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Preface text 

 

Vascular tissues are crucial to provide physical support and transport water, sugars, 

hormones and other small signalling molecules throughout the plant. Recent genetic 

and molecular studies have identified and interconnected some of the major signalling 

networks that regulate vascular development. Using Arabidopsis as a model system, 

this now allows describing this developmental process from the earliest specification 

during embryogenesis to the differentiation events of phloem and xylem tissues, as well 

as to reassess how oriented cell divisions are able to produce a three-dimensional 

vascular bundle within the root meristem. 
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Introduction 

 

The development of vascular tissues is one of the most important evolutionary 

adaptations that allowed plants to grow in environments other than water and populate 

the land 1. Vascular tissues provide mechanical support and facilitate transport of 

water, nutrients, hormones and other signalling molecules throughout the plant. These 

functions have also enabled land plants to grow beyond the size of mosses. Early land 

plants adopted a tissue organisation comprising three major tissue types, which can be 

found in about all organs: the outer epidermis, ground tissues and centrally localised 

vascular tissues. This organisation proved to be evolutionary very successful as it is 

still found in leaves, stems and roots of most modern land plants (Figure 1). 

 

Our current understanding of the molecular pathways that regulate vascular 

development is mostly based on studies in Arabidopsis thaliana. Vascular 

development in Arabidopsis occurs in four main processes: specification, during which 

cells obtain their specific vascular cell identity from naïve precursor cells; 

establishment, which combines growth and patterning; maintenance and 

differentiation. Specification of four provascular initial cells occurs early in 

embryogenesis 2-4. Highly regulated cell divisions with defined stereotypical 

orientations and simultaneous patterning events next establish the vascular tissue by 

the end of embryogenesis, leading to fully functional tissues with an adequate number 

of cells with correct identities (Figure 1). These embryonic provascular cells will 

generate the vascular tissues of the root and hypocotyl, while those of the shoot 

originate from the shoot apical meristem (Figure 1). Moreover, post-embryonically, 

the growth and maintenance of patterned vascular tissues occurs through cell divisions 
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in zones of the plant with high mitotic activity called meristems. Vascular tissue 

comprises two functionally distinct domains: phloem and xylem, which transport 

respectively solutes and water through the plant. Once the cells with xylem and phloem 

fate exit the meristematic regions, differentiation events will create the conducting cell 

types, tracheary and sieve elements, respectively, with their characteristic secondary 

cell wall and other cellular modifications 1 (Figure 1). The organization of vascular 

systems is very different depending on the plant organ. For example, the young root 

has a central xylem axis flanked by two phloem poles (diarch pattern), whereas stems 

contain several vascular bundles consisting of phloem on the outside and xylem on the 

inside (collateral pattern) (see Figure 1). It is important to note that the vascular 

organisation found in Arabidopsis is just one of the vast amount of different vascular 

topologies found throughout the plant kingdom. These topics have recently been 

discussed extensively 1, 5, 6 and we refer to these reviews for more detailed information. 

 

The field of vascular biology has seen major advances in the past few years, 

substantially increasing our understanding of vascular development from early 

embryonic development to late differentiation steps. Known molecular pathways have 

been extended and previously unknown links between these pathways have been 

recently uncovered. In this Review, we discuss the most recent progress in identifying 

the regulatory networks that control vascular development during Arabidopsis 

embryonic root formation and its post-embryonic maintenance. We refer to several 

excellent reviews for discussions on cambial secondary growth 1, 5, 6, leaf venation 7 

and other topics throughout the text when relevant. We will also highlight current open 

questions and discuss how general concepts regarding stem cell functions in the root 

meristem can be extrapolated to vascular tissues.  
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Root Vascular Ontogeny and Specification 

 

Vascular tissues are first formed during the early globular stage of embryogenesis from 

four inner procambium precursor cells that each generate a ground tissue and a vascular 

tissue cell through a periclinal division 2, 4 (Figure 1). From the latter, in a next round 

of periclinal cell divisions, the outer pericycle cell layer is generated 2-4. The resulting 

four inner provascular cells will generate all the cells of the xylem, phloem and 

procambium in the root and hypocotyl. In contrast, all vascular tissues in the 

aboveground tissues originate from the shoot apical meristem 1 

 

