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ABSTRACT. In this paper, we study the linear systems | —mK x| on Fano varieties X with
klt singularities. In a given dimension d, we prove | — mKx| is non-empty and contains
an element with “good singularities” for some natural number m depending only on d;
if in addition X is e-lc for some € > 0, then we show that we can choose m depending
only on d and € so that | — mK x| defines a birational map. Further, we prove Shokurov’s
conjecture on boundedness of complements, and show that certain classes of Fano varieties
form bounded families.
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1. Introduction

We work over an algebraically closed field of characteristic zero. Given a smooth projec-
tive variety W, the minimal model program predicts that W is birational to a projective
variety Y with canonical singularities such that either Ky is ample, or Y admits a fibra-
tion whose general fibres X are Calabi-Yau varieties or Fano varieties (here we consider
Calabi-Yau varieties in a weak sense, that is, by requiring Kx = 0 without the vanishing
hi(X,0x) = 0for 0 < i < dim X which is assumed in some other contexts). In other words,
one may say that, birationally, every variety is in some sense constructed from varieties X
with good singularities such that either Ky is ample or numerically trivial or anti-ample.
So it is quite natural to study such special varieties with the hope of obtaining some sort of
classification theory. They are also very interesting in moduli theory, differential geometry,
arithmetic geometry, and mathematical physics.

When X is one-dimensional the linear system |K x| determines its geometry to a large
extent. However, in higher dimension, one needs to study [mKx| or | —mKx]| for all m € N
(depending on the type of X) in order to investigate the geometry of X. If Ky is ample,
then there is m depending only on the dimension such that [mK x| defines a birational em-
bedding into some projective space, by Hacon-M°Kernan [15] and Takayama [45]. If Kx is
numerically trivial, there is m such that |mK x| is non-empty but it is not clear whether we
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can choose m depending only on the dimension. When K x is anti-ample, that is when X is
Fano, in this paper we study boundedness and singularity properties of the linear systems
| —mK x| in a quite general setting in conjunction with Shokurov’s theory of complements.

Effective non-vanishing. Our first result is a consequence of boundedness of complements
(1.7 below). We state it separately because it involves little technicalities.

Theorem 1.1. Let d be a natural number. Then there is a natural number m depending
only on d such that if X is any Fano variety of dimension d with kit singularities, then the
linear system | —mKx/| is non-empty, that is, h°(—mKx) # 0. Moreover, the linear system
contains a diwvisor M such that (X, %M) has lc singularities.

Obviously the statement also holds if we replace Fano with the more general notion of
weak Fano, that is, if —Kx is nef and big. The theorem was proved by Shokurov in dimen-
sion two [42].

Effective birationality for e-Ic Fano varieties. If we bound the singularities of X, we
then have a much stronger statement than the non-vanishing of 1.1.

Theorem 1.2. Let d be a natural number and ¢ > 0 a real number. Then there is a
natural number m depending only on d and € such that if X is any e-lc weak Fano variety
of dimension d, then | — mKx| defines a birational map.

Note that m indeed depends on d as well as € because the theorem implies the volume
vol(—Kx) is bounded from below by #. Without the e-lc assumption, vol(—Kx) can get
arbitrarily small or large [17, Example 2.1.1]. In dimension 2, the theorem is a consequence
of Alexeev [3], and in dimension 3, special cases are proved by Jiang [22] using different
methods. Paolo Cascini informed us that he and James M¢Kernan have independently
proved the theorem for canonical singularities, that is when ¢ = 1, using quite different

methods.

Boundedness of certain classes of Fano varieties. Fano varieties come in two flavours:
non-exceptional and exceptional. A Fano variety X is non-exceptional if there is 0 < P ~q
— K x such that (X, P) is not klt. Otherwise we say X is exceptional. In the non-exceptional
case we can create non-klt centres which sometimes can be used to do induction, i.e. lift
sections and complements from such centres (eg, see 6.8 below). We do not have that luxury
in the exceptional case. Instead we show that there is a “limited number” of them, that is:

Theorem 1.3. Let d be a natural number. Then the set of exceptional weak Fano varieties
of dimension d forms a bounded family.

Exceptional pairs and exceptional generalised polarised pairs can be defined similarly.
We will extend 1.3 to such pairs (see 1.11 below) which is important for our proofs. In a
different direction we have:

Theorem 1.4. Let d be a natural number, and € and & be positive real numbers. Consider
projective varieties X equipped with a boundary B such that:

e (X, B) is e-lc of dimension d,

e B isbigand Kx + B ~r 0, and

e the coefficients of B are more than or equal to 6.

Then the set of such X forms a bounded family.
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Note that B is not necessarily R-Cartier. Bigness means B ~gr H + D where H is an
ample R-divisor and D is an effective R-divisor.

Hacon and Xu proved the theorem assuming the coefficients of B belong to a fixed DCC
set of rational numbers [19, Theorem 1.3] relying on the special case when —Kx is ample
[17, Corollary 1.7]. The theorem can be viewed as a special case of the following conjecture
due to Alexeev and the Borisov brothers.

Conjecture 1.5 (BAB). Let d be a natural number and € a positive real number. Then
the set of e-lc Fano varieties X of dimension d forms a bounded family.

The conjecture is often stated in the log case for pairs (X, B) but it is not hard to
reduce it to the above version. Using the results and ideas developed in this paper the
conjecture is proved in the sequel [5]. The conjecture was previously known in dimension
two [3], for smooth X [34], for toric X [11], for threefolds of Picard number one and
terminal singularities [27], for threefolds with canonical singularities [35], in dimension three
with Kx having bounded Cartier index [10], in any dimension with Kx having bounded
Cartier index [17, Corollary 1.8], for spherical varieties [4], and the case [17, Corollary 1.7]
mentioned above.

Next we show 1.5 in lower dimension implies a weak form of 1.5, more precisely:

Theorem 1.6. Let d be a natural number and € a positive real number. Assume Conjecture
1.5 holds in dimension d — 1. Then there is a number v depending only on d and € such
that if X is an e-lc weak Fano variety of dimension d, then vol(—Kx) < wv. In particular,
such X are birationally bounded.

In dimension 3, the boundedness of vol(—Kx) was proved by Lai [37] for X of Picard
number one and by Jiang [23] in general who also proves the birational boundedness of X in
[22] using different methods. Theorem 1.6 gives new proofs of their results since Conjecture
1.5 is known in dimension 2. The theorem is one of the crucial inductive steps of the proof
of 1.5 in [5].

Boundedness of complements. Shokurov introduced the theory of complements while
investigating threefold log flips [43, §5]. The theory originates from his earlier work on
anticanonical systems on Fano threefolds [44]. The notion of complement involves both
boundedness and singularities of the linear systems | — mKx|. It is actually defined in the
more general setting of pairs. See 2.18 for relevant definitions.

The following theorem was conjectured by Shokurov [42, Conjecture 1.3] who proved it
in dimension 2 [42, Theorem 1.4] (see also [39, Corollary 1.8], and [43] for some cases).

Theorem 1.7. Let d be a natural number and R C [0, 1] be a finite set of rational numbers.
Then there exists a natural number n depending only on d and R satisfying the following.
Assume (X, B) is a projective pair such that

(X, B) is lc of dimension d,

B € ®(R), that is, the coefficients of B are in ®(R),

X is of Fano type, and

—(Kx + B) is nef.

Then there is an n-complement Kx + BT of Kx + B such that BT > B. Moreover, the
complement is also an mn-complement for any m € N.

Here Fano type means (X, G) is klt and —(Kx + G) is ample for some boundary G, and
®(MR) is the set of numbers of the form 1 — 7 with » € 9% and [ € N. Note that the theorem
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in particular says that
—n(Kx + B) ~n(B*t — B) >0,
hence the linear system | — n(Kx + B)| is not empty.

Prokhorov and Shokurov [40][39] prove various inductive statements regarding comple-
ments. They [39, Theorem 1.4] also show that 1.7 follows from two conjectures in the same
dimension: the BAB conjecture (1.5 above) and the adjunction conjecture for fibre spaces
[39, Conjectue 7.13]. In dimension 3, one only needs the BAB [39, Corollary 1.7], and this
also can be dropped if in addition we assume (X, B) is non-exceptional. In this paper we
replace the BAB with its special cases 1.3 and 1.4, and we replace the adjunction conjecture
with the theory of generalised polarised pairs developed in [9]. See [41] for Shokurov’s work
on adjunction.

It is expected that Theorem 1.7 holds for more general boundary coefficients. However,
this is not well-understood even in dimension 2.

Boundedness of complements in the relative setting. Complements are also defined in
the relative setting (see 2.18) for a given contraction f: X — Z, that is, a projective mor-
phism with f,Ox = Ogz. In particular, when X — Z is the identity morphism, boundedness
of complements is simply a local statement about singularities near a point on X.

Theorem 1.8. Let d be a natural number and R C [0, 1] be a finite set of rational numbers.
Then there ezists a natural number n depending only on d and R satisfying the following.
Assume (X, B) is a pair and X — Z is a contraction such that

e (X, B) is lc of dimension d and dim Z > 0,
e B e ®(R),

e X is of Fano type over Z, and

o —(Kx + B) is nef over Z.

Then for any point z € Z, there is an n-complement Kx + B+ of Kx + B over z such that
BT > B. Moreover, the complement is also an mn-complement for any m € N.

The theorem was proved by Shokurov [42] in dimension 2, and by Prokhorov and
Shokurov [40] in dimension 3. They also essentially show that 1.8 in dimension d follows
from 1.7 in dimension d — 1 [40, Theorem 3.1].

In the local situation, Theorem 1.8 implies a boundedness result about singularities.

Corollary 1.9. Let d be a natural number and R C [0, 1] be a finite set of rational numbers.
Then there exists a natural number n depending only on d and R satisfying the following.
Assume (X, B) is a pair and V C X is a subvariety such that

e (X, B) is lc of dimension d,

e B e ®(R),

e V is a non-kit centre of (X, B), and

e (X,A) is kit near the generic point of V' for some A.

Then n(Kx + B) is Cartier near the generic point of V.
Note that existence of A is equivalent to saying that X is of Fano type over itself perhaps

after shrinking it around the generic point of V.

Boundedness of complements for generalised polarised pairs. We prove boundedness
of complements in the even more general setting of generalised polarised pairs. This is of
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independent interest but also fundamental to our proofs. It gives enough flexibility to apply
induction on dimension, unlike Theorem 1.7. For the relevant definitions, see 2.13 and 2.18.

Theorem 1.10. Let d and p be natural numbers and R C [0,1] be a finite set of rational
numbers. Then there exists a natural number n depending only on d,p, and R satisfying
the following. Assume (X', B’ + M') is a projective generalised polarised pair with data
¢: X — X' and M such that

(X', B' + M) is generalised lc of dimension d,

B’ € ®(R) and pM s b-Cartier,

X' is of Fano type, and

—(Kx' + B + M’) is nef.

Then there is an n-complement Kx + B'" + M’ of Kx' + B + M’ such that B'" > B'.
Moreover, the complement is also an mn-complement for any m € N.

Here pM being b-Cartier simply means that its pullback to some resolution of X is
Cartier. Generalised polarised pairs behave similar to usual pairs in many ways. For exam-
ple also see the effective birationality results for polarised pairs of general type established
in [9].

Boundedness of exceptional pairs. As mentioned earlier, in order to carry out our
inductive arguments we need boundedness of exceptional pairs as in the next result.

Theorem 1.11. Let d and p be natural numbers and R C [0,1] be a finite set of rational

numbers. Consider the pairs (X', B'+ M) as in Theorem 1.10 which are exceptional. Then
the set of the (X', B') is log bounded.

Structure of the paper. We outline the organisation of the paper. In Section 2, we
gather some of the tools used in the paper, and prove certain basic results. In Section 3, we
discuss various types of adjunction, recall some known results, and prove some new results
(eg, 3.12, 3.15) crucial for later sections. In Section 4, we prove 1.2 under some additional
assumptions (4.9, 4.11). In Section 5, we prove 1.4. In Section 6, we develop the theory
of complements for generalised polarised pairs, and prove various inductive statements (eg,
6.5, 6.8), and discuss behaviour of boundary coefficients under adjunction for fibre spaces
(6.3). In Section 7, we study exceptional pairs and treat 1.3 and 1.11 inductively (eg, 7.2,
7.5,7.9, 7.15), and give a criterion for a family of Fano varieties to be bounded (7.13) which
is also a crucial ingredient of the proof of 1.5 in [5]. In Section 8, we discuss complements
in the relative setting (8.2). In Section 9, we prove 1.6. Finally, in Section 10, we give the
proofs of all the main results except those proved earlier. It is worth mentioning that some
of the results stated for varieties only can be easily extended to the log case (eg, 1.2, 1.6)
but for simplicity we treat the non-log case only.

Sketch of some proofs. The main tools used in this paper are the minimal model
program [36][8], the theory of complements [40][39][42], creating families of non-klt centres
using volumes [17][18][31, §6], and the theory of generalised polarised pairs [9]. We give a
brief account of some of the ideas of the proof of boundedness of complements (Theorem
1.7) and effective birationality (Theorem 1.2).

We start with boundedness of complements (Theorem 1.7). Pick a sufficiently small
e € (0,1). If (X, B) is non-exceptional, then we can modify it and assume it is not klt. On
the other hand, if (X, B) is exceptional, then we can bound its singularities, hence assume
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it is e-lc perhaps after decreasing e¢. Define © to be the same as B except that we replace
each coefficient in (1 —¢,1) with 1. Run an MMP on —(Kx +©) and let X’ be the resulting
model and © be the pushdown of ©. Since X is of Fano type, we can run MMP on any
divisor on X.

As a consequence of local and global ACC [17, Theorems 1.1 and 1.5] (in practice we
need their generalisations to generalised pairs [9, Theorems 1.5 and 1.6]), we can show that
the MMP does not contract any component of |0, (X’,0') is lc, and —(Kxs + ©’) is nef
(2.50). It is enough to construct a bounded complement for Ky + ©’. Replacing (X, B)
with (X’,©") and making further modifications, we can assume that the coefficients of B
belong to R and that one of the following cases occurs:

(1) —(Kx + B) is nef and big, and B has a component S with coefficient 1 which is of
Fano type, or
(2) Kx + B =0 along a fibration f: X — T, or
(3) (X, B) is exceptional.
These cases require very different inductive treatments.

Case (1): First apply divisorial adjunction to define Kg + Bs = (Kx + B)|s. The
coefficients of Bg happen to be in ®(&) for some fixed finite set & of rational numbers. By
induction on dimension Kg+ Bg has an n-complement for some bounded n. The idea then
is to lift the complement to X using vanishing theorems. In the simplest case when (X, B)
is log smooth and B = S, we look at the exact sequence

H(—n(Kx + B)) = H°(—n(Kx + B)|s) = H'(—n(Kx + B) — §) =0
where the vanishing follows from the Kawamata-Viehweg vanishing theorem noting that
—n(Kx+B)—S=Kx —n(Kx+B)—(Kx+B)=Kx —(n+1)(Kx + B).

Since K g+ Bg has an n-complement, the middle space in the above sequence is non-trivial
which implies the left hand side is also non-trivial by lifting the section corresponding to the
complement. One then argues that the lifted section gives an n-complement for Kx + B.

Case (2): Apply the canonical bundle formula (also called adjunction for fibre spaces) to
write

Kx + B ~q f*(Kr + Br + Mr)

where Brp is the discriminant divisor and M7 is the moduli divisor. It turns out that the
coefficients of By are in ®(&) for some fixed finite set & of rational numbers, and that
pMr is integral for some bounded number p € N. Now we want to find a complement for
K7 + Br+ My and pull it back to X. There is a serious issue here: (T, By + Mr) is not a
pair but it is a generalised polarised pair. Thus we actually need to construct complements
in the more general setting of generalised polarised pairs. This makes life a lot more difficult
but fortunately everything turns out to work. Once we have a bounded complement for
Kp + By + My we pull it back to get a bounded complement for Kx + B.

Case (3): For simplicity assume B = 0 and that X is a Fano variety. If we can show
X belongs to a bounded family, then we would be done. Actually we need something
weaker: effective birationality. Assume we have already proved Theorem 1.2. Then there
is a bounded number m € N such that | — mKx| defines a birational map. Pick M €
| —mKx| and let BT = L M. Since X is exceptional, (X, B") is automatically klt, hence
Kx+ B is an m-complement. Although this gives some idea of how one may get a bounded
complement but in practice we cannot give a complete proof of Theorem 1.2 before proving
1.7. The two theorems are actually proved together. Moreover, since we need to construct
complements for generalised polarised pairs, treating the exceptional case in that setting is
much harder.
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Now we give a brief sketch of the proof of the effective birationality theorem (1.2). Let
m € N be the smallest number such that | — mK x| defines a birational map, and let n € N
be a number such that vol(—nKx) > (2d)?. Initially we take n to be the smallest such
number but we will modify it during the proof. We want to show that m is bounded from
above. The idea is first to show that 7* is bounded from above, and then at the end show
that m is bounded.

Applying a standard technique we can create a covering family G of subvarieties of X such
that if z,y € X are any pair of general closed points, then there is 0 < A ~g —(n + 1)K x
and G € G such that (X, A) is lc at  with the unique non-klt centre G' containing x, and
(X,A) is not klt at y.

Assume dim G = 0 for all G. Then G = {x} is an isolated non-klt centre. Using multiplier
ideal sheaves and vanishing theorems we can lift sections from G and show that | — nKx]|
defines a birational map after replacing n with a bounded multiple, hence in particular 7=
is bounded from above in this case.

Now lets assume all G have positive dimension. If vol(—mKx|g) is too large, then
using some elementary arguments, we can replace n and create a new non-klt centre G’
containing z but with dim G’ < dim G. Thus we can replace G with G’ and apply induction
on dimension of G. We can then assume vol(—mKx|g) is bounded from above.

Similar to the previous paragraph, we can cut G and decrease its dimension if vol(—nKx|q)
is bounded from below. Showing this lower boundedness is the hard part. Although G is
not necessarily a divisor and although the singularities of (X, A) away from = maybe quite
bad but still there is a kind of adjunction formula, that is, if F' is the normalisation of G,
then we can write

(Kx—i-A)’F N@KF+@F—|—PF

where O is a divisor with coefficients in a fixed DCC set ¥ C [0, 1] depending only on d,
and Pp is pseudo-effective. Replacing n with 2n and adding to A we can easily make Pp
big and effective.

Now we would ideally want to apply induction on d but the difficulty is that F' may
not be Fano, in fact, it can be any type of variety. Another issue is that the singularities
of (F,©p + Pr) can be pretty bad. To overcome these difficulties we use the fact that
vol(—mKx|q) is bounded from above. From this boundedness one can deduce that there is
a bounded projective log smooth pair (F, ¥7) and a birational map F --» F such that XF
is reduced containing the exceptional divisor of F --» F and the support of the birational
transform of O (and other relevant divisors).

Surprisingly, the worse the singularities of (F,©®r + Pr) the better because we can then
produce divisors on F with bounded “degree” but with arbitrarily small lc thresholds which
would contradict a result about singularities (4.2). Indeed assume (F,©p + Pr) is not klt.
A careful study of the above adjunction formula allows to write K + Ap := Kx|r where
Ap < Op and (F,Ap) is sub-e-lc. Put Ip = Op + Pr — Ap. Then

Ir=Kp+Op+Pr—Kp—Ap ~q (Kx+A)|r—Kx|r=A|p~qp—(n+1)Kx|p.

Moreover, Kr + Ap + I is ample.
Let ¢: F' — F and : F' — F be a common resolution. Pull back K + Ap + I to F'
and then push it down to I and write it as K7+ A4+ I Then the above ampleness gives

¢"(Kp + Ap 4+ Ip) <Y"(Ks+ Ay + I3)

which implies that (F, A+ Iz) is not sub-klt. From this one deduces that (F,I'z + I#)
is not klt where I'; = (1 — €)X%. Finally, one argues that the degree of I gets arbitrarily
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small if vol(—nKx|a) gets arbitrarily small, and this contradicts the result on singularities
mentioned above.

If singularities of (F, ® p+ Pp) are good, then we again face some serious difficulties. Very
roughly, in this case, we lift sections from F to X (3.15) and use this section to modify
A so that (F,©p + Pr) has bad singularities, hence we reduce the problem to the above
arguments. This shows 7+ is bounded.

Finally, we still need to bound m. This can be done by arguing that vol(—mKyx) is
bounded from above and use this to show X is birationally bounded, and then work on the

bounded model.
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2. Preliminaries

All the varieties in this paper are quasi-projective over a fixed algebraically closed field
of characteristic zero unless stated otherwise. The set of natural numbers N is the set of
positive integers, so it does not contain 0.

2.1. Contractions. In this paper a contraction refers to a projective morphism f: X - Y
of varieties such that f,Ox = Oy (f is not necessarily birational). In particular, f has
connected fibres and if X — Z — Y is the Stein factorisation of f, then Z — Y is an
isomorphism. Moreover, if X is normal, then Y is also normal.

2.2. Hyperstandard sets. For a subset V C R and a number a € R, we define V=% =
{v €V |v>a}. Wesimilarly define V<%, V<¢ and V>,
Let 2R be a subset of [0, 1]. Following [39, 3.2] we define

@(%):{1—%|re%, mEN}

to be the set of hyperstandard multiplicities associated to SR. We usually assume 0,1 € R
without mention, so ®(R) includes ({0, 1}), the set of usual standard multiplicities. Note
that if we add 1 — r to R for each r € R, then we get R C P(R).

Now assume R C [0,1] is a finite set of rational numbers. Then ®(R) is a DCC set
of rational numbers whose only accumulation point is 1. We define I = I(R) to be the
smallest natural number so that Ir € Z for every r € R. If n € N is divisible by I(R), then
nb < |(n+ 1)b| for every b € ®(R) [39, Lemma 3.5].

2.3. Divisors. Let X be a normal variety, and let M be an R-divisor on X. We denote the
coeflicient of a prime divisor D in M by upM. If every non-zero coefficient of M belongs to
aset & C R, we write M € ®. Writing M = > m;M; where M; are the distinct irreducible
components, the notation M=% means Zmi>a m;M;, that is, we ignore the components

with coefficient < a. One similarly defines M=% M>® and M <¢.
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We say M is b-Cartier if it is Q-Cartier and if there is a birational contraction ¢: W — X
from a normal variety such that ¢*M is Cartier.

Now let f: X — Z be a morphism to a normal variety. We say M is horizontal over Z
if the induced map Supp M — Z is dominant, otherwise we say M is vertical over Z. If N
is an R-Cartier divisor on Z, we often denote f*N by N|x.

Again let f: X — Z be a morphism to a normal variety, and let M and L be R-Cartier
divisors on X. We say M ~ L over Z (resp. M ~q L over Z)(resp. M ~p L over Z) if there
is a Cartier (resp. Q-Cartier)(resp. R-Cartier) divisor N on Z such that M — L ~ f*N
(resp. M — L ~q f*N)(resp. M — L ~g f*N). For a point z € Z, we say M ~ L over z if
M ~ L over Z perhaps after shrinking Z around z. The properties M ~g L and M ~gr L
over z are similarly defined.

For a birational map X --» X’ (resp. X --» X”)(resp. X --» X"')(resp. X --»Y)
whose inverse does not contract divisors, and for an R-divisor M on X we usually denote the
pushdown of M to X' (resp. X”)(resp. X" )(resp. Y') by M’ (resp. M")(resp. M"")(resp.
My).

Lemma 2.4. Let f: X — Z be a contraction between normal varieties and let M be a Weil
divisor on X. Assume that M ~ 0 over z for each z € Z. Then M ~ 0/Z.

Proof. Since M ~ 0 over z for each z € Z, the sheaves Ox (M) and f,Ox (M) are invert-
ible. Moreover, the induced morphism f*f,Ox (M) — Ox (M) is surjective, hence it is an
isomorphism. There is a Cartier divisor N such that f,Ox (M) ~ Oz(N). Then M ~ f*N,
soM~0/Z.

O

2.5. Linear systems. Let X be a normal variety and let M be an R-divisor on X. We
usually write H'(M) instead of H'(X,Ox(|M])). We can describe H°(M) in terms of
rational functions on X as

HO(M) = {0+ a € K | Div(a) + M >0} U {0}

where K is the function field of X and Div(«) is the divisor associated to .
Assume h°(M) # 0. The linear system |M]| is defined as

IM|={N|0< N~ M} ={Div(a) + M |0 a € H(M)}.

Note that |M| is not equal to | | M || unless M is integral. The fized part of |M]| is the
R-divisor F' with the property: if G > 0 is an R-divisor and G < N for every N € |M],
then G < F. In particular, F' > 0. We then define the movable part of |M| to be M — F
which is defined up to linear equivalence. If (M) := M — | M |, then the fixed part of |M]|
is equal to (M) plus the fixed part of | [ M| |. Moreover, if 0 < G < F, then the fixed and
movable parts of |M — G| are F — G and M — F', respectively.

Note that it is clear from the definition that the movable part of | M| is an integral divisor
but the fixed part is only an R-divisor.

Lemma 2.6. Let X be a normal variety and let M be an R-Cartier R-divisor on X.
Assume ¢: Y — X is a projective birational morphism from a normal variety. Let F' be
the fized part of |M| and Fy be the fized part of |My| where My = ¢*M. Then

o ¢ My| = M|,
e 0.Fy =F, and
e if ¢ is a sufficiently high resolution, then |My — Fy| is base point free.
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Proof. If Ny € |[My|, then 0 < Ny ~ My, hence 0 < ¢, Ny ~ M which means ¢, Ny € |M|.
On the other hand, if N € |M], then 0 < N ~ M, hence 0 < ¢*N ~ My which means
¢*"N € [My|. Thus ¢.|My| = [M].

Since Fy < Ny for every Ny € |My|, we get ¢.Fy < N for every N € |M|, hence
¢« Fy < F. On the other hand, |My — Fy| is movable, that is, it is base point free outside
a codimension two closed subset of Y. Then |M — ¢.Fy| is also base point free outside a
codimension two closed subset of X which means ¢,Fy > F. Thus ¢.Fy = F.

Now let 1p: W — X be a resolution and let Fyy be the fixed part of |My| where My =
¥*M. By Hironaka’s work, there is a higher resolution 7: Y — W such that if Ly is the
movable part of |7*(Myw — Fy )|, then |Ly| is base point free. Pick Ny € |My| and let
Nyw = mNy. Since Fyy < Ny we get 7*Fyy < n* Ny = Ny, hence n* Fyy < Fy. Then the
movable part of | My| coincides with the movable part of |My — 7*Fy = o*(Mw — Fw)|.
Therefore, | My — Fy| = |Ly| is base point free.

O

2.7. b-divisors. We recall some definitions regarding b-divisors but not in full generality.
Let X be a variety. A b-R-Cartier b-divisor over X is the choice of a projective birational
morphism Y — X from a normal variety and an R-Cartier divisor M on Y up to the
following equivalence: another projective birational morphism Y’ — X from a normal
variety and an R-Cartier divisor M’ defines the same b-R-Cartier b-divisor if there is a
common resolution W — Y and W — Y’ on which the pullbacks of M and M’ coincide.

A b-R-Cartier b-divisor represented by some Y — X and M is b-Cartier if M is b-Cartier,
i.e. its pullback to some resolution is Cartier.

2.8. Pairs. In this paper a sub-pair (X, B) consists of a normal quasi-projective variety X
and an R-divisor B such that Kx + B is R-Cartier. If the coefficients of B are at most 1
we say B is a sub-boundary, and if in addition B > 0, we say B is a boundary. A sub-pair
(X, B) is called a pair if B > 0 (we allow coefficients of B to be larger than 1 for practical
reasons).

Let ¢: W — X be a log resolution of a sub-pair (X, B). Let Ky + By be the pulback
of Kx + B. The log discrepancy of a prime divisor D on W with respect to (X, B) is
1 — upBw and it is denoted by a(D, X, B). We say (X, B) is sub-lc (resp. sub-klt)(resp.
sub-e-lc) if a(D, X, B) is > 0 (resp. > 0)(resp. > ¢€) for every D. When (X, B) is a pair
we remove the sub and say the pair is lc, etc. Note that if (X, B) is a lc pair, then the
coefficients of B necessarily belong to [0,1]. Also if (X, B) is e-Ic, then automatically € < 1
because a(D, X, B) = 1 for most D.

Let (X, B) be a sub-pair. A non-klt place of (X, B) is a prime divisor D on birational
models of X such that a(D, X, B) < 0. A non-klt centre is the image on X of a non-klt
place. When (X, B) is lc, a non-klt centre is also called an lc centre.

2.9. Minimal model program (MMP). We will use standard results of the minimal
model program (cf. [36][8]). Assume (X, B) is a pair and X — Z is a projective morphism.
Assume H is an ample/Z R-divisor and that Kx + B + H is nef/Z. Suppose (X, B) is
klt or that it is Q-factorial dlt. We can run an MMP/Z on Kx + B with scaling of H. If
(X, B) is klt and if either Kx + B or B is big/Z, then the MMP terminates [8]. If (X, B)
is Q-factorial dlt, then in general we do not know whether the MMP terminates but we
know that in some step of the MMP we reach a model Y on which Ky + By, the pushdown
of Kx + B, is a limit of movable/Z R-divisors: indeed, if the MMP terminates, then the
claim is obvious; otherwise the MMP produces an infinite sequence X; --+ X; 1 of flips
and a decreasing sequence \; of numbers in (0, 1] such that Kx, + B; + \;H; is nef/Z; by
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[8][7, Theorem 1.9], lim \; = 0; in particular, if Y := X, then Ky + By is the limit of the
movable/Z R-divisors Ky + By + \;Hy .

2.10. Fano pairs. Let (X, B) be a pair and X — Z a contraction. We say (X, B) is log
Fano over Z if it is lc and —(Kx + B) is ample over Z; if B = 0 we just say X is Fano over
Z. The pair is called weak log Fano over Z if it is lc and — (K x + B) is nef and big over Z;
if B =0 we say X is weak Fano over Z. We say X is of Fano type over Z if (X, B) is klt
weak log Fano over Z for some choice of B; it is easy to see this is equivalent to existence
of a big/Z Q-boundary (resp. R-boundary) I" so that (X,I') is klt and Kx +T' ~q 0/Z
(resp. ~p instead of ~q).

Assume X is of Fano type over Z. Then we can run the MMP over Z on any R-Cartier
R-divisor D on X which ends with some model Y [8]. If Dy is nef over Z, we call Y a
minimal model over Z for D. If Dy is not nef/Z, then there is a Dy-negative extremal
contraction Y — T'/Z with dimY > dim T and we call Y a Mori fibre space over Z for D.

Lemma 2.11. Let (X, B) be an lc pair and f: X — Z be a contraction onto a smooth
curve. Assume X is of Fano type over some non-empty open set U C Z. Further assume
B is a Q-boundary, Kx + B ~q 0/Z, and that the generic point of each non-klt centre of
(X, B) is mapped into U. Then X is of Fano type over Z.

Proof. This proof which differs from the original proof, was suggested by Florin Ambro.
Since X is of Fano type over U, there is a Q-divisor I" with coefficients in [0, 1) such that
I is big over U, (X,T) is klt over U, and Kx + T ~g 0 over U. Then Kx +1I' ~qg D/Z for
some Q-divisor D which is vertical/Z. Since Z is a curve, we can easily find a Q-divisor C
on Z so that if we replace D with D + f*C, then the support of D is mapped into Z \ U
and that D < 0.

Now Kx +I'—=D ~g 0/Z and I — D > 0. Since the generic point of each non-klt centre
of (X, B) is mapped into U and since (X, TI") is kit over U, the pair

(X,1-t)B+t(I' = D))
is klt if £ > 0 is a sufficiently small rational number. Therefore, X is of Fano type over Z
as
Kx+(1—-t)B+t('=D)~q0/Z
and (1 —¢)B +¢(I' — D) is big over Z.
O

Lemma 2.12. Let X be a projective variety of Fano type, and let f: X — Z be a contraction
where dim Z > 0. Then Z is of Fano type.

Proof. There is a big Q-boundary I' such that (X,T) is kit and Kx +TI" ~g 0. In particular,
X is normal, hence Z is normal too. Since I is big, we can modify it and assume I' > H > 0
for some ample Q-divisor H. In turn we can modify H, hence assume I' > H > f*A for
some ample Q-divisor A > 0. Let A :=T' — f*A. Then Kx + A ~g 0/Z, hence by [2,
Theorem 0.2], there is Az such that Kx + A ~q f*(Kz + Az) and (Z,Ay) is klt. Now
letting 'y = Az + A’ where A’ ~g A is general we see that Kz + 'z ~g 0 and (Z,Ay) is
klt. Thus Z is of Fano type.

[l

2.13. Generalised polarised pairs. For the basic theory of generalised polarised pairs
see [9, Section 4]. Below we recall some of the main notions and discuss some basic prop-
erties.
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(1) A generalised polarised pair consists of

e a normal variety X’ equipped with a projective morphism X’ — Z,
e an R-divisor B’ > 0 on X', and
e a b-R-Cartier b-divisor over X’ represented by some projective birational morphism

X f) X’ and R-Cartier divisor M on X

such that M is nef/Z and Ky + B’ + M’ is R-Cartier, where M’ := ¢, M.
We usually refer to the pair by saying (X', B’ + M’) is a generalised pair with data

X 4 X' = Z and M. Since a b-R-Cartier b-divisor is defined birationally (see 2.7), in
practice we will often replace X with a resolution and replace M with its pullback. When
Z is not relevant we usually drop it and do not mention it: in this case one can just assume
X' — Z is the identity. When Z is a point we also drop it but say the pair is projective.

Now we define generalised singularities. Replacing X we can assume ¢ is a log resolution
of (X', B"). We can write

Kx+B+ M= ¢"(Kx + B + M)

for some uniquely determined B. For a prime divisor D on X the generalised log discrepancy
a(D, X', B+ M) is defined to be 1 — upB.

We say (X', B' + M') is generalised lc (vesp. generalised kit)(resp. generalised e-lc) if
for each D the generalised log discrepancy a(D, X', B' + M') is > 0 (resp. > 0)(resp.
> ¢€). A generalised non-kit centre of (X', B’ + M') is the image of a prime divisor D on
birational models of X’ with a(D, X', B’ + M') < 0, and the generalised non-kit locus of
the generalised pair is the union of all the generalised non-klt centres.

(2) Let (X', B'+ M) be a generalised pair as in (1). We say (X', B+ M’) is generalised
dlt if it is generalised lc and if n is the generic point of any generalised non-klt centre of
(X', B'+M’), then (X', B') is log smooth near n and M = ¢*M’ holds over a neighbourhood
of n. If in addition the connected components of | B’| are irreducible, we say the pair is
generalised plt. Note that when M = 0, then (X', B’) is generalised dlt iff it is dlt in the
usual sense.

