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Abstract
With its remarkable electro-thermal properties such as the highest known thermal conductivity 
(~22 W cm−1∙K−1 at RT of any material, high hole mobility (>2000 cm2 V−1 s−1), high critical 
electric field (>10 MV cm−1), and large band gap (5.47 eV), diamond has overwhelming 
advantages over silicon and other wide bandgap semiconductors (WBGs) for ultra-high-voltage 
and high-temperature (HT) applications (>3 kV and  >450 K, respectively). However, despite their 
tremendous potential, fabricated devices based on this material have not yet delivered the expected 
high performance. The main reason behind this is the absence of shallow donor and acceptor 
species. The second reason is the lack of consistent physical models and design approaches specific 
to diamond-based devices that could significantly accelerate their development. The third reason is 
that the best performances of diamond devices are expected only when the highest electric field in 
reverse bias can be achieved, something that has not been widely obtained yet. In this context, HT 
operation and unique device structures based on the two-dimensional hole gas (2DHG) formation 
represent two alternatives that could alleviate the issue of the incomplete ionization of dopant 
species. Nevertheless, ultra-HT operations and device parallelization could result in severe thermal 
management issues and affect the overall stability and long-term reliability. In addition, problems 
connected to the reproducibility and long-term stability of 2DHG-based devices still need to be 
resolved. This review paper aims at addressing these issues by providing the power device research 
community with a detailed set of physical models, device designs and challenges associated with 
all the aspects of the diamond power device value chain, from the definition of figures of merit, 
the material growth and processing conditions, to packaging solutions and targeted applications. 
Finally, the paper will conclude with suggestions on how to design power converters with diamond 
devices and will provide the roadmap of diamond device development for power electronics.

Keywords: diamond, power devices, wide bandgap semiconductors, figures of merit,  
power converters, packaging, modelling
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List of symbols and acronyms

(B)FOM, (BALIGA)	 Figure of merit
(N)PT, (non)	 Punch-through design
2DHG (2DEG)	 Two-dimensional hole (electron) gas
A*	 Richardson constant
BJT	 Bipolar junction transistor
BV	 Breakdown voltage
CT(BV)	 Transition capacitance

Coss	 Output capacitance
CVD	 Chemical vapor deposition
d	 Region thickness
dV/dt (di/dt)	 Time derivative of voltage (current)
Ec	 Critical electric field
Eco(va)	� Conduction/valence band minimum/

maximum
EG 	 Band gap
Eon (Eoff)	� Energy loss density by the diode dur-

ing the turn ON (turn OFF) transient 
of the diode

EMC	 Electromagnetic compatibility
EMI	 Electromagnetic interference
f 	 Switching frequency
FET	 Field-effect transistor
FinFET	 Fin field-effect transistor
FLP	 Fermi level pinning
HB	 High barrier
HEMT	 High electron mobility transistor
HFETs	 Hydrogen terminated FETs
HPHT	 High pressure high temperature
HFETs	 Hydrogen terminated FETs
IGBT	 Insulated gate bipolar transistor
IR	 Infrared radation
JF(JR)	 Forward (reverse) current density
JFET	 Junction FET
JTEs	 Junction termination extensions
k	 Boltzmann constant
L	 Region length
LB	 Low barrier
MESFET	 Metal-semiconductor FET
MIP	 Metal intrinsic p-type
MOS	 Metal oxide semiconductor
MOSFET	 MOS field-effect transistor
n, p	 Electron/hole concentration
NA,D	 Active acceptor/donor concentration
NA0,D0	 Total acceptor/donor concentration
NEA(PEA)	 Negative (positive) electron affinity
NPT	 Non-punch through
Nsheet2DHG	� Charge sheet concentration of the 

2DHG
NTC(PTC)	� Negative (positive) temperature 

coefficient
Nv(Nc)	� Valence (conduction) density of 

states
P	 Total power dissipation
Pdisp	� Power dissipation due to displace-

ment current
Pstatic (Pdynamic)	� Static (dynamic) power density 

components for a power diode
Psw.on	 Turn ON power losses
PT	 Punch through
q	 Electron charge
Qg	 Gate charge
Qgd	 Gate-drain charge
Qoss	 Output charge
Qs	� Charge density stored in the PIN 

diode
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RB	 Reverse blocking
RON 	 ON state resistance
RON_spec	 Specific ON state resistance
RP	� Specific on state resistance of the 

p-type region of the diode
Rs	 Sheet resistance
Rth	 Thermal resistance
S	 Active area
SBD	 Schottky barrier diode
SIPOS	� Semi-insulating polycrystalline- 

silicon
SPND	 Schottky pn diode
T	 Absolute temperature (K)
Tj	 Junction temperature
TDDB	 Time dependent dielectric breakdown
TOF	 Time of flight
UWBG	 Ultra wide bandgap
Vbi	 Built-in voltage
Vbn	          �Barrier height between the p-type semi-

conductor and the Schottky metal
VF (VR)	          Forward (reverse) voltage
WBG	          Wide band gap
δ	          Duty cycle
ε	          Permittivity
ε0	          Vacuum permittivity
εr	          Relative permittivity
η	          Ideality factor of the diode
µn,p	          Electron/hole mobility
ρ	          Region resistivity
τ 	          Ambipolar lifetime

1.  Introduction

The increasing demand for a low-carbon and energy-efficient 
society has raised the need for new technologies for power 
electronics applications. In this context, wide bandgap (WBG) 
and ultra-wide bandgap (UWBG) semiconductors have been 
researched to quantify their advantages in terms of efficiency, 
current density, thermal performance, radiation hardness, 
switching frequency and form factor of the overall power sys-
tem compared to Si devices and systems [1–3]. The mature 
technology and the best trade-off between performance and 
cost have so far been the key to the success of silicon-based 
power devices and circuits. Nevertheless, there exists a huge 
variety of applications in the medium- to high- power (e.g. 
automotive sector, satellite communications, high-speed 
trains, mobile terminals) where Si-based devices reach their 
limit in terms of efficiency due to ON state, switching losses 
and poor thermal dissipation management. While GaN and 
4H-SiC devices have been successfully commercialized and 
also demonstrated to outperform their Si-based counterparts 
[4, 5], diamond and other UWBG semiconductors still face a 
number of challenges that are hindering the full exploitation 
of their superior physical properties (see table 1).

Despite its challenges, diamond has distinctive advantages 
when compared to other UWBG semiconductors, due to its 
high hole–electron mobility, critical electric field, the highest 
known thermal conductivity and widest band gap [6, 7]. It also 

has peculiar features such as electron emission from hydrogen-
terminated surfaces, hopping conduction and surface transfer 
doping on hydrogen-terminated surfaces. Recent breakthroughs 
have demonstrated efficient chemical vapor deposition (CVD) 
doping techniques for both p-type and n-type dopant species and 
relatively large-area high pressure high temperature (HPHT) and 
CVD substrates [8]. Nevertheless, substrates are still limited in 
terms of cost and availability, and the resistivity of diamond 
layers is affected by the partial ionization of the dopants. More 
specifically, the lack of shallow dopant species is the main rea-
son behind the poor room-temperature performance of bulk dia-
mond devices (see figure 1). In spite of this, several devices with 
high ON state current (up to 10A [9]), fast switching perfor-
mance [10] and high breakdown voltage (BV) (>2 kV) without 
any field relief structure [11] have been manufactured. Although 
the future commercialization of such devices seems to be limited 
only to niche applications (mainly high power, frequency and 
temperature), future optimization of substrate growth techniques 
and device fabrication steps could enable the use of diamond 
devices in a wider range of applications.

This topical review is organized as follows. Section  2 
focuses on the specific techniques to improve the doping effi-
ciency and control, unique properties arising from surface 
termination, heterojunction structures and carrier mobility 
for diamond. Section 3 presents a thorough investigation of 
the FOMs applied to the specific scenario of diamond power 
devices and introduces a more global approach, which allows 
us to compare different diamond FETs. Section 4  and 5 deal 
with a systematic review of the applications and current state-
of-the-art of diamond. It also highlights the issues that still 
need to be addressed prior to commercialization. In section 5,  
the system level benefits of diamond diodes and FETs and 
their potential use in power converters are addressed. Finally, 
a suggested roadmap to a market-ready diamond power tech-
nology concludes this paper in section 6.

2.  Material requirements and modelling

2.1.  Substrates and growth

Diamond crystals are usually classified on the basis of the 
type of impurity concentration (nitrogen and boron) and their 
arrangement in the crystalline structure. An accurate classifica-
tion of diamond crystals can be found in table 2 and it applies 
to both natural and synthetic diamonds (HPHT or CVD).

The HPHT technique for the realization of synthetic dia-
mond substrates allows us to achieve high purity with a low 
defect density, but the total size (between 2  ×  2 mm2 up to 
10  ×  10mm2 for IIa) is restricted due to intrinsic limitations 
of this method. HPHT substrates used for electronic devices 
are usually type Ib due to their relatively low cost and low 
dislocation density of about 105cm−2, but type IIa substrates 
can achieve even lower dislocation density (<103 cm−2) with 
drawbacks in terms of the complex fabrication process and 
cost. CVD growth has fewer limitations on the size of the sub-
strate (up to 0.5 inch) despite the fact that CVD does not allow 
us to achieve the same crystalline quality of the HPHT tech-
nique. Over 2 inch CVD substrates can be found in a mosaic 
configuration, but the bonding boundaries between the wafers 
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can limit the electrical performance of the device and increase 
strain and defects in the structure [22]. An alternative tech-
nique to homoepitaxial growth is the heteroepitaxial growth of 
diamond on iridium (Ir) and other similar substrates [23, 24].  
This process allows us to reach over 3 inch substrates, but with 
a high dislocation density (between 107–109 cm−2).

2.2.  Doping and defects

Due to the peculiar lattice structure and material strength, 
only shallow doping profiles (<10 nm) can be obtained by 
means of a high-energy ion implantation process in diamond 
[25, 26]. Recently, thermal doping diffusion has been proven 
and a diamond p–n diode based on this doping technique has 
been fabricated and characterized [27, 28]. However, these 
techniques require further investigation prior to becoming a 
reliable method of fabrication. Therefore, the incorporation of 
substitutional dopant species during the growth of diamond 

layers is mainly realized simultaneously with the CVD growth. 
Low boron concentrations (1015 cm−3) are relatively easy to 
implement, but the fabrication of thick doped p-type layers 
remains challenging due to the loss of the crystallinity. While 
boron forms an acceptor level at 0.38 eV from the maximum 
energy level of the valence band (Eva), nitrogen and phos-
phorus n-type dopants result in a much deeper energy level 
from the conduction band minimum (1.7 and 0.57 eV from 
Eco, respectively). At the electro-thermal equilibrium, it is 
possible to solve the charge-balance equation (with the Fermi 
statistic) to calculate the total number of holes (or electrons) 
for different temperature and compensation doping [29, 30].  
This is shown in figures  2(a) and (b). As can be observed, 
compensation plays a key role in the determination of the hole 
concentration. Besides, as discussed in [29], the mobility and 
overall resistivity of the diamond layers are also affected by 
the compensation level. Nevertheless, the substantial progress 
in the CVD growth of homoepitaxial grown has allowed for 

Figure 1.  Vertical Ron_spec versus BV unipolar limit for semiconductors and comparison with experimental results at RT (T  =  300 K)  
(a) and for high operating temperature (T  =  450 K) (b). Calculated limit is the result of an optimization procedure, which assumes punch 
through (PT) profile for the electric field, mobility function of temperature and doping, temperature-dependent breakdown field for 4H-SiC 
(calculated by means of the ionization integral) and the incomplete ionization in the case of p-type diamond. Silicon RT is used as the 
reference considering a constant critical electric field (table 1). It can be noted that boron-doped diamond (p-type diamond) shows a better 
trade-off only for HT (b). Data taken from [11–21] and references therein.

Table 2.  Classification of diamond crystals based on the type and amount of impurities.

Diamond substrates

Type I Type Ia Type IaA
It has enough nitrogen concentration 
(0.3%–0.5%), which can be measured 
with infrared (IR) spectrometry

Nitrogen (N) atoms replace carbon (C) atoms 
in the lattice (N atoms are in substitutional lat-
tice sites) and they tend to aggregate together

A specific type of Ia with N atom pairs, 
which occupy neighboring lattice site
Type IaB
Cluster of four substitutional N atoms 
that symmetrically surround a vacancy 
in the lattice structure

Type Ib
N atoms replace C atoms in the lattice, but they are isolated from each other. A great part of 
HPHT diamond substrates is type Ib

Type II Type IIa
It is characterized by a low nitrogen con-
centration, which cannot be detected with 
IR (usually  <1017 cm−3)

Very low boron and nitrogen concentration, which makes this form one of the purest dia-
mond crystals available. Diamond gemstone can be included in this category
Type IIb
Boron concentration is higher than nitrogen. It has p-type semiconducting properties

J. Phys. D: Appl. Phys. 53 (2020) 093001
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ultra-low compensated boron diamond layers (<1%), even 
for low dopant density. Such compensation values, which 
have been achieved by many research groups [31–33], are 
however still difficult to obtain with phosphorous-doped lay-
ers. Therefore, as all the subsequent results and calculations 
shown in this manuscript will consider boron-doped layers, 
compensation will be neglected. However, it is worth men-
tioning that all the results can be easily extended in the case of 
non-negligible dopant compensation.