Although the ontogeny of these cell types in the root was first described over 20 years 

ago 2, 8 and in 3D more recently 4; molecular markers for the earliest cellular identities 

remain scarce. Thus, it is at present unclear if vascular and ground tissue lineages are 

both established de novo from an uncommitted precursor, or whether one of the 

identities derives from the other. This also implies that it is still unknown how the actual 

vascular identity itself is determined or controlled. Despite this clear gap in our 

understanding of vascular development, it is possible to speculate on when the different 

cell types are specified within the tissue once a generic vascular identity has been 

established. Based on cell type specific reporters and hormone response marker analysis 

9, 10, xylem identity is established first in two of the four initial cells around globular 

stage (Figure 2a). Although existing phloem markers have not been clearly described 

during embryogenesis, no early phloem markers have been identified so far 11, 12. It thus 

seems possible that phloem identity is established later than xylem, towards the end of 

embryogenesis (after heart stage) when many more cell files are present. 
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Although final differentiation only occurs post-embryonically, all cell identities of the 

root vasculature; including xylem (which comprises protoxylem and metaxylem), 

phloem (which comprises sieve elements, companion cells and protophloem) and 

procambium; are present at the end of embryogenesis based on morphology and marker 

analysis (Figure 2a; 11, 13). Post-embryonic primary root development is thus marked 

by patterning and cell specification events based on a previously established template 

(Figure 2a, b). In most other plant organs, such as stems, leafs, flowers and lateral 

organs, vascular tissues are formed from non-vascular precursor cells derived from the 

shoot apical meristem (Figure 1). It is very likely that the early processes of 

specification, growth and patterning are reiterated in these different tissue contexts.  

 

Self-organization versus determinism 

 

Although the stereotypic diarch vascular pattern of the Arabidopsis root (Figure 2) is 

laid down during embryogenesis, the regulatory mechanisms that establish this pattern 

are also able to generate different architectures when fewer or more cells are present. 

For example, mutants with half the number of vascular cell files can generate a monarch 

symmetry with opposing xylem and phloem poles 3, 14, while in other dicot species with 

larger vascular bundles, the number of xylem and phloem poles generally positively 

correlates with the size of the bundle 1. Also, when new organs are formed or the 

vascular continuity is physically damaged, new strands will quickly be formed to 

restore connectivity of this elaborate network 14-16. This intrinsic flexibility suggests a 

high degree of self-organisation underlying the arrangement of cell types in vascular 

tissues. In all cases, there is a link between the size of the vascular bundle and the 
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number of xylem and phloem poles. Moreover, some mutants have revealed a possible 

correlation between number of xylem poles and the number of embryonic leaves 

(cotyledons) 17.  

 

In contrast to potential self-organizing properties underlying vascular pattern 

formation, recent observations have shown that the bisymmetry of the embryo, and thus 

also of the post-embryonic plant, is determined early after fertilisation of the egg cell. 

Intriguingly, the orientation of the first divisions of the proembryo is constrained 

relative to the axis of the surrounding developing seed (Figure 1) 4. Because four-way 

junctions of adjoining cell walls are rare, if not actively prevented in plant development 

18, a small connection between two of the four cells in the four-cell stage embryo is 

formed (Figure 2a) 9. This connection between two cells at the centre of the embryo is 

maintained throughout embryogenesis and may later contribute to xylem axis formation 

9. Although there is no molecular evidence to support these observations, they suggest 

some degree of early determinism in plant development. It is plausible that during early 

stages, when the number of cells participating in tissue establishment is limited, and 

seeds provide external constraints, a deterministic mode of development ensures 

formation of a minimal but correct pattern. Yet during later, post-embryonic 

development, vascular development becomes plastic and acquires self-organizing 

properties, to allow maximal adaptability to the environment. An important future 

question is whether the same regulatory network can have both deterministic and plastic 

properties depending on the number of cells available.  

 

Early establishment of root vascular tissues 
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Early establishment of the root vascular tissue is tightly linked to growth, patterning 

and hormone signalling pathways. Although the plant hormones auxin and cytokinin 

(CK) have long been known to be crucially involved, we have only recently begun to 

understand how these signalling pathways interact to control vascular development on 

a molecular level.  

