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Abstract: The cranial anatomy of the iconic early tetrapod Eusthenopteron foordi is probably 15 

the best understood of all fossil fishes. In contrast, the anatomy of the lower jaw – crucial for 16 

both phylogenetics and biomechanical analyses – has been only superficially described. 17 

Computed tomography data of three Eusthenopteron skulls were segmented using 18 

visualization software to digitally separate bone from matrix and individual bones from each 19 

other. Here we present a new description of the lower jaw of Eusthenopteron based on micro-20 

computed tomography data, including: detailed description of sutural morphology and the 21 

mandibular symphysis; confirmed occurrence of pre- and intercoronoid fossae on the dorsal 22 

aspect of the lower jaw; and the arrangement of the submandibular bones. Furthermore, we 23 

identify a novel dermal ossification, the postsymphysial, present on the anteromedial aspect 24 

of the lower jaw in Eusthenopteron and describe its distribution in other stem tetrapod taxa. 25 
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Sutural morphology is used to infer load regimes and, along with overall skull and lower jaw 26 

morphology, suggests that Eusthenopteron may have used biting along with suction feeding 27 

to capture and consume large prey. Finally, visualization software was used to repair and 28 

reconstruct the lower jaw, resulting in a three-dimensional digital reconstruction.  29 

 30 

Key words: fish, early tetrapod, Eusthenopteron, lower jaw, computed tomography, feeding. 31 

 32 

THE iconic lobe-finned fish Eusthenopteron foordi (Whiteaves 1881, 1888), from the Upper 33 

Devonian (Frasnian) Escuminac Formation of Miguasha National Park (Quebec, Canada), is 34 

a crucial taxon for understanding the morphology, ecology and evolution of sarcopterygians, 35 

including early tetrapods. Anatomical data from this taxon have been extensively 36 

incorporated into cladistic analyses (Ahlberg and Johanson 1998; Ruta et al. 2003; Coates et 37 

al. 2008), and in studies on limb evolution (Gregory and Raven 1941; Westoll 1943; 38 

Andrews and Westoll 1970; Coates and Clack 1990; Shubin et al. 1997; Coates et al. 2002; 39 

Boisvert et al. 2008; Clack 2009; Shubin et al. 2014), ear architecture (Brazeau and Ahlberg 40 

2006) and feeding (Hitchcock, 1995; Anderson et al. 2013; Neenan et al. 2014). 41 

 Numerous anatomical descriptions of the skull of Eusthenopteron foordi are available 42 

(Bryant 1919; Stensio 1922; Sternberg 1941), including detailed studies by Jarvik that 43 

utilized serial grinding tomography of a well-preserved specimen, SMNH (Swedish Museum 44 

of Natural History, Stockholm, Sweden) P. 222. This painstaking work revealed the anatomy 45 

of the cranial dermal bones, braincase, palatoquadrate, and visceral skeleton, including details 46 

of cranial sutural morphology and the courses of sensory canals, pit-lines, nerves, blood 47 

vessels and visceral muscles (Jarvik 1942, 1944, 1954). As a result of these studies, the 48 
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cranial anatomy of Eusthenopteron is among the best known of all fossil fishes (Cunningham 49 

et al. 2014). In contrast, the lower jaw of Eusthenopteron has been briefly described (Jarvik 50 

1944, 1980) and only a few drawings from the 530 cross-sections produced by Jarvik were 51 

ever published, providing limited information on sutural contacts in the lower jaw. This lack 52 

of data, particularly of the medial and dorsal aspects of the lower jaw, has hampered attempts 53 

to carry out three-dimensional (3D) mechanical analyses. Furthermore, the arrangement of 54 

the bones of the medial aspect of the lower jaw is important in providing characters for 55 

phylogenetic analyses (Ahlberg and Clack 1998), yet these regions were treated only 56 

superficially by Jarvik (1944, 1980). 57 

 Computed tomography (CT) and computed microtomography (µCT) are increasingly 58 

being applied to fossils (Cunningham et al. 2014). Applications include ‘virtual’ preparation 59 

of fossils (e.g., Abel et al. 2012; Porro et al. 2015), particularly fragile or very small material 60 