The growth of phosphorous-doped diamond layer ensures 
lower resistivity for n-type layers, but it requires high and 
controlled temperature during the whole growth process [36]. 
Although it is possible to obtain a relatively wide doping win-
dow, heavy n-type (>5  ×  1019 cm−3) doping still remains chal-
lenging [37] (table 3). In addition, the crystal orientation also 
plays a key role in determining the quality of the doped and 
intrinsic layers. The 〈1 0 0〉 orientation is the most common 
for growing diamond layers. However, it is still complicated 
to grow n-type layers and there are still limitations in the effi-
ciency of p-type doping. Conversely, in the 〈1 1 1〉 direction, 
n-type phosphorous dopants can be incorporated more easily 
and it is possible to achieve one of the highest boron concen-
trations [38]. Nevertheless, one of the significant drawbacks of 
the 〈1 1 1〉 orientation is the formation of macroscopic defects, 
which leads to a poorer quality of the material [39]. On 〈1 1 0〉 
faces, boron concentration can be improved if compared 
with 〈1 0 0〉 but the reduced surface area hampers the benefits 
due to the enhanced doping control. Other orientations such 

as〈1 1 3〉, which have not been deeply investigated yet, may 
result in enhanced control and speed for the doping process 
of diamond layers. Macroscopic and microscopic defects are 
also playing a key role in determining the electrical properties 
[40, 41]. Non-epitaxial crystallites, which are a typical feature 
of homoepitaxial grown diamond, have already been demon-
strated to affect the performance of metal-semiconductor FETs 
(MESFETs), metal oxide semiconductor (MOS) and Schottky 
diamond diodes [42–45]. For a complete review of diamond 
defects and their characterization techniques, the reader can 
refer to [46].

2.3.  Device surface termination

2.3.1.  Oxygen termination.  Oxygen termination is generally 
used to improve the adhesion of oxide and diamond layers and 
it induces a positive electron affinity of 1.7eV. One of the main 
drawbacks of such passivation is the high Fermi level pinning 
(FLP) effects generated by the presence of high-density inter-
face states [52]. Ozone treatment and immersion in hot mixed 
acid are the most common treatments adopted by research-
ers to induce O-termination in diamond layers [53]. Oxygen-
terminated (O-terminated) diamond is also exploited for the 
removal of the hole-type conductive layer (two-dimensional 
hole gas (2DHG)) [11].

2.3.2.  Hydrogen termination.  On hydrogen-terminated 
(H-terminated) diamond surfaces, both a negative electron 

Figure 2.  (a) Hole concentration at the thermodynamic equilibrium versus total boron concentration (NA0) for T  =  300/500/700 K and (b) 
effect of different donor compensation levels (ND  =  ND0) on the boron activation at T  =  300 K. For the formulas used in the calculation, 
refer to [34, 35].

Table 3.  Available doping windows for the doping of diamond electronic devices. n-type doping refers to phosphorous.

Available Under development/required

Min Max Min Max

n-type doping concentration ≈3  ×  1015 cm−3 [47] ≈8  ×  1019 cm−3 [48] ≈1  ×  1014 cm−3 >1  ×  1020 cm−3

n-type layer thickness <100 nm [47, 49] ≈5 µm [36] — >50 µm
p-type doping concentration ≈1  ×  1015 cm−3 [50] >1  ×  1021 cm−3 [51] <1  ×  1014 cm−3 —
p-type layer thickness <10 nm ≈100 µm [51] — >200 µm

J. Phys. D: Appl. Phys. 53 (2020) 093001
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affinity (NEA) of  >  −1 eV and a strong FLP are induced  
[54, 55]. Diamond H-terminated surfaces, which can be 
obtained by either hot filament or plasma treatment, have been 
widely explored due to their unique property of surface con-
ductivity. Even though the origin of surface conductivity is 
still not well understood [56], the presence of adsorbates (i.e. 
materials with higher binding energy than H-diamond) on C–H 
diamond surface and the local exchange of electrons with the 
diamond valence band is the most likely explanation for the 
formation of the 2DHG. One can note that these properties 
have also been presented with polycrystalline diamond [57] or 
heteroepitaxial grown diamond [58].

2.4.  Heterojunctions with diamond

Among the possibilities that allow us to obtain an RT fully 
activated diamond channel, heterojunctions between diamond 
and group III nitrides (AlN, GaN and BN) are one of the most 
promising and attractive configurations. As the growth of GaN 
layers on diamond surfaces is complicated, AlN and BN have 
been identified as the best materials for diamond heterojunc-
tions. Kuech et al [59] reported an H-terminated diamond sur-
face with an AlN passivation layer and the first demonstration 
of an AlN/diamond heterojunction n–p diode was successfully 
carried out by Miskys et al [60] by using a molecular beam 
epitaxy technique. As the H-terminated surface results in a 
poor attachment to the AlN layer, an O-terminated diamond 
surface was adopted for the first AlN/diamond heterojunc-
tion FET realized by Imura et al [61, 62] with a metal-organic 
vapor-phase epitaxy technique.

2.5.  Bulk and surface mobility

Discrepancies between time-resolved cyclotron resonance 
(TRCR), time-of-flight (TOF) and Hall measurements have 
generated confusion about the real value of diamond carrier 

mobility with overestimations for hole and electron mobility 
at RT (7300 cm2 V−1 s−1 for electron and 5300 cm2 V−1 s−1  
for hole [63]). More specifically, Hall electron mobility 
values calculated at RT oscillate around 1000 cm2 V−1 s−1, 
whilst TOF performed by Isberg et al [64] shows higher elec-
tron mobility, an overestimation which may be caused by 
the approximation of Hall scattering factor, as suggested by 
Pernot [65]. Regarding the electron mobility in n-type lay-
ers, intra-valley phonon scattering is the dominant scattering 
mechanism in the HT range (regardless of the doping level of 
the layer), while the interaction with the intra-valley acous-
tic phonon is the main scattering mechanism in the middle 
temperature range [65, 66]. In the low-temperature range, 
ionized impurity and neutral impurity scattering are the main 
scattering mechanisms. Conversely, hole mobility is subjected 
to the same scattering mechanisms in the low-temperature 

Figure 3.  (a) Hole mobility versus temperature for bulk diamond (experimental and theoretical). Gray rectangle corresponds to typical 
room-temperature 2DHG mobility in diamond FET, (b) hole mobility for H-terminated diamond FETs, O-terminated diamond FETs and 
delta B-doped diamond. Data from [65] (references therein) and [67].

Figure 4.  Hole mobility versus doping for boron-doped diamond 
for T  =  300/500 K. Parameters and equations can be found in [65, 
66, 70].
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range, while intra-band and inter-band acoustic phonon scat-
tering dominate the medium range, and the interaction with 
the optical phonon is the main mechanism responsible for the 
mobility at HT.

Regarding the hole mobility, some discrepancies between 
TOF, TRCR and Hall measurements still persist with values 
ranging between 3800 and 2100 cm2 V−1 s−1 at RT with a ten-
dency of measurements to confirm the 2100 cm2 V−1 s−1 value 
[65, 68] (figure 3(a)). However, recent measurements tend to 
agree on the RT values for electron/hole mobilities [31, 32].

Such mobility values can be reached in pure or low-doped 
diamond, where the limiting mobility mechanism is purely 
intrinsic due to phonon scattering mechanisms. Detailed anal-
ysis of the mobility dependence versus doping level concern-
ing phosphorus-doped n-type [66] and boron-doped p-type 
[29, 69, 70] materials have been reported. In uncompensated 
and highly doped material, the neutral impurity scattering is 
the dominant scattering mechanism because of the large ioniz
ation energy of the donor and acceptor dopants. In figure 4, 
the hole mobility has been plotted as a function of the temper
ature doping with the fitted models from [66, 70].

Few studies have analyzed the mobility in hydrogen-termi-
nated diamond surfaces. In general, extraction of the conduc-
tivity (carrier sheet density and mobility) is obtained during 
the electrical characterization of the 2DHG FETs. Besides, 
values of surface channel p-type channel FETs rarely exceed 
200–300 cm2 V−1 s−1 due to surface roughness, ionized impu-
rity scattering and the high-surface electric field generated 
by the presence of the negatively charged acceptors, which 
cause the confinement of the 2DHG (figure 3(b)). Recently, 
Li et al [71] calculated the 2DHG mobility as a function of 
the temperature and hole gas density and then compared their 
theoretical results with a variety of experiments.

Mobility extraction has been also performed on delta-
doped FETs showing that the predicted enhanced mobility 
in such layers cannot be achieved and values rarely exceed 
20 cm2 V−1 s−1 [72]. On C–OH diamond surfaces, the mobil-
ity of the inversion layer on lateral metal-oxide semiconductor 
field-effect transistors (MOSFETs) has been estimated to be 
8 cm2 V−1 s−1 due to the non-optimal quality of the diamond/
Al203 oxide interface [73].

3.  FOMs and system-level comparisons: definition 
and discussion

3.1.  Limits of existing FOMs

Power semiconductor devices are characterized by conduc-
tion, switching and OFF state losses. A perfect figure of merit 
(FOM) would take each contribution into account, with spe-
cific interactions at the system level (i.e. thermal, driving, 
electromagnetic compatibility (EMC), reliability, sourcing and 
cost). Unfortunately, it is almost impossible to compare differ-
ent devices based on different technologies and/or materials 
based on a simple FOM. As an example, switching losses are 
not only dependent on the power device itself, but the driving 
circuit, topology employed (e.g. based on soft or hard switch-
ing) and parasitics associated with packaging. One of the most 

used FOMs in power semiconductor devices is Baliga’s fig-
ure of merit (BFOM) defined in [74] and equation (1). This 
BFOM has been derived from the specific ON state resistance 
(equation (2)), which can be expressed by equation  (3) in 
the case of several assumptions. Consequently, equation  (3) 
introduces the BFOM in the typical trade-off between the 
specific ON state resistance (Ron_spec) and the BV. However, 
the assumptions required to directly relate the BFOM to the 
Ron_spec cannot apply in the context of diamond power devices; 
in diamond bulk devices, the incomplete ionization of dop-
ants, and in 2DHG devices, the sheet carrier concentration and 
specific 2DHG mobility must be considered. Consequently, 
equation (3) is no longer valid and the specific Ron_spec is no 
longer derived by the BFOM. In equations (1)–(3), µn is the 
mobility of electrons (µp of holes), ε is the dielectric permit
tivity of diamond, Ec is the critical electric field (table 1), ρDrift 
is the resistivity, S is the active area, LDrift is the length of the 
drift region and q is the electron charge.

BFOM = µn,p · ε · E3
c ,� (1)

(General case) : RON_spec = RONS = ρDrift · LDrift =
LDrift

q · (µn,p · n, p)
,

�

(2)

(With assumptions) : RON_spec =
4 · BV2

µn,p · ε · E3
c
=

4 · BV2

BFOM
.

�

(3)

Consequently, the specific ON state resistance (Ron_spec) is 
used as a FOM to compare different devices or materials, for 
a given range of BVs. The ON state resistance is typically 
measured by pulsed I–V or calculated based on analytical 
formula or numerical analyses. The device area is extracted 
from the active area (S) or device area, either including or 
not including the termination region. The BV is measured or 
calculated based on specific hypotheses. There are mainly 
four issues with the direct comparison of the Ron_spec value 
among different devices or materials at the same BV and the 
use of Ron_spec as a FOM: the lack of direct switching loss 
estimation, the different assumptions related to Ron, S and BV 
between devices or materials, the lack of link with the thermal 
conductivity and the scalability of Ron with the surface. The 
junction temperature at which the comparison is carried out 
must also be discussed.

In order to relate the FOM to the switching losses, other 
FOMs such as Ron · Qg (or Qgd, Qoss) have been introduced 
[1, 75, 76]. These FOMs are clearly more complex than the 
Ron_spec FOM alone, albeit harder to predict for diamond 
power devices. Indeed, actual diamond power devices still 
have small active areas, which makes difficult a precise 
measurement of the capacitances related to the active area. 
These FOMs are best suited to unipolar devices, but cannot 
be used in the context of bipolar devices due to recovery 
charges and their impact on switching losses. Specific stud-
ies are required on diamond power device optimization and 
measurements, to further demonstrate low gate charge (Qg), 
gate-drain charge (Qgd) and output charge (Qoss) (output 
charge), whereas most of the recent achievements concen-
trated on reductions in Ron_spec. Accordingly, the control of 
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the Miller ratio between the Qgd and Qgs is also an impor-
tant criterion to consider. Immunity to dV/dt and dI/dt and 
the maximum turn ON and turn OFF switching speeds are 
equally relevant. Besides these parameters, the gate leakage 
must also be considered.