The generalised dlt property is preserved under the MMP. Indeed, assume (X', B’ + M')
is generalised dlt and that X’ --» X" /Z is a divisorial contraction or a flip with respect
to Kx/ + B’ + M'. Replacing ¢ we can assume X --» X" is a morphism. Let B”, M"
be the pushdowns of B’, M’ and consider (X", B” + M") as a generalised pair with data
X = X" — Z and M. Then (X", B”" 4+ M") is also generalised dlt because it is generalised
lc and because X’ --» X” is an isomorphism over the generic point of any generalised
non-klt center of (X", B” + M").

(3) Let (X', B+ M’) be a generalised pair as in (1) and let ¢: X” — X’ be a projective
birational morphism from a normal variety. Replacing ¢ we can assume ¢ factors through
1. We then let B” and M" be the pushdowns of B and M on X" respectively. In particular,

KX// +B//+M” :1/}*(KX/ +B/+M/).

If B” > 0, then (X", B” + M") is also a generalised pair with data X — X" — Z and M.
If (X", B" + M") is Q-factorial generalised dlt and if every exceptional prime divisor of v
appears in B” with coefficients one, then we say (X", B” + M") is a Q-factorial generalised
dlt model of (X', B' + M'). Such models exist if (X', B’ + M) is generalised lc, by [9,
Lemma 4.5].

(4) Let (X', B'+ M) be a generalised pair as in (1). Assume that D’ on X' is an effective
R-divisor and that N on X is an R-divisor which is nef/Z such that D’ + N’ is R-Cartier
where N’ = ¢,.N. The generalised lc threshold of D' + N’ with respect to (X', B’ + M') is
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defined as
sup{s | (X', B’ 4+ sD’' + M’ + sN') is generalised lc}

where the pair in the definition comes with data X g X' — Z and M + sN.
(5) We prove a connectedness principle similar to the usual one.

Lemma 2.14 (Connectedness principle). Let (X', B+ M) be a generalised pair with data

X & X' = Z and M where X' — Z is a contraction. Assume —(Kx+ B'+ M') is nef
and big over Z. Then the generalised non-klt locus of (X', B'+ M') is connected near each
fibre of X' — Z.

Proof. We can assume ¢ is a log resolution. Write
Kx+B+M=¢*(Kx + B +M).
The generalised non-klt locus of (X', B’ + M’) is just ¢(Supp B=!). We can write
—(Kx+B+M)~r A+C/Z

where A is ample and C' > 0. Replacing X with a higher resolution and replacing A, C' with
their pullbacks we can assume ¢ is a log resolution of (X', B’ + C’) where C' = ¢.C": note
that here we initially replace A,C' with their pullbacks to the new resolution but then A
may no longer be ample although it is nef and big; we then perturb A, C' in the exceptional
components so that A is ample again. Pick a sufficiently small € > 0, let G ~gr M +€A/Z
be general with coefficients less than 1, and let A = B+ ¢eC + G. Then Kx + A ~g 0/X’,
so Kx + A = ¢*(Kx: + A’). Moreover, Supp BZ! = Supp AZ!. Thus the non-klt locus of
the pair (X', A’) is equal to the generalised non-klt locus of (X', B’ + M'). Therefore, the
result follows from the usual connectedness principle [33, Theorem 17.4] because

_(KX’ —+ A,> ~R —(1 — 6)(KX/ =+ B, + M/)/Z
is nef and big over Z. O

(6) Let (X', B'+ M) be a projective generalised klt pair. Assume A" := —(Kx/+B'+M’)
is nef and big. We show X’ is of Fano type. Using the notation of (1), let A = ¢*A’. Then
A ~r H+ G where H is ample and G > 0. Take a small € > 0 and a general C ~g eH + M.
Then

Kx+B+eG+C~r Kx+B+M+eA=¢*"(Kx + B +M +eA),

hence if we let A = B+¢€G + C, then Kx + A = ¢*(Kx/ + A’) which shows (X', A’) is klt.
Since —(Kxs + A') is nef and big, X’ is of Fano type.

(7) Let (X', B' + M') be a projective generalised lc pair where X' is of Fano type and
—(Kxr + B"+ M') is nef. Assume X” — X' is a birational morphism from a normal
projective variety. Let Kx» + B” + M" be the pullback of Kx/ + B’ + M’ where B” is the
pushdown of B and M” is the pushdown of M. We show X" is of Fano type too, assuming
every exceptional /X’ component of B” has positive coefficient. There is a Q-boundary T
such that (X', T) is kit and —(Kxs + I"”) is nef and big. Let Kx» + I’ be the pullback
of Kx/ +T". Let A” = (1 —t)I'" + tB” for some t € (0,1) sufficiently close to 1. Then
(X", A" +tM") is generalised klt and —(K x» + A” + ¢tM’) is nef and big. Now apply (5).
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2.15. Exceptional and non-exceptional pairs. (1) Let (X, B) be a projective pair such
that Kx + B+ P ~p 0 for some R divisor P > 0. We say the pair is non-exceptional (resp.
strongly non-exceptional) if we can choose P so that (X, B 4+ P) is not klt (resp. not lc).
We say the pair is ezceptional if (X, B + P) is klt for every choice of P.

(2) Now let (X', B’ + M’) be a projective generalised pair with data ¢: X — X’ and
M. Assume Kx/ + B’ + M’ + P’ ~g 0 for some R-divisor P’ > 0. We say the pair is non-
exceptional (resp. strongly non-exceptional) if we can choose P’ so that (X', B'+ P'+ M)
is not generalised klt (resp. not generalised lc). We say the pair is ezceptional if (X', B’ +
P’ + M') is generalised kit for every choice of P’. Here we consider (X', B’ + P’ + M’) as
a generalised pair with data ¢: X — X’ and M.

Lemma 2.16. Let (X', B’ + M’) be a projective generalised pair such that B’ + M’ is a
Q-divisor. If (X', B' + M') is non-exceptional (resp. strongly non-exceptional), then there
is a Q-divisor P! > 0 such that Kx» + B'+ M' + P’ ~q 0 and (X', B’ + M’ + P') is not
generalised klt (resp. generalised lc).

Proof. By definition, there is an R-divisor P’ > 0 such that Kx + B’ + M' + P’ ~g 0
and (X', B'+ M’ + P') is not generalised klt (resp. generalised lc). There exist numbers
0 # r; € R and rational functions o; on X’ such that

P'=> r;Div(a;) — (Kx/ + B + M').
Consider the set V' of R-divisors
> siDiv(a;) — (Kxs + B' + M').

where s; € R are arbitrary numbers. This is a rational affine space inside the space W of
R-divisors generated by the components of Ky + B’ + M’ and the components of all the
Div(c;). On the other hand, the space U of R-divisors generated by all the components
of P’ is also a rational affine subspace of W. The intersection U NV is a rational affine
subspace of W and P’ € UNV. Therefore, there exist real numbers a; € [0,1] with Y- a; =1
and effective Q-divisors P} € U NV sufficiently close to P’ (in terms of coefficients) such
that P’ =} a;P. By construction, Kx/ + B'+ M' + P ~g 0 for each j, and

Kx/+B'+M +P => aj(Kx + B +M +P)).

Thus there is j such that (X', B’ + M’ + Pj) is not generalised klt (resp. generalised lc).
Now replace P’ with P.
O

(3) The next lemma is useful to keep track of the exceptionality property when consid-
ering a birational model of X’.

Lemma 2.17. Let (X', B’ + M’) be a projective generalised pair with data X % X' and

M, and let (X", B" 4+ M") be a projective generalised pair with data X Y X" and M (here
X and M are the same, in particular, Y¢~': X' --» X" is a birational map). Assume

Y (Kxr+ B"+ M") > ¢*(Kx/ + B' + M').
If (X', B'+ M) is exceptional, then (X", B" + M") is also exceptional.
Proof. Assume (X", B” + M") is not exceptional. Then there is
0< P"~g —(Kxn+B"+M")
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such that (X", B”"4+P"+M") is not generalised klt. Thus by the inequality in the statement,
there is
0< r ~R _(KX’ —I—B/ —I—M’)
such that (X', B’ + P’ + M’) is not generalised klt, contradicting the exceptionality of
(X', B+ M').
O

2.18. Complements. (1) We first recall the definition for usual pairs. Let (X, B) be a
pair where B is a boundary and let X — Z be a contraction. Let T'= |B| and A = B—T.
An n-complement of Kx + B over a point z € Z is of the form Kx + BT such that over
some neighbourhood of z we have the following properties:

o (X,B")is lc,

e n(Kx + BT)~0, and

e nBT >nT + |(n+1)A].

From the definition one sees that
—nKx —nT — |(n+1)A| ~nB" —nT — [(n+1)A] >0
over some neighbourhood of z which in particular means the linear system
| —=nKx —nT — |[(n+1)A]|
is not empty over z. Moreover, if Bt > B, then —n(Kx + B) ~ n(B* — B) over z, hence
| — n(Kx + B)| is non-empty over z.

(2) Now let (X', B'+ M’) be a projective generalised pair with data ¢: X — X’ and M
where B’ € [0,1]. Let 7" = |B'] and A’ = B’ = T". An n-complement of Kx' + B' + M’ is
of the form Kx/ + B'" + M’ where

o (X', B'" + M') is generalised lc,
e n(Kx + B'" 4+ M') ~ 0 and nM is b-Cartier, and
e nB't >nT + |(n+1)A/].

From the definition one sees that
—nKx: —nT" = [(n+ 1A' | = nM' ~ nB'" —nT’ — [(n+1)A"] >0
which in particular means the linear system
| = nKx —nT" — [(n+ 1)A'| — nM'|

is not empty. Moreover, if Bt > B’, then —n(Kx/ + B’ + M’') ~ n(B't — B’), hence
| —n(Kx + B’ + M")| is non-empty.

We can also define complements for generalised pairs in the relative setting but for
simplicity we will not deal with those.

2.19. Bounded families of pairs. A couple (X, D) consists of a normal projective variety
X and a divisor D on X whose non-zero coefficients are all equal to 1, i.e. D is a reduced
divisor. The reason we call (X, D) a couple rather than a pair is that we are concerned with
D rather than Kx + D and we do not want to assume Kx + D to be Q-Cartier or with nice
singularities. Two couples (X, D) and (X', D’) are isomorphic if there is an isomorphism
X — X’ mapping D onto D’.

We say that a set P of couples is birationally bounded if there exist finitely many pro-
jective morphisms V? — T of varieties and reduced divisors C* on V' such that for each
(X, D) € P there exist an 4, a closed point ¢ € T, and a birational isomorphism ¢: V! --» X



Anti-pluricanonical systems on Fano varieties 17

such that (V,C}) is a couple and E < C} where V; and C} are the fibres over ¢ of the
morphisms V? — T% and C* — T" respectively, and E is the sum of the birational transform
of D and the reduced exceptional divisor of ¢. We say P is bounded if we can choose ¢ to
be an isomorphism.

A set R of projective pairs (X, B) is said to be log birationally bounded (respectively
log bounded) if the set of the corresponding couples (X, Supp B) is birationally bounded
(respectively bounded). Note that this does not put any condition on the coefficients of
B, eg we are not requiring the coefficients of B to be in a finite set. If B = 0 for all the
(X, B) € R we usually remove the log and just say the set is birationally bounded (resp.
bounded).

Lemma 2.20. Let d,r € N. Assume P is a set of couples (X, D) where X is of dimension
d and there is a very ample divisor A on X with Al < r and A“ID < r. Then P is
bounded.

Proof. The very ample divisor A gives an embedding of X into some P". When X is
nondegenerate, i.e. X is not contained in any hyperplane in P", it is well-known that
n —d+ 1 < r [12, Proposition 0]. Therefore, we can assume n is bounded depending
only on d,r. We view both X and D as cycles on P". By representability of the Chow
functor on well-defined families of cycles [30, Chapter I, Theorem 3.21], there exist reduced
schemes R, S and reduced closed subschemes W C P" x R and G C P™ x S so that if
p: W — R and ¢q: G — S denote projections, then for each (X, D) € P there are closed
points 7 € R and s € S such that X, D are isomorphic to the reduction of the fibres of p, ¢
over r, s, respectively. Using stratification and replacing P accordingly, we can assume R, S
are integral and that p, ¢ are surjective.

Since X is integral, we can assume W is integral too and that all the fibres of p are
integral. On the other hand, we can assume that each component of GG is mapped onto S.
This ensures that the generic fibre of ¢ is reduced. Since we work in characteristic zero,
the geometric generic fibre is reduced too. Therefore, we can assume all the fibres of g are
reduced, hence in particular, X, D are isomorphic to the fibres of p, g over r, s, respectively.

Let T = R x S and consider V := W x § and C := G x R as closed subsets of P" x T
Considering projections gives projective morphisms h: V' — T and e: C' — T such that if
X, D,r, s are as above, then the fibres of h,e over t = (r, s) are isomorphic to X and D,
respectively. Let U C T be the points parameterising the elements of P. Replacing T with
the closure of U and using stratification, etc, as above and replacing P accordingly, we can
assume that U is dense in T'. We can assume V is still integral, and C is still reduced and
that each of its components dominates T. Then C' C V because for each t € U, the fibre
of C — T over t is inside the fibre of V' — T". Now each (X, D) € P is the “fibre” of (V,C)
over some closed point t.

O

Note that in the definition of a bounded set of couples we have ¢~ *D < C! but equality
may not hold in general. The proof of the previous lemma shows that we can choose the
families so that equality holds. For reference we put this into the next lemma.

Lemma 2.21. Assume P is a bounded set of couples. Then under the above notation, we
can choose 'Vl,C” and V' — T" so that for each (X, D) € P there exist an i and a closed
point t € T* such that (V!,C}) is a couple isomorphic to (X, D).

Proof. From the definition of bounded families we can see that there is n depending only
on P such that for each (X, D) € P we can embed X in P" so that degree of X and degree
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of D (calculated with respect to a hyperplane) are both bounded. Now the claim follows
from the proof of Lemma 2.20.
O

Lemma 2.22. Let P be a bounded set of couples and e € R>0. Then there is a finite set
I C R depending only on P and e satisfying the following. Let (X,D) € P and assume
R > 0 is a non-zero integral divisor on X such that Kx +D+rR = 0 for some real number
r>e. Thenr e l.

Proof. We can choose an effective very ample Cartier divisor A on X such that (X, A+ D)
belongs to a bounded set of couples Q determined by some presentation of P (as in 2.19).
Moreover, realising A%~! as a 1-cycle inside the smooth locus of X, the intersection number
L - A%! makes sense and is an integer for any integral divisor L. On the other hand,
(Kx + D) - A%~1 belongs to some finite set depending only on Q. Thus from

(Kx + D+ rR)- A1 =0

and the assumption r > e we deduce that R - A1 is bounded from above. Therefore, r
belongs to some fixed finite set I. Choosing I to be minimal with this property, it depends
only on P and e.

O

2.23. Cartier index in bounded families.

Lemma 2.24. Let P be a bounded set of couples. Then there is a natural number I
depending only on P satisfying the following. Assume X is projective with klt singularities
and M > 0 an integral Q-Cartier divisor on X so that (X,Supp M) € P. Then IKx and
IM are Cartier.

Proof. We will use MMP similar to [19, Proposition 2.4]. Assume there is a sequence X;, M;
of pairs and divisors as in the lemma such that if I; is the smallest natural number so that
I;Kx, and I;M; are Cartier, then the I; form a strictly increasing sequence of numbers.
Perhaps after replacing the sequence with a subsequence, by Lemma 2.21, we can assume
there is a projective morphism V' — T’ of varieties, a reduced divisor C' on V', and a dense
set of closed points t; € T such that X; is the fibre of V' — T over ¢; and Supp M; is the fibre
of C' — T over t;. Since X; are normal, replacing V' with its normalisation and replacing
C with its inverse image with reduced structure, we can assume V' is normal.

Let ¢: W — V be a resolution of V' and let A be the reduced exceptional divisor of ¢.
Running an MMP/V on Ky + A with scaling of an ample divisor, we reach a model V'
on which Ky + A’ is a limit of movable/V divisors (2.9). Let V' — V be the induced
morphism and X/, A be the fibres of V' — T and A’ — T over t;, respectively (note that
AL = A/ x; and since we work in characteristic zero, we can assume Al is reduced). Now
we can assume X/ are general fibres of V' — T, hence A/ is the reduced exceptional divisor
of Xj — X;. Since X; is klt, we can write the pullback of Kx, to X; as Kx/ + ©; where O]
is exceptional with coefficients strictly less than 1. But then since X/ are general fibres,

Aj =05 = Kx1 + Aj = (Kx/ + 0;) ~q Kx/ + Aj/X;

is a limit of movable/X; divisors, hence A, — ©) < 0 by the general negativity lemma [7,
Lemma 3.3] which in turn implies A, = 0} = 0 as A/ is reduced. Thus X/ — X is a small
contraction.

There is a Q-divisor I} > 0 which is anti-ample over X;. Rescaling it we can assume
(X/,T7) is klt. In particular, X! — X; is a K X+ I''-negative contraction of an extremal
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face of the Mori-Kleiman cone of X/ because by the previous paragraph K x; Is the pullback
of Kx,. Thus by the cone theorem [36, Theorem 3.7], the Cartier index of Ky, (resp, M;)
and Kx, (resp. M;) are the same where M/ is the pullback of M;.

Now since X/ is a general fibre, K X, = Ky x; which shows that the Cartier index of
K/ is bounded. Moreover, if C" C V' denotes the birational transform of C, then Supp M/
is the fibre of C' — T over t;. Thus replacing V,C' with V', C’ we can replace X; with X/
and replace M; with M/, hence assume V is Q-factorial, so C' is Q-Cartier.

Pick I so that IC is Cartier. Let D; = Supp M;. Then D; = C|x;, hence ID; is Cartier.
This gives a contradiction if M; are all irreducible. In general, let h; € N be the largest
number such that M; — h;D; > 0. Then M; — h;D; has at least one component less than
M;. Thus we can apply induction on the number of components of M; which is a bounded
number.

O

Lemma 2.25. Let d,r be natural numbers. Then there is a natural number I depending
only on d,r satisfying the following. Suppose X is a projective variety with kit singularities
and A is very ample on X with A < r where d = dim X. If L is a nef integral divisor on
X with A*YL < r, then IL is Cartier.

Proof. We can assume dim X > 1 otherwise the statement holds trivially. Since A is very
ample and A? < 7, X belongs to a bounded family of varieties and A1 Ky is bounded
from above. Replacing A with a bounded multiple and changing it linearly, and replacing r
accordingly, we can assume (X, A) is dlt and Kx + A is ample. We can assume Ly := L[4
is integral. Moreover, L4 is nef, (A|4)"2Ls < r and (A|4)?"! < r. Thus by induction,
there is a natural number [ > 1 depending only on d,r such that [K 4 and [L 4 are Cartier.
Moreover, since
Kia+La=(Kx+A+L)a

is ample, we can choose [ such that [(K4 + L) is base point free, by effective base point
freeness.
Now
R(I(Kx+A+L)—A)=0
by the Kawamata-Viehweg vanishing theorem as
I(Kx+A+L)—A=Kx+L+(-1)(Kx+A+1L).
Thus lifting sections from A, we deduce that
RO(I(Kx + A+ L)) >0.

So I(Kx + A+ L) ~ N where N is effective and A?"'N is bounded from above. Then
(X,Supp N) belongs to a bounded family of couples, hence by Lemma 2.24, there is J
depending only on d,r so that JN and JKx are both Cartier. Therefore, [JL is Cartier
too. Now let I =1J.

O

The next lemma is useful to prove boundedness of certain birational models of weak Fano
varieties.

Lemma 2.26. Let P be a bounded set of klt weak Fano varieties. Let Q be the set of normal
projective varieties Y such that

o Ky is Q-Cartier,

o there is X € P and a birational map Y --+» X, and
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e ifo: W — X and : W —= Y is a common resolution, then ¢*Kx > V*Ky.
Then Q is bounded.

Proof. Let Y, X be as in the statement. By Lemma 2.24, there is m € N depending only
on P such that —mKx is Cartier. By the effective base point free theorem [32], we can
assume | — mK x| is base point free. Thus Ky has a klt m-complement Kx + BT. Since
¢*Kx > ¢*Ky, taking the crepant pullback of Kx + B' to Y gives a klt m-complement
Ky + By of Ky where By: > 1,¢*B™ is big. Now apply [19, Theorem 1.3].

O

2.27. Families of subvarieties. Let X be a normal projective variety. A bounded family
G of subvarieties of X is a family of (closed) subvarieties such that there are finitely many
morphisms V¢ — T" of projective varieties together with morphisms V¢ — X such that
Vi — X embeds in X the fibres of V¢ — T% over closed points, and each member of the
family G is isomorphic to a fibre of some V¢ — T over some closed point. Note that we
can replace the V? — T so that we can assume the set of points of 7% corresponding to
members of G is dense in T%. We say the family G is a covering family of subvarieties of X
if the union of its members contains some non-empty open subset of X. In particular, this
means V'’ — X is surjective for at least one i. When we say G is a general member of G
we mean there is ¢ such that V¢ — X is surjective, the set A of points of T% corresponding
to members of G is dense in T¢, and G is the fibre of V' — T over a general point of A (in
particular, G is among the general fibres of V¢ — T%).

Note that our definition of a bounded family here is compatible with 2.19. Indeed assume
G is a family of subvarieties of X which is bounded according to the definition in 2.19. Then
there are finitely many possible Hilbert polynomials (with respect to a fixed ample divisor
on X) of the members of the family. Consider the Hilbert scheme H of X given by the
previously fixed finitely many polynomials, and take the universal family H — H. There
are closed subvarieties 7% of H and irreducible components V? of the reduction of V*, where
Vi =T! xgH — T" is the induced family, so that each G € G is isomorphic to a fibre of
Vi — T? over some closed point. By choosing the 7" carefully, we can assume that, for
each i, the members of G correspond to a dense set of fibres of V* — T*. Since we obtained
V? — T from the Hilbert scheme, we have an induced morphism V* — X which embeds in
X the fibres of V¢ — T* over closed points. Therefore, G is a bounded family of subvarieties
according to the definition in the last paragraph.

The next lemma is useful in applications when we want to replace V¢ — T so that
V% — X becomes generically finite (eg, see the proof of 3.12).

Lemma 2.28. Let f: V — T be a contraction between smooth projective varieties and
g: V = X a surjective morphism to a normal projective variety. Let t be a closed point of
T and F the fibre of f over t. Further assume

(1) the induced map F — X 1is birational onto its image,

(2) f is smooth overt,

(3) g is smooth over g(nr), and g(nr) is a smooth point of X where nr is the generic
point of F.

Let S be a general hypersurface section of T of sufficiently large degree passing through
t, let U = f*S, and assume U — X is surjective. Then U and S are smooth, U — S is
smooth over t, and U — X is smooth over g(nr).

Proof. Let v be a general closed point of F', and let G be the fibre of g over = := g(v). The
scheme-theoretic intersection F' N G is the fibre of FF — X over z, hence it is the reduced
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point {v}, by (1). In particular, Tr, N TG, = {0} where Tz, and Tg, are the tangent
spaces to F' and GG at v. On the other hand, F NG is also the fibre of the induced morphism
G — T over t, so the fibre is again just {v}. Now since f is smooth over ¢, we have an
exact sequence of tangent spaces

0— Trw — Tve — Tre — 0.

Thus the kernel of the map 7g., — Try is Trw N TG, hence T, — Try is injective.
Therefore, G — T is a closed immersion near v, by Lemma 2.29 below.

Since S is a general hypersurface section of T' of sufficiently large degree passing through
t and since T is smooth, S is smooth too. Moreover, since G is smooth by (3), U NG is
smooth as well: indeed U N G is smooth outside v by [20, Chapter III, Remark 10.9.2] and
also smooth at v as G is smooth and G — T is a closed immersion near v.

By construction, U — S is smooth over ¢, and U is a smooth variety outside F'. Moreover,
U is smooth at every point of F' as F' is the fibre of U — S over ¢ which is smooth and
t € S is smooth. Therefore, U is smooth.

Since g is smooth near G, dim G = dim V' — dim X. So

dimUNG =dimG—-1=dimV —dimX — 1 =dimU —dim X

where we think of the scheme-theoretic intersection U N G as the fibre of U — X over x.
Thus U — X is flat over = by [20, Chapter III, Exercise 10.9] which in turn implies U — X
is smooth over x [20, Chapter III, Exercise 10.2] as U NG is smooth. Therefore, U — X is
smooth over g(nr).

O

Lemma 2.29. Let h: X — Z be a projective morphism of normal varieties, x € X be a
closed point, and z = h(z). Assume h='{z} = {z}, and assume the map on tangent spaces
Txz — Tz is injective. Then h is a closed immersion near x.

Proof. Since h™1{z} = {x}, by considering the Stein factorisation of h, we can see that h
is a finite morphism over z. Thus shrinking X, Z we can assume h is finite. If U is an open
neighbourhood of x, then z & h(X \ U) because h™1{z} = {z}, hence V.= Z \ h(X \ U) is
an open neighbourhood of z. Moreover, h~!V C U: indeed if y ¢ U, then y € X \ U, so
h(y) € h(X\U), hence h(y) ¢ V which implies y ¢ h~1V. Thus every open neighbourhood
of x contains the inverse image of some open neighbourhood of z. This implies the induced
map on stalks (h.Ox), — Ox, is an isomorphism. Thus Ox, is a finitely generated
Oz .-module as h,Ox is coherent.

On the other hand, since the map Tx, — 7Tz, is injective, the dual map m,/m? —
my/ m?,; is surjective where m, and m, are the maximal ideals of Oz, and Ox,. Now
apply [20, II, Lemma 7.4] to show the homomorphism Oz, — Ox . is surjective which
implies Oz — h.Ox is surjective near z. Therefore, h is a closed immersion near x since h
is finite. [l

2.30. Potentially birational divisors. Let X be a normal projective variety and let D
be a big Q-Cartier Q-divisor on X. We say that D is potentially birational [17, Definition
3.5.3] if for any pair = and y of general closed points of X, possibly switching x and y, we
can find 0 < A ~q (1 —€)D for some 0 < € < 1 such that (X, A) is not klt at y but (X, A)
is lc at = and {z} is a non-klt centre.

If D is potentially birational, then |Kx + [D]| defines a birational map [18, Lemma
2.3.4].
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2.31. Non-klt centres. In this subsection we study non-klt centres of pairs. In several
places in this paper we use a standard technique to create covering families of non-klt
centres.

(1) The next statement is a variant of [17, Lemma 3.2.3].

Lemma 2.32. Let (X, B) be a projective pair where B is a Q-boundary, and let D > 0
be an ample Q-divisor. Let xz,y € X be closed points, and assume (X, B) is kit near z,
(X, B+ D) is lc near x with a unique non-klt centre G containing x, and (X, B+ D) is not
klt near y. Then there exist rational numbers 0 <t < s <1 and a Q-divisor 0 < E ~q tD
such that (X, B+ sD + E) is not kit near y but it is lc near x with a unique non-klt place,
and the centre of this non-klt place is G.

Proof. Let ¢: W — X be a log resolution. Then ¢*D ~g A+ C where A > 0 is ample
and C > 0. Let C' = ¢,C and D’ = ¢,(A + C). Replacing X with a higher resolution we
can assume ¢ is a log resolution of (X, B+ D + C’): note that here we pull back A, C to
the new resolution, so A may no longer be ample but it is nef and big, hence perturbing
coefficients in the exceptional components we can make A ample again. Changing A up to
Q-linear equivalence we can assume A is general, so ¢ is a log resolution of (X, B+ D+ D').
Write
Kw +Ts;=¢"(Kx +B+sD+tD').

Let T be the sum of the components of [ngJ whose image contains x. By assumption,

¢(S) = G for every component S of T. Now pick ¢t > 0 sufficiently small and let s be the
lc threshold of D with respect to (X, B + tD’) near z. Then s is sufficiently close to 1.

Moreover,
>0 >0 >0
v e [ree] = s
so any component of LFES J whose image contains z, is a component of 7. Now possibly

after perturbing the coefficients of C' and replacing A accordingly, we can assume LFE? J

has only one component S such that © € ¢(S). Since S is a component of T, we have
»(S) =G.

If G contains y, then let E =tD’, hence (X, B+ sD + E) is not klt near y. We can then
assume G does not contain y. Since (X, B 4+ D) is not klt near y, it has a non-klt centre
J # G containing y. By assumption, G is the only non-klt centre containing x, so J does
not contain . Thus there is an effective D ~@ D containing J but not containing x. In
particular, we can choose a small o > 0 (depending on s) so that (X, B + sD +tD’ 4+ aD)
is not lc near y. Now let E = tD’ + aD and rename t + « to ¢.

O

(2) Let X be a normal projective variety of dimension d and D an ample Q-divisor.
Assume vol(D) > (2d)?. Then there is a bounded family of subvarieties of X such that for
each pair z,y € X of general closed points, there is a member G of the family and there
is 0 < A ~g D such that (X,A) is lc near x with a unique non-klt place whose centre
contains z, that centre is G, and (X, A) is not klt at y [17, Lemma 7.1].

Now assume A is an ample and effective Q-divisor. Pick a pair x,y € X of general closed
points and let A and G be as above chosen for z,y. If dimG = 0, or if dimG > 0 and
vol(A|g) < d?, then we let G’ := G and let A’ := A + A. On the other hand, if dim G > 0
and vol(A|g) > d?, then there is 0 < A’ ~g A + A and there is a proper subvariety G’ C G
such that (X, A’) is lc near 2 with a unique non-klt place whose centre contains z, that
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centre is G', and (X, A’) is not klt at y, by [31, Theorem 6.8.1 and 6.8.1.3] and by Lemma
2.32. Repeating this process d — 1 times, we find 0 < Al@—1) ~gp D+ (d—1)A and a
proper subvariety G(¢~1) ¢ G such that (X, A(dfl)) is Ic near x with a unique non-klt place
whose centre contains z, that centre is G4~ and (X, A(dfl)) is not klt at y, and either
dim GU—Y = or vol(A|gw@-1) < d?. In particular, all such centres G4=1) form a bounded
family of subvarieties of X.

(3) We will need the next lemma in section 3 when we define adjunction on non-klt
places.

Lemma 2.33. Assume that

(X, B) is an lc pair,
e G C X is a subvariety with normalisation F,
o X is Q-factorial near the generic point of G, and
e there is a unique non-klt place of (X, B) whose centre is G.
Then if (Y, By) is a Q-factorial dlt model of (X,B) and S is a component of | By |
mapping onto G, then the induced morphism h: S — F is a contraction. Moreover, the
only non-klt centre of (X, B) containing G is G itself.

Proof. If G is a divisor, then the claim is obvious, so we can assume dim G < dim S, in
particular, S is exceptional over X. Let II be the fibre of Y — X over a general closed
point g of G. Then II is connected, and since X is Q-factorial near g, II is contained in the
union of the exceptional divisors of ¥ — X, hence contained in | By |. Moreover, by the
connectedness principle, | By | is connected near II.

Let R be the support of (| By | — S)|s. We show that the induced morphism R — F is
not surjective. Assume not. Then some component V' of R maps onto G. As V is a non-klt
centre of (Y, By), there is a non-klt place of (Y, By ) with centre V', hence there is a non-klt
place of (X, B) with centre G and this place is not S. This is a contradiction.

We claim that II is contained in S. Assume not. Then since II is connected, and since
| By | is connected near IT and II C |By |, there is a component T" of | By | — S such that
Supp T'|s intersects II. This contradicts the previous paragraph. Thus IT is contained in S.
In particular, IT is the fibre of h over g, hence h has connected general fibres. This implies h
is a contraction as F' is normal. Finally, applying the previous paragraph once more shows
that in fact II does not intersect |By | — S. Therefore, no lc centre of (X, B) contains G
other than G itself.

O

2.34. Pseudo-effective thresholds.

Lemma 2.35. Let P be a log bounded set of log smooth projective pairs (X, B). Then there
is a number X > 0 such that if (X, B) € P and if Kx is not pseudo-effective, then Kx + \B
is not pseudo-effective.

Proof. Perhaps after replacing P, we can assume there exist a smooth projective morphism
f:V — T of smooth varieties and a reduced divisor S on V with simple normal crossing
singularities such that if (X, B) € P, then X is a fibre of f over some closed point and
Supp B is inside the restriction of S to X. Replacing B, we can assume B = S|x. Moreover,
adding to S a general ample/T divisor, we can assume S and Ky + S are ample/T.
Let
t = inf{s | Ky + sS is pseudo-effective over T'}.
We can assume ¢ > 0. Run an MMP on Ky over T' with scaling of S which terminates by
[8]. This gives a minimal model (V',¢S") of (V,tS) over T. Then Ky + ¢S’ is semi-ample
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over T but not big, hence it defines a non-birational contraction V' — W/T. Fix some

0 < A < t. Assume F is a general fibre of f and F’ the corresponding fibre of V' — T.

Then Kpr + A\S'|p is not pseudo-effective, hence Kp + AS|p is also not pseudo-effective.
O

2.36. Numerical Kodaira dimension. Let D be an R-Cartier R-divisor on a normal
projective variety X. The numerical Kodaira dimension of D denoted by ks (D) following
[38]. We replace X by a resolution and replace D by its pullback. If D is not pseudo-
effective, we let rk,(D) = —oo. Otherwise k(D) is the largest integer r such that

RO(|mD| + A
hmsup%>

m—00 m

0

for some ample Cartier divisor A.
When D is pseudo-effective, a kind of Zariski decomposition D = P,(D) + N, (D) is
defined in [38] where P, (D) is pseudo-effective and N, (D) > 0.

Lemma 2.37. Let P be a bounded set of smooth projective varieties X with r,(Kx) = 0.
Then there is a number | € N such that h°(1Kx) # 0 for every X € P.

Proof. Perhaps after replacing P, we can assume there is a smooth projective morphism
f:V — T of smooth varieties such that every X € P appears as a fibre of f over some
closed point. Then by [18, Theorem 1.8 (2)], ks (Kr) = 0 for every fibre F of f. Applying
[14] to the geometric generic fibre and applying semi-continuity of cohomology shows that
there is [ € N such that h°(IK) # 0 for every fibre F.

O

2.38. Volume of divisors. Recall that the volume of an R-divisor D on a normal projec-
tive variety X of dimension d is defined as

hO(lmD])
1(D) =1 —_—
vollD) = limsup = 577
Lemma 2.39. Let X be a Q-factorial normal projective variety of dimension d, D be an
R-divisor with ks(D) > 0, and A be an ample Q-divisor. Then lim,,_, vol(mD + A) = cc.