(e.g, Donoghue et al. 2006; Porro et al. 2011), visualizing internal cavities or bone histology 61 

(e.g., Lautenschlager et al. 2012; Rücklin et al. 2012), and capturing skeletal morphology for 62 

biomechanical analyses (e.g, Rayfield et al. 2001; Pierce et al. 2012). In this study, we used 63 

CT/µCT and visualization software, in addition to original fossil material, to produce the first 64 

detailed osteological description and 3D reconstruction of the lower jaw of Eusthenopteron. 65 

Among our findings, we describe and name a new dermal ossification – the postsymphysial – 66 

which is a bone found on the anteromedial aspect of the lower jaw in Eusthenopteron and 67 

several other stem tetrapods. 68 

Institutional abbreviations 69 

 MHNM,  Musée d’Histoire naturelle de Miguasha, Miguasha National Park, Nouvelle, 70 

Quebec, Canada; UMZC (CAMZM), University Museum of Zoology Cambridge, 71 

Cambridge, UK. 72 
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 73 

MATERIAL AND METHODS 74 

Three specimens of Eusthenopteron foordi were used in this study: MHNM 06-538, which 75 

consists of a nearly complete, minimally deformed skull; UMZC GN.1147, consisting of 76 

mediolaterally crushed cranium and partial right lower jaw; and UMZC GN.792, a nearly 77 

complete, dorsoventrally crushed skull. MHMN 06-538 (Fig. 1A-B) was scanned in 2004 at 78 

the high-resolution CT facility maintained by the Department of Geological Sciences at the 79 

University of Texas (Austin, Texas, USA). The whole specimen was scanned, producing 340 80 

16-bit TIFF images with a resolution of 0.165 mm/pixel and slice thickness of 1 mm. 81 

Additionally, two higher resolution scans of this specimen were carried out – the anterior 56 82 

mm of the specimen (producing 140 slices with a resolution of 0.096 mm/pixel and a slice 83 

thickness of 0.5 mm) and the rear of the skull (producing 250 slices with a resolution of 0.165 84 

mm/pixel and a slice thickness of 0.5 mm). UMZC GN.1147 (Fig. 1C) was scanned in 2013 85 

at the Imaging and Analysis Centre of the Natural History Museum (London, UK) on an X-86 

Tek HMX-ST µCT 225 scanner (Nikon Metrology, Tring, UK) producing 1926 DICOM 87 

slices with a resolution of 0.0797 mm/voxel. UMZC GN.792 (Fig. 1D-F) was scanned in 88 

2014 in the Cambridge Biotomography Centre (Zoology Department) at the University of 89 

Cambridge on an X-Tek H 225 µCT scanner (Nikon Metrology, Tring, UK) scanner 90 

producing 1920 TIFF images with a resolution of 0.0655 mm/voxel. 91 

Scans were processed using the 3D visualization software package Avizo 7.1.1 (FEI 92 

Visualization Sciences Group, Mérignac Cedex, France). Within the segmentation editor, 93 

density thresholding was initially used to separate higher density bone from lower density 94 

matrix. Scans were processed slice-by-slice (interpolating across no more than five slices at a 95 

time) to separate individual bones and sutures (Fig. 2). Sutures occur as low density areas 96 
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between bones (Appendix S1). Original specimens were used to confirm the location of 97 

sutures and differentiate them from post-mortem damage. Individual bones were isolated and 98 

separately labeled within the segmentation editor and 3D surface models of each element 99 

were created that could be manipulated in isolation in 3D space; the following description is 100 

based on these models.  101 

Some limits to the data sets used in the description and reconstruction should be 102 

noted. The ventral margins of the posterior lower jaws of MHMN 06-538 and UMZC 103 

GN.792 are abraded. In contrast, UMZC GN.1147 preserves the ventral margin of the lower 104 

jaw, although the anterior end of the jaw is missing. The 3D reconstruction (Fig. 3) 105 

incorporates: the anterior half of the dentary, first infradentary, second infradentary, 106 

postsymphysial from the right lower jaw of MHMN 06-538; the posterior half of the dentary, 107 

fourth infradentary, adsymphysial, coronoids, prearticular and articular from the left lower 108 

jaw of MHMN 06-538; and the third infradentary from the right lower jaw of UMZC 109 