 

Mobile signals control vascular patterning 

 

When the two cotyledons initiate early in embryogenesis, auxin produced at these sites 

is transported towards the embryonic root through auxin transporters of the PIN family 

19, 20. Because of their position relative to the incipient cotyledons, the two connected 

provascular initial cells receive more auxin that the other two cells (Figure 2a) 20. The 

auxin response transcription factor MONOPTEROS (MP) is crucial for proper auxin 

signalling and vascular tissue formation, as mutations lead to very early division defects 

in the provascular initial cells 21. An MP transcriptional target gene, the basic Helix-

Loop-Helix (bHLH) transcription factor TARGET OF MONOPTEROS5 (TMO5) is first 

expressed in the two provascular cells receiving more auxin 9, 22. TMO5 and its 

homologs form heterodimeric complexes in vivo with another bHLH subclade 

including LONESOME HIGHWAY (LHW) and its close homologs 3, 23. Loss-of-

function of either TMO5 or LHW family members lead to a reduced number of 

periclinal cell divisions in the vasculature 3, 23, 24. Thus, TMO5/LHW complexes 

mediate MP-dependent cell division activity in vascular tissues during embryogenesis. 

 

Procambial cells undergo characteristic periclinal cell division both during and after 

embryogenesis; increasing the number of vascular cell files from the four provascular 
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initial cell files up to 30 in a mature root (Figure 2b) 8, 25. These periclinal divisions are 

reduced in the wooden leg (wol) mutant, which is mutated in a cytokinin receptor 

ARABIDOPSIS HISTIDINE KINASE 4 / CYTOKININ RESPONSE 1 (AHK4/CRE1) 25, 

26. Additionally, in the wol mutant, all cell files within the vasculature differentiate as 

protoxylem, and conversely, cytokinin treatments inhibit protoxylem differentiation 8, 

25-27. These results show that cytokinins have a dual role in vascular development as 

inhibitors of protoxylem formation and as promoters of periclinal divisions. Protoxylem 

differentiation is facilitated in part by protoxylem-specific expression of cytokinin 

signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 

(AHP6) 26; which is also a MP target gene 28. AHP6 expression is thus auxin-dependent, 

and protoxylem positions are therefore not only characterized by high auxin, but also 

by low cytokinin responses 26, 28. In the adjacent procambial cells, cytokinins promote 

a cell identity associated with the expression and/or lateral localization of 

PINFORMED (PIN) auxin efflux carriers, thus leading to accumulation of auxin in 

xylem cell files. Therefore, a mutually inhibitory feedback between cytokinins and 

auxin establishes the bisymmetric vascular pattern 28.  

 

Recently, a connection between the auxin-MP-TMO5 and cytokinin-AHP6 pathways 

was identified. TMO5/LHW heterodimers were found to activate local CK biosynthesis 

through direct transcriptional activation of the LONELY GUY4 (LOG4) gene and its 

closest homolog LOG3 9, 29 (Figure 2c). Mathematical modelling efforts using both 

growing embryonic 9 and static post-embryonic root 30 templates have shown that this 

regulatory network is able to create and maintain a zone of high auxin signalling along 

the xylem axis with flanking zones of high CK signalling in procambium cells within 

the growing vascular tissue as described above. Although the dynamic embryonic 
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model and the static post-embryonic model used different PIN regulation dynamics 

(Figure 2d), each highlights the intricate complexity in space and time of the auxin-

CK interactions at play during vascular development. These modeling studies have 

predicted the existence of a novel inhibitor of CK signalling acting in the metaxylem 

30, and have suggested that differential mobility of the key intermediates in this pathway 

as well as tissue geometry are essential for tissue patterning by this hormonal 

interaction network 9. 

 

The major molecular hubs in this pathway; e.g. MP, PIN1, TMO5-LHW and cytokinin 

signalling components; and their interactions have been best documented in embryo 

and root tissues. All of these are however expressed in vascular tissues throughout the 

plant 19, 23, 26. Therefore, it is plausible that the activity of this interaction network 

mediates vascular development in other plant tissues. However, not all vascular 

periclinal cell divisions (e.g. those at the phloem poles) can be explained by this 

regulatory network. Thus, other parallel pathways may act in the phloem (see below) 

and elsewhere. 