Proof. Replacing X with a resolution and replacing A appropriately, we can assume X is
smooth. Replacing D with P, (D), we can assume N, (D) = 0. Let C be a curve cut out by
general members of |l A| for some sufficiently divisible [ € N. By [38, Chapter V, Theorem
1.3], we can assume C' does not intersect Bs| [mD] + A| for any m € N. In particular, by
Lemma 2.6, for each m, there is a resolution ¢: W — X such that the movable part M of
|¢p*(|mD] + A)| is base point free and the support of the fixed part F' does not intersect
¢~ 1C. Then

vol(mD + 2A) > vol(|mD| + 2A) = vol(¢*(|mD] + 2A)) >
vol(M + ¢*A) > M - (¢*A)"! = ¢*(lmD] + A) - (¢"A)*™" = (lmD] + A) - C.
Since ky(D) > 0, we have D - C' > 0, so the intersection number (|mD| + A) - C is not a

bounded function of m, hence vol(mD + 2A) is not bounded. Thus lim,, . vol(2mD +

2A) = oo which implies the lemma.
O

Lemma 2.40. Let d € N and let P be a set of pairs (X, A) where X is smooth projective
of dimension < d with ks(Kx) > 0 and A is very ample. Then for each q € N there is
p € N such that for every (X, A) € P we have vol(pKx + A) > q.
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Proof. If the statement is not true, then there exist a number ¢ € N, a strictly increasing
sequence of numbers p; € N, and a sequence of pairs (X;, A;) € P such that vol(p;Kx, +
A;) < q for every i. Since A; is very ample, we may assume A; is smooth, and since
vol(A;) < g, the pairs (X;, 4;) form a log bounded family. Replacing the sequence, we can
assume there is a projective morphism f: V — T of smooth varieties and a reduced divisor
A > 0 on V which is simple normal crossing over T" and such that for each i, X; appears
as a fibre of f over some closed point and that A; = Alx;.

Fix a general fibre F' of f and let Ap = A|p. Then by [18, Theorem 1.8 (3)], for each ¢,

1 1
vol <KF + AF> = vol <KXz + Az> ,
bi bi

hence
vol(piKr + Ar) = vol(p;i Kx, + Ai) < q.

Pick I so that [Ap ~ Hp+Lp where Hp is ample and L is big. Then vol(lp; Kp+Hp) < 1%.
This contradicts Lemma 2.39.
|

2.41. The restriction exact sequence. Let X be a normal projective variety, S be a
normal prime divisor and L be an integral Q-Cartier divisor on X. We have the exact
sequence

0—O0x(=S5)—0x -05—0
from which we get the exact sequence
Ox(L) ®0, Ox(—S) = Ox(L) ®o, Ox = F := Ox (L) ®o, Os — 0
which may not be exact on the left. This in turn gives the exact sequence
0—0Ox(L-S)— Ox(L)— F—0.
Note that F is an Og-module.

Lemma 2.42. Assume (X, B) is dlt for some boundary B and that S is Q-Cartier. Let U
be the largest open subset of X on which L is Cartier. If the codimension of the complement
of SNU in S is at least two, then F ~ Og(L|g).

Proof. This is a generalisation of [36, Proposition 5.26]. Note that L|g is well-defined up
to linear equivalence and it is an integral divisor. Let A be an ample Cartier divisor on X.
Since (X, B) is dlt and S is Q-Cartier, by duality [36, Corollary 5.27] and Serre vanishing,
h{(L —nA) =0 and h*(L — S —nA) =0 for any i < d = dim X and any n > 0. Thus using
the third exact sequence above we get the exact sequence

HY(Ox(L —nA)) = H(F(-nA)) - HT(Ox (L — S — nA))

and the vanishing h*(F(—nA)) = 0 for i < d—1 and any n > 0. This implies F is a Cohen-
Macaulay sheaf on S [36, Corollary 5.72]. In particular, F is Sg, hence F is determined
by Fluns. On the other hand, Og(L|g) is reflexive, hence it is also determined by its
restriction to S N U. Now the result follows from the fact that on S N U, the two sheaves
F and Og(L|s) are isomorphic.

O
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2.43. Descent of nef divisors.

Lemma 2.44. Let f: X — Z be a contraction from a smooth projective variety to a normal
projective variety with rationally connected general fibres. Assume M is a nef Cartier
divisor on X such that M ~g 0 on the generic fibre of f. Then there exist resolutions
¢o: W — X and ¢: V. — Z such that the induced map W --» V is a morphism and
o*M ~0/V.

Proof. Since M is nef and M ~g 0 on the generic fibre of f, M ~g N for some N whose
support is vertical/Z, i.e. its components do not intersect the generic fibre. Thus if A is the
pullback of a sufficiently ample divisor on Z, then K(A+M) = dim Z and K(A—M ) = dim Z.
In particular,

V(A+ M) =ke(A+ M) <ke(A+ M+ A—-M)=dimZ

which means A + M is a nef and good divisor. Therefore, applying [28, Proposition 2.1],
we can find ¢ and ¢ so that ¢*(A + M) ~qg 0/V, hence ¢* M ~g 0/V.

Replacing X with W and replacing Z with V', we can assume M ~g 0/Z. Since the
general fibres of f are rationally connected, Kx is not pseudo-effective over Z. Running
an MMP/Z on Kx with scaling of some ample divisor as in [8], we get a Mori fibre space
X' — T'/Z. Since M is Cartier and M ~q 0/Z, M’ is Cartier, by the cone theorem
[36, Theorem 3.7], where M’ is the pushdown of M. Moreover, M’ ~ 0/T" again by [36,
Theorem 3.7], hence M’ is the pullback of some nef Cartier divisor N’ on 7. Let T be
a resolution of 7”. Then the general fibres of T — Z are rationally connected as they
are dominated by the general fibres of f. Now replace X with T" and replace M with the
pullback of N’ to T. Then apply induction on dimension.

O

2.45. Pairs with large boundaries.

Lemma 2.46. Let (X, B) be a projective Q-factorial dlt pair of dimension d, and let M
be a nef Cartier divisor. Let a > 2d be a real number. Then any MMP on Kx + B + aM
is M -trivial, i.e. the extremal rays in the process intersect M trivially. If M is big, then
Kx + B+ aM is also big.

Proof. The fact that any MMP on Kx + B 4+ aM is M-trivial follows from boundedness of
extremal rays [26]. The Cartier condition and the nefness of M is preserved in the process
by the cone theorem [36, Theorem 3.7]. Now assume M is big. It is enough to show
Kx + aM is big. If Kx + aM is not big, then Kx + (a — §)M is not pseudo-effective for
any small 6 > 0. Then we can run an MMP on Kx + (a — )M which terminates with a
Mori fibre space Y — T' [8]. By boundedness of extremal rays [26], My = 0/7" which is not
possible as My is big.

O

2.47. Divisors with log discrepancy close to 0.

Lemma 2.48. Letd € N and ® C [0,1] be a DCC set. Then there is € > 0 depending only
on d and ® such that if (X, B) is a projective pair and D is a prime divisor on birational
models of X satisfying

e (X, B) is lc of dimension d and (X,0) is kit

o Kx + B~p 0 and B € ®, and

e a(D,X,B) <,
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then a(D, X, B) = 0.

Proof. If the lemma does not hold, then there exist a decreasing sequence ¢; of numbers
approaching 0 and a sequence (X;, B;), D; of pairs and divisors as in the statement such that
0 < a(D;, X;, B;) < €. If D; is a divisor on X;, we let X — X; be the identity morphism.
If not, then since (Xj;,0) is klt, there is a birational morphism X/ — X; extracting only
D;. Let lef + B! be the pullback of Kx, + B;, and let b; = 1 — a(D;, X;, B;) which is the
coefficient of D; in B]. Note that B} € ® := ® U {b; | i € N}. Replacing the sequence, we
can assume ®’ is a DCC set. Now we get a contradiction, by [17, Theorem 1.5], because
{b; | i € N} is not finite.

O

2.49. Boundary coefficients close to 1.

Proposition 2.50. Let d,p € N and let ® C [0,1] be a DCC set. Then there is ¢ € R>°
depending only on d,p, ® satisfying the following. Let (X', B’ + M') be a generalised pair
of dimension d with data ¢: X — X' — Z and M such that

B' € U (1 —¢,1] and pM 1is b-Cartier,

—(Kx: + B'+ M’) is a limit of movable/Z R-divisors,

there is

0< P’ ~R —(KX/ —|—B/+MI)/Z

such that (X', B'+ P’ + M') is generalised lc, and
X' is Q-factorial of Fano type/Z.

Let ©' be the boundary whose coefficients are the same as B’ except that we replace each
coefficient in (1 — €,1) with 1. That is, © = (B")<1=¢ + [(B')>1=¢]. Run an MMP/Z on
—(Kx/ 4+ 0"+ M') and let X" be the resulting model. Then:

(1) (X',0" + M') is generalised lc,

(2) the MMP does not contract any component of |©'],
(3) —(Kx»+ 0"+ M") is nef/Z, and

(4) (X",0" + M") is generalised lc.

Proof. Note that X’ is Q-factorial of Fano type/Z, so we can run MMP on any divisor on
X'

(1) Assume this is not true. Then there exist a decreasing sequence ¢; of numbers
approaching 0, and a sequence (X/, B, + M/) of generalised pairs as in the statement such
that if ©/ is the divisor derived from B] using €;, then (X!, © 4+ M) is not generalised lc.
There exist boundaries B} < I, < O} with I, € ® U (1 — ¢;, 1] and a component D} of T,
with coefficient ¢; € (1 —¢;, 1) such that ¢; is the generalised lc threshold of D} with respect
to (X[, I, —t;D;+ M/). Replacing the sequence we can assume the union of the coefficients
of all the I'; is a DCC set. Then we get a contradiction by the ACC for generalised lc
thresholds [9, Theorem 1.5].

(2) If this is not true, then there exist a decreasing sequence ¢; of numbers approaching
0, and a sequence (X!, Bl + M/) of generalised pairs as in the statement such that if ©)
is the divisor derived from B} using ¢;, then the MMP contracts some component S; of
|©%]. Since all our assumptions are preserved under the MMP, we may assume the first
step of the MMP is a birational contraction 7;: X/ — X/ which contracts S. Let R, be
the corresponding extremal ray.
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As —(Kx/ + B"+ M) is a limit of movable/Z R-divisors, —(Kx; + B; + M) - R; > 0.
Moreover, S! - R < 0 and if B! is the same as B} except that we increase the coefficient of
S! to 1, then

Bi < B; <©;and — (Kx; + B+ Mj) - R; > 0.

Therefore, there exist boundaries B < T, < ©! with ', € ® U (1 — ¢;, 1] such that —(Kx; +
I, + M]) - R; = 0 and S/ is a component of [I';|. Moreover, there is a component D, of I,
with coefficient t; € (1 — ¢;, 1) such that D, - R; > 0. Thus

0 = a(S}, X{, T} + M;) = a(S, X}, T + M)

but
a(S;,X{,f‘; + 52D; + MZ/) = —Msgﬂf(SiDg <0

for any &; > 0 where I, D}, M! are the pushdowns of T}, D}, M/. This means that t; is the
generalised lc threshold of D with respect to (X!, T — t;D} + M!). Again this contradicts
[9, Theorem 1.5].

(3) Assume this is not true. Then there exist a decreasing sequence ¢; of numbers
approaching 0, and a sequence (X, B, + M]) of generalised pairs as in the statement such
that if ©/ is the divisor derived from B; using ¢;, then the MMP ends with a Mori fibre space,
that is, there is an extremal non-birational contraction X;" — T;"/Z which is —(K x4+ O] +
M;")-negative. Under our assumptions —(Kx» + B/ 4+ M) is nef over T]'. So there exist
boundaries B, < T, < ©} with I'; € ® U (1 — ¢;, 1] such that

—(Kxy +T7 + M) = 0/T}".

Moreover, there is a component D) of I', with coefficient t; € (1 — ¢;, 1) such that D; is
ample over T!. In particular, the set of the coefficients of the horizontal/T}’ components
of all the I' put together is not a finite set but we can assume it to be DCC. Thus by
restricting to the general fibres of X! — T/ we get a contradiction in view of the global
ACC for generalised pairs [9, Theorem 1.6].
(4) This follows from (1) since the assumptions of the proposition are stable under the
MMP.
]

3. Adjunction

In this section we discuss various kinds of adjunction that are needed in the subsequent
sections. In general adjunction is relating the (log) canonical divisors of two varieties
that are somehow related. We will consider adjunction for a prime divisor on a variety
(divisorial adjunction) and more generally for a non-klt centre on a variety (adjunction on
non-klt centres), and for certain fibrations (adjunction for fibre spaces).

3.1. Divisorial adjunction. (1) Let (X', B'+M’) be a generalised pair with data X 4 X!
and M. Assume that S’ is the normalisation of a component of B’ with coefficient 1, and
that S is its birational transform on X. Replacing X we may assume ¢ is a log resolution
of (X', B’"). Write

Kx+B+M = ¢"(Kx: + B + M),
let Bg = (B — S)|s and pick Mg ~g M|gs. We get

Kg+ Bg + Mg ~p (KX+B+M)|S.
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Let 1 be the induced morphism S — S’ and let Byr = 9,Bg and Mg = 1,Mgs. Then we
get

Kg¢ + Bsr + Mg ~g (Kx' + B'+ M')|g
which we refer to as generalised (divisorial) adjunction. Note that

Ks+ Bs+ Mg = ¢*(Kg + By + Mg).

When M = 0, we recover the usual divisorial adjunction.
Assume (X', B' + M) is generalised lc. Then the coefficients of Bg belong to [0,1] [9,
Remark 4.8]. We then consider (S’, Bg + Mg/) as a generalised pair which comes with data

S %4 8" and Msg. Tt is clear from the construction that (S’, Bgr + Mgr) is generalised lc.

(2) The above generalised adjunction formula is not unique, that is, although Bg is
uniquely determined depending on both B’ and M but Mg is not unique: if S is a component
of M, then in general M|g is only defined up to R-linear equivalence. However, in some
situations we can choose Mg so that it satisfies certain properties. For example assume pM
is b-Cartier for some p € N. Then we can choose Mg such that pMg is b-Cartier. Indeed,
we can assume ¢ is a log resolution of (X', B’) and that pM is Cartier, and then we can
choose Mg such that pMg ~ (pM)|g. In particular, pMg is Cartier. Moreover,

p(Kx+B+M)~L

where L is an R-divisor whose support does not contain S. This means that p(Kx+B+M)|s
is well-defined up to linear equivalence which in turn implies that p(Kx: + B’ + M’)|g/ is
also well-defined up to linear equivalence. Therefore, we get

p(Ks' + Bgr + Mgr) ~ p(Kxr + B'+ M')|s.

(3) Next we prove inversion of adjunction similar to the one for usual pairs.

Lemma 3.2 (Generalised inversion of adjunction). Let (X', B’ + M') be a Q-factorial
generalised pair with data X 2 X' and M. Assume S’ is a component of B with coefficient
1, and that (X', S") is plt. Let

Kg + Bgr + Mg ~g (KX/ + B + M/)’S/
be given by generalised adjunction. If (S’, Bs: + Mgr) is generalised le, then (X', B'+ M)

is generalised lc near S’.

Proof. Assume (X', B’ + M’) is not generalised lc near S’. We can assume ¢ is a log
resolution. Write

Kx+B+M=¢"(Kx +B +M).
By assumption ¢(B>') intersects S’. Pick a € (0,1) sufficiently close to 1, let TV =
(1 —«)S"+ aB’, and write

Kx +T+aM = ¢*(Kx +T" + aM’).

Then (X', TV + aM’) is not generalised lc near S’. On the other hand, since (X', S’) is plt
and (S’, Bgr + Mg) is generalised lc, (S’,T'sr + aMg) is generalised klt where
Ks/ =+ FSI =+ OzMS/ ~R (KX’ —|—F, + OéM/)’S/
is generalised adjunction. Thus replacing B’ with IV and M with oM, we can assume
(S’, Bs: + Mg) is generalised klt.
Pick an ample divisor A > 0 and an effective divisor C' > 0 on X such that A+C ~ 0/X’

and that S is not a component of C. Let € > 0 be small and pick a general 0 < G ~p
eA+M/X'. Let A:= B+G+¢€eC. Then Kx +A ~g 0/X’, hence Kx + A = ¢*(Kx: + A’)
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where A’ is the pushdown of A. In particular, (X', A") is not lc near S as A > B. On the
other hand, by assumption, (S, Bg) is sub-klt where Kg+ Bgs = (Kx + B)|s. This implies
(S,Ag) is also sub-klt by construction of A where Kg + Ag = (Kx + A)|s. Therefore,
letting Kgs + Agr = (Kxr + A')|sr we see that (S’, Ag/) is klt because Kg + Ag is the
pullback of Kg 4+ Ag/. This contradicts the usual inversion of adjunction [24].

[l

(4) The next result is similar to [39, Proposition 3.9] and [9, Proposition 4.9].

Lemma 3.3. Let p € N and R C [0,1] be a finite set of rational numbers. Then there is a
finite set of rational numbers S C [0, 1] depending only on p and R satisfying the following.
Assume

o (X', B'+ M) is generalised lc of dimension d with data X 2 X' and M,

e S’ is the normalisation of a component of | B'|,

e B’ € ®(R) and pM is b-Cartier, and

e (S’ Bgr 4+ Mg/) is the generalised pair determined by generalised adjunction

KS’ —|—BS/ +MS/ ~R (le —|—B/ +M/)‘S/.
Then Bgr € ®(6).

Proof. By taking hypersurface sections, we can reduce the lemma to the case when X' is
a surface. In this case Ky + B’ is automatically R-Cartier and (X', B’) is lc [9, Remark
4.8]. Let V be a closed point on S" and assume uy Bg < 1. In particular, if we use usual
adjunction to write K¢ + By = (Kx + B')|s:, then wyBs < pyBg < 1. Then by
inversion of adjunction on surfaces [43, Corollary 3.12], (X', B’) is plt near the image of
V. Thus shrinking X’ we can assume S’ — X’ maps S’ isomorphically onto its image, and
that X’ is Q-factorial since dim X’ = 2.

Assume B’ = " | b; B! where B} are irreducible components. By [43, Proposition 3.9
and Corollary 3.10], there is | € N depending only on (X', S’) such that the Cartier index
near V of any Weil divisor on X’ divides [ and that

- 1 ™ b
HVBS':1*7+ lll

i=1
where «o; € Z29.

Replacing ¢ we can assume X, S are smooth. Write ¢* M’ = M + E. Since M is nef/X’,
E is effective. Since pM is b-Cartier and X is smooth, pM is Cartier, so pM’ is integral
and IpM’ is Cartier. Thus IpE is Cartier. Now by definition Bys = By + Eg where Eg is
the pushdown of E|g. In particular, ipEg is integral. Therefore,
bic; + B

n

Bg=1— -
Hvbs l+¢=1 ] ol

for some 3 € 720,
Expanding R we can assume % € ‘R, hence % € ®(R). Put ap4q := B and byyq = %

So we can write
1 n+1

bia,-
Bg=1— - .
Hvbg l+; i

For each i there is r; € R and m; € N such that b, =1 — 7% Let s:=1— Z?:ll b;a;;. Then
pvBs =1 — 7 and s > 0. Removing the zero terms and re-arranging the indexes we can

assume s = 1 — 22:1 bjc;, and that b;c; > 0 for every ¢ otherwise uy Bgr =1 — % is just a
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standard coefficient. Note that since s > 0, we have Zle b;a; < 1, hence «; are bounded.

Moreover, b; > 1 — % which means b; > % if m; > 1.

8/

Now assume t = 1. Then either m; = 1, or m; > 1 and a3 = 1, hence in any case s = o

where there are only finitely many possibilities for s’. Thus
/

pvBg =1—2=1-
l mll

€ P(6)

if we choose & so that it contains all such s’. We can then assume ¢ > 1. If m; = 1 for
every %, then there are finitely many possibilities for

¢
s=1-— Z(l — ri)ai
i=1
and so we can choose & to contain all such s. But if some m; > 1, say my > 1, then iy = 1

and m; = 1 for ¢ > 1. Then
t
r
S = 71— (1—7‘1')0(1‘,
m1 X
=2
hence m; is bounded, so s = ;Tll for some s’ for which there are only finitely many possi-

bilities. As before taking & so that it contains all such s, we get py Bg € ®(S).
O

3.4. Adjunction for fibre spaces. (1) Let (X, B) be a projective sub-pair and let f: X —
Z be a contraction with dim Z > 0 such that (X, B) is sub-lc near the generic fibre of f, and
Kx + B ~g 0/Z. Below we recall a construction based on [25] giving a kind of canonical
bundle formula which we refer to as adjunction for fibre spaces [1][39, §7].

For each prime divisor D on Z we let tp be the lc threshold of f*D with respect to (X, B)
over the generic point of D, that is, tp is the largest number so that (X, B + tpf*D) is
sub-lc over the generic point of D. Of course f*D may not be well-defined everywhere but
at least it is defined over the smooth locus of Z, in particular, near the generic point of D,
and that is all we need. Next let bp = 1 — ¢p, and then define By = Y bpD where the
sum runs over all the prime divisors on Z.

By assumption, Kx + B ~gr f*Lz for some R-Cartier R-divisor Lz on Z. Letting
My =Ly — (KZ -+ Bz) we get

Kx + B~ [*(Kz+ Bz + My).

We call By the discriminant part and Mz the moduli part of adjunction. Obviously Bz
is uniquely determined but My is determined only up to R-linear equivalence because it
depends on the choice of L.

Now let ¢: X’ — X and ¢: Z' — Z be birational morphisms from normal projective
varieties and assume the induced map f’: X’ --» Z’ is a morphism. Let Kx/+B' = ¢*(Kx+
B). Similar to above we can define a discriminant divisor Bz, and taking Ly = ¢*Ly
gives a moduli divisor Mz so that

Ky + B’ ~R f,*(KZI + By + MZ’)

and BZ = Tb*BZ/ and MZ = w*MZ’-

(2) We want to show My depends only on (X, B) near the generic fibre of f, even
birationally. We make this more precise. In addition to the assumptions of (1), suppose we
are given another projective sub-pair (X, B) and a contraction X — Z such that Ky+§ ~R
0/Z. Moreover, suppose we have a birational map X --+ X/Z, and suppose there is a
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common resolution of X and X on which the pullback of Kx + B and K+ + B are equal
near the generic fibre over Z. As in (1) we can define the discriminant and moduli parts
Bz and Mz of adjunction on the birational model Z’ of Z, for the pair (X, B) and the
contraction X — Z.

Lemma 3.5. Under the above notation and assumptions, My ~gr M z.

Proof. Replacing both X and X with a common resolution over Z’, replacing Ky + B and
K+ + B with their crepant pullbacks, and replacing Z with Z’ we can assume X = X,
7' = Z, and that B = B near the generic fibre. Then B — B is vertical over Z and
B—B ~g 0/Z. So B— B = f*P for some P on Z. Therefore, by definition of the
discriminant part, Bz = Bz + P from which we get Mz ~r Mz because

K;+Bs;+Mgz+P~prKyz+ Bz + Mg
O

(3) When (X, B) is lc over the generic point of Z the moduli part has nice properties.

Theorem 3.6. Under the notation and assumptions of (1), suppose (X, B) is lc near the
generic fibre of f. Let Z' be a sufficiently high resolution of Z. Then

(i) My is pseudo-effective, and

(ii) if B is a Q-divisor, then Mz is nef and for any birational morphism Z" — Z' from
a normal projective variety, My is the pullback of M.

Proof. Let T be the divisor obtained from B by removing components that are vertical /Z.
Since (X, B) is lc over the generic point of Z, we have I' > 0 as any component of B with
negative coefficient is vertical/Z, and over the generic point of Z we have I' = B. Let
¢: W — X be a log resolution of (X, B) and let I'yyy be the sum of the horizontal /Z part of
the reduced exceptional divisor of ¢ and the birational transform of I'. We can choose W
so that every lc centre of (W,I'yy) is horizontal/Z. Running an MMP on Ky + 'y over X
we reach a model X’ so that (X', T”) is a Q-factorial dlt model of (X, B) over the generic
point of Z. Let Kx/ + B’ be the pullback of Kx + B. Replacing (X, B) with (X', B’) and
replacing (X, T") with (X', T") we can assume (X, T') is Q-factorial dlt with every lc centre
horizontal/Z, and that every component of I" is horizontal /Z.

We prove (ii) first. By [7, Theorem 1.4] we can replace X with a model on which Kx +T'
is semi-ample over Z, hence defining a contraction X — Y/Z. Since Kx + T ~qg 0/Y,
by Lemma 3.5, we can replace Z with Y and replace B with I', hence assume (X, B) is
Q-factorial dlt. The claim then follows from [13] (this relies on [2] in the klt case).

Now we prove (i). By standard arguments we can find Q-divisors B’ and numbers
a; € [0,1] with 3" a; = 1 such that B = Y «;B?, (X, BY) is lc over the generic point of Z,
and Kx + B' ~g 0/Z. Let B}, (resp. BY,) and M} (resp. M%,) be the discriminant and
moduli parts on Z (resp. Z') defined for (X, B?) over Z. Let D be a prime divisor on Z
and let t; be the lc threshold of f*D with respect to (X, B?) over the generic point of D.
Then (X, B+ (. a;t;) f*D) is lc over the generic point of D, hence t > > a;t; where ¢ is
the lc threshold of f*D with respect to (X, B) over the generic point of D. Then

1—t<1= aiti=Y ai— Y ait; =y oi(l—t;)

from which we deduce Bz < Y a; BY. Similarly we can prove Bz < Y a;BY,. Then from

Ky + By + My ~p Zai(KZ/ —|—BZZ/ —i—MZZ/)
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we deduce that Mz ~g > a; M}, + P for some P > 0. Therefore, My is pseudo-effective

as each M%/ is nef.
O

(4) Next we relate the singularities of (X, B) and (Z, Bz + Mz) in a rough sense.

Lemma 3.7. Let ¢ € R. Under the notation and assumptions of (1), suppose there is a
prime divisor S on some birational model of X such that the log discrepancy a(S, X, B) < €
and that S is vertical over Z. Then there is a resolution Z' — Z and a component T of
Bz with coefficient > 1 — €.

Proof. Pick resolutions X’ — X and Z' — Z so that the induced map f': X' --» Z' is a
morphism and so that S is a prime divisor on X’ and its image on Z’ is a prime divisor 7.
Let Kx:+ B’ be the pullback of Kx + B. Since a(S5, X, B) < ¢, the coefficient of S in B’ is
at least 1 —e. Thus the lc threshold of f*T with respect to (X', B') over the generic point

of T is at most €. Therefore, the coefficient of T" in By is at least 1 — e.
O

3.8. Adjunction on non-klt centres. In this subsection we recall a kind of adjunction
introduced in [17, Theorem 4.2] similar to the so-called sub-adjunction formula [25], and
then prove some new results in this direction.

Construction 3.9 Assume the following setting:
e (X, B) is a projective klt pair,
e G C X is a subvariety with normalisation F',
e X is Q-factorial near the generic point of G,
e A >0 is an R-Cartier divisor on X, and
e (X,B+ A) is lc near the generic point of G, and there is a unique non-klt place of
this pair whose centre is G.

We will define an R-divisor ©p on F with coefficients in [0,1]. This then gives an
adjucntion formula
Kr+0Op+ Pr~p (Kx-FB—i-A)‘F
where in general Pr is determined only up to R-linear equivalence.
Let I' be the sum of (B + A)<! and the support of (B + A)Z!. Put N = B+ A ~T
which is supported in |T'|. Let ¢: W — X be a log resolution of (X, B + A) and let 'y
be the sum of the reduced exceptional divisor of ¢ and the birational transform of I'. Let

Nw = ¢"(Kx + B+ A) — (Kw +T'w).

Then ¢.Nyw = N > 0 and Ny is supported in [I'y]. Now run an MMP/X on Ky + 'y
with scaling of some ample divisor H. We reach a model Y on which Ky 4 I'y is a limit of
movable/X R-divisors (2.9). Applying the general negativity lemma (cf. [7, Lemma 3.3]),
we deduce Ny > 0. In particular, if U C X is the set of points where (X, B+ A) is lc, then
Ny =0over U and (Y, T'y) is a Q-factorial dlt model of (X, B+ A) over U. By assumption,
(X, B+ A) is lc but not klt at the generic point of G. By Lemma 2.33, no non-klt centre of
the pair contains G apart from G itself, hence we can assume there is a unique component
S of |I'y | mapping onto G. Moreover, G is not inside the image of Ny-.

Let h: S — F be the morphism induced by S — G. By Lemma 2.33, h is a contraction.
By divisorial adjunction we can write

Ks+Ts+ Ng=(Ky +Ty+ Ny)|s ~r 0/F
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where Ng = Ny|g is vertical over F. If S is exceptional over X, then let ¥y be the sum
of the exceptional/X divisors on Y plus the birational transform of B. Otherwise let Xy
be the sum of the exceptional/X divisors on Y plus the birational transform of B plus
(1 — pgB)S. In any case, S is a component of | Xy | and ¥y < T'y. Applying adjunction
again we get Kg+ Xg = (Ky + Xy)|s. Obviously ¥g < T'g.

Now we define ©p: for each prime divisor D on F', let t be the lc threshold of h*D with
respect to (S, Xg) over the generic point of D, and then let upOp := 1 —t. Note that h*D
is defined only over the generic point of D as D may not be Q-Cartier. Same applies to
similar definitions below, e.g. see proof of 3.11.

Theorem 3.10 ([17, Theorem 4.2]). Let d € N and let ® be a subset of [0, 1] which contains
1. Let X,B,A,G,F,Op, Pr be as in Construction 3.9 and assume dim X =d and B € ®.
Then the coefficients of O belong to

U= {a|1—a € LCTy_(D(®))} U {1}

and Pr is pseudo-effective.

Now suppose in addition that G is a general member of a covering family of subvarieties
of X. Let: F' — F be a log resolution of (F,OF), and let © g be the sum of the birational
transform of O and the reduced exceptional divisor of 1. Then

Kpr+0©p > (Kx + B)|p-

For convenience we explain some of the notation in the theorem and also prove the claim
of pseudo-effectivity of Pp in the next paragraph. The set D(®) is a set associated to ®
with the properties: D(®) is DCC iff ® is DCC and the coefficients of X g in Construction
3.9 belong to D(®) (see [17, 3.4] and [39, Proposition 3.9]). The set LCTy_1(D(®)) stands
for the set of all lc thresholds of integral effective divisors with respect to pairs (S,I") of
dimension d — 1 such that I' € D(®). In particular, if ® is DCC, then ¥ is also DCC [17,
Theorem 1.1].

Now recall that Pr is defined by the relation

Kr+0Op+ Pp ~r (Kx + B+ A)|p.
Using the notation of 3.9, we have
Ks+Tg+ Ng ~r h*(Kp + Op + Pp).

Let Ap and Rp be the discriminant and the moduli parts of adjunction for (S,T's + Ng)
over F'. Then Ar + Rp ~gr ©Op + Pr. Since Xg < I's + Ng, we have O < Ap, hence
Pr — Rp ~gr Ap — Op > 0. By Theorem 3.6, Rr is pseudo-effective which implies Pg is
pseudo-effective too.

In the rest of this subsection we prove further results regarding the above adjunction.
The proof of 3.12 contains a proof of the last claim of 3.10 (when G is a member of a
covering family) based on the proof of [17, Theorem 4.2] but with more details.

Lemma 3.11. Let (X, B),A,G,F, and Op, be as in Construction 3.9. Let M > 0 be a
Q-Cartier Q-divisor on X with coefficients > 1 and such that G ¢ Supp M. Then for every
component D of Mp := M|p we have up(Or + Mp) > 1.

Proof. We will use the notation introduced in Construction 3.9. Let X, := Xy + My and
Yy =Yg+ Mg where My = M|y and Mg = My|s. We define ©/, similar to ©. That is,
for each prime divisor D on F, let ¢’ be the lc threshold of h*D with respect to (5, Xy) over
the generic point of D, and then let up©% :=1—¢'. It is easy to see ¢’ + ppMp = t. This
means O, = Op + Mp. On the other hand, each component L of My is either exceptional



Anti-pluricanonical systems on Fano varieties 35

or non-exceptional over X: in the former case L is a component of | Xy | as | Xy | contains all
the exceptional divisors, and in the latter case L is a component of | My | as the coefficients
of M are at least 1. Combining this with the fact that S is not a component of My, we get

Supp My C Supp | Xy + My — S| = Supp LZS/ — SJ .

Therefore,
Supp Mg C (Supp LES/ — SJ)]S C Supp LE%J

where the second inclusion follows from the following property of adjunction: if T is a
reduced divisor on Y not containing S and if Kg + Ts = (Kg + S + T)|g is given by
adjunction, then SuppT|s C Supp |Ts].

Now as h*Mp = Mg, if D is a component of Mg, then every component of h* D mapping
onto D is a component of |¥|. Thus ¢’ < 0 where as above ¢’ is the lc threshold of h*D
with respect to (S, ¥') over the generic point of D. Therefore,

MD(@F+MF) :MD@/F =1-¢ > 1.
O

Lemma 3.12. Let (X,B),A,G,F, and ©f be as in Construction 3.9. Assume that G is
a general member of a covering family of subvarieties, and assume (X, B) is e-lc for some
€ > 0. Then there is a sub-boundary Br on F such that Kp + Bp = (Kx + B)|r, that
(F, BF) is sub-e-lc, and Br < Op.

Proof. We first give a short summary of the proof. We consider the covering family to
which G belongs, and then derive another family W’ — R’ such that the induced morphism
W' — X is generically finite. Next we let Ky~ + By be the pullback of Kx + B, and re-
stricting to the fibre F’ of W' — R’ corresponding to G, we get Kp+ B = (K +Bw)|p.
Pushing down Bpr to F gives Bp. Afterwards we show (F, Br) is sub-e-lc. The rest of the
proof is devoted to showing Br < Of by relating the coefficients of O to lc thresholds of
certain divisors on X.

Step 1. In this step we consider the covering family to which G belongs. There is a
contraction f: V — T of projective varieties such that G is a general fibre of f, and there
is a surjective morphism V — X whose restriction to each fibre of f over a closed point
is a closed immersion (see 2.27). Taking normalisations of V and T, we get a contraction
f:V — T of normal projective varieties such that the fibre of f corresponding to G is just
F the normalisation of G. Taking resolutions of V' and T we get a contraction f': V' — T"
of smooth projective varieties. Letting F’ be the fibre of f’ corresponding to F', we see that
the induced morphism F’ — X is birational onto its image. Moreover, we can assume there
is a Cartier divisor P > 0 on X whose support contains Supp B and the singular locus of X
and such that Q' := Supp ¢”* P is relatively simple normal crossing over some open subset
of T" where ¢’ is the induced map V' — X.

Step 2. In this step we consider another covering family which is generically finite over
X. Fixing G, by construction, f’ is smooth over ¢ = f/(F’), ¢’ is smooth over ¢ (ngr),
and ¢'(ng/) is smooth on X. If ¢’ is generically finite, then let W/ := V' and R’ :=T"'. If
not, applying Lemma 2.28, there is a general smooth hypersurface section H' of T passing
through ¢ so that if U’ = f*H’, then U’ and H' are smooth, U’ — H' is smooth over
t', and U’ — X is surjective and smooth over ¢'(ng). Repeating this we get a smooth
subvariety R’ of T’ passing through ¢ so that the induced family W’ — R’ is smooth
over t', W' is smooth, W’ — X is surjective and generically finite and étale over ¢'(ng).
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Let Qw' = Q'|ws. Then by construction, Qu|p = Q'|p+ is reduced and simple normal
crossing. Therefore, near F’ the divisor Q- is reduced and any prime divisor C’ on F’ is
contained in at most one component of Q.