3.2.  Switching losses

While estimating the conduction loss is straightforward with 
appropriate conduction models, the prediction of switching 
losses highly depends on multiple parameters such as the 
parasitic capacitances, gate driver parameters (e.g. transcon-
ductance, min and max gate voltage) and circuit elements (e.g. 
parasitic inductances and capacitances). A fair comparison for 
switching losses must include similar EMC/electromagnetic 
interference (EMI) constraints, as large gate currents in 
MOSFET will lead to reduced switching losses, but very high 
dV/dt and dI/dt values. Such high transient values can have 
negative impacts on motors, cables and common mode filters 
[77], and can cause false switching through the Miller capaci-
tance [78]. Moreover, to date there have been no studies on the 
switching losses in diamond FETs, mainly due to the limited 
availability and small size of diamond FETs. A fair comparison 
of the switching losses among power devices based on differ-
ent materials will depend on the specific application. There 
are however a few case studies of diamond diodes in power 
commutation cells [79–81], mainly on diamond Schottky bar-
rier diodes (SBDs) showing small recovery-like currents due 
to the diode intrinsic transition capacitance. The main prob-
lem in performing these experiments is to associate small-
size diamond diodes with power FETs having similar voltage 
capability and parasitic capacitances. The small signal and 
large signal characterization of diamond FETs are then highly 

desired to be able to benchmark accurately the performances 
of diamond power devices [82, 83].

The expected benefits for power electronics with unipolar 
diamond or UWBG devices are to be able to match the con-
duction loss of silicon bipolar devices. Given the unipolar con-
duction and the absence of excess charge in the ON state, the 
switching losses could be dramatically reduced. As presented 
in section 5.3, the benefits of bipolar diamond devices with 
an efficient resistivity modulation will be limited to ultra-high 
voltage and low switching frequency, due to the large built-in 
potential in diamond and short carrier lifetimes. Consequently, 
unipolar diamond devices are expected to have the high-
est impact at system level in the short- to mid-term. Despite 
the issues related to switching loss predictions with diamond 
power devices discussed hereinbefore, one can assume several 
hypotheses to predict the switching performances of diamond 
unipolar power devices; the turn OFF losses with diamond 
FETs will be neglected as the channel current is turned OFF 
very quickly thanks to the smaller input capacitance (smaller 
active area) and the high transconductance; the turn ON losses 
are not limited by EMI issues; the drift region is considered in 
NPT configuration; the device is of vertical type. As a result, 
the lowest possible switching losses in a power FET are gov-
erned by the stored electric charge in the output capacitance 
(Coss) during the switching transition, where the Coss as a 
function of VDS can be expressed by equations  (4) and (5). 
In equation (4), COSS(V) is the output capacitance as a func-
tion of the bias, which is typically the transition capacitance 
CT(V) exhibiting a square root dependence with bias when 
the drift region is in NPT condition. At the BV, the transition 
capacitance CT(BV) is calculated by equation (5), with ε0 × εr 
the permittivity of diamond, S the active area and dDrift the 
thickness of the drift region. Whereas two FETs or one FET 

Figure 5.  (a) Total losses as a function of active area for 1.7 kV diamond vertical MOSFETs operating at 425 K/450 K junction temperature, 
switching 1.2 kV, 50 A at 20 kHz or 100 kHz, with a duty cycle of 0.5. Similar results are observed at T  =  425 K and T  =  450 K. At 
f   =  100 kHz, the two curves T  =  425 K and T  =  450 K overlap (b). Total losses as a function of active area for a 1.7 kV diamond vertical 
MOSFET operating at 425 K/450 K junction temperature, and a 1.7 kV SiC vertical MOSFET operating at 425 K, both switching 1.2 kV,  
50 A at 20 kHz, with a duty cycle (δ) of 0.5.
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and one diode will be associated in a power commutation cell. 
The active area of each power device can be different as a 
function of the duty cycle. As a consequence, only the Coss 
of one power device can be considered for the estimation of 
the minimum power losses Psw.on, as proposed for example in 
[84] and equation (6), where V  is the switched voltage and f  
the switching frequency.

COSS(V) = CT(V) = CT(BV)

…
BV
V

,� (4)

CT(BV) = ε0 × εr ×
S

dDrift
= C∗

T(BV) × S,� (5)

Psw.on (V) =
2
3
× CT(BV) ×

√
BV × V

3
2 × f .� (6)

3.3.  Other criteria for system-level comparison

In an actual application, the best power device is the one 
minimizing total losses while respecting key constraints 

(e.g. maximum junction temperature and power density). 
Therefore, the optimal device area minimizing the sum 
of switching losses (given by (6)) and conduction losses 
(related to (2) or (3)) can be determined for a fixed set of 
specifications (switching frequency, BV, rated current, NPT 
profile) thanks to the models and discussions presented ear-
lier in this section and in other articles such as [84]. Figure 5 
shows an example of a 1.7 kV diamond vertical unipolar 

Table 4.  Comparative case study between SiC and diamond for the same application.

1200 V (BV 1700 V) 50 A 0.5 duty cycle
Diamond 
20 kHz SiC 20 kHz

Diamond 
100 kHz SiC 100 kHz

Diamond 100 kHz*–
*NON-OPTIMAL

Optimal area cm2 0.25 1.85 0.1 0.85 0.26
Conduction loss W ≈6 ≈20 ≈13.5 ≈45   ≈  5.3
Switching loss W ≈6 ≈20 ≈13.5 ≈45   ≈  34.7
Total loss W 12 40 27 90 40
Junction temperature K 450 425 450 425 450
Current density A cm−2 200 27 500 59 191
Power loss density W cm−2 54 20 270 105 153

Figure 6.  Spider chart comparing diamond and SiC (table 4 data).

Table 5.  Comparative case study between SiC and diamond for the 
same application, at RT.

1200 V (BV 1700 V) 50 A 0.5 duty 
cycle

Diamond 
20 kHz

SiC 20 
kHz

Optimal area cm2 0.4 1.35
Conduction loss W ≈10.7 ≈14
Switching loss W ≈10.7 ≈14
Total loss W 21 28
Junction temperature K 300 300
Current density A cm−2 125 37
Power loss density W cm−2 53 21
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power FET, switching 1200 V–50 A at 20 kHz or 100 kHz, 
with a maximum junction temperature of 425 K/450 K and a 
duty cycle of 0.5. At the optimal area of 0.25 cm2 (20 kHz), 
the total losses represent 12 W (0.04% of switched power), 
the current density in ON state is 200 A cm−2 and the total 
power loss density is 54 W cm−2 (similar results are observed 
between T  =  425 K and 450 K). If the switching frequency 
is increased up to 100 kHz, the optimal area becomes 
0.1 cm2, the total losses 27W, the current density in ON state  
500 A cm−2 and the total power loss density 270 W cm−2  
(figure 5(a)). If this power density is too high for the ther-
mal spreader, the active area must be increased, in the price 
of increased total power losses, or the switching frequency 
must be reduced. This simple approach can be applied to 
compare different devices or materials for the same speci-
fications. As an example, a commercially available 1700 V 
SiC MOSFET has been chosen for [85] and while applying 
the same modelling, figure 5(b) presents the performances 
for both materials under the same specifications (20 kHz 
switching frequency). The diamond device will be almost 
ten times smaller, with more than three times lower total 
losses than SiC. This is even done at a higher temperature of 
450 K for diamond compared to 425 K for SiC, which is also 
a huge benefit at the system level (see section 5).
Considering that power loss density is still around or below 
50 W cm−2, the switching frequency can be increased up to 
100 kHz—see table 4 for the complete analysis. At both opti-
mal design points, the total losses with diamond switching at 
100 kHz with a junction temperature of 450 K are still smaller 
than the total losses of SiC switching at 20 kHz. However, the 
power density has been increased from 20 W cm−2 in 20 kHz 
SiC to 270 W cm−2 with the 100 kHz diamond. Increasing the 
diamond area above the optimal area will increase the total 
losses, while slightly decreasing the power density. In this 
example, it is possible to reduce the power density in dia-
mond from 270 to 153 W cm−2, while increasing the active 
area from the optimal value of 0.1 cm2–0.26 cm2. At this ‘non-
optimal’ design (in terms of total loss), the total loss in dia-
mond at 100 kHz is the same as the SiC operating at 20 kHz 
for the same switched current and voltage. To conclude this 
analysis, a global comparison can be proposed and is repre-
sented in figure 6: the performance of diamond power devices 
is highlighted here, while offering at the same time, smaller 
active areas, smaller total losses, larger current densities and 
higher junction temperatures. Table 5 shows the comparison 

of diamond and SiC under the same switching conditions at 
RT, where the benefits of diamond are reduced due to the high 
activation energy (no compensation is assumed). In spite of 
the benefits of diamond in terms of total losses and active area, 
the power loss density has been increased by 250%.

Please note that in these comparisons, the following 
parameters for the SiC MOSFET have been taken from its 
datasheet: initial active area of 0.3 cm2 (overestimate of active 
area), with an ON state resistance of 100 and 50 mΩ, respec-
tively at 425 K and RT, 180 pF parasitic output capacitance at 
1 kV. The performance of the SiC MOSFET has been linearly 
scaled and compared with diamond at the optimal area under 
the same operating conditions.

4.  Diamond devices for power converters

4.1.  Diodes

Due to the low incorporation of phosphorous and the high acti-
vation energies for n-type dopants, diamond Schottky diodes 
have been mainly fabricated on boron-doped layers. Fewer 
benefits would be obtained with bipolar devices due the high 
built-in voltage of the p–n junctions (table 1), which would 
result in a significant ON state voltage drop. The bipolar mode 
could only be of use in ultra-high-voltage applications (above 
10 kV) and low-medium-frequency applications, as it will 
be discussed in section 5.3. Manufactured diodes have been 
reported, featuring both unipolar action such as Schottky, 
metal-intrinsic-P (MIP), Schottky p–n diode (SPND) and 
bipolar action such as p–n junctions and PIN diodes (figure 7).

Regarding p-type diamond Schottky diodes, high block-
ing voltages (up to 10 kV [86]) and critical electric field  
(7.7 MV cm−1 [21]) have been reported in the literature, but a 
significant non-uniformity in the material quality has resulted 
in discrepancies for the reported experiments. Record currents 
of several amperes have been measured for a few packaged 
diodes [9] and HT operations (over 525 K) have been exper
imentally demonstrated with no observed degradation of the 
Schottky properties [21, 42, 50, 53, 87–92]. The difficulty in 
obtaining large-size self-standing low-resistive single crystal 
has resulted in the development of pseudo-vertical diamond 
structures (figure 7), where the p  +  + layers, on which the 
ohmic contact is deposited, is grown on top of the HPHT 
substrate. Various metals (W, Zr, Cu, etc) and surface treat-
ments have been explored in order to optimize the rectification 

Figure 7.  Different device structures for diamond diodes. From the left PIN diode, vertical Schottky, pseudo-vertical Schottky, SPND. Best 
values from different devices are reported in table 6.
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behavior [93–95], to improve the uniformity of the Schottky 
metal [42] and to reduce the leakage currents, which result in 
premature breakdown [53, 96, 97]. The best trade-off obtained 
so far has been achieved with Zr (table 6) [21] for pseudo-
vertical diamond diodes, while a 5 A, >1 kV vertical diode 
has been demonstrated in [87] with Pt Schottky metal.

Diamond vertical PIN diodes have been successfully reported 
in [98–101]. Together with the lack of carrier lifetime control, 
reproducibility and uniformity, the high built-in voltage of the 
p–n junction (even when operated at HT) represents a limit-
ing factor in the development of this device structure [102]. To 
overcome some of the previously mentioned issues, Schottky 
p–n type diodes have been suggested [103–106]. The Schottky 

metal on top of the n-type layer is able to deplete the n-type 
(nitrogen or phosphorous) doped layer in both the ON state and 
OFF state, allowing for holes to be injected from the p+  layer 
in the ON state and at the same time support the reverse voltage.

4.2.  MOS devices

4.2.1.  Comparative study of MOS stack on oxygen- and hydro-
gen-terminated diamond  The ideal MOS structure requires 
an electrostatic potential barrier, which hinders the carrier 
transport from the semiconductor to the gate metal. Depend-
ing on the carrier transport mechanisms and specific charac-
teristics of the device, it could also be possible to provide a 

Table 6.  State-of-the-art parameters and key features for diamond diodes depicted in figure 7. ON state current and current density have 
been extracted and reported for different bias conditions.

Device PIN Diode Vertical Schottky 
Pseudo-vertical 
Schottky Schottky p–n diode 

Conduction mode Bipolar Unipolar Unipolar Unipolar

ON state current <100 mA at V  =  5 V with 
T  =  300 K [98, 99, 107]

20 A at V  =  1.8 V with 
T  =  300 K [108]

≈100 mA at V  =  5 
V with T  =  300 K 
[42, 109]

<100 mA at V  =  7 V 
with T  =  300 K [106]

>20 A at 1.2 V with T  =  500 K 
[108]

Breakdown voltage >11 kV [110] >1.8 kV at T  =  300 K [111] >1.6 kV at 
T  =  300 K [112]

>55 V at T  =  300 K 
[103]

Current density >100 A cm−2 at V  =  30 V >100 A cm−2 at V  =  2 V with 
T  =  300 K [113]

<100 A cm−2 at 
V  =  2 V

<10 A cm−2 at V  =  2 V

<10 A cm−2 at V  =  10 V with 
T  =  300 K [99]

≈100 A cm−2 at V  =  1.2 V 
with T  =  500 K [108]

4500 A cm−2 at 
V  =  7 V with 
T  =  300 K [21, 42]

>60 kA cm−2 at V  =  6 
V with T  =  300 K [103]

>100 A cm−2 at V  =  10 V with 
T  =  500 K [98])

>200 A cm−2 at 
V  =  2 V (after 
Zr annealing at 
T  =  750 K)

Notes High built-in voltage When the drift region is low 
doped the device is known as 
MIP+  diode

Low scalability 
of the BV and the 
Ron_spec.

