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EXTREME VALUE STATISTICS FOR λ = 0

In the case λ = 0, each cell accumulates mutations in-
dependently from each other, according to process (1),
main text. This process corresponds to a simple Pois-
son process in each cell, thus the model is equivalent to
N independent and identically distributed (i.i.d.) Pois-
son variables. In this case, the probability that m∗ =

max(m1, ...,mN ) < mc, the CDF P
∗(λ=0)
N (mc, T ) is the

same as the probability that all individual i.i.d mi < mc,
Pλ=0(mc). Thus,

P
∗(λ=0)
N (mc, T ) = [Pλ=0(mc, T )]N =

[
Γ(mc + 1, µT )

Γ(mc + 1)

]N
,

(1)

where the term in brackets on the right-hand side stands
for the CDF of the Poisson process, with the gamma
function Γ(x) and incomplete gamma function Γ(x, y).

Notably, it has been shown that the distribution of
the maximum of Poisson variables does not converge to
any simple scaling form [1]. This contrasts the behaviour
of normally distributed variables x, whose extreme value
distribution P

∗(n)
N (xc) = Prob(x∗ < xc) for the maxi-

mum, x∗ = max(x1, ..., xN ), converges towards the Gum-
bel distribution for N →∞ [2]. This distribution can be
written as a scaling form [21]

P
∗(n)
N (X) = e−e

−X
with X =

xc − x̄
σN

(2)

where x̄ and σN are scaling parameters (x̄ being also
the mode of the distribution). For a Normal distribution
with variance σ2, for N � 1 these are [2]

x̄ '
√

2 lnN σ, σN '
σ√

2 lnN
(3)

We can also use the relationship between median x̃ and
mode x̄ of the Gumbel distribution, x̃ = x̄−σN ln ln 2 [3]
to express the median as

x̃ ' x̄− (σ ln ln 2)(2 lnN)−1/2 '
√

2 lnN σ , (4)

where on the right hand side the term vanishing as
O((lnN)−1/2) has been omitted in the scaling N →∞.
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Figure 1. The scaling of the difference of mean maximum mu-
tation number and population mean 〈∆m∗〉 = 〈m∗〉−〈mi〉, for
Poisson-distributed (black) and normally-distributed random
variables (orange), together with the predicted scaling limit
of the latter, '

√
2µT lnN [2] (blue dashed line). The former

is according to the mutation accumulation for λ = 0 and is
computed by 〈∆m∗〉 = m̃+σN (γe+ln ln 2), with γe = 0.5772
and CDF from Eq. (1). (a) 〈∆m∗〉2 as a function of N for
µT = 500. (b) 〈∆m∗〉 as a function of µT for N = 500.

For µT � 1 we can approximate the statistics of m∗
for our model with λ = 0 – independent Poisson variables
mi, with mean µT – by normally distributed random
variables ∆mi = m− 〈mi〉 with mean zero and variance
σ2 = µT . We now define the scaling variable in terms of
the maximum mutation number and its median m̃ and
write ∆mc := mc − 〈mi〉. Then we have the approxima-
tion

P ∗N (∆mc) ' P ∗(n)
N (X) = e−e

−X
(5)

with X =
∆mc − m̃

σN
− ln ln 2

with median and scaling width

m̃ '
√

2µT lnN, σN '
√

µT

2 lnN
(6)

The same scaling applies to the mean 〈∆m∗〉 = m̃ +
σN (γe+ln ln 2) with the Euler-Mascheroni constant γe =
0.5772, for which the vanishing term can be again ne-
glected for N � 1.

To test this approximation, we compute the mean max-
imum mutation number of the Poisson process from Eq.
(1), 〈m∗〉 =

∑∞
mc=0(1 − P ∗N (mc)). This is shown as a
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function of cell number N and time T in Fig. 1, to-
gether with the corresponding value for normally dis-
tributed variables with mean and variance µT and the
scaling limit of the latter, according to Eq. (6). This
illustrates that despite not converging for N → ∞, the
mean maximum of normally distributed variables, with
mean and variance µT , serves as a good approximation
for the mean maximum of Poisson variables with mean
µT , for a wide range of N . While for N → ∞ (with
T fixed), the scaling of Poisson variables is expected to
deviate from that of Normal variables [1], for µT → ∞,
the mean value 〈∆m∗〉 of Poisson and Normal variables
do converge, as can be seen in Fig. 1b, which is due to
the convergence of Poisson and Normal distribution for
large µT .