 

A second pathway involving mobile signals is next required to maintain a sharp 

boundary between the xylem axis and the neighbouring procambial cells. The AT-

HOOK MOTIF NUCLEAR LOCALIZED PROTEIN3 (AHL3) and its interacting 

homolog AHL4 are expressed in procambium cells neighbouring the xylem axis 

(Figure 2e). The AHL3 and AHL4 proteins move towards the xylem where they are 

required to regulate tissue boundaries between xylem and procambium 31. Consistent 

with their expression in the zone with high CK-signalling, they were shown to be CK 
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inducible; suggesting that these AT-HOOK factors could function downstream of the 

TMO5-LHW pathway. 

 

Patterning of the xylem axis into proto- and metaxylem cells is controlled by a third 

pathway, which has so far not mechanistically been linked to the previous two. The 

SHORTROOT (SHR) transcription factor, involved in ground tissue specification 32, 33 

also plays an important role in vascular tissue patterning; exemplified by metaxylem 

formation at the protoxylem position in the shr mutant 34. SHR is expressed in the stele 

and the SHR protein moves towards the endodermis 35, where it sequestered into the 

nucleus by SCARECROW (SCR) and induces miRNA165/6 expression 34, 36 (Figure 

2f). These mobile RNAs diffuse to create a gradient of miRNA165/6 with highest levels 

at the periphery of the vascular bundle and lowest levels in the inner domain of the 

stele. The class III HOMEODOMAIN LEUCINE-ZIPPER (HD-ZIPIII) family proteins 

PHABULOSA (PHB), PHAVOLUTA (PHV), REVOLUTA (REV), ATHB8 and 

ATHB15/CORONA (CNA) are all present in the stele 37-41, require auxin biosynthesis 

for their proper expression 42 and are targeted by miRNA165/6 34, 43. As a result, high 

miRNA and resulting low HD-ZIPIII levels control protoxylem identity, while 

metaxylem is characterized by the inverse gradient. This is supported by only 

protoxylem identity in the quadruple loss-of-function athb8 phb phv rev mutant; while 

a miRNA165/166 insensitive dominant phb-7 mutant shows ectopic metaxylem at the 

protoxylem position, just like the shr mutant 34. Moreover, a modelling study has 

indicated that miRNA165/6-PHB mRNA interactions probably contribute to sharp 

boundaries of gene expression in the vascular bundle 30.  

Although this pathway has only been shown to act post-embryonically in the root, it is 

likely also active during embryogenesis to establish proto- and metaxylem identity. 
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Early embryonic expression has been shown for least five miRNA165/6 members 44 in 

the lower tier of the embryo. These miRNAs restrict PHB expression to the upper tier 

during this stage of development. Nevertheless, this very early expression is most likely 

linked to its function in ab- and adaxial polarity, because other HD-ZIPIII members 

that are involved like PHB, PHV and REV are only expressed around late heart to 

torpedo stage embryos 44-47. 

From these examples, it is clear that diverse mobile signals play a crucial role 

controlling xylem patterning. These signals move between the cells through various 

mechanisms depending on their nature. Polar auxin transport is based on the PIN 

protein efflux transport 48. The SHR and AHL proteins as well as the miR165/6 species 

move through the plasmodesmata 31, 49. The role of protein and cellular factors of SHR 

movement has been further investigated 50, 51. The movement mechanism for cytokinins 

is however less clear. It appears possible that they might move through the 

plasmodesmata, but also various transporters have been implicated in CK transport in 

contexts other than xylem development 52, 53.  

 

Unravelling early phloem development 

 

The first identified factor controlling phloem development was the MYB type 

transcriptional factor ALTERED PHLOEM DEVELOPMENT (APL) 11. The apl 

mutant shows xylem like cells at the phloem positions, while ectopic expression 

represses xylem development. Moreover, because the apl mutants lack sieve elements 

and companion cells, APL is most likely both a negative regulator of xylem 

differentiation and a positive regulator of phloem differentiation. In addition to APL 

functioning as master regulator of phloem identity, several counteracting pathways 
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specify the individual cell types within the phloem lineage (protophloem, metaphloem 

and companion cells; Figure 3). 