No theoretical  
trade-off between BV 
and Ron_spec.

Need long lifetime for  
minority carriers (state-of-
the-art value is estimated to 
be 6 ns for holes [114]) and 
highly-doped n+  region)

MIP+  diode shows  
space-charge limited current 
behavior

Highest dielectric 
field strength  
reported (7.7 MV 
cm−1)

Highest reported  
current density for  
diamond diodes

Positive temperature coefficient 
of the BV [99]

High scalability and fast turn 
OFF (≈ns)

Schottky metal  
stable up to 700 K

Positive temperature co-
efficient for the ON state 
current

Employed as slow neutron  
detector [100]

BV limited by defects Etching of p+  is 
needed to avoid 
common substrate 
issues [115].

High switching 
speed  ≈10 ns for low 
reverse voltage (≈−5 V) 
[104]

Used as temperature 
sensor [115]

Thickness and doping 
of the n-type layer set a 
limit for the scalability 
of the device
Exploits hopping  
conduction mechanism 
for the p+  layer
Thermionic emission 
current dominates  
below flat-band voltage 
[106]
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single potential barrier with respect to the conduction or the 
valence band. This is the case for H-terminated diamond FETs 
where a single barrier for 2DHG is required [116]. Double- 
and triple-oxide stacks have also been investigated on H-ter-
minated diamond surfaces, and their electrical properties 
(i.e. hysteresis, band offset, leakage) accurately reviewed in 
[117]. A schematic band alignment computed with the proce-
dure and the parameters defined in [118, 119] has been plot-
ted in figure 8 for both H-terminated(a) and O-terminated(b) 
diamond. As can be noted, only a few oxides (such as SiO2, 
Al2O3) would allow for a dual barrier with the conduction and 
valence band of O-terminated diamond. Moreover, despite the 
fact that numerous diamond-oxide interfaces have been stud-
ied in the last fest years [117, 120], the lack of native oxides 
for diamond has often resulted in highly defective interfaces, 
which have negatively impacted the carrier mobility at the 
interface.

4.2.1.1.  Oxygen-terminated diamond MOS regimes and reli-
ability.  Experimental results have shown that Al2O3 exhibits 
the best performance in controlling O-terminated diamond 
interfaces. The electrical properties and band alignment of this 
stack have been reported in [121]. Leakage current mechanism 
occurring in diamond/Al2O3/Al has also been investigated by 
Pham et al [122]. Only recently, a few reliability studies have 
been reported for diamond MOS stacks. In [123], Loto et al 
have observed a strong impact of the interface defects in the 
flatband voltage shift by means of time-dependent bias stress. 
In addition, it has been demonstrated that the post process 
annealing improves the electrical performance of the MOS 
capacitor, with a clear accumulation regime observed even at 
relatively low negative bias and with a negligible gate leakage 
current value.

4.2.1.2.  Deep depletion and inversion mode MOSFETs.  
Among the properties correlated with the wide value of the dia-
mond band gap (5.47 eV at RT), the small value of the intrinsic 

carrier concentration has a positive effect on reducing the ther-
mally generated minority carriers for the creation of inversion 
regime formed in the MOSFET devices [124]. More specifi-
cally, if minority carriers are not provided by source and drain 
regions or by UV light exposure, a deep depletion regime can be 
obtained for a long and stable duration. The concept of temper
ature-time stable deep depletion effect observed and demon-
strated for diamond devices is different to the dynamic effect 
described in other semiconductors such as silicon [125–128].  
In this case, the inversion layer is much more sensitive to time 
and temperature effects, making deep depletion only a tran-
sient effect able to improve the dynamic BV. Experimental 
deep depletion diamond MOSFETs rely on the Al2O3/(Ti/Pt/
Au) stack. High breakdown fields of 4 MV cm−1 have been 
measured for a lateral normally-ON device, as schematically 
depicted in figure 9. However, the maximum current density 
observed in [129] is several orders of magnitude lower than 
the one reached for H-terminated FETs.

Recent reports have demonstrated the possibility of real-
izing deep depletion diamond Fin-FET with CVD boron dop-
ing on a 〈1 0 0〉 3  ×  3 mm2 HPHT undoped substrate. E-beam 
lithography and O2 dry etching have been used to fabricate the 
Fin-FET structure depicted in figure 9. The low value of the 
boron concentration in the channel (5  ×  1016 cm−3) together 
with the 45 nm of SiO2 oxide and the small metal work func-
tion of Al (≈4.08 eV) result in a depletion width of about 
55 nm. As the depletion region width is more than half the 
fin channel width, the device exhibits normally-OFF behavior.

High quality p-doped n-type diamond body/Al2O3 inter-
face obtained by wet annealing has resulted in the first dia-
mond inversion-type lateral MOSFET on a 〈1 1 1〉 HPHT 
substrate, as reported by Matsumoto et al [73]. A maximum 
drain current density of 1.6 mA mm−1 and channel field-
effect mobility of 8 cm2 V−1 s−1 have been extracted from 
the experimental data at VGS  =  −12 V and VD  =  −5 V  
(table 7). This proof of concept for an inversion mode 
MOSFET resulted in a normally-OFF behavior, with a 

Figure 8.  Band alignment of H-terminated (a) and O-terminated (b) diamond with several oxides. Calculation is based on the parameters 
and the procedure adopted by Robertson and Monch [118, 119]. NEA for H-terminated diamond results in a negative conduction band 
offset (i.e. no barrier for electrons). Experimental Al2O3/O-terminated diamond alignment reported in [121] has been included in (b). 
Experimental band gap of Al2O3 on diamond is smaller compared to the value reported by Robertson in [119].
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negative threshold voltage (Vth) of about  −6.3 V. This high 
Vth value for the inversion regime is a clear signature of high 
level of interface traps (with a density estimated to be above 
6  ×  1012 cm−2 eV−1).

4.2.2.  Junction FETs (JFETs), MESFETs and bipolar  
transistors.  FETs based on MESFET or p–n JFET are highly 
reliable for power electronics applications due to the absence 
of the gate oxide layer, which tends to generate high-den-
sity interface states and trapping/de-trapping mechanisms  
(figure 10). Umezawa et  al [132] have fabricated several 
diamond MESFETs, exploring different Schottky gate met-
als (Mo, Pt, Al) and observed a maximum current density 

of 1.2 mA mm−1 at HT (T  =  600 K) with VGS  =  0 V and 
VDS  =  −20 V due to the enhanced boron activation in the 
conduction region. High BVs above 2 kV with a gate to drain 
distance of 50 µm [133]) have been shown for diamond MES-
FETs, which usually exhibit normally-ON characteristics 
with a high threshold voltage (Vth). Good scalability of the 
BV with the gate drain distance has been proven for diamond 
MESFETs [132]. Diamond MESFETs have also been realized 
in reverse blocking configurations with a Schottky metal for 
the gate and the drain contacts [134].

On the other hand, improvements in the lateral growth of 
n-type diamond layer in the 〈1 1 1〉 direction have enabled the 
fabrication of high-quality diamond p–n+  junction with high 

Figure 9.  3D schematic of the diamond depletion mode MOSFET in vertical fin field-effect transistor (FinFET) configuration and cross-
section of a lateral deep depletion and inversion mode MOSFET. Gate dielectric and metal surround the whole fin channel (not shown in 
the picture).

Table 7.  State-of-the-art parameters and key features for diamond depletion and inversion mode MOSFETs depicted in figure 9.

Device Vertical FinFET Lateral deep depletion MOSFET
Lateral inversion mode 
MOSFET

Breakdown voltage >16 V at T  =  300 K [130] >200 V at T  =  300 K [129, 131] <50 V at T  =  300 K [73]
Current densitya <1 mA mm−1 at T  =  300 K ≈0.1 mA mm−1 at T  =  300 K with 

VDS  =  −15 V and VGS  =  −16 V [131]
<1 mA mm−1 at T  =  300 K

<10 mA mm−1 at T  =  450 K with 
VDS  =  −15 V and VGS  =  −16 
V [130]

<1  ×  10−3 mA mm−1 at T  =  300 K With VGS  =  −5 V 
VDS  =  −1 V [73]

<0.05 mA mm−1 T  =  300 K ≈5  ×  10−3 mA mm−1 at T  =  450 K with 
VGS  =  −10 V VDS  =  −1 V

<2 mA mm−1 at T  =  450 K with 
VGS  =  −10 V VDS  =  −1 V

With selective growth of P+  :  ≈3 mA 
mm−1 at T  =  523 K with VGS  =  0 V 
VDS  =  −1 V

Notes Fin channel allows for  
normally-OFF operation.

Normally-ON. Normally-OFF
HT operation increases the current and re-
duces the threshold voltage

Low interface mobility

BVmeasurements are not  
reported. However, gate and drain 
overlap limits the max BV

Scaling of the Ron_spec and BV is an issue High density of traps

Max observed drain  
current is limited to 838 nA  
for VGS  =  VDS  =  −16 V at 
T  =  300 K and 29 µA at  
450 K [130]

Field plates are needed to improve the BV Low BV
Current density is limited by the incom-
plete ionization at RT

First proof of concept

a Values reported for the Fin-FET are assuming the true width of the current transport path.
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rectification ratio and BVs close to 1 kV [37, 39, 48, 135, 136].  
These p–n  +  junctions have been used as the building block 
of diamond JFET fabricated by Hosino et al [39]. Different 
channel width and doping levels have resulted in both nor-
mally-ON and normally-OFF devices demonstrated in uni-
polar and bipolar conduction mode. The BV measured at 
different junction temperatures shows a positive coefficient, 
according to the increase of the phonon scattering and con-
sequent reduction of the avalanche multiplication coefficient 
[135]. Normally-OFF JFETs (with a Vth around  −1.2 V) 
have been manufactured by implementing a parallel reduc-
tion of the doping concentration and the channel width  
(≈0.2 µm) in order to pinch-off the channel at zero bias. 
Devices show a good rectification ratio, but a much smaller 
current density due to the higher resistivity of the channel 
region [137]. Despite the current density increases at HT, 
a positive shift of the threshold voltage with the temper
ature, which has also been confirmed by TCAD simula-
tions and experimental results [35, 138], may however 

result in normally-ON operations at elevated temperature. 
Improvements in terms of current densities (table 8) have 
been achieved with both normally-ON and normally-OFF 
JFET operating in bipolar mode, with the injection of minor-
ity carriers (electrons) in the p-type region. However, the 
bipolar conduction also increases the number of carriers in 
the channel and this would result in a slower turn OFF and a 
more complex gate driving technique.

The recent progress in the n-type doping technology has 
also allowed the fabrication of bipolar junction transistors 
(BJTs) [139–141]. Indeed, early fabrication processes have 
failed to demonstrate the bipolar mode operation due to the 
high resistivity of the n-type base layer (around 1018 cm−3) 
and the low diffusion length of minority carriers (holes) in 
the base region. The introduction of the n+  layer has enabled 
both the hopping conductivity and the reduction of the series 
resistance due to the ohmic contact of the base. However, the 
scalability of these devices is highly limited due to the low 
diffusion length [140].

Figure 10.  Schematic cross-sections of a diamond BJT, MESFET and JFET.

Table 8.  State-of-the-art parameters and key features for diamond BJTs, MESFETs and JFETs shown in figure 10.

Device BJT MESFET JFET

Breakdown voltage >100 V at T  =  300 K 
[140]

>2kV at T  =  300 K [133] >600V at T  =  300 K [135]
≈3kV at T  =  300 K for RB MESFET  
[134]

Current densitya Not reported ≈2 mA mm−1 at T  =  500 K with 
VDS  =  −20 V VGS  =  0 V [142]

Max current (≈2 µA) at T  =  573 K with 
VDS  <    −10 V [138, 143]

Max current ~µA at 
VEB  >  6 V [139]

≈0.14 mA mm−1 at T  =  300 K with 
VDS  =  −20 V VGS  =  0 V [142]

600 A cm−2 at T  =  500 K

Max current  ≈30 mA at T  >  550 K [6] 40 A cm−2 at T  =  300 K with VDS  =  −1 V 
and Ig  =  0.2 µA/2nA (bipolar mode) [138, 
143]

≈0.1 mA mm−1 at VDS  =  −1 V VGS  =  0 V 
at T  =  600 K [132, 142]

≈3.5k A cm−2 at T  =  500 K with VDS  =  −20 V 
and Ig  =  1 µA (bipolar mode) [143]

Notes Need good doping 
control of both n-type 
and p-type layer

Radiation hardness even at high junction 
temperature

Bipolar mode operations and normally-OFF 
demonstrated

Lifetime control  
is needed for high  
current gain

Easy fabrication process  
(only requires p-type doping)

Positive temperature coefficient of the BV

Low BV Good scaling of the BV with the drift layer 
length

Requires n+  doping
HT operations improve the Ron_spec but the 
temperature can seriously affect the  
operation mode (normally-OFF becomes 
normally-ON).

a The reported current density for diamond lateral JFET is normalized with the cross-sectional area.
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4.2.3.  2DHG-based FETs  The 2DHG formation near the 
hydrogen-terminated diamond surfaces provides an inno-
vative way to obtain an almost zero activation energy hole 
channel. This effect, which was revealed in the early 1990s 
[144–147], was found to be useful for the fabrication of sur-
face channel FETs [54]. In addition, the maximum measured 
channel mobility, typically around 100 cm2 V−1, s−1 and the 
sheet hole density, which oscillates between 1012 cm−2 and 
1014 cm−2 (with NO2 adsorption [148, 149]), are promising 
electrical properties for the next generation of diamond power 
devices [150].