MONTE CARLO SIMULATIONS

We use a kinetic Monte Carlo method with random
sequential update to simulate the stochastic model de-
scribed by Eqs. (1) in the main text. The system state
is defined by N sites, i = 1, ..., N , each characterized by
the mutation number mi of the cell residing on it. Ini-
tially, at time t = 0, all mi are set to mi = 0. In this
article, we only consider scenarios with µ ≤ λ, therefore
the following algorithm is described under this assump-
tion (which improves time efficiency). By this algorithm,
at each Monte Carlo time step, first the time is updated
by t → t + 1/λ and the following steps are executed N
times:

1. Generate two integer pseudo-random numbers
r1, r2 ∈ {1, 2, ..., N}.

2. Choose sites i = r1 and j = r2.

3. Set mj = mi.

4. Generate integer pseudo-random number r3 ∈
{1, 2, ..., N} and floating point random number r4 ∈
[0, 1].

5. Choose site i = r3. If r4 < µ/λ, set mi → mi + 1.
Return to step 1.

For µ > λ the algorithm would proceed accordingly.
This algorithm describes the stochastic process asymp-

totically exactly for large N . It differs, however, from the
Gillespie algorithm [4], which is exact also for small N , in
some aspects: (i) Random numbers are drawn indepen-
dently for each process, mutation and loss/replacement.
(ii) It does not check whether j = i, in which case no
division happens, thus the rate λ is effectively reduced
by λ → λ(1 − 1/N). (iii) Time is updated by the mean
time between processes instead of an exponentially dis-
tributed random time step. These simplifications im-
prove the time efficiency, as for µ = λ the time step size is

effectively doubled compared to the Gillespie algorithm.
Since we are only interested in a theory for large N , this
approximation does not affect our results for the scaling
with N and T , yet reaching higher simulation efficiency.

CONSTRUCTION OF THE GENEALOGY

A mutational path is defined as the mutational history
of a cell on site i, from the cell’s birth to its replacement
by another cell, by which the information on site i is
overwritten. The genealogy of the cell population at time
t = T is recursively defined as the mutational history of
cells at present time T combined with the genealogies of
all their mother cells. It can also be seen as the collection
of all mutational paths of the progeny of cells at time
t = 0, removing those mutational paths that end before
time t = T without progeny (see Fig. 1a, main text, and
Ref. [5]).

The genealogy forms a binary tree, characterized by
its branching times tk, at which a new branch from
k − 1 independent branches is generated. Thus, dur-
ing the time period t with tk < t < tk+1, there are k
branches. The genealogy can be reconstructed by fol-
lowing the mutational history of cells backwards in time
t̂ := T − t, in form of a coalescent process [6–8]. At
each time point when a cell division has occurred, the
trajectories of two daughter cells are merged (in time
direction t̂), forming a new branch of the genealogy, cor-
responding to their mother cell. This corresponds to a
Markov process with coalescence/branching time inter-
vals ∆tk = tk+1−tk distributed exponentially with prob-
ability Prob(∆tk) = 〈∆tk〉−1e−∆tk/〈∆tk〉 [8].

To determine 〈∆tk〉 we need to derive the rate at which
merging of branches occurs (see also Ref. [8]). The fol-
lowing applies to a Moran process in which a lost cell can
be replaced by any other cell. Later we will also consider
related lattice models in which only neighboring cells can
replace each other. For two branches of the genealogy to
merge, a cell division needs to occur and both daughter
cells need to be part of the genealogy. The total rate
of cell divisions in the population is λtot = Nλ, and the
probability that the first selected cell is a branch of the
genealogy is k/N while the probability that the second
selected cell is also part of the genealogy is (k − 1)/N .
Hence, the rate at which two branches of the genealogy
merge is ω = (λN) × (k − 1)/N × k/N = λk(k − 1)/N ,
and thus

〈∆tk〉 =
1

ω
=

N

k (k − 1)

1

λ
. (7)

For large enough T , there will be a time point T̂LCA :=
T − t2 after which – in backward time direction t̂ – only
a single branch remains. This single branch is the last
common ancestor (LCA). The mean time at which this



3

occurs is

〈T̂LCA〉 := 〈T − t2〉 =

N∑
k=2

〈∆tk〉 (8)

=
N

λ

N∑
k=2

1

k(k − 1)
=
N − 1

λ
' N

λ

for N � 1.

