 

which they should be commended. Clearly this work took a huge amount of effort to bring 

the many datasets included together, in service of the field’s mission to achieve growth 

charts for the brain. The authors leveraged GAMLSS to generate centiles for basic brain 

volume measures, as well as to address batch effects. In many ways, the work attempts to 

fulfill the vision (e.g., pointing to associations with various developmental milestones, 

noting diagnostic differences), has several impressive demonstrations of validity built in, 

and provides a Shiny app to facilitate others in extending their work. 

 

A challenge in reviewing the present work is that while very impressive, there are a few 

key concerns that dramatically reduce enthusiasm for publication, at least in its current 

form (and admittedly, may take a lot of work to address): 

 

We thank the reviewer for their positive appraisal of our work and we are grateful for the detailed 

feedback focused on a few key concerns. As anticipated by the reviewer, addressing these issues 

rigorously and comprehensively has entailed major additional analyses, which have now been 

included in the paper as described in more detail below. 

 

Ref 1/1:  

The authors consciously chose to disregard meaningful quality assessment and 

consideration of data quality. As a work that is intended to be a model for the field, and to 

yield a resource upon which others can build – this is a major red flag. While data quality 

may not impact the median values for trajectories, it is hard to believe it will not impact the 

variance. One could argue that the rudimentary anatomical measures employed may be 

more robust to motion and other artifacts – that could be possible but would need to be 

proven (consider using the dataset employed by Ai et al., Franco, 2021 to do this if desired). 

The authors could have used Euler number, or MRIQC measures; or BRAINDR for visual 

inspection – the option to do nothing of the sort – is concerning. Do we really want to see 

this practice adopted in the field? Would the AD datasets found to be extreme outliers be 

difficult to flag by eye? Cleaning up the data could improve our ability to detect psychiatric 

disorders; and can avoid associations between data quality and psychiatric diagnosis, 

which could be confounding and are well known in the structural and functional MRI 

literatures. 

 

The reviewer raises an excellent point. In response, we have added an extensive supplemental 

section on quality control, adopting all the reviewer’s suggestions to assess the robustness of our 

procedures and results to image quality. These additional analyses are fully reported in new 

sections of Supplementary Information (SI) and are summarised briefly below: 

 

1. Euler index filtering – see SI2.1 including Fig. S2.1 

2. Expert visual quality control – see SI2.2 including Figs. S2.2.1 and S2.2.2 

3. Image quality and out-of-sample centile scoring – see SI2.3  

 

1) Euler index filtering: First, we re-ran GAMLSS modelling of the reference dataset  after 

excluding all scans with higher Euler indices, using a threshold that has previously been reported 
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to have high sensitivity and specificity for low quality scans (Euler index [EI] > 217; 1). We found 

that excluding lower quality scans (approximately 5% of the total dataset) did not alter the principal 

results on the entire, Euler-unfiltered reference dataset. Specifically both mean (mu) and variance 

(sigma) components of the GAMLSS model were unaffected by filtering out lower quality scans. 

Furthermore, we found that the whole brain MRI phenotypes estimated from the filtered dataset, 

excluding high EI scans, were very highly correlated with the phenotypes estimated from the total 

dataset, including high EI scans (r >0.99 for both Pearson’s and Spearman’s correlations for 

median trajectories and 97.5% and 2.5% centile lines for all 4 cerebrum tissue volumes ). Second, 

we conducted several supplementary analyses of the relationships between Euler indices and 

centile scores. We found minimal (i.e., significant but explaining little variance) relationships 

between the EI measure of scan quality and individual centile scores for any of the 4 primary brain 

tissue volumes (i) across the total (unfiltered) dataset (Fig. S2.1); (ii) across the EI-filtered dataset 

(Fig. S2.1); or (iii) within each of the clinical groups (AD, MCI, schizophrenia, ADHD, ASD, MDD), 

with or without exclusion of scans with EI > 217.    

 

2) Expert visual quality control: Recognising that the Euler index is but one metric of image 

quality, we also investigated the robustness of our results to image quality defined by expert visual 

inspection of scans. We visually assessed and rated image quality on a 6-point scale for a subset 

of 9,704 images in the reference dataset. We also used image quality scores previously defined 

by the primary study teams for fetal MRI studies and for the ABCD cohort. In general, we found 

that a large majority of scans in these datasets had good image quality defined by visual 

inspection; the results of normative curve modeling by GAMLSS model fitting to all scans were 

highly correlated with the results of model fitting after exclusion of the minority of poor quality 

scans; and individual centile scores were more variable for scans with the worst image quality 

scores.  

 

3) Image quality and out-of-sample centile scoring: Recognising that image quality would 

likely be most influential for out-of-sample centile scoring of scans that were not included in the 

reference dataset, we analysed N=72 scans from an open test-retest dataset 2 which had been 

quantitatively QC’d (by 5 independent raters using Braindr 4) but had not previously been included 

in our analysis (https://anisha.pizza/braindr-results/#/). We found no substantial correlation 

between Braindr-derived image quality scores and out-of-sample centile scores for any of the 4 

cerebrum tissue volumes; however, within-subject reliability of out-of-sample centile scores over 

repeated MRI scans was improved by a prospective motion correction procedure implemented at 

the time of MRI data acquisition. We note that this improved consistency of centile scoring was 

likely driven by improved consistency of the un-centiled phenotype, i.e., the “raw” volumetric data 

as estimated by FreeSurfer were also more consistent between scans acquired with prospective 

motion correction. 

 

In short, we have demonstrated by multiple complementary sensitivity analyses that our principal 

results, and additional out-of-sample results for new data not previously analysed, are remarkably 

robust to image quality. We conclude that our results are not confounded by uncontrolled image 

quality issues but proper QC procedures should, of course, be implemented on all scans before 

they are submitted for out-of-sample centile scoring by GAMLSS modeling. 

 

<<The following changes have been made to the main text>> 

 

In Mapping normative growth: 

https://paperpile.com/c/WLzT4Y/GSeL
https://paperpile.com/c/WLzT4Y/jDQs
https://paperpile.com/c/WLzT4Y/lCYs8
https://anisha.pizza/braindr-results/#/
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Models were fitted to structural MRI data from control subjects for the four main tissue volumes 

of the cerebrum (total cortical grey matter volume [GMV] and total white matter volume [WMV], 

total subcortical grey matter volume [sGMV], and total ventricular cerebrospinal fluid volume 

[Ventricles or CSF]). See Online Methods, Supplementary Table [ST] 1.1-1.7 for details on 

acquisition, processing and demographics of the dataset. See Supplementary Information [SI] 

for details regarding GAMLSS model specification and estimation (SI1), image quality control 

(SI2), model stability and robustness (SI3-4), phenotypic validation against non-imaging metrics 

(SI3 & SI5.2), inter-study harmonisation (SI5) and assessment of cohort effects (SI6).   

 

In Discussion: 

We have focused primarily on charts of global brain phenotypes, which were measurable in the 

largest aggregated sample over the widest age range, with the fewest methodological, theoretical 

and data sharing constraints. However, we have also provided proof-of-concept brain charts for 

regional grey matter volumetrics, demonstrating plausible heterochronicity of cortical patterning, 

and illustrating the generalisability of this approach to a more diverse range of fine-grained MRI 

phenotypes. As ongoing and future efforts provide increasing amounts of high-quality MRI data, 

we predict an iterative process of improved brain charts for the human lifespan, potentially 

representing multi-modal MRI phenotypes and enabling out-of-sample centile scoring of smaller 

samples or individual scans. In the hope of facilitating progress in this direction, we have provided 

interactive tools to explore these statistical models and to derive normalised centile scores for 

new datasets across the lifespan at www.brainchart.io 

 

 

<<The following changes have been made to the Supplementary Information>> 

2. Quality control 

While developmental and ageing trajectories of cerebrum tissue volumes were expected to be 

relatively robust to data quality issues 22, controlling the quality of data is an important step in any 

neuroimaging analysis pipeline. We conducted several complementary analyses to evaluate the 

robustness of our procedures and results to variable image quality defined by the Euler Index 

(EI)23 and other quality control (QC) metrics.  

2.1 Euler Index filtering 

First, we examined the effect of image quality on estimated brain phenotypes and GAMLSS model 

parameterisation using EI, an automated, quantitative measure of data quality in scans processed 

by FreeSurfer (~95% of the reference dataset) 23,24. Although cerebrum tissue volumes were 

estimated prior to cortical surface reconstruction (see SI18 “Data processing”), EI has previously 

been used as a measure of the quality of “raw”, unprocessed scans 23. Thus for the large majority 

of studies where EI was available (N=101,708 total scans on N=82,023 unique subjects), we 

excluded all unprocessed scans with EI > 217 (a threshold previously used to define poor quality 

images23) and all scans where the runtime for FreeSurfer’s recon-all function exceeded 20 hours. 

We found that developmental trajectories estimated for all 4 cerebrum tissue volumes in this EI-

filtered dataset were highly correlated with their trajectories estimated on the basis of the full 

dataset (all R2 > 0.999 for parametric [Pearson’s] and non-parametric [Spearman’s] correlations 

between EI-filtered vs EI-unfiltered median trajectories and lower and upper centile lines). 

Identical parameterisation of fractional polynomials for each random effect was identified by the 

same model selection procedure (SI1.3) in both EI-filtered and EI-unfiltered datasets. Importantly, 

http://www.brainchart.io/
http://www.brainchart.io/
https://paperpile.com/c/yWP7Yw/EDkLX
https://paperpile.com/c/yWP7Yw/qCsEW
https://paperpile.com/c/yWP7Yw/8RnfO+qCsEW
https://paperpile.com/c/yWP7Yw/qCsEW
https://paperpile.com/c/yWP7Yw/qCsEW
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EI-filtered and unfiltered datasets also showed a high degree of overlap in subsequently estimated 

model parameters (correlation of study-specific mean (mu) components > 0.99; correlation of 

study-specific variance (sigma) components > 0.95). The only exceptions to this generally high 

level of consistency were the GUSTO and EDSD cohorts where excluding scans with EI > 217 

substantially reduced the number of scans (by >30%) with commensurate reduction in the 

estimated sigma parameters for these studies.  

 

Second, we examined the relationships between image quality measured by EI and individual 

centile scores of each brain phenotype. Both for the full dataset and the EI-filtered subset of higher 

quality scans, we found no significant associations between EI and individual centile scores (Fig. 

S2.1). 

 

 

 
Fig. S2.1.2 Associations between centile scores and MRI scan quality defined by EI. Top panel 

depicts the relation between Euler indices (EI) 23 and centile scores for each of 4 cerebrum tissue volumes 

estimated by GAMLSS using all available data, regardless of EI. Bottom panel depicts the same set of 

relationships between centile scores and EI for scans with acceptable image quality defined by EI<217 

(~95% of total scans). In both cases, the Spearman correlations between EI and estimated centiles were 

negligible (GMV, ρ=0.02; WMV, ρ=-0.07; sGMV, ρ=0.01; Ventricles, ρ=0.05). The models fitted to the EI-

filtered and unfiltered datasets were also identical in terms of their parameterisation, i.e., data driven 

selection of the number of fractional polynomials as per SI1.3, and subsequent study-specific component 

weights, suggesting that model specification was robust to the presence of the poorer quality data. 

 

 

To assess whether there were any age-related differences in motion that could influence model 

estimation, we evaluated the linear effect of age (in years) on EI in healthy controls in the 

reference dataset used to estimate normative lifespan trajectories. Using linear regression 

stratified by sex and accounting for study-specific random effects, we found no evidence for an 

age-related bias in image quality as assessed with EI (t = -1.244, P = 0.213). Fig. S2.1.2 shows 

the median and standard deviation of age and EI and highlights the top 10 studies with the highest 

median EI.  

https://paperpile.com/c/yWP7Yw/qCsEW
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Fig. S2.1.2 Age-related variation in image quality measured by the Euler index in female (left panel) 

and male (right panel) control subjects. Median age (in years) and median EI are shown per study with 

cross-hairs indicating the standard deviations for age and EI per study. In red the top ten studies with the 

highest median EI are highlighted. There is no significant relationship between image quality and age at 

scanning. 

 

2.2 Expert visual quality control 

Recognising that EI is but one metric of image quality, and mainly based on the capacity of 

FreeSurfer to correctly process the scans, we also visually rated image quality for a subset of 

9,704 raw scans. Visual inspection rated the response of expert assessors to the following 

questions: is the brain fully covered by the scan; is there visible noise (due to aliasing, motion 

etc.), blurriness, or ringing; is there acceptable tissue contrast and image orientation? Based on 

these criteria, each raw scan was expertly classified on a 6-point scale as perfect (1), very good 

(2), good (3), bad (4), very bad (5) or unacceptable (6). Only 3% of scans (N=374) were assigned 

to the two worst quality categories (5 and 6). We analysed centile scores for each of the 4 

cerebrum tissue volumes in each of these 6 classes of visually curated image quality (Fig. S2.2.1). 

Centile scores for all 4 phenotypes were consistent across the top 4 classes of image quality but 

significantly variable for the minority of scans with very bad or unacceptable image quality. 

However, when we excluded these scans from re-analysis of this expertly QC’ed dataset, we 

found that the median trajectories and 95% confidence intervals for all 4 brain phenotypes were 

very highly correlated between the results of model fitting to all 9,704 scans and the results of 

fitting to the 9,380 scans assigned to the top 4 quality classes (all R2 > 0.999 for both Pearson’s 

and Spearman’s correlations for all 4 phenotypes). 

 

 
Fig S2.2.1. Centile scores for images categorized by expert visual quality assessment of 9,704 

unprocessed scans. A small subset (~3%) of the raw data were assigned to the two worst categories of 
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data quality (QC class 5 or 6) and differed significantly from the other QC classes of data in terms of centile 

scores for cortical grey matter volume, white matter volume, and subcortical grey matter volume. Bars are 

coloured by log-scaled sample size. 

 

 

For foetal and some other primary studies where MRI data were not reconstructed with 

FreeSurfer, and the EI was therefore not available, scan quality had previously been assessed 

by expert visual curation as part of primary study procedures (Table ST1.1 lists the QC steps for 

each combination of dataset, sex, site and processing pipeline). We re-analysed data from these 

studies stratified by their prior QC ratings. For example, the Harvard foetal cohort conducted 

independent visual inspection of image reconstruction quality and classified each of the images 

as 'great’, 'good’ or ‘bad’. Only the best two categories were included in analyses. We found no 

significant difference in centile scores for each of the 4 phenotypes between ‘great’ and ‘good’ 

images (GMV, P=0.58; WMV, P=0.34; sGMV, P=0.14; CSF was not available for these foetal 

scans).  

 

Similarly, the ABCD study provided expert visual counts of artefacts identified by their inspection 

of FreeSurfer-processed data. For the ABCD data (N=9,056) included in our reference dataset, 

the majority of images had been rated as containing zero artefacts; a small subset (<0.5%) of 

scans had been rated as containing one or more artefacts. As shown in Fig. S2.2.2, there was 

some variability of centile scores in the small number of scans with high artefact scores, but there 

was no significant group level difference in centile scores for any of the four cerebrum tissue 

volumes between scans with zero artefacts and scans with one or more artefacts (ANOVA, 

P>0.05).  

 

 
Fig. S2.2.2. Centile scores for ABCD scans previously assigned artefact scores by expert visual QC. 

The majority (>99%) of ABCD scans  included in the aggregated dataset had zero artefacts; for scans with 

more than one artefact detected there was some variability in estimated centile scores. Bars are coloured 

by log-scaled sample size. 

2.3 Image quality and out-of-sample centile scoring 

Recognising that image quality would likely be most influential for out-of-sample centile scoring 

of scans that were not included in the reference dataset, we analysed N=72 scans from an open 

test-retest dataset 2 which had been quantitatively QC’d (by 5 independent raters using Braindr 4) 

but had not previously been included in our analysis (https://anisha.pizza/braindr-results/#/). We 

found that Braindr QC scores were not substantially correlated with centile scores for each of the 

4 cerebrum tissue volumes (Pearson’s r; GMV=0.034, WMV=0.002, sGMV=0.007, 

Ventricles=0.004). In the same dataset, we did find that prospective motion correction 25 

https://paperpile.com/c/WLzT4Y/jDQs
https://paperpile.com/c/WLzT4Y/lCYs8
https://anisha.pizza/braindr-results/#/
https://paperpile.com/c/yWP7Yw/DmznI
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somewhat improved the within-subject correlations of Braindr-derived QC scores and GMV 

centile scores (which changed from r=0.91 for prospectively uncorrected data to r=0.98 for 

prospectively corrected data). We note that these beneficial effects of prospective motion 

correction on test-retest reliability of centile scores derived by OoS analysis using our model are 

consistent with comparable improvements in test-retest reliability of FreeSurfer-derived 

phenotypes, as previously reported22. 

 

In short, we have demonstrated by multiple complementary QC studies that our principal results, 

and additional out-of-sample results for new data not previously analysed, are remarkably robust 

to image quality. Only a small minority of scans in the aggregated dataset had low image quality; 

however, tissue volume centile scores derived from the worst quality scans were more variable 

than centile scores derived from quantitatively or manually QC’d scans. We conclude that our 

results are not confounded by uncontrolled image quality issues but proper QC procedures 

should, of course, be implemented on all scans before they are submitted for OoS centile scoring 

on the basis of our model and aggregated reference dataset. 

 

 

 

Ref 1/2:  

The authors attempt to account for batch effects using GAMLSS, which is reasonable. Still, 

it might be good show that an alternative approach (e.g., ComBat) could give converging 

results, or let one look explore batch effects more directly. Though, bigger picture – these 

samples are inherently quite diverse in their recruitment and resultant composition. 

GAMLSS is not a cure-all, and batch effect corrections can under/over correct. Any 

correction would be inherently limited with respect representativeness in several ways, 

which is ok, though merits more attention as an issue. 

 

As the reviewer correctly notes, “batch effects” or between-site heterogeneity of scanning 

procedures are indeed a challenge for combining results or data across multi-site or multi-study 

neuroimaging datasets. Our principal approach to this challenge has been to use GAMLSS to 

model study-specific distributions, which is “reasonable”, as the reviewer noted. However, we also 

agree with the reviewer that ComBAT has emerged as a widely-used tool for dealing with batch 

effects in various kinds of data and could also be applicable in the current context. We have 

therefore added an extensive new section (SI5 “Batch correction and site harmonisation”) to 

the supplemental information that addresses these issues in two main ways: 

 

1. Modeling of between-site heterogeneity by GAMLSS: conceptual considerations in 

comparison to ComBAT batch correction – see SI5.1. Here we provide a more detailed 

account of the methodological commonalities and differences between GAMLSS and 

ComBAT batch-correction, justifying in principle our preferred option of GAMLSS, and 

reporting new data on GAMLSS modeling of site- versus study-specific differences. The 

normative  trajectories modeled on the basis of site-specific random effects were virtually 

identical to those reported in the main text on the basis of study-specific random effects 

(all Pearson’s and Spearman’s correlation coefficients > 0.99). 

2. Modeling of between-site heterogeneity by GAMLSS: empirical evaluation 

compared to ComBAT – see SI5.2 including Figs. S5.2.1-5.2.5. Here we report the 

results of extensive new sensitivity analyses, systematically comparing the results of batch 

correction by ComBAT to the results obtained by GAMLSS modeling of multi-site data 

https://paperpile.com/c/yWP7Yw/EDkLX
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collected as part of the ABCD study. We estimated normalised values for each MRI 

phenotype in each scan from each of the ABCD sites using our principal pipeline; and we 

likewise estimated normalised MRI phenotypes for each study after ComBAT pre-

processing of the raw images. Both approaches showed that while some variation 

between sites is retained, this is no longer a significant factor.  

 

In short, we aim to have clarified and justified, conceptually and empirically, the rationale for using 

GAMLSS, rather than ComBAT, to correct for site- and study-level batch effects in MRI data. 

 

 

 

 

<<The following changes have been made to the Supplementary Information>> 

5. Batch correction and site harmonisation 

5.1 Modeling of between-site heterogeneity by GAMLSS: conceptual considerations in 

comparison to ComBAT batch-correction 

 

Batch effects, or heterogeneities between sites or primary studies, are a challenging issue for 

estimating generalisable results from multi-site or multi-study neuroimaging data. In recent years, 

methods such as ComBAT14,39 have been translated from their primary application for whole 

genome transcription (microarray) analysis to achieve harmonisation of MRI data acquired across 

multiple sites. For our principal analysis, however, we preferred to use GAMLSS, a conceptually 

similar mathematical framework, to account for between-site or between-study heterogeneity. We 

made this choice a priori for several reasons. Firstly, GAMLSS explicitly includes the possibility 

of accounting for non-linear age effects (including age-related changes to higher order moments 

such as variance) during the harmonisation process. Adaptations of traditional ComBAT 

harmonisation have recently been developed that also allow the inclusion of non-linear age-trends 

as well as longitudinal, within-subject effects40,41; but these refinements of ComBAT remain 

somewhat restricted to batch correction of the mean and are not trivial to extend to batch 

correction of higher order moments, such as the variation across sites. Secondly, we chose to 

use GAMLSS because it is flexible with regards to the underlying distribution of the data that is to 

be harmonised; thirdly, because GAMLSS is the WHO-recommended statistical framework for 

growth chart modelling18; and finally because GAMLSS allows a flexible modelling capacity that 

would facilitate scaling of this framework to growth charting of additional MRI phenotypes in the 

future.  

 

Conceptually, normalised centiles derived from the GAMLSS model (see SI1.5) are analogous to 

normalised scores derived from ComBAT. Specifically, multiple groups of observations have an 

induced co-dependence, arising in the context of our analysis from common study-specific 

factors, which leads to a common measurement bias. The aim of both ComBAT and GAMLSS is 

to correct that common measurement bias. However, whereas ComBAT is derived from a 

conjugate Bayesian approach and hence restricted to a Gaussian distribution of phenotypes, 

GAMLSS uses a frequentist, iterative maximum likelihood approach that allows a range of 

distributions including those with non-zero third and fourth statistical moments (the Gaussian 

distribution by definition has third and fourth moments equal to zero). Flexibility in the distribution 

https://paperpile.com/c/yWP7Yw/7eRv0+jQJwX
https://paperpile.com/c/yWP7Yw/iAMN3+mkymA
https://paperpile.com/c/yWP7Yw/R6adz
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is important, especially for potentially highly skewed measures (with non-zero third moments), 

and to allow distributions that conform with the distributions of the measurements. ComBAT 

assumes that these distributions are naturally Gaussian or can be rendered approximately 

Gaussian by a simple (e.g., log) transformation. However, even if working with Gaussian 

measurements, the mean and variance may require non-constant terms to account for 

heteroskedasticity, and the resulting models are dependent on non-intuitive transformations for 

Gaussianisation.  

 

In the context of the present study, we used the Bayesian information criterion (BIC) to assess 

the goodness-of-fit of GAMLSS models making different assumptions about the form of the 

phenotypic distributions. We found that not only was the Gaussian a suboptimal distribution, but 

that the optimal choice was the generalised gamma distribution, which includes a third order 

moment. Although we found no evidence of an age-related change in the third order moment, it 

was different from unity and hence there was evidence of skewness (otherwise we could reduce 

it to the gamma distribution, which is the simplified form of the generalised gamma). The 

(generalised) gamma distribution is also defined only on the positive real line, negating the need 

to perform any transformations (apart from multiplicative scaling for computational stability), 

meaning the fitted model coefficients are on the same scale as the original phenotype. 

 

The GAMLSS and ComBAT approaches to batch correction differ substantially in a few other 

ways. Whereas GAMLSS directly uses centiles and medians of the phenotypic distribution, 

ComBAT uses the mean and variance. Hence, when comparing these methods, we cannot expect 

exactly the same results, even if we enforce a Gaussian outcome distribution within GAMLSS. 

Another substantial difference between the GAMLSS and ComBAT approaches is that GAMLSS 

requires a substantial amount of data. Even with the number of observations available for our 

analysis, it has been necessary to use restricted forms, i.e., fractional polynomials, for the 

normative lifespan trajectories rather than more flexible forms, e.g, splines. Furthermore, 

ComBAT is defined on a multivariate (Gaussian) phenotype distribution, whereas we used 

GAMLSS to model multiple univariate phenotypes. (GAMLSS does have some capability to model 

multivariate distributions, but this area is currently under-developed.) Therefore ComBAT is able 

to adjust for batch effects with fewer observations on the assumption that the batch effect is 

shared across multiple phenotypes. Running ComBAT in a univariate mode would be most 

directly equivalent to the GAMLSS approach but this is not how it is used in the wider literature. 

This implies that multivariate  normalisation by ComBAT is to some extent dependent upon the 

set of phenotypes included; if a new phenotype is included the ComBAT correction for batch 

effects would need to be re-run.  

 

In short, there are pros and cons to both harmonisation strategies: ComBAT is better suited for 

smaller datasets, Normalised distributions and multivariate phenotypes; whereas GAMLSS is 

better suited for large datasets, non-Gaussian distributions and univariate phenotypes. We 

preferred GAMLSS on the grounds of its greater scalability and flexibility to match the 

distributional properties of the reference data and the scope  of this project. 

 

While we principally modeled lifespan brain trajectories with primary study (not scanning site) as 

“the batch” to be corrected by GAMLSS or ComBAT, we also modelled trajectories treating both 

study and site as batch effects. The results were nearly identical for study-batch corrected or 

study-and-site batch corrected trajectories  (all r2 > 0.99 for both parametric [Pearson’s] and non-

parametric [Spearman’s] correlations). This near-perfect agreement is likely due in part to the 
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partitioning of variation. The study and study-site random-effects covariance structures are both 

dominated by the sigma-component,i.e., phenotype variance. Essentially once we increase the 

resolution of batch effects to study-and-site specific random-effects, we have reduced the sample 

size to estimate each random-effect and hence this uncertainty is unable to compete with the raw 

observation noise (captured by the sigma-component). In an ideal scenario one would use a site 

within study nested random-effects structure. However the co-dependence of variation in 

processing pipelines, MRI acquisition parameters, lifespan coverage, and small site-specific 

sample sizes, combined with the inherent observation noise, means such a covariance 

specification is unlikely to be viable with the currently available data (also, GAMLSS does not 

currently support nested covariance structures). 

5.2 Modeling of between-site heterogeneity by GAMLSS: empirical evaluation compared 

to ComBAT 

To empirically evaluate the capacity of GAMLSS to account for batch effects or between-site 

variation, we analysed the well-known multi-site ABCD study42 and compared the results of 

between-site harmonisation by GAMLSS to the results of a standard ComBAT harmonisation 

pipeline. Compared to the raw ABCD imaging data, which show clear effects of site across all 

MRI phenotypes, both ComBAT and GAMLSS efficiently removed these batch effects in the 

normalised (site-corrected) data, but both harmonisation pipelines retained a high degree of 

variation at the level of individual scans (Fig. S5.2.1-5.2.2). 

 

 
 

Fig. S5.2.1. Raw volumetric data and centile scores for male subjects from the ABCD cohort. The 

top row shows raw volumetric data across the 22 sites included in ABCD, the middle row shows centile 

normalised data by GAMLSS and the bottom row shows data normalised using ComBAT. ANOVA P-values 

refer to one-way analyses of variance across sites for each individual phenotype. Bars are coloured by site. 

ComBAT and GAMLSS are both able to substantially mitigate batch effects in multi-site MRI data. 

 

https://paperpile.com/c/yWP7Yw/Vl2KV
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Fig. S5.2.2. Raw volumetric data and centile scores for female subjects from the ABCD cohort. The 

top row shows raw volumetric data across the 22 sites included in ABCD, the middle row shows centile 

normalised data by GAMLSS and the bottom row shows data normalised using ComBAT. ANOVA P-values 

refer to one-way analyses of variance across sites for each individual phenotype. ComBAT and GAMLSS 

are both able to substantially mitigate batch effects in multi-site MRI data. 

 

To further assess whether batch-corrected MRI data derived from both ComBAT and GAMLSS 

pipelines would generate convergent results in subsequent analyses, we estimated the 

correlations between total cerebrum volume (TCV) and fluid intelligence or birth weight, after TCV 

was estimated in data that had been batch-corrected by either GAMLSS or ComBAT. Both these 

psychological and biological factors have previously been shown to be correlated with TCV43–45. 

We were able to replicate these significant associations with TCV after both GAMLSS and 

ComBAT batch correction; and batch-corrected data from both pipelines were more consistently 

associated with fluid intelligence or birth weight than the raw (uncorrected) data from multiple 

sites within the ABCD cohort (Fig. S5.4-5.5). 

 

 
Fig. S5.2.3. Comparing effects of GAMLSS versus ComBAT batch correction on estimation of total 

cerebrum volume. TCV was estimated for N=10,583 participants in the ABCD multi-site study after MRI 

https://paperpile.com/c/yWP7Yw/pvqjT+GHJ34+6ikwS
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data had been batch-corrected for between-site differences by ComBAT (y-axis) or GAMLSS (x-axis). 

Estimated TCV was highly correlated (r > 0.99) downstream of these two batch correction procedures. 

Scans are point-coloured according to site.  

 

 
Fig. S5.2.4. Associations between total cerebrum volume (TCV) and birth weight (top) or fluid 

intelligence (bottom) after batch correction by GAMLSS (left), by ComBAT (middle), or without batch 

correction (raw, right). Linear relationships for each of the 22 sites in the ABCD study are in coloured 

solid lines; dashed lines signify overall model fit across sites; fluid intelligence was assessed using the NIH 

Toolbox46. These results show that predicted relationships between TCV and both birth weight and fluid 

intelligence are more convincingly replicated in these N=10,583 scans from the ABCD multi-site study when 

the MRI data have been batch-corrected by either GAMLSS or ComBAT compared to when the MRI data 

have been analysed without correction of between-site differences. 
 

 
Fig. S5.2.5. Consistency of behavioural (fluid intelligence) and biological (birth weight) associations 

with total cerebrum volume (TCV) estimated at 22 MRI acquisition sites in the ABCD cohort, after 

batch correction for site effects by GAMLSS (left column) or ComBAT (right column). Regression 

coefficients and standard errors from linear regression models of TCV on birth weight or fluid intelligence 

are plotted using point-ranges for each site. Meta-analytic coefficients and errors, combining all primary 

https://paperpile.com/c/yWP7Yw/IgHLl
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study effects, are shown in black at the top of each column. Coefficients (triangles) are scaled based on 

sample size at each site within the ABCD study. 

 

 

Ref 1/3:  

It is unclear how uniform the preprocessing for data was, and what specific steps were 

carried out – which is concerning, unless I missed it. Did the authors bring the data to a 

common space for calculation of measures? Did they need to for the measures obtained? 

(if alignment could be avoided, that could minimize introduction of potential biases related 

to registration error - which is heavily impacted by data quality). There is a lot of detail that 

is crucial to know to fairly evaluate the work, and it is not easily obtainable. 

 

We thank the reviewer for allowing us the opportunity to expand our methodological description. 

In response to the request for more accessible detail on pre-processing methods, we now provide: 

 

1. Additional detail on exactly how each individual dataset was quality controlled and pre-

processed – see SI2 “Quality control” and SI18 “Data processing” including a new 

Table ST1.1 providing study specific details on QC, acquisition and processing. A large 

majority (95%) of primary studies used a version of FreeSurfer for pre-processing. For 

these studies, total tissue volumes were extracted from the resulting aseg.stats files, which 

are generated prior to cortical surface reconstruction and are thus less impacted by data 

quality.  

2. Additional analysis of reliability of out-of-sample centile scoring across multiple versions 

of FreeSurfer. For empirical evaluation of the influence of different pre-processing 

strategies, we estimated the intra-class correlations between centile scores derived from 

a single study after the data had been pre-processed by multiple different pipelines. These 

results indicated that centiles estimated after pre-processing with FreeSurfer version 5.3 

or any later versions of FreeSurfer were highly consistent. This is particularly encouraging 

because, as shown in Table ST1.1, none of the primary studies used an earlier version of 

FreeSurfer than 5.3. See SI 4.4 “Reliability of out-of-sample centile scoring across 

multiple versions of FreeSurfer” including new Fig. S4.4. 

 

<<The following changes have been made to the Supplemental Information>> 

18. Data processing 

If T1- and T2/FLAIR-weighted raw data were available, as they were for approximately 95% of 

scans), these data were processed with FreeSurfer 6.0.124 using the combined T1-T2 recon-all 

pipeline for improved grey-white matter boundary estimation. If only raw T1-weighted data were 

available, and subjects were aged over 2 years, data were processed with FreeSurfer 6.0.1 using 

the standard recon-all pipeline. If subjects were aged 0–2 years, data were processed with Infant 

FreeSurfer v194. ST1.1 lists the number of subjects per site per processing pipeline alongside 

their respective MRI acquisition and quality control protocols. We noticed that Infant FreeSurfer 

estimated total subcortical grey matter volume (sGMV) differently from other pipelines included in 

this dataset, while other cerebrum tissue volumes were estimated consistently across pipelines. 

We therefore excluded scans processed with Infant FreeSurfer from growth curve estimation for 

subcortical GMV. All four cerebrum tissue volumes were extracted from the aseg.stats files that 

https://paperpile.com/c/yWP7Yw/8RnfO
https://paperpile.com/c/yWP7Yw/gLC01
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are generated in the first stage of the recon-all process:'Total cortical gray matter volume' for 

GMV; 'Total cortical/cerebral (FreeSurfer version dependent) white matter volume' for WMV; 

‘Subcortical gray matter volume’ for sGMV (inclusive of thalamus, caudate nucleus, putamen, 

pallidum, hippocampus, amygdala, and nucleus accumbens area; 

https://freesurfer.net/fswiki/SubcorticalSegmentation); and the difference between  'BrainSegVol" 

and 'BrainSegVolNotVent' for Ventricular volume. The first processing stage of recon-all includes: 

non-uniformity correction, projection to Talairach space, intensity normalisation, skull-stripping, 

automatic tissue and subcortical segmentation. Surface interpolation, tessellation and registration 

are done at the second and third stages of the recon-all pipeline (i.e., after aseg.stats files are 

created) and all these later stage processes involve projection to a standard stereotactic 

(fsaverage) space. Regional volume, thickness, and surface area was estimated for each of 34 

bilaterally averaged cortical regions defined by the Desikan-Killiany48 parcellation template 

following the final stages of the recon-all pipeline and using the hemisphere-specific apars.stats 

files generated by FreeSurfer. 

 

4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer 

Knowing that a large majority (~95%) of primary studies in the reference dataset used one of a 

series of versions of FreeSurfer for image analysis, we also evaluated the impact of these 

incrementally different image analysis pipelines on reliability of OoS centile scores. To do this we 

re-analysed a single dataset36 repeatedly using 4 different versions of FreeSurfer (5.1, 5.3, 6.01, 

and 7.1). Each version of the processed dataset was treated as an independent OoS study for 

GAMLSS modeling and then we estimated ICCs between individual centile scores for each 

possible pair of FreeSurfer pipelines and for each of four cerebrum tissue volumes. This analysis 

demonstrated generally high within-subject reliability of OoS centiles across all four pipelines: 

ICCs for GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982 (Fig. S4.4). We noted 

that there was somewhat reduced reliability of subcortical grey matter volume in both raw and 

centiled data from FreeSurfer version 5.1 in comparison to later FreeSurfer versions. While the 

reasons for this are unclear, none of the studies included in the principal dataset were processed 

with FreeSurfer 5.1, or any version of FreeSurfer older than 5.3. Furthermore, we found the 

highest between-pipeline reliability for both raw volumetric data and centile scores derived from 

the two most recent versions of FreeSurfer, 6.0.1 and 7.1, suggesting that minor inconsistencies 

due to FreeSurfer pre-processing are becoming less problematic as this widely used software 

package incrementally evolves. 

 

https://freesurfer.net/fswiki/SubcorticalSegmentation
https://paperpile.com/c/yWP7Yw/jO30B
https://paperpile.com/c/yWP7Yw/VedrO
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Fig. S4.4. Between-pipeline reliability of volumetric data and out-of-sample centile scores for four 

cerebrum tissue volumes measured in the same set of N=1,468 scans re-analysed using 4 different 

versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1).Top row shows scatterplot matrices representing the 

correlations between raw volumetric data derived from each possible pair of FreeSurfer pipelines, from left 

to right: GMV, WMV, sGMV, Ventricles. Bottom row shows scatterplot matrices representing the 

correlations between out-of-sample centile scores derived from each possible pair of FreeSurfer pipelines, 

from left to right: GMV, WMV, sGMV, Ventricles. Intra-class correlations of out-of-sample centile scores 

and uncentiled volumetric data, on average over all pairs of four pipelines, were generally high 

(GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982). Although the reliability of sGMV 

volumetrics and centile scores was somewhat lower due to discrepant measurements by the oldest version 

of FreeSurfer, v5.1, this version of FreeSurfer was not used to analyse any of the scans included in the 

reference dataset. 

 

Ref 1/3:  

Figure 1 should show # of datasets per site – the current depictions are not sufficient, 

and can be viewed as misleading (one can glean from distributions, but that is not trivial 

to meaningfully/accurately do). 

 

We agree that it is important to be clear about the number of scans included in each primary 

study. Detailed information on each primary study, including sample size, is now provided in 

supplementary tables ST1.1-1.8. We have also updated FIg. 1 so that the box plot representing 

each study is now coloured to represent sample size “at first glance”. Given the wide range and 

10-fold increase in UK BioBank sample size compared to many other studies, colour is plotted on 

a log-scale. We tried incorporating exact numbers in the figures but making those legible 

compromised the quality of the figure and distracted from the main findings depicted, hence we 

preferred this coloured box-plot format instead.  
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<<The following changes have been made to the main text>>  

 

 

  

 
Fig. 1. Human brain charts. A | MRI data were aggregated from 100 primary studies comprising 123,984 

scans that collectively spanned the age range from late pregnancy to 100 postnatal years. Box-violin plots 

show age distributions (log-scaled) for each study coloured by its relative sample-size (log-scaled) B | Non-

centiled bilateral cerebrum tissue volumes (right to left: grey matter, white matter, subcortical grey matter 

and ventricles) are plotted for each cross-sectional control scan, point-coloured by sex, as a function of age 

(log-scaled). C | Normative brain growth curves, analogous to paediatric growth charts, were estimated by 

generalised additive modelling for location scale and shape (GAMLSS), accounting for site- and study-

specific batch effects, and stratified by sex (female/male curves coloured red/blue). All four cerebrum tissue 

volumes demonstrated distinct, non-linear trajectories of their medians and 95% centile boundaries as a 

function of age over the life-cycle. Demographics for each cross-sectional sample of healthy controls 

included in the reference dataset for normative GAMLSS modeling of each MRI phenotype are detailed in 

ST1.2-1.7. D | Trajectories of median between-subject variability and 95% confidence intervals for four 

cerebrum issue volumes were estimated by sex-stratified bootstrapping (1,000 times; see SI3 for details). 

E | Rates of volumetric change across the lifespan for each tissue volume, stratified by sex, were estimated 

by the first derivatives of the median volumetric trajectories. For solid (parenchymal) tissue volumes, the 

solid horizontal line (y=0) indicates when the volume of each tissue stops growing and starts shrinking; the 

solid vertical line indicates the age of maximum growth of each tissue. See ST2.1 for all 
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neurodevelopmental milestones and their confidence intervals. Note that y-axes in panels B-E are scaled 

in units of 10,000 mm3 (10ml). 

 

 

 

Ref 1/4:  

A smaller note - how are the authors accounting for variations in diagnostic practices? 

 

There is indeed variation in diagnostic practices between primary clinical studies, e.g., due to 

varying diagnostic eligibility criteria  and/or questionnaire  assessment tools used to ascertain 

“caseness”. Although this source of study-level variation is evident across the primary clinical 

studies in the aggregated dataset, we can account for its impact primarily by explicitly modeling 

all study-specific factors (including diagnostic differences in clinical studies) as random effects on 

three moments of the generalised gamma distributions of the MRI phenotypes. As such, each 

study is adjusted with its own unique random effect parameterization that would encompass any 

deviation due to different assessment of caseness. The rationale and justification for this 

approach to “batch correction” is detailed in SI5 “Batch correction and site harmonisation” 

and throughout SI1 “Modelling lifespan trajectories of brain maturation”.  

 

We additionally provide new detail relevant to this point, as follows: 

● We note that normative growth charts are estimated from reference data exclusive of 

primary clinical studies of formally diagnosed cases of disorder, thus eliminating any 

potential impact of variation in diagnostic practice on normative brain growth charts. 

● We show that allowing random effects on study-specific distributions protects the 

normative growth curves from being unduly influenced by between-study variability. It also 

ensures centiles estimated at subject level (for both cases and controls) are appropriately 

adjusted in relation to the study from which they were drawn: SI1.1-1.7 “Modelling 

lifespan trajectories”. 

- We conducted a comprehensive set of leave-one-study-out (LOSO) analyses to ensure 

normative curves were not unduly biased by any single study and to identify which studies 

were most idiosyncratically influential on the statistics of the reference dataset: SI3.2 

“Model sensitivity analyses”. 

 

<<The following changes have been made  to Supplementary Information >> 

 

In SI1 Modelling lifespan trajectories 

 

Furthermore, there could be variability between studies in the standards used for diagnosis of 

disorders, and/or for ascertainment of healthy controls, and the clinically diagnosed cases are 

spread across several studies with potentially different diagnostic standards. We note that this 

issue is unlikely to impact on the normative brain charts which were estimated on the basis of 

healthy control data only. However, it is a potential source of study-specific differences that could 

bias centile scoring if not corrected. To that end, we require study-specific estimates from our 

model so that we can use the parameters obtained when modelling the normative curves to also 

adjust for study random effects in the individuals that were not included in the normative reference 

(i.e., cases). This requirement excludes many non-parametric outcome distribution approaches 

and conditional inference methods, e.g., generalised estimating equations (GEEs)13, would be 

unsuitable for this purpose since they explicitly avoid or side-step estimating study-specific 

https://paperpile.com/c/yWP7Yw/i9QUt
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random-effects. Although many of these methods reduce bias under model mis-specification and 

can effectively harmonise data across studies, we require the feature they integrate out. Similarly 

this excludes approaches like the recent application of ComBAT14 in neuroimaging from its origins 

in the genomics literature (see SI5 for an in-depth comparison between the two approaches). The 

principal way in which we have accounted for between-study - differences  is by using the 

GAMLSS modeling framework to estimate study-specific random effects on the three moments 

of the statistical distributions of the MRI phenotypes To demonstrate the robustness to study-

specific variability of growth curves and the individual centiles derived from them, we conducted 

‘leave-one-study-out’ (LOSO) analyses whereby the growth curves and centiles were repeatedly 

estimated after exclusion of each individual study (see SI 3.2 “Model sensitivity analyses”). 

These analyses confirm that trajectories from the total dataset are in general highly conserved 

after exclusion of each individual study, suggesting that study-specific differences do not 

materially influence model parameters. 

 

Ref 1/5:  

A final note is authorship – what was the criteria for data contributors, if they did not 

actively participate in the actually data analysis / manuscript? If such situations exist, is 

there an inadvertent benefit to those who are closed with their datasets? At a minimum, 

please consider grouping all those that only contributed data under a single 

collaborative name on the author line...then link that to the individuals in pubmed. This 

would better recognize the contributions of those who did the bulk of this analysis. 

 

We appreciate this important point and recognize that the authorship list is longer than usual. The 

study would not have been possible without an inclusive “team science” approach. As required 

by the Nature authorship guidelines, all listed authors were actively involved in data collection, 

aggregation or processing; in addition, all authors read and commented on the manuscript, and 

revised the manuscript and supplementary materials. The contributors who designed and 

conducted the bulk of the analysis are designated as joint first (RB, JS, SW) and joint senior (EB, 

AA-B) authors. We note that in several cases, consortia were named rather than individual co-

authors when this was considered to be more appropriate. We would be more than happy to 

discuss this issue further, if appropriate. 

  

https://paperpile.com/c/yWP7Yw/7eRv0
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Referee #2: 

Using data combined across several primary studies, this article presents cross-sectional 

lifespan age trends for individual differences in a small number of gross brain morphology 

“tissue classes” (e.g. total brain volume, white matter volume, subcortical grey matter 

volume, and ventricular volume) as measured by structural MRI. Rather than simply 

providing the mean age trends in each tissue class, the authors provide information about 

how the dispersion changes with age. Additionally, because mean growth is nonlinear, the 

authors are able to calculate ages at peak velocity for each class. This descriptive exercise 

is pitched as “brain charts” to “reference standards against which to anchor measures of 

individual differences in brain morphology,” much in the same way that “growth charts” 

are used. They provide an online tool for calculating individual however, there are several 

unsatisfying, if not concerning, aspects to this packaging.  

 

Ref 2/1:  

There is no way to be confident in the use of these reference norms given that scanner to 

scanner variation can lead to tremendous mean differences in inferred volumes. Without 

first calibrating an MRI relative to the norms, nearly everyone scanned in a particular MRI 

might be classified as abnormal. Even if the norms were only used to make comparisons 

across samples rather than individuals, it would not be clear of the samples actually 

differed in mean volumes or scanners were simply miscalibrated. 

 

The reviewer raises a key point concerning the importance of adequately correcting the data for 

different sites or studies when estimating normative trajectories and individual centile scores. To 

address the question of between-site variation, or “batch effects” in the MRI data -- and to show 

that the statistical approach we have adopted does indeed satisfactorily account for these 

potentially troublesome effects -- we have now made the following changes to the paper:  

 

1. We have provided an extensive conceptual discussion of between-site harmonisation, 

including a detailed comparison with ComBAT, which is a well-known alternative method  

for  between-site harmonisation: SI5.1 “Modeling of between-site heterogeneity by 

GAMLSS: conceptual considerations in comparison to ComBAT batch-correction”. 

2. We have quantitatively compared GAMLSS and ComBAT methods for correction of 

between-study effects, and for correction of between-site differences in a multi-site study, 

the results of which are discussed in SI5.2 “Modeling of between-site heterogeneity by 

GAMLSS: empirical evaluation compared to ComBAT”, including 5 new 

supplementary Figs. S5.2.1-S5.2.5 

3. We have conducted an extensive evaluation of the stability of our methods for out-of-

sample centile scoring, which is now included in a new supplementary section: SI4 “Out-

of-sample centile scoring: bias, stability and reliability”.  

 

 

<<The following changes have been made to the Supplemental Information>> 
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5. Batch correction and site harmonisation 

5.1 Modeling of between-site heterogeneity by GAMLSS: conceptual considerations in 

comparison to ComBAT batch-correction 

 

Batch effects, or heterogeneities between sites or primary studies, are a challenging issue for 

estimating generalisable results from multi-site or multi-study neuroimaging data. In recent years, 

methods such as ComBAT14,39 have been translated from their primary application for whole 

genome transcription (microarray) analysis to achieve harmonisation of MRI data acquired across 

multiple sites. For our principal analysis, however, we preferred to use GAMLSS, a conceptually 

similar mathematical framework, to account for between-site or between-study heterogeneity. We 

made this choice a priori for several reasons. Firstly, GAMLSS explicitly includes the possibility 

of accounting for non-linear age effects (including age-related changes to higher order moments 

such as variance) during the harmonisation process. Adaptations of traditional ComBAT 

harmonisation have recently been developed that also allow the inclusion of non-linear age-trends 

as well as longitudinal, within-subject effects40,41; but these refinements of ComBAT remain 

somewhat restricted to batch correction of the mean and are not trivial to extend to batch 

correction of higher order moments, such as the variation across sites. Secondly, we chose to 

use GAMLSS because it is flexible with regards to the underlying distribution of the data that is to 

be harmonised; thirdly, because GAMLSS is the WHO-recommended statistical framework for 

growth chart modelling18; and finally because GAMLSS allows a flexible modelling capacity that 

would facilitate scaling of this framework to growth charting of additional MRI phenotypes in the 

future.  

 

Conceptually, normalised centiles derived from the GAMLSS model (see SI1.5) are analogous to 

normalised scores derived from ComBAT. Specifically, multiple groups of observations have an 

induced co-dependence, arising in the context of our analysis from common study-specific 

factors, which leads to a common measurement bias. The aim of both ComBAT and GAMLSS is 

to correct that common measurement bias. However, whereas ComBAT is derived from a 

conjugate Bayesian approach and hence restricted to a Gaussian distribution of phenotypes, 

GAMLSS uses a frequentist, iterative maximum likelihood approach that allows a range of 

distributions including those with non-zero third and fourth statistical moments (the Gaussian 

distribution by definition has third and fourth moments equal to zero). Flexibility in the distribution 

is important, especially for potentially highly skewed measures (with non-zero third moments), 

and to allow distributions that conform with the distributions of the measurements. ComBAT 

assumes that these distributions are naturally Gaussian or can be rendered approximately 

Gaussian by a simple (e.g., log) transformation. However, even if working with Gaussian 

measurements, the mean and variance may require non-constant terms to account for 

heteroskedasticity, and the resulting models are dependent on non-intuitive transformations for 

Gaussianisation.  

 

In the context of the present study, we used the Bayesian information criterion (BIC) to assess 

the goodness-of-fit of GAMLSS models making different assumptions about the form of the 

phenotypic distributions. We found that not only was the Gaussian a suboptimal distribution, but 

that the optimal choice was the generalised gamma distribution, which includes a third order 

moment. Although we found no evidence of an age-related change in the third order moment, it 

was different from unity and hence there was evidence of skewness (otherwise we could reduce 

https://paperpile.com/c/yWP7Yw/7eRv0+jQJwX
https://paperpile.com/c/yWP7Yw/iAMN3+mkymA
https://paperpile.com/c/yWP7Yw/R6adz
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it to the gamma distribution, which is the simplified form of the generalised gamma). The 

(generalised) gamma distribution is also defined only on the positive real line, negating the need 

to perform any transformations (apart from multiplicative scaling for computational stability), 

meaning the fitted model coefficients are on the same scale as the original phenotype. 

 

The GAMLSS and ComBAT approaches to batch correction differ substantially in a few other 

ways. Whereas GAMLSS directly uses centiles and medians of the phenotypic distribution, 

ComBAT uses the mean and variance. Hence, when comparing these methods, we cannot expect 

exactly the same results, even if we enforce a Gaussian outcome distribution within GAMLSS. 

Another substantial difference between the GAMLSS and ComBAT approaches is that GAMLSS 

requires a substantial amount of data. Even with the number of observations available for our 

analysis, it has been necessary to use restricted forms, i.e., fractional polynomials, for the 

normative lifespan trajectories rather than more flexible forms, e.g, splines. Furthermore, 

ComBAT is defined on a multivariate (Gaussian) phenotype distribution, whereas we used 

GAMLSS to model multiple univariate phenotypes. (GAMLSS does have some capability to model 

multivariate distributions, but this area is currently under-developed.) Therefore ComBAT is able 

to adjust for batch effects with fewer observations on the assumption that the batch effect is 

shared across multiple phenotypes. Running ComBAT in a univariate mode would be most 

directly equivalent to the GAMLSS approach but this is not how it is used in the wider literature. 

This implies that multivariate  normalisation by ComBAT is to some extent dependent upon the 

set of phenotypes included; if a new phenotype is included the ComBAT correction for batch 

effects would need to be re-run.  

 

In short, there are pros and cons to both harmonisation strategies: ComBAT is better suited for 

smaller datasets, Normalised distributions and multivariate phenotypes; whereas GAMLSS is 

better suited for large datasets, non-Gaussian distributions and univariate phenotypes. We 

preferred GAMLSS on the grounds of its greater scalability and flexibility to match the 

distributional properties of the reference data and the scope  of this project. 

 

While we principally modeled lifespan brain trajectories with primary study (not scanning site) as 

“the batch” to be corrected by GAMLSS or ComBAT, we also modelled trajectories treating both 

study and site as batch effects. The results were nearly identical for study-batch corrected or 

study-and-site batch corrected trajectories  (all r2 > 0.99 for both parametric [Pearson’s] and non-

parametric [Spearman’s] correlations). This near-perfect agreement is likely due in part to the 

partitioning of variation. The study and study-site random-effects covariance structures are both 

dominated by the sigma-component,i.e., phenotype variance. Essentially once we increase the 

resolution of batch effects to study-and-site specific random-effects, we have reduced the sample 

size to estimate each random-effect and hence this uncertainty is unable to compete with the raw 

observation noise (captured by the sigma-component). In an ideal scenario one would use a site 

within study nested random-effects structure. However the co-dependence of variation in 

processing pipelines, MRI acquisition parameters, lifespan coverage, and small site-specific 

sample sizes, combined with the inherent observation noise, means such a covariance 

specification is unlikely to be viable with the currently available data (also, GAMLSS does not 

currently support nested covariance structures). 
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5.2 Modeling of between-site heterogeneity by GAMLSS: empirical evaluation compared 

to ComBAT 

To empirically evaluate the capacity of GAMLSS to account for batch effects or between-site 

variation, we analysed the well-known multi-site ABCD study42 and compared the results of 

between-site harmonisation by GAMLSS to the results of a standard ComBAT harmonisation 

pipeline. Compared to the raw ABCD imaging data, which show clear effects of site across all 

MRI phenotypes, both ComBAT and GAMLSS efficiently removed these batch effects in the 

normalised (site-corrected) data, but both harmonisation pipelines retained a high degree of 

variation at the level of individual scans (Fig. S5.2.1-5.2.2). 

 

 
 

Fig. S5.2.1. Raw volumetric data and centile scores for male subjects from the ABCD cohort. The 

top row shows raw volumetric data across the 22 sites included in ABCD, the middle row shows centile 

normalised data by GAMLSS and the bottom row shows data normalised using ComBAT. ANOVA P-values 

refer to one-way analyses of variance across sites for each individual phenotype. Bars are coloured by site. 

ComBAT and GAMLSS are both able to substantially mitigate batch effects in multi-site MRI data. 

 

 
Fig. S5.2.2. Raw volumetric data and centile scores for female subjects from the ABCD cohort. The 

top row shows raw volumetric data across the 22 sites included in ABCD, the middle row shows centile 

normalised data by GAMLSS and the bottom row shows data normalised using ComBAT. ANOVA P-values 

https://paperpile.com/c/yWP7Yw/Vl2KV
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refer to one-way analyses of variance across sites for each individual phenotype. ComBAT and GAMLSS 

are both able to substantially mitigate batch effects in multi-site MRI data. 