Step 3. In this step we define a sub-boundary Bgs whose pushdown to F gives Br. Let
Ky + By be the pullback of Kx + B to W'. Here Ky and By are uniquely determined
as Weil divisors (we assume we have already fixed a choice of Kx). Let W/ — W — X be
the Stein factorisation of W/ — X. By the Riemann-Hurwitz formula, each coefficient of
By is < 1 — € where Ky + By is the pullback of Kx + B. Thus (W, Byy) is sub-¢-lc by
[36, Proposition 5.20], hence (W', By/) is also sub-e-lc. On the other hand, by our choice
of P, any component of By with positive coefficient is mapped into P, hence it is a com-
ponent of Q. Moreover, since G was chosen general, it is not inside Supp Kx U Supp P.
Thus since W/ — X is étale over ¢'(ng+), F' is not inside Supp By nor inside Supp K.
Deﬁning BF/ = BW"F’ we get KF/ + BF/ = (KW/ + BW’)|F’ where KF/ = KW”F’ follows
from the fact that W’ — R’ is smooth near F’ (note that Kz is determined as a Weil di-
visor). Let K+ Bp be the pushdown of Kpr + Bp» which satisfies Kr+ Bp = (Kx + B)|F.

Step 4. In this step we show (F, Bp) is sub-e-lc. It is enough to show (F’, Bg) is sub-e-lc.
This in turn follows if show that (F’, Ap/) is e-lc where Ay := B%B and Apr = Awr|pr.
By the previous step, Supp Ay C Supp Qw, hence

Supp Apr = Supp(Aw| ) € Supp(Qw k) = Supp(Q'| ).

So Supp A is simple normal crossing as Supp(Q’|g+) is simple normal crossing. Therefore,
it is enough to show each coefficient of Aps is <1 —e.

Let C’” be a component of A with positive coefficient. Then there is a component D’ of
A with positive coefficient so that C’ is a component of D’'|g/. Since D’ is a component
of Qwr, by the last sentence of Step 2, D’ is uniquely determined and D'|g is reduced.
Then /LD/BW/ = ,U,D/AW/ = NC’AF" But ,U,D/BW/ < 1 — € because (W/,BW/) is sub—e—lc,
hence pucrApr <1 —e.

Step 5. In this step we compute the coefficients of © in terms of lc thresholds of certain
divisors. Assume C is a prime divisor on F with ucBp > 0. Let C’ on F’ be the birational
transform of C. Then pucBps > 0. Thus there is a unique component D’ of BI/>V0’ with
positive coefficient such that C’ is a component of D’|p. In particular, po Bpr < per Apr =
wpr By as in the previous step (note that we do not claim perBpr = ppr By because we
have not ruled out the possibility that another component of By with negative coefficient
contains C’). Let L = ¢P and let Ly = L|y and Lg» = L|p where ¢ is the number so
that ,LLD/LW/ = 1. Then MC/LF’ = MD’LW/ =1.

We use the notation introduced in Construction 3.9. Recall that we constructed a bira-
tional morphism Y — X which we denote by 7, a boundary ¥y, a component S of |Yy |
mapping onto G, and Xg defined by Kg + Xg = (Ky + Xy)|s. Let Lg = L|s and let
t be the lc threshold of Lg with respect to (S,Xg) over the generic point no of C. By
construction, puc(L|p) = perLpr = 1, so under h: S — F the divisor Lg is equal to h*C
over ng. Therefore, ucOrp =1 —+t.

Step 6. In this step we consider the lc threshold of L on X. Let s be the lc threshold
of L with respect to (X, B) near v(nc) where v denotes F' — G. Let I be the minimal
non-klt centre of (X, B+ sL) which contains v(n¢). Since G € Supp L, we have G € I. Let
Ly = n*L and write Ky + By = 7*(Kx + B). Let Iy be a non-klt centre of (Y, By + sLy)
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which maps onto I. Since ¥y > By, Iy is also a non-klt centre of (Y, Xy + sLy). Note
that Iy # S.

Step 7. In this step and the next step we assume X is Q-factorial. In this step we show
t < s. This follows if we show that some non-klt centre of (S,¥Xg + sLg) maps onto C. Let
IT be the fibre of 7 over a general closed point of v(C') and let H be the corresponding fibre
of S — G. Then II is connected, and since X is Q-factorial, II is inside the union of the
exceptional divisors of m, hence II C |Xy |. Moreover, [y intersects II.

Let E be the connected component of H which maps into C under S — F'. If a component
R of |[Xy] — S intersects E, then RN S gives a non-klt centre of (S,Xg + sLg) mapping
onto C' (note that (| Xy ] —5) N S is vertical over F'). We can then assume |Xy | — S does
not intersect FZ. Then £ = H = II : indeed otherwise since II is connected, there is a curve
Z C Il such that Z ¢ E but Z intersects E; this is not possible because Z cannot be inside
|Xy | — S as E does not intersect [Xy | — S, so Z is inside S, hence it is inside E as it
intersects F, a contradiction.

Now Iy intersects E = II by the first paragraph of this step, so by inversion of adjunc-
tion, Iy NS produces a non-klt centre of (S,Xg + sLg) intersecting F, and so the centre
maps onto C' as required. Thus we have proved t < s.

Step 8. In this step we show Bp < ©p. Since (X, B + sL) is lc near v(nc¢), the sub-pair
(W', By + sLyy) is sub-lc over v(n¢) which implies

pp By + s = pp/(Bwr + sLyyr) <1
where D’ is as in Step 5. Therefore,
ucBr +t < pueBpr+s < pup By +s <1

where we use the inequality pucBpr < pp/ By observed in Step 5. Therefore, we get
weBr <1 —t=pucOr.

Step 9. In this final step we take care of the non-Q-factorial case. Assume X is not Q-
factorial and let X — X be a small Q-factorialisation. Let B, A, G, etc, be the birational
transforms of B, A, G, etc. We can assume Y — X and W’ — X both factor through
X — X. Let F be the normalisation of G. Then we have induced morphisms S — F — F
where F' — F is birational. We can define ©7 whose pushdown to F'is just ©p. Also we
can write K4+ By = (K x + B)| where the pushdown of By is just Br. Thus it is enough
to show By < ©7. Now apply the arguments of Steps 7 and 8 on X.

O

3.13. Lifting sections from non-klt centres. In this subsection we show that under
suitable assumptions we can lift sections from a non-klt centre. This is a key ingredient of
the proof of 4.11 in the next section. First we prove a lemma.

Lemma 3.14. Let (X,B),A,G,F,Op, Pp,S,I's, Ng be as in Construction 3.9. Assume
Pr is big. Then

(1) if there is a prime divisor D on birational models of S such that a(D,S,T's+ Ng) < €
and that the centre of D on S is vertical over F where € > 0, then we can choose Pr > 0
so that (F,Op + Pr) is not e-lc;

(2) if (X, B+ A) has a non-klt centre intersecting G but not equal to G, then for each
d > 0 we can choose Pp > 0 so that (F,©p + Pp) is not d-lc.
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Proof. We use other notation introduced in Construction 3.9. Let Ay :=T'y + Ny and let
Ag:=Tg+ Ng.

(1) Applying Lemma 3.7, there is a high resolution F’ — F so that some component T
of A has coefficient larger than 1 — € where Ap/, R are the discriminant and moduli
divisors on F” associated to (S, Ag) over F (we will use R below).

Pick a sufficiently small number ¢ > 0. Since Pr is big, we can assume Pr = Ap + Cp
where Ap > 0 is ample and Cp > 0. Let Qp = Op + Cp and let Kg + Qg be the pullback
of Krp + Qp. Then the coefficient of T" in tQp + (1 — t)Aps is more than 1 — e. As the
moduli part Rp is pseudo-effective (3.6), we can find

0< Jp ~p tAp + (1 — ) Rp
where Apr is the pullback of Ap. Therefore,
(F' Qe + (1 —t)Ap + Jpr)
is not sub-e-lc. Moreover, as Kg' + Apr + R is the pullback of Kgp + Ap + Rp and as
K + Qp + Apr is the pullback of Kr + Qp + Ap, we see that
Kpr +tQp + (1 = t)Apr + Jpr ~r H(Kpr + Qpr + Apr) + (1 = ) (Kpr + Apr + Rpv)
is R-linearly trivial over F', hence it is the pullback of
Krp+tQr+ (1 —-t)Ap+ Jr
where Jp is the pushdown of Jgs. Therefore,
(F,tQp + (1 —t)Ap + Jr)
is not e-lc.
On the other hand, we have
tQp + (1 —t)Ap + Jp ~p tOp +tCp + (1 — t)Ap + tAp + (1 — t)Rp

=tOp+tPr+ (1 —t)Ar+ (1 —t)Rp ~gr O + Pp.
Moreover, by construction, Ap > ©p because Ay > I'y > 3y which gives Ag > Xg (here
Yy and Xg are as in 3.9 which are used to define O ), hence

tQr + (1 —t)Ap > t0p + (1 —t)Ap > Op.

Thus if we change Pr to
tQp + (1 — t)AF + Jp — Op,

then Pr is effective and (F, O + Pr) is not e-lc.

(2) By assumption, some non-klt centre H # G of (X, B+ A) intersects G, hence there is
a non-klt centre Z # S of (Y, Ay) intersecting S and mapping onto H, by the connectedness
principle applied to (Y, Ay) near fibres of 7 over points in H N G. Thus some component
of |Ay — S| intersects S as the non-klt locus of (Y, Ay) is equal to |[Ay | = [I'y| because
(Y,T'y) is dlt and Supp Ny C [I'y|. This in turn gives a component of |Ag| which is
vertical over I as there is a unique non-klt place of (Y, Ay) with centre G. Applying (1)
we can choose Pp > 0 in its R-linear equivalence class such that the pair (F,©F + Pr) is
not d-le.

O

Proposition 3.15. Let d,r € N and e € R>°. Then there is | € N depending only on d,r, €
satisfying the following. Let (X,B),A,G,F,OF, and Pr be as in Construction 3.9, and
assume G is a general member of a covering family of subvarieties. Assume in addition
that

e X is Fano of dimension d and B = 0,
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e A~g—(n+1)Kx for somen €N,

o W(—nrKx|r) #0, and

o Pr is big and for any choice of Pr > 0 in its R-linear equivalence class the pair
(F,OF + Pp) is e-lc.

Then hO(—InrKx) # 0.

Proof. We give a short description of the proof. The idea is to show that G is an isolated
non-klt centre. Moreover, if 7: Y — X and S,I'y, Ny are as in Construction 3.9, then
(Y,T'y + Ny) is plt near S. Next we pull back a section in H(—nrKx/|r) to S and in turn
lift the section to HO([—Inrn*Kx]) on Y using vanishing theorems where I is a bounded
natural number. Finally we push the section down to X to deduce h°(—IrnKx) # 0.

Step 1. In this step we show G is an isolated non-klt centre. We use the notation of
Construction 3.9. Remember that (X, A) is lc near the generic point of G. Also recall
that |I'y'] has a unique component S mapping onto G. Letting Ay = I'y + Ny we have
Ky + Ay = 7*(Kx + A) where 7 denotes Y — X. Let Kg+ Ag = (Ky + Ay)|s.

Assume G is not an isolated non-klt centre. Then some non-klt centre H # G of (X, A)
intersects G. Applying Lemma 3.14, we can choose Pr > 0 in its R-linear equivalence class
such that the pair (F,Or + Pp) is not e-lc, a contradiction. In particular, (Y, Ay) is plt
near S and that no component of |Ay — S| intersects S.

Step 2. In this step we show F := 7*(—nrKx) is an integral divisor near S, and that it
has bounded Cartier index near codimension one points on S. Since G is a general member
of a covering family of subvarieties of X, the generic point of G is in the smooth locus of X,
hence Kx is Cartier near this point. Thus the coefficient of S in F is integral, hence any
component of E whose coefficient is not integral (if there is any) should be an exceptional
divisor of 7 other than S. But such exceptional divisors do not intersect S, by Step 1.
Therefore, E is integral near S.

Let V be a prime divisor on S. If V is horizontal over GG, then E is Cartier near the
generic point of V. Assume V is vertical over G. We want to show the Cartier index of
E near the generic point of V is bounded. Let p be the Cartier index of Ky + S near
the generic point of V. Then puyAg > 1 — % and the Cartier index of E near the generic

point of V' divides p [43, Proposition 3.9]. Therefore, % > e otherwise puyAg > 1 — ¢, hence

(S,Ag) is not elc, so by Lemma 3.14, we can choose Pp > 0 so that (F,©p + Pp) is not
e-lc, a contradiction. This means that p is bounded depending only on €, hence the Cartier
index of F near the generic point of V is also bounded.

Step 3. In this step we use Kawamata-Viehweg vanishing to show h!([IE—|Ty |—Ny]) =
0 where [ € N is at least 2. Indeed pick 2 <[ € N and define L by the relation
[E —|Ty| — Ny] =1E — |Ty| — Ny + L.

Each component of L is either an exceptional/X component of E or is a component of Ny,
and in either case the component cannot be S. Then Ny + L is supported in [I'y | — §
which is disjoint from S by Step 1.

On the other hand, the Q-divisor

I:=IF— (Ky +Ay)=r"(—-lnrKx) — " (Kx + A)
~o ' (—InrKx) + m(nKx) = —(Inr —n)m* Kx
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is nef and big. Now we can write
[I[E—|I'y|—Ny|=IE—|I'y|—Ny+1L

~o Ky +Ay+I—|I'y|-Ny+L=Ky+Ty—[I'yv]+L+1I
Moreover, (Y,T'y — [I'y| + L) is klt because (Y,T'y) is dlt and because L is supported in

|T'y | with coefficients less than 1. Thus by the Kawamata-Viehweg vanishing theorem (cf.
[36, Theorems 2.70 and Corollary 5.27]), we get

hY([IE — [Ty ] — Ny1) =0.

Step 4. In this step we lift sections of [IE]|s to Y from which we produce sections
of —lnrKx, for some bounded number [. Let U C X be the largest open set on which
[[E — |I'y] + S — Ny is Cartier. By Step 2, we can choose a bounded I > 2 so that
no codimension two component of X \ U is contained in S where we use the fact that
|’y ] — S+ Ny does not intersect S and that E is integral near S. Thus the codimension
of S\ (SNU) in S is at least 2. Therefore, by Lemma 2.42, we have the exact sequence

0— Oy(”E — LPyJ — Ny—‘) — Oy(”E — LFyJ + S5 — NY—D — OS(’—ZEHS) — 0.

Note that to apply the lemma we need S to be Q-Cartier which is the case as Y is Q-factorial
by construction.
On the other hand,
[lE]|s = E|s = h*(~InrKx|r)
where h denotes S — F, and by assumption, h°(—InrKx|r) # 0. Thus h°([IE]|s) # 0.
Therefore, the above exact sequence combined with the vanishing at the end of Step 3 imply

RO([IE — [Ty ] + S — Ny]) # 0.

This in turn gives h%([IE]) # 0 as — [Ty | + S — Ny < 0, hence we get h®(—InrKx) # 0.
]

4. Effective birationality

In this section we prove Theorem 1.2 under certain extra assumptions. These special
cases are crucial for the proof of all the main results of this paper. One case is when we
have an effective R-divisor B whose coefficients are bounded from below and Kx + B ~g 0
(4.9), e.g. in practice when X is non-exceptional we can find such B using induction
and complements. Another case is when singularities of X are canonical or close to being
canonical (4.11). Before we get to these results we make some technical preparations.

4.1. Singularities in bounded families. The next result roughly says that effective
divisors with “degree” bounded from above cannot have too small lc thresholds, under
appropriate assumptions. A far more general form of this is proved in [5, Theorem 1.6]
which is one of the key ingredients of the proof of BAB.

Proposition 4.2. Let e € R>? and let P be a bounded set of couples. Then there is 6 € R>?
depending only on €, P satisfying the following. Let (X, B) be a projective pair and let T be
a reduced divisor on X. Assume

(X, B) is e-lc and (X,SuppB+T) € P,

L >0 is an R-Cartier R-divisor on X,

L ~g N for some R-divisor N supported in T, and

[ ]
[ ]
[ ]
e the absolute value of each coefficient of N is at most .
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Then (X, B+ L) is klt.

Proof. We may assume all the members of P have the same dimension, say d. We prove
the proposition by induction on d. Let (X, B),T, L, N be as in the statement for some ¢,
and assume (X, B + L) is not klt. First assume d = 1. Then deg L > ¢, hence deg N > .
This is not possible if § is small enough because deg N < §deg T and deg T is bounded. So
we can assume d > 2.

We can find a log resolution ¢: W — X of (X, B+ T) such that if we write

Kw +Bw =¢"(Kx +B)+ E

where By > 0 and E > 0 have no common components, and let Ty be the sum of the
birational transform of T and the reduced exceptional divisor ¢, then (W, By ) is e-lc and
(W, Supp Bw +Tw ) belongs to a bounded set of couples S determined by some presentation
of P (as in 2.19). Let Ly = ¢*L and Ny = ¢*N. Then there is m € N depending only on
P, S so that the absolute value of each coefficient of Ny is < md. Therefore, we can replace
P with § and replace (X, B), T, L, N, 6 with (W, Bw ), Tw, Lw, Nw, md, hence assume from
now on that (X, Supp B + T) is log smooth.

We will argue that perhaps after replacing P and modifying T, N we can assume that
B and T have no common components and T is very ample. Write 7' = > T, where T;
are irreducible components. Since P is bounded, there is a reduced divisor I' = Z?q T;
on X such that I'; are distinct prime very ample divisors which are not components of B,
and T; ~ I'9; — I'9;_1. Moreover, we can assume the couples (X, Supp B + I') belong to a
bounded family. Using the linear equivalences T; ~ I'g; — I'9;_1 we can modify N so that
it is now supported in I' but still the absolute value of each of its coefficients is at most
0. Now replacing T with I' and replacing P accordingly we can assume B and T have no
common components and that 7" is very ample.

Now assume 0 is sufficiently small. Let D be a prime divisor on birational models of X
such that a(D, X, B + L) < 0. We show D is not a divisor on X. Since T is very ample
and T? is bounded, from T% 1. L = T% 1. N < §T?% we deduce that if [ is a coefficient
of L, then | < §T¢. This shows that D cannot be a divisor on X as we can assume
pup(B+ L) <1—e+6T% < 1. Therefore, D is exceptional/X.

Let V be the centre of D on X. First assume V is not inside Supp B. In this case we
can remove B and assume B = 0. Let H be a general member of |rT| intersecting V' where
r is sufficiently large depending on P. Then H is irreducible and smooth, (X, H) is plt but
(X, H + L) is not plt near any component of V' N H. This implies (H, L) is not klt near
any component of V'-N H where Ly = L|g [36, Theorem 5.50]. The divisor T'|x is reduced
unless dimV = 2 and V is the intersection point of two components of T in which case
the coefficients of T'|y are at most 2. Letting Ny = N|pg, we see that Ny is supported in
Ty := Supp T'| g with absolute value of coefficients < 26. By construction, (H,Tx) belongs
to a bounded set of couples Q. So applying induction we get a contradiction as d can be
chosen according to Q.

Now assume V' is inside some component S of B. Let A = B+ (1 —b)S where b = ugB.
Then (X, A) is plt and [A] = S. Moreover, since | := ugL < §T? (as observed above), we
can assume | = ugl < e <1—0b, hence B+ L <A+ L—1S. Thus V is a non-klt centre of
(X,A+L—1S), and since ug(A+L—15) =1, S is also a non-klt centre of (X, A+ L—1S).
Thus (X, A+ L —1S) is not plt near V.

Let Kg+ Ag = (Ks+ A)|s and Lg = (L —15)|s. Then (S, Ag) is e-lc but (S, Ag+ Lg)
is not klt. Perhaps after adding some components to T, we can assume S ~ S’ where
S’ is supported in T and with bounded absolute value of coefficients. By construction,



42 Caucher Birkar

Ls ~gr Ng := (N —15)|s is supported on Ts := T|g and the absolute value of each
coefficient of Ng is at most nd where n € N depends only on P. Moreover, (.S, Supp Ag+Ts)
belongs to a bounded set of couples R. Now applying induction on induction we again get
a contradiction.

O

4.3. Log birational boundedness of certain pairs. In various places in this paper we
use the next statement to find a bounded birational model X of a given variety X, e.g.
proofs of 4.6, 4.9, 4.11. This allows us to translate problems about X to problems about
X which are then more tractable.

Proposition 4.4. Let d,v € N and let e € RV, Then there exist a number ¢ € R% and a
bounded set of couples P depending only on d,v, € satisfying the following. Assume

X is a normal projective variety of dimension d,

B >0 is an R-divisor with coefficients in {0} U [¢, 00),

M >0 is a nef Q-divisor such that |M| defines a birational map,
M — (Kx + B) is pseudo-effective,

vol(M) < v, and

if D is a component of M, then up(B+ M) > 1.

Then there is a projective log smooth couple (X, Y<) € P and a birational map X - X
such that

(1) Supp X contains the exceptional divisor of X --» X and the birational transform
of Supp(B + M);

(2) if X' - X and X' — X is a common resolution and M= is the pushdown of
My := M|x/, then each coefficient of M~ is at most c;

(3) there is a resolution W — X such that My, := M|w ~ Aw + Rw where Ay is the
movable part of | My |, |Aw| is base point free, and if X' — X factors through W,
then Axr = Aw|x ~0/X.

Proof. First we give a short summary of the proof. Since |M| defines a birational map,
there is a resolution ¢: W — X such that ¢* M decomposes as the sum of a base point free
movable part Ay and fixed part Ryy. Since vol(M) < v, the contraction defined by Ap
gives a bounded birational model X. To find Y+ as in the statement, the idea is to argue
that vol(Kx + X + 2(2d + 1)A) is bounded from above where A is the pushdown of Ay
and X is the support of B + M union a divisor derived from a multiple of Ay. Applying
[18, Lemma 3.2] and [18, Lemma 2.4.2(4)] would then produce the required (X, YX+) after
taking an appropriate resolution.

Step 1. In this step we introduce some basic notation. Since |M | defines a birational map,
M is big. Moreover, by Lemma 2.6, there is a log resolution ¢p: W — X of (X, Supp(B+M))
such that

where Ay is the movable part of | M|, |Aw| is based point free defining a birational con-
traction, and Ry > 0 is the fixed part. We can assume Ayy is general in the linear system
|Aw|. We denote the pushdown of Ay, Ry to X by A, R respectively. Note that Ry is
only a Q-divisor but R is integral.
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Step 2. In this step we define an auxiliary boundary Qy on W. Decreasing € we can
assume € € (0,1). Let Hy € |6dAw| be general. Let D be a prime divisor on W. Then let
the coefficient of D in Qy be

1—e€ if D is exceptional /X,
1—c¢ if D is a component of My,

upQy =< € if D is a component of B~ but not of My,
i if D = Hyy,
0 otherwise

where B™ is the birational transform of B. The pair (W, Q) is log smooth, and by Lemma
2.46, Kw + Qw is big.

Step 3. The aim of this step is to show that vol( Ky + Q) is bounded from above. Since
M — (Kx + B) is pseudo-effective and since vol(M) < v,

vol(Kx + B + 5dM) < vol(6dM) < (6d)%
hence the left hand side is bounded from above. Now we claim
vol(Kx 4+ Q) <vol(Kx + B + 5dM)

where (2 is the pushdown of Qyy. This follows if we show B + 5dM — € is big.
Let D be a component of €2. Then either D is a component of M or a component of B
or D = H the pushdown of Hyy. In the first case,

MDQ:1_€<1§ND(B+M)

where the inequality 1 < pup(B + M) holds by assumption. If D is as in the second case
but not the first case, then

e=upQ < pupB < up(B+ M).

So we get
B+ M + %H -0 2>0.
On the other hand, 4dM — 3dA is big, hence
4dM — %H ~q 4dM — 3dA
is also big. This combined with the previous sentence implies the bigness of B 4+ 5dM — Q.
We have shown that vol(Kx + ) is bounded from above. Thus since

vol(Kw + Qw) < vol(Kx + )

we get the required boundedness of vol( Ky + Q).

Step 4. In this step we show the existence of P and (X, X+) satisfying (1). To do this
we need to show that (W, Q) is log birationally bounded. Let Xy := Supp Q. First we
show

vol(Kw + Xw +2(2d + 1) Aw)
is bounded from above. Since Ky + Qyy is big and since the coefficients of 2y belong to
{e, %, 1 — €}, there is a € (0, 1) depending only on d and € such that Ky + aQyy is big [17,
Lemma 7.3]. By definition of Qyy, taking a large but bounded number p, we get

VO](KW +Xw + 2(2d + 1)Aw> < VOI(KW + Qw + p(l — Q)Qw)
< vol(Kw + Qw + p(Kw + aQw) + p(1 — a)Qw)
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<vol((1 + p)(Kw + Qw))

which shows the left hand side volume is bounded from above.

By construction, |Ay| is base point free defining a birational contraction. Thus by [18,
Lemma 3.2], Sy, - A%! is bounded from above. Therefore, (W, Q) is log birationally
bounded by [18, Lemma 2.4.2(4)] as the volume of Ay is bounded.

If W — X is the contraction defined by Ay, then (X,%3) is log bounded where ¥
is the pushdown of Xy, and ¥ ; contains the exceptional divisor of X --» X and the
birational transform of B 4+ M. Thus there is a log resolution X — X of (X,¥¢) such
that if ¥+ is the sum of the reduced exceptional divisor of X — X and the birational
transform of ¥ ¢, then (X, ¥+ ) is log smooth and belongs to a fixed bounded set of couples
P depending only on d,v,e. Moreover, Y+ contains the exceptional divisor of X - X
and the birational transform of B + M.

Step 5. In this step we prove (2) and (3). Take a common resolution X’ — W and
X" — X. Let Ax/, Rx/, Hx' be the pullbacks of Ay, Ry, Hw, and A, Ry, Hy be their
pushdown to X. By construction,

- 1
HX/ ~ 6dAX/, AX/ ~ O/X, and EY > QHY

In particular, there is a number b € N depending only on P such that we can pick an ample
Cartier divisor C so that bH~ — C is big. Then bHx/ — Cx is also big where Cx is the
pullback of C. Thus if Mx is the pullback of My, and if M is the pushdown of My,
then we have

M - c%—l = My - C%7 < vol(Mx: + Cxr) < vol(Mx: + bHxr) < vol((1 + 6bd) M)

where the first inequality uses the fact that My, Cx/ are both nef. Therefore, M~ - C’%_ !
is bounded from above which implies the coefficients of M~ are bounded from above by
some fixed number ¢. That is, (2) holds. Note that we have assumed that X’ — X factors
through W — X but (2) holds even if X’ — X does not factor through W — X because
M~ does not depend on the choice of the common resolution.
Finally, (3) holds as by construction My ~ Aw + Ry where Ay is the movable part of
| My |, |Aw| is base point free, and Ax: ~ 0/X.
O

4.5. Boundedness of singularities on non-klt centres. The next result is about bound-
edness of singularities on the normalisation of a non-klt centre in the context of adjunction
as in 3.9. This is key to the proofs of 4.8, 4.11, 5.1.

Proposition 4.6. Let d,v € N and ¢,¢' € R0 with € < e < % Then there exists t € R>0
depending only on d,v, €, € satisfying the following. Assume X,C,M,A,G,F,Or, Pr are
as follows:

e (X,C) is a projective e-lc pair of dimension d,

o C is R-Cartier with coefficients in {0} U[e, 1 — €],

e M is an ample integral divisor and |M| defines a birational map,

e 0 <A ~gaM for some0 < a<t,

e Kx +C+ A is ample and M — (Kx + C + A) is big,

o G is a member of a covering family of subvarieties of X, with normalisation F,

e there is a unique non-klt place of (X, A) whose centre is G,
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e the adjunction formula
Kr+0OFp+ Pr~gr (Kx +A)[r

is as in 3.9 assuming Pp > 0, and
e vol(M|F) < v.

Then for any 0 < Lp ~gr M|p, the pair
(F,C‘F—l-@F—i-PF—l-tLF)
is € -lc.

Proof. We first give a summary of the proof. Note that the adjunction formula in the
statement is as in Construction 3.9 but with B = 0. After looking at the adjunction
formula more closely and letting Cr := C|p and Mp := M|p, and using 4.4, we will find a
log bounded birational model (F, %) of (F,Supp(©p + Cr + Mp)). We then argue that

Kr+Cpr+0Op+ Pp+tLp

is ample, hence its singularities cannot be worse than singularities of its “crepant pullback”
to F. At the end we apply 4.2 to control singularities on F'.

Step 1. In this step we introduce some basic notation. We will assume dimG > 0
otherwise the statement is vacuous. Since |M| defines a birational map, we can assume
M > 0. Moreover, changing M up to linear equivalence, by Lemma 2.6, there is a log
resolution ¢: W — X of (X, Supp(C + M)) such that we can write

where Ay is the movable part of |[Myy|, |Aw| is based point free defining a birational con-
traction, and Ry > 0 is the fixed part. We denote the pushdown of Ay, Ry to X by A, R
respectively. Note that Ry is only a Q-divisor but R is integral.

Step 2. In this step we have a closer look at the adjunction formula given in the statement,
and the related divisors. First note that since G is a general member of a covering family
(as in 2.27), it is not contained in Supp(C'+ M), and X is Q-factorial near the generic point
of G. By Theorem 3.10 (here we take B = 0) and the ACC for lc thresholds [17, Theorem
1.1], the coefficients of O are in a fixed DCC set ¥ depending only on d.

Since both Kx + C and C are R-Cartier, Kx is Q-Cartier. By Lemma 3.12 (again here
B =0), we can write Kp + Ap = Kx|p where (F,Ar) is sub-klt and Ar < Op. On the
other hand, since G is not contained in Supp C, the unique non-klt place of (X, A) whose
centre is G is also a unique non-klt place of (X,C + A) whose centre is G. Thus applying
Lemma 3.12 once more (this time by taking B = C), we can write Kp + Cp = (Kx +C)|r
where (F,CF) is sub-e-lc. Note that

C’FZAF+C|F§@F+C’F.

Step 3. Let Cp := C|p and Mg := M|p. In this step we show
(F,Supp(©F + Cr + MF))

is log birationally bounded using Proposition 4.4. Since G is a general member of a covering
family, we can choose a log resolution F/ — F of the above pair such that we have an induced
morphism F’ — W and that |Ap| defines a birational contraction where Ap := A |pr.
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Thus |Ap| defines a birational map where Ap is the pushdown of Ags. This in turn implies
|Mp| defines a birational map because Arp < Mp. Moreover,

Kp+Cp+0Op+Pp~p (Kx+C+A)|p
is ample, and by the generality of G,
MF—(KF—i-CF—i-@F—‘v-PF) ~R (M— (KX"FC—FA))’F
is big which in turn implies
Mp — (Kp+Cp + OF)
is big as well.

On the other hand, by Lemma 3.11, up(©p + Mp) > 1 for any component D of Mp.
Applying the lemma once more, up(Op + %CF) > 1 for any component D of Cr because
each non-zero coefficient of %C is at least 1. In particular, replacing e with the minimum
of U0 U {e}, we can assume the coefficients of O + C belong to {0} U [e, 00).

Now applying Proposition 4.4 to F, Br := Op+CF, M, there is a bounded set of couples
P depending only on d, v, e such that there is a projective log smooth couple (F,YX%) € P
and a birational map F --» F satisfying:

e Y7 contains the exceptional divisor of F --5 F and the birational transform of
Supp(©r + Cr + M), and

o if f: F/ — F and g: F’ — F is a common resolution and Mz is the pushdown of
Mp|pr, then each coefficient of M is at most c.

Step 4. In this step we compare log divisors on F and F. First define I'z:=(1-¢)>%.
Let K+ Cpr be the pullback of K+ Cr and let K&+ C5 be the pushdown of Kpr + C
to F. We claim that C’f <I'g If C'f < 0, then the claim holds trivially. Assume C'f has
a component D with positive coefficient. Then D is either exceptional/F' or is a compo-
nent of the birational transform of C'r with positive coefficient. In the former case, D is
a component of ¥ because Y4 contains the exceptional divisor of F --s F. In the latter

case, D is a component of the birational transform of Or + Cr because Crp < Op +Cp
by Step 2, hence again D is a component of Y4 as it contains the birational transform of

Supp(©fF + Cr + MF). Moreover, since (F, C’F) is sub-e-lc, the coefficient of D in OF is at
most 1 — ¢, hence upCx < ppl'z. We have then proved the claim O < I'z.

Step 5. In this step we define a divisor Ir and compare singularities on F' and F. Let
Ip ;= Op + Pr— Ap. By Step 2, Ir > 0. Pick 0 < Lp ~g Mp and assume t > 0. Let If
and L be the pushdowns of Ir|p and Lp|p to F. Then

Ir +tLp =Op + Pp —Ap+tLp = Kp +Op + Pr — Kp — Ap +tLp

~r (Kx +A)|p — Kx|p +tMp ~r Alp +tMp ~r (0 +t)Mp.
Thus we get
IF—Fth ~R (Oé+t)MF.
On the other hand, our assumptions ensure that
KF-I-C'F—f-IF-l—tLF:KF+CF+AF+@F+PF—AF+tLF
=Kp+Cp+0Op+Pp+tlp ~p (Kx +C+A+tM)|p

is ample. Therefore,

f*(Kp +Cp + Ip + tLp) < g*(Kp + Cp + I + tL7)
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which implies that

(F,Cp+ Ip +tLp)
is sub-€-Ic if

(F,Cp+ Iz + tLz)

is sub-€’-lc.

Step 6. In this step we finish the proof using Proposition 4.2. Pick [ € N such that
(I—1)e > I€. Since the coefficients of My are bounded from above by ¢, by Step 3,
applying Proposition 4.2, we deduce that

(F., T+ Uz +tLy)

is kIt if o + ¢ is sufficiently small depending only on P, €, c, recalling that I + tL# ~g
(o + t)M% by the previous step. In particular, this holds assuming ¢ > 0 is sufficiently
small as o +t < 2t. From now on we assume t is sufficiently small. Thus

(F, T+ I+ tLy)
is €’-lc because for any prime divisor D on birational models of F' we have

a(D,F,I'p + Iz + tLy)

l l l
This then implies that

—1 — 1 — —1
= <l> a(D,F, Ff) + *Q(D,F,FF—F llf“‘ lth) 2 <l> € > 6/.

(F,Cs + Ix + tL)
is sub-€’-Ic as OF < I'z by Step 4. Therefore, by Step 5,
(F,Cp +Ip +tLp)
is also sub-€’-lc. In other words,
(F,Cpr+©p+ Pr+tLp)

is €'-lc.

0

4.7. Effective birationality for Fano varieties with good Q-complements. Our next
result is an attempt to relate effective birationality on Fano varieties X and the volume of
—Kx. This is crucial for the proofs of 4.9 and 4.11.