GN.1147. Scans from UMZC GN.792 were segmented and examined to confirm anatomical 110 

details of the symphysial region but were not incorporated into the 3D reconstruction. With 111 

the exception of the large anterior teeth, the very small individual dentary teeth were not 112 

segmented in any of the scanned specimens due to their very small size. 113 

The left side of MHMN 06-538 is minimally deformed. Thus, the left lower jaw of 114 

this individual was used a ‘template’ for 3D reconstruction. Surface models of individual 115 

bones from the right side of MHMN 06-538 and from UMZC GN.1147 (see previous 116 

paragraph) were reflected across the sagittal midline and moved into position on the left 117 

lower jaw of MHMN 06-538. Because of differences in specimen size and resolution of CT 118 

scans, surface models from UMZC GN.1147 were scaled by a factor of 1.35 to match the size 119 

of MHMN 06-538. The reflected elements were fitted into place using sutural contacts as 120 

well as fragments of these bones preserved on the left side of MHMN 06-538. Finally, the 121 
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reconstructed left ramus of the lower jaw was duplicated and reflected across the sagittal 122 

midline to create the right lower jaw ramus. Transformation matrices for all lower jaw bones 123 

from the original data sets to the final 3D reconstruction are available as supporting 124 

information (see Appendix S2). 125 

 126 

RESULTS 127 

Anatomical description of the lower jaw 128 

The complete left lower jaw of MHMN 06-538 measures 234 mm in length; the cranium of 129 

this specimen measures 216 mm from premaxilla to the median extrascapular (in dorsal 130 

projection). The preserved portion of the lower jaw of UMZC GN.1147 measures 111 mm 131 

from the tip of the retroarticular process to the preserved tip of the anterior coronoid fang. 132 

The lower jaws of UMZC GN.792 are not visible externally. The length of the cranium 133 

between the premaxilla and median extrascapular is 88 mm; thus, this specimen is 134 

substantially smaller than either MHMN 06-538 or UMZC GN.1147. 135 

 The lateral aspect of the lower jaw is made up of the dentary and four infradentaries 136 

(Fig. 3A); the medial aspect is made up of the first infradentary, prearticular, adsymphysial, 137 

postsymphysial, three coronoids and articular (Fig. 3B). The lower jaw is dorsoventrally 138 

tallest at the level of the posterior tip of the dentary and tapers anteriorly and posteriorly. The 139 

ventral margin of the lower jaw is gently curved while the dorsal margin is relatively straight; 140 

Eusthenopteron lacks the upturned anterior lower jaw exhibited by Acanthostega (Clack, 141 

2003; Porro et al. 2015). The coronoid fangs and dorsolateral edges of the three coronoid 142 

bones are visible in lateral view above the dorsal margin of the dentary (Fig. 3A). The 143 

Meckelian fenestra is located at the ventromedial margin of the lower jaw. It extends from the 144 
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first infradentary – prearticular contact to the fourth infradentary – articular contact, and was 145 

either filled by Meckelian bone (Jarvik 1954, 1980) or intermittently closed by point contacts 146 

between the infradentaries and the prearticular (Fig. 3D). 147 

In dorsal view, the lateral and medial margins of the lower jaw are parallel along most 148 

of its length (Fig. 3C). There are three openings in the dorsal surface of the anterior lower jaw 149 

in Eusthenopteron – one precoronoid fossa and two intercoronoid fossae. These fossae are 150 

primitive features within stem tetrapods (Jeffery 2003). The precoronoid fossa is present in 151 

porolepiforms (except Duffichthys), “osteolepiforms” (including the Tristichopteridae) and 152 

elpistostegids (Ahlberg 1992; Lebedev, 1995; Long et al. 1997; Ahlberg and Clack 1998; 153 

Ahlberg et al. 2000).  It occurs in basal rhizodonts but is lost in derived forms (Vorobyeva 154 

and Obrucheva 1977; Jeffery 2003; Brazeau 2005). The precoronoid fossa is convergently 155 

lost in most of the digited tetrapods - including Elginerpeton, Densignathus, Metaxygnathus 156 

and Acanthostega (Ahlberg and Clack 1998; Daeschler 2000; Porro et al. 2015) – but 157 

retained in the elginerpetontids Obruchevichthys and Webererpeton (Clément and Lebedev, 158 