The membrane protein OCTOPUS (OPS) was identified through screening gene-trap 

lines 13 for phloem specific genes. In ops mutants, individual protophloem cells fail to 

differentiate and thus interrupt the phloem strand integrity 12. Very similar phloem 

defects have been described in another of these gene-trap lines, previously identified as 

BREVIS RADIX (BRX), which is itself a MP target gene 54, 55 and shows low penetrance 

mp-like embryo phenotypes 56. Both OPS and BRX are polar membrane associated 

proteins, although BRX also seems to be nuclear 12, 55. These factors promote the 

transition to sieve element identity and to maintain it; while CLAVATA3/EMBRYO 

SURROUNDING REGION45 (CLE45) peptide treatments suppress protophloem 

differentiation 57. CLE45 response requires the BARELY ANY MERISTEM3 (BAM3) 

receptor like kinase 57. All these factors are expressed at the precursor cells of 

protophloem sieve element, and it appears that the balanced interplay between this 

CLE45-BAM3 pathway on one hand and the BRX and OPS regulators on the other 

hand would regulate the timing of protophloem specification. Furthermore, auxin 

appears to have a role in regulating the timing of the asymmetric periclinal division 

resulting in the specification of the protophloem and metaphloem cell lineages 58. 

 

Xylem and Phloem Differentiation 

 

Once specification, growth and patterning events are completed, all cell types are 

present in the vascular bundle. In order to create functional conductive tissues, cells 

with xylem and phloem identities will differentiate into tracheary and sieve elements 

respectively (Figure 4). These processes involve drastic cytological changes in these 
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cells and will result in tissue-specific secondary cell walls. Because the differentiation 

of xylem and phloem cell types was recently reviewed in detail 59-61, we will only 

discuss the molecular mechanisms that control these processes briefly in this section. 

 

Tracheary element formation 

 

Using transcript profiling of xylem vessel element differentiation in in vitro Zinnia cell 

cultures, the NAC transcription factors VASCULAR-RELATED NAC-DOMAIN6 

(VND6) and VND7 were identified as transcriptional switches controlling 

differentiation into meta- and protoxylem cells respectively 62. However, it remains 

unclear if besides their role in differentiation, they also control cell identity 

determination of these xylem cell types. Although fusions to a dominant transcriptional 

repressor domain inhibited differentiation into the respective vessel elements, loss-of-

function mutants did not show phenotypes, suggesting redundancy within the VND 

family 62. Both VND6 and VND7 directly up-regulate genes involved in programmed 

cell death and cell-wall thickening, leading to tracheary element differentiation 63, 64. 

Within this pathway (Figure 4a), VND INTERACTING 2 (VNI2) was identified to 

interact with VND7 and negatively regulate xylem differentiation 65. A systems-

biological approach was recently applied to determine the intricate transcriptional 

networks that act during xylem differentiation and has shown that a multitude of feed-

forward loops in this network ensures robust regulation of this process 66. Intriguingly, 

the orthologs of the same NAC type transcription factors in the moss Physcomitrella 

patens control the differentiation of their water-conducting hydroid cells. The 

functional conservation in moss and vascular plants thus suggests that these 

transcription factors played a major role in the evolutionary adaptations of plants to life 
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on land 67. Differentiation of xylem is on the other hand repressed by two members of 

the CLE gene family, CLE41-CLE44/ TRACHEARY ELEMENT 

DIFFERENTIATION INHIBITORY FACTOR (TDIF), which are produced in the 

phloem 68, 69. These peptides then move to the procambium where they are perceived 

by the leucine-rich repeat receptor like kinase PHLOEM INTERCALATED WITH 

XYLEM/TDIF RECEPTOR (PXY/TDR) 68-71. This peptide-receptor complex activates 

GLYCOGEN SYNTHASE KINASE 3 PROTEINS (GSK3), leading to a repression of 

the BRI1-EMS SUPPRESSOR 1 (BES1) transcription factor and thereby preventing 

xylem differentiation 72. 

 

First parts of the phloem differentiation puzzle 

 

In contrast to tracheary elements that undergo programmed cell death, phloem cells 

interconnect via sieve plates, generate secondary cell walls and loose most of the 

organelles and the nucleus. They manage to stay alive by establishing numerous 

cytoplasmatic connections through plasmodesmata with the neighbouring companion 

cells (CC). Recent work has shown that sieve plate biogenesis requires the CHOLINE 

TRANSPORTER-LIKE1 (CHER1/AtCTL1), indicating that the regulation of choline 

levels is crucial for phloem development and long-range transport in plants 73. Sieve 

element formation is further controlled by two redundant APL target genes, NAC45 and 

NAC86 74. Among the target genes of these NAC transcription factors, a family of 

nuclease domain containing proteins NAC45/86-DEPENDENT EXONUCLEASE-

DOMAIN PROTEIN1 to 4 (NEN1-4) control the enucleation process 74 (Figure 4b). 