Branching times in low dimensions

The genealogy of the Moran process corresponds to a
coalescing random walk backwards in time t̂ with rate λ
in a network for which all sites are connected with each
other. A realistic scenario would be that in a tissue only
nearby cells can replace each other, mediated via cell-
cell signalling. In this case it is sensible to consider a
small range of loss/replacement, by embedding the dy-
namics on a finite regular d-dimensional square lattice
on which loss/replacement only occurs between neigh-
bors (cf. Refs. [9, 10]). For such a model, the genealogy
in backward time-direction t̂ is a coalescent random walk
on a d-dimensional lattice, for which analytical results
have been obtained by Bramson and Griffeath [11] for
asymptotically large times t̂ in any dimension d. They
showed that the number of random walkers (branches)
at time t, k(t), diminish as

k(t̂)

N
'


1

(πλt̂)1/2 for d = 1
ln(λt̂)

πλt̂
for d = 2

1
γdλt̂

for d > 2

(9)

asymptotically, for large time λt̂� 1 and N � 1, where
γd depends on the dimension and corresponds to the
probability that a random walker on a d-dimensional lat-
tice never returns to its starting point [11]. For example,
γd=3 ≈ 0.66 (see [12] as follows from [13–16]) and γd=∞ =
1. The merging rate is then −∂t̂k(t̂) and the mean merg-
ing time, which corresponds to the mean branching time
of the genealogy is 〈∆tk(t̂)〉 = −(∂t̂k(t̂))−1. With this we
get

〈∆tk〉 '


2(πλt̂)3/2

Nπλ = 2N2

k3πλ for d = 1
(πλt̂)2

(ln(λt̂)−1)Nπλ
≈ N ln(λt̂)

k2πλ for d = 2
(γdλt̂)

2

Nγdλ
= N

k2γdλ
for d > 2

(10)

for large N � 1 and λt̂ � 1 (we approximated ln(λt̂) −
1 ≈ ln(λt̂)). We see that the result for dimensions d =∞
(with γd=∞ = 1) is consistent with branching times of the
Moran process, since 〈∆tk〉 = N/λk(k − 1) ' N/λk2 for
k � 1. This results holds, as the Moran process corre-
sponds to the dynamics on an infinite-dimensional lattice.

The same scaling applies for all d > 2, though with dif-
ferent pre-factors γd. For a two-dimensional system the
result is the same in leading order, but with a logarithmic
correction in time. Nonetheless, for large λt̂, λT � 1, we
can approximate ln(λt̂) = ln(λT ) + ln(1 + (t̂ − T )/T ) =
ln(λT ) + O((λT )−1) which asymptotically depends only
on λT . Thus, 〈∆tk〉 ∼ λTN/(k2λ), which scales with
N and k as the in the case d > 2. For d = 1, however,
the branching times scale significantly differently. This
affects the time to the LCA, T̂LCA, as

〈T̂LCA〉 =

∞∑
k′=2

〈∆tk′〉 '


2(ζ(3)−1)

πλ N2 for d = 1

∼ N/λ for d = 2
1
γdλ

N for d > 2

(11)

where ζ(x) is the Riemann zeta function. For d = 2 no
pre-factor is analytically available, since due to the term
ln(λt̂) no closed form of the series can be found. It is
notable that for d = 1 the LCA is at a much further
time point in the past than for d > 1, for the same cell
number N . This means that when scaling the median, m̃,
and mean, 〈∆m∗〉, with time T , the saturating plateau
is reached far later (∼ N2/λ) than for d > 2 (∼ N/λ,
compare Fig. 1b, main text). Furthermore, we expect
that the scaling of m̃ and 〈∆m∗〉 with N will be different
for d = 1, which will be studied in the following sections.