2014). The precoronoid fossa of Eusthenopteron (clearly visible in CT scans of MHMN 06-159 

538 and UMZC GN.792; Fig. 2A, E; Appendix S1B) is bordered posteriorly by the anterior 160 

coronoid, laterally by the anterior coronoid and dentary, anteriorly by the dentary, Meckelian 161 

bone and adsymphysial, and medially by the postsymphysial; it accommodated the vomerine 162 

fangs when the jaws were closed. An intercoronoid fossa is present between the anterior and 163 

middle coronoids of Eusthenopteron, with a second, smaller intercoronoid fossa between the 164 

middle and posterior coronoids (visible in CT scans of MHMN 06-538 and UMZC GN.1147; 165 

Fig. 2A, D; Appendix S1A). The intercoronoid fossae have a similar phylogenetic 166 

distribution as the precoronoid fossa. These openings accommodate the enlarged fangs of the 167 

palatine and ectopterygoid when the jaws were closed. The elongate mandibular adductor 168 
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fossa occupies the posterior third of the lower jaw and is bounded by the dentary, surangular, 169 

posterior coronoid, prearticular and articular. 170 

 171 

Meckelian bone. The intramandibular canal of some stem tetrapods is partly lined by 172 

endochondral Meckelian bone, forming the floor of the pre- and intercoronoid fossae and 173 

occupying the gap (Meckelian fenestra) between the prearticular and the infradentaries on the 174 

ventromedial aspect of the lower jaw. Posteriorly, the Meckelian ossification forms the 175 

articular; anteriorly, it fills the intramandibular canal and contributes to the symphysial 176 

surface in some taxa. Such a symphysial contribution is commonly referred to as the 177 

mentomeckelian ossification or mentomandibular rib. The Meckelian element is ossified 178 

along its entire length and exposed at the symphysis in porolepiforms (Ahlberg 1992), most 179 

“osteolepiforms” (Lebedev 1995; Long et al. 1997; Ahlberg and Clack 1998) and 180 

elpistostegids (Ahlberg and Clack 1998; Ahlberg et al. 2000). It is ossified in Elginerpeton, 181 

Obruchevichthys, Densignathus, Ventastega, Metaxygnathus, Ymeria and Icthyostega but it 182 

does not floor the dorsal fossae or contribute to the symphysis (Ahlberg 1995, 2005; Ahlberg 183 

and Clack 1998; Daeschler 2000; Clack et al. 2012; Clément and Lebedev, 2014); it does 184 

appear to contribute to the symphysis in Webererpeton (Clément and Lebedev, 2014). The 185 

Meckelian element is completely unossified in rhizodonts (except the basal taxon 186 

Letognathus) and only the articular is ossified in Acanthostega (Jeffery 2003; Brazeau 2005; 187 

Porro et al. 2015). 188 

Previous descriptions of the lower jaw of Eusthenopteron foordi (Jarvik 1944; Clack 189 

2012) report a core of Meckelian bone (the ceratomandibular of Jarvik [1954]) surrounded by 190 

a sleeve of dermal bone. Isolated drawings from Jarvik’s serial grinding series (Jarvik 1954, 191 

1980) suggest that the Meckelian bone is a slender rod restricted to the ventromedial margin 192 
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of the intramandibular canal between the prearticular and infradentary bones, expanding and 193 

ossifying fully at the anterior and posterior ends of the lower jaw (Jarvik 1980). Meckelian 194 

bone is difficult to visualize in CT scans as its density is similar to that of the surrounding 195 

matrix: it appears to be intermittent in the middle portion of the lower jaws of MHMN 06-538 196 

and UMZC GN.1147. Wisps of higher density material are visible in the mandibular adductor 197 

fossae of MHMN 06-538; anteriorly, these fragments first appear in the medioventral corner 198 

of the intramandibular canal, gradually filling the adductor fossa and grading into the 199 

articular posteriorly. We suggest that these higher density fragments represent ossified 200 

fragments of Meckelian bone in the middle and posterior lower jaw. The articular is 201 

completely ossified. 202 

Scans of UMZC GN.792 demonstrate that the Meckelian bone is limited to the 203 

ventromedial corner of the intramandibular canal at the midpoint of the precoronoid fossa. 204 