Atomic layer deposition of Al2O3 has been proven to be a 
new way to uniformly induce the hole accumulation layer and 
improve the overall reliability and stability of the heterojunction 
field-effect transistors (HFETs) [148, 151]. Compared to the 
surface adsorbates, the insulating layer possesses some unoc-
cupied orbitals or fixed negative charges, which are responsible 
for the formation of the 2DHG at the interface [152]. Lateral 
normally-ON HFET with a high BV (over 1.5 kV) and HT 
(>725 K) stability have been reported in the literature ( table 9) 
[57, 153–158]. Lateral triple-gate HFETs, which allow carrier 

to flow in both lateral and planar directions, have illustrated 
higher current density and more promising downscaling sce-
narios compared to classic lateral HFETs [159].

Several solutions have also been implemented to avoid the 
formation of the 2DHG under the gate region and achieve the 
enhancement mode behavior. For example, Liu et  al [154, 
160] deposited a double high-k layer oxide to avoid the forma-
tion of unoccupied levels and remove the 2DHG from the gate 
region, while Kitayabashi et  al [11] obtained the normally-
OFF operations with the partial oxidation of the channel 
region with C–O bounds. Because the hole sheet created at the 
diamond interface is not based on piezo-polarization effects 
as in AlGaN/GaN interfaces, it can be formed in non-planar 
structure (i.e. vertical trenches), as has already been reported 
by Inaba et al and Oi et al [161, 162] (figure 11). Temperature 
dependence of the leakage current still remains a fundamental 
issue with HFETs due to the residual doping concentration in 
the bulk region and the lack of proper isolation. In situ anneal-
ing performed prior the oxide deposition of the hydrogenated 
diamond surface at ~675 K was found to be crucial to enhance 
long-term doping stability of HFETs fabricated on MoO3 and 

Figure 11.  Schematic cross-sections of diamond lateral and vertical HFET.

Table 9.  State-of-the-art parameters and key features for diamond lateral and vertical HFET depicted in figure 11.

Device Lateral HFET Vertical HFET

Breakdown voltage >2 kV at T  =  300 K [11] ≈350 V at T  =  300 K [161, 162]
Current density 1.3 A mm−1 at T  =  300 K with 

VGS  =  −5 V and VDS  =  −12 V [164]
>0.2 A mm−1 at T  =  300 K and T  =  600 K with 
VDS  =  −50 V and VGS  =  −20 V [161]

0.2 A mm−1 at T  =  300 K with 
VGS  =  −5V and VDS  =  −1 V [164]

<10 mA mm−1 for VDS  =  −1 V and VGS  =  −5 V [161]

Notes Lateral current flow limits the scalability 
of the ON state resistance

Beneficial vertical current spreading only starts from the 
p+  layer

BV scalability is limited BV is limited
Beneficial for RF applications [156, 165] Complex fabrication process, which requires deep etching
Normally-OFF has been demonstrated n-type layer specifications are crucial to reduce vertical 

leakage currentFabricated with both poly- and 
monocrystalline diamond
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V2O5, as reported in [163]. This evidence opens a promising 
route for the HT applications and possible future commercial-
ization of diamond HFETs.

4.2.4.  Vacuum switches.  Hydrogen-terminated diamond 
interfaces are well known to exhibit a unique property 
renowned in the literature as NEA, already discussed in sec-
tion 2.3.2. This feature is very attractive for the realization of 
electron emitters as, from a theoretical point of view, electrons 
excited from the valence band or injected from contacts into 
the conduction band could be efficiently emitted in vacuum 
from the surface without any increase of the device temper
ature [166–170].

Experiments have confirmed electron emission from 
diamond p–n and PIN diodes with an efficiency oscillat-
ing around 2%. A schematic representation of the diamond 

vacuum switch fabricated in [167, 170] is illustrated in fig-
ure 12 and table 10.

4.3.  Comparison of 2DHG and bulk transistors

A fair comparison between 2DHG-based transistors and bulk-
doped ones (deep depletion or inversion MOSFET, MESFET, 
JFET) is very important for the optimization of the current 
diamond FET topologies for the next generation of power 
devices. First, the Ron_spec versus BV dependence needs to be 
carefully analyzed for different operating temperatures. At 
RT, the high 2DHG concentration gives rise to a total resis-
tivity for HFETs, which is much lower than diamond bulk 
FETs. Indeed, while bulk diamond FETs tend to exhibit a 
much higher bulk mobility, their carrier density is seriously 
affected by the incomplete ionization effect. Besides, while 
the HT effects are almost negligible on the Ron_spec of 2DHG 
channels, their impact on bulk diamond FETs is much more 
significant due the enhanced activation of dopants (figures 
3(a) and 4). Figure 13 shows the structure of the compared 
devices in the case of depletion mode MOSFET, with the 
consequent expression for the specific ON state resistance 
Ron_spec. Equations (7) and (8) show the relationship between 
sheet resistance Rs, and hole mobility µ2DHG and sheet con-
centration in 2DHG Nsheet2DHG (equation (7)), and bulk hole 
mobility µDrift and concentration p Drift and drift region thick-
ness dDrift. The values of µ2DHG and Nsheet2DHG are plotted in 
figure 3(b). The values and dependences of µDrift are plotted 
in figures 3(a) and 4. For both devices, equation (9) shows the 
relationship between the specific ON state resistance Ron_spec, 
the sheet resistance Rs and the drift region length LDrift.

Figure 12.  Schematic cross-sections of diamond vacuum switch and its control circuitry.

Table 10.  State-of-the-art parameters and key features for diamond 
vacuum switch illustrated in figure 12.

Device Vacuum switch

Breakdown voltage 10 kV at T  =  300 K [167]
Current density 4 A cm−2 at VG  <  −20 V at 

T  =  300 K [169]
Notes Unique device concept

Maximum current ~mA
Exploit the NEA of diamond
Efficiency and output capacitance 
(Coss) need to be improved
Gate drivers may result in non-conven-
tional designs for power electronics
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2DHG lateral : Rs =
1

q · µ2DHG · NSheet2DHG
[Ω−1]

� (7)

Bulk lateral : assuming a
constant current density

through the whole drift region thickness Rs =
1

q · µDrift · dDrift · pDrift
=

ρ

dDrift
[Ω/−1]

�

(8)

Lateral devices : Ron_spec = Rs · L2
Drift.� (9)

Figure 14.  Ron_spec versus drift region thickness of diamond lateral devices. Assumptions are µ  =  100 cm2 V−1 s−1 and constant hole 
sheet density of 1013 cm−2 for H-terminated diamond FET (Rs  =  10 k Ω □−1) and mobility-carrier temperature-dependent parameters for 
oxygen-terminated diamond bulk FETs. (a) 1 kV, (b) 3 kV. As one can observe, the bulk region of a diamond FET needs to be  >1.7 and  
6 µm for 1 and 3 kV BV, respectively, in order to obtain a reduction of the ON state resistance compared to HFETs.

Figure 13.  Surface definition and specific ON state resistance expression for vertical bulk, lateral bulk and lateral 2DHG-based diamond 
devices. Only the drift region is considered as the main source of total series resistance.
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Figure 14 shows the comparison of lateral bulk and lateral 
2DHG devices, for 1 and 3 kV cases, at various temperatures. 
In these plots, only the drift region resistance is considered, 
incomplete ionization of boron and hole mobility depend
ence with doping and temperature is modeled [70], and bulk 
and 2DHG devices have the same LDrift value (NPT condi-
tion as predicted by [171]). For bulk devices, the relationship 
between the hole concentration PDrift and the boron concen-
tration NA0 was presented earlier in figure  2(a)). For 1 kV, 
the parameters of the drift region are LDrift  =1.9 µm and the 

boron concentration NA0 equal to 1.8  ×  1017cm−3. For 3 kV, 
the parameters of the drift region are LDrift  =  10 µm and 
NA0  =  1.9 1016 cm−3.

Typically, lateral 2DHG will have a non-intentionally 
doped drift layer, which would result in a reduced peak elec-
tric field at the breakdown and a wider drift region, with a con-
sequently higher Ron_spec (not considered here). The resistivity 
in lateral 2DHG is assumed to be independent of temperature, 
as evidenced by experimental reports in [172]. As one can note 
from figure 14, there is a minimum drift region thickness for 

Figure 15.  Different topologies for diamond terminations applied to the case of diodes. (a) Planar field plate, (b) ramp field plate, (c) 
floating metal rings, (d) dual metal, (e) JTEs, (f) Semi-insulating polycrystalline silicon (SIPOS), (g) mesa. Al2O3 has been used as oxide 
only as an example.
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which the lateral bulk devices will have a smaller Ron_spec than 
lateral 2DHG, depending on the BV and junction temperature. 
The Ron_spec for vertical devices is plotted at RT and 450 K in 
figures 1(a) and (b). This analysis must then be integrated into 
a wider investigation, considering additionally voltage thresh-
old tuning, gate and drain leakages, stability and reliability.

4.4.  Leakage current in diamond devices

The increase of the junction temperature, which can enhance 
the conductivity in diamond layers affected by the incomplete 
ionization of the dopants, poses some important questions 
about the specific leakage current mechanisms occurring in 
actual devices. Indeed, such leakage currents, which are typi-
cally higher for increased junction temperature, can lead the 
devices into premature breakdown phenomena. While the 
most significant degradation performance has been observed 
in all diamond devices (e.g. SBDs) with a substantial number 
of dislocations and non-epitaxial crystallites [173], different 
leakage mechanisms occur in each specific device.

Regarding diamond Schottky diodes, thermionic field-
emission leakage current with barrier lowering has shown 
good agreement with experimental results even at elevated 
junction temperature [21, 96, 174]. On the other hand, 

analysis on diamond PIN diode reverse characteristics 
between 323 K  <  T  <  423 K have suggested that Poole–
Frenkel emission dominates at high electric field, while hop-
ping conduction is the dominant mechanism at low electric 
field [102, 175].

On the other hand, the leakage current of MOS-based 
devices typically depends on the number and nature of inter-
facial traps at the diamond/oxide interface [121]. Leakage 
current mechanism occurring in oxygen-terminated diamond/
Al2O3/Al has been investigated by Pham et  al [122]. They 
suggested a four-step mechanism responsible for the nega-
tive bias leakage current, which originates from the hole car-
riers accumulated at the interface and it involves trap-to-trap 
tunneling in the oxide and charge transfer with the interface 
states. Thermal annealing of the gate oxide has been proven 
to reduce leakage current values in diamond oxygen-termi-
nated MOS-based devices. With such a thermal process, the 
gate leakage current value was reduced by up to  <nA/mm 
(100 nA mm−1) with VGS  =  45 V and VDS  =  −175V at RT 
(T  =  500 K). To date, the same analysis has not been carried 
out yet for hydrogen-terminated devices.

Lateral FET devices such as MESFETs and JFETs also 
suffer from buffer-related leakage current, which usually 
increase at HT due to the enhanced activation. Such leakage 

Figure 17.  ON state resistance and required case-ambient thermal resistance (RthCA) for 1.2 kV 10 A power diodes, as a function of the 
junction temperature (Tj). (a) Diamond, (b) 4H-SiC.

Figure 16.  Schematic example of a package for a diamond device and its spice DC thermal equivalent circuit.
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mechanism is also present in lateral HFET in which also the 
unintentionally doped substrate can play a key role at elevated 
temperature and increase the overall leakage in the device. To 
date, only a few studies have been dedicated to leakage current 
in diamond FETs. The lack of proper isolation between indi-
vidual devices can also contribute to leakage at high-voltage 
values. Reactive ion etching techniques can indeed enhance 
sidewall leakage and create shorts and techniques such as par-
tial mesa etch are usually preferred.

4.5.  Diamond devices with field relief designs

Without field relief designs, the typical vertical peak  
electric field at breakdown in diamond devices is limited 
to 1–2.5 MV cm−1 [6, 46, 91, 112]. Therefore, the use of 
field relief structures is required in order to improve the BV 
capability and also to suppress the detrimental effects of the 

device termination on the field-enhanced leakage current 
mechanisms.