Proposition 4.8. Let d € N and ¢, € R>°. Then there exists a number p € N depending
only on d, e, and § satisfying the following. Assume

e X is an e-lc Fano variety of dimension d,

e m € N is the smallest number such that | — mKx| defines a birational map,
e n € N is a number such that vol(—nKx) > (2d)¢, and

o nKx + N ~q 0 for some Q-divisor N > 0 with coefficients > 0.

Then 7r < p.

Proof. The idea of the proof is to apply the frequently used method of showing birationality
of a linear system by creating non-klt centres. If the centres we create happen to be zero
dimensional, we are ready immediately. Otherwise the centres are positive dimensional
and we can cut them and decrease their dimension unless the volume of the restriction of
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—nK x to these centres is too small in which case we will get a contradiction by applying 4.6.

Step 1. If the proposition does not hold, then there is a sequence X, mis NG, N; of Fano
varieties, numbers, and divisors as in the statement such that the numbers 2 form a strictly
increasing sequence approaching co. At the end of the proof we will use Proposmon 4.6 to
derive a contradiction.

Step 2. In this step we fix ¢ and create a family of non-klt centres on X;. Applying 2.31
(2), there is a covering family of subvarieties of X; (as in 2.27) such that for any two general
closed points z;,y; € X; we can choose a member G; of the family and choose a Q-divisor
0 < A; ~g —(n; +1)Kx, so that (X;,A;) is lc near x; with a unique non-klt place whose
centre contains x;, that centre is G;, and (X;, A;) is not klt near y;. Note that since z;, y;
are general, we can assume G; is a general member of the family. Recall from 2.27 that this
means the family is given by finitely many morphisms V7 — T7 of projective varieties with
accompanying surjective morphisms V7 — X and that each G; is a general fibre of one of
these morphisms. Moreover, we can assume the points of 77 corresponding to such G; are
dense in T7. Let d; := max{dim V7 — dim T7}.

If d; = 0, that is, if dimG; = 0 for all the G;, then —2(n; + 1)K, is potentially
birational, hence |Kx, — 2(n; + 1)K,| defines a birational map [18, Lemma 2.3.4] which
means m; < 2n; + 1 giving a contradiction as we can assume m;/n; > 0. Thus we can
assume d; > 0, so dim G; > 0 for all the G; appearing as general fibres of VI — T for some
j.

Define I; € N to be the smallest number so that vol(—l;Ky,|g,) > d? for all the G;
with positive dimension. Then we can assume there is j so that if G; is a general fibre of
VJ — TJ, then G; is positive dimensional and vol(—(l; — 1)K x,|q,) < d°.

Step 3. In this step we reduce the problem to the case when vol(—m; K x,|¢g,) is bounded
from above. Assume fl—i is bounded from above by some natural number a. Then after
replacing n; with dan; and applying the second paragraph of 2.31 (2), for each i, we can
replace the positive dimensional G; with new ones of smaller dimension, and replace the
family accordingly, hence decrease the number d;. Repeating the process we get to the
situation in which we can assume ll is an increasing sequence approaching co otherwise we
get the case d; = 0 which yields a contradlctlon as in Step 2. On the other hand, if 7 is
not bounded from above, then we can assume l is an increasing sequence approachmgZ 00,

hence we can replace n; with /; in which case n’i is bounded and we can argue as before.
So we can assume % is bounded from above.

In order to get a contradiction in the following steps it suffices to consider only those
G; which are positive dimensional and vol(—(l; — 1)Kx,|¢,) < d?. By Step 2, there is a
sub-family of such G; appearing as general fibres of some V7 — TY. From now on when we
mention G; we assume it is positive dimensional and it satisfies the inequality just stated.
In particular,

N4 N
vol(—-m;Kx,|c,) = (l,mll> vol(—(l; — 1) Kx;la;) < <l.m11) d
is bounded from above, so vol(—m;Kx,|q,) < v for some fixed number v independent of 1.

Step 4. Let F; be the normalisation of G;. In this step we look at adjunction by restricting
to Fj. Since Gj is a general member of a covering family, X; is Q-factorial near the generic
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point of G;. By Construction 3.9 and Theorem 3.10 (by taking B = 0 and A = A;), we
can write

Kp, +©p, + Pr, ~r (Kx, + Ai)|F,
where P, is pseudo-effective. Pick 0 < @Q; ~g —n; K x, not containing x;. By definition of
OF,, adding Q; to A; does not change ©, but changes Pr, to Pp, +Q;|r,. Thus replacing n;
with 2n; and changing Pr, up to R-linear equivalence we can assume P, is effective and big.

Step 5. In this step we get a contradiction by applying Proposition 4.6. By construction,
Kx, + Aj ~g —n;Kx, is ample. Let M; := —m;Kx, and Mg, := M;|r,. Then we can
assume M; — (Kx, + A;) ~g —(m; — n;)Kx, is also ample. Moreover, A; ~q ”;n—thZ On
the other hand, since G; is general, it is not contained in Supp Nj, so defining N, := N;|,
we get the effective divisor Lp, := %NFZ Since N; ~qg —n;Kx,, we get Lr, ~r MF,.

Now let ¢ be the number given by Proposition 4.6 for the data d, v, €, = § where we can
assume € < % by decreasing it if necessary. We can assume ”;n—tl < t for every i. Applying
the proposition to X;, M;, A;, Gy, F;, OF,, Pr, (here we take C; = 0), we deduce that

(F3, OF, + Pr, + tLFZ-)
is 5-lc for every i.

Let D be a component of Jp, := %N F,- Since each coeflicient of %Ni is at least 1, by

Lemma 3.11,

1p(OF, + Pr, + Jp,) 2 ip(OF, + Jrp,) 2 1.
By the previous paragraph, up©p, <1 — §, hence upJr, > §. But then
téml')  tdem;

)

pwptLp, = <

when i is large. This contradicts the §-lc property in the previous paragraph.
O

Proposition 4.9. Let d € N and ¢,6 € R>?. Then there exists a number m € N depending
only on d, e, and § satisfying the following. Assume X is an e-lc Fano variety of dimension
d such that Kx + B ~q 0 for some Q-divisor B > 0 with coefficients > 6. Then | — mKx|
defines a birational map.

Proof. Step 1. In this step we set up the notation and bound certain volumes. If the
proposition is not true, then there is a sequence of Fano varieties X; and Q-divisors B;
satisfying the assumptions of the proposition but such that if m; € N is the smallest
number so that | — m;Kx,| defines a birational map, then the m,; form a strictly increasing
sequence approaching co. Let n; € N be the smallest number so that vol(—n;Kx,) > (2d)“.
Obviously the coefficients of IV; := n;B; are > §, and n; K x, +N; ~qg 0. Thus by Proposition
4.8, there is a number p € N independent of ¢ such that % < p. In particular, we can
assume n; > 1. Therefore, vol(—m;Kx;) is bounded from above because

m11>dvol(_(ni—1)Kxi)§< = >d<2d>d-

(—m;Kx,) =
vol(—m; K x,) (sz — m—
Step 2. In this step we find a bounded birational model of X. Let M; be a general
element of | — m; Kx,|. We show (X;, Supp(B; + M;)) is log birationally bounded. After
replacing e with min{e, d}, we can assume the coefficients of B; belong to {0} U [e, 00).
Applying Proposition 4.4 to X;, B;, M;, there is a bounded set of couples P and a number
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c € R>? such that for each i there is a projective log smooth couple (X}, EZ) € P and a
birational map X; --» X; such that

e Supp 27¢ contains the exceptional divisor of X; --+ X; and the birational transform
of Supp(B; + M;), and

o if W; — X; and W; — X; is a common resolution and Myi is the pushdown of
Mw;, then each coefficient of M= is at most c.

Step 3. In this step we derive a contradiction using Proposition 4.2. Let Ky, + Ay, be
the pullback of Kx, and let K, + AYi be its pushdown on X;. The crepant pullback of

1
Kx, + A; ::KXZ.—I—EMZ‘ ~qg 0

to X, is
1
Kz, +Ax, =Kz, + Az, + —Mx, ~q 0.

7
Note that the coefficients of AYZ- are at most 1 — ¢ as X; is e-lc, and the support of Ayi is

contained in Y,

By Step 2, if m; is sufficiently large, then the coefficients of m%-MYi are sufficiently small.
Therefore, letting I'y := (1—§)Y, we have Ax < TI'y fori > 0. Now let L; := 1 B; which
has coefficients > 1. Then (X;, A; + L;) is not klt and Kx, + A; + L; is ample. Therefore,
if L%, is the pushdown of Li|x,, then (X, Ax + Lyi) is not sub-klt which in turn implies
(X, I's. + Lx,) is not klt. This contradicts Proposition 4.2 because Ly, ~r %WMY"

7

O

4.10. Effective birationality for nearly canonical Fano varieties. The next result
treats one of the main special cases of 1.2 when X has canonical or nearly canonical sin-
gularities. This is particularly useful when X is exceptional and we cannot create deep
singularities using divisors 0 < D ~g —Kx, e.g. end of proof of 7.5 which is an inductive
treatment of 1.11.

Proposition 4.11. Let d € N. Then there exist numbers 7 € (0,1) and m € N depending
only on d satisfying the following. If X is a T-lc Fano variety of dimension d, then |—mK x|
defines a birational map.

Proof. We first give a short summary of the proof. Steps 1-4 are quite similar to those of
the proof of 4.8. We take n € N so that vol(—nKx) > (2d)? and much of the proof is
spent on showing ** is bounded from above arguing by contradiction. We create a covering
family of non-klt centres G on X. Again the difficult case is when the centres are positive
dimensional. We argue that singularities on the normalisation F' of G cannot be too bad.
Next we find a smooth and bounded birational model F' of F and reduce to the situation
when #(K7) = 0. This in turn allows us to reduce to the case when h’(—rKx|p) > 0
for some bounded r € N. Next we use 3.15 to lift sections and produce some N > 0 with
coefficients bounded from below and satisfying nKx + N ~qg 0. At this point we apply 4.8
to deduce that 7" is bounded from above. At the last step we work on a bounded birational

model X of X and apply 2.35 to show m is bounded from above.

Step 1. In this step we setup basic notation. If the proposition does not hold, then there
is a sequence X; of Fano varieties of dimension d and an increasing sequence ¢; of numbers
in (0, 1) approaching 1 such that X is ¢;-lc and if m; € N is the smallest number such that
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| — miKx,| defines a birational map, then the m; form an increasing sequence approaching
oo. Let n; € N be a number so that vol(—n;Kx,) > (2d)?. First we want to show e
is bounded from above. Assume this is not the case, so we can assume the % form an
increasing sequence approaching oo. We will derive a contradiction by the end of Step 9.

Finally in Step 10 we prove m; is bounded which is again a contradiction.

Step 2. In this step we fix ¢ and create a covering family of non-klt centres on X;.
Applying 2.31 (2), there is a covering family of subvarieties of X; (as in 2.27) such that for
any two general closed points x;,y; € X; we can choose a member G; of the family and
choose a Q-divisor 0 < A; ~g —(n; + 1)K, so that (X;, A;) is lc near ; with a unique
non-klt place whose centre contains x;, that centre is G;, and (X;,A;) is not klt near y;.
Note that since z;,y; are general, we can assume G; is a general member of the family.
Recall from 2.27 that this means the family is given by finitely many morphisms V7 — T7
of projective varieties with accompanying surjective morphisms V7 — X and that each G;
is a general fibre of one of these morphisms. Moreover, we can assume the points of 79
corresponding to such G; are dense in T7. Let d; := max{dim V/ — dim T7}.

If di = 0, that is, if dimG; = 0 for all the G;, then —2(n; + 1)K, is potentially
birational, hence |Kx, — 2(n; + 1)K,| defines a birational map [18, Lemma 2.3.4] which
means m; < 2n; + 1 giving a contradiction as we can assume m;/n; > 0. Thus we can
assume d; > 0, hence dim G; > 0 for all the G; appearing as general fibres of V7 — T7 for
some j.

Define I; € N to be the smallest number so that vol(—l;Ky,|g,) > d? for all the G;
with positive dimension. Then we can assume there is j so that if G; is a general fibre of
VJ — T, then G is positive dimensional and vol(—(l; — 1)K x,|q,) < d°.

Step 3. In this step we reduce the problem to the case when vol(—m; K x,|¢g,) is bounded
from above. Assume ZL—Z is bounded from above by some natural number a. Then after
replacing n; with dan; and applying the second paragraph of 2.31 (2), for each i, we can
replace the positive dimensional G; with new ones of smaller dimension, and replace the
family accordingly, hence decrease the number d;. Repeating the process we get to the
situation in which we can assume ll is an increasing sequence approaching oo otherwise we
get the case d; = 0 which yields a contradlctlon as in Step 2. On the other hand, if 7 i

z

not bounded from above, then we can assume l is an increasing sequence approaching co,

rlf is bounded and we can argue as before.
1

hence we can replace n; with [; in which case
So we can assume li is bounded from above.
In order to get a contradiction in the following steps it suffices to consider only those
G; which are positive dimensional and vol(—(l; — 1)Kx,|¢,) < d%. By Step 2, there is a
sub-family of such G; appearing as general fibres of some V7 — T7. From now on when we
mention G; we assume it is positive dimensional and it satisfies the inequality just stated.

In particular,

d d
m; m;
vol(—m;Kx,|a;) = (l' - 1> vol(—(l; — 1)Kx,|a;) < <l- — 1) d?

is bounded from above, so vol(—m; K x,|q,) < v for some fixed number v.

Step 4. Let F; be the normalisation of G;. In this step we look at adjunction by restricting
to Fj. Since Gj is a general member of a covering family, X; is Q-factorial near the generic
point of G;. By Construction 3.9 and Theorem 3.10 (by taking B = 0 and A = A;), we
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can write
Kp, + Ap, == Kp, + Op, + Pp, ~pr (KXZ- + Ai)|Fi

where Pp, is pseudo-effective. Pick 0 < Q; ~g —n;Kx, not containing z;. By definition of
OF,, adding Q; to A; does not change ©, but changes Pr, to Pp, +Q;|r,. Thus replacing n;
with 2n; and changing Pr, up to R-linear equivalence we can assume P, is effective and big.

Step 5. In this step we reduce to the situation in which (F;, Ap,) is €-lc for some ¢’ > 0
and that ©, = 0, for every ¢. By construction, Kx, +A; ~g —n;Kx, is ample. Assume 0 <
M; ~ —m;Kx, and Mg, :== M;|p,. Then we can assume M; — (Kx, +A;) ~q —(m;—n;)Kx,
is also ample. Moreover, A; ~q ”;n—thz Pick 0 < Lg, ~gr MF,.

Let € < € be positive real numbers such that ¢ < ¢; for every i. Now let t be the
number given by Proposition 4.6 for the data d,v,¢,¢. We can assume "1—'*:1 < t for every
i. Applying the proposition to X;, M;, A;, Gi, Fi, OF,, P, (here we take C; = 0), we deduce
that (F;, Ap, +tLp,) is €-lc for every i, hence (F;, Ag) is €’-Ic for every i.

By Theorem 3.10 and by the ACC for lc thresholds [17, Theorem 1.1], the coefficients
of O, belong to some fixed DCC set U. We can assume ¢; is sufficiently close to 1 and so
we can also choose €' to be close to 1. This ensures that ©p = 0 by the €-lc property of
(Fi, Ap,) and the fact that the coefficients of ©F, are in the DCC set W.

Step 6. In this step we find a bounded birational model of F;. By Lemma 3.11, up Mp, =
up(©F, + Mp,) > 1, for every component D of Mp,. Moreover, My, — KF, is big because
Mp, — (Kp, + Ap,) is ample and Pp, is big. In addition, |MF,| defines a birational map
because |M;| defines a birational map and G; is a general member of a covering family of
subvarieties.

Now applying Proposition 4.4 (by taking X = F;, B = O, = 0, M = Mp,), there is a
bounded set of couples P independent of ¢ such that for each ¢, we can find a projective log
smooth couple (F;, YF,) € P and a birational map F; --» F; such that

e Supp Y, contains the exceptional divisors of F; --» F; and the birational transform
of Supp MF;

o if Fi’ — F; and FZ.’ — F; is a common resolution and ME is the pushdown of
Mg =M | F!, then each coefficient of My, is at most ¢;

® Mps ~ Ap/+Rpy where Apy is big, [Ap| is base point free, Rpy > 0, and Aps ~ 0/F;.

In addition we can assume AF{ is reduced and that Az < ¥ where A is the push-
down of Ap.

Step 7. In this step we reduce to the situation in which K, is pseudo-effective. By
Lemma 3.12, we can write K, + Ap, = Kx,|r, where Ap, < Op = 0 and (F; + Ap,) is
sub-¢;-lc. Let K Ft A F! and M, F! be the pullbacks of K, + A, and MF, respectively, and
in turn KE + AE and ME be their pushdowns to F;. From Kx, + m%MZ ~q 0 we get

1
Kf_ + Afv + fov ~q 0.
1 1 mi k2

Moreover, any component of AE with positive coefficient is exceptional/F;, hence a compo-
nent of ¥ , and its coefficient in Az is at most 1—¢;. So the coefficients of (Agﬂ-%ME)ZO
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get arbitrarily small as i gets large. As (F}, EE) is log bounded and

1 =0
Supp (AF_ + MF) C X%,
3 m’L 3 K3
we can assume Kz is pseudo-effective for every i, by Lemma 2.35.

Step 8. In this step we reduce to the situation in which KU(KE_) = 0 for every i. First
assume kg (K7 ) > 0 for every . Perhaps after adding to ¥z and replacing P accordingly,
we can assume that there is a very ample divisor 0 < Hi < YXp s for each i. Now for each
number ¢ € N there is a number p € N such that Vol(pK + Hi ) > q for every i, by
Lemma 2.40.

Since AF is big and A < EF , we can assume that there is [ € N such that [ A HF
is big for each . Thus Vol(pK 7, T1AR Z) > ¢ which implies vol(pKFr —|—lApr) > q and this in
turn gives vol(pKp, + lAF,) > q where Ap, is the pushdown of Ap. Therefore both sides
of the inequality '

Vol( (KF —|—AF)+ZAFZ,>ZVOI< KF +ZAF>
ng

n;

go to oo as ¢ goes to co. But

vol (?(Kpl + AE) + ZAF1> = vol <m

)

(—nix) +zAF>

< vol((=miKx, + IM;)|r,) = vol((=mi(1 + ) Kx,) )

and the right hand side is bounded from above, a contradiction. Thus from now on we can
assume r, (K7, ) = 0 for every 1.
m;

Step 9. In this step we get a contradiction for the assumption that the sequence 7

approaches co. Since s (K7,) = 0, there is 7 € N such that RO (rK ) # 0 for every i, by
Lemma 2.37. Then h%(rK Fz) # 0 for every ¢, hence 7Kg, ~ TF, for some integral divisor
Tr, > 0. First assume TF, # 0 for every i. T hen

m; 1 m; m;
Ly = — <AFZ- + TF,-> ~q —(KF, + Ar,) ~r — (Kx, + Ai)lF,
n; T n; n

)

m;
~Q *( niKx,)|r, ~q@ Milr, = M,

and Lp, > ::ffz Tr,. In particular, (F;, Ap, + tLF,) is not kit for any i > 0 where ¢ is as in
Step 5, a contradiction.
Now we can assume T, = 0 for every ¢. Then

ho(_rKX¢|Fi) = ho(_r(KFi + AFz)) = ho(_TAFi) #0

for every i because Ap, < 0 by Step 7. Thus by Step 5 and Proposition 3.15, perhaps after
replacing  with a multiple, h®(—n;r K x,) # 0 for every i. Then n;Kx, + N; ~qg 0 for some
N; > 0 with coefficients > % We can then apply Proposition 4.8 to deduce that % is
bounded from above, a contradiction.

Step 10. In this final step we get a contradiction for the assumption that m; is not
bounded. At this point we let n; € N be the smallest number so that vol(—n;Ky) > (2d)%.
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We can assume n; > 1 for every i since 7 is bounded from above. The volume vol(—m;Kx,)
T
is bounded from above because

VOl(—miKXi) = ( i

)dvol(—(ni—l)KXi)g( i >d(2d)d.

n; — 1 n; — 1

Then by Proposition 4.4, there is a bounded set of couples Q@ and a number ¢ € R>? such
that for each i there is a projective log smooth couple (X, EE) € Q and a birational map
X,; --» X; such that
e Supp Y%, contains the exceptional divisor of X; --» X; and the birational transform
of Supp(M;), and
o if W; — X; and W; — X; is a common resolution and ME is the pushdown of
M;|w;, then each coefficient of M= is at most ¢’.

Let Kyw, + Aw, be the pullback of K, and let K5, + A, be its pushdown on X;. The
crepant pullback of Kx, + m%Mz to X, is

1
Kx +Ax + —Mx ~q0.
g g m; ¢

Note that the coefficients of AE are at most 1 — ¢; which are either negative or approach

0 as i goes to oco. So if ¢ is sufficiently large, then the coefficients of <A7i + m%Myi)Zo are
sufficiently small. Thus K, is pseudo-effective for every ¢ > 0, by Lemma 2.35. This is
a contradiction because Kyy, is not pseudo-effective as Ky, is not pseudo-effective, hence

K%, is not pseudo-effective for any ¢. Therefore, m; is bounded as required.
O

5. Proof of Theorem 1.4

In this section we prove Theorem 1.4. The main difficulty is to bound the anti-canonical
volume which we tackle now before going into the proof of the theorem.

Proposition 5.1. Let d € N and €,5 € R>?. Then there is a number v depending only on
d,e, and § such that for any X as in Theorem 1.4 we have vol(—Kx) < v.

Proof. We first give a short summary of the proof. Using MMP we reduce to the case
when X is Fano. If vol(—Kx) is very large, then there is a very small a > 0 such that
vol(—aKx) > (2d)?. We will show that this leads to a contradiction by using arguments
somewhat similar to the proof of 4.8. Using divisors 0 < A ~g —aKx we create a covering
family of non-klt centres G of the pairs (X, A) such that the pair has other non-klt centres
apart from G. The difficult case is when dim G > 0 just as in the proof of 4.8. Using the fact
that (X, A) has other non-klt centres apart from G, we can create bad singularities on the
normalisation F' of G. Finally making use of B and applying 4.6 we derive a contradiction.

Step 1. In this step we reduce the problem to the situation in which X is Fano, and
introduce some notation. If the statement is not true, then there is a sequence of pairs
(X, B;) satisfying the properties listed in Theorem 1.4 such that vol(—Kx;,) is an increasing
sequence approaching co. Taking a Q-factorialisation we can assume X; is Q-factorial. Since
B; is big, X; is of Fano type. Run an MMP on —Kx, ~g B; and let X/ be the resulting
model. Since B; is big, —Kx: is nef and big. Thus if X; — X/’ is the contraction defined
by —Kx;, then X is Fano. Moreover, vol(—Kxr) = vol(—KXx,), and since Kx, + B; ~r
0, (X/,B!) is e-lc. Thus replacing (X;, B;) with (X!, B/), we can assume X; is Fano.
Moreover, modifying B;, we can assume it is a (Q-boundary.
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By Proposition 4.9, there is m € N such that | —mKx,| defines a birational map for every
i. On the other hand, since vol(—Kx;,) is an increasing sequence approaching oo, there is a
strictly decreasing sequence a; € Q% approaching 0 so that vol(—a; Kx,) > (2d)¢ for each .

Step 2. In this step we fix ¢ and create a covering family of non-klt centres on X;.
Applying 2.31 (2), there exists a covering family of subvarieties of X; such that for each
pair of general closed points z;,y; € X; there exist a general member G; of the family and
a Q-divisor 0 < A; ~g —a;Kx, such that (Xj;, A;) is Ic at x; with a unique non-klt place
whose centre contains x;, that centre is G;, and (Xj;, A;) is not klt at y;. Moreover, perhaps
after replacing a; with 3a; and adding to A; we can assume that (Xj;, A;) is not lc at some
fixed point of X;: indeed applying 2.31 (2), there is 0 < Z; ~g —a;Kx, such that (X;,5;) is
not klt at some point & € X;; here Z;, &; are fixed; then by adding 2Z; to A; we can assume
(Xi, A;) is not lc at &; note that since x; is general we are of course assuming x; # &;.

Recall from 2.27 that the G; in the last paragraph are among the general fibres of finitely
many morphisms V7 — T7, and we can assume for each j the points on 77 corresponding to
the G; are dense. We can assume Kx, +A; is anti-ample, so by the connectedness principle,
dim G; > 0.

Step 3. In this step we reduce the problem to the situation in which vol(—mKyx;|q,) is
bounded from above. For each 7, let b; € Q be the smallest number so that vol(—b;Kx,|q,) >
d? 4+ 1 for all the G; in Step 2; equality holds on a subfamily of the G; which are general
fibres of one of the morphisms V7 — T7.

Assume b; is not bounded from below, so we can assume the b; form a strictly decreasing
sequence approaching 0. Applying the second paragraph of 2.31 (2), replacing a; with
a;+(d—1)b; and replacing the A;, we can replace each G; with one having smaller dimension.
Introducing new b; as above and repeating the process leads us to the case when b; is
bounded from below otherwise we get the case dim GG; = 0 which is not possible as mentioned
above.

In order to get a contradiction, it is enough, for each i, to consider a sub-family of the
G; satisfying vol(—b;Kx,|q,) = d? + 1 and which are general fibres of one of the mor-
phisms V7 — T7. From now on when we mention G; we mean one of those. In particular,
vol(—mKx,|q,) is bounded from above as b; is bounded from below.

Step 4. In this step we consider adjunction on non-klt centres. For each i pick a general
G as in the last paragraph, and let F; be its normalisation. In particular, X; is Q-factorial
near the generic point of G;, and we can find a resolution F} — F; so that we get an induced
morphism F] — W;. Pick 0 < M; ~ —mKx,. Then G; is not contained in Supp M; by the
generality of Gj.

By Construction 3.9 and Theorem 3.10 (by taking B = 0 and A = A;) and the ACC for
lc thresholds [17, Theorem 1.1], there is a Q-boundary O, with coefficients in a fixed DCC
set ¥ depending only on d such that we can write

(Kx, +A)lp, ~r KF, + Ap, := K, + OF, + Pp,

where Pp, is pseudo-effective. Since z; is general, x; ¢ Supp M;. By definition of O,
adding \; M; to A; does not change O, but changes Pr, to Pr, + \;M;|r, where \; is a suf-
ficiently small positive rational number. Thus replacing a; and changing Pr, up to R-linear
equivalence we can assume P, is effective and big.
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Step 5. In this step we use Proposition 4.6 to derive a contradiction. Pick ¢ € (0,¢).
By the connectedness principle, the non-klt locus of (Xj;, 4A;) is connected. Since (X;, A;)
is not lc at some point & by Step 2, the pair has a non-klt centre intersecting G; but not
equal to G;. By Lemma 3.14, we can choose Pp, > 0 so that (F;, Ap,) is not €'-lc.

On the other hand, by construction, both Kx, + B; + A; ~g A; and

M,; — (KXZ' + B; -f-Al) ~Q M; — A; ~Q —(m— ai)KXi

are ample, A; ~g % M;, and vol(M;|r,) is bounded from above. Moreover, decreasing e
we can assume € < §, hence the coefficients of B; are > e¢. Therefore, by Proposition 4.6,
(E;, Bi|lp, + Ap,) is €-lc which contradicts the previous paragraph.

O

Proof. (of Theorem 1.4) Let X’ — X be a small Q-factorialisation. Run an MMP on —K x
and let X” be the resulting model. Since B is big, —K x~ is nef and big, that is, X" is a
weak Fano. Assume X” — X"’ is the contraction defined by —K x~, hence X" is Fano.
By Lemma 2.26, it is enough to show that such X’ form a bounded family. Therefore,
replacing X with X” we can assume X is Fano.

Pick ¢ € (0,¢). Let A = (1+1¢)B for some ¢t > 0 so that (X, A) is €’-lc. By [17, Theorem
1.6], it is enough to show (X, A) is log birationally bounded which is equivalent to showing
(X, B) is log birationally bounded.

By Proposition 4.9, there is m € N depending only on d, €, such that | — mKx| de-
fines a birational map. Moreover, by Proposition 5.1, vol(—mKx) is bounded from above.
Therefore, applying Proposition 4.4 by taking some 0 < M ~ —mKyx, we deduce that
(X, Supp B) is log birationally bounded as required.

O

6. Boundedness of complements

In this section we develop the theory of complements for generalised pairs following
[42][40][39]. We prove various inductive statements before we come to the main result
of this section (6.13). Let (X', B’ + M’) be as in Theorem 1.10. Such pairs are of two
types: non-exceptional and exceptional. The main point of this section is that we can treat
the non-exceptional ones inductively by creating generalised non-klt centres or by using
fibrations. The exceptional case is treated in the next section where the focus will be on
proving that X’ is bounded.

Assume (X', B' + M’) is non-exceptional. The main ideas in constructing a bounded
complement for Ky + B’ + M’ are essentially as follows. By creating deep singularities and
then modifying the pair we can assume (X', B’ + M’) is not generalised klt and B’ € ‘.
If Kx' + B+ M' ~g 0 and M’' ~g 0, we show the Cartier index of Ky + B’ is bounded
which implies we have a bounded complement (as in the proof of 6.11). We then can assume
either Kx/ + B' + M’ 49 0 or M’ 3¢ 0.

Let X’ — V' be the contraction defined by —(Kx/ + B’ + M'). If M’ is not big over
V', then we pull back a complement from the base of some fibration X’ — 7" derived from
X" — V' (as in the proof of 6.5). Thus we assume M’ is big over V'. We then modify
the setting and find a boundary IV and number a € (0,1) such that (X',T" + aM’) is
generalised plt with S” := |I”| irreducible and —(Kx’ +I"+«aM’) is ample (as in the proof
of 6.8). Using this plt pair and the ampleness mentioned we can apply Kawamata-Viehweg
vanishing on some resolution of X’ to lift a complement from S’ to X’ (6.7).

Carrying out all the steps above and making sure that the required inductive assumptions
are satisfied (e.g. 6.3) involves a lot of technicalities.
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6.1. General remarks. Let (X', B’ + M') be a projective generalised pair with data
¢: X — X' and M.

(1) Assume there is B'" > B’ such that (X', B'" 4+ M’) is generalised lc, nM is b-Cartier,
and n(Kx' + BT+ M) ~ 0 for some n € N. We show Kx/+ BT+ M’ is an n-complement
of Kx + B+ M'. Writing B’ =T + A’ where T" = | B’|, we need to show

nB'" > nT' + [(n+1)A"].

Note that 77 and A’ have no common components.

Let D’ be a prime divisor and & and b'" be its coefficients in B’ and B'T. If /" = 1,
then either ' = 1 in which case nb’" = nb', or b < 1 in which case nb'" =n > |(n + 1)V/].
So assume b'" < 1, say 't = L. Then

nbt =i=[(n+1)b""| > [(n+1)V].

(2) Assume X’ --» X" is a birational map to a normal projective variety. Replacing X
we can assume the induced map ¢ : X --» X" is a morphism. Let M” = 1, M and assume

¢*(Kx +B '+ M)+ P=vy*(Kxn+B"+M")

for some P > 0 and B” > 0. Suppose K x»+B"”+M" has an n-complement K x»+B" "+ M"
with B”T > B”. We claim K’ + B’ + M’ also has an n-complement Ky + B'T + M’ with
B'" > B'. Let C" = B"" — B” and let B = B’ 4 ¢(P +¢*C"). Then

Ky + BT+ M =Kx + B + M + ¢.P + nop*C"

_ ¢*¢*(KX// +BII+M”) +¢*¢*C” — (Ziﬂﬁ*(KX// +B//++M”)
which implies that

n(Kx 4+ B+ M) ~0and ¢*(Kx + B + M) = ¢*(Kxn + B"" + M").

In particular, (X, B'" + M) is generalised lc. Now apply (1).

(3) Assume X' --» X" is a partial MMP on —(Kx, + B’ + M’) and B”, M" are the
pushdowns of B, M’. Then there is P > 0 as in (2). Thus if Kx» + B” + M" has an n-
complement K x» 4+ B"" 4+ M" with B"" > B”, then Ky + B’ + M’ has an n-complement
Kx + B'" + M’ with B > B'.

6.2. Hyperstandard coefficients under adjunction for fibre spaces. To construct
complements we sometimes come across fibrations X — Z along which a given log divisor
Kx + B is trivial. Using adjunction for fibre spaces (3.4) we can write Kx + B as the
pullback of Kz + Bz + My where By and My are the discriminant and moduli divisors.
In order to apply induction we need to be able to control the coefficients of Bz and My in
terms of the coefficients of B. We do this in the next proposition. The existence of & is
similar to [39, Lemma 9.3(i)].

Proposition 6.3. Let d € N and R C [0,1] be a finite set of rational numbers. Assume
Theorem 1.8 holds in dimension d. Then there exist ¢ € N and a finite set of rational
numbers & C [0,1] depending only on d,R satisfying the following. Assume (X, B) is a
pair and f: X — Z a contraction such that

(X, B) is projective lc of dimension d, and dim Z > 0,

Kx + B ~g0/Z and B € ®(R),

X is of Fano type over some non-empty open subset U C Z, and

the generic point of each non-klt centre of (X, B) maps into U.
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Then we can write
q(Kx + B) ~ qf*(Kz + Bz + M)

where By and Myz are the discriminant and moduli parts of adjunction (as in 3.4), By €
®(6), and for any high resolution Z' — Z the moduli divisor ¢My: is nef Cartier.

Proof. Here is a short summary of the proof. Using 1.8 we find ¢ and make a specific choice
of M as a Weil divisor. Next we aim to show the existence of & and that ¢M is integral.
By taking hyperplane sections on Z we reduce this aim to the case when Z is a curve. We
then pick a closed point z € Z and use 1.8 once more to create a g-complement Ky + BT
over z so that Bt > B and (X, BT) has a non-klt centre mapping to z, and this implies
that the coefficient of z in Bz belongs to special set of the form ®(&) which in turn implies
that ¢My is integral. Finally, we go back to the general case of Z and apply the previous
arguments to a high enough resolution Z' — Z to show that ¢My: is Cartier (nefness is
guaranteed by 3.6).

Step 1. In this step we find ¢ and make a choice of My. Let ¢ = n be the number
given by Theorem 1.8 which depends only on d,R. Then there is a g-complement K x + B™
of Kx + B over some point z € U with BT > B. Since over z we have Kx + B ~qg 0
and q(Kx + B") ~ 0, and since Bt > B, we have BT = B near the generic fibre of f.
Therefore, ¢(Kx + B) ~ 0 over the generic point of Z, hence there is a rational function «
on X such that ¢L := q(Kx + B) +Div(«) is zero over the generic point of Z. In particular,
¢(Kx + B) ~ gL and L is vertical/Z. Since L ~g 0/Z, L = f*Ly for some Lz on Z. Let
My := Ly — (Kz + Bz) where By is the discriminant part of adjunction for (X, B) over
Z. Thus

¢(Kx+B) ~qL=qf "Ly =qf*(Kz+ Bz + M)

and My is the moduli part of adjunction for (X, B) over Z. Note that My is not unique:
it depends on the choice of o and K.