THE EXTREME VALUE CDF OF A
BRANCHING RANDOM WALK FOR

TIME-VARYING DIFFUSION CONSTANT

In the main text we show that the statistics of m∗
for λ > 0 can be approximated by a branching random
walk (BRW) with time-varying diffusion constant. Ac-
cording to Fang and Zeitouni [17] (see Eqs. 2-4 therein),
if the diffusion constant is decreasing with time τ while
the branching rate is constant, the maximum ∆m∗ of
a continuous-time BRW in the variable ∆m with mean
zero (in Ref. [17] called “branching brownian motion”)
follows the CDF

P ∗(∆mc, τ) = f(∆mc − m̃(τ)) (12)

with

m̃(τ) =
√

2

[∫ 1

0

στ (s)ds

]
τ ×

(
1−O(τ−2/3)

)
, (13)

where s = τ ′/τ , ∆mc is the threshold variable, and
σ2
τ (s) = ∂τ ′(σ

2(s)) is the variance increment rate of the
random walk of an individual branch. Since for a dif-
fusive random walk σ2(τ ′) = 2Dτ ′, σ2

τ corresponds to
twice the diffusion constant, σ2

τ =: 2D(τ). In the context
of our model, the random variable is ∆mb := mb − µT ,
where mb is the mutational history along each branch b
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of the genealogy, and the time scale is defined through

τ(t) := νk (t− tk) + τk (14)

with

τk :=

k−1∑
k′=2

νk′∆tk′ , νk := (〈∆tk〉 k)−1 (15)

for the largest tk < t with k > 2, while τk≤2 := 0. Here,
νk is the branching rate of individual branches, and thus
τ measures time in units of branching times per branch.
Therefore, the probability of branching at time tk+1 is
νk e

−∆tkνk dt = e−(τk+1−τk) dτ , corresponding to a unit
branching rate in the time scale of τ . It further follows
that τN =

∑N−1
k′=2 k

−1 = HN−1 − 1 ' lnN where Hn are
the harmonic numbers.

In this time scale, the variance increment of an indi-
vidual random walk in the variable ∆mb is σ2

τ (k) = µ/νk,
and thus the diffusion constant Dk := σ2

τ (k)/2 = µ/2νk
depends on the random variable k, but not explicitly on
τ . In order to use formula (13), however, we need to ex-
press the dependence on k by a dependence on τ . To this
end, we note that the stochastic dynamics of ∆mb along
a single branch of the BRW, Pb(∆mb, τ), is described by
the diffusion equation (heat equation)

∂τPb(∆mb, τ) = Dk ∂
2
∆mb

Pb(∆mb, τ) . (16)

Taking the ensemble average over branch numbers k at
time τ , we have

∂τPb(∆mb, τ) = 〈Dk ∂
2
∆mb

Pb(∆mb, τ)〉k (17)

≈ 〈Dk〉k ∂2
∆mb

Pb(∆mb, τ)

where we have used that Pb(∆mb, τ) does not explic-
itly depend on k at time τ . Thus, the underlying diffu-
sion process with k-dependent diffusion constant Dk can
be approximated by a time-dependent diffusion constant
D(τ) := 〈Dk〉k|τ .

To find an explicit expression for D(τ), the probability
distribution of k, p(k, τ) is required. This corresponds to
the probability distribution of a simple binary-splitting,
continuous-time branching process starting with two
branches. To this end, we note that the future branch-
ing events of one branch are independent of the other
branch, therefore we can consider this as two indepen-
dent branching processes b = 1, 2 starting with a single
branch each, also known as Yule process. Each branch
b has branch number kb and the total branch number
is k := k1 + k2. For a Yule process it has been shown
that the probability distribution of branches converges
for large times τ to an exponential probability distribu-
tion with mean k̄b = eτ , p(kb, τ) = e−kb/k̄b/k̄b [18]. To
separate the parameter dependence from numerical con-
stants, we will assume in the following that it is possible
to factorize νk =: αN,λ ν̃k so that only αN,λ depends on

the model parameters N and λ, while ν̃k depends only
on k = k1 + k2 and comprises constant factors. This can
always be done for our model, as is shown below. Thus,
with Dk = µ/2νk we have, for large τ ,

D(τ) =

〈〈
µ

2αN,λν̃k1+k2

〉
k1

〉
k2

∣∣∣∣∣
τ

(18)

≈ µ

2αN,λ

∞∑
k2=1

[ ∞∑
k1=1

p(k1, τ)

ν̃k1+k2

]
p(k2, τ)

≈ µ

2αN,λ

∫ ∞
1

[∫ ∞
1

p(k1, τ)

ν̃k1+k2

dk1

]
p(k2, τ) dk2

=
µ

2αN,λ

∫ ∞
2

1

ν̃k

∫ k−1

1

ee
−τ (−(k1+(k−k1))e−2τdk1 ,

where we substituted k = k1 +k2, so that k2 = k−k1 was
eliminated. We also made a continuous approximation
for kb, as p(kb, τ) is only accurate for large kb. Then

D(τ) ≈ µ

2αN,λ

∫ ∞
2

k − 2

ν̃k
e−e

−τke−2τ dk (19)

=: Ad(N,µ, λ)Cd(τ)

with

Ad(N,µ, λ) :=
µ

αN,λ
(20)

Cd(τ) :=

∫ ∞
2

k − 2

2ν̃k
e−e

−τke−2τ dk .