For unipolar mode diamond devices such as SBDs, field 
plate structures (figure 15(a)) have been more often adopted 
in the literature [89, 90, 92, 176, 177]. Theoretical optim
ization for a single-layer field plate structure has been carried 
out by Ikeda et al [91], showing that for a BV reached at a 
maximum leakage current density of 10−4 A cm−2, an opti-
mum oxide thickness can be obtained for Al2O3 (~1.5 µm) 
and SiO2(~0.9 µm). Experimental results on vertical diamond 
SBDs have illustrated both a reduction of the leakage current 
and an improvement of the BV by using 0.2 µm Al2O3 on top 
of a 10 µm p-type boron-doped layer [46].

Ramp field plate oxides have been suggested to be one of 
the most effective ways to reduce the peak electric field in 
SBDs (figure 15(b)). Calibration of ramp field plate termina-
tion by means of TCAD simulation has been performed by 

Figure 18.  Electro-thermal coupling for two diamond diodes parallelized. D1 and D2 have a different size (D2 is 10% bigger than D1), as 
schematically depicted in the electrical circuit. Symbols for the equivalent thermal circuit are described in figure 19.

Figure 19.  Transient simulation of temperature distribution and power loss for two diamond diodes in parallel, with a separate heatsink. (a) 
RthCA  =  17 K W−1 and (b) RthCA  =  54 K W−1.
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Brezeanu et  al [177] and shown to be an almost ideal BV 
(92% of efficiency).

Diamond Schottky diodes with floating metal rings (figure 
15(c)) have also been manufactured by Driche et al [178] and 
their efficient reduction of the electrostatic potential crowd-
ing has been confirmed by EBIC measurement. The spacing 
between the different rings and the number of rings influence 
the peak electric field and the shape of the lateral depletion. 
Due to the high field gradients in diamond, the reduced spac-
ing of such rings induces a high stress on fabrication and 
lithography.

In diamond SBDs, the increase of the leakage current 
based on thermionic field emission effects [173, 179] could 
be efficiently tackled with a double metal termination (high 
barrier (HB) and low barrier (LB)), as shown in figure 15(d). 
By ensuring an LB in the central area of the structure, while 
increasing it in the periphery of the structure (with metals 
such as Au or Pt), it is possible to contemporarily suppress the 
value of the OFF state current and avoid any increase of the 
threshold voltage.

The lack of an efficient n-type doping and the issues arising 
from the ion implantation have junction termination exten-
sions (JTEs) that are less effective in diamond (figure 15(e)). 
Kubovic et al [180] did not observe any improvement after 
the 10 nm of n+  type nitrogen-doped layer, while Huang et al 
[181] tried to obtain the same effect through H+  ion implant
ation to increase the resistivity, reporting a BV of about 3.7 kV 
for a diamond SBD.

SIPOS terminations provide a more uniform distribution 
of the field at the expense of an increased surface ohmic leak-
age (figure 15(f)). This kind of termination technique has 
been experimentally demonstrated for diamond SBDs and 
MESFETs [182]. Mesa etching termination technique could 
also be adopted for diamond p–n junctions, as already sug-
gested in [110, 183]. However, one has to note that the optimal 
drift region thickness in diamond is larger than 10 µm for BVs 
above 3 kV [171] (theoretical) and etching thick diamond is 
a difficult process as the whole drift region must be etched. 
There is also the possibility of sidewall leakage induced by 

defects during etching, usually performed by deep reactive-
ion etching. These considerations currently limit the possibil-
ity of mesa termination in the context of high-voltage diamond 
devices.

4.6.  Packaging, thermal management and reliability

Due to the novel nature of diamond devices, no dedicated pack-
aging technique has been developed yet. A suggested package 
solution for efficient thermal dissipation and its equivalent 
spice DC thermal network for a diamond power semiconduc-
tor has been illustrated in figure 16. In the literature, only a 
few diamond devices have been packaged and tested in power 
circuits. MESFETs in [89] have been packaged on a typical 
metal-ceramic package where the device was bonded with Au 
and molded with a resin. In [9], vertical-type Schottky diodes 
have been packaged with a silicone-based resin, which has 
then been hermetically sealed by the stainless-steel cover.

As introduced hereinbefore, due to incomplete ionization, 
the Ron_spec of diamond bulk devices has a negative temper
ature coefficient (NTC). Furthermore, as demonstrated exper
imentally in [10], the switching losses are not affected much 
by increased temperatures. As a consequence, the total losses 
of diamond bulk devices have an NTC up to a HT where the 
losses are minimized.

This important NTC modifies the design of the heatsink 
with diamond devices, where self-heating can be used to 
increase the junction temperature and to reduce losses at the 
same time. Consequently, the RthCA can be largely increased 
with diamond devices, leading at the same time to lower 
power losses and smaller and lighter heatsink.

Figure 17 shows the comparison for two diodes having 
the same BV (1.2 kV) and current rating (10 A), based either 
on diamond or 4H-SiC (commercially available SiC device: 
CPW4-1200-S010B from Wolfspeed). The device area for 
diamond and 4H-SiC are, respectively, 0.37 and 3.92 mm2 
[184]. In all thermal analyses, the temperature within each 
die is supposedly uniform and equal to the related junction 
temperature. The ambient temperature has been set to 300 K.

Figure 20.  Schematic of (a) a DC/DC buck converter and (b) interleaved converted with diamond p-type FETs and Schottky diodes. 
Depending on the switch, Vss can be positive and Vdd can be negative. Three separate gate drivers have been represented for the interleaved 
converter in (b). Alternatively, a single gate driver with separate inputs and outputs and one GND driver can be implemented.
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The current flowing through the devices is 10 A, with a 
duty cycle of 50%. Consequently, the relationship between 
the required total case to ambient thermal resistance RthCA, 
the junction temperature Tj and the losses dissipated by the 
devices are defined by equation  (10). Here, only conduc-
tion losses are taken into account, while neglecting the junc-
tion barrier height (only conduction losses due to the series 
resistance).

The diamond device is supposedly vertical, with a doping 
level of 1.2 · 1017 cm−3 and a drift region thickness of 2.5 µm, 
as proposed in [171] under the NPT condition. The depend
ence of Ron on temperature has been taken from incomplete 
ionization and doping and temperature dependence hole 
mobility for diamond (figures 3(a) and 4), whereas taken 
directly from the datasheet for SiC.

RthCA (Tj) =
Tj [K]− Ta [K]

Ron (Tj) · I2∗δ
=

Tj [K]− 300 [K]

Ron (Tj) · 50 [A2]
.� (10)

As with other power devices with NTC coefficients, the 
thermal stability and current focusing possibility are serious 
issues. As an example, the parallelization of such devices can 
be challenging, especially when the diamond dies are poorly 
thermally coupled. Figure  18 introduces an example where 
two diamond Schottky diodes are parallelized, but have a 10% 
dispersion in Ron_spec, which could be due to process disper-
sion. In this analysis, the 10% dispersion in Ron_spec is modelled 
with different diode active areas and similar J(V) characteris-
tics. The initial Ron_spec and its dependence on temperature is 
taken from an actual diamond device [94], exhibiting a similar 
behavior to figure 17(a). The load current is 10 A with a duty 
cycle of 50%.

As a consequence of the different Ron (10%), most of the 
current is running through one diode (diode 2%, 90% of the 
load current) and the other is conducting only a small part of 
the total current (only 10%). There is a clear current focusing 
effect due to the separate thermal heatsink and the small 10% 
dispersion in Ron of both diodes. Increasing the RthCA value 
will lead to higher junction temperatures of each parallel 

diode and for the same operating point. However, the total 
current is more evenly shared between the two diodes, after 
an electro-thermal transient (figure 19). Using larger RthCA 
values is however not recommended to mitigate the charac-
teristic dispersions between diodes, as it would lead to higher 
junction temperatures and limited surge current capabilities.

The consequences of this simple example are that diamond 
devices must be thermally coupled in the best possible way 
and that specific thermal simulations must be investigated to 
optimize the paralleling of diamond devices and for diamond 
power modules. On the same diamond die, one can expect that 
active cells paralleling will not be an issue due to the highest 
thermal conductivity of diamond, albeit with further invest
igations still required.

Reliability is one of the main concerns in diamond devices. 
Indeed, as the future generation of diamond power circuits 
is supposed to be working in extreme temperature condi-
tions and for high frequency and voltage at the same time, 
the requirements on the overall system stability are even 
more strict than the one for silicon. Time-dependent dielectric 
breakdown (TDDB) needs to be properly addressed (as in 
GaN) as the increase of the electric field in the structure due 
to the high-voltage ratings may lead to a time-dependent fail-
ure of the protective layers. High-frequency performance with 
fast dV/dt and dI/dt could be limited by stray inductances and 
capacitances with possible enhanced oscillations, which may 
result in malfunctions or delay in the turn ON/OFF. Moreover, 
appropriate gate driving techniques and the reduction of par-
asitics also need to be considered in the design of diamond 
devices.

5.  Benchmark of diamond power devices

5.1.  System level benefits and challenges

P-type transistors and diodes are the most promising dia-
mond devices for future commercialization. In particular, 
the absence of high-performance p-type FETs in the existing 

Figure 21.  (a) Schottky diode and (b) PIN diode considered in the analysis. Resistance of the contact (Rcont), N+  and P+  type layers is 
neglected in this study (RN+,RP+). Doping of the N+  and P+  region is assumed to be 1020 cm−3 (i.e. the incomplete ionization of these 
layers can be neglected).
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power electronics market could open a specific opportunity 
for diamond. As an example, the co-package integration of 
diamond FETs with other FETs based on GaN, β-Ga2O3, AlN 
and 4H-SiC could represent a powerful solution for providing 
a smart IC avoiding external gate drives and thus reducing the 
parasitic inductances of external interconnections [152, 185].

However, there exist some obstacles to overcome for dia-
mond before this material can meet commercial expectations. 
Despite the fact that diamond devices would have lower total 
losses than other semiconductors, the power density losses are 
increased. Consequently, there is a higher stress on thermal 
spreader, accentuated by the higher junction temperatures of 
diamond devices. The system level benefits and challenges of 
diamond devices can be summarized as follows:

5.1.1.  Benefits.

	 •	�Reduced total semiconductor losses as a consequence of 
lower ON state losses.

	 •	�Increased switching frequency due to smaller active areas 
and very fast switching with the consequent significant 
reduction in size and weight of passive elements used in 
filters.

	 •	�Higher junction temperatures, leading to smaller and 
lighter heatsinks or moving from liquid cooling to forced 
air or even natural convection.

5.1.2.  Challenges.

	 •	�Higher power loss density, requiring efficient thermal 
spreaders and thermal interfaces (i.e. complex thermal 
management).

	 •	�Limited maximum diamond device area.
	 •	�Efficient device parallelization and system turn-on.
	 •	�Reliability and reproducible performance.

5.2.  Power converters with diamond devices  Diamond 
devices are usually small in size and therefore can conduct 

only low currents. From this perspective, parallelization 
becomes an essential technique for increasing the current 
flowing through diamond devices. Examples of diamond diode 
parallelization in a buck DC/DC converter have already been 
studied in [10] and also partially addressed in section 4.6. In 
[10], the diamond pseudo-vertical Schottky diodes were con-
nected to a common anode and had isolated cathodes. A high-
side commercially available Si MOSFET was implemented 
in the experimental setup for the double pulse test in order to 
match the requirement of current/voltage of the diodes under 
test. The presence of the Si MOSFET limited the maximum 
switching speed of the system together with the parasitics (i.e. 
capacitances and stray inductances). However, it is critical to 
have similar output capacitance between the high-side device 
(silicon transistor) and low-side device (diamond Schottky 
diodes in parallel). Coupling parallel diamond devices with 
high BV (>100 V or  >1 kV) and a very low current capability 
(<1 mA) on the high side with other power devices made of 
silicon, SiC or GaN on the low side, while maintaining similar 
output capacitance is very challenging. In [60], a high switch-
ing speed was observed (tens of V/ns) with reduced oscilla-
tions mainly due to the low value of the switching current and 
significantly high ON state resistances. Such a parallelization 
of diamond devices was also analyzed for an interleaved con-
figuration, which eased the increase of switching frequency 
with benefits related to the output filter design and control 
bandwidth (figure 20). The interference between the diamond 
diodes integrated on the same chip highlighted the importance 
of device isolation.

The interleaved setup may represent a promising configu-
ration for the next generation of diamond converters with 
the on-chip integration of parallel p-type FETs on the same 
substrate. Besides, an asynchronous DC/DC buck converter 
could benefit from the addition of a diamond p-channel FET 
due to the simplified gate driving technique (for the high-side 
switch). However, unbalances between the different devices 
may impact negatively on the overall speed and current of 

Figure 22.  Power density versus ambipolar lifetime for PIN diode plotted with formula (18). For the plot, it has been assumed a 
BV  =  10 kV, constant JF of 500 A cm−2 and (a) f   =  20 kHz and (b) f   =  100 kHz.
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the final converter, as already pointed out for diamond SBDs 
(section 4.5).