Despite these recent advances, most of the molecular mechanisms that regulate the vast 

array of cellular changes during phloem differentiation remain elusive to date. 
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A meristem within the root meristem 

 

To generate a growing three-dimensional structure, the root meristem undergoes a 

series of ordered cell divisions. Those divisions underlying the longitudinal growth of 

the root are called anticlinal divisions (AD), while radial growth is controlled by 

periclinal divisions (PD) (Figure 5). Over 60 years ago, Clowes described a group of 

cells at the centre of the meristem with very low division rates 75, 76, which we now call 

the quiescent centre (QC). These cells are also characterized by specifically high auxin 

signalling as shown by auxin responsive reporters 77-79. Although QC cells hardly 

divide, the cells immediately surrounding the QC are actively dividing anticlinally and 

are commonly called the stem cells. A series of elegant laser ablation studies and 

genetic experiments 80-84 has shown that stem cells continuously undergo asymmetric, 

anticlinal divisions generating a new stem cells, while the daughter cell (which is no 

longer in contact with the QC) undergoes several more rounds of AD and finally 

differentiates when exiting the meristem. The PLETHORA (PLT) transcription factors 

sit at the basis of the transcriptional regulation of the stem cell niche 85-87. The stem cell 

model has been well established for the distal (root cap) stem cell niche and paved the 

way for our understanding of stem cell niches in plants.  

 

This concept however does not appear to seamlessly apply to the high number of PD 

that occur in the vascular tissues 25, giving the root tip its typical conical shape (Figure 

2a) by increasing the width. Radial growth through PD has been recently shown to 

depend on cytokinin and the TMO5/LHW transcription factors (see above). 

TMO5/LHW dimer is sufficient to specifically trigger PD in any cell type of the root 
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when ectopically expressed, while the number of AD is not significantly altered. Also, 

in tmo5tmo5like1 and lhw loss of function mutants, longitudinal growth is only 

moderately reduced compared to wild type, while radial growth in the vasculature is 

strongly reduced 3; suggesting that control of PD and AD can be genetically separated. 

Moreover, the TMO5/LHW dimer controls PD in the neighbouring procambium cells 

through local cytokinin (CK) production 9. Although CK induces radial growth through 

PD in root meristem and also in vascular cambium (Box 1) 25, 26, 88-91, it has a negative 

effect on meristem length by repressing AD 92, 93. Thus both genetic and hormone 

response networks support that radial and longitudinal growth are controlled by distinct 

networks. 

 

Intriguingly, the TMO5/LHW dimer expressing cells with xylem identity themselves 

only very rarely divide along the radial axis and contain high levels of auxin signalling; 

two characteristics that are shared with the QC. Indeed, root vascular bundles 

containing only xylem cell identities, such as in the log heptuple or wol mutants 9, 25, 90, 

show hardly any PD. Radial growth thus appears to be controlled by a ‘radial meristem’ 

in which the xylem axis acts as an organising centre driving radial growth through PD 

in the neighbouring procambium cells. However, it seems unlikely that the xylem 

located TMO5/LHW network, would be to be sufficient to explain all vascular formative 

divisions (e.g. those that generate the distinct phloem cell types: companion cell, 

protophloem, metaphloem), suggesting the existence of yet unknown factors 

controlling for example phloem cell fates. 

 

In conclusion, a growing root tip contains a longitudinal meristem that generates more 

cells in the existing cell files through AD under control of the well-described PLT 
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transcriptional network 85-87. On top of this, we propose that a radial meristem produces 

more cell files within the vascular bundle through PD at least partly through the 

independently acting TMO5/LHW network. A combination of both meristem activities 

thus generates the ordered three-dimensional structure of the root apical meristem. 

 

Box 1 | Vascular cambium and its similarity to the radial meristem 

While a fraction of procambial cells differentiate into various xylem and phloem cell 

types, the remaining fraction of the cells persists undifferentiated as the tissue matures. 