Anterior to this point, the Meckelian bone expands to fill the intramandibular canal; however, 205 

it does not appear to be exposed at the symphysis. The morphology of symphysial region of 206 

the lower jaw of Eusthenopteron is covered in detail in the Discussion. 207 

 208 

Dentary. The dentary is long and narrow in lateral view, being tallest anteriorly, featuring 209 

nearly parallel dorsal and ventral margins along most of its length, and tapering to a point 210 

posteriorly (Fig. 3A). In dorsal view (Figs 2A and 3C), the dentary is transversely narrow, 211 

widening anteriorly as described by Jarvik (1980) to form a medial shelf that articulates with 212 

the adsymphysial and postsymphysial and contributes to the anterior margin of the 213 

precoronoid fossa. In ventral view (Fig. 3D), the anterior end of the dentary expands towards 214 

the midline so that its ventromedial margin contributes to the symphysis. In transverse 215 
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section, the dentary is mediolaterally thin and laterally bowed; the dorsal margin is thickened 216 

but lacks the medial shelf exhibited by Acanthostega (Porro et al. 2015). 217 

 Among stem tetrapods, enlarged dentary teeth near the symphysis are referred to as 218 

tusks while enlarged coronoid teeth are referred to as fangs (Jeffery 2003; Brazeau 2005; but 219 

note alternative definitions proposed by Bolt and Lombard, 2001). Dentary tusks are absent 220 

in porolepiforms but are present in all known rhizodonts (Johanson and Ahlberg 2001). 221 

Enlarged dentary teeth near the symphysis occur in the “osteolepiforms” Gogonasus and 222 

Medoevia (Lebedev 1995; Long et al. 1997); however, Ahlberg and Clack (1998) do not 223 

classify these as tusks. Derived tristichopterids, elpistostegids and digited tetrapods exhibit 224 

tusks (Schultze and Arsenault 1985; Ahlberg and Johanson 1997; Ahlberg and Clack 1998; 225 

Daeschler 2000; Ahlberg et al. 2000; Johanson and Ahlberg 2001; Clack et al. 2012; Clément 226 

and Lebedev, 2014). Unlike rhizodonts, in which the marginal tooth row labial to the tusk is 227 

interrupted to form a diastema (Brazeau 2005), the dentary tusks of other tetrapodomorphs lie 228 

lingual to a marginal tooth row that continues uninterrupted to the symphysis, with the 229 

possible exception of Obruchevichthys (Clément and Lebedev, 2014). The dentary teeth of 230 

Eusthenopteron increase in size anteriorly, with the first two teeth being larger and more 231 

strongly recurved than succeeding teeth (Jarvik 1944); however, these are not considered 232 

tusks by most authors (Ahlberg and Clack 1998; Johanson and Ahlberg 2001), which are 233 

thought to be absent in basal tristichopterids . 234 

 The anteromedial edge of the anterior dentary contributes to the symphysis, 235 

approaching its opposite in a loose, vertical contact (Figs 2F and 3D). The symphysial pit 236 

described by Jarvik (1980) cannot be discerned in CT scans. The dorsomedial tip of the 237 

dentary is “capped” by a small, dermal element, the adsymphysial (Fig. 2A, E). Posteriorly, 238 

the ventromedial margin of the dentary contacts the ventral margin of the postsymphysial in 239 

an anteroposteriorly long and transversely narrow butt joint (Fig. 2A, E); the medial aspect of 240 
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the dentary is separated from the lateral aspect of the postsymphysial by the Meckelian bone 241 