Ad comprises the dependence on the parameters N,µ, λ,
while Cd depends only on rescaled time τ . Both may,
however, depend on the dimension d of the underlying
lattice model (d = ∞ for the Moran process), through
αN,λ and ν̃k.

The median m̃ of the CDF

Using the above factorization of D(τ), an expression
for m̃, the median of the CDF P ∗N (∆mc), can be obtained
from Eq. (13),

m̃ =

[√
2

∫ τ

0

στ (τ ′) dτ ′
](

1 +O(τ−2/3)
)

≈ 2

∫ ∞
0

√
D(τ ′) dτ ′ = Cdm̃

√
Ad(N,µ, λ) (21)

with Cdm̃ =

∫ ∞
0

2
√
Cd(τ ′) dτ ′ , (22)

where we let τ → ∞, valid for large N ≈ eτ , neglecting
terms of O(τ−2/3). With αN,λ ν̃k = νk = 1/k〈∆tk〉, we
have the factorization 〈∆tk〉 = (k αN,λ ν̃k)−1 for all d,
which, according to the asymptotic results, Eq. (11), is
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fulfilled for

αN,λ '


λ
N2 for d = 1
λ
N for d = 2
λ
N for d > 2

ν̃k '


π
2 k

2 for d = 1
πk

ln(λt̂(τ))
for d = 2

γdk for d > 2

,

(23)

with t̂(τ) = T − t(τ) and t(τ) being the inverse of the
monotonic relationship τ(t) defined in Eq. (14) . Hence,
we get the scaling of m̃ with model parameters, using Eq.
(21) and the definition for A(N,µ, λ), Eq. (20),

m̃ '


C1
m̃N

(
µ
λ

)1/2 for d = 1

C2
m̃

(
µN
λ

)1/2

for d = 2

Cd>2
m̃

(
µN
λ

)1/2

for d > 2

, (24)

where for d=2 we used that for large λT , ln(λt̂) ≈ ln(λT ),
is independent of λ, µ,N . For the model studied in the
main text, the formula for d > 2 applies, since the
Moran process corresponds to dynamics on an infinite-
dimensional lattice. This results in the formula m̃ ≈
Cm̃ (µN/λ)1/2, given in Eq. (7), main text, for which
Cm̃ := Cd=∞

m̃ . For dimensions d = 1, 2, 3 the estimates
from Eq. (24) are shown in Fig. 2, together with numer-
ical results from Monte Carlo simulations. The constants
Cdm̃ were fitted to the data (linear regression). We note
that the theoretical estimates are in excellent agreement
with simulations for d = 1, 3. For for d = 2 the agree-
ment is good for large N ; for low N , nonetheless, the
neglected correction factor ln(λt̂) cannot be considered
constant. It needs to be noted that values for d = 1 are
larger also because the time to the LCA, TLCA scales as
N2 which leads to much larger values of 〈∆m∗〉 for the
same N .

In general, the integrals Cdm̃ cannot be computed with
the scaling information for low dimensions, Eq. (23),
alone, since the integration requires information for small
t̂ which is not available from the asymptotic results of Eq.
(11). However, we know that the factors Cdm̃ are just nu-
merical constants and do not depend on the parameters,
therefore, Eq. (24) contains the full information about
the asymptotic parameter dependence of m̃ for any di-
mension d.