 

To further assess whether batch-corrected MRI data derived from both ComBAT and GAMLSS 

pipelines would generate convergent results in subsequent analyses, we estimated the 

correlations between total cerebrum volume (TCV) and fluid intelligence or birth weight, after TCV 

was estimated in data that had been batch-corrected by either GAMLSS or ComBAT. Both these 

psychological and biological factors have previously been shown to be correlated with TCV43–45. 

We were able to replicate these significant associations with TCV after both GAMLSS and 

ComBAT batch correction; and batch-corrected data from both pipelines were more consistently 

associated with fluid intelligence or birth weight than the raw (uncorrected) data from multiple 

sites within the ABCD cohort (Fig. S5.4-5.5). 

 

 
Fig. S5.2.3. Comparing effects of GAMLSS versus ComBAT batch correction on estimation of total 

cerebrum volume. TCV was estimated for N=10,583 participants in the ABCD multi-site study after MRI 

data had been batch-corrected for between-site differences by ComBAT (y-axis) or GAMLSS (x-axis). 

Estimated TCV was highly correlated (r > 0.99) downstream of these two batch correction procedures. 

Scans are point-coloured according to site.  

 

https://paperpile.com/c/yWP7Yw/pvqjT+GHJ34+6ikwS
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Fig. S5.2.4. Associations between total cerebrum volume (TCV) and birth weight (top) or fluid 

intelligence (bottom) after batch correction by GAMLSS (left), by ComBAT (middle), or without batch 

correction (raw, right). Linear relationships for each of the 22 sites in the ABCD study are in coloured 

solid lines; dashed lines signify overall model fit across sites; fluid intelligence was assessed using the NIH 

Toolbox46. These results show that predicted relationships between TCV and both birth weight and fluid 

intelligence are more convincingly replicated in these N=10,583 scans from the ABCD multi-site study when 

the MRI data have been batch-corrected by either GAMLSS or ComBAT compared to when the MRI data 

have been analysed without correction of between-site differences. 
 

 
Fig. S5.2.5. Consistency of behavioural (fluid intelligence) and biological (birth weight) associations 

with total cerebrum volume (TCV) estimated at 22 MRI acquisition sites in the ABCD cohort, after 

batch correction for site effects by GAMLSS (left column) or ComBAT (right column). Regression 

coefficients and standard errors from linear regression models of TCV on birth weight or fluid intelligence 

are plotted using point-ranges for each site. Meta-analytic coefficients and errors, combining all primary 

study effects, are shown in black at the top of each column. Coefficients (triangles) are scaled based on 

sample size at each site within the ABCD study. 

https://paperpile.com/c/yWP7Yw/IgHLl
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4. Out-of-sample centile scoring: bias, stability and reliability 

4.1. Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies 

To further evaluate the robustness and consistency of centile scoring of OoS MRI data that were 

not included in the reference dataset used to estimate population trajectories, we performed a 

comprehensive series of leave-one-study-out (LOSO) analyses. For each one of the 100 studies 

in the reference dataset, we removed the study from the reference dataset, re-fitted the GAMLSS 

model to the remaining dataset of 99 studies, computed the OoS centile scores for the excluded 

study, and compared the OoS centile scores to the in-sample centile scores computed for the 

same study from the complete dataset including all 100 studies. Supplementary tables ST7.1-7.4 

list the correlations between OoS and in-sample centile scores for all 4 cerebrum tissue volumes 

in each of 100 primary studies. Overall, we found very high levels of correlation (Pearson’s r ~ 

0.99) for almost all studies, indicating that centile scores can be estimated accurately for most 

studies even if they were not included in the reference dataset used to define population norms. 

Correlations between OoS and in-sample centile scores were lower than r = 0.99 for only 3 out of 

100 studies in the reference dataset: namely, the FinnBrain (r = 0.93), UCSD (r = 0.96) and NIHPD 

(r = 0.95) studies. These studies were characterised by relatively small sample size, foetal or 

early postnatal age range of participants, or idiosyncratic processing pipelines.  

   

4.2. Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 

studies 

In addition, we tested the reliability of OoS centile scores for each individual participant by 

bootstrapping. Specifically, for each LOSO sample, bootstrapped model parameters were 

generated (see SI3.2.2 “Bootstrap analysis”), resulting in 1,000 bootstrapped models with 

maximum likelihood estimated parameters for each bootstrap iteration of each left-out study. 

From this we obtained a bootstrapped distribution of out-of-sample centile scores for each 

individual subject in each individual iteration of left-out studies, thus providing a stability 

assessment in the form of the standard deviation of individual OoS centile scores across 1,000 

bootstrap iterations. Across the datasets included in the model, we found that the average 

standard deviation of (bootstrapped) OoS centiles was 0.014, which is well below the level of 

within-subject longitudinal variation (see Fig. S4.2.1 and SI14 “Longitudinal centiles”). 

Furthermore, we found increased standard deviation of OoS centile scores for datasets with 

comparatively small sample sizes (e.g., the OpenPain cohorts, Cambridge foetal Testosterone 

and CHILD studies; see Fig. S4.2.2). OoS centile scores were also more variable for datasets 

that had a more unique combination of age range, acquisition and processing pipelines (e.g., 

FinnBrain, IBIS and HBN; see Fig. S4.2.2). These observations reinforce the recommendation -- 

see main text, ‘Out-of-sample centile scoring of “new” MRI data’ -- that OoS centile scoring 

is reliable for studies comprising N>100 scans. It was also notable that the reliability of OoS centile 

scores was weakly correlated with data quality as quantified by the Euler index (EI). So studies 

with higher EI23, indicating poorer image quality, tended to have higher variability of bootstrapped 

OoS centile scores (Pearson’s r for all 4 cerebrum tissue volumes: GMV=0.05, WMV =0.11, 

sGMV =0.14, and Ventricular volume = 0.13). These results were not substantially different when 

the whole set of analyses was repeated without including scans with EI > 217. We conclude that 

OoS estimation of centile scores is generally reliable at the level of individual scans, and (as 

expected) reliability is greater for higher quality scans.  

https://paperpile.com/c/yWP7Yw/qCsEW
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Fig. S4.2.1. Stability of out-of-sample centile scores for four cerebrum tissue volumes when each 

of 100 studies was excluded from the reference dataset before bootstrapping. The standard deviation 

of bootstrapped centile scores (y-axis) is plotted for each study (x-axis) for each phenotype, from top to 

bottom panels: total cortical grey matter volume, total cortical white matter volume, subcortical grey matter 

volume, and ventricular volume. Each study- and phenotype-specific boxplot is coloured according to log 

sample size. For each study, we estimated the normative model leaving that study out of the reference 

dataset and repeated this procedure after iteratively bootstrapping the reference dataset 1,000 times.This 

procedure allowed us to summarise the reliability of the out-of-sample estimates of centile scores in terms 

of the standard deviation of the 1,000 centile scores generated for each bootstrapped resampling of the 

reference dataset. Studies are ordered by median standard deviation of out-of-sample centile scores (small 

to large) indicating that scans are reliably assigned centile scores with the out-of-sample approach. 
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Fig. S4.2.2. Stability of out-of-sample centile scores as a function of age and sample size. The 

standard deviation (SD) of bootstrapped centile scores for four cerebrum tissue volumes (y-axis) is plotted 

against mean age of study participants (top row) or sample size (bottom row). Studies with the most 

unstable OoS centile scores (SD>0.05) are highlighted in red and labelled (see ST1.1 for study details).  
 

4.3. Test-retest reliability of out-of-sample centile scoring 

We also assessed the reliability of OoS centile scoring in three independent datasets that 

acquired multiple MRI scans within a single session or two closely spaced sessions 22,34–36. We 

analyzed each scan as a novel OoS dataset, then compared the consistency of centile scores 

across different scans of the same subject. We similarly compared the consistency of the 

uncentiled volumetric data and found that the out-of-sample centile scores were as consistent 

between scans in the same session as the “raw” volumetric data generated by FreeSurfer. 

 

First, we analysed test-retest reliability using the multimodal MRI reproducibility resource34, which 

provides two sessions of MRI data for multiple modalities. This dataset comprising 21 subjects 

was specifically designed for assessment of test-retest reliability as all subjects were scanned in 

two sessions separated by a one-hour break and the whole cohort was completed within a two 

week period. We analyzed each session of 21 scans as an independent OoS study (Fig. 5) and 

then estimated intra-class correlation coefficients (ICCs) to assess the between-session or test-

retest reliability of individual centile scores for four cerebrum tissue volumes37.  All ICCs were 

~0.99 (Fig. S4.3.1). 

 

https://paperpile.com/c/yWP7Yw/htNoi+kCeab+VedrO+EDkLX
https://paperpile.com/c/yWP7Yw/htNoi
https://paperpile.com/c/yWP7Yw/4wyXM
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Fig. S4.3.1. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes. MRI 

data were collected in two separate scanning sessions from N=21 participants and each session was 

analysed as an independent out-of-sample study using GAMLSS. Scatterplots represent OoS centile 

scores for session 1 (y-axis) versus OoS centile scores for session 2 (x-axis) for each brain tissue volume, 

from left to right: GMV, WMV, sGMV, Ventricular CSF. Data points represent individual subject centile 

scores. Test-retest reliability was consistently very high (all ICCs > 0.99) for all cerebrum tissue volumes.   

 

Second, we analysed the test-retest reliability of OoS centile scoring using MRI data on N=72 

participants in the Healthy Brain Network (HBN) cohort22, which  was not originally included in the 

reference dataset. The HBN cohort was designed to assess the influence of an alternate MRI 

data acquisition protocol, which included prospective motion correction25 to improve quality and 

reliability of MRI. The study protocol included 2 sessions of scanning using a conventional 

MPRAGE sequence for T1-weighted data acquisition and another 2 sessions of scanning using 

an innovative, prospectively motion-corrected sequence, VNaV, for T1-weighted imaging25. For 

all 72 individuals each session of each sequence was analysed as an OoS study (Fig. 5; SI1.8 

“Out-of-sample estimation”) and then we estimated ICCs as a measure of the test-retest 

reliability of individual centile scores for each brain tissue volume derived from each sequence 

(MPRAGE or VNaV). Test-retest reliability was uniformly high (ICCs > 0.95) for all OoS centile 

scores on all cerebrum tissue volumes estimated from both MPRAGE and VNaV sequences (Fig. 

S4.3.2). Reliability was incrementally higher for OoS centile scores derived from the VNaV 

sequence, under-scoring the importance of high quality data especially for OoS analysis of 

datasets with N<100. However, we note that this increased reliability of centile scoring was most 

likely driven by a comparably increased consistency of the  raw volumes estimated by FreeSurfer 

(as also noted in the original paper describing the impact of prospective motion correction22). 

 

 

 

https://paperpile.com/c/yWP7Yw/EDkLX
https://paperpile.com/c/yWP7Yw/DmznI
https://paperpile.com/c/yWP7Yw/DmznI
https://paperpile.com/c/yWP7Yw/EDkLX
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Fig. S4.3.2. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 

measured twice in the same N=72 participants using two T1-weighted sequences, MPRAGE and 

VNaV. Top row shows out-of-sample centile scores for session 1 (y-axis) versus out-of-sample centile 

scores for session 2 (x-axis) for cerebrum tissue volumes estimated from MPRAGE data, from left to right: 

GMV, WMV, sGMV, Ventricles. Bottom row shows out-of-sample centile scores for session 1 (y-axis) 

versus out-of-sample centile scores for session 2 (x-axis) for cerebrum tissue volumes estimated from 

VNaV data, from left to right: GMV, WMV, sGMV, Ventricles. In all plots, data points represent individual 

subject centile scores. Test-retest reliability was uniformly high (all ICCs > 0.95) and generally somewhat 

higher for volumetrics derived from prospectively motion-corrected data (VNaV). 
 

Third, we assessed the test-retest reliability of OoS centile scoring using the Vietnam Era Twin 

Study of Ageing (VETSA) study cohort35. VETSA is a longitudinal study following 1,200 twins from 

the Vietnam Era Twin Registry, which includes two technically identical MPRAGE acquisitions 

within the first (baseline) scanning session. Both these scans were processed with FreeSurfer 

6.0.1 for all participants, then the two sets of scans were each analysed as an independent OoS 

study, and ICCs were estimated to assess the test-retest reliability of individual centile scores on 

all four cerebrum tissue volumes. Test-retest reliability of OoS centile scores was uniformly very 

high (all ICCs > 0.98) across all phenotypes, comparable to the high reliability of the uncentiled 

volumetric data generated by FreeSurfer 6.0.1 (all ICCs > 0.95), and in line with the constraints 

on reliability expected from technical sources of noise38 (Fig. S4.3.3). 

 

 

Fig. S4.3.3. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 

measured twice in the same 1,200 participants (600 twin pairs). Scatterplots show out-of-sample centile 

scores for scan 1 (y-axis) versus out-of-sample centile scores for scan 2 (x-axis) for cerebrum tissue 

volumes estimated from MPRAGE data, from left to right: GMV, WMV, sGMV, Ventricles. Data points 

represent individual subject centile scores. Reliability was uniformly high across all phenotypes (ICCs > 

0.95) and comparable to reliability of uncentiled volumetric measurements from the same set of scans (data 

not shown).  

4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer 

Knowing that a large majority (~95%) of primary studies in the reference dataset used one of a 

series of versions of FreeSurfer for image analysis, we also evaluated the impact of these 

incrementally different image analysis pipelines on reliability of OoS centile scores. To do this we 

https://paperpile.com/c/yWP7Yw/kCeab
https://paperpile.com/c/yWP7Yw/HQZmZ
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re-analysed a single dataset36 repeatedly using 4 different versions of FreeSurfer (5.1, 5.3, 6.01, 

and 7.1). Each version of the processed dataset was treated as an independent OoS study for 

GAMLSS modeling and then we estimated ICCs between individual centile scores for each 

possible pair of FreeSurfer pipelines and for each of four cerebrum tissue volumes. This analysis 

demonstrated generally high within-subject reliability of OoS centiles across all four pipelines: 

ICCs for GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982 (Fig. S4.4). We noted 

that there was somewhat reduced reliability of subcortical grey matter volume in both raw and 

centiled data from FreeSurfer version 5.1 in comparison to later FreeSurfer versions. While the 

reasons for this are unclear, none of the studies included in the principal dataset were processed 

with FreeSurfer 5.1, or any version of FreeSurfer older than 5.3. Furthermore, we found the 

highest between-pipeline reliability for both raw volumetric data and centile scores derived from 

the two most recent versions of FreeSurfer, 6.0.1 and 7.1, suggesting that minor inconsistencies 

due to FreeSurfer pre-processing are becoming less problematic as this widely used software 

package incrementally evolves. 

 

 
Fig. S4.4. Between-pipeline reliability of volumetric data and out-of-sample centile scores for four 

cerebrum tissue volumes measured in the same set of N=1,468 scans re-analysed using 4 different 

versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1).Top row shows scatterplot matrices representing the 

correlations between raw volumetric data derived from each possible pair of FreeSurfer pipelines, from left 

to right: GMV, WMV, sGMV, Ventricles. Bottom row shows scatterplot matrices representing the 

correlations between out-of-sample centile scores derived from each possible pair of FreeSurfer pipelines, 

from left to right: GMV, WMV, sGMV, Ventricles. Intra-class correlations of out-of-sample centile scores 

and uncentiled volumetric data, on average over all pairs of four pipelines, were generally high 

(GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982). Although the reliability of sGMV 

volumetrics and centile scores was somewhat lower due to discrepant measurements by the oldest version 

of FreeSurfer, v5.1, this version of FreeSurfer was not used to analyse any of the scans included in the 

reference dataset. 

4.5. Effects of sample size on reliability of out-of-sample centile scores 

To further assess the validity of the OoS estimates we generated ‘clones’ of existing datasets. 

Clones are resampled copies of studies included in the reference dataset used to estimate the 

study specific GAMLSS parameters, that are then treated as if they were “new” studies using the 

https://paperpile.com/c/yWP7Yw/VedrO
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methods for out-of-sample centile scoring. This allows us to compare the OoS estimates to a 

relative truth, i.e., from the original, non-cloned version of the study included in the reference 

dataset, we know what the GAMLSS parameters ‘truly’ are, and we have an estimation of their 

‘true’ uncertainty from the bootstrap resampling distributions. Thus for a given study dataset, 𝐷𝑚 , 

we generate a cloned copy 𝐷1, and  if our approach is unbiased we expect the out-of-sample 

parameter estimates for 𝐷1 to be equal to the in-sample parameters estimated for 𝐷𝑚, i.e., 𝛾∙,𝑚 

(representing the set of random effects estimated by in-sample analysis of the original study 

treated as part of the reference dataset) should approximate 𝛾∙,1  (representing the set of random 

effects estimated by OoS analysis of the cloned study treated as a new dataset): see SI1.8 “Out-

of-sample estimation” and Fig. S4.5. 

 

In other words, we validated the OoS estimation by simulating a “new” study with the same 

underlying distribution as one of the studies included in the reference dataset. Hence, we expect 

the OoS random-effect estimates for this ‘clone’ to agree with the in-sample  random-effect 

estimates. More formally, we are comparing 𝛾 = 𝑀𝐿𝐸𝛽,𝛾(𝐷) and 𝛾𝐶𝑙𝑜𝑛𝑒 = 𝑀𝐿𝐸𝛾(𝐷𝐶𝑙𝑜𝑛𝑒|𝛽(𝐷)), 

where the clone is contained within the data, i.e., 𝐷 ∩ 𝐷𝐶𝑙𝑜𝑛𝑒 = 𝐷𝐶𝑙𝑜𝑛𝑒; see SI1.8 “Out-of-sample 

estimation” for further details on OoS MLE estimation. As illustrated in Fig. S4.5, these 

simulations indicated good performance for the OoS approach for “new” study sizes greater than 

N=100 scans. 

 

 
Fig. S4.5. Out-of-sample estimates of cloned study random-effect parameters compared to in-

sample estimates of random-effect parameters in the original or non-cloned study. The plot shows 

random-effects estimated using the out-of-sample approach across a range of possible sample sizes for a 

“new” study, generated by taking subsets of the same cloned study with uncertainty intervals derived from 

the bootstrap replicates. The purple horizontal lines are the equivalent in-sample estimates of the random-

effects parameters. We see that the out of sample estimates are somewhat unreliable below N=100 

subjects, but with larger samples the out-of-sample estimates from the cloned data converge with the in-

sample estimates from the original data for both 𝜇-component and 𝜎-component random effects.  
 

Ref 2/2:  

Second, the contributing samples are not necessarily population representative. This 

makes calculation of centile scores exceedingly hard to interpret. 

 

The reference dataset on the basis of which we have modeled normative brain growth trajectories 

represents the most comprehensive aggregation of primary neuroimaging datasets published to 

date, representing >100,000 research participants from 30+ different countries. However, we 

agree with the reviewer that even such a large and diverse dataset is not fully population-

representative. That will require larger amounts of primary MRI data to be collected in an 

epidemiologically-principled way to reflect socio-demographic and other factors which might 
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moderate brain growth trajectories and contribute to individual differences in centile scores. 

However, it is important to emphasise that the GAMLSS modeling framework is flexible and 

scalable, and the principles of brain growth charting (and the on-line tool for their practical 

implementation) can be generalised to incorporate and account for more population-

representative reference datasets in future. Further notes on representativeness and diversity 

have been expanded in the discussion. 

 

<<The following changes have been made to the the main text>> 

 

Presently, even the current large and diverse dataset is not fully representative of the global 

population at all ages.  For example, foetal, neonatal and mid-adulthood (30-40y) epochs were 

under-represented (SI17-19); and, as is also common in existing genetic datasets, ethnicity and 

geography were heavily biased towards European and North American populations. While our 

statistical modeling approach was designed to mitigate study- or site-specific bias in centile 

scores, further increasing diversity in MRI research will enable more population-representative 

normative trajectories46,47 that can be expected to improve the accuracy and strengthen the 

interpretation of centile scores in relation to demographically appropriate norms. 

 

Ref 2/3:  

Third, norms may become out-dated over time. In cognitive testing this is known as the 

Flynn Effect, and it forces test companies to renorm their tests ever ~10 years. It is unclear 

how up to date these norms are, or whether they will remain up to date. This isn’t an 

argument against the norms, but is does underscore the need for front work on this topic. 

 

As is the case for traditional growth charts, the reviewer is correct in noting that reference norms 

change over time and as the population changes. The main motivation behind the present work 

was to generate a comprehensive, flexible and scalable modelling framework that can adapt to 

new and updated data, including changing population demographics. As such we completely 

agree with the reviewer that “front work” is needed. We have done this in the form of providing a 

flexible modelling approach and an interactive, easily updated online tool. Dissemination of the 

online tool and our current statistical models is intended to widely engage the community in  

continuously on-going development and updating of the underlying reference datasets.   

 

We now discuss this motivation more explicitly in the context of potential cohort effects: SI6. 

“Cohort effects” including new Figs. S6.1 and S6.2. In this new section of Supplementary 

Information, we also report additional analyses of potential cohort effects on centile scores in the 

NIH dataset, which collected MRI data over a 20 year period and multiple scanner upgrades. 

These results show no evidence of significant cohort effects on centile scores estimated from 

data acquired at different historical times. 

 

Knowing that one technical factor that changes over time is the software used for brain MRI image 

analysis, we also investigated the effects of a series of different versions of the widely-used 

FreeSurfer software package that have been released over the 20-year period in which most of 

the primary datasets were collected and analysed; see SI4.4 “Reliability of out-of-sample 

centile scoring across multiple versions of FreeSurfer” including new Fig. S4.4. We found 

that out-of-sample centile scoring was robust to different versions of FreeSurfer, indicating that 

this potentially influential source of historical drifts in reference volumetric data distributions was 

not materially important. 

https://paperpile.com/c/xAlRq2/6558+KHzW
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<<The following changes have been made to the Supplemental Information >> 

4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer 

Knowing that a large majority (~95%) of primary studies in the reference dataset used one of a 

series of versions of FreeSurfer for image analysis, we also evaluated the impact of these 

incrementally different image analysis pipelines on reliability of OoS centile scores. To do this we 

re-analysed a single dataset36 repeatedly using 4 different versions of FreeSurfer (5.1, 5.3, 6.01, 

and 7.1). Each version of the processed dataset was treated as an independent OoS study for 

GAMLSS modeling and then we estimated ICCs between individual centile scores for each 

possible pair of FreeSurfer pipelines and for each of four cerebrum tissue volumes. This analysis 

demonstrated generally high within-subject reliability of OoS centiles across all four pipelines: 

ICCs for GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982 (Fig. S4.4). We noted 

that there was somewhat reduced reliability of subcortical grey matter volume in both raw and 

centiled data from FreeSurfer version 5.1 in comparison to later FreeSurfer versions. While the 

reasons for this are unclear, none of the studies included in the principal dataset were processed 

with FreeSurfer 5.1, or any version of FreeSurfer older than 5.3. Furthermore, we found the 

highest between-pipeline reliability for both raw volumetric data and centile scores derived from 

the two most recent versions of FreeSurfer, 6.0.1 and 7.1, suggesting that minor inconsistencies 

due to FreeSurfer pre-processing are becoming less problematic as this widely used software 

package incrementally evolves. 

 

 
Fig. S4.4. Between-pipeline reliability of volumetric data and out-of-sample centile scores for four 

cerebrum tissue volumes measured in the same set of N=1468,scans re-analysed using 4 different 

versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1).Top row shows scatterplot matrices representing the 

correlation between raw volumetric data derived from each possible pair of FreeSurfer pipelines, from left 

to right: GMV, WMV, sGMV, Ventricles. Bottom row shows scatterplot matrices representing the correlation 

between out-of-sample centile scores derived from each possible pair of FreeSurfer pipelines, from left to 

right: GMV, WMV, sGMV, Ventricles. Intra-class correlations of out-of-sample centile scores and uncentiled 

volumetric data, on average over all pairs of four pipelines, were generally high (GMV=0.978, WMV=0.972, 

https://paperpile.com/c/yWP7Yw/VedrO


Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

36 

 

sGMV=0.816 and Ventricles=0.982); although the reliability of sGMV volumetrics and centile scores was 

somewhat lower due to discrepant measurements by the oldest version of FreeSurfer,v5.1. 

 

6. Cohort effects 

As is the case for traditional growth charts, reference norms for brain charts may change over 

time, underscoring the need for “front work” on constructing normative reference models that are 

adaptive to future trends. Our choice of GAMLSS as the preferred modeling framework was in 

part motivated by its ability to provide a flexible and scalable basis that could support ongoing 

updates to the reference data. Likewise, our effort to share these models on an interactive web-

platform (www.brainchart.io & https://github.com/ucam-department-of-psychiatry/Lifespan) was 

also motivated by the likely need for continuous updates to the reference dataset as and when 

more MRI data become available.  

 

To assess the potential risk of cohort effects, or population norms shifting over historical time and 

biasing estimation of centile scores in future, we used a single (NIH) study already included in our 

aggregated dataset, which collected data from 1991 onwards in a constrained age range (5–25 

years; N=1,468 scans). While MRI is a comparatively novel methodology (~30 years), it is 

possible that there may be systematic cohort effects within studies that have sampled individuals 

over prolonged periods of time47, or between  measurements aggregated in different age bins at 

different times. To quantitatively assess this possibility and the robustness of our procedures and 

results against such cohort effects, we analysed this NIH study containing longitudinal scans 

collected over two decades, from 1991 to 2011. We found no evidence for systematic variation of 

centile scores on any of the 4 cerebrum tissue volumes as a function of year-of-scanning or in 

relation to changes or upgrades to the scanner platform (Fig. S6.1-2).  

 

Thus there was no clear evidence of cohort effects in one of the few large studies to have 

sustained scanning over a long period of time, and there was no evidence of measurement biases 

related to technical development of image analysis software that potentially could contribute to 

cohort effects in large aggregated MRI datasets. However, the ongoing technical development of 

MRI scanners and image analysis software, as well as the possibility of more general secular 

trends in brain growth over time, mean that the risk of cohort effects should nonetheless be 

iteratively re-evaluated as the currently available reference dataset continues to be updated in 

the future.  

  

http://www.brainchart.io/
https://github.com/ucam-department-of-psychiatry/Lifespan
https://paperpile.com/c/yWP7Yw/ddKG2
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Fig. S6.1. Assessment of potential cohort effects based on date of scanning over two decades. The 

longitudinal study at the National Institutes of Health (NIH) contains N=1,468 longitudinal scans (N=788 

subjects) collected across the age range 5–25 years and over the historical period 1991–2011. Scatterplots 

represent individual centile scores (y-axis), ordered by date of scanning (x-axis), for each of the four 

cerebrum tissue volumes (top four rows); and age at scan (y-axis) versus date of scanning (x-axis) (bottom 

row). Lines represent locally-weighted regression lines (LOESS regression) for qualitative analysis of 

possibly non-linear cohort effects on brain phenotypes or age at scanning. Filled circles denote baseline 

scans, empty circles denote follow-up scans in this longitudinal dataset; vertical lines indicate the timing of 

scanner upgrades over the course of the study (see also Fig. S6.2). 
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Fig. S6.2. Assessment of potential cohort effects related to scanner upgrades in the NIH longitudinal 

study. Centile scores for all four cerebrum tissue volumes estimated at baseline (time point 1) or two follow-

up assessments (time points 2 and 3) were assigned to one of four epochs partitioned by the timing of 

upgrades to the 1.5T MRI scanner used for data collection. Box-violin plots show the distribution of centiles, 

and the range (whiskers) and 25th, 50th, and 75th percentiles of the centile distributions (boxes). Linear 

mixed effect modeling demonstrated no evidence of a significant effect (t=-1.577, P=0.115). This analysis 

was restricted to time points with N > 100 subjects. 

 

Ref 2/4:  

The tissue classes are extremely gross. Normally, MRI research capitalizes on the fine 

grain spatial nature of the imaging, e.g. in the form of Region of Interest (ROI) analyses. 

This is important because abnormal growth or atrophy in different regions can have 

tremendously different implications for whether, and what, functions are clinically 

affected. Clinicians regularly make these appraisals in individual evaluations. The current 

submission would seem to add greater quantification and precision (in contrast to clinical 

judgement) to such work, by allowing for the calculation of centile scores. But in order to 

calculate these scores, anatomical specificity is nearly entirely sacrificed. For example, it 

would be impossible to distinguish various forms of neurocognitive disorders of aging 

(e.g. frontotemporal dementia vs. Alzheimer’s disease) without the spatial information that 

is being thrown out. 

 

We thank the reviewer for their positive appraisal of the growth chart framework and the precision 

and quantitative value this may add to clinical assessment of brain scans. We note that, even at 

the whole brain level of anatomical resolution, these charts support case-control differentiation  in 

terms of significantly atypical mean centile scores for groups of cases with mild cognitive 

impairment (MCI), Alzheimer’s disease (AD) and schizophrenia (Fig. 4). We agree that more fine-

grained anatomical resolution of MRI phenotypes could likely add further value to the clinical 

applications of brain growth charts. To demonstrate the flexibility of our modeling framework to 

adapt to a wide range of MRI phenotypes, we have provided extensive new analyses of global 

cortical metrics and regional volume measurements. These new results are now presented in the 

main text, and more extensively in supplemental information, as proof-of-concept that GAMLSS 

modeling based on available reference data can resolve normative trajectories of diverse and 
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relatively fine-grained MRI phenotypes. However, we have preferred not to report immediately 

the results of case-control comparisons for centile scores on regional volumetrics, on the grounds 

that to do so comprehensively and definitively would go beyond the scope of this principally 

normative paper and would be better communicated separately in a future paper distinctly focused 

on the clinical implications of regional brain growth charts.   

 

● We have reported the normative life-span trajectories of bilateral cortical volumes for each 

of 34 distinct regions defined by the Desikan-Killiany parcellation template; see changes 

to main text, including a new section on Extended MRI phenotypes a new Fig. 2 and  

revised Fig. 3 (formerly Fig. 2). We also provide further details in SI8: “Regional 

specificity”, including new Figs. S8.1.1-8.2.2. 

 

<<The following changes have been made to the main text>> 

Extended brain MRI phenotypes 

To extend the scope of brain charts beyond the four cerebrum tissue volumes, we used the same 

GAMLSS modeling approach to estimate normative trajectories for additional MRI phenotypes 

including other geometric properties at a similar scale (mean cortical thickness and total surface 

area) and regional volume at each of 34 cortical areas25 (Fig.2, SI7-9, ST1-2). We found, as 

expected, that total surface area closely tracked the development of total cerebrum volume (TCV) 

across the lifespan (Fig.2A), with both metrics peaking at ~11-12 years (SA 10.97CI-Bootstrap:10.42-

11.51; TCV 12.5CI-Bootstrap:12.14-12.89). In contrast, cortical thickness peaked distinctly early at 1.7CI-

Bootstrap:1.3-2.1 years, which reconciles prior observations that cortical thickness increases during the 

perinatal period26 and declines during later development27. We also found evidence for regional 

variability in volumetric neurodevelopmental trajectories. Compared to GMV’s peak at 5.9 years, 

the age of peak regional volume varied considerably – from approximately 2 to 10 years – across 

34 cortical areas. Primary sensory regions reached peak volume earliest, and fronto-temporal 

association cortical areas matured later (Fig.2B; SI8). In general, earlier maturing ventral-caudal 

regions also showed faster post-peak declines in cortical volume, and later maturing dorsal-rostral 

regions showed slower post-peak declines (Fig.2B; SI8.2). Notably, this spatial pattern 

recapitulates a gradient from sensory-to-association cortex that has been previously associated 

with multiple aspects of brain structure and function28.  

 

https://paperpile.com/c/xAlRq2/PDJSm
https://paperpile.com/c/xAlRq2/f5Tfz
https://paperpile.com/c/xAlRq2/z7UIX
https://paperpile.com/c/xAlRq2/d6TeG
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Fig 2. Extended global and regional cortical geometric phenotypes. A | Trajectories for total cerebrum 

volume (TCV; left column), total surface area (SA; middle column), and mean cortical thickness (CT; right 

column). For each global cortical geometric MRI phenotype, the following sex-stratified results are shown 

as a function of age over the life-span, from top to bottom rows: raw, non-centiled data, population 

trajectories of the median (with 2.5% and 97% centiles; dotted lines), between-subject variance (and 95% 

confidence intervals), and rate-of-growth (the first derivatives of the median trajectory and 95% confidence 

interval). All trajectories are plotted on log-scaled age (x-axis) and y-axes are scaled in units of the 

corresponding MRI metrics (10,000 mm3 for TCV, 10,000 mm2 for SA and mm for CT). B | Regional 

variability of cortical volume trajectories for 34 bilateral brain regions as defined in the Desikan-Killiany 

parcellation25, averaged across sex (see also SI7-8 for details). From top to bottom panels: cortical map of 

age at peak regional volume (range 2-10 years); cortical map of age at peak regional volume relative to 

age at peak GMV (5.9 years), highlighting regions that peak earlier (blue) or later (red) than GMV; and 

illustrative trajectories for the earliest peaking region (superior parietal lobe) and the latest peaking region 

(insula), showing the range of regional variability. Regional volume peaks are denoted as dotted vertical 

lines either side of the global  peak denoted as a dashed vertical line in the bottom panel. Left hand y-axis 

on the bottom panel refers to the earliest peak, the right hand y-axis refers to the latest peak, and both are 

in units of 10,000 mm3.  
 

In: Developmental milestones 

The velocity of mean cortical thickness peaked even earlier, in the prenatal period at -0.38CI-

Bootstrap:-0.4 to -0.34 years (relative to birth), corresponding approximately to the second half of 

pregnancy. This very early peak in cortical thickness velocity has not been reported previously, 

probably due to the unprecedented aggregation of foetal MRI data allowing precise estimation of early 

human brain growth in the current study23,32. 

 

This epoch of GMV:WMV differentiation encompasses dynamic changes in brain metabolites38 

(0-3 postnatal months), resting metabolic rate (RMR; minimum=7 months, maximum=4.2 

years)39, the typical period of acquisition of motor capabilities and other early paediatric 

milestones40, interneuron migration, and the most rapid change in TCV (Fig.3).  

 

https://paperpile.com/c/xAlRq2/PDJSm
https://paperpile.com/c/xAlRq2/mREwZ+GP0Id
https://paperpile.com/c/xAlRq2/wLCyn
https://paperpile.com/c/xAlRq2/HqePo
https://paperpile.com/c/xAlRq2/4mjpH
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Fig. 3. Neurodevelopmental milestones. Top panel: A graphical summary of the normative trajectories 
of the median,i.e., 50th centile, for each global MRI phenotype, and key developmental milestones, as a 
function of age (log-scaled). Circles depict the peak rate-of-growth milestones for each phenotype (defined 
by the maxima of the first derivatives of the median trajectories; see Fig.1E). Triangles depict the peak 
volume of each phenotype (defined by the maxima of the median trajectories), definition of GMV:WMV 
differentiation is detailed in SI9.1. Bottom panel: A graphical summary of additional MRI and non-MRI 
developmental stages and milestones. From top to bottom: blue shaded boxes denote the age-range of 
incidence for each of the major clinical disorders represented in the MRI dataset; black boxes denote the 
age at which these conditions are generally diagnosed as derived from literature41 (Online Methods); 
brown lines represent the normative intervals for developmental milestones derived from non-MRI data, 
based on previous literature and averaged across males and females (Online Methods); grey bars depict 
age ranges for existing (WHO and CDC) growth charts of anthropometric and ultrasonographic variables. 
Across both panels, light grey vertical lines delimit lifespan epochs (labelled above the top panel) previously 
defined by neurobiological criteria42. Abbreviations: resting metabolic rate (RMR), Alzheimer's disease 
(AD), attention deficit hyperactivity disorder (ADHD), anxiety or phobic disorders (ANX), autism spectrum 
disorder (ASD, including high-risk individuals with confirmed diagnosis at a later age), major depressive 
disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). 

 

In: Discussion 

We have focused primarily on charts of global brain phenotypes, which were measurable in the 

largest aggregated sample over the widest age range, with the fewest methodological, theoretical 

and data sharing constraints. However, we have also provided proof-of-concept brain charts for 

regional grey matter volumetrics, demonstrating plausible heterochronicity of cortical patterning, 

and illustrating the generalisability of this approach to a more diverse range of fine-grained MRI 

phenotypes. As ongoing and future efforts provide increasing amounts of high quality MRI data, 

we predict an iterative process of improved brain charts for the human lifespan, potentially 

https://paperpile.com/c/xAlRq2/aVeSh
https://paperpile.com/c/xAlRq2/l1fEl
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representing multi-modal MRI phenotypes and enabling out-of-sample centile scoring of smaller 

samples or individual scans. In the hope of facilitating progress in this direction, we have provided 

interactive tools to explore these statistical models and to derive normalised centile scores for 

new datasets across the lifespan at www.brainchart.io 

 

<<The following changes have been made to the Supplemental Information>> 

8. Regional cortical volumetric trajectories and milestones 

To analyse trajectories and milestones of brain development with finer-grained anatomical 

resolution, we extracted volumetric information from 34 bilateral regions in the Desikan-Kiliany 

parcellation48 for a subset of ~65,000 unique individuals (depending on the region) from birth until 

100 years (ST1.9-1.42). Since we expected data quality to have a greater impact on the accuracy 

of regional volumetrics, compared to the minor impact of data quality demonstrated for cerebrum 

tissue volumes (see SI2 “Quality control”), we only included quality controlled scans with 

EI<217 in these analyses, or scans that had undergone prior visual inspection. We applied exactly 

the same modelling pipeline to these regional volumetric phenotypes as previously applied to 

cerebrum tissue volumes. Briefly, we first specified the optimal combination of fractional 

polynomials in each term of the model using BIC, then fitted the optimal model to the sex-stratified 

data and to 1,000 bootstrapped resamples of the original data, and finally plotted the trajectories 

for the median and between-subject variability (with confidence intervals) of each regional 

volume. This work extends previous work on developmental trajectories of brain regional volumes 

in several important ways. Most prominently, for the first time, these trajectories encompass the 

full age-range of the lifespan, including the earliest period of development before postnatal year 

2. There is evidently considerable variation between cortical regions in their developmental 

trajectories, but all regions show peak volume, and peak rate-of-growth of volume, in the first 

decade, which is compatible with our results for global cortical volume estimated in a larger and 

more inclusive sample.  

8.1. Charting development of regional volumes 

 

http://www.brainchart.io/
http://www.brainchart.io/
https://paperpile.com/c/yWP7Yw/jO30B
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Fig. S8.1.1. Raw regional volumetric data across the lifespan for 34 bilateral brain regions as defined 

in the Desikan-Killiany parcellation48 (mm3). These data are analogous to the raw data depicted in Figs. 

1 and 2 for cerebrum tissue volumes and other global cortical metrics (SA and CT), respectively. 

Demographics for the QC’d sample available for estimation of each regional volume are provided in ST1.9-

1.42. 

 

 

 
Fig. S8.1.2. Normative trajectories of median regional volumes (and confidence intervals) across 

the lifespan for 34 bilateral brain regions as defined in the Desikan-Killiany parcellation48(mm3). 

Dotted lines indicate the 97.5% and 2.5% centile lines. These trajectories were fitted to the raw data in Fig. 

S8.1.1 using the same GAMLSS model used for estimation of tissue volume trajectories, as shown in Fig. 

1 and Fig. 2 of the main text Further details on milestones (age at peak volume and age at 

maximum rate-of-growth of volume) are provided for each region in ST2.2  and SI8.2 “Regional 

volumetric milestones”. 

 

https://paperpile.com/c/yWP7Yw/jO30B
https://paperpile.com/c/yWP7Yw/jO30B
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Fig. S8.1.3. Normative trajectories of between-subject variation of regional volumes (and confidence 

intervals) across the lifespan for 34 bilateral cortical regions as defined in the Desikan-Killiany 

parcellation48(mm3). Shaded areas represent the 95% confidence interval defined by 1,000 bootstrapped 

resamples of the original data, as identically done for estimation of between-subject variation in global brain 

phenotypes (Figs. 1 and 2 in the main text).  Further details on milestones (age at peak variation and age 

at maximum rate-of-growth of variation) are provided for each region in ST2.2. 
 

 
Fig. S8.1.4. Estimated rates of change in regional volumes across the lifespan (first derivatives of 

the median trajectories) for 34 bilateral brain regions as defined in the Desikan-Killiany 

parcellation48. Shaded areas represent the 95% confidence interval defined by 1,000 bootstrapped 

resamples of the original data, as identically done for estimation of rate-of-growth curves for global brain 

phenotypes (Figs. 1 and 2 in the main text). The numbers displayed at the top of each chart denote age 

at peak rate-of-growth for each regional volume and the solid horizontal line at y=0 indicates the age at 

https://paperpile.com/c/yWP7Yw/jO30B
https://paperpile.com/c/yWP7Yw/jO30B
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which regional volumes stop growing and start to shrink. Further details on milestones (age at peak volume 

and age at maximum rate-of-growth of volume) are provided for each region in ST2.2. 

 

 
Fig. S8.1.5. GAMLSS estimated confidence interval for model fits to regional volumes across the 

lifespan for 34 bilateral brain regions as defined in the Desikan-Kiliany parcellation48. Shaded areas 

represent the 95% confidence interval estimated by 1,000 bootstraps. These results are analogous to the 

sensitivity analysis depicted in SI3.2.2  and show that for most regions the confidence intervals are 

extremely narrow,i.e., it barely extends beyond the thickness of the lines. However, in entorhinal cortex, 

frontal pole and temporal pole the bootstrapped variability is considerably greater in early development, 

possibly indicating marginal quality of data or cortical surface reconstruction for these regions in this age 

range. 
 

8.2. Regional volumetric milestones 

We also estimated the developmental milestones of each region in terms of age at peak volume 

or peak between-subject variation, and age at peak rate-of-growth in volume or between-subject 

variation. Fig. S8.2.1 shows the regions ordered by age at peak median volume alongside the 

bootstrapped confidence intervals of those milestones. The shaded grey bar shows the age at 

peak total cortical grey matter volume, with the width of the bar indicating the 95% confidence 

interval for that milestone. In the corresponding figure of the main text (Fig. 2), we excluded 

outlying data points, defined as age at peak volumes more than 2 median absolute deviations 

away from the median of the regional distribution of age at peak volume. This removed the 3 

regions with the highest between-subject variability, especially in early development (entorhinal 

cortex, temporal and frontal poles). Perhaps unsurprisingly, both the temporal and frontal poles 

are regions with notoriously questionable signal quality49. The entorhinal cortex is the smallest 

cortical region defined by the Desikan-Killiany atlas and is often missing in parcellated foetal and 

neonatal MRI data for that reason. These results further underscore the need for conducting 

quality control on scanning data prior to estimation of brain charts at regional resolution. Further 

details on milestones (age at peak volume and age at maximum rate-of-growth of volume) are 

provided for each region in ST2.2. 

https://paperpile.com/c/yWP7Yw/jO30B
https://paperpile.com/c/yWP7Yw/rtrWI
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Fig. S8.2.1. Milestones for development of regional volumes estimated from the first derivatives of 

the trajectories of median volume and between-subject variation for each of 34 cortical regions 

defined by the Desikan-Killiany template. Each point-range plot shows, from left to right, the age at peak 

volume, the age at peak between-subject variation, and the age at maximum rate-of-growth in volume. In 

each case, median milestones are shown in the context of their 95% confidence intervals, which are not 

always visible for narrow intervals. The shaded grey area in each panel shows the median and 95% 

confidence interval for the corresponding milestone for  total cortical grey matter volume. 

 

To contextualize the spatial distribution of the regional volume peaks, we compared the age at 

peak volume to the x-, y-, and z-coordinates of the centroids of each region-of-interest in the 

Desikan-Killiany cortical parcellation. We observed a relatively wide distribution of age at peak 

regional volume, centred around the age of peak total cortical grey matter volume (grey dashed 

line in Fig. S8.2.2). Moreover, there was a clear trend for rostral and dorsal regions to have later 

peak volumes compared to caudal and ventral regions (Fig. S8.2.2). Regions in the cingulate and 

frontal cortices, which span greater distances (especially in rostral-caudal and dorsal-ventral 

dimensions), had a wider range of age peaks. 
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Fig. S8.2.2. Relative timing  of regional volume peak milestones, highlighting spatial gradients in 

timing of peak volumes. Scatterplots show the relationship between age of peak volume for each region 

of the Desikan-Killiany parcellation (x-axes) versus x (left), y (middle), or z (right) coordinates in MNI space 

(y-axes). Coordinates are based on the left hemisphere, thus the interpretation (from negative to positive) 

is: x=lateral-to-medial, y=caudal-to-rostral, z=ventral-to-dorsal. Spearman’s r was computed for each 

scatterplot, represented by black lines: x-coordinates were not significantly correlated with age at peak 

volume, r=-0.21, P=0.26; y-coordinates were positively correlated with age at peak volume, r=0.42, P=0.02; 

and z-coordinates were negatively correlated with age at peak volume, r=-0.50, P=0.004). Labels represent 

the most extreme (top two and bottom two) region peaks relative to peak total cortical grey matter volume. 

Grey dashed lines represent the age atpeak total cortical grey matter volume. 
 

Ref 2/5:  

Calculating centile scores may not be of much use without a clear understanding of the 

functional implications of different scores. Having the location on the distribution is not 

enough without understanding the clinical and functional correlates of those locations. As 

per the above point, this may be a difficult endeavor at the low level of spatial resolution 

provided. 

 

This is indeed a very interesting point. We now provide several additional analyses in 

supplemental information to illustrate the functional implications of centile scores, and to 

demonstrate clinical and functional correlations with centile scores . Specifically, we show that: 

 

1. Centile scores have clinical significance as evidenced by significant case-control 

differences in mean centiles across a range of disorders: main text Fig. 3, and SI10-11. 

2. Low centile scores, e.g., below the 5% centile, on brain tissue volumes and global cortical 

metrics  were generically associated with significantly increased risk (approximately 2-fold 

increase in odds ratio) for clinical disorder, over all diagnostic classes of disorder: see 

SI11.1 “Sliding window analysis of cross-disorder discriminability”, including new 

Fig. S11.1. 

3. Centile scores were robustly associated with birth weight and gestational age: SI12 

“Associations of birth weight and gestational duration with centile scores on 

cerebrum tissue volumes”. 
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4. Centile scoring showed increased heritability estimates compared to the original raw 

values: SI13: “Twin-based heritability of centile scores”. 

5. Centile scores measured longitudinally by repeated scanning of the same participant were 

generally stable in healthy controls but showed clinically meaningful within-subject 

variation in individuals who transitioned between diagnostic classes, e.g., from being 

designated a healthy control to being diagnosed as a case of Alzheimer’s disease, over 

the course of repeated MRI scanning: SI14 including Fig. S14.4.1. 

 

In the revised main text, we also now summarise and review the data related to this important 

question of functional and clinical correlations with centile scores. 

 

<<The following changes have been made to the main text>> 

 

In Individualised centile scores in clinical samples 

The clinical diversity of the aggregated dataset allowed us to comprehensively investigate case-

control differences in individually-specific centile scores. Relative to the control group (CN), there 

were highly significant differences in centile scores across large (N>500) diagnostic groups of 

multiple disorders (Fig.4A; SI10, ST3). The pattern of these centile differences varied across 

tissue types and disorders. Clinical differences in cortical thickness and surface area generally 

followed the same trend as volume differences (SI10). 

 

 

 
Fig. 4. Case-control differences and heritability of centile scores. A | Centile score distributions for 
each diagnostic category of clinical cases relative to the control group median (depicted as a horizontal 
black line). The median deviation of centile scores in each diagnostic category is overlaid as a lollipop plot 
(white line with circle corresponding to the median centile score for each group of cases). Pairwise tests for 
significance were based on  Monte-Carlo resampling (10,000 permutations) and P-values were adjusted 
for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (FDR) correction across all 
possible case-control differences. Only significant deviations from the control group median  (with corrected 
P<0.001) are highlighted with an asterisk. For a complete overview of all pairwise comparisons, see SI10 
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and ST3. Groups are ordered by their multivariate distance from the control group (see panel C and SI10.3). 
B | The centile Mahalanobis distance (CMD) is a summary metric of multivariate deviation that quantifies 
the aggregate atypicality of an individual scan in terms of all MRI phenotypes. The schematic shows 
segmentation of four cerebrum tissue volumes, followed by estimation of univariate centile scores, leading 
to the orthogonal projection of a single subject (Subx)  onto the four principal components of the control 
group (CN; coloured axes and arrows): the CMD for Subx is then the sum of its distances from the CN group 
mean on all 4 dimensions of the multivariate space. C | Probability density plots of CMD across disorders. 
Vertical black line depicts the median CMD of the control group. Asterisks indicate an FDR-corrected 
significant difference from the CN group (P < 0.001). D | Heritability of raw volumetric phenotypes and their 
centile scores across two twin studies (ABCD and HCP). All dots have error bars for the standard error, but 
in some cases these are too narrow to be observed. Abbreviations: control (CN), Alzheimer's disease (AD), 
attention deficit hyperactivity disorder (ADHD), anxiety or phobia (ANX), autism spectrum disorder (ASD), 
mild cognitive impairment (MCI), major depressive disorder (MDD), schizophrenia (SCZ); grey matter 
volume (GMV), subcortical grey matter volume (sGMV), white matter volume (WMV), centile Mahalanobis 
distance (CMD).  
 

In Discussion: 

We have aggregated the largest neuroimaging dataset to date to modernise the concept of growth 

charts for mapping typical and atypical human brain development and ageing. The ~100 year age 

range enabled the delineation of milestones and critical periods in brain maturation, revealing an 

early growth epoch across its constituent tissue classes -- starting before 17 post-conception 

weeks, when the brain is at ~10% of its overall size and ending at ~80% by age 3. Individual 

centile scores benchmarked by normative neurodevelopmental trajectories were significantly 

associated with neuropsychiatric disorders as well as with individual differences in birth outcomes 

and fluid intelligence (SI5.2 and SI12). Furthermore, imaging-genetics studies44 may benefit from 

the increased heritability of centile scores compared to raw volumetric data (SI13). Perhaps most 

importantly, GAMLSS modeling enabled harmonisation across technically diverse studies (SI5), 

and thus leveraged the potential power of aggregating MRI datasets at scale.  

 

The current results also bode well for future progress towards individualised prediction45. By  

providing an age- and sex-normalised metric, centile scores enable trans-diagnostic comparisons 

between disorders that emerge at different stages of the lifespan (SI10-11). The generally high 

stability of centile scores across longitudinal measurements also enabled assessment of 

documented changes in diagnosis such as the transition from MCI to AD (SI14), which provides 

one example of how centile scoring could be clinically useful in quantitatively predicting or 

diagnosing progressive neurodegenerative disorders. The analogy to paediatric growth charts is 

not meant to imply a predetermined or immediate application for brain charts in a typical clinical 

setting. However, our provision of appropriate normative growth charts and on-line tools creates 

an opportunity to quantify atypical brain structure, precisely benchmarked against age- and sex-

typical distributions, and thus to enhance diagnostic yield from clinical scans as well as 

neuroimaging research studies.  

 

<<The following section has been added to the Supplementary Information>> 

11.1. Sliding window analyses of cross-disorder discriminability 

We computed odds ratios for clinical disorders using a sliding window across the full range of 

centile scores for cerebrum tissue volumes (window size=0.1, increment size=0.05). Major 

diagnostic categories (as in Fig. 4) were combined to form one group of all diagnosed cases (DX 

or non-CN) and compared to healthy controls (CN) to estimate the odds ratio of being diagnosed 

with any clinical disorder. These analyses indicated that lower centile scores, especially <5%, on 

https://paperpile.com/c/xAlRq2/BOz6s
https://paperpile.com/c/xAlRq2/LCwwb
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cerebrum tissue volumes, cortical surface area and cortical thickness were all significantly over-

represented in individuals with neuropsychiatric disorders (Fig. S11.1). This means that a lower 

centile score on any or all of these brain MRI metrics was associated with a higher probability of 

any clinical disorder. It will be important to discover if low centile scores on brain MRI metrics are 

predictive of later clinical outcomes, meaning that brain charts could be used in future as 

paediatric growth charts are used now, to raise levels of clinical concern proportionately, rather 

than to make a specific diagnosis.  

 

 
Fig. S11.1. Brain MRI centile scores are related to the probability of any clinical disorder. The odds 

ratio for clinical disorder (versus healthy control) is plotted on the y-axis of both panels; positive OR 

indicates greater risk of disorder. Centile scores by GAMLSS modeling are plotted (on the x-axis) for global 

brain MRI phenotypes: left panel, 4 cerebrum tissue volumes; right panel, total cerebrum volume, cortical 

surface area, and mean cortical thickness. Odds ratios were computed using a sliding window across 

centiles (window size=0.1, increment size=0.05). Diagnostic categories in Fig. 4 were combined (i.e., 

binarised to make any diagnosis, or 'dx' vs. 'cn') to estimate the odds ratio of being in any clinical cohort. 

Scans with lower centile scores on all phenotypes, especially centiles <5%, have increased odds ratio for 

all clinical disorders. 
 

12. Associations of birth weight and gestational duration with centile scores 

on cerebrum tissue volumes  

To examine the effects of early life stress on centile scores, we examined 5 independent samples 

across the lifespan with self-reported gestational age at birth and/or birth weight (dHCP, neonatal; 

UNC, neonatal and early infancy/childhood; ABCD, late childhood; NIH, 

childhood/adolescence/young adulthood; UKB, mid-late adulthood). Average centile scores on all 

four cerebrum tissue volumes were significantly related to multiple metrics of premature birth 

across datasets (gestational age at birth, t = 13.164, P < 2e-16; birth weight, t = 36.395, P < 2e-

16). This corroborates previous work indicating the ability to capture relationships between early 

life factors such as birth weight and brain volumetrics measured several decades later72.  

 

https://paperpile.com/c/yWP7Yw/BeOjk
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Fig. S12. Relationships between centile scores on cerebrum tissue volumes and birth weight (left 

panel) and gestational age at birth (right panel) for each of 5 primary studies with relevant data 

available. Centile-normalised z-scores were computed for each phenotype in each individual study and 

then averaged across phenotypes to compute a mean centile z-score for each subject. The black dashed 

lines represent the relationships between mean centile scores and birth weight or gestational age at birth   

estimated by a linear mixed-effects model: for gestational age at birth, t = 13.164, P < 2e-16; for birth weight, 

t = 36.395, P < 2e-16. The black dotted line in the right panel denotes the commonly-used threshold for 

defining premature birth at 37 weeks post-conception. 