(anteriorly) and the precoronoid fossa (posteriorly). The first infradentary wedges between 242 

the dentary and postsymphysial, separating these elements at the level of the anterior tip of 243 

the anterior coronoid. The ventral margin of the dentary contacts the lateral margin of the first 244 

infradentary. Scans of MHMN 06-538 and UMZC GN.792 reveal that this contact is either a 245 

butt joint or that the first infradentary externally overlaps the dentary in a short scarf, contra 246 

illustrations and descriptions by Jarvik (1944, 1980) that suggest that the ventral margin of 247 

the dentary overlaps the first infradentary. The ventral margin of the dentary overlaps (often 248 

to a considerable extent) the dorsal margins of second, third and fourth infradentaries. The 249 

medial aspect of the dentary broadly contacts the lateral aspects of the three coronoid bones 250 

(Figs 2A and 3C); faint interdigitations are present, as depicted by Jarvik (1954). The 251 

posterior tip of the dentary contributes to the lateral margin of the mandibular adductor fossa 252 

(Figs 2A and 3C). The dentary reaches the midpoint of the surangular in UMZC GN.1147 253 

(Fig. 2C) but extends nearly to the jaw joint in MHMN 06-538 (Fig. 2A). 254 

 255 

First infradentary (=splenial). The first infradentary is the shortest of the series and forms the 256 

anteroventral margin of the lower jaw in lateral and medial views (Fig. 3A-B). The first 257 

infradentary is shaped like an inverted “Y” in transverse section; the short stem of the “Y” is 258 

directed dorsolaterally, contacting the dentary and externally overlapping the second 259 

infradentary. As in Acanthostega (Porro et al. 2015), one arm of the “Y” is dorsomedially-260 

directed; it meets the ventral margins of the postsymphysial and prearticular in rounded butt 261 

joints. As in all stem tetrapods less crownward than elpistostegids, this dorsomedial arm is 262 

not developed into a medial lamina (Ahlberg and Clack 1998). The other arm of the “Y” is 263 

directed ventromedially, forming a flange that contributes to the mandibular symphysis by 264 

either under- or overlapping its counterpart across the midline (Figs 2F and 3D) – see section 265 
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titled “Mandibular symphysis of Eusthenopteron” in the Discussion for more details. The 266 

surface between the arms of the “Y” is deeply concave; anteriorly this may have 267 

accommodated a ligament pit, as suggested for Acanthostega (Ahlberg and Clack 1998; Porro 268 

et al. 2015). Posterior to the contact between the first infradentaries, this concave depression 269 

articulates with the rounded lateral margins of the first and second branchiostegal rays (Fig. 270 

2B-C; Appendix S1C).  271 

The morphology and sutural contacts of the posterior margin of the first infradentary 272 

is variable among the specimens included in this study. In both lower jaws of MHMN 06-273 

538, the dorsomedial and ventromedial laminae (arms of the “Y”) of the first infradentary 274 

bifurcate into dorsal and ventral processes; the ventral process is short and terminates as a 275 

rounded tip that underlaps the second infradentary. The dorsal process is longer and is 276 

applied to the ventral margin of the prearticular. The notch between the dorsal and ventral 277 

processes is rounded and forms the anterior and dorsal margins of a small opening that is 278 

bounded posteroventrally by the second infradentary. The right lower jaw of UMZC GN.792 279 

is badly abraded at this level; however, µCT scans of the left lower jaw of this specimen 280 

suggest a similar morphology as exhibited by MHMN 06-538. The shape and sutural contacts 281 

of the posterior margin of the first infradentary of UMZC GN.1147 are different – the 282 

dorsomedial and ventromedial laminae of the first infradentary do not bifurcate. Instead, the 283 

posterior margin of the first infradentary is rounded and externally laps the second 284 

infradentary (Fig. 2D). This deviation may be due to strong mediolateral compression of this 285 

specimen. 286 

 287 

Second infradentary (=postsplenial). The second infradentary is anteroposteriorly longer than 288 

the first infradentary (Fig. 3A). It is tallest at its midsection and tapers anterodorsally and 289 
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posteroventrally. It is mediolaterally thin in cross-section and bowed ventrolaterally. The 290 

anterior tip of the second infradentary inserts between the dentary and first infradentary, 291 

being overlapped by both bones in scarf joints. The dorsomedial aspect of the second 292 

infradentary contacts the ventrolateral aspect of the anterior and middle coronoids in a 293 

smooth, curving contact. Scans of UMZC GN.1147 demonstrate that the ventral margin of 294 

the second infradentary is grooved and articulates with the lateral margins of the second, 295 