Step 2. Our aim until the end of Step 4 is to show the existence of & and to show ¢My is
integral. In this step we reduce this aim to the case dim Z = 1. Assume dim Z > 1. Let H be
a general hyperplane section of Z and G its pullback to X. Let K¢+ Bg = (Kx+B+G)|q.
Since G is a general member of a free linear system, each non-klt centre of (G, Bg) is a
component of the intersection of a non-klt centre of (X, B) with G, hence its generic point
maps into U N H. Moreover, GG is of Fano type over U N H. Let By be the discriminant
part of adjunction for (G, Bg) over H.

Let g be the induced map G — H. Let D be a prime divisor on Z and let C' be a
component of D N H. Let t be the lc threshold of f*D with respect to (X, B) over the
generic point of D. Then there is a non-klt centre of (X, B + f*D) mapping onto D. This
centre is also a non-klt centre of (X, B + G + f*D), hence intersecting it with G gives a
non-klt centre of (G, Bg + ¢*C') mapping onto C, by inversion of adjunction [24]. Thus ¢ is
the lc threshold of ¢g*C with respect to (G, Bg). Therefore, upBz = pcBpg (see [6, proof
of Lemma 3.2] for more details).

By Lemma 3.3, there is a finite set of rational numbers T C [0, 1] depending only on R
such that Bg € ®(T). So applying induction on dimension, there is a finite set of rational
numbers & C [0, 1] depending only on d — 1, T hence depending only on d,R such that
By € ®(6). Therefore, By € ®(6).

Pick a general H' ~ H and let Ky = (Kz + H')|g: note that although Kz may not be
Q-Cartier but the restriction is well-defined as H is a general hyperplane section, and Ky
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is determined as a Weil divisor. Letting My := (Lz + H')|g — (K + Bg), we have
4(Kg + Bg) ~ a(L+ G)le ~ 49" (Lz + H')li ~ q9"(Kn + By + Mu)

hence My is the moduli part of (G, Bg) over H. Moreover, By + My = (Bz + Mz)|q,
hence puc(By + Mpy) = pp(Bz + Mz) which implies uyce My = upMz as ucBg = upByz.
Therefore, qup Mz is integral iff quc My is integral. So repeating the process we reduce
the problem to the case dim Z = 1.

Step 3. In this step we prove existence of &. By Step 2 we can assume Z is a curve. By
Lemma 2.11, X is of Fano type over Z. Pick a closed point z € Z. Let t be the lc threshold
of f*z with respect to (X, B). Let ' = B+tf*z and let (X’,T”) be a Q-factorial dlt model
of (X,T') so that [I"| has a component mapping to z. Note that Kx/ + I ~q 0/Z. Then
there is a boundary B’ < I such that B’ € ®(R), | B’| has a component mapping to z,
and B~ < B’ where B~ is the birational transform of B. Now X’ is of Fano type over Z
and —(Kx/ + B') ~q I' — B'/Z. Run an MMP on —(Kxs + B’) over Z and let X" be the
resulting model. Then X" is of Fano type over Z, B” € ®(R), and —(Kx» + B") is nef
over Z. Moreover, (X", B") is lc, as (X", T") is lc and B” <T".

By our choice of ¢ which comes from Theorem 1.8, Kx» + B” has a g-complement
Kxn + B"* over z with B’t > B”. Thus by 6.1(3) (in the relative setting), there is a
g-complement Ky + B'" of Kx/ + B’ over z with B'™ > B’. Pushing Kx/ + B'" down
to X gives a g-complement Ky + B* of Kx + B over z with B™ > B such that (X, B™)
has a non-klt centre mapping to z. Now BT — B ~q 0 over z, hence BT — B is vertical
over Z. Thus over z, the divisor BT — B is just a multiple of the fibre f*z. Therefore,
Bt = B+tf*z over z as (X, BT) has a non-klt centre mapping to z.

Recall that the coefficient of z in Bz is 1 —t. Pick a component S of f*z and let b and
b be its coefficients in B and BT. If m is its coefficient in f*z, then b™ = b+ tm, hence
¢ = b=b Now b =1 — 7 for some r € R and [ € N, Sot:%Wheres:b+—l+%. If

m

bt =1, then t = ;- and p. Bz € ®(R). If bT < 1, then as r < 1 and as ¢gb™ is integral we
get
P S Ay S
l l q
so | < g, hence in this case there are finitely many possibilities for s. Therefore, in any case
Bz € ®(6) for some fixed finite set & C [0, 1] of rational numbers.

Step 4. In this step we show My is integral. By Step 2, we can assume Z is a curve. By
Step 1, ¢(Kx + B) ~ 0 over some non-empty open set V C Z such that Supp By C Z\ V.
Let

©=B+ Z t.f*z
z€Z\V
where ¢, is the lc threshold of f*z with respect to (X, B). If O is the discriminant part of
adjunction for (X, ©) over Z, then

©y; =By + Z t,z,
z€Z\V

hence ©y is a reduced divisor. Moreover, by Step 3, Kx + © is a g-complement of Ky + B
over each z € Z\ V, hence ¢(Kx + ©) ~ 0/Z, by Lemma 2.4. Therefore, since

¢(Kx +0) =q(Kx + B)+¢(© - B)
~qf' (Kz+Bz+Mz)+qf (©7 —Bz) =qf" (Kz +0©z+ My)
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we deduce q(Kz+0Oz+ My) is Cartier. This implies ¢M is integral as Kz + 0Oy is integral.

Step 5. In this step we construct a birational model X” of X’ using MMP. From now on
we consider the general case of Z, that is, when it is not necessarily a curve. Let X’ — X
be a log resolution of (X, B) so that X’ --» Z’ is a morphism where Z’ — Z is a high
resolution. Let Uy C U be a non-empty open set over which Z’ — Z is an isomorphism.
Let A’ be the sum of the birational transform of B and the reduced exceptional divisor of
X" — X but with all the components mapping outside Uy removed. We can assume the
generic point of any non-klt centre of (X', A’) maps into Uy. Run an MMP on Ky + A’
over Z' x z X with scaling of some ample divisor. By [7, Theorem 1.9], the MMP terminates
over Uj C Z', the inverse image of Up. In fact we reach a model X" such that over Uy the
pair (X", A") is a Q-factorial dlt model of (X, B), hence Kx»+ A" ~g 0 over Ujj and X" is
of Fano type over Uj. Now by [7, Theorem 1.4][17, Theorem 1.1], we can run an MMP /Z’
on Kxn» + A” which terminates with a good minimal model over Z’' because the generic
point of every non-klt centre of (X", A”) is mapped into U}. Abusing notation, we denote
the minimal model again by X" which is of Fano type over U.

Step 6. We are now ready to show that ¢My is nef Cartier where Z' — Z is a high
resolution. The nefness follows from Theorem 3.6, so we just need to show gMz is integral.
We will use the construction of the previous step. Let f”: X" — Z”/Z’ be the contraction
defined by Kx~» + A”. By construction, on a common resolution W of X and X", the
pullbacks of Kx + B and Kx» + A” are equal over U C Z”, the inverse image of Up.
Let Kx» + B"” and L” be the pushdown to X” of the pullback of Kx + B and L to W,
respectively, where L is as in Step 1. Let P” = A” — B” which is vertical and ~g 0 over
7", hence it is the pullback of some Q-divisor Pz~ on Z”. Denote by Az the discriminant
part of adjunction on Z” defined for (X", A”) over Z”. Then Azn = Byn + Py where By
is the discriminant part of adjunction on Z” defined for (X, B) over Z. Moreover,

q(Kxn + A") = q(Kxn + B" + P") ~ q(L" + P") = qf"(Lz» + Pz»)
= Qf,/*(KZ” + Azll + le/)
where Lz is the pullback of Lz in Step 1, and Mz» = Lzn — (Kzn + Bygn) is the moduli
part of both (X", A”) over Z"” and (X, B) over Z. Now by Steps 2-4, gMz~ is an integral

divisor, hence qMy: is integral as well which means it is Cartier as Z’ is smooth.
O

6.4. Pulling back complements from the base of a fibration. In this subsection we
consider complements when a suitable fibration is present.

Proposition 6.5. Assume Theorem 1.10 holds in dimension < d — 1 and Theorem 1.8
holds in dimension d. Then Theorem 1.10 holds in dimension d for those (X', B' + M')
such that there is a contraction X' — V' so that Kx:+ B'+ M' ~q 0/V’, dim V' > 0, and
M’ is not big/V'.

Proof. First we give a short summary of the proof. Modifying the setting we can assume
X' — V' factors through a fibration f': X’ — T’ such that M’ ~q 0/T’. Applying
adjunction and Proposition 6.3 we can write

q¢(Kx' + B') ~ qf"*(Kp + By + Ppv)

with Bp» € ®(&) and ¢Pr is nef Cartier where ¢, S are fixed and T is a resolution of 7”.
In addition we make sure ¢gM is linearly equivalent to the pullback of some nef Cartier
divisor M7, and that gM’ is linearly equivalent to the pullback of gMy» where My is the
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pushdown of Mp. Next we show (T”, Byr + Ppr + Myv) is generalised lc, and we construct
a bounded complement for Ky + By + Ppr + My and pull it back to a complement of
Kx + B+ M'.

Step 1. In this step we reduce the problem to the situation in which we have a contraction
X' — T'/V" with M’ ~g 0/T". Replacing (X', B’ + M') with a Q-factorial generalised dlt
model as in 2.13(3), we can assume X' is Q-factorial. Since M’ is not big/V’, X' — V' is
not birational. After running an MMP/V’ on M’ and applying 6.1(2), we can assume M’
is semi-ample/V’. Note that we can run such MMP as X' is of Fano type. So X’ — V'
factors through a contraction f’: X’ — 7" such that dim X’ > dim7” and M’ ~q 0/T".

Step 2. In this step we consider adjunction over 7. By construction, Kx/ + B’ ~g 0/T".
Thus by Proposition 6.3 (which needs Theorem 1.8 in dimension d) there exist ¢ € N and
a finite set of rational numbers & C [0, 1] depending only on d, R such that

q(Kx' + B') ~ qf*(Kr + By + Pp)

where By and Py are the discriminant and moduli divisors of adjunction for fibre spaces
applied to (X', B') over T”, and such that By € ®(&) and ¢Pr is nef Cartier for any high
resolution 7" — T’. We can assume q is divisible by p.

Step 3. In this step we show that perhaps after replacing X, pM is linearly the pullback
of some Cartier divisor pMr on a resolution T' of T'. Pick a sufficiently high log resolu-
tion ¢: T'— T of (1", Bl;) so that the moduli part Pr is nef and it satisfies the pullback
property of Theorem 3.6 (ii). We consider (77, By» + Pr/) as a generalised pair with data
t: T — T and Pp. Since (X', B’) is lc, the coefficients of the discriminant divisor By on T
are at most 1, hence (17", By» + Prv) is generalised lc. Replace X so that the induced map
f: X --» T is a morphism. Since M is nef, ¢* M’ = M + E for some exceptional/ X’ and
effective Q-divisor E. Since M’ ~g 0/T", E is vertical/T”, so there is a non-empty open
subset of 7" over which E = 0 and M ~g 0. Since X' is of Fano type, the general fibres
of f’ are also of Fano type, hence they are rationally connected which in turn implies the
general fibres of f are rationally connected [16][46]. Thus perhaps after replacing X and
T and applying Lemma 2.44, pM ~ pf*Mr for a Q-divisor Mr on T so that pMr is nef
Cartier.

Step 4. In this step we show that qM’' ~ qf"”* My where My is the pushdown of
Mp. Since E is vertical and ~g 0 over T', F = f*Er for some effective Q-divisor Er.
Moreover, since FE is exceptional/ X', we deduce E7 is exceptional over T”: otherwise E7 has
a component D whose pushdown D’ on T” is not zero; but then there is some prime divisor
C’ on X' mapping onto D’, and since E = f*Ep, we get a component C of E mapping
onto C’ contradicting the fact that F is exceptional over X'. Therefore, My := 1), My is
Q-Cartier as My + Ep ~g 0/T". By construction, ¢(Pr + Mry) is nef Cartier. Moreover,

q¢"M' = q(M + E) ~ qf*(Mr + Er) = qf "My = q¢" f"* My
which implies gM' ~ qf"™ M.

Step 5. Now we consider (1", By + Prr+ M) as a generalised pair with data ¢: T — T’
and Pr+ Mp. We show it is generalised lc. We can assume (7', By+ Er) is log smooth where
as before By is the discriminant divisor on T defined for (X, B) over T7”. By construction

Kp+ Br + Er + Pr + My = 4" (K + By + Ppr + Mypr).
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So it is enough to show (T, By + Er) is sub-lc which in turn is equivalent to saying that
every coefficient of By + Ep is < 1. Let Kx + B be the pullback of Kx: + B’. Let D
be a prime divisor on T. By definition of the discriminant divisor, upBr = 1 — tp where
tp is the largest number so that (X, B + tpf*D) is sub-lc over the generic point of D.
Since (X', B’ + M’) is generalised lc, (X, B 4+ E) is sub-lc, and since E = f*Ep, we have
upEr <tp which implies upBr + upEr <1 as required.

Step 6. To summarise we have proved: (1", Byr+ Pr/+ My/) is generalised lc, By € ®(&),
q(Pr + Mr) is Cartier, and

q(KX’ + B’ =+ M/) ~ qf/*(KT/ =+ BT’ + PTI =+ MT’)

is anti-nef. Moreover, T” is of Fano type as X’ is of Fano type, by Lemma 2.12.

We will construct a complement on 7" and pull it back to X’. Since we are assuming
Theorem 1.10 in dimension < d — 1, Ky + By + Ppr + My has an n-complement Kpr +
B}r, + Pri + My for some n divisible by ¢ and depending only on dim7”, ¢, & such that
G = B;f, — By > 0. So n depends only on d, p, R. Denote the pullback of G to T, X, X’
by Gr,G, G, respectively. Let B’ = B’ + G'. Then

n(Kx +BT+M)=nKx +B +M +@&)
~nf*(Kr + Br + Pr + My + Gpv) = nf"™* (K + B}, + Pp + Mp) ~ 0.

Thus by 6.1(1), Kx/ + B'" + M’ is an n-complement of Kx» + B’ + M’ if we show
(X', B'" + M) is generalised lc.

Step 7. In this final step we show that indeed (X', B't + M’) is generalised lc. The
pair is clearly generalised Ic over the generic point of 7" because by construction B'* = B’
over the generic point of T77. Let C be a prime divisor on some birational model of X’.
We want to show that a(C, X', B’* + M’) > 0. This is true if C' is not vertical over T,
by the previous sentence. Assume then that C' is vertical over 7. Replacing X, T we can
assume C' is a divisor on X and that its image on T is a divisor, say D. The pullback of
Kx/+ BT+ M toXis Kx + B4+ E+G+ M. It is enough to show uc(B+E+G) < 1.
Since (1", B}, + Pr» + Myv) is generalised lc, and since

Kr+ Br + Er+ Gr + Pr+ Mr = K + Br + Pr+ Gr + Er + My

= ¢*(Kg + Brr + Ppo + Gy + Mypr) = *(Kp + B}, + Ppr + M)
we have up(Br+ Er+Gr) < 1. Letting tp be as in Step 5 we get up(Er+Gr) < tp which
implies (X, B+ E+ @) is sub-lc over the generic point of D. Therefore, uc(B+E+G) <1

as required.
O

6.6. Lifting complements from a non-klt centre. Until the end of this subsection we
essentially give an inductive treatment of 1.10 when there are non-klt centres around from
which we can lift complements. First we consider a key inductive statement.

Proposition 6.7. Assume Theorem 1.10 holds in dimension d — 1. Then Theorem 1.10
holds in dimension d for those (X', B' + M') such that

B’ e R,

(X", T+ aM') is Q-factorial generalised plt for some I and « € (0, 1),

—(Kx +T" 4+ aM') is ample, and

S" = |I"]| is irreducible and it is a component of | B'].
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Proof. We say a few words before going into the proof. The idea is to construct a comple-
ment on S’ and then lift it to X’ using Kawamata-Viehweg vanishing theorem. Applying
induction gives the required complement for (Kx/ + B’ + M')|s,. However, we face tech-
nical issues if we try to lift the complement directly to X’. Instead we assume X — X' is
a resolution and extend information from S, the birational transform of S’, to X and then
push down to X’. This makes the notation a bit more complicated than desired. In the
end we get something like Kx/ + B’T + M’ which is the complement we need except that
we need to further argue that the singularities of (X', B'* + M’) are good away from S’ by
using the connectedness principle.

Step 1. In this step we consider adjunction and complements on S’. We can assume
the given map ¢: X — X’ is a log resolution of (X', B’ + I") and that the induced map
: S --» S" is a morphism where S is the birational transform of S’. Moreover, we can
assume pM is Cartier. Then, by 3.1(2), we have the generalised adjunction

Kg + Bg + Mg ~Q (KX/ + B + M/)‘S’
such that pMg is Cartier and
p(Ks' + Bsr + Mg) ~ p(Kx' + B'+ M')|s.

By Lemma 3.3, Bg: € (&) for some finite set of rational numbers & C [0, 1] which only
depends on p, R. Restricting Kx/+TI"+aM’ to S’ shows that S’ is of Fano type, by 2.13(6).
Thus by Theorem 1.10 in dimension d — 1, there is n € N divisible by p which depends
only on d — 1, p, S such that Kg: + Bgs + Mg has an n-complement Kg/ + B;‘, + Mg with
B;f, > Bgr. Then n depends only on d,p, R and replacing it with nI(R) we can assume
it is divisible by I(2R). In particular, nB’ is integral as B’ € R. We will show there is an
n-complement Kx/ + Bt + M’ of Kx/ + B' + M’ with B'" > B'.

Step 2. In this step we introduce basic notation. Write
N:=—(Kx+B+M):=—¢"(Kx+ B + M)

and let T' = LBZOJ and A = B —T. Define

L:=-nKx—nT—|[(n+1)A] —nM
which is an integral divisor. Note that

L=nA—-[(n+1)A] +nN.

Now write

Kx +T+aM = ¢*(Kx +T" +aM’).

Replacing I'" with (1—a)I"4aB’ and replacing aM with ((1—a)a+a)M for some a € (0, 1)
sufficiently close to 1, we can assume « is sufficiently close to 1 and B — I' has sufficiently
small (positive or negative) coefficients.

Step 3. In this step we define a divisor P and study its properties. Let P be the unique
integral divisor so that
A=T+nA—-|[(n+1)A]+P
is a boundary, (X, A) is plt, and |A]| = S (in particular, we are assuming A > 0). More
precisely, we let ugP = 0 and for each prime divisor D # S, we let

upP = —pup [T +nA — |[(n+1)A]]
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which satisfies
pupP = —pp [I'= A+ ((n+1)A)]

where ((n + 1)A) is the fractional part of (n + 1)A. This implies 0 < upP < 1 for any
prime divisor D: indeed we can assume D # S; if D is a component of T', then D is not
a component of A but pupI’ € (0,1), hence upP = 0; if D is not a component of T, then
up(I' = A) = pup (T — B) is sufficiently small, hence 0 < upP < 1.

We show P is exceptional / X’. Assume D is a component of P which is not exceptional / X”.
Then D # S, and since nB’ is integral, upnA is integral, hence up [(n + 1)A| = ppnA
which implies upP = —pup |I'| =0, a contradiction.

Step 4. In this step we use Kawamata-Viehweg vanishing to lift sections from S to X.
L
" A= —(Kx +T"+ aM’)
and let A = ¢*A’. Then
L+P=nA—-|(n+1)A]+nN+P
—Kx+T+aM+A+nA—[(n+1)A] +nN+P
=Kx+A+A+aM +nN.

Since A + aM + nN is nef and big and (X,A — S) is klt, h'(L + P — S) = 0 by the
Kawamata-Viehweg vanishing theorem, hence

H%(L + P) = H°((L + P)|s)

is surjective.

Step 5. In this step we define several divisors. Let Rg := B;r, — Bgr which satisfies
—n(Kg + Bgr + Mg/) ~nRg > 0.
Letting Rg be the pullback of Rg/, we get
—n(Kg+ Bs + Mg) := —ny*(Kg + Bgr + Mg/) ~ nRg.

Then
nN|s = —n(Kx + B+ M)|s ~ —n(Kgs+ Bs + Mg) ~nRg >0

where the first linear equivalence follows from Step 1 as n is divisible by p.
By construction,

(L+P)ls=nA—-|(n+1)A]+nN+P)|s

~ Gg:=nRs+nAg—|[(n+1)Ag| + Ps
where AS = A‘S and PS = P’S-

Step 6. In this step we show Gg > 0 and that it lifts to some effective divisor G on X.
Assume C' is a component of Gg with negative coefficient. Then there is a component D
of nA — | (n+ 1)A] with negative coefficient such that C is a component of D|s. But

pe(nAs —[(n+1)As]) = pe(—As + {(n +1)Ag)) > —pcAg = —upA > —1

which gives ucGgs > —1 and this in turn implies ucGg > 0 because Gg is integral, a
contradiction. Therefore Gg > 0, and by Step 4, L + P ~ G for some effective divisor G
whose support does not contain S and G|s = Gg.
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Step 7. In this step we introduce B’t. By the previous step and the fact that P is
exceptional /X', we have

—nKx —nT" — |[(n+ DA | —=nM' =L'=L'+P' ~G >0
where L is the pushdown of L, etc. Since nB’ is integral, |(n + 1)A’] =nA/, so
—n(Kx+B' + M) = -nKx —nT' —nA" —nM' =L ~nR =G >0.
Let BT = B'+ R'. Then n(Kx' + B'" + M') ~ 0.

Step 8. Tt is enough to show that (X, B’ + M’) is generalised lc because then Ky +
BT+ M is an n-complement of K x:+B'+M’, by 6.1(1). First we want to show R'|s/ = Rgr.
Since

nR:=G—P+|(n+1)A] —nA~L+[(n+1)A] —nA=nN ~g0/X’
and since [(n+ 1)A’| —nA’ = 0 as nA’ is integral, we get ¢p.nR = G’ = nR' and that R
is the pullback of R’. Now
nRg=Ggs — Ps+ [(n+1)As] —nAg
= (G — P+ {(n + 1)AJ — nA)’S = nR\S
which means Rg = R|g, hence Rg = R'|g/ as required.
The previous paragraph implies
n(KS/ + B;T, + MS’) ~ TL(KX/ =+ B/+ + M/)‘Sl
which gives the generalised adjunction
Kg + B, + Mg ~g (Kxi + B+ M)|s.
By generalised inversion of adjunction (3.2), (X', B'" + M) is generalised lc near S'. Let
Q' =aB T+ (1—-a)l"and F = (a+ (1 — a)o)M

for some a € (0,1) close to 1. If (X', B'" + M’) is not generalised lc away from S’, then
(X', Q' + F’) is also not generalised lc away from S’. But then

—~(Kx + QY +F)=—a(Kx+ BT+ M) = (1 —a)(Kx: + "+ aM’)

is ample and the generalised non-klt locus of (X, + F’) has at least two disjoint com-
ponents one of which is S’. This contradicts the connectedness principle (2.14). Thus
(X', B'" + M) is generalised lc.

([

Proposition 6.8. Assume Theorem 1.10 holds in dimension < d — 1 and Theorem 1.8
holds in dimension d. Then Theorem 1.10 holds in dimension d for those (X', B' + M’)
such that

e B' € R,

o (X', B'+ M’) is not generalised kit, and

o cither Kx: + B+ M’ 7g 0 or M’ 3q 0.

Proof. We say a few words before going into the proof. We reduce to the case when X’ is Q-
factorial and (X', B’) is non-klt, find a contraction X’ — Z’, and reduce to the case when M’
is nef and big over Z’ via 6.5. Next we find a € (0, 1) such that —(Kx/+B'+aM’) ~q A'+G’
is nef and big, A’ is ample, and G’ > 0. If Supp G’ does not contains non-klt centres of
(X', B'+aM’), then we can easily find a boundary I so that we can apply 6.7. Otherwise



66 Caucher Birkar

we face some technicalities but we modify our pair so that in the end we can apply 6.7 again.

Step 1. In this step we reduce the problem to the case when X’ is Q-factorial and
(X', B') is non-klt, find a contraction X’ — Z’, and reduce to the case when M’ is nef and
big over Z'. Taking a Q-factorial generalised dlt model of (X', B’ + M’) we can assume
X' is Q-factorial and that (X', B’) is not klt. Let X’ — Z’ be the contraction defined by
—(Kx/ + B'4+ M'). Running an MMP on M’ over Z' and replacing X’ with the resulting
model we can assume M’ is nef/Z’. Note that since the MMP is an MMP on —(Kx/ + B’),
the non-klt property of (X', B’) is preserved. Moreover, if M’ g 0, then this is also
preserved by the MMP because M’ ~g 0 implies M ~q 0 as M is nef.

Let X’ — V'/Z' be the contraction defined by M’. If dim Z’ > 0, then dim V' > 0. If
dim Z" = 0, then Kx» + B’ 4+ M’ ~q 0, hence M’ % 0 so again dim V' > 0. In particular,
if M’ is not big over Z’, then we can apply Proposition 6.5. From now on we can assume
M’ is nef and big over Z'.

Step 2. In this step we introduce numbers «, 8. Since M’ is nef and big over Z’,
—(Kx'+B +aM') = —(Kx' +B' + M) + (1 — a)M’
is globally nef and big for some rational number o« < 1 close to 1 which will be fixed
throughout the proof. The contraction defined by —(Kx: + B’ + aM’) is nothing but

X' — V' which is birational. After running an MMP on B’ over V' we can assume B’ is
nef over V’, hence

—(Kx'+ BB +aM') = —(Kx: + B'+ aM') + (1 - B)B’

is also globally nef and big for any rational number 8 € («, 1) sufficiently close 1. Note that
since the latter MMP is K x + B’-trivial, the non-klt property of (X', B’) is again preserved.

Step 3. In this step we modify X', B’, M’ and look at generalised non-klt centres of
(X',B" + aM'’). Since X' is of Fano type and Q-factorial, (X’,0) is klt. Thus since
(X',B" + M) is generalised lc, (X', 8B’ + aM’) is generalised klt. Let (X", B”) be a
Q-factorial dlt model of (X', B), and let M” be the pullback of M’: note that M” is the
pushdown of M, assuming X --» X" is a morphism, otherwise (X', B, M") would not be
generalised lc. Writing the pullback of Kx/ + 8B’ as Kx» + B, perhaps after increasing
3, we can assume the coefficients of B” — B are sufficiently small. Replacing X', B, M’
with X”, B"”, M" and renaming B” to B’, we have: (X', B’ + aM’) is generalised klt,
—(Kx + B+ aM'’) is nef and big, and the coefficients of B’ — B’ are sufficiently small.
Moreover, every generalised non-klt centre of (X', B+ «aM’) is a non-klt centre of (X', B):
if D is a prime divisor on birational models of X’ such that a(D, X', B’ + aM’) = 0, then

0=a(D,X'"|B' +aM') = aa(D,X",B'+ M")+ (1 — a)a(D, X', B'),
hence a(D, X', B") = 0.

Step 4. In this step under some assumptions we introduce a boundary I'' and apply
Proposition 6.7. Write
—(Kx/+B' +aM') ~g A+ &
where A’,G' > 0 are Q-divisors and A’ is ample. First assume that Supp G’ does not
contain any generalised non-klt centre of (X', B’ + aM’). Then, for some small § > 0,

—(Kx'+ B +aM' 4+ §G") ~¢ (1 -9) <1§5A/ + A+ G’>
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is ample and (X', B’ + 0G’ + aM’) is a generalised lc pair whose generalised non-klt locus
is equal to the generalised non-klt locus of (X', B + aM’) which is in turn equal to the
non-klt locus of (X', B’). In particular, (X', B+ §G’) is dlt as (X', B') is dlt.

Pick a component S’ of |B’] and let I' = S’ + a(B' — S’ 4+ §G’) for some a < 1 close
to 1. Then (X',T" 4+ aM’) is generalised plt, [IV] = S5', and —(Kx + " + aM’) is ample.
Now apply Proposition 6.7. Thus from now on we assume that Supp G’ contains some
generalised non-klt centre of (X', B’ + aM’).

Step 5. In this step we define a boundary ) and study some of its properties. Let ¢ be
the generalised lc threshold of G’ + B’ — B’ with respect to (X', B’ + aM’) and let
Q=B +t(G'+B -B).
As (X', B'+aM’) is generalised klt, t > 0. We can assume the given morphism ¢: X — X’
is a log resolution of (X', B’ + G'). Write
Kx + By +aM = ¢*(Kx: + B + aM’)
and R ~
Kx + By +aM = ¢*(Kx/ + B' + aM’)
from which we get B, — By = ¢*(B' — B’). Perhaps after replacing B’ with bB'+ (1 —b)B’
for some small b > 0, we can assume the coefficients of B, — B, are sufficiently small.
Let G = ¢*G’. Since Supp G’ contains some generalised non-klt centre of (X', B'+aM’),
we can assume G and | B, ]=" have a common component, say T. Now
Kx + By +t(G+ By — By) + aM = ¢*(Kx: + B' + aM’) + t¢*(G' + B' — B')
= ¢"(Kx +Q +aM’).
Since pr B, is sufficiently close to urBs = 1, we deduce ¢ is sufficiently small. Moreover,
letting } 3
Q =By +t(G+ B, — B,)
we have

Q= (1—-1t)By+tBy+1tG < By +1tG

and
12)7° < |Ba +tGJZ° = [Ba "

Step 6. In this step we show that —(Kx/ + Q' + aM’) is ample. By construction
—~(Kx/+B' +aM')= —(Kx/ + B +aM')+ B' =B ' ~g A +G' + B' - B’
is nef and big. Thus
—(Kxr 4+ +aM') = —(Kx: + B' + t(G' + B' — B') + aM’)
= —(Kx' 4+ B' +aM')—t(G'+ B' - B')
~oA+G +B -B —tG +B - B)
=A+(1-)G+(1-t)(B -B)
=(1-1) <1t_tA’+A’+G’+B’—B’>
which is ample.

Step 7. In this step we settle the proposition in the case [Q'] # 0. Assume [Q'| # 0
and pick a component S" of [Q'|. By Step 5, || < |B’[, hence S’ is a component of
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| B']. We then define IV similar to Step 4 by perturbing the coefficients of ', say by letting
I"=5"+a(QY—5") for some a < 1 close to 1, so that [I7| = 5, (X',I"+aM’) is generalised
plt, and —(Kxs +I"+aM’) is ample. Then we apply Proposition 6.7. We can then assume
Q'] =0.

Step 8. In this step we construct a birational model X”. Let Q° be the sum of the
birational transform of €’ and the reduced exceptional divisor of X — X’. So Q° — Q is
effective and exceptional/X’. Running an MMP/X’ on Kx + Q° + aM contracts all the
components of 2° — Q as

Kx+Q°+aM=Kx+Q+aM+Q2°-Q=0Q°-Q/X’,

hence we reach a model X”/X’ such that if Q” and M” are the pushdowns of Q° and
M, then (X", Q" + aM") is a Q-factorial generalised dlt model of (X', + aM’). The
exceptional prime divisors of X” — X’ all have coefficient 1 in Q”. Moreover, any prime
exceptional divisor D of X — X’ not contracted over X" is a component of |{2] 20 hence a
component of | B,|=", by Step 5. Thus if B” is the pushdown of By, then K xu + B +aM”
is the pullback of Ky + B’ + aM’ to X”, and B” is the sum of the birational transform of
B’ and the reduced exceptional divisor of X’ — X’. Since (X', B’ + M) is generalised lc,
M" is the pullback of M’ and Kx» + B"” + M" is the pullback of Kx, + B’ + M.

Step 9. In this final step we finish the proof of the proposition again by applying 6.7.
Let A” be the sum of the birational transform of B’ and the reduced exceptional divisor of
X" — X'. Note that A” < Q" as B’ <, hence (X", A” 4+ aM") is generalised dlt. Run
an MMP/X' on Kxn + A” +aM”. The MMP ends with X’ because X’ is Q-factorial and
because the generalised kit property of (X', B' + aM’) ensures that

KX” + A// + OzM” = Q///X/

where Q" is effective whose support is the reduced exceptional divisor of X" — X’. The
last step of the MMP is a divisorial contraction which contracts a component S” of |[2”].
Abuse notation and replace X" — X' with that last contraction. )

By construction, (X", A” + aM") is generalised plt and —(Kx» + A” + aM") is ample
over X'. Defining

" =aA" + (1 -a)Q’

for a sufficiently small @ > 0 we can check that (X", T +aM") is generalised plt, S” = [I"],
and —(Kx» +T" + aM") is globally ample because

_(KX” + F// + aM”) = —CL(KX// =+ AH + OZMH) — (1 — CL)(KX” =+ Q// + OZM//)

and because —(K x» + Q" 4+ «aM") is the pullback of the ample divisor —(Kx/ + Q' + aM’).
Now apply Proposition 6.7 to Kx» + B" + M" .
U

Lemma 6.9. Assume Theorem 1.10 holds in dimension < d—1 and Theorem 1.8 holds in
dimension d. Then Theorem 1.10 holds in dimension d for those (X', B' 4+ M') such that

e B' € R, and

e (X', B+ M) is strongly non-exceptional.
Proof. By definition of strongly non-exceptional pairs, there is P’ > 0 such that Kx/ +
B'+ M'+ P ~g 0 and (X', B'+ P’ + M’) is not generalised lc. In particular, P’ # 0. By
Lemma 2.16, we can replace P’ so that is a Q-divisor and that ~g becomes ~q.
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Let ¢ be the generalised lc threshold of P’ with respect to (X', B+ M’). Then t < 1. Let
' = B'+tP" and let (X", Q"+ M") be a Q-factorial generalised dlt model of (X', Q'+ M’).
There is a boundary ©” such that B~ < 0" < Q" |©"| #0, and ©” € R where B is the
birational transform of B’ (adding 1 to R we are assuming 1 € R). Let 7 denote X" — X'
and let P’ be the pullback of P’. Then X" is of Fano type, and

—(Kxn +0" + M") = —(Kxn + Q"+ M") + Q" — "
_ —W*(KX/ —I—Q/—I—M/) + Q-9 = —W*(KX/ —l—B/—I-tP/—l—M/) + Q' — e
~g (1 — HP +Q" -0 =(1-t)P'+ Q" - 0"
where (1 —t)P" + Q" — 0" is effective.
Run an MMP on —(Kx» + ©” + M") and let X" be the resulting model. By the

previous paragraph, the MMP ends with a minimal model, that is, —(Kx» + 0" + M)
is nef. Moreover, since P’ > 0 is nef and non-zero, its pushdown P”’ # 0, hence

—(Kxm + 0" + M") ~g (1— HP" + Q" — " % 0.
In addition, since P” is semi-ample, there is Q” > 0 such that
KX// + Q// + Q// + M/I NQ 0

and (X", Q" + Q" + M") is generalised lc. Therefore, (X", 0" + M") is generalised Ic,
however, it is not generalised klt as (X", 0" + M") is not generalised klt.