 

13. Twin-based heritability of centile scores 

We examined the heritability of centile scores on cerebrum tissue volumes, leveraging available 

data of monozygotic (MZ) and dizygotic (DZ) twins in the ABCD cohort of adolescents ( N=297 

MZ, N=400 DZ pairs), and in the HCP cohort of adults (; N=138 MZ, N=78 DZ pairs). For both 

cohorts, zygosity was previously determined  based on parental and/or self endorsement, and 

genetic kinship73–75. Heritability was estimated using Cholesky decomposition, allowing 'ACE' 

partitioning of the phenotypic variance into additive genetic (A), common environmental (C), and 

unique environmental (E) components, as implemented in the umx R package76. As shown in Fig. 

4, we found greater heritability of centile normalised scores  compared  to the respective raw, 

non-centiled volumetric phenotypes. 

 

14.4 Longitudinal centile score changes and diagnostic progression 

Similarly to paediatric growth charts, further value from having age-appropriate standardised 

reference curves will likely come from the ability to more reliably detect atypical longitudinal 

changes in brain changes within individuals. As an example of this approach, we have tracked 

centile scores in longitudinal (repeated) cerebrum tissue volumes for a large cohort of older 

individuals, some of whom transitioned between diagnostic categories during the period of 

https://paperpile.com/c/yWP7Yw/4HYyH+5B0m9+oujXo
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Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

52 

 

longitudinal follow-up from CN to MCI (CN → MCI), from CN to AD (CN → AD), or from MCI to 

AD (MCI → AD). Interestingly, in contrast to the lower within-subject variability (IQR) of cases 

compared to healthy controls in general, there was a reverse trend of increased within-subject 

variation in cerebrum tissue volumes (especially GMV and Ventricles) in the subset of cases that 

changed diagnostic status. Specifically, there was faster than normal decrease of grey matter 

volume, and faster than normal increase of ventricular CSF volume, among participants who 

transitioned from CN or MCI to AD over the course of repeated scanning (Fig. S14.4.1 and ST6.1-

6.7).  

 

Analysis of within-subject changes in centile scores focused on individuals with the most 

frequently observed diagnostic transitions, all in the direction of greater severity or disability: from 

CN to MCI, from CN to AD and from MCI to AD (ST6). The longitudinal change in centile scores 

occurred in the same direction as predicted by the cross-sectional case-control differences 

(compare Fig. 4A and SI10 “Clinical applications of centile scores”). We rescaled the 

longitudinal data to generate a group-level trajectory for each transition (CNI → AD, CN → MCI, 

and MCI → AD) using linear mixed effects models. As shown in Fig. S14.4.1, all clinical transitions 

were associated with significantly increased rates of cortical and subcortical grey matter loss, and 

ventricular CSF volume expansion – both reflected by decreases in centile scores. Because the 

significant age-related changes expected in healthy older individuals are incorporated into the 

reference norms, centile scores provide a clear indication of a change in trajectory for individuals 

with neurodegenerative disease.  

 

 
Fig. S14.4.1. Longitudinal changes in centile scores are associated with diagnostic transitions 
between the groups of healthy controls (CN), mild cognitive impairment (MCI), and Alzheimer’s 

disease (AD). A | Shows the within-subject changes in centile scores for CN→MCI, CN→AD, and MCI→AD, 

with the dotted black lines showing the median slope for all controls that had longitudinal measurements 
and the solid black lines showing the median slope for all controls from the datasets that contributed to the 
diagnostic change group. B | Shows the model fixed effects standardised coefficients (e.g., model fixed 
effects divided by two standard deviations, to denote the slope differences in longitudinal changes in centile 
scores between the groups. Asterisks indicate the level of uncorrected significance (* is P<0.05, ** is 
P<0.01, *** is P<0.001) as tested with a linear mixed model restricted maximum likelihood (REML) fit that 
included a subject-level random effect. These results show that for both GMV and Ventricular CSF the rate-
of-change in centile scores is significantly greater in individuals undergoing a clinically documented  
transition (from less to more severe diagnostic categories). 
 

Ref 2/6:  

The cross-sectional nature of the data and potential differences in protocols across 

individuals or cohorts of different ages, prevents strong inferences regarding 
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development and aging. Are there age differences in motion that may bias estimates? Are 

there period, or cohort effects in the data that would suggest that these trends plotted are 

not indices of “velocity” of growth or shrinkage within person, but instead differences 

associated with year of birth or historical time of imaging assessment? 

 

We agree with the reviewer’s general comment that between-study differences, and the largely 

cross-sectional datasets currently available, are both significant challenges. We have already 

addressed some of these key points in response to the reviewer’s related first comment (Ref 2/1) 

and in the following new sections of supplementary information: SI5.1 “Modeling of between-

site heterogeneity by GAMLSS: conceptual considerations in comparison to ComBAT 

batch-correction” and SI5.2 “Modeling of between-site heterogeneity by GAMLSS: 

empirical evaluation compared to ComBAT”. We make the following observations more 

specifically in response to this point: 

 

● We agree it is conceivable  that  head-motion could impact image quality in an age-related 

way. The primary studies constituting the reference dataset provide limited data on head 

motion but we have extensively analysed image quality (quantified by the Euler index; see 

SI2 “Quality control”) and found no significant impact of scan quality on model 

estimation. In addition, we specifically evaluated whether age impacted scan quality (see 

SI2.1 “Euler Index filtering” and SFig. 2.1.2). We found no evidence for a linear 

relationship between age and Euler Index  (EI) (t = -1.244, P = 0.213) when accounting 

for the same variables as included in the principal GAMLSS framework, i.e., age and 

study-specific random effects.  

● We extensively evaluated bias and stability of out-of-sample estimation in a new 

supplementary section (SI4 “Out-of-sample centile scoring: bias, stability and 

reliability”), including an overview of age-related stability in centile estimation. While 

some early-life studies showed increased variability of centile scores, we note that this is 

in line with what is expected during a period of increased variability early in life, and that 

increased variability in general was more influenced by sample-size rather than age (see 

also SI4.5 “Effects of sample size on reliability of out-of-sample centile scores”). 

● We have also reported additional analysis highlighting improved test-retest reliability of 

centile scores on volumetrics from MRI scans that had been collected with prospective 

correction for head motion: see SI 4.3 including new Figs S4.3.1-4.3.3. 

● The possibility of cohort effects is an interesting question especially in the context of MRI 

being a relatively new and evolving technique with historical changes in scanner 

specification, or image analysis software, that could influence the statistics of MRI 

phenotypes. We now provide additional discussion of cohort effects, with new analysis of 

potential cohort effects indexed by year of scanning, and scanner upgrade intervals, in the 

long-running NIH longitudinal dataset: see SI6 “Cohort effects” including new Figs. S6.1 

and S6.2 for details. We have also reported new analysis of potential cohort effects due 

to serial releases of different versions of FreeSurfer image analysis software: see SI4.4 

“Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer”. 

Neither of these additional sensitivity analyses raised material concerns about the risk of 

cohort effects in whole brain tissue volumes.  

● The reviewer is correct in noting that the trajectories generated and described in our main 

text are not ‘indices of “velocity” of growth or shrinkage within person’. Instead, they are 

the 50% (median) and other centiles of normative growth curves estimated on the basis 

of all the scans in the reference dataset. But these normative trajectories can provide a 
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batch-corrected, sex-stratified and age-appropriate benchmark for characterising 

longitudinal changes in single subjects: see  SI14 “Longitudinal centiles”.  

 

 

<<The following changes have been made to the Supplementary Information>> 

 

In SI2.1 ”Euler Index filtering” 

To assess whether there were any age-related differences in motion that could influence model 

estimation we evaluated the linear effect of age (in years) on EI in healthy controls in the reference 

dataset used to estimate normative lifespan trajectories. Using linear regression stratified by sex 

and accounting for study-specific random effects, we found no evidence for an age-related bias 

in image quality as assessed with EI (t = -1.244, P = 0.213). Fig. S2.1.2 shows the median and 

standard deviation of age and EI and highlights the top 10 studies with the highest median EI.  

 

 
Fig. S2.1.2 Age-related variation in image quality measured by the Euler index in female (left panel) 

and male (right panel) control subjects. Median age (in years) and median EI are shown per study with 

cross-hairs indicating the standard deviations for age and EI per study. In red the top ten studies with the 

highest median EI are highlighted. There is no significant relationship between image quality and age at 

scanning. 

4. Out-of-sample centile scoring: bias, stability and reliability 

4.1. Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies 

To further evaluate the robustness and consistency of centile scoring of OoS MRI data that were 

not included in the reference dataset used to estimate population trajectories, we performed a 

comprehensive series of leave-one-study-out (LOSO) analyses. For each one of the 100 studies 

in the reference dataset, we removed the study from the reference dataset, re-fitted the GAMLSS 

model to the remaining dataset of 99 studies, computed the OoS centile scores for the excluded 

study, and compared the OoS centile scores to the in-sample centile scores computed for the 

same study from the complete dataset including all 100 studies. ST7.1-7.4 lists the correlations 

between OoS and in-sample centile scores for all 4 cerebrum tissue volumes in each of 100 

primary studies. Overall, we found very high levels of correlation (r~0.99) for almost all studies, 

indicating that centile scores can be estimated accurately for most studies even if they were not 

included in the reference dataset used to define population norms. Correlations between OoS 

and in-sample centile scores were lower than r=0.99 for only 3 out of 100 studies in the reference 

dataset: namely, the FinnBrain (r=0.93), UCSD (r=0.96) and NIHPD (r=0.95) studies. These 
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studies were characterised by relatively small sample size, foetal or early postnatal age range of 

participants, or idiosyncratic processing pipelines.  

   

4.2. Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 

studies 

In addition, we tested the reliability of OoS centile scores for each individual participant by 

bootstrapping. Specifically, for each LOSO sample, bootstrapped model parameters were 

generated (see SI3.2.2 “Bootstrap analysis”), resulting in 1,000 bootstrapped models with 

maximum likelihood estimated parameters for each bootstrap iteration of each left-out study. 

From this we obtained a bootstrapped distribution of out-of-sample centile scores for each 

individual subject in each individual iteration of left-out studies, thus providing a stability 

assessment in the form of the standard deviation of individual OoS centile scores across 1,000 

bootstrap iterations. Across the datasets included in the model, we found that the average 

standard deviation of (bootstrapped) OoS centiles was 0.014, which is well below the level of 

within-subject longitudinal variation (see Fig. S4.2.1 and SI14 “Longitudinal centiles”). 

Furthermore, we found increased standard deviation of OoS centile scores for datasets with 

comparatively small sample sizes (e.g., the OpenPain cohorts, Cambridge foetal Testosterone 

and CHILD studies; see Fig. S4.2.2). OoS centile scores were also more variable for datasets 

that had a more unique combination of age range, acquisition and processing pipelines (e.g., 

FinnBrain, IBIS and HBN; see Fig. S4.2.2). These observations reinforce the recommendation -- 

see main text, ‘Out-of-sample centile scoring of “new” MRI data’ -- that OoS centile scoring 

is reliable for studies comprising N>100 scans. It was also notable that the reliability of OoS centile 

scores was weakly correlated with data quality as quantified by the Euler index (EI). So studies 

with higher EI23, indicating poorer image quality, tended to have higher variability of bootstrapped 

OoS centile scores (Pearson’s r for all 4 cerebrum tissue volumes: GMV=0.05, WMV =0.11, 

sGMV =0.14, and Ventricular volume = 0.13). These results were not substantially different when 

the whole set of analyses was repeated without including scans with EI > 217. We conclude that 

OoS estimation of centile scores is generally reliable at the level of individual scans, and (as 

expected) reliability is greater for higher quality scans.   

 

https://paperpile.com/c/yWP7Yw/qCsEW
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Fig. S4.2.1. Stability of out-of-sample centile scores for four cerebrum tissue volumes when each 

of 100 studies was excluded from the reference dataset before bootstrapping. The standard deviation 

of bootstrapped centile scores (y-axis) is plotted for each study (x-axis) for each phenotype, from top to 

bottom panels: total cortical grey matter volume, total cortical white matter volume, subcortical grey matter 

volume, and ventricular volume. Each study- and phenotype-specific boxplot is coloured according to log 

sample size. For each study, we estimated the normative model leaving that study out of the reference 

dataset and repeated this procedure after iteratively bootstrapping the reference dataset 1,000 times.This 

procedure allowed us to summarise the reliability of the out-of-sample estimates of centile scores in terms 

of the standard deviation of the 1,000 centile scores generated for each bootstrapped resampling of the 

reference dataset. Studies are ordered by median standard deviation of out-of-sample centile scores (small 

to large) indicating that scans are reliably assigned centile scores with the out-of-sample approach. 
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Fig. S4.2.2. Stability of out-of-sample centile scores as a function of age and sample size. The 

standard deviation (SD) of bootstrapped centile scores for four cerebrum tissue volumes (y-axis) is plotted 

against mean age of study participants (top row) or sample size (bottom row). Studies with the most 

unstable OoS centile scores (SD>0.05) are highlighted in red and labelled (see ST1.1 for study details).  
 

4.3. Test-retest reliability of out-of-sample centile scoring 

We also assessed the reliability of OoS centile scoring in three independent datasets that 

acquired multiple MRI scans within a single session22,34–36. We analyzed each scan (conducted 

within the same scanning session) as a novel OoS dataset, then compared the consistency of 

centile scores across different runs of the same subject. We similarly compared the consistency 

of the uncentiled volumetric data and found that the out of sample estimation is as consistent as 

the ability of FreeSurfer to extract consistent values across runs within the same session. 

 

First, we analysed test-retest reliability using the multimodal MRI reproducibility resource34, which 

provides two sessions of MRI data for multiple modalities. This dataset comprising 21 subjects 

was specifically designed for assessment of test-retest reliability as all subjects were scanned in 

two sessions separated by a one-hour break and the whole cohort was completed within a two 

week period. We analyzed each session of 21 scans as an independent OoS study (Fig.5) and 

then estimated intra-class correlation coefficients (ICCs) to assess the between-session or test-

retest reliability of individual centile scores for four cerebrum tissue volumes37.  All ICCS were 

~0.99 (Fig.S4.3.1). 

 

https://paperpile.com/c/yWP7Yw/htNoi+kCeab+VedrO+EDkLX
https://paperpile.com/c/yWP7Yw/htNoi
https://paperpile.com/c/yWP7Yw/4wyXM
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Fig. S4.3.1. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes. MRI 

data were collected in two separate scanning sessions from N=21 participants and each session was 

analysed as an independent out-of-sample study using GAMLSS. Scatterplots represent OoS centile 

scores for session 1 (y-axis) versus out-of-sample centile scores for session 2 (x-axis) for each brain tissue 

volume, from left to right: GMV, WMV, sGMV, Ventricular CSF. Data points represent individual subject 

centile scores. Test-retest reliability was consistently very high (all ICCs > 0.99) for all cerebrum tissue 

volumes.   

 

Second, we analysed the test-retest reliability of OoS centile scoring using MRI data on N=72 

participants in the Healthy Brain Network (HBN) cohort22, which  was not originally included in the 

reference dataset. The HBN cohort was designed to assess the influence of an alternate MRI 

data acquisition protocol, which included prospective motion correction25 to improve quality and 

reliability of MRI. The study protocol included 2 sessions of scanning using a conventional 

MPRAGE sequence for T1-weighted data acquisition and another 2 sessions of scanning using 

an innovative, prospectively motion-corrected sequence, VNaV, for T1-weighted imaging25. For 

all 72 individuals each session of each sequence was analysed as an OoS study (Fig. 5; SI1.8 

“Out-of-sample estimation”) and then we estimated ICCs as a measure of the test-retest 

reliability of individual centile scores for each brain tissue volume derived from each sequence 

(MPRAGE or VNaV). Test-retest reliability was uniformly high (ICCs > 0.95) for all OoS centile 

scores on all cerebrum tissue volumes estimated from both MPRAGE and VNaV sequences (Fig. 

S4.3.2). Reliability was incrementally higher for OoS centile scores derived from the VNaV 

sequence, under-scoring the importance of high quality data especially for OoS analysis of 

datasets with N<100. However, we note that this increased reliability of centile scoring was most 

likely driven by a comparably increased consistency of the  raw volumes estimated by FreeSurfer 

(as also noted in the original paper describing the impact of prospective motion correction22). 

 

 

 

https://paperpile.com/c/yWP7Yw/EDkLX
https://paperpile.com/c/yWP7Yw/DmznI
https://paperpile.com/c/yWP7Yw/DmznI
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Fig. S4.3.2. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 

measured twice in the same N=72 participants using two T1-weighted sequences, MPRAGE and 

VNaV. Top row shows out-of-sample centile scores for session 1 (y-axis) versus out-of-sample centile 

scores for session 2 (x-axis) for cerebrum tissue volumes estimated from MPRAGE data, from left to right: 

GMV, WMV, sGMV, Ventricles. Bottom row shows out-of-sample centile scores for session 1 (y-axis) 

versus out-of-sample centile scores for session 2 (x-axis) for cerebrum tissue volumes estimated from 

VNaV data, from left to right: GMV, WMV, sGMV, Ventricles. In all plots, data points represent individual 

subject centile scores. Test-retest reliability was uniformly high (all ICCs > 0.95) and generally somewhat 

higher for volumetrics derived from prospectively motion-corrected data (VNaV). 
 

Third, we assessed the test-retest reliability of OoS centile scoring using the Vietnam Era Twin 

Study of Ageing (VETSA) study cohort35. VETSA is a longitudinal study following 1,200 twins from 

the Vietnam Era Twin Registry, which includes two technically identical MPRAGE acquisitions 

within the first (baseline) scanning session. Both these scans were processed with FreeSurfer 

6.0.1 for all participants, then the two sets of scans were each analysed as an independent OoS 

study, and ICCs were estimated to assess the test-retest reliability of individual centile scores on 

all four cerebrum tissue volumes. Test-retest reliability of OoS centile scores was uniformly very 

high (all ICCs > 0.98) across all phenotypes, comparable to the high reliability of the uncentiled 

volumetric data generated by FreeSurfer 6.0.1 (all ICCs > 0.95), and in line with the constraints 

on reliability expected from technical sources of noise38 (Fig. S4.3.3). 

 

 

Fig. S4.3.3. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 

measured twice in the same 1,200 participants (600 twin pairs). Scatterplots show out-of-sample centile 

scores for scan 1 (y-axis) versus out-of-sample centile scores for scan 2 (x-axis) for cerebrum tissue 

volumes estimated from MPRAGE data, from left to right: GMV, WMV, sGMV, Ventricles. Data points 

represent individual subject centile scores. Reliability was uniformly high across all phenotypes (ICCs > 

0.95) and comparable to reliability of uncentiled volumetric measurements from the same set of scans (data 

not shown).  

4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer 

Knowing that a large majority (~95%) of primary studies in the reference dataset used one of a 

series of versions of FreeSurfer for image analysis, we also evaluated the impact of these 

incrementally different image analysis pipelines on reliability of OoS centile scores. To do this we 

https://paperpile.com/c/yWP7Yw/kCeab
https://paperpile.com/c/yWP7Yw/HQZmZ
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re-analysed a single dataset36 repeatedly using 4 different versions of FreeSurfer (5.1, 5.3, 6.01, 

and 7.1). Each version of the processed dataset was treated as an independent OoS study for 

GAMLSS modeling and then we estimated ICCs between individual centile scores for each 

possible pair of FreeSurfer pipelines and for each of four cerebrum tissue volumes. This analysis 

demonstrated generally high within-subject reliability of OoS centiles across all four pipelines: 

ICCs for GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982 (Fig. S4.4). We noted 

that there was somewhat reduced reliability of subcortical grey matter volume in both raw and 

centiled data from FreeSurfer version 5.1 in comparison to later FreeSurfer versions. While the 

reasons for this are unclear, none of the studies included in the principal dataset were processed 

with FreeSurfer 5.1, or any version of FreeSurfer older than 5.3. Furthermore, we found the 

highest between-pipeline reliability for both raw volumetric data and centile scores derived from 

the two most recent versions of FreeSurfer, 6.0.1 and 7.1, suggesting that minor inconsistencies 

due to FreeSurfer pre-processing are becoming less problematic as this widely used software 

package incrementally evolves. 

 

 
Fig. S4.4. Between-pipeline reliability of volumetric data and out-of-sample centile scores for four 

cerebrum tissue volumes measured in the same set of N=1468,scans re-analysed using 4 different 

versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1).Top row shows scatterplot matrices representing the 

correlation between raw volumetric data derived from each possible pair of FreeSurfer pipelines, from left 

to right: GMV, WMV, sGMV, Ventricles. Bottom row shows scatterplot matrices representing the correlation 

between out-of-sample centile scores derived from each possible pair of FreeSurfer pipelines, from left to 

right: GMV, WMV, sGMV, Ventricles. Intra-class correlations of out-of-sample centile scores and uncentiled 

volumetric data, on average over all pairs of four pipelines, were generally high (GMV=0.978, WMV=0.972, 

sGMV=0.816 and Ventricles=0.982); although the reliability of sGMV volumetrics and centile scores was 

somewhat lower due to discrepant measurements by the oldest version of FreeSurfer,v5.1. 

4.5. Effects of sample size on reliability of out-of-sample centile scores 

To further assess the validity of the OoS estimates we generated ‘clones’ of existing datasets. 

Clones are resampled copies of studies included in the reference dataset used to estimate the 

study specific GAMLSS parameters, that are then treated as if they were “new” studies using the 

methods for out-of-sample centile scoring. This allows us to compare the OoS estimates to a 

relative truth, i.e., from the original, non-cloned version of the study included in the reference 

https://paperpile.com/c/yWP7Yw/VedrO
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dataset, we know what the GAMLSS parameters ‘truly’ are, and we have an estimation of their 

‘true’ uncertainty from the bootstrap resampling distributions. Thus for a given study dataset, 𝐷𝑚 , 

we generate a cloned copy 𝐷1, and  if our approach is unbiased we expect the out-of-sample 

parameter estimates for 𝐷1 to be equal to the in-sample parameters estimated for 𝐷𝑚, i.e., 𝛾∙,𝑚 

(representing the set of random effects estimated by in-sample analysis of the original study 

treated as part of the reference dataset) should approximate 𝛾∙,1  (representing the set of random 

effects estimated by OoS analysis of the cloned study treated as a new dataset): see SI1.8 “Out-

of-sample estimation” and Fig. S4.5. 

 

In other words, we validated the OoS estimation by simulating a “new” study with the same 

underlying distribution as one of the studies included in the reference dataset. Hence, we expect 

the OoS random-effect estimates for this ‘clone’ to agree with the in-sample  random-effect 

estimates. More formally, we are comparing 𝛾 = 𝑀𝐿𝐸𝛽,𝛾(𝐷) and 𝛾𝐶𝑙𝑜𝑛𝑒 = 𝑀𝐿𝐸𝛾(𝐷𝐶𝑙𝑜𝑛𝑒|𝛽(𝐷)), 

where the clone is contained within the data, i.e., 𝐷 ∩ 𝐷𝐶𝑙𝑜𝑛𝑒 = 𝐷𝐶𝑙𝑜𝑛𝑒; see SI1.8 “Out-of-sample 

estimation” for further details on OoS MLE estimation. As illustrated in Fig. S4.5, these 

simulations indicated good performance for the OoS approach for “new” study sizes greater than 

N=100 scans. 

 

 
Fig. S4.5. Out-of-sample estimates of cloned study random-effect parameters compared to in-

sample estimates of random-effect parameters in the original or non-cloned study. The plot shows 

random-effects estimated using the out-of-sample approach across a range of possible sample sizes for a 

“new” study, generated by taking subsets of the same cloned study with uncertainty intervals derived from 

the bootstrap replicates. The purple horizontal lines are the equivalent in-sample estimates of the random-

effects parameters. We see that the out of sample estimates are somewhat unreliable below N=100 

subjects, but with larger samples the out-of-sample estimates from the cloned data converge with the in-

sample estimates from the original data for both 𝜇-component and 𝜎-component random effects.  

 

6. Cohort effects 

As is the case for traditional growth charts, reference norms for brain charts may change over 

time, underscoring the need for “front work” on constructing normative reference models that are 

adaptive to future trends. Our choice of GAMLSS as the preferred modeling framework was in 

part motivated by its ability to provide a flexible and scalable basis that could support ongoing 

updates to the reference data. Likewise, our effort to share these models on an interactive web-

platform (www.brainchart.io & https://github.com/ucam-department-of-psychiatry/Lifespan) was 

also motivated by the likely need for continuous updates to the reference dataset as and when 

more MRI data become available.  

 

http://www.brainchart.io/
https://github.com/ucam-department-of-psychiatry/Lifespan
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To assess the potential risk of cohort effects, or population norms shifting over historical time and 

biasing estimation of centile scores in future, we used a single (NIH) study already included in our 

aggregated dataset, which collected data from 1991 onwards in a constrained age range (5–25 

years; N=1,468 scans). While MRI is a comparatively novel methodology (~30 years), it is 

possible that there may be systematic cohort effects within studies that have sampled individuals 

over prolonged periods of time47, or between  measurements aggregated in different age bins at 

different times. To quantitatively assess this possibility and the robustness of our procedures and 

results against such cohort effects, we analysed this NIH study containing longitudinal scans 

collected over two decades, from 1991 to 2011. We found no evidence for systematic variation of 

centile scores on any of the 4 cerebrum tissue volumes as a function of year-of-scanning or in 

relation to changes or upgrades to the scanner platform (Fig. S6.1-2).  

 

Thus there was no clear evidence of cohort effects in one of the few large studies to have 

sustained scanning over a long period of time, and there was no evidence of measurement biases 

related to technical development of image analysis software that potentially could contribute to 

cohort effects in large aggregated MRI datasets. However, the ongoing technical development of 

MRI scanners and image analysis software, as well as the possibility of more general secular 

trends in brain growth over time, mean that the risk of cohort effects should nonetheless be 

iteratively re-evaluated as the currently available reference dataset continues to be updated in 

the future.  

  

 
Fig. S6.1. Assessment of potential cohort effects based on date of scanning over two decades. The 

longitudinal study at the National Institutes of Health (NIH) contains N=1,468 longitudinal scans (N=788 

subjects) collected across the age range 5–25 years and over the historical period 1991–2011. Scatterplots 

represent individual centile scores (y-axis), ordered by date of scanning (x-axis), for each of the four 

cerebrum tissue volumes (top four rows); and age at scan (y-axis) versus date of scanning (x-axis) (bottom 

row). Lines represent locally-weighted regression lines (LOESS regression) for qualitative analysis of 

https://paperpile.com/c/yWP7Yw/ddKG2
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possibly non-linear cohort effects on brain phenotypes or age at scanning. Filled circles denote baseline 

scans, empty circles denote follow-up scans in this longitudinal dataset; vertical lines indicate the timing of 

scanner upgrades over the course of the study (see also Fig. S6.2). 

 

 

 

 

 

Fig. S6.2. Assessment of potential cohort effects related to scanner upgrades in the NIH longitudinal 

study. Centile scores for all four cerebrum tissue volumes estimated at baseline (time point 1) or two follow-

up assessments (time points 2 and 3) were assigned to one of four epochs partitioned by the timing of 

upgrades to the 1.5T MRI scanner used for data collection. Box-violin plots show the distribution of centiles, 

and the range (whiskers) and 25th, 50th, and 75th percentiles of the centile distributions (boxes). Linear 

mixed effect modeling demonstrated no evidence of a significant effect (t=-1.577, P=0.115). This analysis 

was restricted to time points with N > 100 subjects. 

 

Ref 2/7:  

Finally, it would be very interesting to conduct a correlational analysis of the different 

“tissue classes.” Are they highly correlated? An excellent model for how such an analysis 

might be conducted is https://doi.org/10.1038/ncomms13629 (see especially Figs. 7-8). 

 

We thank the reviewer for raising this point. There are indeed interesting associations between 

the different tissue class volumes, yet we still observe unique lifespan trajectories for each. We 

now provide an additional supplementary section on the comparison between phenotypes across 

the lifespan and across datasets: see SI15 “Correlations between cerebrum tissue volumes” 

including new Figs. S15.1 and S15.2.  

 

<<The following section has been added to the Supplementary Information>> 

15. Interactions between cerebrum tissue volumes 

It has been hypothesized that age-varying cellular processes could be captured by neuroimaging 

milestones, in terms of the growth trajectories of relative volumetric measurements81. In line with 

these expectations, we found an initial postnatal increase in GMV relative to WMV, likely due to 

increased complexity of neuropil including synaptic proliferation82,83. Subsequently, GMV declined 

https://paperpile.com/c/yWP7Yw/JqEOB
https://paperpile.com/c/yWP7Yw/4UyJq+7XhcN
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relative to WMV (SI9.2 “Grey-white matter differentiation”), likely due to both continued 

myelination and synaptic pruning84. To further explore the patterning of tissue interactions, we 

performed supplementary analyses to empirically assess the correlations between global tissue 

classes. Fig. S15.1 presents these inter-relationships as Pearson’s correlation coefficients 

between each pair of global brain MRI phenotypes across participants within each study. These 

results highlight the variability of these relationships across studies (which themselves vary in 

terms of technical and biological variables – see Fig. 1A, ST1.1). However, it is also clear that 

there are generally high correlations between grey and white matter volumes and surface area 

(SA). Comparatively, GMV and WMV are less strongly correlated with CT and CSF. Additionally, 

we substantiated the prior consensus in the literature concerning the orthogonality of CT and SA 

by finding that these two global metrics were not correlated with each other (Fig. S15.1). 

  

 
Fig. S15.1. Box-plots of Pearson’s correlation between each possible pair of global brain metrics 

over all studies in the reference dataset. Each datapoint represents a single study; boxes highlight the 

median and interquartile range of correlation values (across studies) between feature pairs. 

 

Given these findings in the context of each study in our aggregated dataset, we examined the 

same inter-relationships between phenotypes across age, in line with previous work examining 

regional correlations of diffusion-weighted imaging phenotypes across age85. We used a sliding 

window approach to apply this framework to global MRI phenotypes, binning segments of the 

lifespan based on age (each window = 300 days, sliding by 50 days). Pearson’s correlation 

between phenotypes was then calculated within each bin, and locally-weighted (LOESS) 

regression was used to fit a nonlinear curve to the age-related changes in each pair-wise 

phenotypic correlation (Fig. S15.2). These results recapitulate some of the findings of the 

correlational analyses within each primary study, e.g., the GMV/WMV correlation is consistently 

more strongly positive than the CT/SA correlation. However, there are also some age-related 

shifts in the strength and/or sign of these phenotypic correlations, especially in late gestation and 

early postnatal life, that will be interesting to investigate in more detail as additional early-life MRI 

data become available in future .    

 

https://paperpile.com/c/yWP7Yw/G4Z93
https://paperpile.com/c/yWP7Yw/qBTfp
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Fig. S15.2. Sliding-window analysis of age-related changes in pairwise correlations for all possible 

pairs of 7 global MRI phenotypes (4 cerebrum tissue volumes and 3 extended global MRI 

phenotypes) over the course of the lifespan. We used a window size of 300 days, sliding by 50 days. 

Plotted lines are colour-coded by pairwise correlation and represent the fitted lines and 95% confidence 

intervals from locally-weighted (LOESS) regression for each correlated pair of phenotypes. 
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Referee #3: 

The manuscript “Brain charts for the human lifespan” by Bethlehem et al. is an impressive 

and ambitious effort on several fronts. They aggregate a massive amount of structural 

neuroimaging scans (>122k scans, across >100k individuals) across 96 individual studies 

and then use sophisticated modeling (GAMLSS) to derive lifespan curves of 4 

morphometric phenotypes (gray matter, white matter, subcortical gray matter, and 

ventricular volume) from 115 days post-conception to 100 years old. That endeavor alone 

is worthy of publication in a high-profile journal. The resulting age curves largely agree 

with existing literature, and thus for the most part aren’t particularly novel in themselves, 

although they note some deviations from prior reports. Using centile scoring as a means 

of normalizing across studies, they then investigate the impact of various clinical 

diagnoses.  

 

We thank the reviewer for their positive appraisal of our team’s effort. 

 

While interesting, and certainly suggesting venues for further study, that aspect of the 

paper is entirely focused on group comparisons, and relies heavily on p-values, which will 

be driven to significance by the large sample sizes. Reporting of the effect sizes involved 

would be helpful and would provide at least an indirect sense of the potential of centiled 

brain charts within the context of “personalised” or “precision” medicine.  

 

This is an excellent point - especially in the context of dealing with large sample sizes. All tables 

reporting results of statistical tests now include point and interval estimates of  Cohen’s d as a 

measure of effect size. Text references to key statistical results now also include effect sizes as 

well as P-values and median differences.  

 

But the truly groundbreaking potential of aggregating such a large data set, combined with 

the flexible modeling approach, is the proposed ability to estimate centile scores 

meaningfully and reliably in “out-of-sample” data, in the context of *non-harmonized* MR 

data that would typically be subject to a host of interpretational challenges (e.g., different 

pulse sequences, protocols, scanner strength and vendor, etc). Indeed, the manuscript is 

the planned reference for an interactive online resource (www.brainchart.io) that would 

allow researchers to extract centile scores for new datasets. In this regard, I feel that the 

manuscript, as currently constituted, falls short of convincingly demonstrating that the 

challenge of out-of-sample estimation with highly variable MR data has been solved. If this 

concern can be addressed, I feel that the approach and online resource proposed in this 

manuscript has intriguing potential and would warrant the visibility that publication in 

Nature would provide. 

 

We thank the reviewer for their very positive appraisal of the paper and its potential impact and 

we agree with their assessment of the most ground-breaking aspects of the work.  
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Ref 3/1:  

Currently, the out-of-sample validation with “real-world” is limited to just 4 datasets. The 

results of that particular analysis are impressive (Fig. 4B and S1.7.2). But the use of only 

4 datasets means that the out-of-sample validation is an impoverished sampling of the 

universe of possible MR studies, given the wide variety of ways in which MR studies can 

differ. Given that the authors have already amassed a much broader sampling of that 

universe (96 studies contributing to the model), it isn’t clear to me why they didn’t assess 

the generalizability of the GAMLSS + centiles modeling approach across that full study 

universe by conducting the same out-of-sample analysis using a “leave-one-study-out” 

(LOSO) modeling approach applied to every available study (i.e., treat every available 

study as if it is a part of the out-of-sample validation analysis). Indeed, a LOSO analysis is 

mentioned in Supplement (SI) Section 2.2.1, but that’s only in the context of showing the 

variability in the resulting overall lifespan trajectories. It seems to me that what’s needed 

additionally is a way to assess the likelihood that the estimated centiles for a given study 

may not be well fit, and correspondingly the study parameters potentially influencing that 

poor fit (per item (2) below), since that’s what an individual investigator interested in 

applying the model to one particular new study needs to be able to evaluate. 

 

We have adopted the reviewer’s suggestion to convincingly demonstrate that “the challenge of 

out-of-sample estimation with highly variable MRI data has been solved” by a set of convergent 

new analyses focused on this key point of out-of-sample (OoS) centile scoring. These new results 

and discussion are now referenced in the main text and fully reported in the supplemental 

material: SI4 “Out-of-sample centile scoring: bias, stability and reliability”, including 7 new 

Figs. S4.2.1, S4.2.2, S4.3.1, S4.3.2, S4.3.3, S4.4 and S4.5. 

 

● We previously reported leave-one-study-out (LOSO) analyses for 4 primary studies; at the 

reviewer’s request to explore the “universe” of studies, we have now conducted LOSO 

analysis for each and every one of 100 primary studies. We now show that bias (difference 

between in-sample and OoS centile scores) and reliability (standard deviation of 

bootstrapped centile scores) are excellent for the large majority of primary studies using 

FreeSurfer to process N>100 scans: see SI4.1 “Bias of out-of-sample centile scores: 

leave-one-study-out analyses for 100 studies” and SI4.2 “Reliability of out-of-

sample centile scoring: bootstrapped LOSO analyses for 100 studies”. We have 

estimated intra-class correlations for out-of-sample centile scores on several independent 

test-rest MRI datasets22,34–36 and found that the test-retest reliability of OoS centile scores 

was on par with the very high test-retest reliability of the non-normalised, un-centiled 

volumetric data generated by FreeSurfer (all ICCs > 0.9). New results and discussion are 

now referenced in the main text and reported fully in the supplemental material: see SI4.3 

“Test-retest reliability of out-of-sample centile scoring”. 

● Given the widespread use of FreeSurfer, and its ongoing technical evolution through a 

series of versions, we additionally investigated consistency of OoS centile scores between 

multiple versions of FreeSurfer: see: SI4.4 “Reliability of out-of-sample centile scoring 

across multiple versions of FreeSurfer”. 

● We have also systematically investigated the influence of sample size of primary studies 

on reliability of their out-of-sample centile scores: see SI4.5 “Effects of sample size on 

reliability of out-of-sample centile scores”.  

https://paperpile.com/c/yWP7Yw/htNoi+kCeab+VedrO+EDkLX
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● In addition to these extensive additions to Supplementary Information, we have 

substantially revised Fig. 4 in the earlier version of the paper, now Fig. 5 in the main text, 

to highlight the methods and supporting evidence for out-of-sample centile scoring. 

Overall, we consider that these new results considerably strengthen the evidence that out-of-

sample centile scoring is unbiased and reliable for the large majority of scans in the available 

“universe” of MRI studies.  

 

 

<<The following changes have been made to the main text>> 

Out-of-sample centile scoring of “new” MRI data 

A key challenge for brain charts is the accurate centile scoring of out-of-sample MRI data, not 

represented in the normative distribution of trajectories. As such, we carefully evaluated the 

reliability and validity of brain charts for centile scoring of “new” scans. For each new MRI study, 

we used maximum likelihood to estimate study-specific statistical offsets from the age-appropriate 

epoch of the normative trajectory; then we estimated centile scores for each individual in the new 

study benchmarked against the offset trajectory (Fig.5; SI1.8). Extensive jack-knife and leave-

one-study-out (LOSO) analyses indicated that a study size of N>100 scans was sufficient for 

stable and unbiased estimation of out-of-sample centile scores (SI4). Furthermore, out-of-sample 

centile scores proved highly reliable in multiple test-retest datasets and robust to variations in 

image processing pipelines (SI4). 

 

 
Fig. 5. Schematic overview of brain charts, highlighting methods for out-of-sample centile scoring. 

Top panel: Brain phenotypes are measured in a reference dataset of MRI scans. GAMLSS modeling is 

used to estimate the relationship between (global) MRI phenotypes and age, stratified by sex, and 

controlling for technical and other sources of variation between scanning sites and primary studies. Bottom 

panel: The normative trajectory of the median and confidence interval for each phenotype is plotted as a 

population reference curve. Out-of-sample data from a new MRI study are aligned to the corresponding 
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epoch of the normative trajectory, using maximum likelihood to estimate the study specific offsets (random 

effects) for three moments of the underlying statistical distributions: mean (𝜇), variance (𝜎), and skewness 

(𝝂) in an age- and sex-specific manner. Centile scores can  then be estimated for each scan in the new 

study, on the same scale as the reference population curve, while accounting for study-specific “batch 

effects” on technical or other sources of variation (see SI1.8 for details). 
 

<<The following changes have been made to the Supplementary Information>> 

4. Out-of-sample centile scoring: bias, stability and reliability 

4.1. Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies 

To further evaluate the robustness and consistency of centile scoring of OoS MRI data that were 

not included in the reference dataset used to estimate population trajectories, we performed a 

comprehensive series of leave-one-study-out (LOSO) analyses. For each one of the 100 studies 

in the reference dataset, we removed the study from the reference dataset, re-fitted the GAMLSS 

model to the remaining dataset of 99 studies, computed the OoS centile scores for the excluded 

study, and compared the OoS centile scores to the in-sample centile scores computed for the 

same study from the complete dataset including all 100 studies. Supplementary tables ST7.1-7.4 

list the correlations between OoS and in-sample centile scores for all 4 cerebrum tissue volumes 

in each of 100 primary studies. Overall, we found very high levels of correlation (Pearson’s r ~ 

0.99) for almost all studies, indicating that centile scores can be estimated accurately for most 

studies even if they were not included in the reference dataset used to define population norms. 

Correlations between OoS and in-sample centile scores were lower than r = 0.99 for only 3 out of 

100 studies in the reference dataset: namely, the FinnBrain (r = 0.93), UCSD (r = 0.96) and NIHPD 

(r = 0.95) studies. These studies were characterised by relatively small sample size, foetal or 

early postnatal age range of participants, or idiosyncratic processing pipelines.  

   

4.2. Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 

studies 

In addition, we tested the reliability of OoS centile scores for each individual participant by 

bootstrapping. Specifically, for each LOSO sample, bootstrapped model parameters were 

generated (see SI3.2.2 “Bootstrap analysis”), resulting in 1,000 bootstrapped models with 

maximum likelihood estimated parameters for each bootstrap iteration of each left-out study. 

From this we obtained a bootstrapped distribution of out-of-sample centile scores for each 

individual subject in each individual iteration of left-out studies, thus providing a stability 

assessment in the form of the standard deviation of individual OoS centile scores across 1,000 

bootstrap iterations. Across the datasets included in the model, we found that the average 

standard deviation of (bootstrapped) OoS centiles was 0.014, which is well below the level of 

within-subject longitudinal variation (see Fig. S4.2.1 and SI14 “Longitudinal centiles”). 

Furthermore, we found increased standard deviation of OoS centile scores for datasets with 

comparatively small sample sizes (e.g., the OpenPain cohorts, Cambridge foetal Testosterone 

and CHILD studies; see Fig. S4.2.2). OoS centile scores were also more variable for datasets 

that had a more unique combination of age range, acquisition and processing pipelines (e.g., 

FinnBrain, IBIS and HBN; see Fig. S4.2.2). These observations reinforce the recommendation -- 

see main text, ‘Out-of-sample centile scoring of “new” MRI data’ -- that OoS centile scoring 

is reliable for studies comprising N>100 scans. It was also notable that the reliability of OoS centile 
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scores was weakly correlated with data quality as quantified by the Euler index (EI). So studies 

with higher EI23, indicating poorer image quality, tended to have higher variability of bootstrapped 

OoS centile scores (Pearson’s r for all 4 cerebrum tissue volumes: GMV=0.05, WMV =0.11, 

sGMV =0.14, and Ventricular volume = 0.13). These results were not substantially different when 

the whole set of analyses was repeated without including scans with EI > 217. We conclude that 

OoS estimation of centile scores is generally reliable at the level of individual scans, and (as 

expected) reliability is greater for higher quality scans.   

 

 
Fig. S4.2.1. Stability of out-of-sample centile scores for four cerebrum tissue volumes when each 

of 100 studies was excluded from the reference dataset before bootstrapping. The standard deviation 

of bootstrapped centile scores (y-axis) is plotted for each study (x-axis) for each phenotype, from top to 

bottom panels: total cortical grey matter volume, total cortical white matter volume, subcortical grey matter 

volume, and ventricular volume. Each study- and phenotype-specific boxplot is coloured according to log 

sample size. For each study, we estimated the normative model leaving that study out of the reference 

dataset and repeated this procedure after iteratively bootstrapping the reference dataset 1,000 times.This 

procedure allowed us to summarise the reliability of the out-of-sample estimates of centile scores in terms 

of the standard deviation of the 1,000 centile scores generated for each bootstrapped resampling of the 

reference dataset. Studies are ordered by median standard deviation of out-of-sample centile scores (small 

to large) indicating that scans are reliably assigned centile scores with the out-of-sample approach. 

 

https://paperpile.com/c/yWP7Yw/qCsEW
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Fig. S4.2.2. Stability of out-of-sample centile scores as a function of age and sample size. The 

standard deviation (SD) of bootstrapped centile scores for four cerebrum tissue volumes (y-axis) is plotted 

against mean age of study participants (top row) or sample size (bottom row). Studies with the most 

unstable OoS centile scores (SD>0.05) are highlighted in red and labelled (see ST1.1 for study details).  
 

4.3. Test-retest reliability of out-of-sample centile scoring 

We also assessed the reliability of OoS centile scoring in three independent datasets that 

acquired multiple MRI scans within a single session or two closely spaced sessions 22,34–36. We 

analyzed each scan as a novel OoS dataset, then compared the consistency of centile scores 

across different scans of the same subject. We similarly compared the consistency of the 

uncentiled volumetric data and found that the out-of-sample centile scores were as consistent 

between scans in the same session as the “raw” volumetric data generated by FreeSurfer. 

 

First, we analysed test-retest reliability using the multimodal MRI reproducibility resource34, which 

provides two sessions of MRI data for multiple modalities. This dataset comprising 21 subjects 

was specifically designed for assessment of test-retest reliability as all subjects were scanned in 

two sessions separated by a one-hour break and the whole cohort was completed within a two 

week period. We analyzed each session of 21 scans as an independent OoS study (Fig. 5) and 

then estimated intra-class correlation coefficients (ICCs) to assess the between-session or test-

retest reliability of individual centile scores for four cerebrum tissue volumes37.  All ICCS were 

~0.99 (Fig. S4.3.1). 

 

https://paperpile.com/c/yWP7Yw/htNoi+kCeab+VedrO+EDkLX
https://paperpile.com/c/yWP7Yw/htNoi
https://paperpile.com/c/yWP7Yw/4wyXM
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Fig. S4.3.1. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes. MRI 

data were collected in two separate scanning sessions from N=21 participants and each session was 

analysed as an independent out-of-sample study using GAMLSS. Scatterplots represent OoS centile 

scores for session 1 (y-axis) versus OoS centile scores for session 2 (x-axis) for each brain tissue volume, 

from left to right: GMV, WMV, sGMV, Ventricular CSF. Data points represent individual subject centile 

scores. Test-retest reliability was consistently very high (all ICCs > 0.99) for all cerebrum tissue volumes.   

 

Second, we analysed the test-retest reliability of OoS centile scoring using MRI data on N=72 

participants in the Healthy Brain Network (HBN) cohort22, which  was not originally included in the 

reference dataset. The HBN cohort was designed to assess the influence of an alternate MRI 

data acquisition protocol, which included prospective motion correction25 to improve quality and 

reliability of MRI. The study protocol included 2 sessions of scanning using a conventional 

MPRAGE sequence for T1-weighted data acquisition and another 2 sessions of scanning using 

an innovative, prospectively motion-corrected sequence, VNaV, for T1-weighted imaging25. For 

all 72 individuals each session of each sequence was analysed as an OoS study (Fig. 5; SI1.8 

“Out-of-sample estimation”) and then we estimated ICCs as a measure of the test-retest 

reliability of individual centile scores for each brain tissue volume derived from each sequence 

(MPRAGE or VNaV). Test-retest reliability was uniformly high (ICCs > 0.95) for all OoS centile 

scores on all cerebrum tissue volumes estimated from both MPRAGE and VNaV sequences (Fig. 

S4.3.2). Reliability was incrementally higher for OoS centile scores derived from the VNaV 

sequence, under-scoring the importance of high quality data especially for OoS analysis of 

datasets with N<100. However, we note that this increased reliability of centile scoring was most 

likely driven by a comparably increased consistency of the  raw volumes estimated by FreeSurfer 

(as also noted in the original paper describing the impact of prospective motion correction22). 

 

 

 

 

 

 

 

https://paperpile.com/c/yWP7Yw/EDkLX
https://paperpile.com/c/yWP7Yw/DmznI
https://paperpile.com/c/yWP7Yw/DmznI
https://paperpile.com/c/yWP7Yw/EDkLX
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Fig. S4.3.2. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 

measured twice in the same N=72 participants using two T1-weighted sequences, MPRAGE and 

VNaV. Top row shows out-of-sample centile scores for session 1 (y-axis) versus out-of-sample centile 

scores for session 2 (x-axis) for cerebrum tissue volumes estimated from MPRAGE data, from left to right: 

GMV, WMV, sGMV, Ventricles. Bottom row shows out-of-sample centile scores for session 1 (y-axis) 

versus out-of-sample centile scores for session 2 (x-axis) for cerebrum tissue volumes estimated from 

VNaV data, from left to right: GMV, WMV, sGMV, Ventricles. In all plots, data points represent individual 

subject centile scores. Test-retest reliability was uniformly high (all ICCs > 0.95) and generally somewhat 

higher for volumetrics derived from prospectively motion-corrected data (VNaV). 
 

Third, we assessed the test-retest reliability of OoS centile scoring using the Vietnam Era Twin 

Study of Ageing (VETSA) study cohort35. VETSA is a longitudinal study following 1,200 twins from 

the Vietnam Era Twin Registry, which includes two technically identical MPRAGE acquisitions 

within the first (baseline) scanning session. Both these scans were processed with FreeSurfer 

6.0.1 for all participants, then the two sets of scans were each analysed as an independent OoS 

study, and ICCs were estimated to assess the test-retest reliability of individual centile scores on 

all four cerebrum tissue volumes. Test-retest reliability of OoS centile scores was uniformly very 

high (all ICCs > 0.98) across all phenotypes, comparable to the high reliability of the uncentiled 

volumetric data generated by FreeSurfer 6.0.1 (all ICCs > 0.95), and in line with the constraints 

on reliability expected from technical sources of noise38 (Fig. S4.3.3). 

 

 

 

 

Fig. S4.3.3. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 

measured twice in the same 1,200 participants (600 twin pairs). Scatterplots show out-of-sample centile 

scores for scan 1 (y-axis) versus out-of-sample centile scores for scan 2 (x-axis) for cerebrum tissue 

volumes estimated from MPRAGE data, from left to right: GMV, WMV, sGMV, Ventricles. Data points 

represent individual subject centile scores. Reliability was uniformly high across all phenotypes (ICCs > 

0.95) and comparable to reliability of uncentiled volumetric measurements from the same set of scans (data 

not shown).  

https://paperpile.com/c/yWP7Yw/kCeab
https://paperpile.com/c/yWP7Yw/HQZmZ
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4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer 

Knowing that a large majority (~95%) of primary studies in the reference dataset used one of a 

series of versions of FreeSurfer for image analysis, we also evaluated the impact of these 

incrementally different image analysis pipelines on reliability of OoS centile scores. To do this we 

re-analysed a single dataset36 repeatedly using 4 different versions of FreeSurfer (5.1, 5.3, 6.01, 

and 7.1). Each version of the processed dataset was treated as an independent OoS study for 

GAMLSS modeling and then we estimated ICCs between individual centile scores for each 

possible pair of FreeSurfer pipelines and for each of four cerebrum tissue volumes. This analysis 

demonstrated generally high within-subject reliability of OoS centiles across all four pipelines: 

ICCs for GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982 (Fig. S4.4). We noted 

that there was somewhat reduced reliability of subcortical grey matter volume in both raw and 

centiled data from FreeSurfer version 5.1 in comparison to later FreeSurfer versions. While the 

reasons for this are unclear, none of the studies included in the principal dataset were processed 

with FreeSurfer 5.1, or any version of FreeSurfer older than 5.3. Furthermore, we found the 

highest between-pipeline reliability for both raw volumetric data and centile scores derived from 

the two most recent versions of FreeSurfer, 6.0.1 and 7.1, suggesting that minor inconsistencies 

due to FreeSurfer pre-processing are becoming less problematic as this widely used software 

package incrementally evolves. 

 

 
Fig. S4.4. Between-pipeline reliability of volumetric data and out-of-sample centile scores for four 

cerebrum tissue volumes measured in the same set of N=1,468 scans re-analysed using 4 different 

versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1).Top row shows scatterplot matrices representing the 

correlations between raw volumetric data derived from each possible pair of FreeSurfer pipelines, from left 

to right: GMV, WMV, sGMV, Ventricles. Bottom row shows scatterplot matrices representing the 

correlations between out-of-sample centile scores derived from each possible pair of FreeSurfer pipelines, 

from left to right: GMV, WMV, sGMV, Ventricles. Intra-class correlations of out-of-sample centile scores 

and uncentiled volumetric data, on average over all pairs of four pipelines, were generally high 

(GMV=0.978, WMV=0.972, sGMV=0.816 and Ventricles=0.982). Although the reliability of sGMV 

volumetrics and centile scores was somewhat lower due to discrepant measurements by the oldest version 

of FreeSurfer, v5.1, this version of FreeSurfer was not used to analyse any of the scans included in the 

reference dataset. 

https://paperpile.com/c/yWP7Yw/VedrO
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4.5. Effects of sample size on reliability of out-of-sample centile scores 

To further assess the validity of the OoS estimates we generated ‘clones’ of existing datasets. 

Clones are resampled copies of studies included in the reference dataset used to estimate the 

study specific GAMLSS parameters, that are then treated as if they were “new” studies using the 

methods for out-of-sample centile scoring. This allows us to compare the OoS estimates to a 

relative truth, i.e., from the original, non-cloned version of the study included in the reference 

dataset, we know what the GAMLSS parameters ‘truly’ are, and we have an estimation of their 

‘true’ uncertainty from the bootstrap resampling distributions. Thus for a given study dataset, 𝐷𝑚 , 

we generate a cloned copy 𝐷1, and  if our approach is unbiased we expect the out-of-sample 

parameter estimates for 𝐷1 to be equal to the in-sample parameters estimated for 𝐷𝑚, i.e., 𝛾∙,𝑚 

(representing the set of random effects estimated by in-sample analysis of the original study 

treated as part of the reference dataset) should approximate 𝛾∙,1  (representing the set of random 

effects estimated by OoS analysis of the cloned study treated as a new dataset): see SI1.8 “Out-

of-sample estimation” and Fig. S4.5. 

 

In other words, we validated the OoS estimation by simulating a “new” study with the same 

underlying distribution as one of the studies included in the reference dataset. Hence, we expect 

the OoS random-effect estimates for this ‘clone’ to agree with the in-sample  random-effect 

estimates. More formally, we are comparing 𝛾 = 𝑀𝐿𝐸𝛽,𝛾(𝐷) and 𝛾𝐶𝑙𝑜𝑛𝑒 = 𝑀𝐿𝐸𝛾(𝐷𝐶𝑙𝑜𝑛𝑒|𝛽(𝐷)), 

where the clone is contained within the data, i.e., 𝐷 ∩ 𝐷𝐶𝑙𝑜𝑛𝑒 = 𝐷𝐶𝑙𝑜𝑛𝑒; see SI1.8 “Out-of-sample 

estimation” for further details on OoS MLE estimation. As illustrated in Fig. S4.5, these 

simulations indicated good performance for the OoS approach for “new” study sizes greater than 

N=100 scans. 