Nonetheless, Cm̃ = C∞d=m̃ can be computed for the
Moran process, d = ∞, for which νk = (〈∆tk〉 k)−1 =
(k − 1)λ/N is known (cf. Eq. (7)). First, we calculate
C∞(τ) from Eq. (20),

C∞(τ) =
1

2
e−2τ

∫ ∞
2

e−e
−τ k(k − 2)

k − 1
dk

=
1

2
e−2τ

[∫ ∞
2

e−e
−τk dk −

∫ ∞
1

e−e
−τ (k+1)

k
dk

]

=
1

2
(e−2e−τ−τ − e−e

−τ−2τ Γ(0, e−τ )) , (25)
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Figure 2. Mean maximum mutation number ahead of the
mean, 〈∆m∗〉 as a function of N for T > T̂LCA (achieved
through scaling T = 10N/λ, see also Fig. 2, main text) for
cells embedded on a d-dimensional lattice. The time T is
rescaled for each N according to T = 10N/λ for d = 2, 3
and T = 10 (N/λ)2 for d = 1 (note that therefore values
are much larger for d = 1). Shown are the results of Monte
Carlo simulations (points), and theoretical predictions from
the BRW approximation, Eq. (24) (dashed lines) with fitted
numerical constant Cfit

m̃ for (a) µ = λ and (b) µ = 0.001λ.
Color coding as in figure key.

where in the right integral we performed the shift k → k+
1, and Γ(x, y) is the incomplete gamma function. Now we
can compute Cm̃, according to Eq. (22), numerically (by
Mathematica, with global adaptive integration strategy)
to get for τ →∞

Cm̃ ≈ 1.79 . (26)

The use of the asymptotic distribution p(k, τ) instead of
the exact one, however, leads to deviations which do not
disappear for large τ , since there are contributions for
small k and τ ′ to the integral, Eq. (22).

The tail of the CDF

To find an asymptotic expression for the tail of the
CDF, we use that for P̄N (∆mc) = 1 − P ∗N (∆mc) � 1
the Fisher-KPP equation, Eq. (5) in the main text, can
be linearized, so that terms of order P̄ 2

N (∆mc) can be
neglected. This condition is fulfilled in the tail of the
distribution, for ∆mc � m̃(N). Writing for convenience
x := ∆mc, the linearized Fisher-KPP equation (Eq. (5),
main text) for the complementary CDF, P̄N , with time-
dependent diffusion constant D(τ), becomes

∂τ P̄N (x, τ) ≈ D(τ)∂2
xP̄N (x, τ) + P̄N (x, τ) . (27)

Following Ref. [19], we define the function Φ(x, τ) =
P̄N (x, τ)e−τ . Substituting this, we get the equation

eτ [∂τΦ(x, τ)] ≈ eτ
[
D(τ)∂2

xΦ(x, τ)
]
. (28)

Dividing by eτ yields the normal time-dependent diffu-
sion equation, which has the general solution [20]

Φ(x, τ) =

∫ ∞
−∞

Φ(x′, 0) e
− (x−x′)2

2σ2
eff (2πσ2

eff)−1/2 dx′ (29)
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where σ2
eff = σ2

eff,1 + σ2
eff,2 is the sum of the variances

of the two individual sub-genealogies b = 1, 2 originating
from the two initial branches of the genealogy. Thus,

σeff =

√
4

∫ τ

0

D(τ ′) dτ ′ =
√
Ad(N,µ, λ) Cdσ (30)

with Cdσ := 2
√∫∞

0
Cd(τ ′) dτ ′ (taking again the limit τ →

∞), depending on dimension d. With Eq. (23) we then
get

σeff =


C1
σN

(
µ
λ

)1/2 for d = 1

C2
σ

(
µN
λ

)1/2

for d = 2

Cd>2
σ

(
µN
λ

)1/2

for d > 2

, (31)

which has the same parameter dependence as m̃, yet with
other pre-factors. For the Moran process, the formula for
d = ∞ applies, and we can again integrate Eq. (25) nu-
merically (according to the definition of Cdσ above), giving

Cσ := Cd=∞
σ ≈ 0.57 . (32)

Finally, re-substituting ∆mc for x, with the initial con-
dition φ(∆mc, 0) = P̄N (∆mc, τ = 0) = 1− θ(∆mc), and
using that eτ = N , we get

P̄N (∆mc, τ) ≈ N

2

(
1− erf

(
∆mc

σeff

))
(33)

≈ Nσeff e
−∆m2

c
2σ2

eff

√
2π∆mc

and thus, for ∆mc � m̃

P ∗N (∆mc, τ) ≈ 1− Nσeff e
−∆m2

c
2σ2

eff

√
2π∆mc

, (34)

with σeff according to Eq. (30). Here, we used the ap-
proximation N ≈ eτ . The form of Eq. (34) corresponds
to the tail of a non-normalized Normal distribution with
mean zero and variance σ2

eff and is Eq. (8) in the main
text.