Later in the development these intervening procambial cells form the vascular 

cambium, a secondary meristem that undergoes periclinal cell divisions to produce 

xylem cells inside and phloem outside the meristem, thus resulting in a radial 

(secondary) growth in number of plant organs. Cambial activity therefore resembles the 

activity of the radial meristem in the root tip. Similar to the radial meristem, cytokinins 

are critical for the periclinal divisions in cambium 25, 26, 88, 91, however there are also 

differences: the key cambial regulators WUSCHEL-RELATED HOMEOBOX4 

(WOX4), TDIF and PXY/TDR are present in cambium but absent from the root tip 

including the procambium 68-71, 94. TDIF peptide is produced in secondary phloem and 

diffused into the cambium where it binds to its receptor, PXY/TDR to regulate rate and 

orientation of cell division, in part through promoting the expression of a transcription 

factor, WOX4 69, 70, 95. Another striking dissimilarity is that phloem-related cells show 

a peak in auxin signalling during secondary growth 96. More cambial regulators and 

their signalling pathways have been reviewed recently 5, 6. 

 

Perspectives 
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In recent years, several important studies have helped to generate a more 

comprehensive understanding of the development and regulation of vascular tissues. 

Early steps in tissue formation can now be connected to differentiation though 

connections identified between individual components of regulatory networks. Thus, 

vascular tissue initiation, formation, patterning, growth and differentiation can now be 

seen as parts of a continuum. However, with this view, it also becomes clear where 

knowledge is still lacking. For example, while many genes are activated concurrently 

at the time of vascular tissue initiation, it is entirely unknown how the tissue is first 

specified by identity determinants. Secondly, while several regulatory networks have 

been identified in a specific developmental context, it remains to be seen whether these 

are universal principles that also mediate patterning in other organs. For example, the 

specific vascular architecture of the meristematic root is changed completely during 

root secondary growth and vascular organisations similar to those of the root apical 

meristem can be obtained in other context, raising the question if the same pathways 

are reused at this point or whether completely parallel pathways exist. It will also be 

crucial to evaluate if the well-studied pathways in Arabidopsis can be transferable to 

other plant species and if these mechanisms are conserved throughout evolution. 

Finally, it appears that oriented cell division is an important factor in vascular tissue 

development, and a key question is how division orientation is controlled in space and 

time to create and maintain the three-dimensional shape of vascular tissue. We propose 

a model in which two distinctly regulated orthogonal meristems each controls a separate 

axis of growth to sustain tissue development as a whole. It will be interesting to see 

whether the downstream networks overlap or whether distinct regulatory modules 

control radial and longitudinal growth separately. 
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Figure 1 | Vascular development in the Arabidopsis thaliana lifecycle.  

After fertilization of the egg cell, provascular tissues are established around the early 

globular stage of embryogenesis. Highly controlled oriented divisions next generate the 

entire vascular system throughout the plant. The vascular tissue in the post-embryonic 

root and hypocotyl derives from the embryonic vasculature (red cells), while the 

vascular tissue in all newly initiated post-embryonic organs and tissues (leaf, stem, 

lateral root; orange cells) is established de novo from the apical meristems (yellow 

cells). Note that the exact architecture of vascular tissues differs between the individual 

organs of the plant. For example: in young roots, a central xylem axis is separated from 

the phloem poles by procambium cells. In older roots that have undergone secondary 

growth, concentric rings of xylem (inner), cambium and phloem (outer) are formed. 

Leaves show xylem on the adaxial side and phloem on the abaxial side. In young stems, 

vascular tissues are first organised in bundles with xylem on the inside and phloem on 

the outside. Later in development, the procambium cells of the different bundles 

connect forming a ring. Finally, in the old stem, a similar structure as in the mature root 

is formed with concentric rings of xylem (inner), procambium and phloem (outer). 

 

Figure 2 | Regulatory networks controlling early vascular development.  

a | Ontogeny of the xylem tissues during embryogenesis. Two provascular initial cells 

share a cellular connection and receive more auxin than the other two through the 

incipient cotyledons forming above (indicated as asterisk next to early xylem in the 

early globular stage embryo). These cells will form the xylem axis of the root and are 

marked by high auxin signalling. The other provascular cells will form procambium 

and phloem cell lineages, with the procambium marked by high cytokinin (CK) 

signalling. b | Schematic longitudinal (lower panel) and radial (upper panel) cross-
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section through the vascular bundle of the root apical meristem. Different colours 

indicate the various cell types. Note that all distinct cell identities are present in the 

mature embryo. Longitudinal zones in the root are not to drawn scale. c | The Auxin-

TMO5/LHW-LOG4-CK pathway controls growth and patterning of the vascular 

bundle through local production of CK along the xylem axis, which triggers periclinal 

cell divisions (PD) in the neighbouring procambium cells. d | Summary of regulatory 

connections included in computational models describing vascular patterning in the 

root meristem as described in c, including AHP6 as negative regulator of CK signalling. 