 

 
Fig. S4.5. Out-of-sample estimates of cloned study random-effect parameters compared to in-

sample estimates of random-effect parameters in the original or non-cloned study. The plot shows 

random-effects estimated using the out-of-sample approach across a range of possible sample sizes for a 

“new” study, generated by taking subsets of the same cloned study with uncertainty intervals derived from 

the bootstrap replicates. The purple horizontal lines are the equivalent in-sample estimates of the random-

effects parameters. We see that the out of sample estimates are somewhat unreliable below N=100 

subjects, but with larger samples the out-of-sample estimates from the cloned data converge with the in-

sample estimates from the original data for both 𝜇-component and 𝜎-component random effects.  

 

Ref 3/2:  

Relatedly, the manuscript mentions that “biological” and “technical” covariates are 

included as part of the fixed effects modeling, but the actual covariates used in the 

modeling do not appear to be listed anywhere. Also, no analysis is provided (even in the 

SI) of the estimated effect of these covariates, which seems important for understanding 
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the inner workings of the estimation. Last, understanding the space spanned by the 

covariates seems important for making assessments about the generalizability of the 

model to new out-of-sample data. In that regard, I think an SI table that lists the covariate 

values for each study, as well as other possibly relevant technical scanning details (e.g., 

imaging parameters) seems like a valuable and important addition. 

 

We apologize for any lack of clarity about our approach to site-specific technical variability in the 

original manuscript. In response to this important point, as requested, we have included a new 

supplemental table listing the technical details of each study: Table ST1.1.  

 

Due to variation and complexity of site-specific covariates,e.g., model of scanner, acquisition 

parameters, analysis software etc., we used random effects to model study- and site-specific 

differences in the moments of the statistical distributions of MRI phenotypes, thus controlling for 

a combination of (unspecified) factors that might contribute to between-study or between-site 

differences in MRI data and the centile scores derived from them. This approach is conceptually 

similar to other successful harmonization approaches such as the use of ComBAT to adjust for 

“batch effects” resulting from scanner differences, and our revised manuscript includes a detailed 

comparison between GAMLSS-based harmonization and ComBAT harmonization:  see SI5 

“Batch correction and site harmonisation”.  

 

We note that in contrast to the typical usage of random effects in neuroimaging studies, the 

optimally specified GAMLSS model included random effects on three moments of the generalised 

gamma distributions of the MRI phenotypes (mean, variance and skewness) to more flexibly 

account for site-specific variability as described in detail in SI5 “Batch correction and site 

harmonisation”.  One drawback of this approach is that it is not possible to conduct an analysis 

of the effect of specific technical covariates, such as scanning parameters. However, we do now 

report several approaches to quantifying study-specific effects from the GAMLSS model 

parameterisation: see SI3.3 “Parameter estimates”  and Fig. S3.2.3.  

 

As described in response to the reviewer’s previous point, Ref 3/1, we now also report a much 

more extensive validation of the out-of-sample approach to accurately estimate site-specific 

effects in “new” studies that may have been conducted with technical parameters that were not 

represented in the reference dataset: see  SI4 “Out-of-sample centile scoring: bias, stability 

and reliability”.  

 

<<The following changes have been made to the main text>> 

 

Models were fitted to structural MRI data from control subjects for the four main tissue volumes 

of the cerebrum (total cortical grey matter volume [GMV] and total white matter volume [WMV], 

total subcortical grey matter volume [sGMV], and total ventricular cerebrospinal fluid volume 

[Ventricles or CSF]). See Online Methods, Supplementary Table [ST] 1.1-1.7 for details on 

acquisition, processing and demographics of the dataset. See Supplementary Information [SI] 

for details regarding GAMLSS model specification and estimation (SI1), image quality control 

(SI2), model stability and robustness (SI3-4), phenotypic validation against non-imaging metrics 

(SI3 & SI5.2), inter-study harmonisation (SI5) and assessment of cohort effects (SI6). 

   

 



Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

77 

 

<<The following changes have been made to the supplementary information>> 

3.2.3 Parameter estimates 

From our bootstrapping approach, we can also derive confidence intervals for the models’ 

parameter estimates (e.g., the μ and σ terms) for study-specific random effects. Qualitatively we 

observed very narrow confidence intervals on the estimated μ term, with some smaller sample 

foetal studies (e.g., CHILD and Harvard foetal cohorts) showing wider intervals, likely 

commensurate with the smaller sample size and general lack of reference data in that age range 

(Fig. S3.2.3). While there were generally wider confidence intervals on the σ term offsets, across 

studies all estimated random effect parameters were well contained within their bootstrapped 

confidence bounds. 
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Fig. S3.2.3. Point-range plots of study-specific random effects on the first (Mu) and second (Sigma) 

moments of the generalised gamma distribution for parenchymal tissue volumes and study-specific 

random effects on Mu only for ventricular CSF volume. Bootstrapped 95% confidence intervals are 

shown and point estimates (dots) are coloured by the range of the confidence interval. Where not 

observable, the confidence intervals are smaller than the size of the dots.  
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Ref 3/3:  

Multiple studies have demonstrated that thickness and surface area are more pertinent 

measures than cortical GMV, given that cortical GMV is determined entirely by thickness 

and area, but thickness and area are themselves under independent genetic control. Given 

that, what is the rationale for not including mean cortical thickness and total surface area 

as part of the phenotypes investigated, both of which are readily available since all the 

data was processed through FreeSurfer, and would just need to be modeled? 

 

The reviewer makes a very fair point. The GAMLSS modeling framework we introduced in the 

context of brain tissue volume analysis is indeed generalisable to other MRI phenotypes, including 

the global cortical phenotypes (surface area and thickness) suggested by the reviewer. Although 

we were not able to access data on cortical surface area and thickness from all primary studies 

in the reference dataset, due to data sharing restrictions, we have aggregated and analysed these 

global cortical metrics on a large subset of the reference dataset (Ntotal=105,067, Nunique subjects= 

84,574 and Nunique CN subjects= 66,225 for SA and Ntotal=105,093, Nunique subjects= 84,532 and Nunique CN 

subjects= 66,181 for CT). These new results are now summarised in the main text, including a new 

Fig. 2 and revised Fig. 3, and are summarised in more detail in new sections of supplemental 

information: SI7 “Extended global cortical phenotypes” including 7 new supplementary Figs. 

S7.1, S7.2.1, S7.2.2, S7.3.1, S7.3.2, S7.4.1 and S7.4.2.   

 

<<The following changes have been made to the main text>> 

Extended brain MRI phenotypes 

To extend the scope of brain charts beyond the four cerebrum tissue volumes, we used the same 

GAMLSS modeling approach to estimate normative trajectories for additional MRI phenotypes 

including other geometric properties at a similar scale (mean cortical thickness and total surface 

area) and regional volume at each of 34 cortical areas25 (Fig.2, SI7-9, ST1-2). We found, as 

expected, that total surface area closely tracked the development of total cerebrum volume (TCV) 

across the lifespan (Fig.2A), with both metrics peaking at ~11-12 years (SA 10.97CI-Bootstrap:10.42-

11.51; TCV 12.5CI-Bootstrap:12.14-12.89). In contrast, cortical thickness peaked distinctly early at 1.7CI-

Bootstrap:1.3-2.1 years, which reconciles prior observations that cortical thickness increases during the 

perinatal period26 and declines during later development27. We also found evidence for regional 

variability in volumetric neurodevelopmental trajectories. Compared to GMV’s peak at 5.9 years, 

the age of peak regional volume varied considerably – from approximately 2 to 10 years – across 

34 cortical areas. Primary sensory regions reached peak volume earliest, and fronto-temporal 

association cortical areas matured later (Fig.2B; SI8). In general, earlier maturing ventral-caudal 

regions also showed faster post-peak declines in cortical volume, and later maturing dorsal-rostral 

regions showed slower post-peak declines (Fig.2B; SI8.2). Notably, this spatial pattern 

recapitulates a gradient from sensory-to-association cortex that has been previously associated 

with multiple aspects of brain structure and function28.   

 

https://paperpile.com/c/xAlRq2/PDJSm
https://paperpile.com/c/xAlRq2/f5Tfz
https://paperpile.com/c/xAlRq2/z7UIX
https://paperpile.com/c/xAlRq2/d6TeG
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Fig 2. Extended global and regional cortical geometric phenotypes. A | Trajectories for total cerebrum 

volume (TCV; left column), total surface area (SA; middle column), and mean cortical thickness (CT; right 

column). For each global cortical geometric MRI phenotype, the following sex-stratified results are shown 

as a function of age over the life-span, from top to bottom rows: raw, non-centiled data, population 

trajectories of the median (with 2.5% and 97% centiles; dotted lines), between-subject variance (and 95% 

confidence intervals), and rate-of-growth (the first derivatives of the median trajectory and 95% confidence 

interval). All trajectories are plotted on log-scaled age (x-axis) and y-axes are scaled in units of the 

corresponding MRI metrics (10,000 mm3 for TCV, 10,000 mm2 for SA and mm for CT). B | Regional 

variability of cortical volume trajectories for 34 bilateral brain regions as defined in the Desikan-Killiany 

parcellation25, averaged across sex (see also SI7-8 for details). From top to bottom panels: cortical map of 

age at peak regional volume (range 2-10 years); cortical map of age at peak regional volume relative to 

age at peak GMV (5.9 years), highlighting regions that peak earlier (blue) or later (red) than GMV; and 

illustrative trajectories for the earliest peaking region (superior parietal lobe) and the latest peaking region 

(insula), showing the range of regional variability. Regional volume peaks are denoted as dotted vertical 

lines either side of the global  peak denoted as a dashed vertical line in the bottom panel. Left hand y-axis 

on the bottom panel refers to the earliest peak, the right hand y-axis refers to the latest peak, and both are 

in units of 10,000 mm3.  

 

 

https://paperpile.com/c/xAlRq2/PDJSm


Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

81 

 

 
Fig. 3. Neurodevelopmental milestones. Top panel: A graphical summary of the normative trajectories 
of the median,i.e., 50th centile, for each global MRI phenotype, and key developmental milestones, as a 
function of age (log-scaled). Circles depict the peak rate-of-growth milestones for each phenotype (defined 
by the maxima of the first derivatives of the median trajectories; see Fig.1E). Triangles depict the peak 
volume of each phenotype (defined by the maxima of the median trajectories), definition of GMV:WMV 
differentiation is detailed in SI9.1. Bottom panel: A graphical summary of additional MRI and non-MRI 
developmental stages and milestones. From top to bottom: blue shaded boxes denote the age-range of 
incidence for each of the major clinical disorders represented in the MRI dataset; black boxes denote the 
age at which these conditions are generally diagnosed as derived from literature41 (Online Methods); 
brown lines represent the normative intervals for developmental milestones derived from non-MRI data, 
based on previous literature and averaged across males and females (Online Methods); grey bars depict 
age ranges for existing (WHO and CDC) growth charts of anthropometric and ultrasonographic variables. 
Across both panels, light grey vertical lines delimit lifespan epochs (labelled above the top panel) previously 
defined by neurobiological criteria42. Abbreviations: resting metabolic rate (RMR), Alzheimer's disease 
(AD), attention deficit hyperactivity disorder (ADHD), anxiety or phobic disorders (ANX), autism spectrum 
disorder (ASD, including high-risk individuals with confirmed diagnosis at a later age), major depressive 
disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). 
 

In Discussion: 

We have focused primarily on charts of global brain phenotypes, which were measurable in the 

largest aggregated sample over the widest age range, with the fewest methodological, theoretical 

and data sharing constraints. However, we have also provided proof-of-concept brain charts for 

regional grey matter volumetrics, demonstrating plausible heterochronicity of cortical patterning, 

and illustrating the generalisability of this approach to a more diverse range of fine-grained MRI 

phenotypes. As ongoing and future efforts provide increasing amounts of high quality MRI data, 

we predict an iterative process of improved brain charts for the human lifespan, potentially 

https://paperpile.com/c/xAlRq2/aVeSh
https://paperpile.com/c/xAlRq2/l1fEl
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representing multi-modal MRI phenotypes and enabling out-of-sample centile scoring of smaller 

samples or individual scans. In the hope of facilitating progress in this direction, we have provided 

interactive tools to explore these statistical models and to derive normalised centile scores for 

new datasets across the lifespan at www.brainchart.io. 

 

<<The following changes have been made to the Supplemental Information>> 

7. Extended global cortical phenotypes  

In addition to the principal results based on cerebrum tissue volumes, we also developed brain 

charts, based on the same GAMLSS modeling strategy, for other global cortical phenotypes 

including mean cortical thickness (CT) and surface area (SA). We refer to these as ‘cortical 

geometric phenotypes’, because they are derived from MRI data at a later stage of the widely-

used FreeSurfer pipeline, subsequent to cortical surface reconstruction, which is a necessary 

precondition for measuring cortical geometry. Geometric cortical phenotypes are likely to be 

useful in addition to, and complementary to, cerebrum tissue volumes that can be derived from 

MRI data without surface reconstruction and are therefore more robust to estimation in MRI data 

of marginal image quality. CT and SA were estimated from a subset of the representative dataset 

for which we had access to quality-controlled, surface-reconstructed MRI data suitable for cortical 

geometry (Ntotal=105,067, Nunique subjects= 84,574 and Nunique CN subjects= 66,225 for SA and 

Ntotal=105,093, Nunique subjects= 84,532 and Nunique CN subjects= 66,181 for CT; see ST1.6-1.9 for 

demographic and other details for each study included; see also SI19 “Primary dataset 

descriptions”). Another extended phenotype was total cerebrum volume (TCV)—a composite 

metric defined as the aggregate volume of GMV and WMV (measurable in Ntotal=121,650 and 

Nunique subjects=98,724). TCV estimated by combining all 4 cerebrum tissue volumes, i.e., inclusive 

of sGMV and CSF as well as GMV and WMV, was highly similar to TCV = GMV+WMV (r=0.99); 

but a smaller subset of the reference cohort had analysable data for all 4 tissue classes.   

7.1. Model optimisation 

CT, SA and TCV were all estimated by FreeSurfer 6.01 and analysed using the same GAMLSS 

modeling strategy (see SI1-6) as we originally used for growth charts of cerebrum tissue volumes. 

For 2 extended phenotypes (TCV and SA), optimal GAMLSS model specification converged on 

3rd order polynomial fits for 𝜇 and 𝜎 and a 2nd order polynomial fit for mean thickness on the 𝜇 

and 𝜎terms (Fig. S7.1). We found that fractional polynomial modelling for 𝜈 resulted in model 

instability, i.e., the GAMLSS model specification process did not converge on an optimal 

parameterisation, and these terms were therefore not included as fixed-effects of time in the 

GAMLSS model. On the other hand, model specification endorsed  the inclusion of study-specific 

random effects on both mean and variance (𝜇 and 𝜎 terms) of all extended phenotypes. 

 

http://www.brainchart.io/
http://www.brainchart.io/


Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

83 

 

 
Fig. S7.1. Optimization of GAMLSS model specification by analysis of the Bayesian information 

criterion (BIC) for multiple possible models on the generalised gamma distribution For each of three 

global metrics – TCV, total SA and mean CT – we compared model fit across multiple possible models 

combining fractional polynomial fixed effects of time and study-specific random effects on statistical 

moments of MRI phenotypes. Model goodness was quantified by the Bayesian information criterion (BIC) 

with greater log BIC indicating better-fitting models. Here log BIC is plotted relative to the best-fitting model 

with lowest BIC for each combination of fractional polynomials and random effects for which the model 

converged. All BIC values were scaled to the lowest value for the set of models fitted to each cerebrum 

tissue volume (log-scored difference to the lowest scoring model). For all phenotypes the best-fitting model 

included 3 fractional polynomials for 𝜇; and for all but CT the ordering also suggested 3 polynomials for 𝜎. 

The various models fitted are summarised by y-axis labels denoting the base fractional polynomial 

configuration (“baseFO”) that are structured as follows: baseFO[a][b][c][x][y][z], where a-c denote the 

number of fractional polynomials included in the age term on 𝜇, 𝜎, and 𝝂 respectively, and x-z denote 

whether a study random effect was estimated for each of the model components (1 means a study random 

effect was included, 0 means no study random effect was included). 

7.2. Normative trajectories of extended global MRI phenotypes  

Following the data-driven determination of the optimal GAMLSS specification of the number of 

random-effect fractional polynomials on each of the distribution parameters, normative 

trajectories were generated using the same framework as outlined in SI1-6 including the same 

bootstrapping procedure. Briefly, we generated 1,000 bootstrap iterations with stratified (by study 

and sex) sampling with replacement. The figure below (Fig. S7.2.1) shows the mean trajectory 

across bootstraps with a shaded region indicating the 95% confidence intervals (across the 

bootstrap replicates). In addition, and analogous to our primary phenotypes, we evaluated the 

stability of all GAMLSS derived study specific parameters (Fig. S7.2.2). Again, we find that 

smaller studies in specific age ranges tend to have somewhat wider confidence intervals on both 

mean and variance parameters.  

 

 



Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

84 

 

 
Fig. S7.2.1. Normative trajectories of median and bootstrapped confidence intervals for three 

extended global MRI phenotypes, from left to right: TCV, SA and CT. A | Sex-stratified curves plotted 

on a log scale. B | Sex-stratified curves plotted on natural scale.   
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Fig. S7.2.2. Pointrange plot of study-specific estimation of the first (μ) and second (σ) parameters 

of the generalised gamma fitting (where present in the selected model). Confidence intervals across 

bootstraps (see above) are shown and dots are coloured by the range of the confidence interval. Where 

not observable, the confidence intervals are smaller than the size of the dots.  

7.3. Quality control of extended global MRI phenotypes 

We applied the same quality control procedures for extended global MRI phenotypes as for 

cerebrum tissue volumes (SI2), but excluded individuals with EI<217 (~5%). No large effect of EI 

on centiles was found, nor did visual classification of a subset of raw images reveal centile 
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differences across included QC classes—apart from in the 2 worst rated classes of images that 

constituted less than 5% of the data, exclusion of which did not affect models. We note, however, 

that especially for phenotypes extracted from the reconstructed surfaces, averaging (as in the 

case of mean thickness) and summing (as in the case of total surface area) likely mitigated the 

impact of regional reconstruction inaccuracies driven by bad data quality (see also SI8 on regional 

variability).  

 

 
Fig. S7.3.1. Association between EI and estimated centiles. Spearman correlations between Euler 

Index (EI) and centiles for extended phenotypes revealed a negligible association between EI estimated 

image quality and derived centiles. 

 

 
Fig. S7.3.2. Manual quality control rating from visual inspection of raw data. A small subset (~5%) of 

the two worst categories of raw data showed significant deviations in their estimated centiles. Excluding 

this subset from model estimation did not impact the model. Bars are coloured by log-scaled sample size. 

 
 

7.4. Stability of out of-sample centile scoring for extended global phenotypes: LOSO 

analyses 

Analogous to the primary four phenotypes (SI4) we conducted a LOSO analysis of all studies that 

included the extended phenotypes. While the overall variability, i.e., standard deviation across 

bootstrap iterations, across studies was low (<0.05 centiles), a similar pattern of increased 

variability of OoS estimation emerged whereby smaller studies or those in a narrow age range in 

a period of rapid change were slightly more variable (Fig. S7.4.1-2).  
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Fig. S7.4.1. Stability of OoS estimates of centile scores on three extended global MRI phenotypes 

when each study was excluded from the reference dataset before bootstrapping. The standard 

deviation of bootstrapped centile scores (y-axis) is plotted for each study (x-axis) for each phenotype, from 

top to bottom panels: total cerebrum volume, mean cortical thickness and total surface area. Each study- 

and phenotype-specific boxplot is coloured according to log sample size. For each study, we estimated the 

normative model leaving that study out of the reference dataset and repeated this procedure after iteratively 

bootstrapping the reference dataset 1,000 times. We estimated the OoS centile scores for each individual 

in the left-out study, normalised by each of the bootstrapped normative trajectories. This procedure allowed 

us to summarise the reliability of the OoS estimates of centile scores in terms of the standard deviation of 

the 1,000 centile scores generated for each bootstrapped resampling of the reference dataset. Studies are 

ordered by median standard deviation of out-of-sample centile scores (small to large) indicating that scans 

are reliably assigned centile scores with the out-of-sample approach. 
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Fig. S7.4.2. Stability of out-of-sample estimates of centile scores on extended global MRI 

phenotypes across age and sample size. Standard deviation (sd) of individual centile scores for the 

extended neuroimaging phenotypes were computed across leave-one-study-out lifespan models, and 

plotted as a function of age (top) and sample size (bottom) for each study.  

 

Ref 3/4:  

Notwithstanding the reference to ‘“personalized” or “precision” medicine’ in the 2nd 

sentence of the introduction, most of the results are organized around group differences. 

There is clearly much value in the ability to make group comparisons in an appropriately 

normalized fashion across MR studies collected with disparate imaging protocols. 

However, it feels like some discussion is warranted, in the main text, of whether the results 

in the manuscript provide any direct support for the notion (or aspiration) that the 

centilized brain chart outputs have value for individualized prediction. 

 

We agree this is an important point that needs further discussion. We have now expanded upon 

this point in the discussion as follows: 

 

<<The following changes have been made to the main text>> 

 

In: Discussion 

We have aggregated the largest neuroimaging dataset to date to modernise the concept of growth 

charts for mapping typical and atypical human brain development and ageing. The ~100 year age 

range enabled the delineation of milestones and critical periods in brain maturation, revealing an 

early growth epoch across its constituent tissue classes -- starting before 17 post-conception 

weeks, when the brain is at ~10% of its overall size and ending at ~80% by age 3. Individual 

centile scores benchmarked by normative neurodevelopmental trajectories were significantly 

associated with neuropsychiatric disorders as well as with individual differences in birth outcomes 
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and fluid intelligence (SI5.2 and SI12). Furthermore, imaging-genetics studies44 may benefit from 

the increased heritability of centile scores compared to raw volumetric data (SI13). Perhaps most 

importantly, GAMLSS modeling enabled harmonisation across technically diverse studies (SI5), 

and thus leveraged the potential power of aggregating MRI datasets at scale.  

 

The current results also bode well for future progress towards individualised prediction45. By  

providing an age- and sex-normalised metric, centile scores enable trans-diagnostic comparisons 

between disorders that emerge at different stages of the lifespan (SI10-11). The generally high 

stability of centile scores across longitudinal measurements also enabled assessment of 

documented changes in diagnosis such as the transition from MCI to AD (SI14), which provides 

one example of how centile scoring could be clinically useful in quantitatively predicting or 

diagnosing progressive neurodegenerative disorders. The analogy to paediatric growth charts is 

not meant to imply a predetermined or immediate application for brain charts in a typical clinical 

setting. However, our provision of appropriate normative growth charts and on-line tools creates 

an opportunity to quantify atypical brain structure, precisely benchmarked against age- and sex-

typical distributions, and thus to enhance diagnostic yield from clinical scans as well as 

neuroimaging research studies.  

 

Ref 3/5:  

The group comparisons throughout the manuscript are primarily structured in the 

language of statistical significance (p-values), with minimal presentation of effect sizes. 

Effect sizes should be provided whenever a viable effect size measure exists, so as to 

provide information on the magnitude of the effect independent of the sample size. 

 

We agree that it is important to report effect sizes as well as P-values. We have now reported 

Cohen’s d effect size estimates (including Hedges confidence intervals for these estimates 43) for 

all case-control comparisons in relevant tables of supplemental material: SI Tables ST2.1-2.7. 

The main figure (formerly Fig. 3 now Fig. 4) already listed the median case-control difference on 

the same scale as the original centiles to highlight the group level difference. Broadly speaking, 

all case-control differences referenced in the manuscript were medium (d > 0.5) to large (d > 0.8) 

and effect sizes are now reported for all key statistical results highlighted in the main text. 

 

Ref 3/6: 

The quality and added value of the Supplemental material is uneven. Some of it adds 

considerable value, but some of it is also of marginal quality or seems unnecessary. A 

number of the supplemental figures have poorly labelled axes or titles. In general, the 

captions of the SI figures need to be expanded to provide more clarity/details on what is 

being shown, and the captions or associated text can do a better job of explaining the 

purpose of the analysis and conclusion to be drawn within the SI. An appreciable number 

of specific comments/examples related to this point are provided below. 

 

We thank the reviewer for their exceptionally detailed and critical appraisal of the supplementary 

material. We have addressed all the minor points listed below as well as aiming overall to improve 

and even-out the quality of the supplementary data displays and figure legends. Dataset 

descriptions are more balanced throughout and redundant figures have been removed (or made 

available only through the website). 

 

 

https://paperpile.com/c/xAlRq2/BOz6s
https://paperpile.com/c/xAlRq2/LCwwb
https://paperpile.com/c/WLzT4Y/L0Fkn
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Ref 3/7:  

The font sizes in some of the figures tend toward being too small. 

 

The goal of presenting large amounts of data in a legible format has certainly been a challenge 

in the present project. We have increased the font sizes where possible without interfering with 

the presentation of the data itself. We also note that interactive versions of most figures are 

available on www.brainchart.io, where the size of figures and labelling can be arbitrarily expanded 

by the user. We welcome further editorial guidance concerning optimal legibility of the figures, if 

needed, but hopefully this issue is much improved in the revision.  

 

Other more minor or specific comments and suggestions follow: 

 

Ref 3/8:  

It would be helpful if the SI included some discussion of model convergence and how that 

is assessed within GAMLSS – p. 9 of the SI mentions model instability and lack of 

convergence but no details are provided on how that was assessed. 

 

We have added a new section to the Supplementary Information  explaining model 

convergence and the bootstrapping procedures used to assess model (in)stability: see SI1.2 

“Convergence within GAMLSS”. 

 

<<The following changes have been made to Supplementary Information>> 

1.2 Convergence within GAMLSS 

Model convergence within GAMLSS, like many iteratively fitting statistical models, is defined in 

terms of the estimated likelihood staying equivalent across several iterative steps, where 

equivalence is in terms of a defined convergence threshold. The threshold is with respect to 

changes in the (log-)likelihood between iterations (we use the default convergence criterion of 

0.001)7,8. Instability, or non-convergence, is typically when the GAMLSS model cannot converge 

on a maximum likelihood estimate and jumps between multiple solutions, whose likelihood values 

differ by more than the threshold and hence the algorithm never converges. 

 

If the model is over-parameterised there may be multiple solutions that fit the data, which will lead 

to non-convergence. Equivalently, within the bootstrapping procedure, it is possible for a 

bootstrap replication to become degenerate, meaning the resampled subset of data causes the 

model fitting to fail, e.g., the bootstrap replicate of a small study may, by chance, consist of copies 

of only one subject and have no variability with which to estimate the study random-effects. We 

employ a stratified bootstrap procedure to limit this issue (see SI3.2.2 ”Bootstrap analysis”); 

but given the sample size of some primary studies we experienced a small number (<1%) of 

model convergence failures across bootstrap replicates. A priori, we deemed the model unstable 

if more than 5% of bootstrap replicates failed to converge but this situation did not occur for any 

of the MRI phenotypes. 

 

Ref 3/9:  

Order of presented phenotypes should be the same across all figures, both in the main 

text and SI. E.g., Figure 1 is ordered as GMV, WMV, sGMV, Ventricles, so that order should 

http://www.brainchart.io/
https://paperpile.com/c/yWP7Yw/rtZr5+iuOgJ
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be maintained across all figures, both in the main text (e.g., Figure 4B differs) and 

Supplement (which uses a variety of orders – e.g., Fig S1.2, S2.2.3). 

 

All figures have now been updated so that the cerebrum tissue volumes are consistently 

presented in the same order. 

 

Ref 3/10:  

Even though the code is available in GitHub, it would be helpful to include brief code 

snippets of the GAMLSS modeling in R within the SI as a mechanism to concisely, but 

technically, explain some of the modeling. This will help knowledgeable individuals 

quickly see exactly what was done, without needing to slog through a (potentially 

complicated) code base. 

 

Given the complex nature of the R code -- including bespoke alterations to the GAMLSS code 

base for nested model fitting and refitting, and distributed computing on a high performance 

computing cluster -- we considered that it was possible to provide brief code snippets that were 

accessible while also accurately reflecting the analyses performed. We have therefore elected to 

address this comment by improving the accessibility of the GitHub repository. In particular, we 

now provide a tutorial (https://github.com/ucam-department-of-psychiatry/Lifespan) using 

simulated data on the GitHub, alongside improved descriptions of customised functions contained 

in the code. We are open to including this tutorial in the supplemental information, but currently 

we feel that this would negatively impact the readability of an already extensive supplementary 

document. In a further effort to provide concise, technical summaries of the modeling, we have 

also added relevant equations to the supplementary information, and systematically cross-

referenced these formal representations of the model to more informal descriptions throughout 

the paper. 

 

Ref 3/11:  

Abstract mentions 122123 scans from 100071 individuals. Figure 1 caption says 120685 

scans. Summing the N column in SI Table 1.1 yields 121163. Summing the ‘total.cn’ column 

(cross-sectional N?) in that same table yields 92081. Why the differences? And if Figure 1 

is based on the cross-sectional data only, shouldn’t the number of scans be closer to the 

total number of individuals rather than greater than 120k? 

 

We apologise for any confusion concerning the numbers of scans available for different aspects 

of the analysis. We have now finalised the reference dataset and double-checked all sample sizes 

for the various analyses reported throughout the paper and supplementary information. The 

different rows of Fig. 1 depict different subsets of the total dataset, i.e., panel A depicts  all the 

primary studies comprising the reference dataset;  panels B, C and D depict all the  cross sectional 

data on healthy controls used for GAMLSS modelling, with varying numbers of scans available 

for normative modeling of different phenotypes. We now provide additional demographic details 

for these cross-sectional control datasets used for normative modeling of each MRI phenotype: 

see ST1.2-ST1.42. 

 

Ref 3/12:  

The convention of denoting panels as “A|” rather than “A.” or “A)” seems odd to me, and 

leads to situations (in the Supplement) where it visually appears to be “AI” (A-eye, rather 

than A-bar). 

https://github.com/ucam-department-of-psychiatry/Lifespan


Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

92 

 

 

We have added an extra space to avoid this confusion, so panels are denoted “A |” rather than 

“AI”, to clarify their interpretation as “A-bar” rather than “A-eye”. However, we would be happy to 

adapt to further editorial guidance concerning conventions for figure panel lettering. 

 

Ref 3/13:  

It seems like Figure 1B should use some sort of density plot, rather than simply plotting 

symbols on top of each other. If necessary, the attempt to color code individual studies 

can be dropped (in that figure and other SI figures) as its impossible to map a color to a 

given study anyway. 

 

In an effort to clarify Fig. 1B, we  have now changed the colour-coding to denote sex (instead of 

primary study), which is more aligned with the colour-coding of Figs. 1C, 1D and 1E. We also 

note that density plots are shown in Fig. 1A. More details on the demographics and other 

characteristics of each primary study included in the reference dataset are now provided  in Table 

S1. 

 

<<The following changes have been made to the main text>> 
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Fig. 1. Human brain charts. A | MRI data were aggregated from 100 primary studies comprising 123,984 

scans that collectively spanned the age range from late pregnancy to 100 postnatal years. Box-violin plots 

show age distributions (log-scaled) for each study coloured by its relative sample-size (log-scaled) B | Non-

centiled bilateral cerebrum tissue volumes (right to left: grey matter, white matter, subcortical grey matter 

and ventricles) are plotted for each cross-sectional control scan, point-coloured by sex, as a function of age 

(log-scaled). C | Normative brain growth curves, analogous to paediatric growth charts, were estimated by 

generalised additive modelling for location scale and shape (GAMLSS), accounting for site- and study-

specific batch effects, and stratified by sex (female/male curves coloured red/blue). All four cerebrum tissue 

volumes demonstrated distinct, non-linear trajectories of their medians and 95% centile boundaries as a 

function of age over the life-cycle. Demographics for each cross-sectional sample of healthy controls 

included in the reference dataset for normative GAMLSS modeling of each MRI phenotype are detailed in 

ST1.2-1.7. D | Trajectories of median between-subject variability and 95% confidence intervals for four 

cerebrum issue volumes were estimated by sex-stratified bootstrapping (1,000 times; see SI3 for details). 

E | Rates of volumetric change across the lifespan for each tissue volume, stratified by sex, were estimated 

by the first derivatives of the median volumetric trajectories. For solid (parenchymal) tissue volumes, the 

solid horizontal line (y=0) indicates when the volume of each tissue stops growing and starts shrinking; the 

solid vertical line indicates the age of maximum growth of each tissue. See ST2.1 for all 

neurodevelopmental milestones and their confidence intervals. Note that y-axes in panels B-E are scaled 

in units of 10,000 mm3 (10ml). 

 

Ref 3/14:  

Figure 1C: The 95% centile boundaries are supposed to be “dotted” but mostly appear to 

be solid lines. 

 

This graphical typo has been corrected: it was the unfortunate side-effect of log-scaling a rather 

dense figure and using dashed instead of dotted lines.  

 

Ref 3/15:  

Figure 2: In the lower half of the figure, the “top grey section” isn’t very clear. Why are the 

“empirical age-range (dark grey)” ranges so disparate from the “diagnostic age ranges 

(black outlines)”, and more broadly, what is the point being made by that distinction? Also, 

it’s inherently confusing to have a ‘key’ with the text “From literature” with a black outline 

but the same interior color of gray that represents the overall age range of the current 

study (which itself seems rather unnecessary to include, as the overall age range simply 

spans the same range as the top portion of the figure). 

 

This figure has been updated (and is now Fig. 3 in the main text) to incorporate the reviewer’s 

suggestions to improve clarity and to represent new results on extended global cortical metrics. 

 

<<The following changes have been made to the main text>> 
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Fig. 3. Neurodevelopmental milestones. Top panel: A graphical summary of the normative trajectories 
of the median,i.e., 50th centile, for each global MRI phenotype, and key developmental milestones, as a 
function of age (log-scaled). Circles depict the peak rate-of-growth milestones for each phenotype (defined 
by the maxima of the first derivatives of the median trajectories; see Fig.1E). Triangles depict the peak 
volume of each phenotype (defined by the maxima of the median trajectories), definition of GMV:WMV 
differentiation is detailed in SI9.1. Bottom panel: A graphical summary of additional MRI and non-MRI 
developmental stages and milestones. From top to bottom: blue shaded boxes denote the age-range of 
incidence for each of the major clinical disorders represented in the MRI dataset; black boxes denote the 
age at which these conditions are generally diagnosed as derived from literature41 (Online Methods); 
brown lines represent the normative intervals for developmental milestones derived from non-MRI data, 
based on previous literature and averaged across males and females (Online Methods); grey bars depict 
age ranges for existing (WHO and CDC) growth charts of anthropometric and ultrasonographic variables. 
Across both panels, light grey vertical lines delimit lifespan epochs (labelled above the top panel) previously 
defined by neurobiological criteria42. Abbreviations: resting metabolic rate (RMR), Alzheimer's disease 
(AD), attention deficit hyperactivity disorder (ADHD), anxiety or phobic disorders (ANX), autism spectrum 
disorder (ASD, including high-risk individuals with confirmed diagnosis at a later age), major depressive 
disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). 

 

 

Ref 3/16:  

Fig 3: Panel B: Doesn’t really provide much intuition as to how the CMD is calculated, or 

what it represents. Panel D: Why are error bars only present for some of the data points? 

Are they too small to be seen? If so, that should be stated. Also, are the bars STD’s or 

SEM’s? A similar comment applies to the error bars elsewhere (e.g., Fig S9.2). 

 

https://paperpile.com/c/xAlRq2/aVeSh
https://paperpile.com/c/xAlRq2/l1fEl
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The CMD is a multivariate-scaled summary across multiple centiled phenotypes.Unlike a simple 

average of the phenotypes, CMD explicitly quantifies deviation (from 0.5, the center of the centile 

distribution) based on the principal component space of all constituent centiles, and therefore 

exploits the intrinsic covariance between the phenotypes. While it is difficult to make a simple 

figure to illustrate how a multivariate statistic like CMD is calculated, we have edited the figure 

and caption (Fig.4) in the revised manuscript. We have also expanded our supplementary 

description of how the CMD is calculated; see SI1.6 “Centile Mahalanobis distance”. Error bars 

in panel D are depicted for all features but are indeed too small to be observed relative to the 

others, this has now been clarified in the Fig. 4 caption. 

 

<<The following changes have been made to the main text>> 

 
Fig. 4. Case-control differences and heritability of centile scores. A | Centile score distributions for 
each diagnostic category of clinical cases relative to the control group median (depicted as a horizontal 
black line). The median deviation of centile scores in each diagnostic category is overlaid as a lollipop plot 
(white line with circle corresponding to the median centile score for each group of cases). Pairwise tests for 
significance were based on  Monte-Carlo resampling (10,000 permutations) and P-values were adjusted 
for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (FDR) correction across all 
possible case-control differences. Only significant deviations from the control group median  (with corrected 
P<0.001) are highlighted with an asterisk. For a complete overview of all pairwise comparisons, see SI10 
and ST3. Groups are ordered by their multivariate distance from the control group (see panel C and SI10.3). 
B | The centile Mahalanobis distance (CMD) is a summary metric of multivariate deviation that quantifies 
the aggregate atypicality of an individual scan in terms of all MRI phenotypes. The schematic shows 
segmentation of four cerebrum tissue volumes, followed by estimation of univariate centile scores, leading 
to the orthogonal projection of a single subject (Subx) onto the four principal components of the control 
group (CN; coloured axes and arrows): the CMD for Subx is then the sum of its distances from the CN group 
mean on all 4 dimensions of the multivariate space. C | Probability density plots of CMD across disorders. 
Vertical black line depicts the median CMD of the control group. Asterisks indicate an FDR-corrected 
significant difference from the CN group (P < 0.001). D | Heritability of raw volumetric phenotypes and their 
centile scores across two twin studies (ABCD and HCP). All dots have error bars for the standard error, but 
in some cases these are too narrow to be observed. Abbreviations: control (CN), Alzheimer's disease (AD), 
attention deficit hyperactivity disorder (ADHD), anxiety or phobia (ANX), autism spectrum disorder (ASD),  
anxiety or phobic disorders (ANX),  mild cognitive impairment (MCI), major depressive disorder (MDD), 
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schizophrenia (SCZ); grey matter volume (GMV), subcortical grey matter volume (sGMV), white matter 
volume (WMV), centile Mahalanobis distance (CMD).  
 

<<The following changes have been made to the Supplementary Information>> 

1.6 Centile Mahalanobis distance 

To create an integrated measure of normative deviation across all centile scores we computed a 

Mahalanobis distance20 in the 4-dimensional feature space relative to the normative mean across 

those phenotypes. This centile Mahalanobis distance (CMD), 𝐷𝑀 , can be formalised as follows: 

 

𝐷𝑀(𝑥) = √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇) (1.6.1) 

 

where 𝑥 denotes the set of observations across multiple phenotypes, μ denotes the mean across 

those observations, and S denotes the covariance matrix across both. The squared Mahalanobis 

distance is also equivalent to the sum of squares of all non-zero standardised principal 

components scores (as illustrated in Fig.4B). As such, CMD provides an indication of the distance 

of an individual from the centre of the normative multi-dimensional (multi-phenotype) space, 

taking into account the potential correlated structure of the dimensions (and thereby being 

arguably less sensitive to outliers along a single dimension than other possible distance metrics). 

The scale-invariant nature of CMD also makes it generalisable to  centile scores on additional 

MRI phenotypes as they are included in the future. 

 

Ref 3/17:  

Are all the probability density plots throughout the manuscript computed in a similar 

manner (e.g., same kernel approach or degree of smoothing) using the same analytical 

tool? A description of the specifics of the density plot construction in the SI methods 

seems warranted given the prominence of density plots throughout the manuscript. 

 

The density plots throughout the manuscript were all generated with the same smoothing kernel 

and more details are now provided to describe the relevant methods. For consistency, we have 

also updated the density plots in the supplementary material to be in the same style and avoid 

any confusion.  

 

<<The following changes have been made to the Supplementary Information>> 

 

In: SI10.2 “Multi-modality of centile distributions in clinical disorders” 

To explore the possible or even likely existence of subgroups within the space of centile scores, 

we assessed the number of peaks in the probability density function. Density plots were generated 

with the ‘geom_flat_violin’ option from the Raincloud package61. Estimation of densities and the 

resulting number of peaks were done using the default settings of the ‘density()’ function in the R 

stats package62 using a Gaussian smoothing kernel63,64 which defaults to 0.9 times the minimum 

of the standard deviation and the interquartile range divided by 1.34 times the sample size to the 

negative one-fifth power (Silverman's ‘rule of thumb’65); unless the quartiles coincide, when a 

positive result will be guaranteed. The number of peaks was defined as the inflection point on 

these Gaussian smoothed density curves. Unimodality of smoothed density curves was tested 

using Hartigan's dip-test66 which indicated that none of the distributions were perfectly unimodal 

(see ST4.1-4.7). 

https://paperpile.com/c/yWP7Yw/PE0Ay
https://paperpile.com/c/yWP7Yw/PSPOt
https://paperpile.com/c/yWP7Yw/v83gW
https://paperpile.com/c/yWP7Yw/cynnO+SbKzN
https://paperpile.com/c/yWP7Yw/U2h0Y
https://paperpile.com/c/yWP7Yw/TLhYI


Bethlehem, Seidlitz, White et al: Response to Reviewers 
 

97 

 

 

 
Fig. S10.2.1. Probability density plots of centile scores on cerebrum tissue volumes for clinical 

cohorts with at least N=500 diagnosed cases. Labels underneath each density plot show the estimated 

number of peaks or modes in the smoothed distribution. 

 

 
Fig. S10.2.2. Probability density plots of centile scores on extended global MRI phenotypes for 

clinical cohorts with at least N=500 diagnosed cases. Labels underneath each density plot show the 

estimated number of peaks in the smoothed distribution. 
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Ref 3/18:  

I would suggest breaking the section header “Longitudinal centile changes and novel 

data” in the main text into two distinct section sub-headings, as the two cover completely 

different topics. 

 

We have adopted this suggestion and now report these results under separate section headings 

in the main text. Please also see revised SI4 “Out-of-sample centile scoring: bias, stability 

and reliability” and SI14 “Longitudinal centiles” 

 

Ref 3/19:  

Main text, p. 8 (“Longitudinal centile changes and novel data” section): It is unclear if the 

quantification in the first paragraph (“all median <5%” and “~5% median difference”) 

reflects a percent difference (and if so, relative to what), or a percentage *point* difference 

(i.e., a 0.05 difference in centile values). 

 

This referred to a percentage point difference and has now been clarified in the main text. 

 

Ref 3/20:  

Fig 4C – too little detail to quickly grasp what was done. What is a cloned NSPN? 

 

We have completely revised Fig. 4 (now Fig. 5) in the main text and no longer include the sample 

size simulation in the main text. We have moved this aspect of our analyses to the supplementary 

materials where there is space to more fully describe the analyses. In revised SI4.5  “Effects of 

sample size on reliability of out-of-sample centile scores”, we have expanded the 

explanation of the clone studies, including updated Fig S4.5.  

 

<<The following changes were made to the main text>> 

 

In Out-of-sample centile scoring of “new” MRI data 
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Fig. 5. Schematic overview of brain charts, highlighting methods for out-of-sample centile scoring. 

Top panel: Brain phenotypes are measured in a reference dataset of MRI scans. GAMLSS modeling is 

used to estimate the relationship between (global) MRI phenotypes and age, stratified by sex, and 

controlling for technical and other sources of variation between scanning sites and primary studies. Bottom 

panel: The normative trajectory of the median and confidence interval for each phenotype is plotted as a 

population reference curve. Out-of-sample data from a new MRI study are aligned to the corresponding 

epoch of the normative trajectory, using maximum likelihood to estimate the study specific offsets (random 

effects) for three moments of the underlying statistical distributions: mean (𝜇), variance (𝜎), and skewness 

(𝝂) in an age- and sex-specific manner. Centile scores can  then be estimated for each scan in the new 

study, on the same scale as the reference population curve, while accounting for study-specific “batch 

effects” on technical or other sources of variation (see SI1.8 for details). 

 

<<The following changes were made to the supplementary information>> 

4.5. Effects of sample size on reliability of out-of-sample centile scores 

To assess the validity of the OoS estimates we generated ‘clones’ of existing datasets. Clones  

are resampled copies of studies included in the reference dataset used to estimate the study 

specific GAMLSS parameters, that are then treated as if they were “new” studies using the 

methods for out-of-sample centile scoring. This allows us to compare the OoS estimates to a 

relative truth, i.e., from the original, non-cloned version of the study included in the reference 

dataset, we know what the GAMLSS parameters ‘truly’ are, and we have an estimation of their 

‘true’ uncertainty from the bootstrap resampling distributions. Thus for a given study dataset, 𝐷𝑚 , 

we generate a cloned copy 𝐷1, and  if our approach is unbiased we expect the out-of-sample 

parameter estimates for 𝐷1 to be equal to the in-sample parameters estimated for 𝐷𝑚, i.e., 𝛾∙,𝑚 

(representing the set of random effects estimated by in-sample analysis of the original study 

treated as part of the reference dataset) should approximate 𝛾∙,1  (representing the set of random 

effects estimated by OoS analysis of the cloned study treated as a new dataset; - see SI1.8 “Out-

of-sample estimation” and Fig. S4.5. 
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In other words, we validated the OoS estimation by simulating a “new” study with the same 

underlying distribution used for one of the studies included in the reference dataset. Hence, we 

expect the OoS random-effect estimates for this ‘clone’ to agree with the in-sample  random-effect 

estimates. More formally, we are comparing 𝛾 = 𝑀𝐿𝐸𝛽,𝛾(𝐷) and 𝛾𝐶𝑙𝑜𝑛𝑒 = 𝑀𝐿𝐸𝛾(𝐷𝐶𝑙𝑜𝑛𝑒|𝛽(𝐷)), 

where the clone is contained within the data, i.e., 𝐷 ∩ 𝐷𝐶𝑙𝑜𝑛𝑒 = 𝐷𝐶𝑙𝑜𝑛𝑒; see SI1.8 “Out-of-sample 

estimation” for further details on OoS MLE estimation. As illustrated in Fig. S4.5, these 

simulations indicated good performance for the OoS approach for “new” study sizes greater than 

N=100 scans. 

 

 
Fig. S4.5. Out-of-sample estimates of cloned study random-effect parameters compared to in-

sample estimates of random-effect parameters in the original or non-cloned study. The plot shows 

random-effects estimated using the out-of-sample approach across a range of possible sample sizes for a 

“new” study, generated by taking subsets of the same cloned study with uncertainty intervals derived from 

the bootstrap replicates. The purple horizontal lines are the equivalent in-sample estimates of the random-

effects parameters. We see that the out of sample estimates are somewhat unreliable below N=100 

subjects, but with larger samples the out-of-sample estimates from the cloned data converge with the in-

sample estimates from the original data for both 𝜇-component and 𝜎-component random effects.  

 

Ref 3/21:  

Minor grammatical/syntactical errors in Supplement. (e.g., “each terms of the generalized 

gamma distribution”; lack of space between symbols/equations and following text). Other 

little errors in various places. The SI needs a careful proof-read before re-submission by a 

someone with an eye for these issues. 

 

All the supplementary materials have been thoroughly edited and checked by all co-authors in an 

effort to eliminate any grammatical, syntactical or formatting errors in the text or equations. 

 

Ref 3/22:  

Inconsistent formatting of “i.e.” and “e.g.” – both should always be followed by a comma. 

 

Thank you. This has now been corrected. 

 

Ref 3/23:  

Fig S1.1: Is “relative AIC” based on a *ratio* or *difference* to the lowest AIC value? If a 

ratio (which is what “relative” inherently implies) then seems odd that there is such a 

pronounced difference with the reference model. E.g., For GMV, all models except for 

“Generalized Beta type 2” had an AIC that was ~ 3000 times greater (or more) than the 

“Generalized Gamma”. 
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The relative AIC is based on a difference to the lowest AIC, not on a ratio. However,since BIC 

was the main criterion used for model selection we have replaced this figure to denote the relative 

BIC for each model instead (see also our later response to Ref 3/24).  

 

<<The following changes have been made to the Supplementary Information>> 

 

 
Fig. S1.1. Relative Bayesian information criterion (BIC) for each family of  distributions of cerebrum 

tissue volumes evaluated for GAMLSS modeling. Log BIC scores are shown in terms of their difference 

from the lowest BIC score, corresponding to the best-fitting form of the outcome distribution. All BIC values 

were scaled to the lowest value for each cerebrum tissue volume. For all phenotypes, a generalised gamma 

(GG) distribution provided the best fit. Distribution family acronyms are adapted directly from the way they 

are listed within the GAMLSS package 8.  

 

Ref 3/24:  

Fig S1.2: The y-axis labels are completely cryptic. Some ‘key’ is needed in the caption for 

understanding the naming convention. Also, caption should mention that the model being 

investigated is the generalized gamma. Additionally, the order of the phenotypes in Fig. 

S1.2 should match those in S1.1, and the figure titles should be simplified. Last, why the 

switch to BIC as a criterion vs. AIC? 

 

We accept that this figure was not accessible. It has been updated in line with the reviewer’s 

comments and a key has been added to the figure caption. We now report only model 

specification results using the BIC: see Fig S1.3. 

 

<<The following changes have been made to the Supplementary Information>> 

 

https://paperpile.com/c/yWP7Yw/iuOgJ
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Fig. S1.3. Optimization of GAMLSS model specification by analysis of the Bayesian information 

criterion (BIC) for multiple possible models on the generalised gamma distribution Here log BIC is 

plotted relative to the best-fitting model with lowest BIC for each combination of fractional polynomials and 

random effects for which the model converged. All BIC values were scaled to the lowest value for the set 

of models fitted to each cerebrum tissue volume (log-scored difference to the lowest scoring model). For 

all phenotypes, a model that included 3 polynomials for 𝜇 provided the best fit; and for all phenotypes other 

than sGMV the best fit also specified3 polynomials for 𝜎. The various models fitted are summarised by y-

axis labels denoting the base fractional polynomial configuration (“baseFO”) that are structured as follows: 

baseFO[a][b][c][x][y][z], where a-c denote the number of fractional polynomials included in the age term on 

𝜇, 𝜎, and 𝝂 respectively, and x-z denote whether a study random effect was estimated for each of the model 

components (1 means a study random effect was included, 0 means no study random effect was included).  
 

Ref 3/25:  

SI Section 1.3: The brief description of the “Model simulations” is generic and inadequate 

to understand what exactly was simulated. 

 

We agree that more detail is needed to explain the simulation studies. The relevant section of 

supplementary information has been expanded accordingly: see SI1.4 “Model simulations”. 

 

<<The following changes have been made to the Supplementary Information>> 

1.4 Model simulations 

In order to motivate the specific use of GAMLSS for lifespan modelling as done here, we designed 

a simulation scenario that matches our use case for a single outcome or MRI phenotype. 

Specifically, we simulated data from twenty studies across the lifespan. We simulated data on 

both healthy controls (CN)  and diagnosed cases (Dx), some with longitudinal follow-up, as well 

as study-specific random-effects. We chose the generalised gamma for the true outcome 

distribution with age and sex fixed-effects, random-effects within the 𝜇-component, and constant 

𝜎- and 𝜈-components. The lifespan relationship was quadratic with age. Importantly, the simulated 

data also included a subject-level random-effect,which is fitted by the GAMLSS model. This 

allowed us to set the within- and between-subject covariance, which in turn allowed us to assess 

the utility of the longitudinal centiles (see SI1.7 “Longitudinal centiles”).  
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Fig. S1.4.1. Simulated data for baseline observations. A | Female and male healthy controls (CN) 

coloured according to 20 simulated studies, highlighting the coverage of the lifespan and the within- and 

between-study variability. These simulated observations (N=13,500) were used to estimate lifespan curves 

with GAMLSS in order to motivate the application to real data. B | Healthy controls (CN) and diagnosed 

(Dx) individuals from each study (black and red respectively) (n=20,250). This simulation posits a diverging 

lifespan trajectory for Dx individuals,such that at the start of the lifespan CN and Dx overlap but gradually 

separate, which is induced by using different true age-related quadratics. The specific functional form of 

the CN and Dx curves are ((0.4 − 𝑥) ∗ (0.5 − 𝑥) + 1.8) and ((0.35 − 𝑥) ∗ (0.3 − 𝑥) + 1.55) respectively. 

(values were scaled for computational stability and visualisation purposes). 

 

The inclusion of individual-level random-effects within the simulation is necessary to induce a 

dependence between longitudinal observations. While the analysis shown in Fig. S1.4.1 only 

uses baseline observations, Fig. S1.4.2 illustrates the longitudinal follow-up for a subset of 

individuals across five of the twenty simulated studies for CN and Dx individuals to assess the 

capacity to model longitudinal trajectories. The simulated dataset also mimics the real world data 

with an uneven coverage of the lifespan, as shown in comparing Fig. S1.4.3 to Fig. 1A. 
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Fig. S1.4.2. Simulated data for longitudinal observations. An illustrative sample of individuals (250 from 

among 1,500 for clarity) with longitudinal follow-up within the simulated data coloured by CN (black) or 

cases (Dx: red). Within the simulation individuals have relatively stable longitudinal trajectories relative to 

the between person variation, implying longitudinal centiles will be relatively stable for both CN and Dx. 

 

 

 
Fig. S1.4.3. Box-violin plots show age distributions (log-scaled) of twenty simulated studies. The 

design of the simulation mimics the structure of the observed datasets, with some periods of the lifespan 

being represented by multiple studies, for example adolescence (studies C,S, P and L), while other periods 

have sparser coverage with fewer studies.  
 

Ref 3/26:  

Fig S1.3.[1-2]: Not clear what is being shown, or the point of these figures. Cryptic titles. 

Tiny font sizes. 

 

We accept the reviewer’s criticism of these figures in the original manuscript. The whole of 

supplementary section 1.3 (now SI1.4 “Model simulations”) has been rewritten and all the 

figures have been updated to improve their legibility and accessibility, as detailed in our earlier 

response to Ref 3/25. 