third, and fourth branchiostegal rays (Fig. 2C). The dorsal margin of the second infradentary 296 

overlaps the ventral margin of the third infradentary in a scarf joint that is anterodorsally-297 

oriented in lateral view (Figs 2C and 3A). The second infradentary terminates posteriorly as a 298 

rounded tip underlapping the third infradentary. Scans of the UMZC GN.1147 reveal that the 299 

ventral margin of the second infradentary makes weak point contacts with the ventral margin 300 

of the prearticular. 301 

 302 

Third infradentary (=angular). The third infradentary is similar in shape to the second 303 

infradentary, being tallest at its midsection and tapering anteriorly and posteriorly, and is 304 

gently laterally bowed in cross-section. The central portion of this bone is missing in MHMN 305 

06-538 and its ventral margin is severely abraded on both sides of UMZC GN.792. In 306 

contrast, it is broken longitudinally but otherwise well-preserved in UMZC GN.1147 (Fig. 307 

2C), and most of the following description is based on this specimen. The ventral margin of 308 

the third infradentary features a groove along its length, continuous with the groove along the 309 

ventral margins of the first and second infradentary. This groove articulates with the lateral 310 

margins of the fifth, sixth and seventh branchiostegal rays (Fig. 2C). There are small point 311 

contacts between the ventral margin of the third infradentary and the prearticular. Scans of 312 

UMZC GN.1147 reveal discontinuous patches of a material with a density unlike that of 313 

either bone or matrix associated with gaps between these two bones. These patches most 314 
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likely represent Meckelian bone, as depicted by Jarvik (1980, figs 76 and 84) in his drawings. 315 

The posterodorsal margin of the third infradentary overlaps the ventral margin of the fourth 316 

infradentary in a short scarf (Figs. 2C and 3A). The dorsomedial aspect of the third 317 

infradentary broadly contacts the ventrolateral surfaces of the middle and posterior coronoids. 318 

 319 

Fourth infradentary (=surangular). The fourth infradentary makes up the posterolateral 320 

portion of the lower jaw (Figs 2C and 3A) and contributes to the lateral margin of the 321 

mandibular adductor fossa (Figs 2A and 3C). It features a curved ventral margin and nearly 322 

straight dorsal margin, and is tallest posterior to the tip of dentary. It is gently laterally bowed 323 

in cross-section with a thickened dorsal margin. The anterior tip of the fourth infradentary 324 

inserts between and is overlapped by the dentary and third infradentary. Its medial surface 325 

makes a short contact with the lateral surface of the posterior coronoid. There is an oblique 326 

ridge, directed anterodorsally, on the lateral surface of the fourth infradentary, dorsal to a row 327 

of sensory pores (=oral canal of Jarvik [1944]) and in line with the posterior tip of the 328 

dentary. This ridge is clearly visible in MHMN 06-538 (Fig. 3A) and UMZC GN.1147 (Fig. 329 

2C), and divides the lateral aspect of this bone into a larger, ventral surface which is highly 330 

ornamented and a small, dorsolaterally-directed surface that is laterally overlapped by the 331 

quadratojugal when the mouth is closed, as exhibited by various rhizodonts and Gogonasus 332 

(Long et al. 1997; Brazeau 2005). In UMZC GN.1147 and the left lower jaw of MHMN 06-333 

538, the anterior half of the ventral margin of the fourth infradentary is grooved to receive the 334 

lateral margin of the eighth branchiostegal ray (Fig. 2B-C). It is possible that the upper lip 335 

forming this groove (continuous from the first through fourth infradentaries) supported the 336 

Meckelian element, as suggested for rhizodonts (Brazeau 2005). The thickened posterior half 337 

of the ventral margin of the fourth infradentary rises steeply towards the tip of the 338 

retroarticular process and does not feature a groove. The fourth infradentary laterally overlaps 339 
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the articular and wraps partially around its posterior aspect; it does not contribute to the jaw 340 

joint except by a lip that restricts lateral movement of the quadrate. The posterior tip 341 