By 6.1(3), if Kxm+ 0" 4+ M" has an n-complement K x4+ 0" + M" with "% > @,
then Kx» + ©” + M" has an n-complement Kx» + ©"" + M” with ©”T > ©” which in
turn gives an n-complement K x/ + BT + M’ of Ky + B' + M’ with B'™ > B’. Now apply
Proposition 6.8 to Kxm + ©" + M".

U

Lemma 6.10. Let d € N and assume Theorem 1.10 holds in dimension < d — 1 and
Theorem 1.8 holds in dimension d. Let R C [0, 1] be a finite set of rational numbers. Then
there is a number n € N depending only on d,R such that if (X', B') is a projective lc pair of
dimension d with Kx/+ B’ ~g 0 and B" € R, and X' is of Fano type, then n(K x:+B') ~ 0.

Proof. We say a few words before going into the proof. First we reduce the problem to the
case when X’ is an e-lc Fano variety for some fixed ¢ > 0. Next we find a bounded n € N
such that | — nK x| defines a birational map. The rest of the proof is essentially a careful
analysis of the linear system | — nKx|.

Step 1. In this step we reduce the problem to the case when X’ is an e-lc Fano variety
for some fixed € > 0. Taking a small Q-factorialisation we can assume X' is Q-factorial. By
Lemma 2.48, there is € € (0,1) depending only on d, R such that if D is any prime divisor
on birational models of X’ with a(D, X’,0) < ¢, then a(D, X', B") = 0. Let X" — X' be
the birational contraction which extracts exactly those D with a(D, X’ 0) < € if there is
any otherwise let X” — X'’ be the identity. Then X" is of Fano type and e-lc. Moreover,
if Kx» + B” is the pullback of Kx/ + B’, then all the exceptional divisors of X" — X’
appear in B” with coefficient 1. Replacing (X', B') with (X", B”) we can assume X' is e-lc.
After running an MMP on K x: we can assume we have a K x/-negative Mori fibre structure
X' —=1T.

If dimT” > 0, then applying Proposition 6.5, there is an n-complement Ky + BT of
Kx/ + B’ for some bounded n € N with B'* > B’. Since Kx/ + B ~q 0, we get Bt = B/,
hence n(Kxs + B’) ~ 0. Thus we can assume dim7” = 0, so X’ is an e-lc Fano variety.
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Step 2. In this step we introduce divisors A’, R’ with
1 1
n <KX/ + R + A/> ~ 0
n n

and (X', %R’ + %A’) being lc. By Lemma 6.9, there is a number n depending only on
d such that if Y’ is any strongly non-exceptional Fano variety of dimension d with klt
singularities, then Ky has an n-complement. We can assume pI(R)|n. On the other hand,
by Proposition 4.9, there is m € N depending only on d, € such that | — mK x| defines a
birational map. Replacing n once more we can assume m|n. So | — nK x| also defines a
birational map.

By Lemma 2.6, there is a log resolution ¢: X — X’ of (X', B’) such that ¢*(—nKyx/) ~
A+ R where A is the movable part, |A]| is base point free, and R is the fixed part. We can
assume A is general in |A|. Then

1 1
n(KX/+R’+A’> ~0
n n

where R'; A" are the pushdowns of R, A. We claim (X', %R’—i— %A’) is lc. If not, then (X', 0)
is strongly non-exceptional, hence by our choice of n we have an n-complement Ky + C'"
of Kxs. Since nC'" € | — nKx/| and (X', C'") is lc, we deduce (X, %R/ + %A’) is also lc
because A’ + R’ € | — nK x| is a general member. This is a contradiction.

Step 3. In this step we introduce (X', A" + N). Let

1 1 1
AN=-B+—R dN =_—A"
o Tt an o
Since . . .
n(Kxy + A"+ N)=2n Ky + =B+ —R' + — A’
2 2n 2n

=n(Kx +B)+nKx + R + A ~n(Kx + B'),
it is enough to find a bounded n so that
2n(Kx + A"+ N') ~ 0.
Step 4. 1In this step we prove the lemma assuming (X', A’ + N’) is klt. Let € =

min{§, %} We claim (X', A’ + N') is €’-lc. If not, then there is some prime divisor
D with

0<a(D, X' A"+ N')<¢.
Note that

1 1 1 1
a(D,X'",A' + N') = ~a(D, X", B') + ~a(D, X', ~R' + ~ A').
2 2 n n
Then either 0 < a(D, X', B') which implies € < a(D, X', B") by Lemma 2.48, or
1 1
0<a(D,X',—R +=A")
n n

which implies
1 1
<a(D,X',—R + =A").
n n

S|

In either case we get

a(D, X", A"+ N') > ¢,
a contradiction. So (X', A’ + N’) is €’-le. Therefore, X’ belongs to a bounded family by
[17, Corollary 1.7] as the coefficients of A" + N’ belong to a fixed finite set, hence the
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Cartier index of Ky + A’ + N’ is bounded by Lemma 2.25. Therefore, there is a bounded
n so that 2n(K x+A’+ N’) ~ 0 because Pic(X’) is torsion-free (cf. [21, Proposition 2.1.2]).

Step 5. Finally in this step we treat the case when (X', A’ + N’) is not klt. Consider
this pair as a generalised pair with data ¢: X — X’ and N = ﬁA. We show it is not
generalised klt. We can write

Kx—i-E:: ¢*KX’ and Kx—l-B = ¢*(KX/+B/)

and
1 1 . 1., 1,
Kx+FE+—-R+-A=¢"Kxy +—-R +-A").
n n n n
Thus
K +1B+1E~|— 1R+ 1A—¢*(K + A"+ N')
Xl T T Tt T X!
where

1 1 1
(X, 2B + 2E+ 2nR>
is not sub-klt because (X', A’+ N’) is not klt (as a usual pair) and A is general. Therefore,
(X', A"+ N') is not generalised klt.

Now obviously N’ %q 0, hence by Proposition 6.8, Kx + A’ 4+ N’ has an n-complement
Kx/ + A" 4+ N’ for some bounded n € N where A" > A’. Since Kx/ + A’ + N’ ~q 0, we
have A" = A’. Therefore, 2n(Kx + A’ + N’) ~ 0 as required.

([l

Lemma 6.11. Assume Theorem 1.10 holds in dimension < d — 1 and Theorem 1.8 holds
in dimension d. Then Theorem 1.10 holds in dimension d for those (X', B'+ M) such that
e B' € R, and
e (X',B'+ M) is non-exceptional.

Proof. By definition of non-exceptional pairs, there is P’ > 0 such that Ky + B' + M’ +
P’ ~p 0 and (X', B+ P'+ M’) is not generalised klt. By Lemma 2.16, we can assume P’ is
a Q-divisor and can replace ~g with ~g. We can assume (X', B’ + P’ + M’) is generalised
lc otherwise (X', B’ + M’) is strongly non-exceptional, so we can apply Lemma 6.9.

Let ' = B’ + P’ and let (X", Q" + M") be a Q-factorial generalised dlt model of
(X',Q + M'). There is a boundary ©” such that B~ < 0" < Q" |©"| #0, and ©” € R
where B’™ is the birational transform of B’ (adding 1 to R we are assuming 1 € R). Let 7
denote X” — X’ and let P” be the pullback of P’. Then X” is of Fano type, and

_(KX” + @// + M//) — _(KX” + Q// + M/l) + Q// _ (_)// NQ Q/l _ @//.

Run an MMP on —(Kx» + ©” + M") and let X" be the resulting model. By the
previous paragraph, the MMP ends with a minimal model, that is, —(Kxw + ©"" + M")
is nef. Moreover, since (X", Q" + M) is generalised lc, (X", ©" + M) is generalised
le, however, it is not generalised klt as (X”,0” + M") is not generalised klt. By 6.1(3),
it Kyw + ©" + M" has an n-complement Ky» + ©"" + M" with ©”" > @, then
Kxn + ©” + M” has an n-complement Kx» + 0”7 + M” with ©”7 > ©” which in turn
gives an n-complement Ky + BT + M’ of Kx + B' + M’ with B'" > B’. Replacing
(X', B+ M') with (X",©" + M"), we can assume (X', B’ + M') is not generalised klt.

Applying Proposition 6.8, we can further assume M’ ~q 0 and that Ky + B'+M' ~qg 0
which yield Ky + B’ ~g 0. In particular, since M is nef, we get M = ¢*M’ ~g 0. Since
X' is of Fano type, Pic(X’) and Pic(X) are torsion-free (cf. [21, Proposition 2.1.2]). In
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particular, pM ~ 0, so pM’ ~ 0. Therefore, it is enough to find a bounded n € N divisible
by p such that n(Kx: + B’) ~ 0. Now apply Lemma 6.10.
O

6.12. Boundedness of complements. In this final subsection we prove the main induc-
tive result of this section.

Proposition 6.13. Assume Theorems 1.8 and 1.11 hold in dimension < d. Then Theorem
1.10 holds in dimension d.

Proof. By induction on d we can assume Theorem 1.10 holds in dimension < d — 1. Let
(X',B’ + M') be as in Theorem 1.10 in dimension d. Replacing (X', B’ + M’) with a
Q-factorial generalised dlt model we can assume X' is Q-factorial.

Pick € € (0,1). Let © be the boundary whose coefficients are the same as B’ except
that we replace each coefficient in (1 — €,1) with 1 (similar to 2.50). That is, we have
© = (B¢ + [(B)”'17¢]. Run an MMP on —(Kx/ + ©' + M’) and let X” be the
resulting model. By Proposition 2.50, if € is sufficiently small depending only on d, p, R,
then:

e (X' 0"+ M') is generalised Ic,

e the MMP does not contract any component of [©'],

o —(Kxn+ 0"+ M") is nef, and

o (X", 0"+ M") is generalised lc.
Since 1 is the only accumulation point of ®(R), there is a finite set T C [0, 1] of rational
numbers which includes 2R and which depends only on ¢, R such that ©" € ¥ (note that by
our choice of ¢, J depends only on d, p, R).

By 6.1(3), if Kx» +©” + M” has an n-complement Ky~ + 0" + M” with "7 > @”,
then we get an n-complement Ky + 0" + M’ of Kx/ +© + M’ with ©" > ©'. Since
© > B, Kx/+0'" 4+ M’ would be an n-complement of K x/+ B’+ M. Therefore, replacing
X',B',M' with X”,©",M", and R with ¥, we can assume B’ € R.

By Lemma 6.11, we can assume (X', B’ + M’) is exceptional. Since we are assuming
Theorem 1.11 in dimension d, X’ belongs to a bounded family. Thus we can choose a very
ample divisor A’ so that A’¢ and —A’* 'K are bounded from above. By construction,

L = —q(KX/ + B + M/)

is nef and integral where ¢ = pI(9R). Moreover, A’“~1L’ is bounded from above because
B’ + M’ is pseudo-effective which implies

Ald—lL/ gAld_l(_qKX/)

and the right hand side is bounded. So by Lemma 2.25, there is a bounded number n
divisible by ¢ such that —n(Kxs+ B’ 4 M’) is nef and Cartier. Since X’ is of Fano type, we
can use the effective base point free theorem [32], so we can assume | — n(Kx + B’ + M’)|
is base point free. Now let

G, € | —n(KX/ +B,+M/)|
be a general member and let B'" = B’ + 1G’. Then (X', B'" + M’) is generalised lc and

n(Kx: +B'" + M') ~ 0, hence Kx/ + B'" + M’ is an n-complement of Ky + B + M.
O



Anti-pluricanonical systems on Fano varieties 73

7. Boundedness of exceptional pairs

The aim of this section is to treat exceptional pairs and exceptional generalised pairs as in
Theorems 1.3 and 1.11, inductively. In the non-exceptional case, discussed in the previous
section, the main inductive tools were lifting complements from the base of a fibration and
from a non-klt centre.

Assume X is an exceptional weak Fano variety of dimension d, as in Theorem 1.3. Let
T be as in Proposition 4.11 in dimension d. If X is 7-lc, then by the proposition, | — mK x|
defines a birational map for some bounded m € N. In particular, taking M € | —mKx| and
letting ) = %M we get a klt m-complement K x+2 as X is exceptional, hence X is bounded
by [19, Theorem 1.3]. If X is not 7-lc, there is a prime divisor D on birational models of
X with log discrepancy a(D, X,0) < 7. Then there is a birational contraction ¢: Y — X
from a Q-factorial variety contracting only one divisor which is D. Thus Ky +eD = ¢*Kx
where e > 1 — 7. The idea here is to run some kind of MMP (as in 7.4) in which in each
step we try to increase e but keeping the nefness of —(Ky + eD). Since X is exceptional,
the pair remains klt. In the end we get a model Y’ and a fibration Y’ — Z’ along which
Ky + éD’ is numerically trivial where € > e. It turns out that (Y’,€éD’) is é-lc for some
fixed € > 0. Applying 1.4 we deduce € belongs to a fixed finite set. If dim Z’ > 0, then we
can pull back a complement from the base and get a bounded complement of Kx and then
apply [19, Theorem 1.3]. If dim Z’ = 0, we apply [19, Theorem 1.3] once more.

If (X', B’ + M) is exceptional as in Theorem 1.11, adapting the strategy of the previous
paragraph is much more difficult because of the presence of B’ + M’. We need to discuss
and bound exceptional thresholds (7.7), bound anti-canonical volumes (7.9) and bound anti-
canonical singularities (7.11) in order to be able to apply a general boundedness criterion
(7.13). The latter criterion also plays an important role in the proof of BAB [5, proof of
Theorem 1.1].

7.1. Bound on singularities.

Lemma 7.2. Let d,p € N and ® C [0,1] be a DCC set. Then there is a number ¢ >
0 depending only on d,p,® satisfying the following. Let (X', B’ + M') be a projective
generalised pair with data ¢: X — X' and M such that

o (X',B'"+ M) is exceptional of dimension d,

e B’ € ® and pM is b-Cartier, and

e X' is of Fano type.

Then for any 0 < P’ ~g —(Kx/ + B'+ M"), the pair (X', B'+ P’ + M’) is generalised e-lc
(where we consider this generalised pair with boundary part B' + P').

Proof. Let (X', B'+ M’) and P’ be as in the statement. Since (X', B'+ M’) is exceptional,
(X',B'+ P' + M') is generalised klt. Taking a Q-factorialisation we can assume X' is
Q-factorial. Let D" be a prime divisor on birational models of X such that

a:=a(D", X' B+ P + M)

is minimal. We can assume a < 1. Let X” — X’ be the birational contraction which
extracts exactly D”; it is the identity morphism if D” is already a divisor on X’. Let
Kxn + B" + M" be the pullback of Ky + B+ M’, and let P” be the pullback of P’. Let
e and ¢ be the coefficients of D" in B” and P” respectively (note that it is possible to have
e < 0). By assumption, e+ c=1—a > 0. By 2.13(7), X" is of Fano type.
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Running an MMP on
_(KX” —|—BH+CDH—|—MH) ~Q P’ _ D" >0
we get a model X" on which —(Kxw + B" + ¢D"” + M) is nef. We can assume the
induced maps 9: X --» X” and 7: X --» X" are morphisms. Then
W*(K m—i—B”/—i-CD”/—i-M/”) ZQ/J*(K N—i-B”—I—CD//—i-M”).

Let € be the number given by Proposition 2.50 for the data d,p, ®. We will show that
a > €. Assume not, that is, assume a < e. We will derive a contradiction. Let ©" be
the same as B"” + ¢D" except that we replace each coefficient in (1 —¢,1) with 1. Next
run an MMP on —(Kxw + ©" + M"). Let X be the resulting model. Then by 2.50,
—(K%+©+ M) is nef. We can assume the induced map p: X --» X is a morphism. Then

p*(Ky—F@—FM) Z W*(KX/// + @l// _|_ M/l/) Z W*(KX// + B/// + CD/// + M//)
Z Qp*(KX// +B//+CD”+M//) 2 ¢*(KX/ +B/+M/)
By construction, [©"| # 0, hence (X", 0" + M) is not generalised klt which in turn
implies (X,0 + M) is not generalised klt. In particular, (X,© + M) is not exceptional as
—(Kx+©+ M) is nef and X is of Fano type. Therefore, (X', B’ + M’) is not exceptional,

by Lemma 2.17, a contradiction.
O

7.3. From complements to Theorem 1.3. Before treating 1.3 we prove a lemma.

Lemma 7.4. Assume that

(X, B) is a projective Q-factorial pair,
—(Kx + B) is nef,

X is of Fano type, and that

D # 0 is an effective R-divisor on X.

Then there is a —D-MMP ending with a non-birational contraction X' — T’ such that

o —(Kx/+ B' +tD’) is globally nef and numerically trivial over T' for some t > 0,
and
e the intersection of Kx+ B+tD with each extremal ray in the MMP is non-negative.

Proof. Let s be the largest real number such that —(Kx + B + sD) is nef. Note that it is
possible to have s = 0, e.g. when Kx + B = 0. Since X is of Fano type, the Mori cone of
X is generated by finitely many extremal rays, hence there is an extremal ray R such that

(Kx+B+sD)-R=0and D-R>0.

If R defines a non-birational contraction, then we stop and let t = s and let X = X’ — T”
be that contraction. If not, we let X --» Y be the divisorial contraction or flip defined by
R. Then —(Ky + By + sDy) is nef where By, Dy are the pushdowns of B, D. Moreover,
Y is of Fano type, and since D - R > 0, we have Dy # 0. Now let u be the largest real
number such that —(Ky + By + uDy) is nef, and continue as above.

The process gives a —D-MMP which eventually ends with a —D-Mori fibre space, that is,
a non-birational contraction X’ — T such that D’ is ample over T’ because D is effective.
By construction, —(Kx/ + B’ +tD’) is nef globally and numerically trivial over T” for some
t > 0. In the first step of the MMP we have

(Kx +B+tD)-R=(t—s)D-R>0.

The same is true in each step, hence the intersection of Kx + B + tD with each extremal
ray in the MMP is non-negative.
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O

Lemma 7.5. Assume Theorem 1.10 holds in dimension < d—1 and Theorem 1.8 holds in
dimension d. Then Theorem 1.3 holds in dimension d.

Proof. Assume the statement is not true. Then there is a sequence X; of exceptional weak
Fano varieties of dimension d which do not form a bounded family. Let ¢; € N be the
smallest number such that | — ¢;Kx,| is base point free. Then Ky, has a ¢;-complement
which is necessarily klt because X; is exceptional. The set of the ¢; is not finite by [19,
Theorem 1.3]. Replacing the sequence X; with a subsequence we can assume the ¢; form
a strictly increasing sequence. In particular, no infinite subsequence of the X; forms a
bounded family. Let X; — X; be the contraction defined by —Kx,. Then X; are Fano
varieties, and they do not form a bounded family otherwise the ¢; would be in a finite set.
Thus replacing X; with XZ we can assume X; are Fano varieties.

Let ¢; be the minimal log discrepancy of X;. Let ¢ = limsupe;. First assume ¢ < 1.
Replacing the sequence we can assume ¢; < € for every ¢. There is a birational contrac-
tion X! — X; from a Q-factorial variety which contracts only one prime divisor D} and
a(D}, X;,0) = €. Let Ky + e; D} be the pullback of Ky,. Thene; =1—¢ > 1—¢. By
Lemma 7.4, there is a —D/-MMP ending with a non-birational contraction X" — T} such
that

o —(Kxr+e;D!'+t;D!) is nef globally and numerically trivial over 7" for some ¢; > 0,
and
e the intersection of K/ + e; D} + t; D] with each extremal ray in the MMP is non-
negative. '
Let €; = e; + t; which is > 1 — e. Take common resolutions ¢;: W; — X;, ¥;: W; — XZ(
and m;: W; — X/'. Then

™ (Kxy +&D;) > 97 (Kx; + &D;) > ¢7 (Kxs + e;D)) = ¢ Kx,

where the first inequality follows from the second item in the list of the properties of the
MMP above. Thus if 0 < P/ ~qg —(K Xy + ¢; DY) and if Kx, + P; is the crepant pullback
of Kxr + ¢, D! + P/ to X;, then P; > 0.

Applying Lemma 7.2, (X;, P;) is élc for some € > 0 independent of ¢. Thus (X/,é;D/)
is also élc. Applying Theorem 1.4 to the restriction of Ky» + €; D} to the general fibres of
X! — T! shows that these fibres belong to a bounded family. Moreover, by Lemma 2.22,
€; belongs to a finite set independent of 3.

If dim 77" > 0, then by Proposition 6.5, Kx» + D; has an n-complement Ky + B
for some n independent of ¢ such that €;D) < B/. On the other hand, if dim7}" = 0,
then by [19, Theorem 1.3] the varieties X' form a bounded family, hence by Lemma 2.25,
the Cartier index of Kx» + & D] is bounded, so again Kx» + €D; has an n-complement
Kxy + B} for some n independent of i where in this case & D;’ = B;'. Therefore, by 6.1(2),
Kx; + &D; has an n-complement Ky, + B; for some n such that éD; < B;, and this in
turn implies Kx, has an n-complement Kx, + B;. Since X; is exceptional, (X;, B;) is klt.
So the X; form a bounded family by [19, Theorem 1.3], a contradiction.

Now we can assume ¢ = 1 and that the ¢; are sufficiently close to 1. By Proposition
4.11, there exists m € N such that | — mKx,| defines a birational map for every i. Pick
0 < C; ~ —mKy,. Since X; is exceptional, (X;, B; := %Cl) is klt, hence it is %—10.
Therefore, the X; are bounded by [19, Theorem 1.3], a contradiction.

O
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7.6. Bound on exceptional thresholds.

Lemma 7.7. Let d,p € N and let & C [0,1] be a DCC set. Then there is B € (0,1)
depending only on d,p,® satisfying the following. Assume (X', B+ M') is a projective
generalised pair with data ¢: X — X' and M such that

(X', B' + M) is exceptional of dimension d,

B’ € ®, and pM 1is b-Cartier,

—(Kx' + B'+ M’) is nef, and

X' is of Fano type and Q-factorial.

Then (X', B+ aM’) is exceptional for every o € 3, 1].

Proof. Suppose the lemma is not true. Then there exist a strictly increasing sequence
of numbers «; approaching 1 and a sequence (X!, B} + M/) of generalised pairs as in the
statement such that (X, B+ «;M]) is not exceptional. In particular, M/ is not numerically
trivial. Since

—(Kx; + Bj + a;Mj) = —(Kx; + Bj + M;) + (1 — o) M
is pseudo-effective and X/ is of Fano type, there is
0< P ~r —(Kx; + Bi + o M),

so it makes sense to say that (X, B/+«;M/) is non-exceptional. In particular, we can choose
P! such that (X/, B + P! + «; M) is not generalised klt. Moreover, running an MMP on
P! we can assume it is nef. Note that since N, (P/) = 0, the MMP does not contract any
divisor, hence all our assumptions are preserved except that —(Kx + B’ + M’) may no
longer be nef but we will not need nefness.

Let t; be the generalised lc threshold of P! with respect to (X/, B, + «;M]). Then t; < 1.
Let Q = B + t;P] and let (X!, Q) + a;M]') be a Q-factorial generalised dlt model of
(X1, Q%+ a;M!). Adding 1 to ®, we can find a boundary I'/ € ® such that B/~ <T7 </
and |I'/| # 0 where B;™ is the birational transform of B]. Let G = Q! —I'/. Then from

—(Kx: + Q + ;M) = —(Kx/ + B + ;P + a; M)

= —(Kx; + Bj + s Mj) — t;P] ~p P| = t;P{ = (1 — ;)P
we get
—(Kxr +T7 + M]') = —(Kxn +Q + a;M]") + G} ~r (1 = ;)P + G > 0

where P/ is the pullback of P.

By 2.13(7), X[' is of Fano type. Run an MMP on —(Kxy + I'Y + M;") and let X;”
be the resulting model. First we argue that (X!, T7 + M]") is generalised lc for ¢ > 0.
Since (X[, + a;M]') is generalised lc and since —(Kxr + Qf + a;M]") is nef hence
semi-ample, we deduce that (X", Q) + o;M]") is generalised lc which in turn implies
(X7 TV + o;M!") is generalised lc. Now by the ACC for generalised lc thresholds [9,
Theorem 1.5], (X", T/ 4+ M!") is generalised lc for 7 > 0, hence we can assume this holds
for every i.

We show that X;” is a minimal model, that is, —(Ky» + I'/" + M;") is nef, for i > 0.
Assume not. Then we can assume the MMP ends with a Mori fibre space, that is, there
is an extremal non-birational contraction X;” — T}" such that Ky + I} + M;" is ample
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over T;". Let A; € [a;, 1] be the smallest number such that Kxm» + I + A\ M]" is nef over
T}". Since

—(Kxm + Fg// + aiM’[:,l/) ~p (1— ti)Pim + G;” >0,
Kxm + I + a;M;" cannot be ample over T;”. Thus M;" is ample over T;" and Kxm +
"+ \M]" =0/T)". By restricting Ky + I} + \;M!" to the general fibres of X|" — T}”
and applying the global ACC for generalised pairs [9, Theorem 1.6] we get a contradiction.

We can assume the induced maps ¢;: X; --» X/ and 7;: X; --» X/ are morphisms.

Then

—m] (Kxp + T + M}") < =] (Kxp + T + MJ).
Thus since —(Ky + I + M]") is semi-ample, there is

0< Qi ~r —(Kxy +T7 + M)

hence (X!, T 4+ M) is non-exceptional. Therefore, (X/,I", + M/) is non-exceptional where
I'! is the pushdown of I'. This in turn implies (X], B; + M/) is non-exceptional as B < I",
a contradiction.

O

7.8. Bound on anti-canonical volumes.

Lemma 7.9. Let d,p € N and let & C [0,1] be a DCC set. Then there is v depending only
on d,p,® satisfying the following. Let (X', B’ + M') be a projective generalised pair with
data ¢: X — X' and M such that

o (X', B'+ M) is generalised kit of dimension d,

e B' € ®, and pM 1is b-Cartier and big, and

e Kx/+ B + M ~p0.

Then vol(—Kx/) < wv.

Proof. First note that the assumptions imply that X’ is of Fano type. Indeed, since M is
big, M’ is big, so M' ~q H' + D’ where H' is ample and D’ is effective. Now if A > 0 is
small, then
(X', B+ D'+ A\H' + (1 = \)M')
is generalised klt which implies that
(X',B"+\D' + (1 — \)M')
is generalised klt too. Moreover,
—(Kx'+ B+ AD' + (1 = \)M'")) ~g AH'
is ample, so X' is of Fano type by 2.13(6).

Now if the lemma does not hold, then there is a sequence of generalised pairs (X!, Bi+M])
as in the statement such that the volumes vol(—K ng) form a strictly increasing sequence
approaching co. After taking a small Q-factorialisation we can assume X/ is Q-factorial.
Moreover, replacing X; we can assume X; — X/ is a resolution, in particular, pM; is Cartier.
Since pM; is nef and big, by Lemma 2.46, Kx, + 3dpM; is big, hence K x:+ 3dpM]/ is big
too. Thus

vol(—Ky;) < vol(—=Kx; + Kx, + 3dpM;) = vol(3dpM}),
hence it is enough to show vol(Af}) is bounded from above. We can then assume the volumes
vol(M]) form a strictly increasing sequence of numbers approaching oco.
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There is a strictly decreasing sequence of numbers §; approaching zero such that vol(d;M]) >
(2d)?. Thus letting o; = 1 — 6;,

vol(—(Kxs + B 4+ a; M])) = vol(8; M;) > (2d)".

On the other hand, running an MMP on M and replacing X/ with the resulting model,
we can assume M/ is nef and big. Note that the MMP does not contract any divisor, so all
the assumptions are preserved. Now by 2.31(2), there is some

0 < P/ ~p —(Kx; + B + a; M)

such that (X7, P/) is not klt which in turn implies (X, B, + P!+ «; M) is not generalised klt
(note that M/ may not be ample but 2.31(2) still applies as M/ is nef and big so it can be
approximated by ample divisors with volume > (2d)?). In particular, (X!, Bi+a;M/) is non-
exceptional. This contradicts Lemma 7.7 as lima; = 1 and (X, B + M) are exceptional
as (X}, B} + M) is generalised klt and Kx; + B; + M] ~g 0.

U

7.10. Bound on lc thresholds.

Lemma 7.11. Let d,p,l € N and let ® C [0,1] be a DCC set. Then there is a positive
real number t depending only on d,p,l, ® satisfying the following. Let (X', B+ M') be a
projective generalised pair with data ¢: X — X' and M such that

(X', B"+ M) is exceptional of dimension d,

B’ € ®, and pM s b-Cartier and big,

—(Kx+ B'+ M’) is nef, and

X' is of Fano type and Q-factorial.

Then for any L' € | — 1K x|, the pair (X', tL') is kit.

Proof. If the statement does not hold, then there exist a decreasing sequence of numbers t;
approaching zero and a sequence (X!, B, + M) of generalised pairs as in the statement such
that (X},t;L;) is not kit for some L; € | — [Kx/|. Replacing X; we can assume X; — X
is a resolution, in particular, pM; is Cartier. Since pM; is nef and big, by Lemma 2.46,
Kx, + 3dpM; is big, hence

1

7L+ 3dpM]

Ky, + 3dpM] ~q —

is also big.

By Lemma 7.7, there is a rational number 8 € (0,1) such that (X, B, + SM]) is excep-
tional for every i. Let s; be the generalised lc threshold of L] with respect to (X!, Bi+ 5M]).
Then s; < t;. We can assume s; < éd;ﬁ for every i. Thus

—(Kx;+ B+ siLi + BM]) = —(Kx; + Bi + Mj) + (1 = B)M] — s;L;
is big by the previous paragraph. Therefore, there is
0 < P/ ~p —(Kx: + Bi + s;L; + BM;).
Now
(X[, B} + s; L}, + P! + BM])
is not generalised klt, so (X], B + BM]) is non-exceptional. This is a contradiction.
O
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7.12. From bound on lc thresholds to boundedness of varieties. The next result is
one of the key statements of this section. As mentioned before it plays a crucial role in the
proof of BAB as well [5, proof of Theorem 1.1].

Proposition 7.13. Let d,m,v € N and let t; be a sequence of positive real numbers. Assume
Theorem 1.10 holds in dimension < d — 1 and Theorem 1.8 holds in dimension d. Let P
be the set of projective varieties X such that

X is a kIt weak Fano variety of dimension d,

Kx has an m-complement,

| — mKx| defines a birational map,

vol(—Kx) < v, and

for anyl € N and any L € | — I Kx|, the pair (X,t,L) is kit.

Then P is a bounded family.

Proof. We first give a short summary of the proof. Using the assumption that | — mKx|
defines a birational map and vol(—Kx) < v, we find a bounded smooth birational model
W of X. We take an m-complement Kx + Bt of Kx. If the complement is klt, we apply
[19, Theorem 1.3]. Otherwise we let K-+ B% be the crepant pullback of Kx + B* to W,

and try to perturb B% to get Ay ~o B% with K3y + Ay being sub-klt and with bounded
Cartier index. We pull back the latter to X to get Kx + A. The main issue here is that A
may not be effective. Using the final assumption of the proposition and some complement
theory we construct © with coefficients in a fixed finite set so that Kx +© ~q 0 is klt, and
again apply [19, Theorem 1.3].

Step 1. In this step we consider a birationally bounded model of X. By Lemma 2.26,
we can take a small Q-factorialisation of X, hence assume X is Q-factorial. Let M be a
general element of | —mKx|. Applying Prospotion 4.4 (with B = 0), there is a bounded set
of couples P and a number ¢ € R>? depending only on d, v such that there is a projective
log smooth couple (W, E57) € P and a birational map W --» X such that

e Supp Xy contains the exceptional divisor of W --» X and the birational transform
of Supp M;
e if X - X and X’ — W is a common resolution and Mz is the pushdown of
My := M|x/, then each coefficient of My is at most c;
e there is a resolution ¢: W — X such that My := M|w ~ Aw + Rw where Ay is
the movable part of |Myy|, |Aw| is base point free, and if X’ — X factors through
W, then Ax/ := Aw|x: ~ O/Y
Note that since we assumed M is a general element of | — mKx|, we can assume
My = Aw + Rw and that Ay is general in |Ay|. In particular, if Ay is the push-
down of Aw|xs, then Ay < Xy

Step 2. In this step we discuss complements. Let M, A, R be the pushdowns of My, Aw, Rw
to X. By assumption Kx has an m-complement, say Kx + BT. In particular, mB™ is an
element of the linear system |M| = | — mKx|. But since (X, BT) is Ic and since A+ R is a
general element of | — mKx|, we deduce that (X, LA+ LR)islc too. Thus replacing B+
we can assume BT = L4+ LR By [19, Theorem 1.3], we can assume (X, BT) is not klt.
The idea is to construct another complement which is klt. Replacing m from the beginning
we can assume m > 1 so that A is not a component of |B™].
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Step 3. In this step we use the model W to construct a new lc complement Kx + €.
Since | Ay;| defines a birational contraction and since Ay < Yy, there is I € N depending
only on the family P such that [ A7 ~ Gy for some Gy > 0 whose support contains Y7
Now let Ky + B% be the crepant pullback of Kx + BT to W. Then (W, B%) is sub-lc
and

Supp B% C X3 C Supp Gy

Let G be the pushdown of Gx := Gyp|xs to X where as in Step 1, X’ — X and X' — W
is a common resolution. Since Axs ~ 0/W, we deduce that Ay is the pullback of Ay
Thus from [Ay ~ Gy we get [Axs ~ Gy which in turn gives [A ~ G. Therefore,
G+IRe|—ImKx|.

Now, by assumption, (X, (G + [R)) is klt where ¢ := t;,;,. In particular, this means the
coefficients of (G + [R) belong to a fixed finite set depending only on ¢. Decreasing ¢t we
can assume it is rational and that t < ll

If (X, &~(G +[R)) is lc, then we let Q = ;= (G + [R) and n = lm. But if it is not lc,
then the pair (X, t(G + lR)) is strongly non-exceptional, hence by Lemma 6.9, there is n
depending only on d, ¢t such that there is Q > ¢(G+IR) with (X, ) is lc and n(Kx +) ~ 0.

Step 4. In this step we introduce Ay and A. Let

t

t
. Rt _
Ay := B+ — Ay — 7

Gy

which satisfies Ky + Ay ~@ 0. Since Ay is not a component of LB%J and since

Supp B% C Supp Gy, there is € > 0 depending only on #,1,m such that (W, Ayr) is
sub-e-lc.

Let Kx + A be the crepant pullback of Ky + Ay to X. Then Kx +A ~g 0 and (X, A)
is sub-e-lc. However,

A:B++LA—lG
m lm

has negative coefficients, so (X, A) is only a sub-pair.