 

Ref 3/27:  

SI Section 1.4: What is the value/purpose of computing centile normalized z-scores rather 

than simply using the centile estimate itself? Per the text on p. 13, the latter accounts for 

study random-effects, while the normalized z-scores do not. Isn’t it a good thing to account 

for the study random-effects and thus wouldn’t the centile scores be preferable to the 

normalized z-scores? 
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We agree with the reviewer that centiles are likely preferable in most contexts, and indeed we 

strongly recommend using centiles as the default metric for any subsequent analysis. Normalised 

scores,based on the centile deviation of the population level random-effect, are discussed as an 

optional alternative to centile scores because they are scaled to the same units as the scored 

phenotype and so may be more interpretable in some contexts. Given that normalised scores use 

only the population level random-effects, they are only appropriate for scoring scans that were 

included in the  reference dataset,  i.e., only healthy controls. We now clarify this point in the 

section discussing normalised values: see SI1.5 “Centile normalisation”. 

 

<<The following changes have been made to the Supplementary Information>> 

 

In SI1.5 “Centile normalisation” 

These normalised values, 𝑤, are on the same scale as the original values, 𝑦, having been 

corrected for the study-specific effects:namely, the 𝜇-component and 𝜎-component study random-

effects. However, these corrections are only appropriate for scoring scans that were included in 

the reference dataset, i.e., healthy controls, and normalised values are therefore not useful for 

scoring scans from cases of clinical disorder or for out-of-sample scoring of “new” scans. We have 

included a brief consideration of normalised values, 𝑤, for completeness and because they may 

be more interpretable than centile scores in some contexts, since they are scaled to the same 

units as the scored phenotypes.  However, for most applications (including the case-control 

comparisons and out-of-sample analyses reported in this paper), we therefore strongly 

recommend the use of centiles.  

 

Ref 3/28:  

Fig S1.4: What is the point of this figure? What do the x and y-axes represent? Figure 

doesn’t appear to be referenced anywhere in the text. Also, another example where is it 

impossible to map the colors to a specific study. 

 

This figure was included to show how the GAMLSS model  adjusts the centile scores in a study 

specific manner. Given that these study specific curves are already available through the online 

tool, and in an effort to mitigate the volume of supplementary figures, we have chosen to remove 

this figure from the revised supplementary information. 

 

Ref 3/29:  

Main text refers to “SI1.6” for description of the CMD, but that definition is actually in SI1.5. 

Related to this, the main text says the CMD was somehow computed relative to the “CN 

median”, but SI1.5 says that the (usual) mean was used. 

 

We thank the reviewer for their keen eye for detail. The cross-referencing between the main text 

and supplementary information has been completely updated and is now correct. The method for 

CMD estimation has been clarified. In the case of the CN data, the mean and the median centile 

scores were actually identical (0.5). We now use the mean as it is more conventional, and this 

did not change any results.  

 

<<The following changes have been made to the Supplementary Information>> 

 

In SI1.6 Centile Mahalanobis distance 
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To create an integrated measure of normative deviation across all centile scores we computed a 

Mahalanobis distance20 in the 4-dimensional feature space relative to the normative mean across 

those phenotypes. This centile Mahalanobis distance (CMD), 𝐷𝑀 , can be formalised as follows: 

 

𝐷𝑀(𝑥) = √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇) (1.6.1) 

 

where 𝑥 denotes the set of observations across multiple phenotypes, μ denotes the mean across 

those observations, and S denotes the covariance matrix across both. The squared Mahalanobis 

distance is also equivalent to the sum of squares of all non-zero standardised principal 

components scores (as illustrated in Fig.4B). As such, CMD provides an indication of the distance 

of an individual from the centre of the normative multi-dimensional (multi-phenotype) space, 

taking into account the potential correlated structure of the dimensions (and thereby being 

arguably less sensitive to outliers along a single dimension than other possible distance metrics). 

The scale-invariant nature of CMD also makes it generalisable to  centile scores on additional 

MRI phenotypes as they are included in the future. 

 

Ref 3/30:  

SI Section 1.6: I would argue its debatable whether interquartile range is “well defined for 

two [or more] observations”, which forms the vast majority of the longitudinal samples in 

the study. (A number of on-line calculators require at least 3 values, and even with 3 values 

the notion of “IQR” seems sketchy. The appropriateness of IQR with such a small number 

of values seem to merit additional justification. 

 

We thank the reviewer for encouraging us to further expand on the justification of IQR as a 

measure of within-subject variability. There are in fact multiple definitions used to operationalise 

IQR (9 in GNU R alone). We now further clarify the definition we chose and why this one is 

appropriate for 2 or more observations: see SI1.7 “Longitudinal centiles”. 

 

<<The following changes have been made to the Supplementary Information>> 

 

Thus, comparing longitudinal centiles, with varying numbers of observations per individual, is 

approached via a univariate summary statistic. A univariate summary for variation across 

observations will assess the stability of the centiles within an individual. The summary must be 

valid for two or more observations, the minimal longitudinal follow-up period, and be comparable 

across individuals. The range, i.e., 𝑚𝑎𝑥( 𝑞𝑖𝑗1, 𝑞𝑖𝑗2, ⋯ , 𝑞𝑖𝑗𝑚  ) − 𝑚𝑖𝑛( 𝑞𝑖𝑗1, 𝑞𝑖𝑗2, ⋯ , 𝑞𝑖𝑗𝑚  ), would be 

well defined for two or more observations; however, the range is susceptible to outliers and 

statistically unstable under small samples. Instead, the interquartile range (IQR) acts as a robust 

equivalent of the range (in the same way that the trimmed mean is a robust version of the mean). 

However, unlike the trimmed mean which requires a large enough sample, the IQR is valid for 

small samples. Unfortunately there is not a single definition of the IQR (there are 9 different 

definitions available within GNU R), and some versions are not defined for two observations. We 

use IQR calculated as a continuous value by linear interpolation (within GNU R the default, type 

7), which is well defined for two observations. 
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Ref 3/31: 

Fig S1.6.[1-2]: These results will be highly dependent on the specifics of the simulation, 

but per above, sufficient details on the simulation aren’t provided to interpret these figures 

properly. Another example of cryptic axis labels and captions that are insufficient to 

understand the purpose of the figure. 

 

We have expanded the explanation of the simulation:see revised SI1.4 “Model simulations” and 

SI1.7 “Longitudinal centiles”, as well as our earlier response to Ref 3/25. The key aspect is an 

individual-level random-effect within the simulation in order to incorporate dependence between 

longitudinal follow-up observations. We have also expanded the figure captions to explain the 

purpose of the simulation:see revised Figs S1.7.1 and S1.7.2.  
 

<<The following changes have been made to the Supplementary Information>> 

 

 
Fig. S1.7.1. Comparing baseline centiles between healthy controls (CN) and diagnosed cases (Dx) 

in simulated data. The CN and Dx simulations follow two distinct lifespan trajectories, both quadratic in 

shape and starting slightly offset in early life, both peaking in mid-life with growing divergence, and fully 

diverging in later life. The analysis of simulated data is formally equivalent to the analysis of observational 

data and the GAMLSS model is fitted to only simulated data of CN baseline scans. The figure shows the 

distribution of baseline centile scores across the twenty simulated studies (spanning different ranges of the 

lifespan, in four groups: A-J, K-O, P-R, S-T; see Fig S1.4.3). We note that the Dx centiles are not uniformly 

distributed between zero and one, but are skewed to the lower end of the distribution as expected from the 

simulation scenario: namely, that the Dx simulations are always below the fitted CN lifespan trajectory. 

Further, the skewness of the Dx centiles increases later in the lifespan (compare study J to study A). 

Conversely, the CN centile distributions are uniformly distributed from zero to one as expected. 
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Fig. S1.7.2. Comparison of interquartile range (IQR) of observed longitudinal centiles between 

healthy controls (CN) and cases (Dx) in simulated data. Simulations P-T included longitudinal follow-up 

data for CN and Dx (non-CN) individuals. As described, the simulated analysis model (fit to the CN baseline 

observations) is used to derive centile scores for all observations, Dx and longitudinal. Taking the IQR as 

a summary statistic of within-subject variability of longitudinal centiles, the boxplots for CN simulations 

highlight the stability of longitudinal centiles over follow-up. For the non-CN simulations, we see an echo of 

the effect from Fig S1.7.1; importantly the collapse of IQR variability towards zero does not imply the Dx 

centiles are more stable per se but rather the Dx status might coincide with more limited variability by being 

confined to the tail end of the distribution. This plot confirms that cross-sectional brain charts can be used 

to benchmark longitudinal measurements. 

 

Ref 3/32:  

SI Section 1.7: Presumably, the ‘F’ in the equations on p. 19 represents the fixed effects 

(and not the ‘F’ of the CDF defined on p. 12)? Also, it’s not defined what it means to make 

a “clone” of a study in the simulation. 

 

The reviewer is correct. 'F' represents the fitted model and hence the fixed-effects (for the mu-, 

sigma- and tau-components). We recognise that the mathematical notation within this section 

was not clear and we have re-written it to avoid duplicating symbols unnecessarily: see SI1.8 

“Out-of-sample estimation”. 

 

<<The following changes have been made to the Supplementary Information>> 

 

In SI1.8 Out-of-sample estimation 

 

Let 𝐷 = {𝐷1 , 𝐷2, 𝐷3, . . . , 𝐷𝑘} be the combined datasets used to estimate the model parameters,  

specifically the fixed-effects for each component of the GAMLSS model, 𝛽 = (𝛽𝜇, 𝛽𝜎 , 𝛽𝜏 , 𝛽𝜈), and 

the study-specific random-effects for each component, 𝛾 = (𝛾𝜇 , 𝛾𝜎 , 𝛾𝜈, 𝛾𝜏), where each 𝛾 contains 

a parameter for each dataset 𝐷𝑖  ,i.e., 𝛾𝜇 =  (𝛾𝜇,1, 𝛾𝜇,2, 𝛾𝜇,3, . . . , 𝛾𝜇,𝑘). 

 

In symbolic terms, we may consider the set of fixed- and random-effects from our model to be 

obtained from fitting the GAMLSS model, 

 

(𝛽𝐷 , 𝛾𝐷)  =  𝐺𝐴𝑀𝐿𝑆𝑆( 𝐷 ) (1.8.1) 

 

where 𝛽𝐷 and 𝛾𝐷 are the maximum likelihood estimates of the fixed- and random-effects, 

respectively, from the GAMLSS model conditional on a given dataset, 𝐷. Note that the GAMLSS 

model includes specification of the functional form, namely the fractional polynomial specification; 

however, during OoS estimation the fractional polynomial specification of the GAMLSS model is 

fixed and hence has been omitted here for clarity. 

 

For a “new” dataset, say 𝐷𝑚, we require inference on its study-specific random-effects 

parameters. However, we condition on the fixed-effects parameters from Eq 1.8.1, namely 𝛽𝐷. 

We can obtain these estimates from a conditional maximum likelihood estimator (MLE). 

 

𝛾∙,̇𝑚 = (𝛾𝜇,𝑚 , 𝛾𝜎,𝑚 , 𝛾𝜈,𝑚 , 𝛾𝜏,𝑚) = 𝑀𝐿𝐸 ( 𝐷𝑚  | 𝛽𝐷). (1.8.2) 
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Combining the OoS estimate of study-specific random-effects with the fixed-effects, we can derive 

centile scores for the new study in the same way as centile scores are calculated for studies that 

were included in the reference dataset. 

 

Ref 3/33:  

Fig S2.1.1: Some context for how to interpret a “detrended transformed Owen’s plot” 

would be helpful (more obscure than Q-Q plots). 

 

More context and explanation on this is now provided, although we note that we also provide the 

more conventional Q-Q plot assessment: see SI3.1 “Model diagnostics”. 

 

<<The following changes have been made to the Supplementary Information>> 

 

In SI3.1 “Model diagnostics” 

Detrended transformed Owen’s plots (DTOPs) are an alternative visual approach to assessing 

the adequacy of a fitted distribution, derived from a non-parametric approach to the data that uses 

the empirical samples to derive uncertainty intervals. DTOPs  have the slight advantage over the 

traditional Q-Q (quantile-quantile) plots of being more flexible in relation to the form of the 

distribution and thus provide a way to compare goodness-of-fit  across different distributions. Q-

Q plots for GAMLSS fits are derived using transformations of the residuals, from the uniform 0–1 

scale to the more familiar normal (Gaussian) distribution, hence they are based on a parametric 

approach. Neither approach alone is definitive for assessing GAMLSS fits, and Stasinopoulus7 

recommends a variety of approaches including both Q-Q plots and DTOPs. 

 

Ref 3/34:  

SI Section 2.2.2. Were the stratified bootstrap samples generated by sampling relative to 

the proportion of the strata in the original data? If so, wouldn’t the results be primarily 

sampling the variability of the UK-Biobank and ABCD data since the bootstraps would 

always be dominated by data selected from ABCD and UK-Biobank? 

 

We have added text to clarify our bootstrap resampling procedures and to justify our use of a 

stratified bootstrap approach. In addition, we conducted a leave-one-study-out analysis to show 

that our findings are  not in fact unduly dominated by the few large studies: see SI3.2.2 

“Bootstrap analysis”. 

 

<<The following changes have been made to the Supplementary Information>> 

 

The bootstrap replicates were stratified by study and sex, which maintains the relative proportions 

of the original datasets. We have chosen to stratify on sex since it is one of our primary fixed-

effects of interest within the GAMLSS model, hence it was important to ensure that the bootstrap 

resampling was representative of  the relative sex proportions within studies. With regard to 

stratifying by study, there are two inter-linked considerations: between-study differences in 

sample size and lifespan coverage. Failing to stratify by study sample size could cause a study 

to be omitted entirely from a bootstrap replicate, or more typically to have a smaller or greater 

number of observations, meaning the bootstrap intervals would be incoherent for study-level 

inference. More importantly, the normative trajectories are derived from studies across the 

lifespan, but each study only partially covers the lifespan; hence failing to stratify by study age-

range could alter the bootstrap distribution and lead to incoherent confidence intervals for the 

https://paperpile.com/c/yWP7Yw/rtZr5
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lifespan curves.The foetal and early postnatal periods  of the lifespan would be particularly 

vulnerable to this effect because relatively few studies have covered this age range. Our LOSO 

analysis showed that the lifespan curves were not in fact unduly affected by the removal of any 

single study (even large ones, for example ABCD and UK-Biobank).  

 

Ref 3/35:  

Fig S2.2.3: Why are the studies ordered in reverse alphabetical order, rather than 

alphabetical order, which would be more intuitive? 

 

Thanks for picking this up. The studies are now ordered alphabetically and this reorganization 

has been propagated into SI7.2 “Extended global cortical phenotypes” for the extended global 

MRI phenotypes. 

 

Ref 3/36:  

SI Section 2.3: The following statement is a bit imprecise: “whereas in the reference 

prediction curves the FreeSurfer contribution is equivalent to the grand-mean across all 

versions (across all studies), meaning the reference prediction curves do not represent 

any specific FreeSurfer version”. Namely, the grand-mean would weighted by the 

proportion of given FS versions, and thus depending on those proportions, might be close 

to a specific FS version. Indeed, SI Table 1.3 shows that the vast majority of cases were 

processed with FS 6.0 (either T1 only, or T1+T2), so the reference prediction curve would 

be strongly weighted to FS 6.0 (to the extent that FS version has a meaningful impact – 

see Item (2)). 

 

The reviewer is correct. The interpretation of the grand-mean trajectory over all versions of 

FreeSurfer is influenced by the relative frequency of different versions of FreeSurfer, and we have 

amended this sentence accordingly. However, we stress that as discussed in SI1 “Modelling 

lifespan trajectories of brain maturation”, our models account for the software version as an 

additive (on the link-scale) effect, meaning that  all study- and individual-level centiles use the 

appropriate software variable rather than the grand-mean when centiles are estimated.  

 

<<The following changes have been made to the Supplementary Information>> 

 

In SI3.3 Study specific curves 

The study-specific prediction curves are obtained using the same method as the reference 

prediction curves described in SI1.4, using the mu-, sigma- and nu-component equations 

(Eq1.5.1) to calculate the predicted median (i.e., 50th percentile of the outcome distribution) 

across age and sex. However, there are two important differences. Firstly, we include a study-

specific random-effect (where present) within the prediction calculations (i.e., random-effect terms 

within the component equations; Eq1.1-1.2), whereas in the reference prediction curves these 

are all set to zero (effectively not included). Secondly, the study-specific predictions are for the 

most common FreeSurfer version used within that study (if multiple FreeSurfer versions were 

used), whereas in the reference prediction curves the FreeSurfer contribution is equivalent to the 

grand-mean across all versions (across all studies), meaning the reference prediction curves 

correspond to a weighted average of FreeSurfer versions. All study- and individual-level analyses 

appropriately adjust for the specific version of FreeSurfer used . 
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Ref 3/37:  

Fig S2.4: In panel (B), why is “Model derived TBV” shown on the x-axis, whereas in all the 

other panels, the “model derived” value is shown on the y-axis? 

 

Thanks for picking up this inconsistency. We have relabelled the axes in panels A, C and D; see 

revised figure, now Fig S3.4. 

 

<<The following changes have been made to the Supplementary Information>> 

 

 
Fig. S3.4. Validation of lifespan model-predicted values in independent datasets and modalities. A | 

Three foetal ultrasound datasets, B | two head circumference reference norms (foetal=INTERGROWTH 

consortium, postnatal=WHO), C | a brain MRI dataset not included in the present models with only binned 

ages available, and D | four independent post-mortem brain weight datasets across the postnatal lifespan33 

(GTEx: https://gtexportal.org/home/, PsychENCODE: https://psychencode.synapse.org/). The 

neuroimaging models demonstrated high correlations (predicted vs. empirical values) across each of these 

modalities, thus showing the potential for inter-modal aggregation in future work.  

 

Ref 3/38:  

Fig S4.1.1: The precision on the x-axis for the “Late midfetal” and “Late fetal” windows is 

insufficient to ascertain the actual time window being plotted (i.e., evidenced by the fact 

that multiple ticks display the same x-axis value). 

 

Thanks for this feedback. We have increased the granularity of the axis labels  in the revised 

figures, now Figs S9.1.1 and S9.1.2  in SI9.1 “Trajectories within developmental epochs”.  

 

<<The following changes have been made to the Supplementary Information>> 

https://paperpile.com/c/yWP7Yw/o1rbL
https://gtexportal.org/home/
https://psychencode.synapse.org/
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9.1 Trajectories within developmental epochs 

To clarify the developmental trajectories at different stages across the lifespan below we provide 

the fitted trajectories on a non-log scale for each of the lifespan windows defined by Kang et al.50 

 
Fig. S9.1.1. Normative trajectories of median (and 2.5-97.5% centile boundaries) of cerebrum tissue 

volumes. As shown in main Fig. 1, but stratified by age-defined developmental windows – from late 

midfoetal to late adulthood – and plotted on natural scale of age in years (x-axis) to allow further 

examination of the trajectory shapes over time. 

 

 
 

Fig. S9.1.2. Normative trajectories of median (and 2.5-97.5% centile boundaries) of extended global 

MRI phenotypes stratified by age-defined tdevelopmental windows – from late midfoetal to late 

https://paperpile.com/c/yWP7Yw/T4dnZ
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adulthood – and plotted on natural scale of age in years (x-axis) to allow further examination of the 

trajectory shapes over time. 
 

Ref 3/39:  

Fig S4.1.2: Why, in a number of the panels, is the solid line seemingly outside of the dashed 

lines representing the 95% CI? 

 

We thank the reviewer for noticing this discrepancy, which was due to a plotting artefact related 

to variable line thickness. None of the solid lines actually fall outside the confidence bounds. We 

observe that for two developmental windows the estimated  trajectory for between-subject 

variability of WMV is indeed close to the boundary of the 95% confidence interval, which likely 

reflects an increase of skewness of the distribution of WMV variability in that age-range. The 

figure has now also been updated with the inclusion of additional data: see revised Figs S9.1.3 

and S9.1.4. 

 

<<The following changes have been made to the Supplementary Information>> 

 

 
Fig. S9.1.3. Normative trajectories of between-subject variability (and bootstrapped confidence 

interval) of cerebrum tissue volumes. As shown in main Fig. 1, but stratified by age-defined 

developmental windows – from late midfoetal to late adulthood – and plotted on natural scale of age in 

years (x-axis) to allow further examination of the trajectory shapes over time. 
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Fig. S9.1.4. Normative trajectories of between-subject variability (and bootstrapped confidence 

interval) of extended global MRI phenotypes stratified by age-defined developmental windows – 

from late midfoetal to late adulthood – and plotted on natural scale scale of age in years (x-axis) to 

allow further examination of the trajectory shapes over time. 
 

Ref 3/40:  

Fig S5: I would suggest using ‘Centile’ rather than ‘Quantile’ for the y-axis label, consistent 

with the terminology in the caption, and the use of ‘centile’ throughout the manuscript. 

(Not only does the caption not use the term ‘quantile’, but ‘quantile’ isn’t used a single 

time throughout the main text or SI text). Also, averaging across phenotypes is not strictly 

the same as computing a centile score for the single summary TCV measure – thus I would 

suggest avoiding the imprecise claim that it is “akin to computing a centile score for TCV”. 

(If you want the true centile score for TCV, compute them directly). Similarly, labels in Fig 

S9.4 use the term quantile rather than centile.  

 

We agree it is important to use centile and other terms consistently throughout the paper. We 

have now corrected the title of this figure and removed the phrase “akin to computing a centile 

score for TCV” from the legend; see SI12 “Associations of birth weight and gestational 

duration with centile scores on cerebrum tissue volumes” including new Fig. S12. We also 

note that we have now computed centile scores for TCV in the revised manuscript; see SI7 

“Extended global cortical phenotypes”. 

 

<<The following changes have been made to the Supplementary Information>> 

12. Associations of birth weight and gestational duration with centile scores 

on cerebrum tissue volumes  

To examine the effects of early life stress on centile scores, we examined 5 independent samples 

across the lifespan with self-reported gestational age at birth and/or birth weight (dHCP, neonatal; 

UNC, neonatal and early infancy/childhood; ABCD, late childhood; NIH, 

childhood/adolescence/young adulthood; UKB, mid-late adulthood). Average centile scores on all 

four cerebrum tissue volumes were significantly related to multiple metrics of premature birth 
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across datasets (gestational age at birth, t = 13.164, P < 2e-16; birth weight, t = 36.395, P < 2e-

16). This corroborates previous work indicating the ability to capture relationships between early 

life factors such as birth weight and brain volumetrics measured several decades later72.  

 

Fig. S12. Relationships between centile scores on cerebrum tissue volumes and birth weight (left 

panel) and gestational age at birth (right panel) for each of 5 primary studies with relevant data 

available. Centile-normalised z-scores were computed for each phenotype in each individual study and 

then averaged across phenotypes to compute a mean centile z-score for each subject. The black dashed 

lines represent the relationships between mean centile scores and birth weight or gestational age at birth   

estimated by a linear mixed-effects model: for gestational age at birth, t = 13.164, P < 2e-16; for birth weight, 

t = 36.395, P < 2e-16. The black dotted line in the right panel denotes the commonly-used threshold for 

defining premature birth at 37 weeks post-conception. 

 

Ref 3/41:  

In the main text, SI7 and SI8 are referenced before first mention of SI4-6. It would be 

preferable if the SI material is numbered and ordered such that it can be introduced 

sequentially within the flow of the main text. 

 

We agree. We have restructured the supplementary information after the addition of new material 

and all SI text, figures and tables are now ordered and numbered in alignment with the sequence 

of their citations in the main text.   

 

Ref 3/42:  

SI Section 7.1: What symptomology variables and criteria were used for assigning the 

ABCD and UK-Biobank data into clinical (“non-CN”) cohorts? 

 

We have clarified these details in the relevant section on these datasets in the supplemental 

materials SI19 “Dataset descriptions”.  

https://paperpile.com/c/yWP7Yw/BeOjk
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In UKB - UK Biobank: 

Individuals were included in the reference dataset as  healthy controls (CN) based on the 

response recorded in data-field 20544 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20544) of the UKB mental health 

questionnaire, including only individuals who had never had mental health problem diagnosed by 

a mental health professional. 

In ABCD 

Individuals were included in the reference model as healthy controls (CN) based on the parental 

response to the ABCD screening and risk questionnaire 

(https://nda.nih.gov/data_structure.html?short_name=abcd_screen01)  indicating the individual 

had never been diagnosed with a mental health disorder. 

 

Ref 3/43:  

Fig S7.1 and S9.3.1: Preferably, the colors used would be matched to those in Figure 3 for 

consistency in presentation. 

 

We agree. In the revision, all figures have been updated to conform to the same NPG-style colour 

template. Note that these specific figures have now been merged into revised SI10 “Clinical 

applications of centile scores” where all case-control differences are now discussed for clarity. 

 

<<The following changes have been made to the Supplementary Information>> 

 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20544
https://nda.nih.gov/data_structure.html?short_name=abcd_screen01
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Fig. S10.1.1. Case-control and between-disorder comparisons of centile scores on cerebrum 

volumes. The same as shown in main Figure 4A but not limited to comparison with the CN group only. 

Asterisks indicate significance after FDR correction (q<0.001) as computed using Monte Carlo permutation 

tests and the Benjamini-Hochberg56 procedure to correct for multiple comparisons entailed by all possible 

pairwise tests. Abbreviations; Control (CN), Alzheimer's Disease (AD), Attention Deficit Hyperactivity 

Disorder (ADHD), Anxiety or Phobia (ANX), Autism Spectrum Disorder (ASD), anxiety or phobic disorders 

(ANX), Mild Cognitive Impairment (MCI), Major Depressive Disorder (MDD), Schizophrenia (SCZ); Grey 

Matter Volume (GMV), Subcortical Grey Matter Volume (sGMV), White Matter Volume (WMV), Ventricular 

Cerebrospinal Fluid (CSF). 

 

The same case-control analysis was performed for the three extended global MRI phenotypes. 

Fig. S10.1.2 shows significant differences relative to the CN group in a similar presentation as 

represented in Fig. 4A. All significant pairwise combinations are visualised in Fig. S10.1.3 and 

all statistical pairwise effect-sizes and P-values are provided in ST3.5-3.7. 

 

https://paperpile.com/c/yWP7Yw/LROOe
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Fig. S10.1.2. Case-control differences of centile scores on extended global MRI phenotypes. Centile 
distributions for each of the clinical disorders with N>500 cases relative to the CN group median (depicted 
as a horizontal black line). The top row depicts the male only subset, the bottom the female only subset. 
The deviation in each clinical group is overlaid as a lollipop plot (white line with circle corresponding to the 
clinical group median). Pairwise tests for significance were done using Monte Carlo permutation (10,000 
permutations) and P-values adjusted using the Benjamini-Hochberg FDR procedure for the multiple 
comparisons entailed by testing allpossible pairs. Only significant differences to CN (corrected P<0.001) 
are depicted here and highlighted with an asterisk. For a complete overview of all pairwise comparisons, 
see supplementary tables ST3.5-3.7. Abbreviations; control,CN; Alzheimer's disease, AD; attention deficit 
hyperactivity disorder, ADHD; autism spectrum disorder,ASD; anxiety or phobic disorders (ANX); mild 
cognitive impairment, MCI; major depressive disorder, MDD; schizophrenia, SCZ; grey matter volume, 
GMV; subcortical grey matter volume, sGMV; white matter volume, WMV; ventricular cerebrospinal fluid 
volume, CSF. 
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Fig. S10.1.3. Case-control and between-disorder comparisons of centile scores on extended global 

MRI phenotypes. The same as shown in main Fig. 4A and S10.1.1 but not limited to comparison with the 

CN group only. Asterisks indicate significance after FDR correction (q<0.001) as computed using Monte 

Carlo permutation tests and using a Benjamini-Hochberg56 correction to correct for multiple comparisons 

accounting for all possible pairwise combinations. Abbreviations; control, CN;, Alzheimer's disease, AD; 

attention deficit hyperactivity disorder, ADHD; autism spectrum disorder, ASD; anxiety or phobic disorders 

(ANX); mild cognitive impairment, MCI; major depressive disorder, MDD; schizophrenia, SCZ; grey matter 

volume, GMV; subcortical grey matter volume, sGMV; white matter volume, WMV; ventricular cerebrospinal 

fluid volume, CSF. 
 

 

Ref 3/44:  

Fig S7.2.[1-3]: Very complex, with minimal guidance as to what is being shown. 

 

These figures were intended to show case-control comparisons for a more lenient inclusion 

threshold on the number of cases per diagnostic category, to provide some context for the main 

figure (current Fig.4) which only depicted clinical disorders that had N>500 cases in a given 

diagnostic category. However, on reflection, we agree with the reviewer that these figures were 

very difficult to read in printed form. We have therefore now removed Figs S7.2.1 and S7.2.2 from 

https://paperpile.com/c/yWP7Yw/LROOe
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the Supplementary Information. The data they represented are now provided instead by  

supplementary tables ST 3.1-3.28, which have been updated to include Cohen’s d effect size 

estimates, as well as P-values, for each comparison. Additionally, we have noted in the 

supplementary information, that the online tool  allows users to explore pairwise comparisons for 

any possible pair of clinical disorders (regardless of N), albeit using parametric pairwise t-tests 

rather than the computationally more intensive resampling-based inference used for the reported 

analyses 

 

Ref 3/45:  

Fig S7.4, panel B: Would be more intuitive if larger absolute mean differences were shown 

in the “hot” color (yellow), rather than the “cool” color (blue). 

 

The figure has been updated to conform to the same NPG style colour palette as all other figures, 

and specifically panel B has been adjusted to have a divergent colour scale, with white  zero 

centered; see Fig. S10.4.  

 

<<The following changes have been made to the Supplementary Information>> 

 

In 10.3 Case-control differences on CMD 

In order to determine whether centiles provided  sensitivity to detect  case-control differences 

over all clinical groups at specific developmental epochs, we conducted an exploratory analysis 

using developmental windows as defined by Kang et al.50 Specifically, we re-coded all diagnostic 

labels to either healthy controls (CN) or diagnosed cases of any disorder (DX), then estimated 

the centile Mahalanobis distance (CMD; analogous to Fig. 4) across the four cerebrum tissue 

volumes relative to the  CN group mean (0.5). Then we ran two-sided Monte Carlo permutation 

tests (10,000 permutations) on CMD within each developmental window. We found overall case-

control differences in CMD across the lifespan (Fig. S10.3), indicating that relatively increased 

CMD - a multivariate marker of atypicality - was associated with DX status. These differences 

were most strongly pronounced in late adulthood (mean difference, 0.655, P<0.001; Cohen’s 

d=0.25), middle/late childhood (mean difference=0.493, P<0.001; Cohen’s d=0.24), adolescence 

(mean difference=0.512, P<0.001; Cohen’s d=0.24), young adulthood (mean difference, 0.363, 

P<0.001; Cohen’s d=0.17) and middle adulthood (mean difference, 0.133, P<0.001; Cohen’s 

d=0.06). In foetal, neonatal, and very early childhood, the current dataset was insufficiently 

powered to determine gross differences on disease status (Fig. S10.3, panel B label provides the 

number of individuals with any kind of diagnostic label).  

 

https://paperpile.com/c/yWP7Yw/T4dnZ
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Fig. S10.3. Case-control differences, between healthy controls (CN) and all diagnosed cases (DX), 

for centile Mahalanobis distance (CMD) over all four cerebrum tissue volumes  at each   

developmental window over the life-span. A | The relative distributions of CMD for CN and DX groups 

in each developmental window. B | The point-range plot of the P-values and their confidence intervals as 

computed using a Monte Carlo permutation test (10,000 permutations). Labels above each point indicate 

the number of individuals in the DX group in each developmental window. The red-dotted line shows P=0.01 

 

Ref 3/46:  

Fig S7.5.[1-3]: Not clear what point is being made with the inclusion of these figures. 

 

The point of including these figures is to clarify the rationale for our preferred choice of centile 

Mahalanobis distance as a summary metric of an individual’s deviation from multiple normative 

trajectories of multiple univariate phenotypes.  Section SI7.5 “Summary centile comparison” 

(now SI10.4 “Summary centile comparison”) explores the different methods for summarising 

multiple centile scores for each subject. The purpose of this comparison is to distinguish the 

multivariate  statistic  of centile Mahalanobis distance (CMD) from the average of the univariate 
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centile scores for each of the MRI phenotypes. As also noted in response to Ref 3/16, CMD is 

unlike a simple average because it explicitly quantifies deviation (from 0.5, the center of the centile 

distribution) based on the principal component space of all constituent centiles, and therefore 

exploits the intrinsic covariance between the phenotypes. Fig S10.4.1 plots the distribution of the 

two summary metrics across subjects, stratified by the binary variable of healthy control (CN) 

versus diagnosed cases (DX, with any clinical disorder. This demonstrates that i) CMD and mean 

centile have different distributions across subjects, and ii) these distributions are largely similar 

between CN and DX groups overall. Figs S10.5.2-3 represent the two summary metrics for each 

clinical disorder, revealing the differences between them across diagnostic categories.  

 

<<The following changes have been made to the Supplementary Information>> 

10.4 Summary centile comparison  

Here we highlight the difference in two summary centile metrics that could be used to characterise 

(a)typicality across all neuroimaging phenotypes: the mean centile and the centile Mahalanobis 

distance. The mean centile is simply the average of the centile scores for all 4 cerebrum tissue 

volumes for a given subject. The centile Mahalanobis distance (CMD) is a summary dispersion 

metric, which is statistically distinct from the mean (see Fig. S10.3, Fig. S10.4.1 and SI1.6). 

Whereas the mean centile score is normally distributed across subjects, CMD is skewed—biased 

towards lower estimates. Thus, while the mean centile can obscure correlated changes in 

phenotypes—such as increased CSF with decreased GMV in AD patients—CMD can directly 

capture this covariation. Overall, both metrics showed relatively similar distributions in diagnosed 

cases and healthy controls (Fig. S10.4.1), with highly varying estimates across diagnostic groups 

(medians for each category plotted in Fig. S10.4.2 and Fig. S10.4.3).   

 

 
Fig. S10.4.1. Hex plot showing all-case-control  differences (between healthy controls (CN) and  all 

cases regardless of diagnostic category (DX) of centile scores averaged across phenotypes (mean 

centile) versus the preferred multivariate metric of centile dispersion (CMD: centile Mahalanobis 

distance). Count refers to the hex-binning percentage of the total dataset within the CN and DX groups. 

Thus, as each coloured hexagon represents multiple data points (subjects), it is clear that both groups show 

a skewed distribution for CMD despite a relatively normal distribution for the mean centile (with DX having 

a preponderance of subjects with low mean centiles, see Fig. S11.1).  
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Ref 3/47:  

Fig S8.[1-2]: Needs a more detailed caption explaining what is being shown. e.g., What do 

“years” and “total” represent? Also, why is no clustering shown for S8.1 – was k=1 the 

optimal clustering? 

 

We thank the reviewer for pointing this out. The optimal clustering (k clusters) was determined by 

using the gap statistic, which is now added to the captions (k=1 for Fig. S11.2.1 and k=3 for Fig. 

S11.2.2). The captions also have been corrected to contain information linking the legend scales 

and the accompanying annotations on the x-axis of each heatmap. These changes are reflected 

in the updated and renumbered SI11 “Cross diagnostic analyses”.  

 

<<The following changes have been made to the Supplementary Information>> 

 

 
Fig. S11.2.1. Profiles of centile scores for median cerebrum tissue volumes (GMV, WMV, sGMV, 

CSF), centile scores for between-subject standard deviation of cerebrum tissue volumes (GMVv, 

WMVs, sGMVv, CSFv), mean age, percentage female,  and number of primary studies for 7 clinical 

disorders with N > 500 cases, as per Fig. 3. Legend (x-axis and right annotation): 'years' corresponds to 

'age' and represents median age of the diagnostic groups, '% female' corresponds to 'sex' and represents 

the percentage of female patients in each diagnostic group, 'total' corresponds to 'study' and represents 

the number of studies containing patients in the respective diagnostic group. Values of each cell represent 

z-scores of median centiles (row-wise across diagnostic groups) for visualisation. Clustering was 

determined using the gap statistic (k=1). Lowercase 'v' stands for 'variability' and was calculated as the 

standard deviation (rather than median), and was Z-scored as per the median centiles for each phenotype 

across diagnostic groups. Abbreviations: Alzheimer's disease, AD; attention deficit hyperactivity disorder, 

ADHD; autism spectrum disorder, ASD; anxiety or phobic disorders (ANX); mild cognitive impairment, MCI; 

major depressive disorder, MDD; schizophrenia, SCZ; grey matter volume, GMV; subcortical grey matter 

volume, sGMV; white matter volume, WMV; ventricular cerebrospinal fluid volume, CSF. 
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Fig. S11.2.2. Hierarchical clustering of clinical disorder profiles of median and standard deviation 

of centile scores on cerebrum tissue volumes. Centile profiles using a less-stringent N<500 cutoff for 

the number of patients with similar diagnoses, as per Fig.S10.5.2 above. Legend (x-axis and right 

annotation): 'years' corresponds to 'age' and represents median age of the diagnostic groups, '% female' 

corresponds to 'sex' and represents the percentage of female patients in each diagnostic group, 'total' 

corresponds to 'study' and represents the number of studies containing patients in the respective diagnostic 

group. Values of each cell represent z-scores of median centiles (row-wise across diagnostic groups) for 

visualisation. Clustering was determined using the gap statistic (k=3). Lowercase 'v' stands for 'variability' 

and was calculated as the standard deviation (rather than median), and was z-scored as per the median 

centiles for each feature across diagnostic groups. Abbreviations: Alzheimer's disease, AD; attention deficit 

hyperactivity disorder, ADHD; anorexia nervosa or bulimia nervosa, AN/BN; anxiety or phobia, ANX; autism 

spectrum disorder, ASD; bipolar disorder, BD; fronto-temporal dementia, FTD; Lewy body dementia, LBD; 

mild cognitive impairment, MCI; major depressive disorder, MDD; obsessive-compulsive disorder, OCD; 

Parkinson’s disease, PD; schizophrenia, SCZ.   

 

 

Ref 3/48:  

Fig S9.1: Second column is labelled “Age range (log-transformed)”. Age-range of what? 

What are the units (day, weeks, years)? 

 

Thank you for picking this up. This x-axis label refers to the duration of follow-up, between 

baseline and final follow-up scans, for participants with longitudinal data; the units are log-

transformed years. The x-axis labels and figure legends have been revised accordingly for Figs 

S14.1.1 and S14.1.2.   

 

<<The following changes have been made to the Supplementary Information>> 
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Fig. S14.1.1. Overview of possible associations between within-subject variation (interquartile 

range, IQR) of  longitudinal centile scores on cerebrum tissue volumes and factors that could 

influence longitudinal stability of centile scores. First column shows the IQR in relation to the 

individual’s age (in years) at the time of their baseline scan. Second column shows the length of follow-up 

(in years, log-transformed) between the baseline scan and the final follow-up scan. Third column shows 

the IQR in relation to the number of longitudinally repeated scans available per participant. 
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Fig. S14.1.2. Overview of possible associations between within-subject variation (interquartile 

range, IQR) of the longitudinal centile scores on extended global MRI phenotypes and likely factors 

that could influence longitudinal stability of centile scores First column shows the IQR in relation to 

the individual’s age (in years) at the time of their baseline scan. Second column shows the length of follow-

up (in years, log-transformed) between the baseline scan and the final follow-up scan. Third column shows 

the IQR in relation to the number of longitudinally repeated scans available per participant. 

 

Ref 3/49:  

SI Section 9.3 (p. 49): Text refers to “Fig. S9.1.3.3”. Should be “Fig. S9.3.3”. 

 

Thanks for picking this up. This has been corrected and, more broadly, all cross-referencing 

between main text and supplementary information has been updated and harmonized following 

the inclusion of new analyses, text and figures. 

 

Ref 3/50:  

Given that Infant FreeSurfer is the sole means by which data was obtained for individual 

less than 2 years old, some additional discussion of the validity of Infant FreeSurfer, and 

the confidence in the those values, seems warranted. The authors already comment that 

the values it generated for subcortical GMV didn’t seem continuous with those generated 

by FreeSurfer for 2 years and older. Was there any evidence (milder) of similar concerns 

for the other 3 phenotypes? 

 

Although Infant FreeSurfer was used to process a subset (~37%) of the data on subjects less 

than 2 years old, the majority of perinatal MRI datasets were processed with different pipelines, 

including adapted versions of regular FreeSurfer, custom internal processing pipelines, or expert 

manual segmentation in the case of some fetal datasets. Therefore the reference curves in this 

age range do not depend solely on the validity of Infant FreeSurfer. Given the diversity of 

processing pipelines used for this relatively small subset of primary studies we have not 

commented further on Infant FreeSurfer’s estimation of sGMV specifically, and in revised SI18 
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we clarify that there were no similar concerns for estimates of other brain tissue volumes (GMV, 

WMV, CSF). We have also included a new analysis demonstrating good consistency of brain 

tissue volume estimation across multiple versions of FreeSurfer for out-of-sample centile score 

(SI4.4 “Reliability of out-of-sample centile scoring across multiple versions of 

FreeSurfer”); and we have added a new supplementary table (ST 1.1) that now provides more 

detailed information on data processing and acquisition for all primary studies included in the 

reference dataset.  

 

Ref 3/51:  

It would be helpful if the SI Methods detailed exactly which FS measures were used for the 

definition of each of the 4 studied phenotypes. 

 

The new and expanded data processing section (SI18. “Data processing”) now provides further 

details on what files were used at what stage in the FreeSurfer pipelines and what values were 

extracted from those files. 

 

<<The following changes have been made to the Supplementary Information>> 

18. Data processing 

If T1- and T2/FLAIR-weighted raw data were available, as they were for approximately 95% of 

scans), these data were processed with FreeSurfer 6.0.124 using the combined T1-T2 recon-all 

pipeline for improved grey-white matter boundary estimation. If only raw T1-weighted data were 

available, and subjects were aged over 2 years, data were processed with FreeSurfer 6.0.1 using 

the standard recon-all pipeline. If subjects were aged 0–2 years, data were processed with Infant 

FreeSurfer v194. ST1.1 lists the number of subjects per site per processing pipeline alongside 

their respective MRI acquisition and quality control protocols. We noticed that Infant FreeSurfer 

estimated total subcortical grey matter volume (sGMV) differently from other pipelines included in 

this dataset, while other cerebrum tissue volumes were estimated consistently across pipelines. 

We therefore excluded scans processed with Infant FreeSurfer from growth curve estimation for 

subcortical GMV. All four cerebrum tissue volumes were extracted from the aseg.stats files that 

are generated in the first stage of the recon-all process:'Total cortical gray matter volume' for 

GMV; 'Total cortical/cerebral (FreeSurfer version dependent) white matter volume' for WMV; 

‘Subcortical gray matter volume’ for sGMV (inclusive of thalamus, caudate nucleus, putamen, 

pallidum, hippocampus, amygdala, and nucleus accumbens area; 

https://freesurfer.net/fswiki/SubcorticalSegmentation); and the difference between  'BrainSegVol" 

and 'BrainSegVolNotVent' for Ventricular volume. The first processing stage of recon-all includes: 

non-uniformity correction, projection to Talairach space, intensity normalisation, skull-stripping, 

automatic tissue and subcortical segmentation. Surface interpolation, tessellation and registration 

are done at the second and third stages of the recon-all pipeline (i.e., after aseg.stats files are 

created) and all these later stage processes involve projection to a standard stereotactic 

(fsaverage) space. Regional volume, thickness, and surface area was estimated for each of 34 

bilaterally averaged cortical regions defined by the Desikan-Killiany48 parcellation template 

following the final stages of the recon-all pipeline and using the hemisphere-specific apars.stats 

files generated by FreeSurfer. 

 

 

https://paperpile.com/c/yWP7Yw/8RnfO
https://paperpile.com/c/yWP7Yw/gLC01
https://freesurfer.net/fswiki/SubcorticalSegmentation
https://paperpile.com/c/yWP7Yw/jO30B
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Ref 3/52:  

It’s “FreeSurfer”. Not “Freesurfer” or “freesurfer”. The inconsistent formatting is careless 

and could be seen as disrespectful to its creators/developers/maintainers. 

 

We apologize for this inadvertent inconsistency, which has been corrected throughout the 

manuscript.   

 

Ref 3/53:  

Overall, the dataset descriptions in SI are quite inconsistent in what is covered. e.g., Not 

all of them even mention the number of individuals. Any information that can be 

conveniently provided in tabular format should be removed and placed in an SI 

spreadsheet (e.g., # individuals, scanner platforms, T2 availability, imaging parameters, 

FS processing version). This spreadsheet should also make clear whether the FS 

processing was done de novo for the current study, or whether the current study used FS 

data already generated/provided by the study itself. The text descriptions of the studies 

can then be limited to a brief overview of the study, as well as any particularly salient 

points that cannot conveniently be captured in the proposed spreadsheet. 

 

This is an excellent suggestion. We now provide details on FreeSurfer processing, MRI 

acquisition, sample size and many other comparable details for each primary study in a new 

supplementary table ST 1.1. This table also denoted whether data was processed in-house or 

included in pre-processed format. We have also gone through the supplementary descriptions of 

the primary datasets to improve consistency and minimise redundancy of each study summary 

 

Ref 3/54:  

The “OpenPain” study has a very long description in the SI relative to the other studies. Is 

there a particular reason that is merits such considerable detail relative to the other 

studies? (It reads like an unedited cut-and-paste from other documentation). 

 

Dataset descriptions were provided with the MRI data by contributing authors, consortia and sites 

and were only minimally edited. We have asked the original authors to provide more succinct 

versions of their description and further shorten long descriptions (i.e., OpenPain). In addition, 

details that are now provided in table ST1.1 have been removed from the dataset descriptions. 

 

Ref 3/55:  

Issues related to the SI Tables: 

 

We thank the reviewer for their extremely conscientious proof-reading of all tables and we 

apologise for any inconsistencies found. All the suggestions below have been adopted and all 

(new and old) tables have been double-checked for consistency. 

 

a. The meaning of some of the variables in the SI tables is not clear. (e.g., ‘total.cn’, 

‘percentage.cn’ in SI Table 1; ‘V1’, ‘V2’ in SI Table 5). A key/dictionary of some sort is 

necessary, for at least some of the variables. 

 

We now provide more descriptive column labels. 

 

b. Table1.5: First row has no label for ‘dx’. 
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This error has been fixed in the revision, and all tables have been checked for consistency. 

 

c. Table1.6: Identical to Table1.5 

 

This error has been fixed in the revision and all tables have been checked for consistency. 

 

d. Inconsistent naming schema of the individual tabs within a table (e.g., “Table1.1” vs. 

“2_1”). Also, given the Excel character limit on tab name length, make sure that the name 

of each tab is clearly interpretable.  

 

In response to this comment, all tabs and naming conventions have been made consistent 

throughout the revised document. 

 

e. Please remove the annoying Excel “warning” (and associated green triangle) about 

“Number stored as text” by converting the cells from text to number. 

 

Due to the fact that MS Excel uses a different decimal character notation in different 

versions/regional locations (i.e., comma or period), there are compatibility issues when we stored 

data as numbers in xslx format. Most software (R, Python etc.) write out dataframes or tables to 

xlsx formatting numbers explicitly as text to avoid such formatting issues when opened in different 

locations. To avoid any compatibility issues and to ensure the tab names are appropriately names 

(i.e., without character limits), we now instead provide each table as a collection of individual csv 

files, numbered accordingly, but replacing “.” with “_” in the filename to avoid any issues with 

different operating systems or analyses software being unable to interpret file formats.  

 

f. SI Section 10 (“Sex differences”, p. 52) mentions a “SI table 2.9”, which doesn’t appear 

to exist. 

 

Thank you for noticing this inadvertent omission. This table is now included as Supplemental 

Table 8 in the revised SI.  

 

g. Are SI Tables 4 and 7 mentioned anywhere in the main text or SI text? If so, I couldn’t 

find the references to them. 

 

Thank you for noticing the absence of a reference to these tables. These tables are now 

referenced in their respective supplemental section and expanded to include effect size estimates 

in line with the other tables listing case-control differences.  

 

h. All the tabs in SI Table 6 are identical. 

 

These were all generated automatically depending on the phenotype in question and would have 

only been different if subjects would have had missing data in a specific phenotype. Since in this 

case there was no missing data, the additional tabs were redundant and have been removed.  
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Author Rebuttals to Initial Comments: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

Overall, the authors have done an incredible amount of analysis in response to the first round of 

review and improved the quality of the work substantially – for which they are to be commended. 

With that said, this will be a high impact paper and the authors need to be careful about precedents 

set. In that regard, there are still a number of considerations that should be addressed before 

potential publication. 

General 

The authors could improve the scholarship of the intro. A vast literature regarding brain age 

prediction exists (see https://www.frontiersin.org/articles/10.3389/fneur.2019.00789/full for 

example review), as well as clear demonstrations of the value of relating relative brain age to 

phenotype (https://elifesciences.org/articles/54055). While most do not use gamlss, their goals and 

base strategy are comparable, and the work should be acknowledged. Prior work also exists that is 

directly focused on applications of GAMLSS in fMRI (e.g., 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387093/). The key (and meritorious) innovation of 

the submitted work is that it brings together the datasets needed to sample the near entirety of the 

lifespan, along with clinical variations. 

The discussion acknowledges the work is a proof of principle – why is that not in the intro? And 

again, looking at the backdrop of the literature, what principle(s) needed to be proven – please be 

more specific. 

Despite the prominence of concerns about data quality and confounds from the reviewers, the 

authors barely acknowledge them in the main manuscript. This is a concern – especially given some 

of the concerns raised under the specific comments section below. Data quality and the various 

confounds would not be expected to preclude meaningful delineation of the mean lifespan 

trajectory – it is the variance that will be impacted. The greater the representation of noise in the 

variance, the more limited the data will be in detecting meaningful pathology-related deviations 

beyond what can be see by eye (e.g., Alzheimer’s patients). It is doubtful the clinically relevant tools 

pointed at by this work will be meaningfully realized without accounting for data quality – yet, the 

authors minimize it. I find this highly problematic. 

The authors seem to view batch effect correction as an answer to address the many sources of 

variance in their analyses (e.g., diagnostic protocol, imaging protocol, sampling strategy). When 

sample composition or procedures are too dramatically different, batch effect correction will not 

solve the issue. Vogelstein recently tried to draw attention to challenges in batch effect correction in 

his Causal Combat framework (see biorxiv). At a minimum, greater acknowledge of differences in 

diagnostic protocols and sample composition should be highlighted in the main text, as it helps 

motivate future work toward standardization. 

While I respect the value of team science, the authors are missing my point in their response. 

Generators for open datasets are not recognized on the author line, yet those for more difficult to 

access datasets are. This is not a push to add the open datasets to the author line; but rather to ask 

if those who generated the more restricted datasets would consider limiting their acknowledgement 



to the text body (at least for data with one or more prior publications). 

Specific: Major 

Optimal Euler # can vary as a function of site; no general value is established to my knowledge. This 

is visible in Figure S2.1.2 (note, there are two figures with the same number), where there is large 

variability in the mean EI across dataset (For example, the Oulu and AOBA have their median EI > 

217). Yet, it seems the authors are using a single cutoff based on the initial paper from the PNC to try 

to fit all; this will likely lead to both inappropriate inclusion and exclusion of data. 

Have the authors looked at the relationship of EI and volume within a dataset? 

95% data inclusion (ie quality pass) is surprising; some sites may have only shared quality pass data – 

is this known? 

Figure S2.1.2 – the authors are relying on Spearman to state that no association exists between 

centile and MRI quality. That assumes a linear relationship; this could miss a more complex 

association, which looking at the data – there is visibly higher EI in the low centiles. 

Figure S2.2.1 – a score of 4 seems biased for GMV – why only exclude 5 and 6? Repeating with 4 

excluded would make sense. 

Comparison of GAMLSS vs. ComBat only carried out in ABCD, which uses V-NAV (thus has minimal 

motion) and is harmonized; what about other sites. 

Specific: Minor 

How was the visual inspection performed? Where each image rated by one expert or many? If more 

than one rater, how was the ICC? 

Page 6 – First paragraph. – “The only exception to this generally high … were the GISTO and EDSD 

cohorts where excluding scans with EI > 217 substantially reduced the number of scans (by >30%)…” 

But, by looking at the second Figure S2.1.2, it looks that more than 50% of the data for males in the 

Oulu, NIH, AOBA, WAYNE, ICBM have a EI > 217. So which one is correct? 

Referee #2 (Remarks to the Author): 

Overall, the authors have done a commendable job using a very large convenience meta-analytic 

sample of individuals with MRI data to produce lifespan trajectories of gross brain structure, and 

variation therein. The key findings are not so much of note in their own right, but rather constitute a 

series of checks to ensure that the harmonization process has been successful, and that associations 

produced by the harmonized data are cleaner. The major contribution here is a resource for other 

researchers seeking to compare their sample to the wider corpus of MRI research, and those seeking 

to combine MRI data across multiple datasets in a principled way that avoids bias that is typically 

associated with aggregation across different MRI studies. However, contrary to what has been 

implied by the direct comparison of the brain charts introduced here to height and weight growth 

charts that are used routinely in clinical settings, the brain charts cannot be used for individual 

patient diagnosis or treatment. I elaborate on this concern below. In light of them, I believe that a 

major revision to the framing of the manuscript is needed. 

My concern can be distilled down to what is implied by the title “Brain Charts” and the explicit desire 

expressed (e.g. in the second sentence of the abstract, the first paragraph of the main text) to 



constructed charts for the brain that akin to growth charts that are routinely used in clinical, mostly 

pediatric, settings for tracking the trajectory of height and weight growth of individuals relative to 

the population. I need to be clear that when I say “clinical,” I mean in individual patient monitoring, 

diagnosis and care, not “clinical research,” which refers to research that is on the topic of clinical 

populations or clinical treatments. This article needs to, in no uncertain terms, remove this 

inappropriate comparison between brain charts (which cannot be used clinically for individual 

patients) and height and weight growth charts (which can be used clinically). Statements such as the 

following need to be removed: “Crucially, for clinical purposes, centile scores provided a 

standardised and interpretable measure of deviation that revealed new patterns of neuroanatomical 

differences across neurological and psychiatric disorders.” [These are not "clinical purposes." I think 

that the authors mean "for research into the neuroanotomical correlates of clinical disorders."] 