Bridge converters with an integrated diamond solution 
would ideally require n-type FETs to simplify the gate driving 
technique. Nonetheless, a smart on-chip integration of a gate 
driver for the low-side p-type diamond FETs could partially 
solve the issue arising from the absence of n-type diamond 
FETs. Finally, isolated p-type diamond converters made with 
only p-type FETs and diodes could offer a different solution 
to tackle the gate driving ‘issues of bridge configurations and 
other converters’ typologies.

5.3.  Unipolar versus bipolar diamond diodes

With many factors impacting on the electro-thermal perfor-
mance and different physical mechanisms involved in the 
electron–hole current transport, the optimal choice between 
unipolar and bipolar devices for power electronics applications 
needs to be carefully made [186, 187]. One of the most accu-
rate approaches to follow is the one described by Morisette et al 
[186] for SiC diodes. This optimization is principally based on 
maximizing the available current density at a fixed BV and 
switching frequency (f). If one assumes that the package and 
cooling system cost between the two devices can be assumed 
identical, the only significant difference in cost is associated 
with the die. Therefore, higher current densities will allow for a 
reduced die area and lower cost for that specific device.

In the analysis presented in this paragraph, a simple 
inductive load switching circuit is considered and the energy 

dissipated by the main switch (an FET such as a MOSFET/ 
insulated gate bipolar transistor (IGBT)) is assumed to be 
directly based on the charge stored in the diode.

Under these assumptions, the static (Pstatic) and dynamic 
(Pdynamic) power density components for a power diode can be 
written as shown in equations (11) and (12) [74]:

Pstatic = JFVFδ + JRVR (1 − δ) ,� (11)

Pdynamic = f (Eon + Eoff) ,� (12)

where JF is the current density in the ON state, VF is the for-
ward voltage drop, δ is the duty cycle (assumed equal to 0.5 in 
this study), JR is the reverse current density, VR is the reverse 
voltage (assumed equal to the BV in this simplified analysis), 
f  is the switching frequency, and Eon and Eoff are the ener-
gies loss densities by the diode during the turn ON and turn 
OFF transient of the diode. In addition, VF can be expressed as 
the sum of the built-in voltage (Vbi) and the specific ON state 
resistance of the diode (RP) multiplied by the forward current 
density for the PIN diode. In the formula of equation (13), the 
built-in voltage (Vbi) is a function of the band gap (EG), the 
impurity concentration of the P, P+  and N+  type layers, the 
density of states in the valence and conduction band and the 
operating temperature [34]. A different (but similar) expres-
sion holds for SBDs, as shown in equation (14) [34, 96]. In 
(14), η is the ideality factor of the diode (here assumed equal 
to 1), Vbn is the barrier height and A* the Richardson constant 
(assumed equal to 88 A (cm2 K2)−1 from the matching with 
experimental diamond SBDs [96, 97]).

Figure 23.  Frequency versus reverse voltage domain for two different operating junction temperatures (T  =  300 K (a), 450 K (b). Areas in 
green are the ones where the SBD is a better choice than the PIN diode due to the higher current density.

Table 11.  Device parameters used for the 10 kV comparison.

10 kV
Drift region 
thickness (µm) Drift region doping

Max. electric 
field (MV cm−1) Ron_spec (450 K) Ron_spec (500 K)

Bulk diamond p-type 47 2.7  ×  1015 cm−3 4 63.7 mΩ · cm2 60.8 mΩ · cm2

Bulk GaN on GaN n-type 90.5 1.1  ×  1015 cm−3 2 114 mΩ · cm2 206 mΩ · cm2

4H SiC n-type 90 1.2  ×  1015 cm−3 2 133 mΩ · cm2 171 mΩ · cm2
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Table 12.  Comparative case study between GaN on GaN and bulk diamond for the same specifications.

6 kV (BV 10 kV) 10 A 0.5 duty cycle—20 kHz Diamond GaN Diamond GaN Diamond GaN

Junction temperature K 500 500 450 450 400 400
Optimal area cm2 0.22 0.435 0.225 0.325 0.24 0.305
Conduction loss W ≈14 ≈23.6 ≈14 ≈17.6 ≈15.5 ≈16.9
Switching loss W ≈14 ≈23.7 ≈14 ≈17.7 ≈15.5 ≈16.6
Total loss W 28 47.37 28.6 35.3 30.96 33.49
Current density A cm−2 45.5 23 44.4 30.8 41.7 32.8
Power loss density W cm−2 127 108.9 127 108.6 129 110
Heatsink volume cm3 70 118.4 95.4 117.7 154.8 167.5

Figure 24.  Semiconductor total losses as a function of active area for bulk diamond and GaN for the 10 kV target. (a) 400 K. (b) 450 K. 
Total losses (solid lines) originate from ON state (dashed) and switching losses (dotted).

Figure 25.  Semiconductor total losses as a function of active area for bulk diamond and 4H-SiC for the 10 kV target. (a) 400 K. (b) 450 K. 
Total losses (solid lines) originate from ON state (dashed) and switching losses (dotted).
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VF(PIN) = JFRP(PIN) + Vbi(T , NA0, ND0),� (13)

VF(SBD) = JFRP(SBD) + ηVbn(T , NA0, ND0)

+
ηkT

q
ln

Å
JF

A∗T2

ã
= JFRP(SBD) + Vbi(SBD).

� (14)
Regarding the specific ON state resistance of the p region 
for the SBD (figure 21(a)), the absence of minority carriers 
results in the expression (15)—where p  is the active carrier 
concentration calculated by means of the incomplete ioniz
ation model and d(SBD) is the optimal punch-through thick-
ness as in [171].

Rp(SBD) =
d(SBD)

qpup
.� (15)

Regarding the bipolar PIN diode (figure 21(b)), the specific 
ON state resistance can be expressed as in (16):

Rp(PIN) =
d(PIN)

qpup +
(up+un)JFτ

d(PIN)

,� (16)

where d(PIN) is the optimum drift layer thickness and τ  is the 
ambipolar lifetime.

Unlike in the SBD, the best set of coefficients (d(PIN), 
NA0) cannot be obtained with a closed form optimization, and 
an iterative technique by means of TCAD simulations is there-
fore needed. For the purpose of this study, d(PIN) has been 
calculated by solving the ionization integral with the coeffi-
cients from [188, 189] and extracting the minimum thickness, 
which gives a specific BV for a fixed dopant concentration 
(NA0) of 5  ×  1014 cm−3. This choice of the dopant concentra-
tion has been carried out to allow a good level of conductivity 
modulation in the p-type layer.

With the previous assumptions in mind, the charge density 
stored in the PIN diode (Qs) can be expressed as the product JF 
* τ  and the energy density associated with the reverse recovery 
of the PIN diode during the turn OFF can be expressed by (17):

Eoff(PIN) = τJFVR.� (17)

For the purpose of this study, Eon, which is the energy dis-
sipated by the diode during its turn ON, has been neglected 
for both the Schottky and PIN diode. Furthermore, the Eoff 
component of the diamond SBD has been neglected, as no 
significant stored charge needs to be removed from the p-type 
layer, which is only composed of majority carriers (holes in 
this specific example). Nonetheless, high switching frequen-
cies (>100 kHz) could have an impact on the dynamic power 
dissipations with the flow of the displacement current in the 
diode. This component (Pdisp) has been taken into account 
for both devices, as shown in equation  (18) where ε is the 
dielectric permittivity of diamond, which has been assumed 
frequency independent.

Pdisp =
f
3

…
εqNA0

2
(VF + VR)

3
2 .� (18)

Bearing in mind all the previous assumptions, the total power 
dissipation (static and dynamic) for both devices can be 
expressed as in (19) and (20):

P(SBD) =(JFVbi (SBD) + J2
FRp(SBD)) δ

+ JRVR (1 − δ) + Pdisp (SBD) ,
�

(19)

P(PIN) =(JFVbi (PIN) + J2
FRp(PIN)) δ

+ JRVR (1 − δ) + f τJFVR + Pdisp (PIN) .
� (20)

For the purpose of this study, the component JR has been 
neglected in both formulas.

In detail, for the PIN diode, JR is mainly due to the ther-
mal generation-recombination process and can be ignored 
if one assumes a good quality of the material (low leakage 
current due to dislocations and defects). Regarding the SBD, 
such a component of the leakage current needs to be care-
fully considered as it can be significant for high electric field 
due to the thermionic field-emission process. For the purpose 
of this study, the maximum level of the leakage current for 
SBD has been fixed at 1 µA cm−2 and the optimal Vbn has 
been extracted using the procedure illustrated in [96] at dif-
ferent operating temperatures. The optimal Vbn allows us to 
minimize the ON state voltage drop and at the same time to 
maintain the desired leakage current density value for a spe-
cific reverse voltage.

Moreover, the ambipolar lifetime value τ  has been optim
ized in order to minimize the power density expressed in (18) 
by setting the first derivative of P(PIN) equal to zero (figure 22).  
The optimal value of the lifetime (τ _opt) emerges from 
the trade-off between the static power dissipation, which is 
reduced for high values of lifetime thanks to the conductivity 
modulation effect and the increased dynamic power dissipa-
tion, which increases for larger stored charge (Qs).

Once the set of optimal parameters has been extracted, the 
procedure can be concluded by fixing a value for the maxi-
mum power density and by maximizing the JF for each device 
by using formulas (17) and (18). The value of the maximum 
allowable power density typically depends upon the package 
capability (especially on the thermal spreader design) and it 
oscillates between 50–300W cm−2 for commercial devices. In 
this section, this value has been chosen to be 500 W cm−2, a 
value which is justified by the increased thermal capability of 
diamond devices.

At RT and for low BV (<4 kV), the current density for 
SBDs is higher than PIN diode and the SBD is the preferred 
device for the whole range of frequencies (figure 23). As 
the BV increases, the ‘optimized’ conductivity modulation 
occurring in the PIN diode allows for reduced power losses. 
For ultra-high BV (>20 kV) and for switching frequen-
cies  >10 kHz, the SBD again becomes superior to the PIN 
diode. At higher junction temperature (T  =  450 K) the trade-
off between the two devices is modified due to the depend
ence of the leakage current upon the temperature, carrier 
activation, carrier mobility, density of states, etc, which mod-
ify the set of optimal parameters for the analysis. The volt
age versus frequency area in which the SBD displays higher 
current density compared to the SBD is widened and the PIN 
diode becomes a better choice only for reverse voltage  >7 kV 
and f   <  10 kHz.
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5.4.  Benchmarking of diamond devices against 4H-SiC and 
GaN

In this section, a comparison between the Ron_spec, total semi-
conductor losses, junction temperature, heatsink volume, 
semiconductor active area, current density and power loss 
density of bulk diamond devices against GaN on GaN and 
4H-SiC power devices is provided. In this comparative analy-
sis, only unipolar devices will be considered. Above 3 and at 
10 kV in particular, vertical GaN devices on bulk GaN sub-
strates will be considered for this study. 4H-SiC vertical bulk 
devices, already demonstrated to withstand up to 27 kV [190], 
will be considered in this analysis.

The models and basic assumptions for diamond devices 
are based on those used in the previous sections, includ-
ing incomplete ionization, simplified switching loss model, 
NPT vertical drift region, doping and temperature-dependent 
mobility, impact ionization coefficients for BV. The para-
sitic Coss and the ON state resistance are assumed to be due  
only to the drift region. For the heatsink volume, natural 
convection is considered with a volumetric resistance of 
500 cm3 K W−1 [191].

This value typically overestimates the heatsink volume, 
whereas forced air solutions can reduce the heatsink volume 
by a factor of 5–10. However, this assumption will allow a 
quantitative benchmark on diamond devices versus other 
materials. The ambient temperature will be set to 300 K 
(tables 12 and 13).

For a 10 kV BV, the drift region of bulk diamond, bulk 
GaN and 4H-SiC devices are based on the parameters shown 
in table  11. The switched voltage and current are 6 kV and  
10 A, respectively. The duty cycle is set at 0.5 and the switch-
ing frequency at 20 kHz (note that this is a very high switching 
frequency for such high-voltage power devices).

The comparison between vertical unipolar bulk diamond, 
GaN on GaN substrates and 4H-SiC is presented in tables 12 
and 13 and figures 24–27. Key elements can be highlighted.

	 •	�Even at the ‘low’ temperature of 400 K, diamond power 
devices have 29% less total losses and heatsink volume 
than GaN, requiring 22% less active area. With diamond, 
the current density is around 42 A cm−2, and the loss 
density is under 130 W cm−2 at 20 kHz, albeit 17% more 
than GaN. The analysis is similar with 4H-SiC, where 

Table 13.  Comparative case study between 4H-SiC and bulk diamond for the 10 kV comparison.