Connections included in Ref. 30 are in red, those included in Ref. 9 in blue, and those 

common to both models in black. e | The AHL proteins are expressed in procambium 

cells and migrate towards the xylem axis, thereby controlling strict boundaries between 

xylem and procambium through an unknown mechanism. f | Control of metaxylem 

versus protoxylem identity by the SHR-miR165/166-HD-ZIPIII pathway. SHR 

expressed in the stele travels to the endodermis, where it is sequestered in the nucleus 

by SCR. There, miRNA165-166 is induced, which moves back inwards inhibiting 

members of the HD-ZIPIII family of transcription factors. These levels control the 

metaxylem vs. protoxylem identity. 

 

Figure 3 | Key factors regulating early phloem development.  

a | Schematic representation of phloem development in the root meristem showing the 

longitudinal ontogeny and organization of phloem cell types. b | After one or more 

anticlinal cell divisions, one procambium cell (expressing OPS) next to the pericycle 

on each side of the xylem axis undergoes a periclinal cell division, generating another 

procambium cell and a sieve element precursor cell. This cell (containing the CLE45 

peptide, its putative receptor like kinase BAM3 and the transcription factor BRX) 
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undergoes another periclinal cell division generating proto- and metaphloem sieve 

elements. The companion cells (CC) are formed through yet another periclinal division 

from two flanking procambium cells. Protophloem specification is controlled in parallel 

by the dose-dependent CLE45-BAM3 factors, and the opposing activity of OPS and 

BRX proteins.  

 

Figure 4 | Differentiation events during xylem and phloem development.  

a | A network of transcription factors including VNDs under control of LBD genes, 

VNI2 and SND1 activate MYB transcription factors that regulate the expression of 

genes required for secondary cell wall synthesis and programmed cell death during 

xylem differentiation (left panel). In a first step, the secondary cell wall pattern is 

established and hydrolytic enzymes accumulate. Next the vacuoles rupture and 

programmed cell death occurs; together with perforation of the cell wall, generating a 

hollow tracheary tube (right panel). b | Phloem differentiation involves a number of 

distinct cellular modifications, including nuclear breakdown and sieve plate formation 

(left panel). These cellular events are controlled as different outputs of a regulatory 

network (right panel). So far it was shown that APL induces nuclear breakdown via 

NEN1-4 nucleases through NAC45/86 transcription factors.  

 

Figure 5 | Orthogonal meristems control three-dimensional vascular growth in the 

root meristem.  

Model for control of vascular tissue growth in the post-embryonic root: Two orthogonal 

meristems operate to control either extension of the tissue in the longitudinal dimension 

(left panel), or in the radial dimension (middle panel). Arrows indicate the axis of 

growth. These two meristems are differentially regulated, as the longitudinal meristem 
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depends on the PLT pathway, while the radial meristem is under control of the auxin-

TMO5/LHW-cytokinin pathway. Note that these two meristems rely on distinctly 

oriented cell division planes: anticlinal for the longitudinal meristem, and periclinal for 

the radial meristem. In both cases, dividing cells are neighbouring cells that do not 

divide along the axis of the respective meristem (QC; xylem identity). The combination 

of these two orthogonal meristems can explain three-dimensional growth of the 

vascular tissue within the root meristem.  
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Key points  

• Due to recent advances, we can now describe plant vascular developmental from 

early specification during embryogenesis up to late differentiation events.  

• Plant vascular tissues display both deterministic and plastic properties during 

development. 

• Most of the molecular pathways controlling vascular tissue patterning involve 

mobile signals. 

• Although a rather elaborate transcriptional network has been established for xylem 

differentiation processes, very little is known so far about phloem differentiation. 

• We propose a model in which two distinctly regulated orthogonal meristems each 

controls a separate axis of growth to sustain tissue development as a whole. 

 

Table of contents summary 

 

Recent advances in the field of plant vascular development have identified and 

interconnected some of the major signalling networks, allowing us to describe this 

developmental process from the earliest specification during embryogenesis up to the 

late differentiation events.  
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