The first reason that the brain charts cannot be used for individual patient diagnostics is that 

although the total sample size of the analysis is very large, the studies are not representative of the 

population (and it is not even clear what the “the population” of interest is; growth charts should be 

normed relative to the population of their intended use). Inasmuch, it would be grossly 

inappropriate to assign and individual a centile score relative to the brain chart norms, as the centile 

is unlikely to correspond to centiles within the population. Centiles can of course be used for the 

purposes of research, so as to reference an individual’s location within the observed (meta-analytic) 

sample distribution, but they simply cannot be used clinically without the reference norms being 

representative. The authors have been responsive to my previous comment about issues concerning 

representativeness, but I continue to worry that the charts are framed as being of use for individual 

centile scoring in clinical settings. 

Second, is that differences in MRI protocol and scanner calibration in real-world clinical settings 

relative to the studies used to construct the brain charts cannot be corrected for. In their response, 

the authors go to great lengths to explain how they harmonized the samples and accounted for 

study-to-study differences, for instance, by obtaining bootstrapped centile scores from leave one 

sample out analyses. They are correct that these methods strongly mitigate against artifacts in the 

brain charts that might have otherwise arisen from between-study variation. Indeed, as displayed in 

Fig S5.2.4, the primary advantage of the centile scoring method is that it allows data from different 

studies to be combined without associations being attenuated by study-to-study variation. However, 

this does not mitigate against artifacts that would arise from attempting to centile score an 

individual from a single outside scan. The authors do appropriately comment that new datasets 

(with “comparatively smaller samples sizes”) can be integrated with this one, and do not actually 

indicate that a single scan of an individual in a clinical setting can be centile scored relative to their 

charts. However, by calling these “brain charts” and comparing them to existing growth charts, the 

idea that the charts can be used for individuals clinically, rather than simply for individuals within 

studies, is made implicit. 

Referee #3 (Remarks to the Author): 

Bethlehem and co-authors have submitted a very impressive revision to their manuscript “Brain 

charts for the human lifespan”. Extensive additional analyses were performed to address previous 



weaknesses and criticisms. I commend the authors for their responsiveness to the previous round of 

reviews. In particular, I am now convinced that their GAMLSS modeling approach is sufficiently 

robust to the inclusion of new studies. The Supplement is massive, and thus beyond the capability of 

any single individual to review thoroughly (in a reasonable amount of time). But it is clear from the ~ 

1/3 of the supplement that I did review that the value and overall quality of the Supplemental 

Material is dramatically improved. 

I believe that this manuscript has now (nearly) achieved its potential. It will be a very impactful 

addition to the understanding and future study of human structural neuroanatomy. 

I do have a couple follow-up questions related to two of my initial major concerns. And given the 

extensive nature of the revisions, there are a number of relatively minor issues that warrant 

consideration and revision before publication. 

Follow-up questions: 

While effect sizes are now available in the supplementary material, the reporting of effect sizes 

remains underemphasized in the main text. In particular, the main text revolving around Figure 4 still 

comes across as highly p-value centric. I believe that some indication of the Cohen’s D effect sizes 

should be worked into Figure 4, both for the individual MRI phenotypes (4A), as well as the CMD 

comparison (4C). If that’s simply not possible, some (quantitative) discussion of effect sizes for both 

of those should be included in the main text. Additionally, it should be made clear that effect sizes 

are available in the ST. (Currently, the main text mentions “effect-size” once in the introduction, but 

never seems to actually present or discuss effect sizes in the main text). 

The authors state in their response that due to the use of a “GAMLSS model that included random 

effects on three moments of the generalized gamma distribution” that it therefore wasn’t possible 

to “conduct an analysis of the effect of specific technical covariates”. I don’t follow the logic of this 

statement. In particular, aren’t estimates of the random effects available for each study? (Elsewhere 

in the manuscript makes the explicit point that it was important that these be available). And if 

that’s the case, then isn’t it possible to investigate possible relationships between those random 

effects estimates and the technical covariates? 

Other issues that warrant consideration and clarification: 

Fig. 2: There clearly is a discontinuity in the mean cortical thickness values just past age 2. Is this 

commented on anywhere? Somewhat relatedly, what is the combined N across studies of individuals 

less than 2 years old? In the interest of transparency, it seems worth pointing this out in the main 

text, as presumably this N is rather low, yet this data is the basis for a number of the conclusions 

regarding age at peak (thickness) and age at peak velocity (a number of measures). Also, neither key 

nor caption indicates what the gray line represents in panel B. Also, the caption says “2.5% and 97% 

centiles”. I presume that the latter value should be “97.5%”? 

Figure 3: The colors are not sufficiently distinct to quickly and easily match to the key. Either more 

unique colors are necessary, or add thin black lines within the color bands, but with different 



linestyles (e.g., solid vs. dashed) to help distinguish lines that are the same basic color. Also, the top 

inset reads “thicknes” rather than “thickness”. 

p. 8 (main text): Shouldn’t text regarding “mean difference in h^2” be referring to Fig.4D (not 4C)? 

Also, does that “11.8%” refer to an actual *percentage* difference, or a *percentage point* 

difference? (Figure 4 seems to indicate it is probably the latter, which is more impressive than the 

former, and thus worth describing precisely). 

Figure 4: Caption contains no indication of what 1 vs. 2 vs. 3 asterisks represents. 

p. 18 (“Online Methods”): It seems less relevant to me to present the “general” form of the GAMLSS 

than to make clear how the GAMLSS was modeled in this particular study. In that regard, I find it 

potentially confusing to readers to include smoothing functions in Eq. (1) when non-parametric 

smoothing functions were not in fact used. Also, in Eq. (1), what is ‘F’? (Not defined). 

S1.7: I still don’t understand the justification for computing IQR when you only have two data points. 

In what sense is IQR “valid” when you have just 2 data points (any more so than a trimmed mean 

from just 2 data points)? Just because you can select an implementation of IQR that is *defined* for 

2 data points doesn’t make it a measure with a meaningful interpretation. 

S2.1, Euler Index Filtering: Rosen et al. used the strict definition of the Euler Number, which is 

increasingly negative as the number of surface holes in the non-topology corrected (orig.nofix) 

surface increases. If you are using EI > 217 as a threshold, you are taking the negative of the true 

Euler Number, which should be stated. Also, please be explicit as to whether you are averaging or 

summing the EI from the two hemispheres. [Rosen states that they averaged]. Also, it would be 

beneficial to quantify how many scans were excluded by your filtering operation. Last, it should be 

noted that EI > 217 is a threshold that has only been shown to be an “optimal” threshold in one 

study, and it remains unknown whether that threshold is optimal in any sense as a QC criterion for 

data collected on other scanners or using other protocols. 

S2.2, Expert visual quality control: Was this a de novo visual quality control performed by the 

authors, separate from any visual QC and rating that the individual studies might have already 

performed and provided? Also, it should be made clearer whether the 9704 scans that were rated 

were drawn from all studies equally, or whether particular studies dominated this endeavor. 

S3.2.1: For consistency with changes elsewhere, it should say that quantitative comparison of model 

*BIC* (rather than AIC) wasn’t possible. 

Figs. S3.2.1 and S3.2.2: Are these 95% confidence intervals? Relatedly, what exactly do the 

“uncertainty intervals” in Fis. S4.5 represent? Given the wide variety of different types of “error 

bars” used in various figures (e.g., SD, standard errors, 95% confidence intervals, box plot whiskers), 

please make sure that it is clear in each figure caption exactly what the error bars in that particular 

figure represent. 

Fig. S3.2.3: It would be helpful if the caption stated the reason that no estimates for Sigma for 



Ventricular volume are available. 

S3.2.2: Insufficient detail is provided to understand how the stratified bootstrap sample was 

implemented. It would be helpful to have a methodical example of how exactly one bootstrap 

replicate was constructed. 

S4.1: Bias cannot be assessed via correlation. Some true measure of bias should be reported (in 

addition to the correlations). 

S4.3: It seems odd to not include the ICC values of the “raw” (uncentiled) volumetric data for the 

analyses of the reproducibility resource and HBN data, for explicit comparison to the centile ICCs. 

(They are provided for the VETSA analysis). 

Figs. S4.3.[1,2]: What do the p-values in the titles of the plots represent? Are they the p-value of the 

regression/scatterplot? Or the p-value of the test of the null hypothesis that ICC = 0 ? 

Fig. S4.3.2: What does “HCP Session” in the top row of plots refer to? 

S4.4: It would be helpful if the “name” of the study used for this analysis was included in the text (for 

convenient reference against other data that shows results per study). 

S4.5: It isn’t clear how dataset ‘clones’ were created (e.g., was resampling with replacement used 

*within study*), nor how many datasets were ‘cloned’. Also, what does NSPN represent in the titles 

of Fig. S4.5? 

Fig. S5.2.5: Seems like the point being made by this figure is incomplete without a panel showing the 

equivalent analysis applied to the raw data. 

Fig S6.2: What were scanners “1,2,3,4” (e.g., vendor and model; e.g., did the vendor and/or field 

strength change?) 

S7 (and S2.1 and S18): It is overly simplistic to say that the cerebrum tissue volumes returned by FS 

are not contingent on the surface reconstruction – this is certainly not the case for modern versions 

of FS. Almost every value returned by FS 6.0, including in the aseg.stats, respects the surfaces, and is 

computed after the surfaces are defined. For example, see 

https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats and 

https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV6.0 (noting that the final aseg.stats 

is derived using the surfaces as inputs to the -segstats stage). It’s possible that the situation is more 

complicated for FS 5.1 and 5.3. An easy way to check for these older versions is to see if the volumes 

being extracted are the same in the aseg.stats as in the wmparc.stats file. If they are, then they are 

surface-informed estimates. If not, additional investigation will be necessary to understand (and 

accurately portray) the differences in this regard between different FS versions. 

Fig S7.1: To match the actual figures, the caption should say “baseFO[a][b][c]R[x][y][z]”. (i.e., add “R” 

to the text string). 



Fig. S7.4.1: Captions says that studies are sorted by “median standard deviation”, but that doesn’t 

appear to be the case. 

Fig. S10.1.1 and S10.1.3: Rather than attempting to show all significant pairwise differences via lines 

above a box plot, it would be easier for readers to simply include a table with p-values. Cells below 

the diagonal could present the Cohen’s d and p-value for males, and cells above the diagonal could 

present the values for females. (This way readers would also have access to the Cohen’s d effect 

sizes of all pairwise comparisons in a convenient “lookup” table in the SI, without needing to 

download and find the relevant supplementary data table). Same comments apply to Figs. 

S14.3.[3,4] 

Figs. S10.2.[1,2] and S14.3.[1,2,3]: Please match the colors and order of clinical cohorts to those used 

in Fig. 4 and S10.1.2 

S12: No indication of the effect size of the regression lines (e.g., R^2) is provided. 

S14.4.1: Unclear whether the LME only included a random subject-level intercept, or if it also 

included a random subject-level slope. If the latter, what was the correlation between the random 

intercept and random slope estimates? Also, what do the error bars in panel B represent? 

Fig. S15.1: Either some of the measures have very extreme outliers (e.g., GMV/SA, WMV/SA, 

sGMV/SA), or the allowed jitter along the x-axis is too great, such that values from one Feature Pair 

are bleeding into the space for an adjacent Feature Pair. 

ST 1.1: The information in the “Acquisition.Parameters” column in this table is inconsistent and 

uneven. For example (1) the very first entry (3R-BRAIN) is listed as having a flip angle of 52, which 

would be very unusual for an MPRAGE; (2) the manner in which TR/TE/TI/FA is presented across 

studies is inconsistently formatted; (3) some rows have random special characters (e.g., Calgary, 

Conte, DLBS, EMBARC, GOSH, LATAM, LIFE; to name just a few based on quick inspection); (4) some 

don’t report TR/TI/FA at all (e.g., HCP_lifespan). Overall, these imaging parameters would be easier 

to parse (and easier to check for odd entries) if there was one column for each specific parameter to 

be reported, rather than just a generic text column of “parameters”. 

ST 1.8: It seems like the Figure 1 caption should either refer to ST1.2-1.8 (i.e., all of the “global” 

measures), or just ST1.2-1.5 (corresponding to the measures shown in Figure 1. Either way, ending at 

ST1.7 doesn’t make sense (in either the caption, or the text in the “Mapping normative brain 

growth” paragraph). 

ST3: The labels for column E (“Median centile G1”) and column F (“Median centile G2”) are 

presumably incorrectly swapped.
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We would like to thank all the reviewers for their expert reviews of our revised manuscript and 
supplementary analyses. Their comments have provided extremely helpful guidance in 
strengthening the paper. Please find a point-by-point response below. 
 
[BLACK] - ORIGINAL COMMENT 
[BLUE] - RESPONSE TO COMMENT 
[GREEN] - NEW/ALTERED TEXT 

Referee #1:  
 
Overall, the authors have done an incredible amount of analysis in response to the first round 
of review and improved the quality of the work substantially – for which they are to be 
commended. With that said, this will be a high impact paper and the authors need to be careful 
about precedents set. In that regard, there are still a number of considerations that should be 
addressed before potential publication. 
 
We thank the reviewer for their positive appraisal of our original and revised manuscripts, and 
we are grateful for their thoughtful consideration of issues needing further attention prior to 
publication of this paper. 

General 
Ref 1/1: The authors could improve the scholarship of the intro. A vast literature regarding 
brain age prediction exists (see 
https://www.frontiersin.org/articles/10.3389/fneur.2019.00789/full for example review), as 
well as clear demonstrations of the value of relating relative brain age to phenotype 
(https://elifesciences.org/articles/54055). While most do not use gamlss, their goals and 
base strategy are comparable, and the work should be acknowledged. Prior work also exists 
that is directly focused on applications of GAMLSS in fMRI (e.g., 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387093/). The key (and meritorious) 
innovation of the submitted work is that it brings together the datasets needed to sample the 
near entirety of the lifespan, along with clinical variations.  
 
We accept that there was room for improvement in the quality of scholarship in the previous 
version of the paper. We are also grateful to the editor for encouraging us to include additional 
content and references in order to situate our study more clearly in the context of   relevant 
prior studies. Overall, we have added 14 new references to the paper to provide a more 
balanced assessment of the prior literature (note: we also included a further 11 references to 
acknowledge  open MRI datasets more explicitly in the main text).  
 
In revising the main text, we focused on citing prior studies that used similar methods of 
quantile scoring based on GAMLSS or other growth curve models to benchmark MRI 
phenotypes against normative age-related trends. There is another body of prior literature 
which is focused on the distinct objective of predicting “brain age” (or the difference between 
brain age and chronological age) from MRI phenotypes. In the interests of clarity and 
concision, we have not referred to such brain age prediction papers in the main text but we 
have added additional text to Supplemental Information that cites these additional papers and 
makes the conceptual distinction between age-normed quantification of MRI phenotypes and 

Author Rebuttals to First Revision:
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MRI-based prediction of brain age:  SI 1 “Modelling lifespan trajectories of brain 
maturation”.   
 

<<The following changes were made to the main text>> 
 
In:Introduction 
Primary case-control studies are usually focused on a single disorder despite evidence of 
trans-diagnostically shared risk factors and pathogenic mechanisms, especially in 
psychiatry1,2. Harmonization of MRI data across primary studies to address these and other 
deficiencies in the extant literature is challenged by methodological and technical 
heterogeneity. Compared to relatively simple anthropometric measurements, like height or 
weight, brain morphometrics are known to be highly sensitive to variation in scanner platforms 
and sequences, data quality control, pre-processing and statistical analysis3, thus severely 
limiting the generalisability of trajectories estimated from any individual study4. Collaborative 
initiatives spurring collection of large-scale datasets5,6, recent advances in neuroimaging data 
processing7,8, and proven statistical frameworks for modelling biological growth curves9–11 
provide the building blocks for a more comprehensive and generalisable approach to age-
normed quantification of MRI phenotypes over the entire lifespan (see SI 1 for details and 
consideration of prior work focused on the related but distinct objective of inferring brain age 
from MRI data). Here, we demonstrate that these convergent advances now enable the 
generation of brain charts that i) robustly define  normative processes  of sex-stratified, age-
related change in multiple MRI-derived phenotypes; ii) identify previously unreported brain 
growth milestones; iii) increase sensitivity to detect genetic and early life environmental effects 
on brain structure; and iv) provide standardised effect sizes to quantify neuroanatomical 
atypicality of brain scans collected across multiple clinical disorders. We do not claim to have 
yet reached the ultimate goal of diagnosis of MRI scans from individual patients in clinical 
practice. However, the present work proves the principle that building normative charts to 
benchmark individual differences in brain structure is already achievable; and provides a suite 
of open science resources to accelerate further progress in the direction of standardised 
quantitative assessment of MRI data by the global neuroimaging research community.  
 
In: Individualised centile scores in clinical samples 
This approach is conceptually similar to quantile rank mapping, as previously reported12–14, 
where the (a)typicality of each phenotype in each scan is quantified by its score on the 
distribution of phenotypic parameters in the normative or reference sample of scans, with more 
atypical phenotypes having more extreme centile (or quantile) scores.  
 

<<The following changes were made to the supplementary information>> 
 
In: SI 1. Modelling lifespan trajectories of brain maturation 
Finally, it is worth noting that the strategic intent of this study (and some directly relevant prior 
work) was to quantify brain structural MRI phenotypes relative to age- and sex-specific norms, 
rather than to predict chronological or biological age of participants from their MRI data15,16. 
There is a large extant literature on attempts to predict “brain age” and compare brain age to 
the actual age of study participants16–21. In contrast we do not ask the question: what is a 
participant’s neurobiological age, or the difference between their neurobiological and 
chronological ages22, given their brain morphology? Instead we ask: how (a)typical is a 
participant’s brain structure compared to their demographically matched peer group? More 
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formally, we assess the vertical deviation of an individual scan from the normative trajectory 
of the corresponding phenotype in a reference population; whereas brain-age prediction 
attempts to quantify the horizontal deviation.  Brain charting is more analogous than brain age 
prediction to the ways that traditional growth charts are used in pediatric practice for 
anthropometric variables. Additionally, normative growth curves  allow us to benchmark even 
a single MRI phenotype – such as one of the global tissue volumes that are abundantly 
available across primary datasets – as opposed to brain age predictions that typically require 
a high-dimensional feature space comprising multiple MRI phenotypes15,22.  In addition, 
several methodological critiques of brain age prediction are not relevant to the present 
approach22–24. Thus, we note that using GAMLSS to quantify centile dispersion of MRI 
phenotypes on age-normed and sex-stratified distributions shares conceptual goals with, but 
methodologically entirely distinct from, studies that seek to predict human age (or derive a 
‘brain age gap’) from brain imaging data25.  
 
Ref 1/2:The discussion acknowledges the work is a proof of principle – why is that not in the 
intro? And again, looking at the backdrop of the literature, what principle(s) needed to be 
proven – please be more specific.  
 
We have added clarifying statements about proof of principle to the abstract, introduction 
and discussion of the main text. 
 

<<The following changes were made to the main text>> 
 
In Abstract 
In sum, brain charts are an essential first step towards robust quantification of individual 
deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. 
Our collaborative study proves the principle that brain charts are achievable on a global scale 
over the entire lifespan, and applicable to analysis of diverse developmental and clinical 
effects on human brain structure. Furthermore, we provide open resources to support future 
advances towards adoption of brain charts as standards for quantitative benchmarking of 
typical or atypical brain MRI scans.  
 
In Introduction 
We do not claim to have yet reached the ultimate goal of quantitatively precise diagnosis of 
MRI scans from individual patients in clinical practice. However, the present work proves the 
principle that building normative charts to benchmark individual differences in brain structure 
is already achievable at global scale and over the entire life-course; and provides a suite of 
open science resources for the neuroimaging research community to accelerate further 
progress in the direction of standardised quantitative assessment of MRI data.  
 
In Discussion 
The analogy to paediatric growth charts is not meant to imply that brain charts are immediately 
suitable for benchmarking or quantitative diagnosis of individual patients in clinical practice. 
Even for traditional anthropometric growth charts (height, weight and BMI) there are still 
significant caveats and nuances concerning their diagnostic interpretation in individual 
children26; and, likewise, it is expected that considerable further research will be required to 
validate the clinical diagnostic utility of brain charts. However, the current results bode well for 
future progress towards digital diagnosis of atypical brain structure and development27. 
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Ref 1/3: Despite the prominence of concerns about data quality and confounds from the 
reviewers, the authors barely acknowledge them in the main manuscript. This is a concern – 
especially given some of the concerns raised under the specific comments section below. 
Data quality and the various confounds would not be expected to preclude meaningful 
delineation of the mean lifespan trajectory – it is the variance that will be impacted. The greater 
the representation of noise in the variance, the more limited the data will be in detecting 
meaningful pathology-related deviations beyond what can be see by eye (e.g., Alzheimer’s 
patients). It is doubtful the clinically relevant tools pointed at by this work will be meaningfully 
realized without accounting for data quality – yet, the authors minimize it. I find this highly 
problematic. 
 
We have now provided a more extensive and well-referenced discussion of potential 
confounds and caveats, especially related to MRI data quality and quality control, throughout 
the revised main text and Online Methods. In response to this comment and subsequent 
comments specifically about quality control based on the Euler index, we have also added 
new analyses to the Supplementary Information: see SI “Euler index and neuroimaging 
phenotypes”. 
 

<<The following changes were made to the main text>> 
 
In Introduction 
Compared to relatively simple anthropometric measurements, like height or weight, brain 
morphometrics are known to be highly sensitive to variation in scanner platforms and 
sequences, data quality control, pre-processing and statistical analysis3, thus severely limiting 
the generalisability of trajectories estimated from any individual study4.  
 
In Discussion 
Several important caveats are worth highlighting. The use of brain charts does not circumvent 
the fundamental requirement for quality control of MRI data. We have shown that GAMLSS 
modelling of global structural MRI phenotypes is in fact remarkably robust to inclusion of poor 
quality scans (SI2), but it should not be assumed that this level of robustness will apply to 
future brain charts of regional MRI or functional MRI phenotypes; therefore the importance of 
quality control remains paramount. It will also be important in future to represent ethnic 
diversity appropriately in normative brain charts28,29. Even this large MRI dataset was heavily 
biased towards European and North American populations, as is also common in 
anthropometric growth charts and existing genetic datasets. Further increasing ethnic and 
demographic diversity in MRI research will enable more population-representative normative 
trajectories28,29 that can be expected to improve the accuracy and strengthen the interpretation 
of centile scores in relation to appropriate norms14. The available reference data were also not 
equally representative of all ages, e.g., foetal, neonatal and mid-adulthood (30-40y) epochs 
were under-represented (SI17-19). While our statistical modelling approach was designed to 
mitigate study- or site-specific effects on centile scores, it cannot entirely correct for limitations 
of primary study design, such as ascertainment bias or variability in diagnostic criteria. 

 
As ongoing and future efforts provide increasing amounts of high quality MRI data, we predict 
an iterative process of improved brain charts for an increasing number of multimodal17 
neuroimaging phenotypes. Such diversification will require the development, implementation, 
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and standardisation of additional data quality control procedures30 to underpin robust brain 
chart modelling.  
 

<<The following changes were made to the online methods>> 
 
The resulting models were evaluated using several sensitivity analyses and validation 
approaches. See Supplementary Information [SI] for further details regarding GAMLSS 
model specification and estimation (SI1), image quality control (SI2), model stability and 
robustness (SI3-4), phenotypic validation against non-imaging metrics (SI3 & SI5.2), between-
study harmonisation (SI5) and assessment of cohort effects (SI6).  While the models of whole 
brain and regional morphometric development were robust to variations in image quality, and 
cross-validated by non-imaging metrics, we expect that several sources of variance, including 
but not limited to MRI data quality and variability of acquisition protocols, may become 
increasingly important as brain charting methods are applied to more innovative and/or 
anatomically fine-grained MRI phenotypes. It will be important for future work to remain vigilant 
about the potential impact of data quality and other sources of noise on robustness and 
generalisability of both normative trajectories and the centile scores derived from them. 
 

<<The following changes were made to the supplementary information>> 
 

In SI 2.4 “Euler Index and neuroimaging phenotypes” 
In short, we have demonstrated by multiple complementary QC studies that our principal 
results, and additional out-of-sample results for new data not previously analysed, are 
remarkably robust to image quality across a range of assessments. We conclude that our 
results are not confounded by uncontrolled image quality issues; but proper QC procedures 
should, of course, be implemented on all scans before they are submitted for OoS centile 
scoring on the basis of our model and aggregated reference dataset. In the absence of a single 
gold standard for automated assessment of imaging data quality, we strongly recommend 
using a combination of approaches to determine inclusion/exclusion of MRI data for brain 
charting. In future, as these methods may be extended to more fine-grained structural MRI 
phenotypes that are likely to be more sensitive to variation in image quality, and/or to 
benchmark phenotypes measured in fMRI or more innovative modalities of MRI data more 
likely to be measured in small samples (N<100), we should be prepared for GAMLSS 
modelling to be significantly less robust to image quality in comparison to the case of global 
MRI phenotypes, like cerebrum tissue volumes. The importance of rigorous quality control 
therefore remains paramount. 
 
Ref1/4: The authors seem to view batch effect correction as an answer to address the many 
sources of variance in their analyses (e.g., diagnostic protocol, imaging protocol, sampling 
strategy). When sample composition or procedures are too dramatically different, batch effect 
correction will not solve the issue. Vogelstein recently tried to draw attention to challenges in 
batch effect correction in his Causal Combat framework (see biorxiv). At a minimum, greater 
acknowledge of differences in diagnostic protocols and sample composition should be 
highlighted in the main text, as it helps motivate future work toward standardization. 
 
We agree with the reviewer that batch correction is not a cure-all that addresses all the 
challenges of data variability and harmonisation, especially in clinical cohorts. As it is not 
feasible, likely, or perhaps even advisable, to seek harmonisation at the data acquisition stage 
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(i.e., in the context of specific disease or age groups requiring specialised or bespoke 
acquisition protocols), we opted for a harmonisation procedure that uses the control data from 
a given study to determine that study’s relative offset to the age- and sex-matched norms 
defined by the aggregated reference dataset. Thus, our approach provides a way to align 
diverse datasets to a reference standard (provided sufficient control data is available per 
primary study), despite technical and biological sources of heterogeneity that are likely to 
persist in clinical and research imaging practice. We now provide more explicit 
acknowledgement in the main text that our approach is not a cure-all solution to every 
challenge related to data harmonisation. We also provide a more extensive discussion of the 
limitations of GAMLSS, compared to other novel ComBAT-related approaches to data 
harmonisation in the supplementary materials: see SI “Modelling of between-site 
heterogeneity by GAMLSS: empirical evaluation compared to ComBAT”. 
 
 

<<The following changes were made to the main text>> 
In Discussion: 
Several important caveats are worth highlighting. The use of brain charts does not circumvent 
the fundamental requirement for quality control of MRI data. We have shown that GAMLSS 
modelling of global structural MRI phenotypes is in fact remarkably robust to inclusion of poor 
quality scans (SI2), but it should not be assumed that this level of robustness will apply to 
future brain charts of regional MRI or functional MRI phenotypes; therefore the importance of 
quality control remains paramount. It will also be important in future to represent ethnic 
diversity appropriately in normative brain charts28,29. Even this large MRI dataset was heavily 
biased towards European and North American populations, as is also common in 
anthropometric growth charts and existing genetic datasets. Further increasing ethnic and 
demographic diversity in MRI research will enable more population-representative normative 
trajectories28,29 that can be expected to improve the accuracy and strengthen the interpretation 
of centile scores in relation to appropriate norms14. The available reference data were also not 
equally representative of all ages, e.g., foetal, neonatal and mid-adulthood (30-40y) epochs 
were under-represented (SI17-19). While our statistical modelling approach was designed to 
mitigate study- or site-specific effects on centile scores, it cannot entirely correct for limitations 
of primary study design, such as ascertainment bias or variability in diagnostic criteria. 

 
<<The following changes were made to the supplementary information>> 

 
In SI 5.2 Modelling of between-site heterogeneity by GAMLSS: empirical evaluation 
compared to ComBAT  
In short, there are pros and cons to both harmonisation strategies: ComBAT is better suited 
for smaller datasets, normalised distributions and multivariate phenotypes; whereas GAMLSS 
is well suited for large datasets, non-Gaussian distributions and univariate phenotypes. We 
preferred GAMLSS on the grounds of its greater scalability and flexibility to match the 
distributional properties of the reference data and the objectives of this project. It is beyond 
the scope of the present work to provide an exhaustive review on batch correction methods 
or to evaluate the performance of GAMLSS (or ComBAT) for correction of batch effects under 
all possibly relevant experimental conditions. We emphasize that our use of GAMLSS for 
between-site or between-study harmonisation may not be optimal for studies with small 
(N<100) numbers of healthy control participants per site (SI 4.5). In addition, GAMLSS will not 
mitigate study- or site-specific effects driven by ascertainment bias or variability in diagnostic 



7
 

criteria between sites. Adaptations of ComBAT have been proposed for batch effect correction 
of multi-site data where such factors are likely to be problematic31. However, these approaches 
may not be suitable for harmonisation of datasets with partially or totally non-overlapping age-
ranges, as required for integration of primary studies to estimate brain charts over the entire 
lifespan.   
 
Ref 1/5 While I respect the value of team science, the authors are missing my point in their 
response. Generators for open datasets are not recognized on the author line, yet those for 
more difficult to access datasets are. This is not a push to add the open datasets to the author 
line; but rather to ask if those who generated the more restricted datasets would consider 
limiting their acknowledgement to the text body (at least for data with one or more prior 
publications). 
 
We acknowledge that we had not fully appreciated the scope of the reviewer’s previous 
comment on this point, and it has been valuable for us to consider these issues in greater 
depth. First and foremost, we agree completely with the reviewer that provision of truly open 
data, e.g., data that are accessible to other researchers without requiring any special efforts 
by the data-generating team or any bespoke legal agreements between teams, is an 
invaluable service to the neuroimaging community that should be recognised or rewarded, 
and certainly not disincentivised, by authorship and citation practices. To this end, we have 
revised the main text in several places, including explicit citations and acknowledgements, to 
highlight the very important contribution of several open MRI datasets to our work. 
 
We have also carefully considered the reviewer’s suggestion that we might ask some people 
already listed as co-authors to step down from the author line and to have their contributions 
acknowledged in some other way. However, we would strongly prefer not to take this course 
of action, for two related reasons.  
 
First, our authorship strategy was planned from the outset to be inclusive of individuals who 
satisfied the journal’s criteria for authorship by making a significant contribution in one or more 
of the following areas: design of the study, acquisition or analysis of data, provision of software, 
or drafting or substantive review of the paper. These criteria were satisfied by all the named 
authors. For example, named authors contributing data to the project made special legal 
arrangements for sharing data and/or made specific efforts to optimise quality control or pre-
processing of their data prior to sharing them with us and/or provided previously unpublished 
information about how the data had been collected and pre-processed. All authors reviewed 
and commented on a series of drafts of the paper. We are therefore confident that all the 
individually named authors merit authorship by the journal’s criteria. In cases where we were 
not satisfied that individuals merited authorship on this basis, we did not offer them a position 
on the author line, but listed their names as members of the relevant consortium (detailed in 
supplementary information SI 22 & 23) and named the consortium on the author line. All 
authors understand that if further papers are published on the basis of the reference dataset 
aggregated for the first time in this paper, they will be acknowledged as members of the Brain 
Chart Consortium, which will be named as a corporate author; but they will not be individually 
named as authors of future papers based on this work, unless they have made additional 
significant contributions to future papers that go beyond their significant contributions to this 
foundational paper. 
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Second, it would be very difficult to go back to authors already listed as such and ask them to 
reconsider their position. Some of the primary datasets were released to us under legal or 
ethical constraints that mandate recognition of significant contributions in terms of authorship. 
Preliminary consultation with some authors further indicated that a request to reconsider their 
position would raise questions about the primacy of the journal’s criteria in deciding authorship 
and would not be interpreted equivalently by all authors. For example, it seemed likely that 
more junior authors might be more amenable to stepping down from the author line than more 
senior authors, although it was often the more junior authors that had made the most 
significant contributions of data or expertise to the project. Thus, it is conceivable that by 
attempting to make further adjustments to the author line, we would introduce more or different 
biases in selection, relative to the standard procedure for author selection by journal criteria, 
which we have carefully adopted since the start of this project. 
 
Finally, this discussion with reviewer 1 and the editor has been very instructive from our point 
of view, and has raised many general issues for the future of open human brain science. We 
have added some additional text to Supplementary Material, providing interested readers with 
more background detail: “SI 21: A note on data sharing” 
 

<<the following changes were made to the main text>> 
 
In: Mapping normative brain growth 
See SI19 for details on all primary studies contributing to the reference dataset, including 
multiple publicly available open MRI datasets32–42. 
 
In: Acknowledgements 
We would particularly like to acknowledge the invaluable contribution to this effort made by 
several openly-shared MRI datasets, specifically:s OpenNeuro (https://openneuro.org/), the 
Healthy Brain Network (https://healthybrainnetwork.org/), UK BioBank 
(https://www.ukbiobank.ac.uk/), ABCD (https://abcdstudy.org/), the Laboratory of 
NeuroImaging (https://loni.usc.edu/), data made available through the Open Science 
Framework (https://osf.io/), COllaborative Informatics and Neuroimaging Suite Data Exchange 
tool (COINS; http://coins.mrn.org/dx), the Developing Human Connectome Project 
(http://www.developingconnectome.org/), the Human Connectome Project 
(http://www.humanconnectomeproject.org/), the OpenPain project 
(https://www.openpain.org), the International Neuroimaging Datasharing Initiative (INDI; 
http://fcon_1000.projects.nitrc.org/),  and the NIMH Data Archive (https://nda.nih.gov/); see 
SI21 for details on open human MRI science.. 
 

<<The following changes were made to the supplementary information>> 
 
The complete dataset aggregated for the purposes of this study contains primary datasets that 
differ quite widely in terms of their “openness,” i.e., their availability for secondary use without 
restrictions or special efforts by the primary study team. Primary studies ranged from fully open 
and downloadable datasets in the public domain to more restricted datasets that could only 
be used for specific purposes, under specific agreements, or after special efforts had been 
made to provide QC’d data in shareable form. There can be several reasons why data aren’t 
always and immediately shared openly and/or without the active involvement of the 
researchers who collected the data43. In our experience within the context of this project, the 
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various factors operating to prevent complete openness can be organised roughly into four 
categories: 
 

- No informed consent was obtained for the open sharing of data at the time of 
collection44 (or the informed consent does not extend to other uses in general). 

- Data protection regulations, either at national or institutional levels, prevent the sharing 
of more detailed data such as essential demographics. 

- The funding agency mandated or encouraged explicit involvement of researchers who 
collected primary study data in secondary studies where data was shared.  

- Primary studies are still ongoing and data cannot be shared openly until the primary 
study objectives and/or milestones have been achieved. 

 
There are also several reasons for not sharing data openly that cut across these categories 
such as general concerns about privacy or confidentiality of participants (which may be 
expressed by researchers, funders or governance bodies), as well as issues of data ownership 
(which are actively evolving as a result of changing legislation in some jurisdictions, e.g., 
General Data Protection Regulations [GDPR] in the European Union since 2016). 
 
For these reasons, in practice, data is often shared under individually tailored and specific 
data usage or material transfer agreements. In the absence of a unified standard academic 
agreement this means that there is considerable variability in the terms under which data is or 
can be shared.  For the present project, we sometimes had to make the difficult decision not 
to include potentially relevant datasets because abiding by the terms of the proposed sharing 
agreements would not have satisfied journal criteria for authorship and/or would have created 
an unbalanced acknowledgement of individual authors’ contributions. 
 
The benefits of truly open data are very clear from a scientific perspective. More open datasets 
would increase the number and diversity of researchers who are able to conduct secondary 
or meta-analytic studies without the need to negotiate multiple individual usage agreements. 
The present project would not have been possible without the availability of several exemplary 
open datasets32–42, which were particularly valuable at the outset of this project, by facilitating 
pilot studies of brain charting methods. However, journal authorship criteria meant that we 
could not include members of some of the most open consortia as co-authors because their 
data were readily available to us without any significant additional contribution meriting 
authorship. We note that this situation potentially disincentives open science, since the people 
who do most to make their data openly available could be least likely to merit co-authorship of 
secondary studies. We therefore consider it is important for all stakeholders (funders, journals, 
investigators) to continue to think about how open human brain science can be properly 
recognised and rewarded. Here we have explicitly referenced and acknowledged our debt to 
the several open MRI datasets without which this study would not have been possible, 
because and although it has not always been appropriate to list the principal architects of 
these datasets as co-authors of this paper.    
 
Ref 1/6 Optimal Euler # can vary as a function of site; no general value is established to my 
knowledge. This is visible in Figure S2.1.2 (note, there are two figures with the same number), 
where there is large variability in the mean EI across dataset (For example, the Oulu and 
AOBA have their median EI > 217). Yet, it seems the authors are using a single cutoff based 
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on the initial paper from the PNC to try to fit all; this will likely lead to both inappropriate 
inclusion and exclusion of data. 
 
We fully agree with the reviewer that a single cut-off is inevitably arbitrary and this was the 
primary reason why we did not base our QC solely on this one approach, but have also 
included a dimensional approach to analysis of the effects of the Euler index, and sensitivity 
analysis based on in a subset of visually QC-ed images. Dimensional analysis of the 
correlations between centile scores of various global MRI phenotypes, and EI as a measure 
of MRI data quality, have consistently demonstrated very limited impact of high or low EI on 
the normative trajectories of median and variance, or on centile scores benchmarked against 
these norms. We have provided further evidence for robustness of norms and centile scores 
on global MRI phenotypes to image quality by reporting highly consistent results from a 
reference dataset selected by different EI-based criteria from the total available pool of scans: 
see SI “2. Quality control” for details.  
 
In an effort to further clarify that our results are not sensitive to a single arbitrary QC criterion, 
we have removed the QC analysis using EI = 217 as the quality criterion applied uniformly 
across all primary studies, and we have reported instead a new analysis using EI > 2 MAD 
(median absolute deviations above the median) for each primary study. This approach to EI 
filtering of available data does not impose a uniform prior threshold on EI, but is more adaptive 
to the variability of image quality within a study or site. Using EI > 2 MAD for QC resulted in 
exclusion of a larger percentage of available scans (9-10%, depending on MRI phenotype), 
but there was virtually no difference in resulting norms and centile scores compared to the 
results reported using the full dataset (or the dataset QC’d by the more inclusive EI > 217 
threshold, which only excluded ~5% of available scans). We agree with the reviewer that QC 
remains of paramount importance for future development of large-scale open neuroimaging 
science. 
 

<<The following changes were made to the supplementary information>> 
 
In SI 2.1 Euler Index filtering 
Although cerebrum tissue volumes are expected to be less sensitive to cortical surface 
topology, compared to surface-based measures such as indices of cortical folding (see SI18 
“Data processing”), EI has previously been used as a measure of the quality of “raw”, 
unprocessed scans45. Thus, for the large majority of studies where EI was available 
(N=101,708 total scans on N=82,023 unique subjects), we assessed the impact on reference 
models of excluding high-magnitude EI scans. Given that no single EI threshold is expected 
to be generalizable across studies45 (Fig. S2.1.2), in this sensitivity analysis we excluded 
scans that had EI magnitude greater than 2 median absolute deviations from the primary 
study-specific median EI. This QC threshold, which is adaptive to the variable quality of scans 
between primary studies, excluded approximately 9-10% of scans from the original dataset. 
However, as can be seen in Fig. S2.1.3, the resulting model parameters were highly correlated 
with parameters estimated from the reference dataset without applying any EI-based QC 
threshold. The developmental trajectories estimated for all 4 cerebrum tissue volumes were 
highly correlated with their trajectories estimated on the basis of the full dataset (all R2 > 0.999 
for parametric [Pearson’s] and non-parametric [Spearman’s] correlations between EI-filtered 
vs EI-unfiltered median trajectories and lower (2.5%) and upper (97.5%) centiles). Identical 
parameterisation of fractional polynomials for each random effect was identified by the same 
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model selection procedure was found in both EI-filtered and EI-unfiltered datasets. 
Importantly, EI-filtered and unfiltered datasets also showed a high degree of overlap in 
subsequently estimated model parameters (correlation of study-specific mean (mu) 
components > 0.99; correlation of study-specific variance (sigma) components > 0.93). Model 
specification thus appeared to be robust to the presence of the poorer quality data. 
 
In addition, we examined the relationships between image quality measured by EI and 
individual centile scores of each brain phenotype. Both for the full dataset and the EI-filtered 
subset of higher quality scans, we found no significant associations between EI and individual 
centile scores (Fig. S2.1.1), nor did we find evidence for a non-linear relationship (quadratic, 
cubic, logarithmic) between EI and centiles. 
 

 
Fig. S2.1.1 Associations between centile scores and MRI scan quality defined by EI. Panel depicts 
the relation between Euler indices (EI) 45 and centile scores for each of 4 cerebrum tissue volumes 
estimated by GAMLSS. The Spearman correlations between EI and centile scores were negligible 
(GMV, ρ<0.01; WMV, ρ=-0.07; sGMV, ρ<0.01; Ventricles, ρ=0.05). All linear mixed effect models 
examining non-linear (quadratic, cubic or logarithmic) relationships between EI and centile scores for 
each phenotype were P > 0.1. 
 
 
To assess whether there were any age-related differences that could influence model 
estimation, we evaluated the linear effect of age (in years) on EI in healthy controls in the 
reference dataset used to estimate normative lifespan trajectories. Using linear regression 
stratified by sex and accounting for study-specific random effects, we found no evidence for 
an age-related bias in image quality as assessed with EI (t = -1.244, P = 0.213). Fig. S2.1.2 
shows the median and standard deviation of age and EI and highlights the top 10 studies with 
the highest median EI.  
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Fig. S2.1.2 Age-related variation in image quality measured by the Euler index in female (left 
panel) and male (right panel) control subjects. Median age (in years) and median EI are shown per 
study with cross-hairs indicating the standard deviations for age and EI per study. In red the top ten 
studies with the highest median EI are highlighted. There is no significant relationship between image 
quality and age at scanning. 
 

 
Figure S2.1.3 Robustness of GAMLSS parameters to quality control by exclusion of scans  with 
EI   greater than twice the  median absolute deviation (MAD) from the median EI in the 
corresponding primary study. Scatterplots show the relationships between random effects (mu on 
the top row and sigma on the bottom row) estimated for each primary study without exclusion of poor 
quality scans (y-axis) and for each primary study after exclusion of scans with EI > 2 MAD, relative to 
the primary study’s median EI. Colored points indicate the relative percentage of primary studies 
retained after filtering (darker means for subjects were removed) and Rho values in the titles indicate 
Spearman’s correlations between parameters estimated from the unfiltered and EI-filtered datasets. 
The biggest discrepancy in study-specific random effects as a result of excluding poor quality scans 
was observed for the variance (Sigma) parameters, especially those estimated from a subset of 
datasets, which all included a relatively high proportion of excluded scans. In general, random effect 
parameter estimation was highly robust to adaptive EI thresholding for quality control.   
 
In SI 2.4 Euler Index and neuroimaging phenotypes 
In short, we have demonstrated by multiple complementary QC studies that our principal 
results, and additional out-of-sample results for new data not previously analysed, are 
remarkably robust to image quality across a range of assessments. We conclude that our 
results are not confounded by uncontrolled image quality issues, but proper QC procedures 
should, of course, be implemented on all scans before they are submitted for OoS centile 
scoring on the basis of our model and aggregated reference dataset. In the absence of a single 
gold standard for automated assessment of imaging data quality, we strongly recommend 
using a combination of approaches to determine inclusion/exclusion of MRI data for brain 
charting. In future, as these methods may be extended to more fine-grained structural MRI 
phenotypes that are likely to be more sensitive to variation in image quality and/or to 
benchmark phenotypes measured in fMRI or more innovative modalities of MRI data, we 
should be prepared for GAMLSS modelling to be significantly less robust to image quality in 
comparison to the case of global MRI phenotypes, like cerebrum tissue volumes. The 
importance of rigorous quality control therefore remains paramount. 
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Ref 1/7 Have the authors looked at the relationship of EI and volume within a dataset? 
 
This is an interesting question, which we had not previously considered. We now provide a 
more comprehensive analysis examining the relationship between EI and volume: see SI 2.4 
“Euler index and global MRI phenotypes”. 
 

<<The following changes were made to the supplementary information>> 
 
In SI 2.4 Euler Index and global MRI phenotypes 
To further examine the potential influence of quality control on the quantification of MRI 
phenotypes, we evaluated the relationship between Euler index (EI) and the four main global 
tissue volumes (GMV, WMV, sGMV, CSF) within each study with available EI data. We 
observed high variability in the range of EI within and between primary studies (Fig. S2.4.1). 
However, using linear models to assess the relationship between EI and non-centiled (“raw”) 
tissue volumes for the healthy controls within each primary study (controlling for age and sex), 
we found that the relationship between EI and tissue volume was generally weak, with only a 
small subset of primary studies showing significant effects of image quality on MRI phenotypes 
(PBonferroni < 0.05, corrected for the number of studies of each phenotype). Critically, the sign of 
this relationship varied across studies and was zero-centred, with the significant effects 
observed in primary studies with greater sample size (linear mixed effects model with 
phenotype as a random effect, comparing sample size and -log10(P-values) for association 
with EI: t = 8.77, P = 6e-16; Fig. S2.4.2).  
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Fig. S2.4.1. Relationships between the distributions of non-centiled (“raw”) cerebrum tissue  
volumes and Euler index within each primary study. Crosshair plots show the range of values (mean 
+/- 1 standard deviation) for the Euler Index (EI) and cerebrum tissue volumes for each primary study: 
clockwise from top left, grey matter volume (GMV), white matter volume (WMV), ventricular 
cerebrospinal fluid volume (CSF) and subcortical grey matter volume (sGMV). The colour scale 
represents median log age of participants in each primary study.  
 

 
Fig. S2.4.2. Model statistics examining the relationships between non-centiled (“raw”) cerebrum 
tissue volumes and the Euler index within each primary study. Volcano plots show the t-statistics 
(x-axis) versus negative log-scaled Bonferroni corrected P-values (y-axis) estimated from linear models 
of the relationship between Euler Index (EI) and cerebrum tissue volumes: clockwise from top left, grey 
matter volume (GMV), white matter volume (WMV), ventricular cerebrospinal fluid volume (CSF) and 
subcortical grey matter volume (sGMV). Each dot represents a single primary study and is coloured to 
represent the median log age of participants, and scaled to represent the sample size, in a study where 
there was a significant relationship between cerebrum tissue volume and EI (PBonferroni < 0.05). It is clear 
that the sign of association between EI and volumetrics was inconsistent between primary studies and 
the association tended to be significant for primary studies with larger sample sizes. 
 
Ref 1/8 95% data inclusion (ie quality pass) is surprising; some sites may have only shared 
quality pass data – is this known? 
 
This high level of passing was somewhat of a surprise to us as well, based on prior experience. 
Supplementary Table 1 lists whether preliminary QC was explicitly conducted prior to sharing 
data for each of the primary studies. In most cases where data was shared directly, these data 
had already undergone some QC screening. So preliminary QC of primary data could 
contribute to the high pass rate when we applied an additional and consistent QC threshold 
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(EI > 217) to all data. , However, as detailed in response to Ref 1/7, the distribution of EI is 
variable across studies and when EI > 2 MAD is used as a more adaptive QC threshold the 
pass rate drops to 90-91%, depending on MRI phenotype: see SI “2.1 Euler Index filtering” 
including new Fig S2.1.3.  
 

<<The following changes were made to the supplementary information>> 
 

In: “SI 2.1 Euler Index filtering” 

 
Figure S2.1.3 Robustness of GAMLSS parameters to quality control by exclusion of scans  with 
EI greater than twice the median absolute deviation (MAD) from the median EI in the 
corresponding primary study. Scatterplots show the relationships between random effects (mu on 
the top row and sigma on the bottom row) estimated for each primary study without exclusion of poor 
quality scans (y-axis) and for each primary study after exclusion of scans with EI > 2 MAD, relative to 
the primary study’s median EI. Coloured points indicate the relative percentage of primary studies 
retained after filtering (darker means for subjects were removed) and Rho values in the titles indicate 
Spearman’s correlations between parameters estimated from the unfiltered and EI-filtered datasets. As 
with the absolute QC threshold of EI < 217 (SI 2.1), the biggest discrepancy in study-specific random 
effects as a result of excluding poor quality scans was observed for the variance (Sigma) parameters, 
especially those estimated from the ICBM, HBN and EDSD datasets, which all included a relatively high 
proportion of excluded scans. We note that EI > 2 MAD filtering removed a lower proportion of data in 
primary studies where the distribution of EI was skewed towards higher quality/lower EI across the 
whole dataset (e.g., HCP, ABCD and UKB all have high data quality with low EI, and 2 MAD filtering in 
these studies only removed around 6-7% of data). In general, random effect parameter estimation was 
highly robust to adaptive EI thresholding for quality control.   
 
Ref 1/9 Figure S2.1.2 – the authors are relying on Spearman to state that no association exists 
between centile and MRI quality. That assumes a linear relationship; this could miss a more 
complex association, which looking at the data – there is visibly higher EI in the low centiles. 
 
We agree with the reviewer that Spearman’s correlation is a measure of linear association and 
there could be a more complex relationship between EI and cortical morphology (either 
quantified as raw phenotypes or as centiles). We therefore additionally explored possible non-
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linear  associations (quadratic, cubic, logarithmic) between centile scores for global MRI 
phenotypes and EI, and found no significant non-linear relationships.  
 

<<the following changes were made to the supplementary information>> 
 
In: SI 2.1 Euker Index filtering 
…nor did we find evidence for a non-linear relationship (quadratic, cubic, logarithmic) between 
EI and centiles. 
 

 
Fig. S2.1.1 Associations between centile scores and MRI scan quality defined by EI. Panel depicts 
the relation between Euler indices (EI) 45 and centile scores for each of 4 cerebrum tissue volumes 
estimated by GAMLSS. The Spearman correlations between EI and centile scores were negligible 
(GMV, ρ<0.01; WMV, ρ=-0.07; sGMV, ρ<0.01; Ventricles, ρ=0.05). All linear mixed effect models 
examining non-linear (quadratic, cubic or logarithmic) relationships between EI and centile scores for 
each phenotype were P > 0.1. 
 
Ref 1/10 Figure S2.2.1 – a score of 4 seems biased for GMV – why only exclude 5 and 6? 
Repeating with 4 excluded would make sense. 
 
We agree with the reviewer that the 4th category in GMV may still show some bias. We 
repeated the analysis, retaining only the top 3 classes of GMV, and again found the same 
level of stability.  
 

<<the following changes were made to the supplementary information>> 
 
Additionally excluding the 4th category for GMV did also not impact the stability of the resulting 
trajectories (R2 > 0.999 for both Pearson’s and Spearman’s correlations). 
 
Ref 1/11 Comparison of GAMLSS vs. ComBat only carried out in ABCD, which uses V-NAV 
(thus has minimal motion) and is harmonized; what about other sites.  
 
We agree with the reviewer that the comparison of GAMLSS and ComBAT, or any other pair 
of batch correction methods, is not a trivial business. Specifically, in the absence of a ground 
truth, it is difficult to determine whether any approach to site-harmonisation over- or under-
corrects relative to the true technical nuisance it aims to control for. We chose the ABCD study 
as an example, not because it used V-NAV, but because it is a harmonised study and designed 
as a multi-site cohort. In addition, it provides a relatively large per-site sample size that makes 
it a good candidate for GAMLSS harmonisation. (As explicitly noted in the previous cycle of 
revision, ComBAT is more likely to be optimal for smaller datasets, with a proportionally higher 
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dimensional feature space). In the ABCD data, both GAMLSS and ComBAT do an excellent 
job at removing site-related variation. However, in response to the reviewer’s concern that the 
result of GAMLSS vs ComBAT comparison is conditional on a single dataset, we have now 
reported a new comparative analysis using a different multi-site dataset (IMAGEN), with very 
similar results: see SI 5.2 “Modelling of between-site heterogeneity by GAMLSS: 
empirical evaluation compared to ComBAT” including Figures S5.2.6 and S5.2.7.  
 
 

<<The following changes were made to the supplementary information>> 
 
In: SI 5.2 Modelling of between-site heterogeneity by GAMLSS: empirical evaluation 
compared to ComBAT  
We specifically chose the ABCD study to test the capacity of GAMLSS and ComBAT to 
remove between-site noise because it is a demographically harmonised multi-site cohort. In 
addition, the large sample size of healthy controls per site makes ABCD highly suitable for 
GAMLSS harmonisation of between-site differences (see also SI 4.5). This means that in the 
context of ABCD any residual significant differences between sites are less likely to be due to 
true site variation or recruitment differences and more likely to be due to noise (technical or 
otherwise), though even in this study recruitment bias can not be fully eliminated. In addition, 
the  ABCD dataset also provided a wide range of non-MRI phenotypes to test any downstream 
impact of batch-effect correction approaches on analyses of association between MRI centile 
normalised scores and non-MRI phenotypes. Despite being a technically harmonised cohort, 
and despite using acquisition protocols that included prospective motion correction, the 
uncorrected ABCD imaging data still show clear and significant differences between sites 
across all MRI phenotypes.  
 
 
Few other datasets fit the selection criteria used for the specific comparison between GAMLSS 
and ComBAT approaches to normalisation (i.e., N >100 healthy control participants per site, 
aligned recruitment criteria, and broadly aligned MRI data acquisition protocols). The only 
other multi-site datasets fitting these criteria in our aggregated dataset were the IMAGEN and 
UK BioBank cohorts. To explore whether the harmonisation approach worked well in a cohort 
other than ABCD we chose the IMAGEN cohort as UK BioBank implements an extremely well-
harmonised acquisition and recruitment strategy across its 3 sites. While we did not have 
access to the same extensive set of non-neuroimaging based phenotypes in the IMAGEN 
dataset as we had for the ABCD dataset, we observed that both GAMLSS and ComBAT were 
highly effective at removing large site-related variation from raw neuroimaging phenotypes 
(Fig. S5.2.6-5.2.7). 
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Fig. S5.2.6. Raw volumetric data and centile scores for female participants from the IMAGEN 
cohort. Top row shows raw volumetric data across the different sites included in IMAGEN, the middle 
row shows centile normalised data by GAMLSS, and the bottom row shows data normalised using 
ComBAT. ANOVA uncorrected P-values refer to one-way analyses of variance across sites for each 
individual phenotype. ComBAT and GAMLSS are both able to substantially mitigate batch effects in 
multi-site MRI data from the IMAGEN study (as well as the ABCD study). 
 