6 kV (BV 10 kV) 10 A 0.5 duty cycle—20 
kHz Diamond 4H-SiC Diamond 4H-SiC Diamond 4H-SiC

Junction temperature K 500 500 450 450 400 400
Optimal area cm2 0.22 0.38 0.225 0.335 0.24 0.29
Conduction loss W ≈14 ≈22.5 ≈14 ≈19.9 ≈15.5 ≈17.3
Switching loss W ≈14 ≈22.7 ≈14 ≈20 ≈15.5 ≈17.3
Total loss W 28 45.22 28.6 39.86 30.96 34.61
Current density  A cm−2 45.5 26.3 44.4 29.9 41.7 34.5
Power loss density  W cm−2 127 119 127 119 129 119
Heatsink volume cm3 70 113 95.4 132.9 154.8 173

Figure 26.  Spider chart comparing GaN and diamond power devices and their impact at system level.
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diamond has 11% less total losses and heatsink volume, 
with 21% more current density.

	 •	�At 450 K, diamond devices have 33% higher current den-
sity, 28% less losses and heatsink volume than 4H-SiC at 
the same temperature. Diamond devices have 7% higher 
power loss density than 4H-SiC. Compared to GaN at 
the same temperature, diamond devices have 20% higher 
current density, 19% less losses and heatsink volume.

Increased junction temperature of 500 K will allow dia-
mond devices to gain benefit from the increased dopant acti-
vation (no compensation is assumed here). At this junction 
temperature, diamond devices outperform both SiC and GaN 
at the same junction temperature. The benefits of diamond 
devices are even higher if compared with GaN and SiC oper-
ating at lower junction temperature. In detail:

	 •	�Diamond devices at 500 K would require 58% less heat-
sink volume than GaN operating at 400 K, with at least 

17% less losses and half the active area. The current 
density in diamond at 500 K is approximately 40% higher 
than GaN at 400K.

	 •	�Diamond devices at 500 K would require 40% heatsink 
volume of that of 4H-SiC devices operating at 400 K, 
with 20% less losses and 25% less active area. The cur
rent density in diamond at 500 K is 32% higher than that 
of 4H-SiC devices at 400 K.

For the 10 kV range, diamond devices are expected to have 
smaller losses, heatsink volume and active area than other 
materials. Diamond is still superior to 4H-SiC even at 400 K, 
although the gap in the performance is significantly amplified 
above 450 K.

It is also possible that the performances of diamond devices 
are still underestimated. Indeed, improvements in the crystal 
structure could result in larger critical electric fields (above 
what has currently been measured). In that case, the impact 

Figure 27.  Spider chart comparing 4H SiC and diamond power devices and their impact at system level.

Table 14.  Comparative case study between 4H-SiC, bulk GaN and bulk diamond for a 10 K temperature difference between the junction 
temperature and RT, or an ambient temperature at 400K. Please note that the unit of the heatsink volume has been modified to dm3, 
compared to the previous tables (cm3).

6 kV (BV 10 kV) 10 A 0.5 duty cycle—20 kHz Diamond GaN 4H-SiC Diamond GaN 4H-SiC

Ambient temperature K 300 300 300 400 400 400
Junction temperature K 310 310 310 410 410 410
Optimal area cm2 0.345 0.245 0.215 0.235 0.305 0.3
Conduction loss W 22 13 13 15 17 18
Switching loss W 22 13 13 15 17 18
Total loss W 44 26 25 30 34 36
Current density A cm−2 29 41 47 43 33 33
Power loss density W cm−2 128 108 119 129 110 119
Heatsink volume dm3 2.2 1.3 1.3 1.5 1.7 1.8
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ionization coefficients would need to be updated particularly 
if thick and low doping drift regions are considered for the  
10 kV+  range of rated breakdowns. To some extent, this is 
also the case for bulk GaN above 3 kV and 400 K, though it is 
less likely to see a significant difference.

In order to compare power devices at an operating temper
ature close to RT, table 14 shows the system level performances. 
Please note that industrial ambient temperatures can be as high 
as 358 K, and even up to 398 K (e.g. automotive applications). 
Hence, table 14 also shows the comparison between diamond, 
SiC and GaN, for the same 10 K difference between the junc-
tion temperature and the ambient temperature, but with an 
ambient temperature of 400 K. By comparing tables  12–14, 
one can also note the impact of lower junction temperatures on 
the heatsink volume and the total losses.

As shown in table 14, bulk diamond devices are not well 
suited for an operation at Tj  ≈  300 K. This is no longer the 
case when the ambient temperature is increased. Moreover, if 

a large temperature gradient between the junction temperature 
and RT of 300 K is desired to reduce the heatsink volume or 
to increase the current rating, then diamond has significant 
system-level benefits, as presented in tables 12 and 13.

6.  Future perspective for diamond power devices

6.1. The roadmap of diamond

The main challenges for diamond power devices can be orga-
nized into five categories: (i) material, (ii) devices, (iii) pack-
aging, (iv) reliability and (v) integration. Their current status 
and future prospective are shown in table 15.

6.1.1.  Material.  The decrease in the defects and dislocation 
density together with the enhancement of the interface qual-
ity would also enable the reduction of leakage currents (det-
rimental for HT operation) and achieve BV levels closer to 

Table 15.  Current status and challenges for diamond devices in power electronics.

Challenge Current status Breakthroughs and future prospective

Material Wafer size <1 inch >2 inches
Cost >400$ per  <1 inch wafer Dependent on the BV (see discussion below (i))
Defects High dislocation density Lower dislocation density for increasing wafer size
Interface quality Medium-high interface states and de-

fect density compared to Si devices
Optimized annealing techniques for improving the quality

Doping p-type with boron (deep acceptor 
level), lack of reliable n-type

Lower activation energy dopant species, new conduction 
mechanisms

Devices High BV and current 
FETs

~2 kV for lateral technologies >10 kV, >10 A for vertical technologies, high  
transconductance, low threshold voltage, low Ron_spec transistors

High-power p-type 
SBDs

>1 kV, >5A Improve the BV (field terminations, thick and high-quality drift 
region, etc) without affecting the ON state current  
(target  >10 kV, >10 A)

N-type FET Not available Development of techniques for low-resistive n-type layers
Leakage current –Dominated by defects Improve material quality

–Limiting factor for high BV 
Lifetime <10 ns >100 ns 
Termination Not optimized and may lead to 

TDDB
New solution for high-voltage passivation

Fast switching Limited to diodes >100 V ns−1

Novel device  
structures

N/A Super junctions, floating islands, new techniques 

Packaging HT packaging N/A Unique packaging technique for HT operation (i.e. 175 °C for 
10 kV, >200 °C for 3 kV)

Ultra-high voltage 
packaging

N/A New passivation methods, secondary passivation techniques, 
etc

Reliability Ageing No ageing tests have been conducted 
so far

Lifetime of diamond devices is still an open issue

Yield N/A Improve the repeatability and reproducibility of devices
Harsh environment Only a few tests have been  

performed
Show suitability to harsh environments with more standard 
tests

High switching N/A Resistance to high dI/dt and dV/dt
New switching model
EMI/EMC would need specific filter design

Integration Passive components N/A On-chip integrated capacitances, resistances, inductances to 
reduce parasitics

Active devices Limited to logic devices Isolated transistors and/or diodes
Integrated gate driver N/A Smart gate driving for p-type FETs would improve the switch-

ing frequency
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their theoretical predictions. The high cost of the substrate is 
another crucial aspect to take into account for the commer-
cialization of diamond power devices. Let us consider dia-
mond devices for a 1.2 kV application fabricated on a 25 cm2  
(~2.2 inches) substrate and recall the price per ampere (includ-
ing processing cost) for Si IGBT and SiC MOSFET technolo-
gies (0.11 $ A−1 and 0.65 $ A−1, respectively [192]). Assuming 
a yield of 60% and an active area that occupies 90% of the total 
die area (the remaining 10% is for the termination region), 
it is possible to estimate the equivalent cost of a diamond 

substrate in order to be competitive with Si IGBT and SiC 
MOSFET (table 16). A similar calculation has been also made 
for a ~6 kV target (the price per ampere for Si thyristor has 
been fixed at 1.5 $ A−1 [193] and 4 $ A−1 for Si IGBT [194]). 
The ON state current and current density, optimal active area, 
junction temperature and switching frequency for diamond 
devices have been taken from tables 4 and 12. Based on these 
assumptions, the equivalent cost of a 2.2 inch diamond sub-
strate for a 1.2 kV application, which is competitive with SiC 
MOSFET and Si IGBT, is calculated to be ~900 $ and ~150 $;  

Figure 28.  Schematic of a possible monolithic implementation of diamond and other WBG/UWBG semiconductors. The integration 
should result in the reduction of parasitics and better thermal performance (through the common diamond substrate). Kelvin sources have 
been added in viesw of the fast switching speed achievable by using such a configuration.

Table 16.  Equivalent cost for 2.2 inch diamond substrate for different application. The suggested (equivalent) diamond device is able to 
switch the target voltage for a 0.5 duty cycle at f   =  20 kHz.

hp: 0.5 duty cycle 
f   =  20 kHz Diamond, T  =  450 K, 1.2 kV Diamond, T  =  500 K, 6 kV

ON state current (A) 50 250 10 22
ON state current  
density (A cm−2)

200 1000 45 100

Active area (cm2) 0.25 0.25 0.22 0.22
Die area (cm2) 0.28 0.28 0.24 0.24
Wafer size (cm2) 25 25 25 25
Yield 0.6 0.6 0.6 0.6
Total number of dies 90 90 102 102
Number of good dies 54 54 61 61
Gross margin 50% 50% 50% 50%
Comparison SiC MOSFET Si IGBT SiC MOSFET Si IGBT Si thyristor Si IGBT Si thyristor Si IGBT
Cost per chip ($) 16.25 2.75 81.25 13.75 5 20 11 44
Price per chip ($) 32.5 5.5 162.5 27.5 10 40 22 88
Cost per ampere ($) 
(FIXED)

0.65 0.11 0.65 0.11 1.5 4 1.5 4

Cost of diamond 2.2 
inch substrate ($)

877.5 148.5 4387.5 742.5 458 1220 1006 2684
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for 6 kV the substrate cost needs to be ~450 $ in order to be 
competitive with Si thyristor or ~1200 $ compared to the Si-
IGBT. Nonetheless, it is worth mentioning that Si thyristor is 
more suited to ultra-low switching frequency (<1 kHz) and 
the comparison with Si-IGBT is more appropriate for higher 
switching frequency. Higher current densities allowed by, as 
an example, increased junction temperature, reduced ioniz
ation energy or a higher loss density will allow us to increase 
the equivalent cost of a diamond device (up to ~4400 $ to still 
be competitive with SiC for 1.7 kV BV). Consequently, the 
reduction of the specific ON state resistance more than the 
decrease of the total cost and the increase of the total area of 
each diamond wafer, appears to be the best strategy to enable 
the commercialization of diamond.

6.1.2.  Devices.  Technological progress in the wafer and pro-
cessing quality will also have to focus on four key aspects 
related to device technology and performance: (a) the devel-
opment of vertical devices and novel structures, (b) carrier 
lifetime control, (c) device termination optimization, which 
could benefit from the fabrication of multi-layer passivation 
based on high-k materials, and (d) enhanced slew rate. In addi-
tion, the demonstration of a high-current diamond p-type FET 
and high-current high-voltage n-type FET would also lead to 
the smart integration of key components, such as protection, 
drive and possibly RLC passives within the same chip. Verti-
cal HFETs and depletion mode FETs seem the most promis-
ing solution for high current–voltage p-type devices.

6.1.3.  Packaging.  Packaging of diamond devices is an area 
where significant development will be required in particular 
to accommodate the very high slew rates or the operation in 
harsh environment applications. It is therefore apparent that a 
unique packaging technique, not compatible with those avail-
able for other WBG materials, needs to be proposed.

6.1.4.  Reliability.  As a further step towards commercializa-
tion, diamond devices will need to pass reliability tests, which 
can guarantee the device performance over a specified time 
period and give an estimation of device lifetime in standard 
and harsh environment conditions. It is very likely that as the 
development of diamond-based devices progresses, dedicated 
standards and reliability tests will be defined for diamond.

6.1.5.  Integration.  Wafer integration of parasitic and smart 
gate driving circuits will enable low-volume diamond convert-
ers and improve dV/dt and the dI/dt for the packaged devices. 
The smart integration of diamond and other WBG/UWBG 
semiconductors (figure 28) could represent one of the possible 
applications of diamond p-type FETs in a monolithic high-
speed converter.

6.2.  Conclusions

The remarkable advantages of diamond for power electronics 
have been accompanied by drawbacks and limiting factors. 
While some of the challenges, which for years have hampered 

the development of this material have been addressed, other 
questions still remain unanswered. With the principal aim of 
reviewing the diamond technology and modelling the most 
promising devices, this topical review has provided a new thor-
ough overview of the current state-of-the-art and future trends. 
Significant effort, especially in the last decade, has resulted in 
a class of new diamond power devices, which have the poten-
tial to find their place in the diverse power electronics market 
in the future. The comprehensive analysis conducted in this 
paper has however demonstrated that the superior potential of 
diamond is mainly restricted for high junction temperatures 
(>450 K), medium-high frequency (>20 kHz) and high-volt
age (>3 kV) applications when compared to 4H-SiC and GaN 
commercial alternatives. Besides, the results illustrated in this 
work have pointed out the significant thermal management 
issues that need to be addressed to allow for the efficient par-
allelization of multiple diamond devices with an NTC.
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