THE SCALING OF ∆m∗ FOR N →∞

If N is large and T is fixed, so that T̂LCA > T , the
cell population as a whole does not possess an LCA, but
the genealogy fragments into k sub-trees, corresponding
to sub-populations l = 1, ..., k which accumulate muta-
tions independently from each other. k is the number of
branches of the genealogy in reverse time t̂ = T which
is estimated by Eq. (9). Each sub-population has nl in-
dividuals, with

∑k
l=1 nl = N . Since the sub-populations

are not related to each other, each their maximum muta-
tion numbers m∗l are i.i.d. random numbers. Thus, the
probability that m∗ < mc, P ∗N (mc) (m∗ = max(1, ..., N)
of the whole population), is equal to the probability that
each independent m∗l < mc, P ∗nl(mc) [22]. Therefore,

P ∗N (mc) = [P ∗nl(mc)]
k . (35)

Each sub-population has got a maximum m∗l for which
we can apply the BRW approximation. Hence, m∗l is
distributed according to the Fisher-KPP solution, with
the tail from Eq. (34) for large τ . For the moment, we
assume the limit τ � 1 and discuss below when this is
justified. Under this assumption the tail of P ∗nl(mc) is
Gaussian with variance σ2

eff from Eq. (30), and thus the
distribution of the extreme values, Eq. (35) approaches
a Gumbel distribution for large N and µT , Eq. (5), with
an effective number of random variables, k. Hence, we
have [2]

m̃ '
√

2 ln k σeff (36)

σN ' σeff/
√

2 ln k .

With k according to Eq. (9) and σeff = Cdσ
√
µ〈nl〉/λ '

Cdσ
√
µT from Eq. (31), this gives

m̃ '


Cdσ
√

2µT ln N√
πλT

for d = 1

Cdσ
√

2µT ln N ln(λT )
πλT for d = 2

Cdσ
√

2µT ln N
γdλT

for d = 3

, (37)

σN '


Cdσ
√

µT
2 ln N√

πλT

for d = 1

Cdσ
√

µT

2 ln
N ln(λT )
πλT

for d = 2

Cdσ
√

µT
2 ln N

γdλT

for d = 3

.

For the simple (infinite-dimensional) Moran process we
have γd=∞ = 1 and the resulting term corresponds to
Eq. (9) in the main text. For d = 3, γd=3 ≈ 0.66 (see
[12], as follows from [13–16]).

Now we note that τ is the effective, rescaled time of a
BRW leading to a subpopulation l with nl cells. Thus,
τ ≈ ln(nl) ≈ ln(N/k), according to Eq. (14) and (15) ff.
For fixed T it is therefore not assured that our approx-
imation, Eq. (37) holds. To check this, the estimates
from (37) are shown in Fig. 3, together with numerical
results from Monte Carlo simulations, for λT = 1000,
µ = λ and µ = 0.001λ, whereby Cdσ has been fitted. With
τ ≈ ln(N/k) we have τ ≈ 4 for d = 1, τ ≈ 6 for d = 2,
and τ ≈ 7 for d = 3, so that deviations from the limit
τ � 1 can be expected. Nonetheless, for µ = λ, we see
an excellent agreement of theory and simulation data for
d = 1, 2, 3 and for the Moran process (main text, Fig.
3a). This can be attributed to the fact that for large µT
the individual mi are indeed approximately distributed
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Figure 3. Squared mean maximum mutation number ahead
of the population mean, 〈∆m∗〉2 as a function of N , for fixed
T = 1000/λ, with cells embedded on a d-dimensional lattice.
Shown are the results of Monte Carlo simulations (points) and
the theory (dashed lines), with fit parameter Cσ, for d = 1
(black), d = 2 (red), and d = 3 (blue), according to Eqs.
(37). (a) µ = λ, (b) µ = 0.001λ.

as a normal distribution, so that the Gumbel distribution
(Eq. (2) ff.) is a good approximation for the distribution
of m∗. For µ = 0.001λ, the agreement is still reasonable
for d = 2 and d = 3 (τ ≈ 6, 7), but not for d = 1 which
has lower τ ≈ 4, closer to one, while our approximation
is valid only for τ � 1.
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