 
Fig. S5.2.7. Raw volumetric data and centile scores for male participants from the IMAGEN 
cohort. The top row shows raw volumetric data across the different sites included in IMAGEN, the 
middle row shows centile normalised data by GAMLSS and the bottom row shows data normalised 
using ComBAT. ANOVA uncorrected P-values refer to one-way analyses of variance across sites for 
each individual phenotype. Bars are coloured by site. ComBAT and GAMLSS are both able to 
substantially mitigate batch effects in multi-site MRI data from the IMAGEN study (as well as the ABCD 
study). 
 
It is beyond the scope of the present work to provide an exhaustive review of batch correction 
methods or to evaluate the performance of GAMLSS (or ComBAT) for correction of batch 
effects under all possibly relevant experimental conditions. We emphasise that our use of 
GAMLSS for between-site or between-study harmonisation may not be optimal for studies with 
small numbers of controls per site (SI 4.5). In addition, it will not mitigate study- or site-specific 
effects driven by ascertainment bias or variability in diagnostic criteria across sites that may 
contribute to site-specific variation. Adaptations of ComBAT have been proposed for batch 
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effect correction of multi-site data where such factors are likely to be problematic31; although 
these approaches may not be suitable for harmonisation of datasets with partially or totally 
non-overlapping age-ranges, as required for integration of primary studies to estimate brain 
charts over the entire lifespan.  
 
 
Ref 1/12 How was the visual inspection performed? Where each image rated by one expert 
or many? If more than one rater, how was the ICC? 
 
For each subject a slice stack of images was generated across the three axes, after bias field 
correction and intensity normalisation, so that they were all easily comparable by visual 
inspection, and subsequently rated on motion corruption and other failure modes (artefacts, 
missing brain parts, etc). This was done by a single individual after a consensus labelling 
schema had been agreed. 
 

<<The following changes were made to the supplementary information>> 
 

In SI 2.2 Expert visual quality control 
These scans were provided by openly available datasets and are marked as having “Manual” 
quality control in the “Extracted QC” column in ST1.1. For each subject a slice stack of images 
was generated across the three axes, after bias field correction and intensity normalization, 
so that they were all easily comparable by visual inspection, and subsequently rated on motion 
corruption and other failure modes (artefacts, missing brain parts etc). Visual inspection then 
rated each image on the following questions: is the brain fully covered by the scan; is there 
visible noise (due to aliasing, motion etc.), blurriness, or ringing; is there acceptable tissue 
contrast and image orientation? Based on these criteria, each raw scan was expertly classified 
on a 6-point scale as perfect (1), very good (2), good (3), bad (4), very bad (5) or unacceptable 
(6). Only 3% of scans (N=374) were assigned to the two worst quality categories (5 and 6). 
Each image was rated by a single rater. 
 
Ref 1/13 Page 6 – First paragraph. – “The only exception to this generally high … were the 
GISTO and EDSD cohorts where excluding scans with EI > 217 substantially reduced the 
number of scans (by >30%)…” But, by looking at the second Figure S2.1.2, it looks that more 
than 50% of the data for males in the Oulu, NIH, AOBA, WAYNE, ICBM have a EI > 217. So 
which one is correct? 
 
We thank the reviewer for picking this up. The original figure was correct and the percentage 
mentioned in the text did not convey the variability of excluded percentages across the 
different studies adequately nor did it stratify male and female percentage (indeed some sites 
had exclusion in the >50% range). We note that this statement  has now been removed from 
the paper, together with all other text concerning QC with EI > 217, as detailed in response to 
Ref 1/6 . 
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Referee #2: 
 
Ref 2/1 Overall, the authors have done a commendable job using a very large convenience 
meta-analytic sample of individuals with MRI data to produce lifespan trajectories of gross 
brain structure, and variation therein. The key findings are not so much of note in their own 
right, but rather constitute a series of checks to ensure that the harmonization process has 
been successful, and that associations produced by the harmonized data are cleaner. The 
major contribution here is a resource for other researchers seeking to compare their sample 
to the wider corpus of MRI research, and those seeking to combine MRI data across multiple 
datasets in a principled way that avoids bias that is typically associated with aggregation 
across different MRI studies. However, contrary to what has been implied by the direct 
comparison of the brain charts introduced here to height and weight growth charts that are 
used routinely in clinical settings, the brain charts cannot be used for individual patient 
diagnosis or treatment. I elaborate on this concern below. In light of them, I believe that a 
major revision to the framing of the manuscript is needed.  
 
My concern can be distilled down to what is implied by the title “Brain Charts” and the explicit 
desire expressed (e.g. in the second sentence of the abstract, the first paragraph of the main 
text) to constructed charts for the brain that akin to growth charts that are routinely used in 
clinical, mostly pediatric, settings for tracking the trajectory of height and weight growth of 
individuals relative to the population. I need to be clear that when I say “clinical,” I mean in 
individual patient monitoring, diagnosis and care, not “clinical research,” which refers to 
research that is on the topic of clinical populations or clinical treatments. This article needs to, 
in no uncertain terms, remove this inappropriate comparison between brain charts (which 
cannot be used clinically for individual patients) and height and weight growth charts (which 
can be used clinically). Statements such as the following need to be removed: “Crucially, for 
clinical purposes, centile scores provided a standardised and interpretable measure of 
deviation that revealed new patterns of neuroanatomical differences across neurological and 
psychiatric disorders.” [These are not "clinical purposes." I think that the authors mean "for 
research into the neuroanotomical correlates of clinical disorders."]. The first reason that the 
brain charts cannot be used for individual patient diagnostics is that although the total sample 
size of the analysis is very large, the studies are not representative of the population (and it is 
not even clear what the “the population” of interest is; growth charts should be normed relative 
to the population of their intended use). Inasmuch, it would be grossly inappropriate to assign 
and individual a centile score relative to the brain chart norms, as the centile is unlikely to 
correspond to centiles within the population. Centiles can of course be used for the purposes 
of research, so as to reference an individual’s location within the observed (meta-analytic) 
sample distribution, but they simply cannot be used clinically without the reference norms 
being representative. The authors have been responsive to my previous comment about 
issues concerning representativeness, but I continue to worry that the charts are framed as 
being of use for individual centile scoring in clinical settings.  
 
We thank the reviewer for their positive appraisal of our original and revised manuscripts.  
 
We carefully considered whether to remove the term “brain chart”, and the analogy to 
paediatric growth charts for height and weight, from the present manuscript. We recognised 
that there is a substantial prior literature using the terminology of “brain charts” and making 
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the explicit analogy to paediatric growth charts – see, for example [4,14,46–48] in the revised 
manuscript – and we thus consider our use of this terminology to be in line with the broader 
literature. We have therefore retained this phrase, and the analogy it refers to, in the paper.  
 
However, we completely agree with the reviewer that brain charts are not yet suitable for 
clinical practice and we apologise for any lack of clarity concerning this point in the previous 
version of the paper. In this revision, we have extensively and explicitly reframed how the 
growth chart analogy is explained, drawing attention to the limits of the analogy, and 
repeatedly making it clear in the main text and supplementary information that brain charts are 
not suitable for quantitative assessment or diagnosis of MRI scan data from individual patients 
in clinical practice. We continue to think that further progress towards clinical applications of 
quantitative MRI is to be expected, and may hopefully be accelerated by our provision of open 
science resources for brain charting. We have signposted this direction of travel towards future 
clinical utility; but we have also made it very clear that it is not currently possible to use brain 
charting technology for assessment or diagnosis of an individual patient’s brain MRI scan in 
clinical practice; and we have drawn attention to some of the clinical limitations of existing 
anthropometric growth charts in paediatric clinical practice. Finally, we updated the disclaimer 
on www.brainchart.io to state more clearly that the tool is meant for research purposes and is 
explicitly not intended for clinical use.    
 
 

<<the following  changes were made to the main text>> 
 
In Abstract: 
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and 
clinical studies of the human brain. However, no reference standards currently exist to quantify 
individual differences in neuroimaging metrics over time, in contrast to growth charts for 
anthropometric traits such as height and weight1. Here, we built an interactive resource to 
benchmark brain morphology, www.brainchart.io, derived from any current or future sample 
of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on 
the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 
101,457 participants aged from 115 days post-conception through 100 postnatal years, across 
more than 100 primary research studies. Cerebrum tissue volumes and other global or 
regional MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of 
brain structural changes, and rates of change, over the lifespan. Brain charts identified 
previously unreported neurodevelopmental milestones3; showed high stability of individual 
centile scores over longitudinal assessments; and demonstrated robustness to technical and 
methodological differences between primary studies. Centile scores showed increased 
heritability compared to non-centiled MRI phenotypes, and provided a standardised measure 
of atypical brain structure that revealed patterns of neuroanatomical variation across 
neurological and psychiatric disorders. In sum, brain charts are an essential first step towards 
robust quantification of individual deviations from normative trajectories in multiple, commonly-
used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts 
are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse 
developmental and clinical effects on human brain structure. Furthermore, we provide open 
resources to support future advances towards adoption of brain charts as standards for 
quantitative benchmarking of typical or atypical brain MRI scans.  
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In Introduction: 
The simple framework of growth charts to quantify age-related change was first published in 
the late 18th century49 and remains a cornerstone of paediatric healthcare – an enduring 
example of the utility of standardised norms to benchmark individual trajectories of 
development. However, growth charts are currently available only for a small set of 
anthropometric variables, e.g., height, weight and head circumference, and only for the first 
decade of life. There are no analogous charts available for quantification of age-related 
changes in the human brain, although it is known to go through a prolonged and complex 
maturational program from pregnancy to the third decade51, followed by progressive 
senescence from the sixth decade52, approximately. The lack of tools for standardised 
assessment of brain development and aging is particularly relevant to research studies of 
psychiatric disorders, which are increasingly recognised as a consequence of atypical brain 
development53, and neurodegenerative diseases that cause pathological brain changes in the 
context of normative senescence54. Preterm birth and neurogenetic disorders are also 
associated with marked abnormalities of brain structure55,56 that persist into adult life56,57 and 
are associated with learning disabilities and mental health disorders. Mental illness and 
dementia collectively represent the single biggest global health burden58, highlighting the 
urgent need for normative brain charts as an anchorpoint for standardised quantification of 
brain structure over the lifespan59. 
 
We do not claim to have yet reached the ultimate goal of standardised, quantitative diagnosis 
of MRI scans from individual patients in clinical practice. However, the present work proves 
the principle that building normative charts to benchmark individual differences in brain 
structure is already achievable; and provides a suite of open science resources to accelerate 
further progress in the direction of standardised quantitative assessment of MRI data by the 
global neuroimaging research community.  
 
In Discussion: 
The analogy to paediatric growth charts is not meant to imply that brain charts are immediately 
suitable for benchmarking or quantitative diagnosis of individual patients in clinical practice. 
Even for traditional anthropometric growth charts (height, weight and BMI) there are still 
significant caveats and nuances concerning their diagnostic interpretation in individual 
children26; and, likewise, it is expected that considerable further research will be required to 
validate the clinical diagnostic utility of brain charts. However, the current results bode well for 
future progress towards digital diagnosis of atypical brain structure and development27. By 
providing an age- and sex-normalised metric, centile scores enable trans-diagnostic 
comparisons between disorders that emerge at different stages of the lifespan (SI10-11). The 
generally high stability of centile scores across longitudinal measurements also enabled 
assessment of documented changes in diagnosis such as the transition from MCI to AD 
(SI14), which provides one example of how centile scoring could be clinically useful in 
quantitatively predicting or diagnosing progressive neurodegenerative disorders in the future. 
Our provision of appropriate normative growth charts and on-line tools also creates an 
immediate opportunity to quantify atypical brain structure in clinical research samples, to 
leverage available legacy neuroimaging datasets, and to enhance ongoing studies.  
 
Ref 2/2 Second, is that differences in MRI protocol and scanner calibration in real-world clinical 
settings relative to the studies used to construct the brain charts cannot be corrected for. In 
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their response, the authors go to great lengths to explain how they harmonized the samples 
and accounted for study-to-study differences, for instance, by obtaining bootstrapped centile 
scores from leave one sample out analyses. They are correct that these methods strongly 
mitigate against artifacts in the brain charts that might have otherwise arisen from between-
study variation. Indeed, as displayed in Fig S5.2.4, the primary advantage of the centile 
scoring method is that it allows data from different studies to be combined without associations 
being attenuated by study-to-study variation. However, this does not mitigate against artifacts 
that would arise from attempting to centile score an individual from a single outside scan. The 
authors do appropriately comment that new datasets (with “comparatively smaller samples 
sizes”) can be integrated with this one, and do not actually indicate that a single scan of an 
individual in a clinical setting can be centile scored relative to their charts. However, by calling 
these “brain charts” and comparing them to existing growth charts, the idea that the charts can 
be used for individuals clinically, rather than simply for individuals within studies, is made 
implicit. 
 
We completely agree with the reviewer that it is critical for readers to understand what the 
present tools and resources can be used for, and what they cannot be used for. As noted in 
response to Ref 2/1, we have extensively changed the abstract, introduction and discussion 
of the main text in order to make this distinction as clear as possible. Here we highlight 
additional changes that address more specifically the reviewer’s concerns about interpretation 
of the results on out-of-sample centile scoring.  
 

<<the following changes were made to the main text>> 
 
In: Out-of-sample centile scoring of “new” MRI data 
Extensive jack-knife and leave-one-study-out (LOSO) analyses indicated that a study size of 
N>100 scans was sufficient for stable and unbiased estimation of out-of-sample centile scores 
(SI4). This study size limit is in line with the size of many contemporary brain MRI research 
studies. However, these results do not immediately support the use of brain charts to generate 
centile scores from smaller scale research studies, or from an individual patient’s scan in 
clinical practice – this remains a goal for future work.  
 
 
In: Discussion 
Even this large MRI dataset was heavily biased towards European and North American 
populations, as is also common in traditional growth charts and existing genetic datasets. 
Further increasing ethnic and demographic diversity in MRI research will enable more 
population-representative normative trajectories28,29 that can be expected to improve the 
accuracy and strengthen the interpretation of centile scores in relation to appropriate norms 
and allow more detailed cross-cultural comparisons14. The available reference data were also 
not equally representative of all ages, e.g., foetal, neonatal and mid-adulthood (30-40y) 
epochs were under-represented (SI17-19). While our statistical modelling approach was 
designed to mitigate study- or site-specific effects on centile scores, it cannot entirely correct 
for limitations of primary study design, such as ascertainment bias or variability in diagnostic 
criteria.  
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Referee #3: 
 
Bethlehem and co-authors have submitted a very impressive revision to their manuscript 
“Brain charts for the human lifespan”. Extensive additional analyses were performed to 
address previous weaknesses and criticisms. I commend the authors for their responsiveness 
to the previous round of reviews. In particular, I am now convinced that their GAMLSS 
modeling approach is sufficiently robust to the inclusion of new studies. The Supplement is 
massive, and thus beyond the capability of any single individual to review thoroughly (in a 
reasonable amount of time). But it is clear from the ~ 1/3 of the supplement that I did review 
that the value and overall quality of the Supplemental Material is dramatically improved. 
 
I believe that this manuscript has now (nearly) achieved its potential. It will be a very impactful 
addition to the understanding and future study of human structural neuroanatomy. 
 
We thank the reviewer for their positive assessment of the revised manuscript, and we are 
extremely grateful for their close attention to detail which has continued to improve the quality 
of our work. 
 
I do have a couple follow-up questions related to two of my initial major concerns. And given 
the extensive nature of the revisions, there are a number of relatively minor issues that warrant 
consideration and revision before publication. 
 
Ref 3/1 While effect sizes are now available in the supplementary material, the reporting of 
effect sizes remains underemphasized in the main text. In particular, the main text revolving 
around Figure 4 still comes across as highly p-value centric. I believe that some indication of 
the Cohen’s D effect sizes should be worked into Figure 4, both for the individual MRI 
phenotypes (4A), as well as the CMD comparison (4C). If that’s simply not possible, some 
(quantitative) discussion of effect sizes for both of those should be included in the main text. 
Additionally, it should be made clear that effect sizes are available in the ST. (Currently, the 
main text mentions “effect-size” once in the introduction, but never seems to actually present 
or discuss effect sizes in the main text). 
 
We agree with the reviewer that it is important to make the results accessible to readers in 
terms of effect sizes as well as P-values. Unfortunately, we have found that it is not possible 
to add this level of detail to Figure 4 without compromising its legibility and accessibility.  We 
have therefore instead followed the reviewer’s recommendation to provide quantitative 
information about the effect sizes in the main text and more explicitly refer to the supplemental 
tables which provide complete information on effect sizes.  
 

<<The following changes were made to the main text>> 
 
In: Individualised centile scores in clinical samples 
...with effect-sizes ranging from medium (Cohen’s d ranging from 0.2 to 0.8) to large (Cohen’s 
d > 0.8) (see ST3-4 for all false discovery rate (FDR)-corrected P-values and effect-sizes).   
 
(median centile score = 14%, 36% points difference from CN median, corresponding to 
Cohen’s d=0.88; Fig.4A). 
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Ref 3/2 The authors state in their response that due to the use of a “GAMLSS model that 
included random effects on three moments of the generalized gamma distribution” that it 
therefore wasn’t possible to “conduct an analysis of the effect of specific technical covariates”. 
I don’t follow the logic of this statement. In particular, aren’t estimates of the random effects 
available for each study? (Elsewhere in the manuscript makes the explicit point that it was 
important that these be available). And if that’s the case, then isn’t it possible to investigate 
possible relationships between those random effects estimates and the technical covariates? 
 
The reviewer is correct that the GAMLSS framework provides us with study specific offsets on 
the mean (Mu) and variance (Sigma) parameters. Section SI 3.2.3 showed the variability of 
these estimates across the different studies and noted that we find wider confidence intervals 
for small or methodologically unique studies. In response to the reviewer’s suggestion, we 
now report additional new analysis of the relationships between these study-specific offset 
parameters and 5 demographic or technical covariates that varied between primary studies: 
median age (in years), age standard deviation, study size, scanner manufacturer, and scanner 
field strength. We found only limited evidence that any of these covariates significantly 
influenced random effect parameters. Information on other technical covariates, such as MRI 
acquisition parameters, is listed in full in ST 1.1; but these detailed technical factors were too 
heterogeneous between studies to be analysed formally in relation to study-specific random 
effects, i.e., there were almost as many unique combinations of MRI sequences as there were 
primary studies in the reference dataset. The new results for the effects of analysable 
covariates on random effect parameters estimated by GAMLSS modelling of cerebrum tissue 
volumes are detailed in SI 3.2.3 “Parameter estimates”, including new Figs S3.2.3.2 - 
S3.2.3.6; analogous results for random effect parameters estimated by GAMLSS modelling of 
extended global MRI phenotypes are detailed in SI 7.2 “Normative trajectories of extended 
global MRI phenotypes”, including new Figs S7.2.3-7.21.7 
 
 

<<The following changes were made to the supplementary information>> 
 
In SI 3.2.3: Parameter estimates 
We further evaluated the potential impact of various technical and demographic covariates on 
the random effect parameters estimated by GAMLSS as a measure of each primary study’s 
offset from the normative trajectories of each MRI phenotype. Specifically, we used linear 
models to estimate the strength of association between random effects (on Mu and Sigma) 
and median age, standard deviation of age, sample size, scanner manufacturer, and MRI field 
strength, for each cerebrum tissue volume; see Figs S3.2.3.2 - S3.2.3.6. We found only limited 
evidence for significant effects of any of these covariates on any of these random effect 
parameters. Other technical covariates, e.g., MRI sequence parameters, were too 
heterogeneous between primary studies to be assessed for impact on random effects in this 
way; but full technical specification of all primary studies is detailed in ST 1.1. 
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Fig. S3.2.3.2. Association between median age of participants and random effect parameters 
estimated by GAMLSS modelling of cerebrum tissue volumes for each primary study. Top row: 
random effects on Mu (y-axis) are plotted versus median age (x-axis) for each global MRI phenotype, 
left to right: grey matter volume (GMV), white matter volume (WMV), subcortical grey matter volume 
(sGMV) and ventricular CSF volume (Ventricles). Fitted lines and confidence intervals indicate the 
strength of association estimated by linear modeling. Bottom row: random effects on Sigma (y-axis) are 
plotted versus median age for the same set of global MRI phenotypes (except Ventricular volume for 
which Sigma was not estimated). There were larger random effects on Mu and Sigma in some of the 
primary studies of younger participants, as expected by the greater technical and biological variability 
of studies in childhood. The association between random effects and median age was only significant 
on the Mu parameter (after FDR correction for multiple comparisons) for ventricular CSF volume (Pfdr = 
0.007, R2 = 0.12, F(1,82) = 12.9).     
 
 

 
 
Fig. S3.2.3.3. Association between the standard deviation of the age of participants and random 
effect parameters estimated by GAMLSS modeling of cerebrum tissue volumes for each primary 
study. Top row: random effects on Mu (y-axis) are plotted versus standard deviation of age (x-axis) for 
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each global MRI phenotype, left to right: grey matter volume (GMV), white matter volume (WMV), 
subcortical grey matter volume (sGMV) and ventricular CSF volume (Ventricles). Fitted lines and 
confidence intervals indicate the strength of association estimated by linear modeling. Bottom row: 
random effects on Sigma (y-axis) are plotted versus standard deviation of age for the same set of global 
MRI phenotypes (except Ventricles for which Sigma was not estimated). The association between 
random effects and standard deviation of age was not significant (after FDR correction for multiple 
comparisons) for any of these global MRI phenotypes.  
 

 
Fig. S3.2.3.4. Association between sample size and random effect parameters estimated by 
GAMLSS modelling of cerebrum tissue volumes for each primary study. Top row: random effects 
on Mu (y-axis) are plotted versus sample size (x-axis) for each global MRI phenotype, left to right: grey 
matter volume (GMV), white matter volume (WMV), subcortical grey matter volume (sGMV) and 
ventricular CSF volume (Ventricles). Fitted lines and confidence intervals indicate the strength of 
association estimated by linear modeling. Bottom row: random effects on Sigma (y-axis) are plotted 
versus sample size for the same set of global MRI phenotypes (except Ventricles for which Sigma was 
not estimated). The association between random effects and sample size was not significant (after FDR 
correction for multiple comparisons) for any of these global MRI phenotypes. 
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Fig. S3.2.3.5. Association between the scanner manufacturer and random effect parameters 
estimated by GAMLSS modeling of cerebrum tissue volumes for each primary study. Top row: 
boxplots of Mu (x-axis) are plotted for primary studies using scanners manufactured by General Electric 
(GE, red), Siemens (purple), Philips (green), or a mixture of different scanners (cyan), for each global 
MRI phenotype, left to right: grey matter volume (GMV), white matter volume (WMV), subcortical grey 
matter volume (sGMV) and ventricular CSF volume (Ventricles). Bottom row: boxplots of Sigma (x-axis) 
are plotted for primary studies stratified by scanner manufacturer (with the same colour coding) for the 
same set of global MRI phenotypes (except Ventricles for which Sigma was not estimated). There was 
no evidence for a significant difference in mean random effects of primary studies using different 
scanners (after FDR correction for multiple comparisons) for any of these global MRI phenotypes. 
 

 
Fig. S3.2.3.6. Association between the scanner field strength and random effect parameters 
estimated by GAMLSS modeling of cerebrum tissue volumes for each primary study. Top row: 
boxplots of Mu (x-axis) are plotted for primary studies using scanners at different field strengths for each 
global MRI phenotype, left to right: grey matter volume (GMV), white matter volume (WMV), subcortical 
grey matter volume (sGMV) and ventricular CSF volume (Ventricles). Bottom row: boxplots of Sigma 
(x-axis) are plotted for primary studies stratified by scanner field strength (with the same colour coding) 
for the same set of global MRI phenotypes (except Ventricles for which Sigma was not estimated). 
There was no evidence for a significant difference in mean random effects of primary studies using 
scanners operating at different field strengths (after FDR correction for multiple comparisons) for any of 
these global MRI phenotypes. Numbers denote the number of studies included at this field strength. 
 
In SI 7.2: Normative trajectories of extended global MRI phenotypes 
Analogous to the analyses reported in SI 3.2.3 for cerebrum tissue volumes, we also examined 
the linear relationships between study-specific random parameters estimated in the analysis 
of other global MRI phenotypes and 5 demographic or technical covariates: median age, 
standard deviation of age, sample size, scanner manufacturer, and scanner field strength; see 
Figs. S7.2.3-7.2.7. We found only limited evidence for significant effects of any of these 
covariates on any of these random effect parameters. 
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Fig. S7.2.3. Association between median age of participants and random effect parameters 
estimated by GAMLSS modeling of extended global MRI phenotypes for each primary study. Top 
row: random effects on Mu (y-axis) are plotted versus median age (x-axis) for each global MRI 
phenotype, left to right: total cerebrum volume, total surface area, mean cortical thickness. Fitted lines 
and confidence intervals indicate the strength of association estimated by linear modeling. Bottom row: 
random effects on Sigma (y-axis) are plotted versus median age for the same set of global MRI 
phenotypes. The associations between random effects and median age were not significant for any of 
these global phenotypes.     
 

 
Fig. S7.2.4. Association between the standard deviation of the age of participants and random 
effect parameters estimated by GAMLSS modeling of extended global MRI phenotypes for each 
primary study. Top row: random effects on Mu (y-axis) are plotted versus standard deviation of age 
(x-axis) for each global MRI phenotype, left to right: total cerebrum volume, total surface area, mean 
cortical thickness. Fitted lines and confidence intervals indicate the strength of association estimated 
by linear modeling. Bottom row: random effects on Sigma (y-axis) are plotted versus standard deviation 
of age for the same set of global MRI phenotypes. The associations between random effects and 
standard deviation of age were not significant (after FDR correction for multiple comparisons) for any 
of these global MRI phenotypes.  
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Fig. S7.2.5. Association between sample size and random effect parameters estimated by 
GAMLSS modeling of extended global MRI phenotypes for each primary study. Top row: random 
effects on Mu (y-axis) are plotted versus sample size (x-axis) for each global MRI phenotype, left to 
right: left to right: total cerebrum volume, total surface area, mean cortical thickness. Fitted lines and 
confidence intervals indicate the strength of association estimated by linear modeling. Bottom row: 
random effects on Sigma (y-axis) are plotted versus sample size for the same set of global MRI 
phenotypes. The associations between random effects and sample size were not significant (after FDR 
correction for multiple comparisons) for any of these global MRI phenotypes. 
 

 
Fig. S7.2.6. Association between the scanner manufacturer and random effect parameters 
estimated by GAMLSS modeling of extended global MRI phenotypes for each primary study. Top 
row: boxplots of Mu (x-axis) are plotted for primary studies using scanners manufactured by General 
Electric (GE, red), Siemens (purple), Philips (green), or a mixture of different scanners (cyan), for each 
global MRI phenotype, left to right: total cerebrum volume, total surface area, mean cortical thickness. 
Bottom row: boxplots of Sigma (x-axis) are plotted for primary studies stratified by scanner manufacturer 
(with the same colour coding) for the same set of global MRI phenotypes. There was no evidence for a 
significant difference in mean random effects of primary studies using different scanners (after FDR 
correction for multiple comparisons) for any of these global MRI phenotypes. 
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Fig. S7.2.7. Association between the scanner field strength and random effect parameters 
estimated by GAMLSS modeling of extended global MRI phenotypes for each primary study. Top 
row: boxplots of Mu (x-axis) are plotted for primary studies using scanners at different field strengths 
(1T, red; 1.5T, purple; 3T, green; or 7T, cyan) for each global MRI phenotype, left to right: total cerebrum 
volume, total surface area, mean cortical thickness. Bottom row: boxplots of Sigma (x-axis) are plotted 
for primary studies stratified by scanner field strength (with the same colour coding) for the same set of 
global MRI phenotypes. There was no evidence for a significant difference in mean random effects of 
primary studies using scanners operating at different field strengths (after FDR correction for multiple 
comparisons) for any of these global MRI phenotypes. 
 
Ref 3/3 Fig. 2: There clearly is a discontinuity in the mean cortical thickness values just past 
age 2. Is this commented on anywhere? Somewhat relatedly, what is the combined N across 
studies of individuals less than 2 years old? In the interest of transparency, it seems worth 
pointing this out in the main text, as presumably this N is rather low, yet this data is the basis 
for a number of the conclusions regarding age at peak (thickness) and age at peak velocity (a 
number of measures). Also, neither key nor caption indicates what the gray line represents in 
panel B. Also, the caption says “2.5% and 97% centiles”. I presume that the latter value should 
be “97.5%”? 
 
We thank the reviewer for picking up these issues in Figure 2 and the related text. We have 
corrected the legend to Figure 2 accordingly, we have discussed the discontinuity in the 
cortical thickness trajectory, and we have now clearly stated the number of subjects under 2 
years old. 
 

<<The following changes were made to the main text>> 
 
In Developmental milestones 
This early peak in cortical thickness velocity has not been reported previously, in part due to 
obstacles in acquiring adequate and consistent signal from typical MRI sequences in the 
perinatal period60. Similarly, normative trajectories revealed an early period of GMV:WMV 
differentiation, beginning in the first month after birth with the switch from WMV to GMV as the 
proportionally dominant tissue compartment, and ending when the absolute difference of GMV 
and WMV peaked around 3 years (SI9). This epoch of GMV:WMV differentiation, which may 
reflect underlying changes in myelination and synaptic proliferation51,61–64, has not been 
demarcated by prior studies48,65. It was likely identified in this study due to the substantial amount 
of early developmental MRI data available for analysis in the aggregated dataset (in total across 
all primary studies, N=2,571 and N=1,484 participants aged <2 years were available for analysis 
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of cerebrum tissue volumes and extended global MRI phenotypes, respectively). The period of 
GMV:WMV differentiation encompasses dynamic changes in brain metabolites66 (0-3 
months), resting metabolic rate (RMR; minimum=7 months, maximum=4.2 years)67, the typical 
period of acquisition of motor capabilities and other early paediatric milestones68, and the most 
rapid change in TCV (Fig.3).  
 

<<The following changes were made to the supplementary material>> 
 
In SI 7.1 Extended neuroimaging phenotypes 
We note the discontinuity in the raw, non-centiled CT data that is most likely driven by a 
combination of brain tissue-related changes in the MRI signal due to the ending of the phase 
of GMV:WMV differentiation (and peak velocity in WMV) and technical differences in pre-
processing of images around this age. Two-three years is often used as the cutoff to determine 
application of different pre-processing pipelines, e.g., infant FreeSurfer versus adult 
FreeSurfer. However, multiple studies and associated pre-processing pipelines were 
extended across this age-range in our aggregated dataset (and we also observed this 
discontinuity within studies that were processed homogeneously across the 2-3 year span), 
hence we consider it is unlikely that the transition between pre-processing pipelines can 
entirely explain the discontinuity in CT. We also emphasise that while there is a relative paucity 
of data in the <2yr age-range compared to other epochs, and for extended global MRI 
phenotypes (including CT) compared to cerebrum tissue volumes, the current trajectories are 
based on the largest early developmental dataset reported to date. Future work will hopefully 
be able to more precisely disambiguate to what extent this discontinuity is driven by MRI signal 
changes representative of maturation of brain tissue composition and to what extent the 
discontinuity represents technical factors such as adoption of infancy-specific pre-processing 
pipelines.  

 
 
Ref 3/4 Figure 3: The colors are not sufficiently distinct to quickly and easily match to the key. 
Either more unique colors are necessary, or add thin black lines within the color bands, but 
with different linestyles (e.g., solid vs. dashed) to help distinguish lines that are the same basic 
color. Also, the top inset reads “thicknes” rather than “thickness”. 
 
We thank the reviewer for picking up these issues in Figure 3. The typo in the top inset has 
been corrected. To maintain alignment with the colour scale used consistently across other 
figures, we have adopted the reviewer's suggestion of adding a different line-style for the 
extended global MRI phenotypes in this figure. 
 

<<The following changes were made to the main text>> 
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Ref 3/5 p. 8 (main text): Shouldn’t text regarding “mean difference in h^2” be referring to Fig.4D 
(not 4C)? Also, does that “11.8%” refer to an actual *percentage* difference, or a *percentage 
point* difference? (Figure 4 seems to indicate it is probably the latter, which is more impressive 
than the former, and thus worth describing precisely). 
 
We thank the reviewer for picking up this point. We have now corrected this error in the 
reference to Figure 4 in the main text, and we have clarified the reporting of this heritability 
result. : 
 

<<The following changes were made to the main text>> 
 
In:  Individualised centile scores in clinical samples 
...(average increase of 11.8% points in h2 across phenotypes; Fig.4D, SI13)... 
 
Ref 3/6 Figure 4: Caption contains no indication of what 1 vs. 2 vs. 3 asterisks represents. 
 
We thank the reviewer for picking up this point. The legend to Figure 4 has been updated 
accordingly.  
 

<<The following changes were made to the main text>> 
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In: Figure 4 legend 
Asterisks indicate level of FDR-corrected significance: P < 0.05, P <0.01 or P <0.001 for *, ** and *** 
respectively. 
 
Ref 3/7 p. 18 (“Online Methods”): It seems less relevant to me to present the “general” form of 
the GAMLSS than to make clear how the GAMLSS was modeled in this particular study. In 
that regard, I find it potentially confusing to readers to include smoothing functions in Eq. (1) 
when non-parametric smoothing functions were not in fact used. Also, in Eq. (1), what is ‘F’? 
(Not defined). 
 
We included smoothing terms in description of the model simply to acknowledge the GAM 
component of GAMLSS. The reviewer is correct in noting that we do not employ any smoothing 
functions in our implementation of GAMLSS modeling. The online methods and accompanying 
supplementary methods were intended as a general discussion of centile normalisation. The 
specifics of our model are now presented in the online methods after this general discussion. 
F refers to the distribution family, which was incorrectly denoted D in the text; this typo has 
been corrected. 

 
<<The following changes were made to the online methods>> 

 
The resulting models were evaluated using several sensitivity analyses and validation 
approaches. See Supplementary Information [SI] for further details regarding GAMLSS 
model specification and estimation (SI1), image quality control (SI2), model stability and 
robustness (SI3-4), phenotypic validation against non-imaging metrics (SI3 & SI5.2), between-
study harmonisation (SI5) and assessment of cohort effects (SI6).  While the models of whole 
brain and regional morphometric development were robust to variations in image quality, and 
cross-validated by non-imaging metrics, we expect that several sources of variance, including 
but not limited to MRI data quality and variability of acquisition protocols, may become 
increasingly important as brain charting methods are applied to more innovative and/or 
anatomically fine-grained MRI phenotypes. It will be important for future work to remain vigilant 
about the potential impact of data quality and other sources of noise on robustness and 
generalisability of both normative trajectories and the centile scores derived from them. 
 
Based on the model selection criteria, outlined in the Supplementary Information (SI 1) in 
detail, the final models for normative trajectories of all MRI phenotypes were specified as 
illustrated below for GMV: 
 

𝐺𝑀𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.1) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2

+ 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

3 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈. 
 
For each component of the generalised gamma distribution, 𝛼 terms correspond to fixed 
effects of the intercept, sex (female/male), and software version (five categories) ; 𝛽 terms 
correspond to the fixed effects of age, modeled as fractional polynomial functions with the 
number of terms reflecting the order of the fractional polynomials; and 𝛾 terms correspond to 
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the study-level random-effects. Note that we have explicitly included the link-functions for each 
component of the generalised gamma, namely the natural logarithm for 𝜇 and 𝜎 (since these 
parameters must be positive) and the identity for 𝜈. 
 
Similarly for the other phenotypes: 
 

𝑊𝑀𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.2) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

3 + 𝛽𝜇,3(𝑎𝑔𝑒)
3 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

3 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 

𝑠𝐺𝑀𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.3) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
3 + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 

𝑉𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒𝑠	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.4) 

𝑙𝑜𝑔 (𝜇) = 	𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
3 + 𝛽𝜇,2(𝑎𝑔𝑒)

3 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
3 𝑙𝑜𝑔 (𝑎𝑔𝑒)2

+ 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜎,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 

𝜈 = 𝛼𝜈, 
 

𝑇𝐶𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.5) 

𝑙𝑜𝑔 (𝜇) = 	𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
3 + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜎,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 
 

𝑆𝐴	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.6) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2

+ 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜎,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 
 

𝐶𝑇	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.7) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−1 + 𝛽𝜎,2(𝑎𝑔𝑒)

0.5 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈. 
 
No smoothing terms were used in any GAMLSS models implemented in this study, although 
the fractional polynomials can be regarded  as effectively a parametric form of smoothing. 
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Reliably estimating higher order moments requires increasing amounts of data, hence none 
of our models specified any fixed- nor random-effects in the 𝜈 term. However, 𝛼! was found 
to be important in terms of model fit and hence we have used a generalised gamma 
distribution. 
 
Ref 3/8 S1.7: I still don’t understand the justification for computing IQR when you only have 
two data points. In what sense is IQR “valid” when you have just 2 data points (any more so 
than a trimmed mean from just 2 data points)? Just because you can select an implementation 
of IQR that is *defined* for 2 data points doesn’t make it a measure with a meaningful 
interpretation. 
 
The reviewer is correct that any summary statistic of two data points (including IQR) does not 
provide additional information beyond, for example, a trimmed mean. However, our purpose 
was to compare the stability of centile scores across individuals with a varying number of 
longitudinal observations. For this purpose, it was relevant that the IQR is well defined for 2 or 
more data points, and more importantly coherent across the variable number of longitudinal 
data points available for different participants. Hence, we considered the IQR an appropriate 
and consistent metric to explore the stability of centiles across longitudinal measurement with 
varying numbers of data-points. We note that caveat more explicitly in the description of the 
IQR. 
 

<<The following changes were made to the supplementary information>> 
 
In SI 1.7 Longitudinal centiles 
However, unlike the trimmed mean which requires a “large enough” sample, the IQR is valid 
for small samples. Given the variable number of longitudinal data-points available for different 
participants, we chose to use a measure that was consistent for participants that only had 2 
observations as well as for participants with more than 2 observations. Unfortunately, there is 
not a single definition of the IQR (there are 9 different definitions available within GNU R), and 
some versions are not defined for two observations. We estimated IQR as a continuous value 
by linear interpolation (within GNU R the default version of IQR, type 7), which is well defined 
for two (or more) observations. 
 
Ref 3/9 S2.1, Euler Index Filtering: Rosen et al. used the strict definition of the Euler Number, 
which is increasingly negative as the number of surface holes in the non-topology corrected 
(orig.nofix) surface increases. If you are using EI > 217 as a threshold, you are taking the 
negative of the true Euler Number, which should be stated. Also, please be explicit as to 
whether you are averaging or summing the EI from the two hemispheres. [Rosen states that 
they averaged]. Also, it would be beneficial to quantify how many scans were excluded by 
your filtering operation. Last, it should be noted that EI > 217 is a threshold that has only been 
shown to be an “optimal” threshold in one study, and it remains unknown whether that 
threshold is optimal in any sense as a QC criterion for data collected on other scanners or 
using other protocols. 
 
We thank the reviewer for pointing out the omission of these crucial details concerning quality 
control by thresholding on the Euler index. As noted in our response to Ref 1/6, we have 
substantially revised the paper to eliminate the results of QC by a fixed, universal threshold of 
EI > 217; instead we now report the results of QC by an adaptive, study-specific threshold of 
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EI > 2 MAD (median absolute deviation from the median in each primary study). To avoid 
possible confusion, we no longer refer to the threshold of EI > 217 in the paper and therefore 
these specific requests for clarification are no longer relevant. We have additionally added an 
explicit definition of the EI as used in this study to avoid any confusion with how it may be 
defined in other literature. 
 

 
<<The following changes were made to the supplementary information>> 

 
In SI 2.1 Euler Index filtering 
The EI metric we used was defined as the sum across hemispheres of the number of surface 
‘holes’ or topological defects in the cortical surface reconstruction prior to a topological 
correction performed as part of the FreeSurfer pipeline (usually due to errors in white matter 
segmentation). Although cerebrum tissue volumes are expected to be less sensitive to cortical 
surface topology, compared to surface-based measures such as indices of cortical folding 
(see SI18 “Data processing”), EI has previously been used as a measure of the quality of 
“raw”, unprocessed scans 45. Thus for the large majority of studies where EI was available 
(N=101,708 total scans on N=82,023 unique subjects), we assessed the impact on reference 
models of excluding high-magnitude EI scans. Given that no single EI threshold is expected 
to be generalizable across studies45 (Fig. S2.1.2), in this sensitivity analysis we excluded 
scans that had EI magnitude greater than 2 median absolute deviations from the primary 
study-specific median EI. This QC threshold, which is adaptive to the variable quality of scans 
between primary studies, excluded approximately 9-10% of scans from the original dataset. 
However, as can be seen in Fig. S2.1.3, the resulting model parameters were highly  
correlated with parameters estimated from the reference dataset without applying any EI-
based QC threshold. The developmental trajectories estimated for all 4 cerebrum tissue 
volumes were highly correlated with their trajectories estimated on the basis of the full dataset 
(all R2 > 0.999 for parametric [Pearson’s] and non-parametric [Spearman’s] correlations 
between EI-filtered versus EI-unfiltered median trajectories and lower (2.5%) and upper 
(97.5%) centiles). Identical parameterisation of fractional polynomials for each random effect 
was identified by the same model selection procedure was found in both EI-filtered and EI-
unfiltered datasets. Importantly, EI-filtered and unfiltered datasets also showed a high degree 
of overlap in subsequently estimated model parameters (correlation of study-specific mean 
(mu) components > 0.99; correlation of study-specific variance (sigma) components > 0.93). 
Model specification thus appeared to be robust to the presence of the poorer quality data. 
 
In addition, we examined the relationships between image quality measured by EI and 
individual centile scores of each brain phenotype. Both for the full dataset and the EI-filtered 
subset of higher quality scans, we found no significant associations between EI and individual 
centile scores (Fig. S2.1.1), nor did we find evidence for a non-linear relationship (quadratic, 
cubic, logarithmic) between EI and centiles. 
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Fig. S2.1.1 Associations between centile scores and MRI scan quality defined by EI. Panel depicts 
the relation between Euler indices (EI) 45 and centile scores for each of 4 cerebrum tissue volumes 
estimated by GAMLSS. The Spearman correlations between EI and centile scores were negligible 
(GMV, ρ<0.01; WMV, ρ=-0.07; sGMV, ρ<0.01; Ventricles, ρ=0.05). All linear mixed effect models 
examining non-linear (quadratic, cubic or logarithmic) relationships between EI and centile scores for 
each phenotype were P > 0.1. 
 
To assess whether there were any age-related differences that could influence model 
estimation, we evaluated the linear effect of age (in years) on EI in healthy controls in the 
reference dataset used to estimate normative lifespan trajectories. Using linear regression 
stratified by sex and accounting for study-specific random effects, we found no evidence for 
an age-related bias in image quality as assessed with EI (t = -1.244, P = 0.213). Fig. S2.1.2 
shows the median and standard deviation of age and EI and highlights the top 10 studies with 
the highest median EI.  
 

 
Fig. S2.1.2 Age-related variation in image quality measured by the Euler index in female (left 
panel) and male (right panel) control subjects. Median age (in years) and median EI are shown per 
study with cross-hairs indicating the standard deviations for age and EI per study. In red the top ten 
studies with the highest median EI are highlighted. There is no significant relationship between image 
quality and age at scanning. 
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Figure S2.1.3 Robustness of GAMLSS parameters to quality control by exclusion of scans  with 
EI greater than twice the median absolute deviation (MAD) from the median EI in the 
corresponding primary study. Scatterplots show the relationships between random effects (mu on 
the top row and sigma on the bottom row) estimated for each primary study without exclusion of poor 
quality scans (y-axis) and for each primary study after exclusion of scans with EI > 2 MAD, relative to 
the primary study’s median EI. Coloured points indicate the relative percentage of primary studies 
retained after filtering (darker means for subjects were removed) and Rho values in the titles indicate 
Spearman’s correlations between parameters estimated from the unfiltered and EI-filtered datasets. As 
with the absolute QC threshold of EI < 217 (SI 2.1), the biggest discrepancy in study-specific random 
effects as a result of excluding poor quality scans was observed for the variance (Sigma) parameters, 
especially those estimated from the ICBM, HBN and EDSD datasets, which all included a relatively high 
proportion of excluded scans. We note that EI > 2 MAD filtering removed a lower proportion of data in 
primary studies where the distribution of EI was skewed towards higher quality/lower EI across the 
whole dataset (e.g., HCP, ABCD and UKB all have high data quality with low EI, and 2 MAD filtering in 
these studies only removed around 6-7% of data). In general, random effect parameter estimation was 
highly robust to adaptive EI thresholding for quality control.   
 
 
 
Ref 3/10 S2.2, Expert visual quality control: Was this a de novo visual quality control performed 
by the authors, separate from any visual QC and rating that the individual studies might have 
already performed and provided? Also, it should be made clearer whether the 9704 scans that 
were rated were drawn from all studies equally, or whether particular studies dominated this 
endeavor. 
 
The expert visual quality control was done by one of the collaborators / co-authors and was 
not conducted de novo. The images available for visual QC were drawn from open cohorts 
and are listed as having “Manual” quality control in the “Extracted QC” column in 
supplementary table ST1.1.  
 

<<The following changes were made to the supplementary information>> 
 
In SI 2.2 Expert visual quality control 
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These scans were provided by openly available datasets and are marked as having “Manual” 
quality control in the “Extracted QC” column in ST1.1. For each subject a slice stack of images 
was generated across the three axes, after bias field correction and intensity normalization, 
so that they were all easily comparable by visual inspection, and subsequently rated on motion 
corruption and other failure modes (artefacts, missing brain parts etc). Visual inspection then 
rated each image on the following questions: is the brain fully covered by the scan; is there 
visible noise (due to aliasing, motion etc.), blurriness, or ringing; is there acceptable tissue 
contrast and image orientation? Based on these criteria, each raw scan was expertly classified 
on a 6-point scale as perfect (1), very good (2), good (3), bad (4), very bad (5) or unacceptable 
(6). Only 3% of scans (N=374) were assigned to the two worst quality categories (5 and 6). 
Each image was rated by a single rater. 
 
Ref 3/11 S3.2.1: For consistency with changes elsewhere, it should say that quantitative 
comparison of model *BIC* (rather than AIC) wasn’t possible. 
 
We thank the reviewer for pointing out this inconsistency, which has now been corrected. 
 

<<The following changes were made to the supplementary information>> 
 
Given that these models were each derived from different datasets it was not possible to 
conduct a quantitative comparison of the models in terms of their Bayesian Information 
Criteria69  as we did when evaluating the optimal underlying distribution. 
 
Ref 3/12 Figs. S3.2.1 and S3.2.2: Are these 95% confidence intervals? Relatedly, what exactly 
do the “uncertainty intervals” in Fis. S4.5 represent? Given the wide variety of different types 
of “error bars” used in various figures (e.g., SD, standard errors, 95% confidence intervals, 
box plot whiskers), please make sure that it is clear in each figure caption exactly what the 
error bars in that particular figure represent. 
 
We can confirm that, in both these figures, the confidence intervals represent the 95% 
confidence intervals across each iteration of a single left-out study. This information has been 
clarified in the figure caption. 
 

<<The following changes were made to the supplementary information>> 
 
Fig. S3.2.1. Leave-one-study-out (LOSO) analyses of normative trajectories for cerebrum tissue 
volumes. A | Confidence intervals (representing the 95% confidence intervals) were computed from 
the mean and standard deviation of normative trajectories repeatedly estimated after leaving out each 
primary study in turn: from left to right, grey matter volume (GMV), white matter volume (WMV), 
subcortical grey matter volume (sGMV) and ventricular CSF volume (Ventricles). B | The same data are 
shown with the 95% confidence intervals magnified by a factor of 50 to enhance their visibility. 
 
Fig. S3.2.2. Bootstrap resampling of confidence intervals on normative trajectories for cerebrum 
tissue volumes. A | 95% confidence intervals (estimated across random bootstrap iterations 
resampling with replacement) were computed from the mean and standard deviation of normative 
trajectories (with age on log scale, x-axis) after 1000 iterations of a bootstrapping procedure designed 
to conserve the relative proportion of primary studies, and the sex balance of each primary study, in 
each resampling with replacement from the representative dataset: from left to right, grey matter volume 
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(GMV), white matter volume (WMV), subcortical grey matter volume (sGMV) and ventricular CSF 
volume (Ventricles). B | The same data are shown with age on a natural scale (x-axis).  
 
Ref 3/13 Fig. S3.2.3: It would be helpful if the caption stated the reason that no estimates for 
Sigma for Ventricular volume are available. 
 
The data-driven process of GAMLSS model specification (detailed in SI 1) indicated that the 
best fitting model for the Ventricular volume phenotype did not include a study random effect 
on the Sigma term. This has now been added to the caption and included in the full model 
description in the Online Methods (see response to Ref 3/7). 
 

<<The following changes were made to the supplementary information>> 
 
Fig. S3.2.3.1 Point-range plots of study-specific random effects on the first (Mu) and second 
(Sigma) moments of the generalised gamma distribution for cerebrum tissue volumes and 
study-specific random effects on Mu only for ventricular CSF volume. Bootstrapped 95% 
confidence intervals are shown and point estimates (dots) are coloured by the range of the confidence 
interval. Where not observable, the confidence intervals are smaller than the size of the dots. There is 
no Sigma offset for the Ventricular volume as the data-driven process for GAMLSS model specification 
(SI 1) indicated that  the best-fitting model did not include a study-specific random effect on the Sigma 
term. 
 
Ref 3/14 S3.2.2: Insufficient detail is provided to understand how the stratified bootstrap 
sample was implemented. It would be helpful to have a methodical example of how exactly 
one bootstrap replicate was constructed. 
 
The bootstrap stratification is by sex within study, such that each bootstrap replicate maintains 
the same female/male ratio as per the observed primary study.  
 

<<The following changes were made to the supplementary information>> 
 
In SI 3.2.2 Bootstrap analysis 
Specifically, our process of random resampling of aggregated data was constrained by the 
relative size of each study compared to other primary studies, and by the sex ratio of each 
primary study, so that the bootstrap replicates conserved the same proportionality and sex 
balance as the observed primary studies. 
 
Ref 3/15 S4.1: Bias cannot be assessed via correlation. Some true measure of bias should be 
reported (in addition to the correlations). 
 
We agree with this point. We have now included a more direct measure of bias, namely the 
difference between the out-of-sample and in-sample estimates of centile scores on global MRI 
phenotypes. 
 

<<The following changes were made to the supplementary information>> 
 
In SI 4.1 Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies 
In addition to demonstrating high correlations between OoS and in-sample centile scores, we 
also evaluated their relative bias, defined as the difference between in-sample estimated 
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centiles and OoS estimated centiles. The median bias in centile scores was generally low 
(GMV = -1.7e-06; WMV = 1.1e-04; sGMV = 3.8e-05; Ventricles= -7.3e-05, all with a standard 
deviation of ~0.01 centile). However, it is worth noting that the studies characterised by 
relatively small sample size, foetal or early postnatal age-range of participants, or idiosyncratic 
processing pipelines, appeared at the extreme ends of the distributions of the primary studies 
rank-ordered by the difference between in-sample and OoS centile scores (Fig.S4.1.1), 
indicating greater bias of OoS centile scoring, as expected, under these conditions. 
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Fig. S4.1.1. Bias of out-of-sample centile scores for four cerebrum tissue volumes. Each panel 
shows boxplots of the bias in OoS centile scores (the signed difference between OoS and in-sample 
centile scores; y-axis) estimated for each primary study when it was excluded from the reference 
dataset. Studies are ordered on the x-axis from most negatively biased (left) to most positively biased 
(right) OoS centile scores. Boxplots are colour-coded according to log sample size, indicating that OoS 
centile scores tend to be most biased for smaller primary studies. From top to bottom, panels represent 
the bias in OoS centile scores for grey matter volume, white matter volume, subcortical grey matter 
volume, and ventricular CSF volume.  
 
In SI 7.4 Stability of out of-sample centile scoring for extended global phenotypes: LOSO 
analyses 
 
Analogous to our assessment of bias in centile scores of cerebrum tissue volumes in SI 4.1, 
we also assessed bias of centile scores of extended global MRI phenotypes, i.e., the 
difference between OoS-estimated and in-sample estimated centiles. Bias was generally very 
low except for a few studies (i.e., CHILD, NIHPD, FinnBrain) with smaller sample size or 
younger participants (Fig. S7.4.3). 
 

 
Fig. S7.4.3. Bias in out-of-sample estimates of centile scores on extended global MRI 
phenotypes. The distribution of difference scores between in-sample estimated centiles and OoS 
estimated samples are shown for all included studies and ordered by the median bias. 
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Ref 3/16 S4.3: It seems odd to not include the ICC values of the “raw” (uncentiled) volumetric 
data for the analyses of the reproducibility resource and HBN data, for explicit comparison to 
the centile ICCs. (They are provided for the VETSA analysis). 
 
We have now reported ICCs for the raw cerebral tissue volumes, alongside the parallel 
analysis of centile scores on these global phenotypes.  
 