Step 5. Finally we produce a suitable klt complement Kx + © and prove boundedness
of X. Let © = %A + %Q Then

1 t 1
_ Rt A -
=3B+ -4 2z G+5922=
_W-AfA——f l >_47 >
+o 50t 5 (G+R) Si G+GO

Since (X, A) is sub-e-lc and (X, Q) is Ic, (X, 0) is §-lc. Moreover, Kx + © ~q 0, and the
coefficients of © belong to a fixed finite set depending only on t,l,m,n. Now apply [19,
Theorem 1.3].

O

7.14. From complements to Theorem 1.11. We arrive at the main result of this section.

Proposition 7.15. Assume Theorem 1.10 holds in dimension < d — 1 and Theorem 1.8
holds in dimension d. Then Theorem 1.11 holds in dimension d.
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Proof. We first give a short summary of the proof. We reduce boundedness of (X', Supp B’)
to boundedness of X', and to the case B’ € R. We argue that it is enough to construct a
bounded klt complement of X’. We consider an lc complement of Ky, and then reduce
the problem to the situation when Kx/ + B’ + M’ ~g 0 and M is big. Finally we apply
7.13 to the minimal model of —Kx/ to produce the required bounded klt complement of
K.

Step 1. In this step we reduce the problem to boundedness of X', and the case B’ € fR.
Let (X', B'+M") be as in Theorem 1.11 in dimension d. It is enough to show X’ is bounded
because then we can find a very ample Cartier divisor H' so that — Ky - H'*! is bounded
from above (note that although X’ may not be Q-factorial but D’ - H'*~! is well-defined
for any Weil divisor D'); then

B/ 3 Hld—l S B/ . H/d—l _ (KX/ + B/ + M/) . Hld—l S _KX’ . H/d—l

where the first inequality follows from nefness of —(K x/+B’+ M) and the second inequality
follows from the fact that M’ is pseudo-effective: thus B’- H'*! is bounded and this implies
(X', B’) is log bounded as the coefficients of B" belong to the DCC set ®(R).

On the other hand, by Lemma 7.2, (X', B’ + M) is generalised e-lc for some € > 0 de-
pending only on d, p, R. In particular, the coefficients of B’ belong to a finite set depending
only on d,p,R because 1 is the only accumulation point of ®(R). Extending R we can
assume B’ € R.

Step 2. In this step we reduce the problem to existence of a klt complement and the
case when X' is Q-factorial. By [19, Theorem 1.3], it is enough to show that Kx has a klt
a-complement for some bounded number a € N. This in turn follows from existence of a klt
a-complement for Ky~ for a bounded a € N where X” — X’ is a small Q-factorialisation.
Let Kxn» + B” + M" be the pullback of Kx: + B' + M’. Then replacing X', B’, M’ with
X", B", M", we can assume X' is Q-factorial.

Step 3. In this step we consider a suitable lc complement of Kx/. Run an MMP on — K x-
and let X’ be the resulting model which is a klt weak Fano. Then K ¢+ has an n-complement
for some n depending only on d by applying Lemma 7.5 if X’ is exceptional or by applying
Lemma 6.11 otherwise. This implies K x also has an n-complement Kx/ + C’, by 6.1(3).

On the other hand, since (X', B’ + M’) is generalised e-lc and —(Kx/ + B’ + M’) is
semi-ample, (X', B’ + M’) is generalised e-lc where B', M’ are the pushdowns of B’, M’
Thus X' is elc. Thus by Proposition 4.9, | — mKg,| defines a birational map for some
m € N depending only on d, e, n which in turn implies | — mK x| also defines a birational
map. Replacing both m and n by pmn, we can assume m = n and that p divides m,n.
Moreover, by Lemma 2.6, replacing ¢: X — X’ and C' we can assume C' = LA’ + LR/
where ¢*(—mKxs) ~ A+ R, A is the movable part of |¢*(—mKx/)|, |A| is base point free,
and R is the fixed part.

Step 4. In this and the next step we reduce the problem to the situation in which
Ky + B+ M' ~g 0 and that M is big. We do this by introducing a new generalised pair
(X', A"+ N'). Let

A= EB' + LR’ and N := 1M + LA.
2 2m 2 2m
Then (X', A’ + N’) is generalised lc and —(Kxs + A’ + N’) is nef. Note that the coefficients
of A’ belong to a fixed finite set depending only on R, m, and that 2pmN is b-Cartier.
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Assume (X', A’ + N’) is non-exceptional. Then by Lemma 6.11, Kxs + A’ + N’ has an

l-complement Ky + AT 4+ N’ for some ! depending only on d,p, m, R such that G/ :=
A" — A’ > 0. Then

Im(Kx' + B'+2G" + M') ~Im(Kx/ + B'+2G' + M") + Im(K x + C")
1 1
=Im(2Kx + B'+ —R' +2G' + M' + —A')
m m
=2Am(Kx + A + G + N') = 2lm(Kx: + A" + N') ~ 0.
Let Bt = B' 4+ 2G". Since (X', B’ + M) is exceptional, (X', B'" + M) is generalised Klt.
Thus 1 1 1 1
X’ 7B/+ 7A/+ M+ =N’
(X 2 + 2 + 2 + 2 )
is generalised klt, hence exceptional because
1 1 1 1
Ky + =B+ AT + M+ SN ~g 0.
X+ 5 + 5 + 5 + 5 Q

Now replace B’ with %B’ T4 %A’ * and replace M with %M + %N . Replacing p, R accord-
ingly, we can then assume Ky + B’ + M’ ~q 0 and that M is big.

Step 5. In this step we assume (X', A’ + N') is exceptional. By Lemma 7.7, there
is a rational number § € (0,1) depending only on d,p, m, %R such that (X', A’ + SN') is
exceptional. Since N = %M + %A and A is base point free and big, there is r € N such
e —r(Kx + A"+ BN') = —r(Kx: + A"+ N') +r(1 = B)N’
is integral and potentially birational where r depends only on d, p, m, 8,9R. Then

|Kxr —r(Kx + A"+ SN')]
defines a birational map by [18, Lemma 2.3.4], hence
ImKxr —rm(Kx + A"+ BN')]
also defines a birational map which in turn implies
| —rm(Kx + A"+ BN")| = [mKx + mC" — rm(Kx + A"+ BN')|
defines a birational map as well. In particular, there is A’T > A’ such that
rm(Kx + A" + BN") ~ 0.

Since (X', A’ + BN") is exceptional, (X', A’" 4+ BN) is generalised klt, hence exceptional.
Now replace B and M with A’" and BN, respectively. Replacing p, R accordingly, from
now on we can then assume Ky + B’ + M’ ~qg 0 and that M is big.

Step 6. Finally, we will use Proposition 7.13 to show Ky has a bounded klt complement
as discussed in Step 2. Let X’ be as in Step 3 which is the result of an MMP on —K .
It is enough to show that K, has a klt a-complement for some bounded number a € N.
Since Kx: + B’ + M’ ~g 0, we can replace X’ with X', hence assume X' is a weak Fano.
By Step 3, Ky has an m-complement and | — mK x| defines a birational map for some
bounded m € N. Moreover, by Lemma 7.9, vol(—Kx+) < v for some number v depending
only on d, p,R. On the other hand, by Lemma 7.11, for each [ € N there is a positive real
number ¢; depending only on d, p, [, R such that for any L' € | — [K x|, the pair (X', ;L")
is klt. Therefore, X’ belongs to a bounded family by Proposition 7.13, and this implies the
existence of the required bounded klt complement for Kx/, by Lemma 2.24.
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8. Boundedness of relative complements

In this section we treat Theorem 1.8 inductively. The results of Sections 6 and 7 rely on
this theorem. Proofs are similar to those in Section 6.

Proposition 8.1. Assume Theorems 1.7 and 1.8 hold in dimension d — 1. Then Theorem
1.8 holds in dimension d for those (X, B) and X — Z such that
e BeR,
(X,T) is Q-factorial plt for some T,
—(Kx +7T) is ample over Z,
S := |TI'] is irreducible and it is a component of |B], and
S intersects the fibre of X — Z owver z.

Proof. The proof is nearly identical to that of Proposition 6.7 but for convenience we will
write a complete proof because we need some slight adjustments, e.g. Step 1, and also the
notation is different.

Step 1. In this step we show that the induced morphism S — f(S) is a contraction
where f denotes X — Z and f(S) is the image of S with reduced structure. From the
exact sequence

0—O0x(=S5)—=0x -0s5—0
we get the exact sequence
f*OX — f*OS — le*OX(_S) =0

where the vanishing follows from the relative Kawamata-Viehweg vanishing theorem [29,
Theorem 1-2-5] as

—SZKx+F—S—(Kx+F)
with (X,T' — S) being klt and —(Kx 4 I') ample over Z. Thus f.Ox — f.Og is surjective.
Therefore, if w: V' — Z denotes the finite part of the Stein factorisation of S — Z, then

OZ = f*OX — f*OS = 71'>k(9V

is surjective. But Oz — m.Oy factors as Oz — Oy5) = mOy, hence Oy gy — m.Oy
is surjective which is then an isomorphism as the induced morphism V' — f(.S) is finite.
Therefore, V' — f(S) is an isomorphism and S — f(.9) is a contraction.

Step 2. In this step we consider adjunction and complements on S. Consider a log
resolution ¢: X' — X of (X, B), let S’ be the birational transform of S, and ¢: S" — S be
the induced morphism. By adjunction, we can write Kg + Bg := (Kx + B)|s. By Lemma
3.3, Bs € ®(6) for some finite set of rational numbers & C [0, 1] which only depends on
R. Moreover, restricting Kx +1I" to S shows that S is of Fano type over f(S). In addition,
z € f(S) by assumption.

Now applying Theorem 1.8 in dimension d — 1 if dim f(S) > 0, or applying Theorem 1.7
in dimension d — 1 if dim f(S) = 0, there is n € N which depends only on d — 1,& such
that Kg + Bg has an n-complement Kg + B;f over z, with B:Sf > Bg. Replacing n with
nl(R) we can assume n is divisible by I(fR). In particular, nB is integral as B € fR. In the
subsequent steps we will lift the complement Kg + B;C to an n-complement Ky + BT of
Kx + B over z, with BT > B.
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Step 3. In this step we introduce basic notation. Write
N':=—(Kx + B') == —¢"(Kx + B)
and let 7" = | B'2%| and A’ = B’ — T". Define
L':=-nKyxy —nT' — [(n+1)A’]
which is an integral divisor. Note that
L'=nA"—[(n+1)A"| + nN".
Now write
Ky +T":=¢*(Kx +T).

Replacing I' with (1 — a)I" + aB for some a € (0,1) sufficiently close to 1, we can assume
B’ —T” has sufficiently small (positive or negative) coefficients.

Step 4. In this step we define a divisor P’ and study its properties. Let P’ be the unique
integral divisor so that
N :=T"+nA" - |(n+1)A" | + P
is a boundary, (X', A’) is plt, and |A’] = S’ (in particular, we are assuming A’ > 0). More
precisely, we let ug/ P’ = 0 and for each prime divisor D’ # S’; we let
po P = —pp |T"+nA — [(n+1)A|]
which satisfies
pp P = —pp [T = A"+ ((n + 1)A") ]
where ((n + 1)A’) is the fractional part of (n + 1)A’. This implies 0 < pp/ P’ <1 for any
prime divisor D’: indeed we can assume D’ # S’; if D’ is a component of T’, then D’ is
not a component of A’ but up I € (0,1), hence up/ P’ = 0; if D’ is not a component of 7",
then pp (I — A") = pup/(T' — B’) is sufficiently small, hence 0 < pp P’ < 1.
We show P’ is exceptional /X . Assume D’ is a component of P’ which is not exceptional/ X .
Then D’ # S', and since nB is integral, upnA’ is integral, hence pups | (n 4+ 1)A'| = ppnA’
which implies pp P’ = —pp |IV| = 0, a contradiction.

Step 5. In this step we use Kawamata-Viehweg vanishing to lift sections from S’ to X’.
Let A:= —(Kx +7T) and let A’ = ¢*A. Then
L'+ P =nA" —[(n+1)A"| + nN"+ P’
=Kx +TI"+ A +nA — [(n+1)A'| + nN'+ P’
=Kx + AN + A +nN'".

Shrinking Z around z we can assume Z is affine. Now since A’ + nN’ is nef and big over
Z and (X', N — 8’ is klt, we get h'(L' + P’ — S") = 0 by the relative Kawamata-Viehweg
vanishing theorem [29, Theorem 1-2-5], hence

HO(L' + P') — HO((L' + P')|s)
is surjective.
Step 6. In this step we define several divisors. Let Rg := Bj{ — Bg. Then, perhaps after
shrinking Z around z, we have

—n(Kg + Bs) = —n(Ks + B§ + Bs — B) ~ —n(Bg — B) = nRg > 0.
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Letting Rg be the pullback of Rg we get

—n(Kg + Bg') := —ny*(Kg + Bs) ~ nRg > 0.
Then

nN’\S/ = —n(KX/ =+ B/)’SI = —TL(KSI =+ BSI> ~ TLRS/.

By construction,

(L'+ P)|lg = (nA" = |[(n+ DA | + nN' + P')|g

~ Gg :=nRg +nlAg — [(n+1)Ag | + Py
where AS’ = AI‘S/ and Ps/ = P"SI.
Step 7. In this step we show G > 0 and that it lifts to some effective divisor G’ on X".

Assume C’ is a component of Gg» with negative coefficient. Then there is a component D’
of nA" — | (n + 1)A’| with negative coefficient such that C’ is a component of D'|¢. But

Ho (g — [(n+1)Ag |) = por(=Ag + ((n+ D)Ag) > —perAg = —ppr A > —1

which gives ucGgr > —1 and this in turn implies uc:Gg > 0 because G is integral, a
contradiction. Therefore Gg > 0, and by Step 5, L' + P’ ~ G’ for some effective divisor G’
whose support does not contain S’ and G’|g = Gg.

Step 8. In this step we introduce B™. By the previous step and the definition of L’ and
the fact that P’ is exceptional/X, we have

—nKx —nT—|(n+1)A]=L=L+P~G>0
where L, etc, are the pushdowns of L', etc. Since nB is integral, [(n + 1)A] = nA, so
—n(Kx+B)=-nKx —nT—nA=L~nR:=G>0.
Let Bt = B+ R. Then n(Kx + B*) ~ 0.
Step 9. In this step we show that (X, BT) is lc over some neighbourhood of z which

implies that Kx + B™ is an n-complement of Ky + B with BT > B. First we show
R|s = Rg. Since

nR =G — P+ |(n+ 1A' | —=nA"~ L'+ |(n+1)A'| —=nA" =nN' ~q 0/X

and since |[(n 4+ 1)A| —nA = 0 as nA is integral, we get ¢p.nR' = G = nR and that R’ is
the pullback of R. Now

nRS/ = GS’ — PS’ + I_(?’L + I)AS/J — TLAS/
= (G, — P + L(n + 1)A/J — TLA,)‘S/ = nR'|S/

which means Rgs = R'|s/, hence Rg = R|s.
The previous line implies

Ks+ B = Ks+ Bs+ Rs = (Kx + B+ R)|s = (Kx + B")]s.
By inversion of adjunction (3.2 or the usual version in [24]), (X, BT) is lc near S. Let
Q:=aB"+ (1 -a)l

for some a € (0,1) close to 1. If (X, B*) is not lc near the fibre over z, then (X, () is also
not lc near the fibre over z. Note that (X, (2) is lc near S. But then

—~(Kx+ Q) =—a(Kx+B") - (1—a)(Kx +1)
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is ample over Z and the non-klt locus of (X, Q) near the fibre over z has at least two disjoint
components one of which is S. This contradicts the connectedness principle (2.14 or the
usual version [33, Theorem 17.4]). Therefore, (X, BT) is lc over some neighbourhood of z.

O

Proposition 8.2. Assume Theorems 1.7 and 1.8 hold in dimension d — 1. Then Theorem
1.8 holds in dimension d.

Proof. When (X, B) is kit and —(Kx + B) is nef and big over Z, the theorem is essentially
[40, Theorem 3.1]. Apart from Steps 1 and 2, the proof below is similar to that of Propo-
sition 6.8.

Step 1. In this step we reduce to the situation in which | B| has a vertical component
intersecting the fibre over z. Pick an effective Cartier divisor N on Z passing through z.
Let t be the lc threshold of f*N with respect to (X, B) over z where f denotes X — Z.
Let Q = B+ tf*N. Shrinking Z we can assume (X,) is lc everywhere. Let (X', )
be a Q-factorial dlt model of (X,Q). Then X’ is of Fano type over Z. Moreover, there
is a boundary A’ < ' such that A" € ®(R), some component of |A’| is vertical over Z
intersecting the fibre over z, and B < A where A is the pushdown of A’.

Run an MMP/Z on —(Kx/ + A’) and let X” be the resulting model. Since

—(Kxr + A= —(Kx/ + Q)+ (2 — A)

where —(Kx/+ Q') is nef/Z and ' — A’ > 0, the MMP ends with a minimal model, that is,
—(Kxn + A") is nef over Z. Moreover, if Kx» 4+ A” has an n-complement K x» + A" over
z with A"t > A’ then Kx/ + A’ has an n-complement Ky + A’" over z with A’T > A/
which in turn implies Kx + B also has an n-complement Kx + BT over z with BT > B.
Since —(Kx + ') is semi-ample over Z, (X", Q") is lc, hence (X", A”) is lc. In particular,
no component of |A’| is contracted by the MMP otherwise a(S’, X", A”) < 0 for any con-
tracted component S’ of |A’| contradicting the previous sentence. Replacing (X, B) with
(X", A") we can assume | B| has a component intersecting the fibre over z and that X is
Q-factorial.

Step 2. In this step we reduce to the case B € R. Let ¢ > 0 be a sufficiently small
number. Let © be the boundary whose coefficients are the same as B except that we
replace each coefficient in (1 —€,1) with 1. Run an MMP/Z on —(Kx + ©) and let X’ be
the resulting model. By Proposition 2.50, we can choose ¢ depending only on d,fR so that
no component of |©] is contracted by the MMP, (X', ©’) is l¢, and that —(Kx/ + ©’) is
nef over Z. Moreover, the coefficients of ©' belong to some fixed finite set depending only
on R, e because 1 is the only accumulation point of ®(R).

If Ky + © has an n-complement Ky + ©'" over z with ®'" > @', then Ky + © has
an n-complement Ky + ©T over z with ©T > © which in turn implies Kx + B also has
an n-complement Kx + Bt over z with BT > B. Replacing (X, B) with (X’,0’) and
extending R, from now on we can assume B € R. In the following steps we try to mimic
the arguments of the proof of Proposition 6.8.

Step 3. In this step we define a boundary A. Since X is of Fano type over Z, —Kx is
big over Z. So since —(Kx + B) is nef over Z,

—(Kx +aB) = —a(Kxy + B) — (1 — a)Ky
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is big over Z for any o € (0,1). We will assume « is sufficiently close to 1. Define a
boundary A as follows. Let D be a prime divisor. If D is vertical over Z, let uypA = upB
but if D is horizontal over Z, let upA = ppaB. Then (X,A) islc, aB < A < B, |A] has
a vertical component intersecting the fibre over z, and —(Kx + A) is big over Z as A = aB
near the generic fibre.

Step 4. In this step we introduce a boundary A < A and reduce to the case when
—(Kx + A) and —(Kx + A) are nef and big over Z, some component of |A] intersects
the fibre over z, and that (X,A) is klt. Let X — V/Z be the contraction defined by
—(Kx + B). Run an MMP on —(Kx + A) over V and let X’ be the resulting model. Then
—(Kx + A’) is nef and big over V but may not be nef over Z. However, after replacing A
with aB + (1 —a)A for some a € (0, 1) sufficiently close to 1 (i.e. increasing « to get closer
to 1) we can assume —(Kx/ + A’) is nef and big over Z. The MMP does not contract any
component of |A]. Now replace (X, B) with (X', B') and replace A with A’ so that we
can assume —(Kx + A) is nef and big over Z. Let X — T/Z be the contraction defined
by —(Kx +A).

Let A = BA for some 3 < 1. After running an MMP on —(Kx 4+ A) over T we can
assume —(Kx + A) is nef and big over T, hence also nef and big over Z if we replace
B with a number sufficiently close to 1. The MMP may contract the components of |A |
but after replacing (X, B) with a suitable Q-factorial dlt model, increasing «, 3, and re-
placing Kx + A and Kx + A with their pullbacks we can assume (X, B) is Q-factorial
dlt and that there are boundaries A < A < B so that —(Kx + A) and —(Kx + A) are
nef and big over Z, some component of |A] intersects the fibre over z, and that (X, A) is
klt. Shrinking Z around z we can assume every component of | A| intersects the fibre over z.

Step 5. In this step we introduce divisors A, G and yet another boundary I'. We can
write —(Kx + A) ~g A+ G/Z where A > 0 is ample and G > 0. Assume Supp G does
not contain any non-klt centre of (X, A). Then (X, A+ dG) is dlt for any sufficiently small
0 > 0. Moreover,

0
—(Kx +A+0G) ~r (1 —-90) (HA—FA—FG) /Z
is ample over Z, hence by perturbing the coefficients of A + §G we can find a boundary
I such that (X,I") is plt, S := |[I'] C |B] is irreducible intersecting the fibre over z, and
—(Kx +7T') is ample over Z. So we can apply Proposition 8.1. From now on we assume
Supp G contains some non-klt centre of (X, A).

Step 6. In this step we define another boundary Q. Let ¢ be the lc threshold of G+A —A
with respect to (X, A) over z. Replacing A we can assume A — A is sufficiently small, hence
t is sufficiently small too. Then letting Q = A +t(G + A — A), any non-klt place of (X, Q)
is a non-klt place of (X,A) (this can be seen on a log resolution of (X, B + 2)). By
construction, over Z we have

—(Kx+9Q)=—(Kx +A+t(G+A-A))
= (Kx +A)+A-A—-t(G+A-A)
~r A+ G —tG+ (1 —t)(A-A)

:@—0(£%A+A+G+A—A>
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which implies —(Kx + ) is ample over Z because
—~(Kx+A)=—(EKx+A)+A-A~g A+G+A—-A/Z

is nef and big over Z.

Step 7. In this step we finish the proof of the proposition using 8.1. If |Q] # 0, then
there is a component S of 2] < |A]| < |B] and there is a boundary I' so that (X,TI') is
plt, S = [I'| intersects the fibre over z, and —(Kx + I') is ample over Z. So we can apply
Proposition 8.1.

Now assume [Q2] = 0. Let (X’,Q) be a Q-factorial dlt model of (X,Q). Shrinking Z
we can assume every component of || intersects the fibre over z. Running an MMP on
Kx/ + ] over X ends with X because || is the reduced exceptional divisor of X’ — X
and because X is Q-factorial klt. The last step of the MMP is a divisorial contraction
X" — X contracting one prime divisor S”, and (X”,S”) is plt and —(Kx» + S”) is ample
over X. Moreover, if we denote the pullbacks of Kx + Q and Kx + A to X” by Kx» + Q"
and Kx» + A", respectively, then S” is a component of both [©”| and [A”]. Now since
—(Kx + Q) is ample over Z and —(Kx» + S”) is ample over X, we can find a boundary
I' so that (X”,T") is plt, S” = |I"”| intersects the fibre over z, and —(Kx» +I') is ample
over Z. In addition, if Ky + B” is the pullback of Kx + B, then S” is a component of
| B”| since A” < B”. Now apply Proposition 8.1 to get an n-complement Ky~ + B"" of
Kx» + B" over z with B”t > B” for some bounded n € N. This gives an n-complement
Kx + BT of Kx + B over z with BT > B.

([

9. Anti-canonical volume

In this section we prove Theorem 1.6 which claims that the anti-canonical volumes of e-lc
Fano varieties of a given dimension are bounded. Recall that we treated this boundedness for
exceptional Fano varieties in 7.5. To deal with the non-exceptional case we need Conjecture
1.5 in lower dimension. We will also use Theorem 1.2. Although 1.2 will be proved later in
the final section but this is not a problem because no result of this paper relies on Theorem
1.6. However, 1.6 is an important ingredient of the proof of BAB in [5].

Proof. (of Theorem 1.6) We give a short summary of the proof. It is easy to derive the sec-
ond claim of the theorem (birational boundedness) to the first claim which is the existence
of v. Now if vol(—Kx) is too large, we find 0 < B ~g —aK x with a > 0 too small but with
vol(B) > (2d)¢ and (X, B) exactly ¢-Ic for some € € (0,¢). We extract a prime divisor
D’ with a(D’, X, B) = ¢, say via X’ — X, run MMP on —D’ giving a Mori fibre space
X" — Z and Kx» + sD"” = 0/Z where s is too large. The case dim Z > 0 is settled by
induction and restriction to the fibres of X” — Z. To treat the case dim Z = 0 we create a
covering family of non-klt centres (similar to the proof of 5.1) and use adjunction on these
centres and BAB (1.5) in lower dimension to get a contradiction.

Step 1. In this step we reduce the theorem to existence of v and introduce basic notation.
The birational boundedness claim follows from existence of v and Theorem 1.2: indeed
then there is m € N depending only on d, € such that | — mKx| defines a birational map,
and vol(—mKx) is bounded from above, so we can apply Proposition 4.4 by taking some
0 < M ~ —mKx. Moreover, we can assume X is Fano by taking the contraction X — X
defined by —Kx and by replacing X with X.
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If there is no v as in the statement, then there is a sequence X; of e-lc Fano varieties of
dimension d such that vol(— K, ) is an increasing sequence approaching co. We will derive a
contradiction. Fix € € (0,¢€). Then there exist a decreasing sequence of rational numbers a;
approaching 0, and Q-boundaries B; ~g —a;Kx, such that (2d)? < vol(B;) and (X;, B;) is
¢’-lc but not €’-Ic for any €’ > €¢/. We can assume a; < 1, hence —(Kx,+B;) ~g —(1—a;)KXx;
is ample.

For each i, there is a prime divisor D} on birational models of X; such that a(D}, X;, B;) =
¢. If D} is a divisor on X;, then we let ¢;: X! — X; to be a small Q-factorialisation,
otherwise we let it be a birational contraction which extracts only D] with X/ being Q-

factorial [8, Corollary 1.4.3]. Let
Ky, + ;D) = ¢;Kx, and K, + B} = ¢}(Kx, + Bi).
Then e; <1 — € but up,B] =1 — ¢. Therefore, the coefficient of D) in
Pl = ¢:B; = B, — e,

is at least € — €.

Step 2. In this step we obtain Mori fibre spaces X! — Z; and numbers s;. Let H; be
a general ample Q-divisor so that Kx, + B; + H; ~g 0 and (X;, B; + H;) is €/-Ic, and let
H! be its pullback to X/. Run an MMP on —D) which ends with a —D/-Mori fibre space,
that is, an extremal non-birational contraction X — Z; where D/, the pushdown of D/, is
ample over Z;. Letting b; = a% — 1 we get

1
biB;i = —B; — B; ~q —Kx, — B; ~q H;

a;
and the b; form an increasing sequence approaching co. In particular, Kx, +B;+b;B; ~q 0.
Thus
Kxi + Bj+bP] = Kx1 + Bj + bi¢f B ~q Kx1 + Bj + H] ~q 0
which gives
KXl{/ + Bz{/ -+ biPi// ~Q KXZ{I -+ Bgl + Hz(/ ~Q 0
where B/ denotes the pushdown of BJ, etc. Moreover, p D;/biPi” > bi(e — €/). So there is a
number s; > b;(e — €') so that Kxr + $; D ~g 0/Z;. In particular, lims; = oo.

Step 3. In this step we treat the case dim Z; > 0 and modify the setting when dim Z; = 0.
Assume dim Z; > 0 for every ¢ and let V; be a general fibre of X" — Z;. By the previous
step, (X[, B! + H!') is €’-lc, hence X' is €’-lc which implies V; is an €¢-lc Fano variety.
Since we are assuming Conjecture 1.5 in dimension < d — 1, V; belongs to a bounded
family. Restricting Ky + s;D; to V; we get Ky, + s;Dy; ~g 0 where Dy, = D{|y;. This
contradicts Lemma 2.22. From now on we can assume dim Z; = 0 for every i.

By construction,

vol(=K xn) > vol(b; P{') > vol(b; P}) = vol(b; B;) > (2b;d)".

Replacing € with € and replacing X; with X/ we can assume there is a prime divisor D; on
X; such that Kx, +s;D; ~g 0 and that the s; form an increasing sequence approaching oo.

Step 4. In this step we fix i, create a family of non-klt centres on X;, and consider
adjunction. By 2.31(2), there is a covering family of subvarieties of X; such that for any
pair of general closed points x;,y; € X; there exist a member G; of the family and a Q-
divisor 0 < A; ~g —a;Kx, so that (X;,A;) is lc at ; with a unique non-klt place whose
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centre contains z;, that centre is G;, and (X;, A;) is not kit at y;. As —(Kx, +4,;) is ample,
dim G; # 0 by the connectedness principle.

Let F; be the normalisation of G;. By Construction 3.9 and Theorem 3.10 (by taking
B =0and A = A;) and the ACC for lc thresholds [17, Theorem 1.1], there is a Q-boundary
OF, with coefficients in a fixed DCC set ® depending only on d such that we can write

(Kx; + 8i)lr ~o Kp, + AR, = Kp, + Op, + Pp,

where Pr, is pseudo-effective. Increasing a; and adding to A; we can assume Pp, is big and
effective.

Let Dp, := D;|p,. Since G; is general, it is not contained in Supp D;. By Lemma 3.11,
each component of Df, has coefficient at least 1 in O, + Dp,. Replacing A; with A; + D;
and replacing Pp, with Pp, + Dp,, we can assume each component of D, has coefficient at
least 1 in Afg,. Note that we also need to replace a; with a; + 5—11 which we still can assume
to form a decreasing sequence approaching 0.

Step 5. Let F! — F; be a log resolution of (F;, Ag,). In this step we define a boundary
Ypr. Pick a rational number € € (0,¢). By construction, (Fj, Af,) is not ¢-le. Define a
boundary ¥z on F! as follows. Let S; be a prime divisor and let w; be its coefficient in
A where K;_/ + Apr is the pullback of Kg, + Ap,. If w; <0, then let the coefficient of S;
in iF{ be zero. But if w; > 0, then let the coefficient of S; in EF{ be the minimum of w;
and 1 — €. Then we can write

X =Ap+ Ep = Npy
where F F N ! are effective with no common components, F F! is exceptional/ F;, each com-
ponent of Ng has coefficient > 1 — ¢ in Ap/, and Npy # 0. Note that (£}, Xp/) is €"-le.

Step 6. In this step we consider a birational model F” from which we obtain a Mori fibre
space F; — T;. Let (F/, Y ) be alog minimal model of (FY, Xp) over F;. By construction,

KFi// —+ ZF'L// = KFzH + AFzH + EFz// - NFiII ~Q EFz// - NFZ”/FZ
So by the negativity lemma, Er» = 0, hence Apr = X + Npv > 0. Moreover, Np» # 0
because the birational transform of each component of Dp, is a component of Np.

Since —(Kx, +4;) is ample, —(Kp, +Ap,) is ample, hence _(KF{/ +AF{/) is semi-ample.
Let 0 < Lpy ~g —(Kpy +Apr) be general with coefficients < 1—¢'. Then (£}, Xpr + Lpv)
is €-Ic as (F/, ZF{’) is €’-lc. Moreover, since Epy =0, we have

KFi” + EFi” + LFz‘” + NFiN = KFZ(/ + AFiH — NFz‘" + LFz‘H + NF«L” ~Q 0.
Thus running an MMP on Kp» + Xp» + Lpy ends with a Mori fibre space F; — T;. As

we are assuming Conjecture 1.5 in dimension < d — 1, the general fibres of F; — T} are
bounded because K 7 s ¢’-lc and anti-ample over T;.

Step 7. In this step we define Ag, and study Ap, — Ap,. By Lemma 3.12, we can write
Kp, + Ap, = Kx,|r, where (Fj, Ap,) is sub-e-lc and
Moreover,

Ap, —Ap, = K, + Ap, — Kp, — AR, ~q (Kx, + Q)| — Kx,|r, = Ailp-
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Let Kpn+ Apr be the pullback of Kr, +Ap,. Then Apr — Apr is the pullback of Ap, —Ap,,
hence ' ' '

AFi” — AFz’” ~Q Ai|Fi” ~Q aisiDFiu
where DFiN = D1|FZ//

On the other hand, by Step 6, N X the pushdown of N Py ls ample over T;. Let C; be
one of its components that is ample over T;. Let C/ on F} be the birational transform of
C;. Since C? is a component of Ny, it is a component of Apn with coefficient > 1 — ¢
which in turn implies it is a componzent of A FI'— A Fl' with coefficient > ¢ — ¢'.

_ Step 8. In this final step we get a contradiction by restricting to the general fibres of
F; — T;. Then
Kx, + A+ 5i(1 —a;)D; ~q 0,
hence
KFz‘" + AF’L” + Si(l — ai)DF{’ ~Q 0
which in turn gives
1-— a;

Kpr + Apy + (Apy = App) ~g 0

a;
and then
1—a;
Kp +Ap + TZ(AE_ —Ap) ~g 0.

7

But now C; is a component of %(A 7 — A ) whose coefficient is at least

(1—a;)(e—¢€)

which approaches oo as i grows large. Restricting to the general fibres of F, = T, and
applying Lemma 2.22 gives a contradiction.
O

10. Proofs of main results

Recall that we proved Theorem 1.4 in Section 5 and proved Theorem 1.6 in Section
9. We prove the other main results by induction so lets assume all the theorems in the
introduction hold in dimension d — 1. They can be verified easily in dimension 1.

Proof. (of Theorem 1.8) This follows from Theorems 1.7 and 1.8 in dimension d — 1, and
Proposition 8.2.
O

Proof. (of Corollary 1.9) Shrinking X around the generic point of V' we can assume (X, A)
is klt. Then X is of Fano type over itself. Thus by Theorem 1.8 in dimension d, Kx + B
has an n-complement Kx + BT near the generic point v of V for some n depending only
on d and R such that BT > B. Since V is an lc centre of (X, B), we deduce that BT = B
near v which in particular means n(Kyx + B) is Cartier near v.

O

Proof. (of Theorem 1.3) This follows from Theorem 1.10 in dimension < d — 1, Theorem
1.8 in dimension d, and Lemma 7.5.
O
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Proof. (of Theorem 1.11) This follows from Theorem 1.10 in dimension < d — 1, Theorem
1.8 in dimension d, and Proposition 7.15.
O

Proof. (of Theorem 1.10) This follows from Theorems 1.8 and 1.11 in dimension d, and
Proposition 6.13.

O
Proof. (of Theorem 1.7) This is a special case of Theorem 1.10.

O
Proof. (of Theorem 1.1) This is a consequence of Theorem 1.7.

O
Proof. (of Theorem 1.2) This follows from Theorem 1.1 and Proposition 4.9.

O
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