<<the following changes have been made to the supplementary information>> 
 
 

 
Fig. S4.3.1. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes. 
MRI data were collected in two separate scanning sessions from N=21 participants and each session 
was analysed as an independent out-of-sample study using GAMLSS. Scatterplots represent OoS 
centile scores for session 1 (y-axis) versus OoS centile scores for session 2 (x-axis) for each brain 
tissue volume, from left to right: GMV, WMV, sGMV, Ventricular CSF. Data points represent individual 
subject centile scores. Test-retest reliability was consistently very high (all ICCs > 0.99) for all cerebrum 
tissue volumes.  The bottom panel shows the identical analysis for non-centiled, “raw” volumetric data. 
P-values represent the significance of the intraclass correlation coefficient between two sessions. 
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Fig. S4.3.2. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 
measured twice in the same N=72 participants using two T1-weighted sequences, MPRAGE and 
VNaV. For each type of acquisition the top row shows out-of-sample centile scores for session 1 (y-
axis) versus out-of-sample centile scores for session 2 (x-axis) for cerebrum tissue volumes. For each 
type of acquisition the bottom row shows the unprocessed (“raw”) scores for session 1 (y-axis) versus 
session 2 (x-axis) for cerebrum tissue volumes estimated from VNaV data, from left to right: GMV, 
WMV, sGMV, Ventricles. In all plots, data points represent individual subject scores. Test-retest 
reliability was uniformly high (all ICCs > 0.95) and generally somewhat higher for volumetrics derived 
from prospectively motion-corrected data (VNaV). P-values represent the significance of the intraclass 
correlation coefficient between two sessions. HCP session refers to the Human Connectome Project 
MPRAGE acquisition used. 
 

 
 
Fig. S4.3.3. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 
measured twice in the same 1,200 participants (600 twin pairs). The top row shows scatterplots of 
unprocessed (“raw”) volumes for scan 1 (y-axis) versus scan 2 (x-axis) for cerebrum tissue volumes 
estimated from MPRAGE data from the same subject, from left to right: GMV, WMV, sGMV, Ventricles. 
Data points represent individual subject centile scores. The bottom row shows the consistency of centile 
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scores for the same subjects and same phenotypes. Reliability was uniformly high across all 
phenotypes (ICCs > 0.95) and comparable to reliability of uncentiled volumetric measurements from 
the same set of scans. P-values represent the significance of the intraclass correlation coefficient 
between two sessions. 
 
Ref 3/17 Figs. S4.3.[1,2]: What do the p-values in the titles of the plots represent? Are they 
the p-value of the regression/scatterplot? Or the p-value of the test of the null hypothesis that 
ICC = 0 ? 
 
P-values represent the significance of the ICC. This has now been clarified in each figure 
caption (see response to Ref 3/16). 
 
Ref 3/18 Fig. S4.3.2: What does “HCP Session” in the top row of plots refer to? 
 
HCP session refers to the “human connectome project acquisition” as this was the other type 
of acquisition used in this test-retest dataset. This is now clarified in the figure caption and 
description (see response to Ref 3/16). 
 
Ref 3/19 S4.4: It would be helpful if the “name” of the study used for this analysis was included 
in the text (for convenient reference against other data that shows results per study). 
 
Thank you for pointing out this omission. This is the “NIH” cohort included throughout and has 
now been cross-referenced explicitly.  
 

<<the following changes were made to the supplementary information>> 
 
To do this we re-analysed a single NIH dataset70 (see SI 19 “NIH” for a fuller description) 
repeatedly using 4 different versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1).  
 
Ref 3/20 S4.5: It isn’t clear how dataset ‘clones’ were created (e.g., was resampling with 
replacement used *within study*), nor how many datasets were ‘cloned’. Also, what does 
NSPN represent in the titles of Fig. S4.5? 
 
We apologise for any lack of clarity in this section and have now added more detail to the 
description of the study cloning procedure. Clones were indeed created within a single study, 
resampling without replacement. We report the results of this procedure for the NeuroScience 
in Psychiatry Network (NSPN) cohort as an additional sensitivity check for out-of-sample 
estimation and to estimate at what sample size the out-of-sample estimation approaches the 
true study offset derived from the original full cohort. Given the computational burden of this 
process and the complementary nature of this analysis to the already presented out-of-sample 
stability, we only generated clones for 2 subsets (NSPN and ADNI). The figure legend for S4.5 
has been updated to include the full name of the dataset for clarity. 
 

<<the following changes were made to the supplementary information>> 
 
In SI 4.5:Effects of sample size on reliability of out-of-sample centile scores 
To further assess the validity of the OoS estimates, we generated “clones” of existing datasets. 
Clones were resampled subsets (without replacement, no duplicate subjects per clone) of 
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studies included in the reference dataset used to estimate the study specific GAMLSS 
parameters. Each clone was then treated as if it was a “new” study using the methods for out-
of-sample centile scoring.  
 
In: Legend to Fig S5.2.5 
 NSPN refers to the Neuroscience in Psychiatry Network study included in the reference dataset. 
 
Ref 3/21 Fig. S5.2.5: Seems like the point being made by this figure is incomplete without a 
panel showing the equivalent analysis applied to the raw data. 
 
We have now included a panel in this figure to show the effects using the non-centiled, “raw”, 
volumetrics, and modified some text in the SI to reflect the initial motivation of this analysis 
– which was to replicate previous associations between raw brain volumetrics and either birth 
weight or fluid intelligence. 
 
In SI 5.2: 
To further assess whether batch-corrected MRI data derived from both ComBAT and 
GAMLSS pipelines would generate convergent results in subsequent analyses, we estimated 
the correlations between total cerebrum volume (TCV) and fluid intelligence or birth weight, 
after TCV had been batch-corrected by either GAMLSS or ComBAT. Both these psychological 
and biological factors have previously been shown to be correlated with similar brain 
volumetrics71–73. We were able to replicate these significant associations with uncorrected 
TCV, as well as after both GAMLSS and ComBAT batch correction, all largely showing 
consistent effects across sites (Fig. S5.4-5.5). 
 

 
Fig. S5.2.5. Consistency of behavioural (fluid intelligence) and biological (birth weight) 
associations with total cerebrum volume (TCV) estimated at 22 MRI acquisition sites in the 
ABCD cohort, either without batch correction (left) or after batch correction for site effects by 
GAMLSS (middle) or ComBAT (right). Regression coefficients and standard errors from linear 
regression models of TCV on birth weight or fluid intelligence are plotted using point-ranges for each 
site. Meta-analytic coefficients and errors, combining all primary study effects, are shown in black at the 
top of each column. Coefficients (triangles) are scaled based on sample size at each site within the 
ABCD study. 
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Ref 3/22 Fig S6.2: What were scanners “1,2,3,4” (e.g., vendor and model; e.g., did the vendor 
and/or field strength change?) 
 
We have now added more relevant detail in SI 6 “Cohort effects”:  
 

<<the following changes were made to the supplementary information>> 
 
During this time there were multiple upgrades to the hardware and software, but the core 
system remained a 1.5T GE Signa platform throughout: 
 
Label Scanner ID Description Date of upgrade 

1 S1-1 GE Signa 1-1 (Hardware 1) 6/9/90 

2 S1-2a GE Signa 1-2a (Hardware 2--Software a) 3/19/02 

3 C1-1 CRADA magnet upgrade (Hardware 1) 12/16/03 

4 C1-1b CRADA magnet (Hardware 1--Software b) 5/15/07 

 
 
Ref 3/23 S7 (and S2.1 and S18): It is overly simplistic to say that the cerebrum tissue volumes 
returned by FS are not contingent on the surface reconstruction – this is certainly not the case 
for modern versions of FS. Almost every value returned by FS 6.0, including in the aseg.stats, 
respects the surfaces, and is computed after the surfaces are defined. For example, 
seehttps://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats and 
https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV6.0 (noting that the final 
aseg.stats is derived using the surfaces as inputs to the -segstats stage). It’s possible that the 
situation is more complicated for FS 5.1 and 5.3. An easy way to check for these older versions 
is to see if the volumes being extracted are the same in the aseg.stats as in the wmparc.stats 
file. If they are, then they are surface-informed estimates. If not, additional investigation will be 
necessary to understand (and accurately portray) the differences in this regard between 
different FS versions. 
 
We thank the reviewer for providing this information. We have amended the section on the 
description of the FreeSurfer pipeline (SI 18) to remove the claim that tissue volumes are not 
contingent on the surface reconstruction. 
 

<<the following changes were made to the supplementary information>> 
 

In: SI 18 Data processing 
If T1- and T2/FLAIR-weighted raw data were available, as they were for approximately 95% 
of scans), these data were processed on the same server at the University of Cambridge with 
FreeSurfer 6.0.174 using the combined T1-T2 recon-all pipeline for improved grey-white matter 
boundary estimation. If only raw T1-weighted data were available, and subjects were aged 
over 2 years, data were processed with FreeSurfer 6.0.1 using the standard recon-all pipeline. 
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If subjects were aged 0–2 years, data were processed with Infant FreeSurfer v17. Briefly, the 
first processing stage of recon-all includes: non-uniformity correction, projection to Talairach 
space, intensity normalisation, skull-stripping, automatic tissue and subcortical segmentation. 
Subsequently, surface interpolation, tessellation and registration are done at the second and 
third stages of the recon-all pipeline. ST1.1 lists the number of subjects per site per processing 
pipeline alongside their respective MRI acquisition and quality control protocols. We noticed 
that Infant FreeSurfer estimated total subcortical grey matter volume (sGMV) differently from 
other pipelines included in this dataset, while other cerebrum tissue volumes were estimated 
consistently across pipelines. We therefore excluded scans processed with Infant FreeSurfer 
from growth curve estimation for subcortical GMV. All four cerebrum tissue volumes were 
extracted from the aseg.stats files output by the recon-all process: 'Total cortical gray matter 
volume' for GMV; 'Total cortical/cerebral (FreeSurfer version dependent) white matter volume' 
for WMV; ‘Subcortical gray matter volume’ for sGMV (inclusive of thalamus, caudate nucleus, 
putamen, pallidum, hippocampus, amygdala, and nucleus accumbens area; 
https://freesurfer.net/fswiki/SubcorticalSegmentation); and the difference between  
'BrainSegVol" and 'BrainSegVolNotVent' for Ventricular volume. Regional volume was 
estimated for each of 34 bilaterally averaged cortical regions defined by the Desikan-Killiany75 
parcellation template following the final stages of the recon-all pipeline and using the 
hemisphere-specific aparc.stats files generated by FreeSurfer. 
 
Ref 3/24 Fig S7.1: To match the actual figures, the caption should say 
“baseFO[a][b][c]R[x][y][z]”. (i.e., add “R” to the text string). 
 
Thank you for picking up this typo, which  has been corrected in Figure S7.1 (and also in 
Figure S1.3). 
 
Ref 3/25 Fig. S7.4.1: Captions says that studies are sorted by “median standard deviation”, 
but that doesn’t appear to be the case. 
 
Thank you for picking up this glitch, which has now been corrected in both Figure S7.4.1 and 
Figure S4.2.1 (they were accidentally ordered by the median across all the panels, as 
opposed to within each of the panels). 
 
Ref 3/26 Fig. S10.1.1 and S10.1.3: Rather than attempting to show all significant pairwise 
differences via lines above a box plot, it would be easier for readers to simply include a table 
with p-values. Cells below the diagonal could present the Cohen’s d and p-value for males, 
and cells above the diagonal could present the values for females. (This way readers would 
also have access to the Cohen’s d effect sizes of all pairwise comparisons in a convenient 
“lookup” table in the SI, without needing to download and find the relevant supplementary data 
table). Same comments apply to Figs. S14.3.[3,4] 
 
The full tables for all Cohen’s d and P-values are provided in Supplementary Tables 3.1-3.28 
and are now more clearly referred elsewhere in the supplementary information. As noted in 
response to a previous comment (Ref 3/1), we chose to use boxplots to give an indication of 
the centile distribution within the various cohorts and to show the extent of the significant 
differences. However, we have now also added a matrix of all pairwise Cohen’s d values to 
enable a quick look-up of any pairwise effects, and replaced the median difference panels in 
Figures 14.3.1 and 14.3.2 with Cohen’s d instead.  
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<<the following changes were made to the supplementary information>> 

 
Fig. S10.1.2. Case-control and between-disorder comparisons of centile scores on cerebrum 
volumes. Matrix plots show the pairwise Cohen’s d values for every combination. More positive d 
indicates that the centile score on the x-axis was higher relative to the corresponding label on the y-
axis, more negative d indicates the opposite effects, i.e., CN > AD in both males and females. 
Abbreviations: control, CN; Alzheimer's disease, AD; attention deficit hyperactivity disorder, ADHD; 
autism spectrum disorder, ASD; anxiety/phobia (ANX), mild cognitive impairment, MCI; major 
depressive disorder, MDD; schizophrenia, SCZ; grey matter volume, GMV; subcortical grey matter 
volume, sGMV; white matter volume, WMV; ventricular cerebrospinal fluid volume, CSF. 
 
 

 
Fig. S10.1.5. Case-control and between-disorder comparisons of centile scores on extended 
global MRI phenotypes. Matrix plots show the pairwise Cohen’s d values for every combination. More 
positive d indicates that the centile score on the x-axis was higher relative to the corresponding label 
on the y-axis, more negative d indicates the opposite effects, i.e., CN > AD in both males and females. 
Abbreviations; control, CN; Alzheimer's disease, AD; attention deficit hyperactivity disorder, ADHD; 
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autism spectrum disorder, ASD; anxiety/phobia (ANX), mild cognitive impairment, MCI; major 
depressive disorder, MDD; schizophrenia, SCZ. 
 
Ref 3/27  Figs. S10.2.[1,2] and S14.3.[1,2,3]: Please match the colors and order of clinical 
cohorts to those used in Fig. 4 and S10.1.2 
 
These figures have been edited to have the same colour scale and ordering of clinical cohorts. 
 
Ref 3/28 S12: No indication of the effect size of the regression lines (e.g., R^2) is provided. 
 
As requested, we have now added the R-squared values to Figure S12:  
 

<<the following changes were made to the supplementary information>> 

 
Fig. S12. Relationships between centile scores on cerebrum tissue volumes and birth weight 
(left panel) and gestational age at birth (right panel) for each of 5 primary studies with relevant 
data available. Centile-normalised z-scores were computed for each global phenotype in each 
individual study and then averaged across phenotypes to compute a mean centile z-score for each 
subject. The black dashed lines represent the relationships between mean centile scores and birth 
weight or gestational age at birth estimated by a linear mixed-effects model: for gestational age at birth, 
t = 12.624, P < 2e-16; for birth weight, t = 34.945, P < 2e-16. The black dotted line in the right panel 
denotes the commonly-used threshold for defining premature birth at 37 weeks post-conception. 
Conditional R-squared in each panel represents the variance explained by the entire model (black 
dashed lines). 
 
 
Ref 3/29 S14.4.1: Unclear whether the LME only included a random subject-level intercept, or 
if it also included a random subject-level slope. If the latter, what was the correlation between 
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the random intercept and random slope estimates? Also, what do the error bars in panel B 
represent? 
 
This analysis only included a random intercept, this has been clarified in the description. 
Higher order random-effects require more longitudinal observations to be identifiable. In this 
case, adding a random-effect on slope leads to convergence issues (since this excludes 
individuals with only two observations). The error bars in this figure represent the confidence 
interval on the beta coefficient (as a measure of change relative to remaining cognitively 
normal); this has now been clarified in the caption to Figure S14.4.1: 
 
…but not a random intercept as some individuals only had 2 observations and including random slopes 
would cause convergence issues. The error bars in panel B depict the confidence intervals around the 
beta coefficients. 
 
Ref 3/30 Fig. S15.1: Either some of the measures have very extreme outliers (e.g., GMV/SA, 
WMV/SA, sGMV/SA), or the allowed jitter along the x-axis is too great, such that values from 
one Feature Pair are bleeding into the space for an adjacent Feature Pair. 
 
We thank the reviewer for pointing this out. We have now corrected this figure to more clearly 
delineate the correlations for each feature pair by colouring them. There is indeed some 
between-study variation in the correlations between MRI phenotypes. This level of variability 
is likely dominated by the age range or developmental epoch of specific studies, as is also 
highlighted in the amount of variability in these associations across the lifespan in Fig S15.2. 
 

 
Fig. S15.1. Box-plots of Pearson correlations between each pair of global neuroimaging metrics 
in each of the primary studies in the reference dataset. Each datapoint represents a single primary 
study; boxes highlight the median and interquartile range of between-study variation in correlations of 
“raw”, non-centiled volumetrics for all possible pairs of global MRI phenotypes. Alternating colours are 
for visualisation purposes only.  
 
 
Ref 3/31 ST 1.1: The information in the “Acquisition.Parameters” column in this table is 
inconsistent and uneven. For example (1) the very first entry (3R-BRAIN) is listed as having a 
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flip angle of 52, which would be very unusual for an MPRAGE; (2) the manner in which 
TR/TE/TI/FA is presented across studies is inconsistently formatted; (3) some rows have 
random special characters (e.g., Calgary, Conte, DLBS, EMBARC, GOSH, LATAM, LIFE; to 
name just a few based on quick inspection); (4) some don’t report TR/TI/FA at all (e.g., 
HCP_lifespan). Overall, these imaging parameters would be easier to parse (and easier to 
check for odd entries) if there was one column for each specific parameter to be reported, 
rather than just a generic text column of “parameters”. 
 
The suggested columns have been added to Supplementary Table 1.1, which has been 
thoroughly edited for any remaining inconsistencies. We note that some parameterization of 
acquisition isn’t easily captured in a standard column (i.e., multi-echo versus single echo, 
“shortest” as a setting on Philips platforms versus numerical entries on Siemens, different 
acquisition protocols across platforms that make repetition times generally not directly 
comparable, etc). 
 
Ref 3/32 ST 1.8: It seems like the Figure 1 caption should either refer to ST1.2-1.8 (i.e., all of 
the “global” measures), or just ST1.2-1.5 (corresponding to the measures shown in Figure 1. 
Either way, ending at ST1.7 doesn’t make sense (in either the caption, or the text in the 
“Mapping normative brain growth” paragraph). 
 
Thank you for picking this up. The Figure 1 legend should indeed have referred to all tables, 
and the typo has been corrected. We thank the reviewer again for the level of attention to 
detail, and we note that we have also performed additional internal proofreading of the entire 
manuscript for the present resubmission. 
 
Ref 3/33 ST3: The labels for column E (“Median centile G1”) and column F (“Median centile 
G2”) are presumably incorrectly swapped. 
 
This typo has been corrected. In addition, we cross-checked all other tables for similar 
typographic errors (as well as the code that produced them) and found no other instances 
where labels had been swapped. 
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significant body of work in years to come. At this point, I believe the manuscript is suitable for 

publication. 

Referee #2 (Remarks to the Author): 

The authors have made important edits to the language regardling the clinical relevance of their 

work. The overall paper is very strong and is sure to be impactful on the field. 

Referee #3 (Remarks to the Author): 

Bethlehem and co-authors are again to be commended for their responsiveness to the previous 

round of reviews. The manuscript is further improved. 

A few items related to the additions need some cleanup and revision: 

Online Methods: Nothing in the framing leading up to the explicit models (Eq’s 2.1 – 2.7) appears to 

explain how one can get terms of the form, beta * (age ^ p) * (log (age ^ p)). i.e., Where is the 

interaction of age (to a power) with log(age) (to a power) coming from? Intuitively, what is such a 

term supposed to represent? This also raises the question, since 8 powers were investigated, if each 

model explored a space of 8 * 8 = 64 total (age ^ p) * (log (age ^ p)) interaction terms. If so, wouldn’t 

that lead to an excessive amount of model flexibility prone to overfitting (and instability)? Also, 

having presented a general GAMLSS formulation that includes a “kurtosis”-related term in the 

probability density function, it seems like the Online Methods, as part of presentation of the explicit 

models, should explain why none of them include such a term. 

Relatedly, I’m trying to reconcile the explicit models added to the Online Methods with the text in 

SI1.3, which now seems underspecified relative to the details provided in Eq’s 2.1 – 2.7. SI1.3 also 

seems inconsistent with those equations. For example, it says that the model selection suggested a 

3rd order polynomial fit for the mean for all 4 phenotypes – but I don’t see a cubic term for the 

mean in Eq. 2.1. The text of SI1.3 also implies that the model for the Ventricles (Eq. 2.4) should have 

a cubic age term for sigma, but it does not. It further says that sGMV should only have a study 

random effect for sigma, whereas Eq. 2.3 includes a study random effect for both the mean and 

sigma for sGMV. It also says that there should be 3 polynomials except for sigma of sGMV. But sigma 

for both GMV and WMV also show only 2 age-related polynomial terms (Eq’s. 2.1 and 2.2). [At this 

point, I need to comment: I appreciate that this is a complicated paper with many analyses. And that 

my “attention to detail” is more tuned than most. But, the number of inconsistencies and errors that 



have been present through the rounds of this manuscript is disappointing, not consistent with a 

Nature publication, and burdensome on the review process]. 

SI 3.2.3: Please make explicit the number of comparisons that you computed the FDR correction 

over. E.g., Was it 4 for Mu and 3 for Sigma? Was it 7 (across Mu and Sigma together)? Was it even 

higher than that (e.g., across all investigated technical covariates simultaneously)? This matters for 

understanding the severity of the correction applied. Similar comment applies for the text in SI 7.2. 

Figure 1, Fig S3.2.3.4, S7.2.5, S4.1.1 (and probably others): I didn’t realize this previously, but 

presumably all the figures are using natural log, rather than log10, for the sample size? This seems a 

rather odd (‘unnatural’) base to use for quantifying sample size. At this late stage, rather than 

regenerating all these figures to use log10, perhaps the caption for Figure 1 could simply make 

explicit for readers that you used natural log as the base for sample size? 

Fig. S3.2.3.6: I believe that this figure is intended to include just the same 4 volume measures as Figs 

S.3.2.3.2-5, especially since the values for the 3 ‘extended’ phenotypes are shown in Fig. S.7.2.7. 

SI 7.1: I appreciate that the authors added a brief discussion regarding the clearly visible 

discontinuity in the raw, non-centiled thickness data (Figure 2). However, it defies credulity to 

postulate that this discontinuity may reflect some real biological phenomenon. I think this discussion 

needs to be revised to reflect the common sense interpretation that this discontinuity must (solely) 

reflect some combination of sample selection bias and/or the impact of different pre-processing 

pipelines. 

p. 9 (“Individualised centile scores in clinical samples”): The phrasing “XX% points” is odd, and one 

I’ve never seen before. I suggest (e.g.) “36 percentage point difference”; “increase of 11.8 

percentage points”. 

S1.7: Please either cite a reference for the statistical properties of IQR computed from just 2 data 

points, preferably explaining why IQR is considered referrable to standard deviation for quantifying 

the range/variability in the situation of a small number of observations. Or, alternatively, drop the 

language implying that IQR is somehow a more “valid” measure for a small number of observations 

(to me, “valid” and “measure is defined” are not the same thing). 

S2.2: I was curious to see which datasets contributed to the “Manual” QC review, so I opened ST1.1. 

Filtering on “Extracted QC metrics” = ‘Manual’, and then summing on ‘Sample size’ yields n = 384. 

Filtering on ‘Euler, Manual’ yields n = 24138. Either way, neither match (or even come close to) the n 

= 9704 that SI2.2 indicates were manually reviewed by a single rater. How does one identify the 

scans/datasets that were manually reviewed as part of the analysis of S2.2? 

Fig. S4.3.1: Please swap the rows so that the raw data is the top row, and the centiled data is the 

bottom row, consistent with the layout of Figs. S4.3.2-4. 

Fig. S4.3.2: The usage of “HCP” in the figure titles is potentially confusing, given that the data was 

collected by HBN, not HCP. If you wish to make the point that the HBN MPRAGE was modelled after 



the HCP acquisition, that seems an appropriate point to make in the SI text. But I’d suggest avoiding 

labelling the figures themselves as “HCP Acquisition”. 

Fig. S4.5: It would be nice to actually include the ADNI data, to support the NSPN results. Could you 

just include a 2nd row to the figure with the ADNI-derived results? 

S5.2: In the analyses of the association between total cerebral volume and either fluid intelligence or 

birth weight, how was sex handled? Was it included as a covariate? Also, the added text refers to 

“Fig S5.4-5.5”, which don’t exist. 

Fig. S5.2.5: It remains unclear to me what point this figure is intended to convey. It is very difficult to 

compare betas across panels (raw vs. GAMLSS vs ComBAT), but the overall impression is that the 

estimated betas are very similar across panels for each site, even compared to the Raw data. But 

that interpretation seems inconsistent with the point of Fig S5.2.4. Please make clearer what S5.2.5 

is supposed to demonstrate, esp. in relation to S5.2.4. 

S6: I’m having trouble figuring out how to interpret “Hardware 1” vs “Hardware 2”. In particular, for 

“Label 3” (Scanner ID C1-1), did the scanner actually revert to the same hardware in place for the S1-

1 scanner? (That’s the implication of labeling them both as “Hardware 1”). 

Fig. S14.4.1: I believe the authors meant to say, “…, but not a random *slope* as some individuals…”
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Referee #3 
 
Bethlehem and co-authors are again to be commended for their responsiveness to the 
previous round of reviews. The manuscript is further improved. 
 
We sincerely thank the reviewer for this positive appraisal and, more generally, for their 
sustained and diligent attention to critiquing our work. Their input has materially improved the 
quality and precision of the paper in many ways, over the course of 3 review cycles, and we 
are very appreciative of their expertise and commitment to the highest scientific and 
presentational standards.  
 
A few items related to the additions need some cleanup and revision: 
 
R3/1: Online Methods: Nothing in the framing leading up to the explicit models (Eq’s 2.1 – 2.7) 
appears to explain how one can get terms of the form, beta * (age ^ p) * (log (age ^ p)). i.e., 
Where is the interaction of age (to a power) with log(age) (to a power) coming from? Intuitively, 
what is such a term supposed to represent? This also raises the question, since 8 powers 
were investigated, if each model explored a space of 8 * 8 = 64 total (age ^ p) * (log (age ^ p)) 
interaction terms. If so, wouldn’t that lead to an excessive amount of model flexibility prone to 
overfitting (and instability)? Also, having presented a general GAMLSS formulation that 
includes a “kurtosis”-related term in the probability density function, it seems like the Online 
Methods, as part of presentation of the explicit models, should explain why none of them 
include such a term. 
 
We apologise for any lack of clarity in formal presentation of the models in Eqs 2.1-2.7. As 
defined by Royston and Altman (1994), a power of zero in fractional polynomials is 𝑙𝑜𝑔(𝑥) 
(rather than what might be expected, since 𝑥! = 1), and furthermore a repeated power is 
𝛽"𝑥" + 𝛽"#𝑥"𝑙𝑜𝑔(𝑥). These definitions follow by taking limits and ensure that the fractional 

Author Rebuttals to Second Revision:

1 

We would like to thank Reviewer 3 and the editor for their expert reviews of our revised 
manuscript and supplementary analyses. Their comments have provided extremely helpful 
guidance in strengthening the paper. Please find a point-by-point response below. 
 
[BLACK] - ORIGINAL COMMENT 
[BLUE] - RESPONSE TO COMMENT 
[GREEN] - NEW/ALTERED TEXT 



4 

polynomials are well defined, as now referenced in SI1.3. We consider polynomials of the first 
order, 𝛽"𝑥", second order, 𝛽"𝑥" 	+ 	𝛽$𝑥$, and third order, 𝛽"𝑥" 	+ 	𝛽$𝑥$ + 𝛽%𝑥%, using Royston 
and Altman’s proposed eight powers: {−2,−1,−0.5,0,0.5,1,2,3}. As the reviewer correctly 
noted, this results in a potentially large number of parameters with attendant risks of over-
fitting and instability. However, we performed data-driven model selection using the Bayesian 
Information Criterion (BIC) to manage this risk by selecting only the subset of polynomial 
parameters that materially improved goodness of fit. By this empirical process of model 
selection, we found no evidence to support a fractional polynomial within the 𝜈-component; 
however, there was evidence to support the need for an intercept, implying a generalised 
gamma distribution.This process resulted in the optimally specified models presented in Eqs 
2.1-2.7 as described in the Online Methods. As the reviewer also noted, our models do include 
a kurtosis-related 𝜈-component. However, the data-driven process of model selection showed 
that only an intercept term in the 𝜈-component was supported by the data. This term was 
included in the optimal GAMLSS models and as is now clearly indicated in revised Eqs 2.1-
2.7 and clarified in the Online Methods.  
 

<<the following changes were made to the Supplementary Information>> 
 
In SI1.3 
As noted above, fractional polynomials can be viewed as a simpler form of spline modelling 
using a fixed set of polynomials (GAMLSS uses the standard set of polynomial powers: -2, -
1, -0.5, 0, 0.5, 1, 2, 3, see Royston & Altman (1994) 12). Some standard definitional issues 
should be noted. First, the term “order” is used to refer to the number of terms in the fractional 
polynomial model rather than the power, e.g., a third order fractional polynomial does not 
necessarily contain 𝑥&. We consider polynomials of the first order, 𝛽"𝑥"; second order, 𝛽"𝑥" 	+
	𝛽$𝑥$; and third order, 𝛽"𝑥" 	+ 	𝛽$𝑥$ + 𝛽%𝑥%. Second, as conventionally defined by Royston 
and Altman, a power of zero in fractional polynomials is 𝑙𝑜𝑔(𝑥) rather than 𝑥! (since 𝑥! = 1 
for all 𝑥). Third, “repeated powers” are evaluated: a second order fractional polynomial where 
power p is repeated is defined as 𝛽"𝑥" + 𝛽"#𝑥"𝑙𝑜𝑔(𝑥), while a third order fractional polynomial 
where power p is repeated is defined as 𝛽"𝑥" + 𝛽"#𝑥"𝑙𝑜𝑔(𝑥) 	+	𝛽"#𝑥"𝑙𝑜𝑔(𝑥)'.  
 

<<the following changes were made to the Online Methods>> 
 
In Online Methods 
Reliably estimating higher order moments requires increasing amounts of data, hence none 
of our models specified any age-related fixed-effects or random-effects in the 𝜈 term. However, 
𝛼( was found to be important in terms of model fit and hence we have used a generalised 
gamma distribution (SI1). 
 
R3/2: Relatedly, I’m trying to reconcile the explicit models added to the Online Methods with 
the text in SI1.3, which now seems underspecified relative to the details provided in Eq’s 2.1 
– 2.7. SI1.3 also seems inconsistent with those equations. For example, it says that the model 
selection suggested a 3rd order polynomial fit for the mean for all 4 phenotypes – but I don’t 
see a cubic term for the mean in Eq. 2.1. The text of SI1.3 also implies that the model for the 
Ventricles (Eq. 2.4) should have a cubic age term for sigma, but it does not. It further says that 
sGMV should only have a study random effect for sigma, whereas Eq. 2.3 includes a study 
random effect for both the mean and sigma for sGMV. It also says that there should be 3 
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polynomials except for sigma of sGMV. But sigma for both GMV and WMV also show only 2 
age-related polynomial terms (Eq’s. 2.1 and 2.2). [At this point, I need to comment: I appreciate 
that this is a complicated paper with many analyses. And that my “attention to detail” is more 
tuned than most. But, the number of inconsistencies and errors that have been present 
through the rounds of this manuscript is disappointing, not consistent with a Nature publication, 
and burdensome on the review process]. 
 
We apologise for any lack of clarity or consistency in our formal and written descriptions of the 
models. We consider that at least some of the apparent confusion is attributable to standard 
differences in the terminology for fractional polynomial models compared to the more familiar 
case of (integer) polynomial models, and we have explicitly noted these definitional issues in 
revised SI1.3 as excerpted above in response to R3/2. “Third order” in the context of fractional 
polynomials refers to the number of terms not the power, e.g., a third order fractional 
polynomial does not necessarily contain a cubic term. For example, in Eq 2.1, there are three 
fractional polynomial terms for the 𝜇-component: 𝛽𝜇,"(𝑎𝑔𝑒)#$, 𝛽𝜇,$(𝑎𝑔𝑒)#$ 𝑙𝑜𝑔 (𝑎𝑔𝑒), and 𝛽𝜇,%(𝑎𝑔𝑒)#$

𝑙𝑜𝑔 (𝑎𝑔𝑒)$: this would conventionally be described as a third-order fractional polynomial where 
the power -2 is repeated. With regard to the specific model descriptions in SI1.3, our earlier 
use of the phrase “third order polynomial” has been referred to more explicitly as a “third order 
fractional polynomial” to clarify our usage. 
 
We thank the reviewer for noticing a discrepancy in the discussion of the random effects in 
SI1.3 compared to the models presented in the Online Methods (“sGMV should only have a 
study random effect for sigma”). We have corrected the description in the Supplementary 
Information. Specifically, modelling of the Ventricles included a study random-effect in the 𝜇-
component only. Modelling of sGMV, GMV acd WMV included a study random effect in both 
the 𝜇-component and 𝜎-component. The Online Methods are correct and remain unchanged 
(in terms of the order of fractional polynomials and random-effects); the edited SI1.3 text is 
shown below.  
 

<<the following changes were made to Supplementary Information>> 
 
In SI1.3: 
The GAMLSS framework includes a fractional polynomial function that automatically performs 
the model selection step within the fitting process. In addition to this standard estimation, we 
chose to evaluate model permutations of all possible combinations of the number of modelled 
polynomials in each of the terms (𝜇, 𝜎, 𝜈)	of the generalised gamma distribution (between 1–3 
terms for each of the three parameters). Across all four main global tissue volumes (GMV, 
sGMV, WMV, ventricles) this approach suggested 3rd order fractional polynomial fits for the 
𝜇-component. For the 𝜎-component, modelling indicated 2nd order fractional polynomial fits 
for GMV, sGMV, and WMV, but a 3rd order fractional polynomial for ventricles (Fig. S1.3). For 
GMV, sGMV, and WMV, the model evaluation procedure also suggested including a study 
random effect in both 𝜇 and 𝜎, whereas for ventricles it indicated inclusion of a study random 
effect only for 𝜇. 
 
R3/3: SI 3.2.3: Please make explicit the number of comparisons that you computed the FDR 
correction over. E.g., Was it 4 for Mu and 3 for Sigma? Was it 7 (across Mu and Sigma 
together)? Was it even higher than that (e.g., across all investigated technical covariates 
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simultaneously)? This matters for understanding the severity of the correction applied. Similar 
comment applies for the text in SI 7.2. 
 
We have now made explicit the number of comparisons corrected by the FDR in SI 3.2.3. 
Corrections for multiple testing were applied within each parameter across phenotypes , i.e., 
4 tests for Mu and 3 tests for Sigma per reported phenotype.  
 

<<the following changes were made to the Supplementary Information>> 
 
In SI 3.2.3: 
For each of these models, we corrected for multiple comparisons within each parameter, i.e., 
correcting for 4 tests on the Mu term and 3 tests on the Sigma term. 
 
In SI 7.2: 
For each of these models, we corrected for multiple comparisons within each parameter, i.e., 
correcting for 3 tests on the Mu term and 3 tests on the Sigma term. 
 
 
Ref 3/4: Figure 1, Fig S3.2.3.4, S7.2.5, S4.1.1 (and probably others): I didn’t realize this 
previously, but presumably all the figures are using natural log, rather than log10, for the 
sample size? This seems a rather odd (‘unnatural’) base to use for quantifying sample size. 
At this late stage, rather than regenerating all these figures to use log10, perhaps the caption 
for Figure 1 could simply make explicit for readers that you used natural log as the base for 
sample size? 
 
The reviewer is correct that we used the natural log transform to represent sample sizes of 
the primary studies in Figure 1 (and related figures in Supplementary Information). We did 
this because we found the natural log transform provided a smooth colour range that made it 
easier to infer the differences in primary study sample size from the visible differences in 
colouring of each box plot. This has been made explicit in all the relevant figure legends 
reporting sample size..  
 
Ref 3/5: Fig. S3.2.3.6: I believe that this figure is intended to include just the same 4 volume 
measures as Figs S.3.2.3.2-5, especially since the values for the 3 ‘extended’ phenotypes are 
shown in Fig. S.7.2.7. 
 
We thank the reviewer for catching this point and the figure has now been corrected 
accordingly. 
 

<<the following changes have been made to the Supplementary Information 3.2.3.6>> 
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Ref 3/6: SI 7.1: I appreciate that the authors added a brief discussion regarding the clearly 
visible discontinuity in the raw, non-centiled thickness data (Figure 2). However, it defies 
credulity to postulate that this discontinuity may reflect some real biological phenomenon. I 
think this discussion needs to be revised to reflect the common sense interpretation that this 
discontinuity must (solely) reflect some combination of sample selection bias and/or the impact 
of different pre-processing pipelines. 
 
We appreciate the reviewer’s strong opinion concerning interpretation of the discontinuity in 
the non-centiled cortical thickness data in Figure 2. The discontinuity arises between data 
measured before and after 2 years, approximately. We agree that the most obvious 
interpretation is that this reflects methodological differences, including differences in image 
analysis and pre-processing pipelines, between MRI studies of early childhood and later life. 
However, we have found this discontinuity to be robust to sensitivity analyses of the effects of 
image processing pipelines and we have found similar discontinuities in primary studies that 
have used identical methods to measure cortical thickness in participants ranging in age 
across the 2 year transition point. These observations are difficult to reconcile with the obvious 
methodological interpretation and suggest instead the alternative explanation that this 
discontinuity may reflect a critical nonlinearity in brain development, perhaps related to the 
process of grey/white matter differentiation that is active during the first two years of life. We 
have revised the relevant discussion of this issue to give greater emphasis to the 
methodological interpretation, as requested by the reviewer, while retaining the 
neurodevelopmental interpretation as a hypothesis for further investigation in future: see SI7.1, 
“Extended neuroimaging types”. 
 

<<the following changes have been made to the Supplementary Information>> 
 

In SI 7.1 Extended neuroimaging phenotypes 
 
We note the discontinuity between the raw, non-centiled CT data for participants younger 
versus older than 2 years (approximately) that is evident by inspection of Fig. 2. The common 
sense interpretation of this discontinuity must be some combination of sample selection bias 
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and/or the impact of different preprocessing pipelines in the primary studies of early childhood 
(<2 y) compared to studies of later childhood and adults (> 2y). It is consistent with this 
interpretation that participant age of 2-3 years is often used as the cutoff to decide application 
of different, specialised preprocessing pipelines, e.g., infant FreeSurfer versus adult 
FreeSurfer. However, we note that this discontinuity was evident also in data from a number 
of primary studies that applied identical sampling criteria and image processing methods to 
measure cortical thickness in participants younger and older than the ~2 year transition point. 
Thus it remains conceivable, in our view, that this discontinuity may partially reflect a 
neurodevelopmental nonlinearity occurring in the context of the process of grey/white matter 
differentiation that is actively ongoing throughout the first 2-3 years of postnatal life. Definitive 
resolution of this issue is currently hampered by the relative lack of primary MRI studies of 
early childhood development; but it is expected that the correct interpretation of the 
discontinuity apparent in the existing data will become clearer in future as studies apply more 
consistent methods to analysis of larger samples of participants recruited from either side of 
the ~2y transition point.    
 
Ref 3/7: p. 9 (“Individualised centile scores in clinical samples”): The phrasing “XX% points” is 
odd, and one I’ve never seen before. I suggest (e.g.) “36 percentage point difference”; 
“increase of 11.8 percentage points”. 
 
We have revised this phrasing according to the reviewer’s suggestions. 
 
Ref 3/8: S1.7: Please either cite a reference for the statistical properties of IQR computed from 
just 2 data points, preferably explaining why IQR is considered referrable to standard deviation 
for quantifying the range/variability in the situation of a small number of observations. Or, 
alternatively, drop the language implying that IQR is somehow a more “valid” measure for a 
small number of observations (to me, “valid” and “measure is defined” are not the same thing). 
 
We accept the reviewer’s point. We have edited the text accordingly to remove the implication 
that IQR is a more “valid” measure. In the revised manuscript, we simply note that the IQR is 
well defined for 2 data points.  
 

<<the following changes have been made to the Supplementary Information>> 
 
In SI 1.7 
A univariate summary for variation across observations will assess the stability of the centiles 
within an individual. The summary must be defined for two or more observations, the minimal 
longitudinal follow-up period, and be comparable across individuals. The range, i.e., 
𝑚𝑎𝑥(	𝑞*+,, 𝑞*+', ⋯ , 𝑞*+-	) − 𝑚𝑖𝑛(	𝑞*+,, 𝑞*+', ⋯ , 𝑞*+-	), would be well defined for two or more 
observations; however, the range is susceptible to outliers and statistically unstable under 
small samples. Instead, the interquartile range (IQR) acts as a robust equivalent of the range 
(in the same way that the trimmed mean is a robust version of the mean). Given the variable 
number of longitudinal data-points available for different participants, we chose to use a 
measure that was consistent for participants that only had 2 observations as well as for 
participants with more than 2 observations. Unfortunately, there is not a single definition of the 
IQR (there are 9 different definitions available within GNU R), and some versions are not 
defined for two observations. We estimated IQR as a continuous value by linear interpolation 
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(within GNU R the default version of IQR, type 7), which is well defined for two (or more) 
observations. 

 
 

Ref 3/9: S2.2: I was curious to see which datasets contributed to the “Manual” QC review, so 
I opened ST1.1. Filtering on “Extracted QC metrics” = ‘Manual’, and then summing on ‘Sample 
size’ yields n = 384. Filtering on ‘Euler, Manual’ yields n = 24138. Either way, neither match 
(or even come close to) the n = 9704 that SI2.2 indicates were manually reviewed by a single 
rater. How does one identify the scans/datasets that were manually reviewed as part of the 
analysis of S2.2? 
 
We apologise for any confusion in the labelling of columns in the Supplementary Table. The 
“manual” label in the column titled “Extracted QC metric” was designated  for datasets that 
were either pre-filtered manually or for datasets where manual segmentation was used. We 
have now added an additional column (“QC Rating Included”) to the spreadsheet to explicitly 
indicate which studies had QC ratings included in the analysis in SI 2.2. This yields a total 
N=11498, which, after excluding longitudinal follow-ups and removing NA values, corresponds 
exactly to the numbers listed in S2.2. This is now clarified in SI2.2. 
 

<<the following changes have been made to the Supplementary information >> 
 
In SI2.2: 
These scans were provided by openly available datasets and are marked as having “QC 
Rating Included” in ST1.1 (note that the total number of scans with QC rating designated in 
the table is larger due to the fact that the table also includes longitudinal data, which were not 
included in this assessment). 
 
Ref 3/10: Fig. S4.3.1: Please swap the rows so that the raw data is the top row, and the 
centiled data is the bottom row, consistent with the layout of Figs. S4.3.2-4. 
 
We have updated the figure and legend according to the reviewer's suggestion. 
 

<<the following changes have been made to the Supplementary information>> 
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Fig. S4.3.1. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes. 
MRI data were collected in two separate scanning sessions from N=21 participants and each session 
was analysed as an independent out-of-sample study using GAMLSS. The top panel shows the analysis 
for non-centiled, “raw” volumetric data. Bottom scatterplots represent OoS centile scores for session 1 
(y-axis) versus OoS centile scores for session 2 (x-axis) for each brain tissue volume, from left to right: 
GMV, WMV, sGMV, Ventricular CSF. Data points represent individual subject centile scores. Test-retest 
reliability was consistently very high (all intra-class correlation coefficients > 0.99) for all cerebrum tissue 
volumes. Uncorrected (for multiple comparisons) P-values represent the significance of the intraclass 
correlation coefficient between two sessions. Shaded regions indicate the 95% confidence intervals of 
the linear association. 
 
 
Ref 3/11: Fig. S4.3.2: The usage of “HCP” in the figure titles is potentially confusing, given that 
the data was collected by HBN, not HCP. If you wish to make the point that the HBN MPRAGE 
was modelled after the HCP acquisition, that seems an appropriate point to make in the SI 
text. But I’d suggest avoiding labelling the figures themselves as “HCP Acquisition”. 
 
The figure titles have been amended according to the reviewer’s suggestion and the caption 
has been updated to clarify that the MPRAGE acquisition mimicked that of the HCP study. 
 

<<the following changes have been made to the Supplementary Information>> 
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Fig. S4.3.2. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 
measured twice in the same N=72 participants using two T1-weighted sequences, MPRAGE and 
VNaV. For each type of acquisition, the top row shows out-of-sample centile scores for session 1 (y-
axis) versus out-of-sample centile scores for session 2 (x-axis) for cerebrum tissue volumes. For each 
type of acquisition, the bottom row shows the unprocessed (“raw”) scores for session 1 (y-axis) versus 
session 2 (x-axis) for cerebrum tissue volumes estimated from VNaV data, from left to right: GMV, 
WMV, sGMV, Ventricles. In all plots, data points represent individual subject scores. Test-retest 
reliability was uniformly high (all ICCs > 0.95) and generally somewhat higher for volumetrics derived 
from prospectively motion-corrected data (VNaV). P-values represent the significance of the intraclass 
correlation coefficient between two sessions. MPRAGE acquisition refers to the T1-weighted MPRAGE 
sequence used in the Human Connectome Project. 
 
Ref 3/12: Fig. S4.5: It would be nice to actually include the ADNI data, to support the NSPN 
results. Could you just include a 2nd row to the figure with the ADNI-derived results? 
 
We now include the ADNI figures as an extra row in Figure S4.5. 
 

<<the following changes have been made to the Supplementary Information>> 
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Fig. S4.5. Out-of-sample estimates of cloned study random-effect parameters compared to in-
sample estimates of random-effect parameters in the original or non-cloned study. The plot 
shows random-effects estimated using the out-of-sample approach across a range of possible sample 
sizes for a “new” study, generated by taking subsets of the same cloned study with uncertainty intervals 
derived from the bootstrap replicates. The purple horizontal lines are the equivalent in-sample estimates 
of the random-effects parameters. We see that the out of sample estimates are somewhat unreliable 
below N=100 subjects, but with larger samples the out-of-sample estimates from the cloned data 
converge with the in-sample estimates from the original data for both 𝜇-component and 𝜎-component 
random effects. Top row, cloned NSPN refers to the Neuroscience in Psychiatry Network study; bottom 
row, cloned ADNI refers to the Alzheimer's Disease Neuroimaging Initiative. Error bars indicate the 
standard deviation of the parameter estimates at each sample size. Error bars indicate the standard 
deviation of the parameter estimates at each sample size. 
 
 
 
Ref 3/13: S5.2: In the analyses of the association between total cerebral volume and either 
fluid intelligence or birth weight, how was sex handled? Was it included as a covariate? Also, 
the added text refers to “Fig S5.4-5.5”, which don’t exist. 
 
We thank the reviewer for catching this error in the numbering of supplementary figures, which 
we have now corrected in the text. We have also updated the figure legend to include a 
description of the models for comparing birth weight and fluid intelligence to total cerebrum 
volume that clarifies how sex was handled in these analyses. 
 

<<the following changes have been made to the Supplementary Information>> 
 
To further assess whether batch-corrected MRI data derived from both ComBAT and 
GAMLSS pipelines would generate convergent results in subsequent analyses, we estimated 
the correlations between total cerebrum volume (TCV) and fluid intelligence or birth weight, 
after TCV had been batch-corrected by either GAMLSS or ComBAT. Both these psychological 
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and biological factors have previously been shown to be correlated with similar brain 
volumetrics51–53. We were able to replicate these significant associations with uncorrected 
TCV, as well as after both GAMLSS and ComBAT batch correction, all largely showing 
consistent effects across sites (Fig. S5.2.4-5.2.5). 
 
 

 
Fig. S5.2.4. Associations between total cerebrum volume (TCV) and birth weight (top) or fluid 
intelligence (bottom) after batch correction by GAMLSS (left), by ComBAT (middle), or without 
batch correction (raw, right). Linear relationships for each of the 22 sites in the ABCD study are in 
coloured solid lines; dashed lines signify overall linear mixed-effect model fit across sites; fluid 
intelligence was assessed using the NIH Toolbox54. These results show that predicted relationships 
between TCV and both birth weight and fluid intelligence are more convincingly replicated in these 
N=10,583 scans from the ABCD multi-site study when the MRI data have been batch-corrected by 
either GAMLSS or ComBAT compared to when the MRI data have been analysed without correction of 
between-site differences. Linear mixed-effect models, with either birth weight or fluid intelligence as 
independent variables, included fixed effects for TCV, binary sex, and age (in days); and a random 
effect of site. 
 
 
Ref 3/14: Fig. S5.2.5: It remains unclear to me what point this figure is intended to convey. It 
is very difficult to compare betas across panels (raw vs. GAMLSS vs ComBAT), but the overall 
impression is that the estimated betas are very similar across panels for each site, even 
compared to the Raw data. But that interpretation seems inconsistent with the point of Fig 
S5.2.4. Please make clearer what S5.2.5 is supposed to demonstrate, esp. in relation to 
S5.2.4. 
 
We thank the reviewer for bringing up this point. We agree that following changes to Fig S5.2.4 
as a result of the review process, Fig S5.2.5 is now redundant and we have therefore deleted 
this figure from the revised Supplementary Information. 
 
 
Ref 3/15: S6: I’m having trouble figuring out how to interpret “Hardware 1” vs “Hardware 2”. In 
particular, for “Label 3” (Scanner ID C1-1), did the scanner actually revert to the same 
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hardware in place for the S1-1 scanner? (That’s the implication of labeling them both as 
“Hardware 1”). 
 
We have now updated the inline table in SI6 to clarify the date and type of upgrades 
implemented on each of the scanners. 
 

<<the following changes have been made to the Supplementary Information>> 
 
Label Scanner ID Description Date of upgrade 

1 S1-1 GE Signa 1-1 6/9/90 

2 S1-2a GE Signa 1-2a (Hardware + Software upgrade) 3/19/02 

3 C1-1 CRADA magnet (Hardware upgrade) 12/16/03 

4 C1-1b CRADA magnet (Software upgrade) 5/15/07 

 
 
Ref 3/16: Fig. S14.4.1: I believe the authors meant to say, “…, but not a random *slope* as 
some individuals…” 
 
The reviewer is correct and this phrasing has been corrected accordingly. 


	Referee #1:
	Ref 1/1:
	2. Quality control
	2.1 Euler Index filtering
	2.2 Expert visual quality control
	2.3 Image quality and out-of-sample centile scoring


	Ref 1/2:
	5. Batch correction and site harmonisation
	5.1 Modeling of between-site heterogeneity by GAMLSS: conceptual considerations in comparison to ComBAT batch-correction
	5.2 Modeling of between-site heterogeneity by GAMLSS: empirical evaluation compared to ComBAT


	Ref 1/3:
	2. Additional analysis of reliability of out-of-sample centile scoring across multiple versions of FreeSurfer. For empirical evaluation of the influence of different pre-processing strategies, we estimated the intra-class correlations between centile ...
	18. Data processing
	4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer


	Ref 1/3:
	Ref 1/4:
	Ref 1/5:

	Referee #2:
	Ref 2/1:
	5. Batch correction and site harmonisation
	5.1 Modeling of between-site heterogeneity by GAMLSS: conceptual considerations in comparison to ComBAT batch-correction
	5.2 Modeling of between-site heterogeneity by GAMLSS: empirical evaluation compared to ComBAT

	4. Out-of-sample centile scoring: bias, stability and reliability
	4.1. Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies
	4.2. Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 studies
	4.3. Test-retest reliability of out-of-sample centile scoring
	4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer
	4.5. Effects of sample size on reliability of out-of-sample centile scores


	Ref 2/2:
	Ref 2/3:
	4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer
	6. Cohort effects

	Ref 2/4:
	Extended brain MRI phenotypes
	8. Regional cortical volumetric trajectories and milestones
	8.1. Charting development of regional volumes
	8.2. Regional volumetric milestones


	Ref 2/5:
	11.1. Sliding window analyses of cross-disorder discriminability
	12. Associations of birth weight and gestational duration with centile scores on cerebrum tissue volumes
	13. Twin-based heritability of centile scores
	14.4 Longitudinal centile score changes and diagnostic progression


	Ref 2/6:
	4. Out-of-sample centile scoring: bias, stability and reliability
	4.1. Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies
	4.2. Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 studies
	4.3. Test-retest reliability of out-of-sample centile scoring
	4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer
	4.5. Effects of sample size on reliability of out-of-sample centile scores

	6. Cohort effects

	Ref 2/7:
	15. Interactions between cerebrum tissue volumes


	Referee #3:
	Ref 3/1:
	Out-of-sample centile scoring of “new” MRI data
	4. Out-of-sample centile scoring: bias, stability and reliability
	4.1. Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies
	4.2. Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 studies
	4.3. Test-retest reliability of out-of-sample centile scoring
	4.4. Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer
	4.5. Effects of sample size on reliability of out-of-sample centile scores


	Ref 3/2:
	3.2.3 Parameter estimates

	Ref 3/3:
	Extended brain MRI phenotypes
	7. Extended global cortical phenotypes
	7.1. Model optimisation
	7.2. Normative trajectories of extended global MRI phenotypes
	7.3. Quality control of extended global MRI phenotypes
	7.4. Stability of out of-sample centile scoring for extended global phenotypes: LOSO analyses


	Ref 3/4:
	Ref 3/5:
	Ref 3/6:
	Ref 3/7:
	Ref 3/8:
	1.2 Convergence within GAMLSS

	Ref 3/9:
	Ref 3/10:
	Ref 3/11:
	Ref 3/12:
	Ref 3/13:
	Ref 3/14:
	Ref 3/15:
	Ref 3/16:
	1.6 Centile Mahalanobis distance

	Ref 3/17:
	Ref 3/18:
	Ref 3/19:
	Ref 3/20:
	4.5. Effects of sample size on reliability of out-of-sample centile scores

	Ref 3/21:
	Ref 3/22:
	Ref 3/23:
	Ref 3/24:
	Ref 3/25:
	1.4 Model simulations

	Ref 3/26:
	Ref 3/27:
	Ref 3/28:
	Ref 3/29:
	Ref 3/30:
	Ref 3/31:
	Ref 3/32:
	Ref 3/33:
	Ref 3/34:
	Ref 3/35:
	Ref 3/36:
	Ref 3/37:
	Ref 3/38:
	9.1 Trajectories within developmental epochs

	Ref 3/39:
	Ref 3/40:
	12. Associations of birth weight and gestational duration with centile scores on cerebrum tissue volumes

	Ref 3/41:
	Ref 3/42:
	Ref 3/43:
	Ref 3/44:
	Ref 3/45:
	Ref 3/46:
	10.4 Summary centile comparison

	Ref 3/47:
	Ref 3/48:
	Ref 3/49:
	Ref 3/50:
	Ref 3/51:
	18. Data processing

	Ref 3/52:
	Ref 3/53:
	Ref 3/54:
	Ref 3/55:

	References cited in response to reviewers