(retroarticular process) of the fourth infradentary is short and thickened, and may have served 342 

as an attachment site for a muscle or ligament. The ventral margin of the fourth infradentary 343 

contacts the ventral margin of the prearticular. Posteriorly, this contact is a strong butt joint; 344 

anteriorly, the elements separate and the articular or patches of Meckelian bone are visible 345 

between the fourth infradentary and prearticular (Fig. 3D). 346 

 347 

Adsymphysial. The adsymphysial (also known as the parasymphysial plate) of 348 

Eusthenopteron is a small, disc-shaped bone with a rounded anterior edge and a very short, 349 

tapering posteromedial process. It is visible in µCT scans of UMZC GN.792 (Fig. 2E), in 350 

which it caps the dorsomedial tip of the dentary, the dorsal surface of the Meckelian bone and 351 

the dorsal margin of the postsymphysial. Scans of MHMN 06-538 reveal a small element on 352 

both sides of the head that loosely contacts the dorsal aspect of the dentary anteriorly but has 353 

disarticulated posteriorly (Fig. 2A). No adsymphysial teeth or denticles can be resolved in 354 

scans of either UMZC GN.792 or MHMN 06-538.  355 

The morphology and dentition of the adsymphysial poses a coding problem among 356 

stem tetrapods (Clack et al. 2012). It is small, rests on the dentary and Meckelian element, 357 

and does not contact the anterior coronoid in most porolepiforms and derived rhizodonts 358 

(Ahlberg 1992). In contrast, the adsymphysial is elongate and sutures to the anterior coronoid 359 

in the basal rhizodonts Gooloogongia and Letognathus (Johanson and Ahlberg 2001; Brazeau 360 

2005). The “osteolepiforms” Gogonasus and Medoevia feature an elongate adsymphysial that 361 

caps the Meckelian bone and contacts the anterior coronoid (Lebedev 1995; Long et al. 1997; 362 

Ahlberg and Clack 1998) while tristchopterids and elpistostegids feature a small 363 
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adsymphysial that rests on the dentary, Meckelian bone and/or postsymphysial, fails to 364 

contact the anterior coronoid and is frequently detached and lost, leaving only an attachment 365 

scar (Ahlberg and Johanson 1997; Ahlberg and Clack 1998; Ahlberg et al. 2000; Johanson 366 

and Ahlberg 2001). In all “osteolepiforms” and elpistostegids, the adsymphysial is lightly 367 

denticulated. In contrast, more derived tetrapodomorphs feature an elongate adsymphysial 368 

that sutures to the anterior coronoid and bears an organized tooth row, usually including 369 

fangs (Ahlberg and Clack 1998; Daeschler 2000; Clack et al. 2012; Clément and Lebedev, 370 

2014; Porro et al. 2015). 371 

 372 

Postsymphysial. Jarvik (1980) described the prearticular of Eusthenopteron as comprising 373 

two separate bones – the “prearticular” and the denticulated “prearticular dental plate”. As 374 

noted by Ahlberg and Clack (1998), this terminology is highly confusing as the “prearticular 375 

dental plate” is, in fact, the true prearticular. Jarvik’s “prearticular” is a slender, curving bone 376 

that is present in all three Eusthenopteron specimens included in this study (although only its 377 

posterior half is preserved in UMZC GN.1147). It is dorsoventrally tallest anteriorly and 378 

tapers to a point posteriorly, forming the medial margin of the precoronoid fossa and the 379 

medial wall of the anterior intramandibular canal (Figs 2A, E and 3B, C). In cross-section it 380 

is mediolaterally thin, and its tapering posterior tip underlies the anterior tip of the true 381 

prearticular in an anteroposteriorly long contact that is undulating in cross-section. We 382 

identify this element as a novel dermal ossification in the lower jaw of Eusthenopteron, 383 

which we call the postsymphysial. In addition to its contacts with the dentary, first 384 

infradentary and adsymphysial (previously described), the lateral margin of the 385 

postsymphysial overlaps the medial edge of the anterior coronoid in a short scarf joint. The 386 

anterior portion of the postsymphysial forms part of the mandibular symphysis, approaching 387 

its counterpart across the midline in a loose, vertical butt contact. 388 
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 The size of the postsymphysial and its surrounding contacts rule out the possibility 389 

that it represents a portion of the adsymphysial. Scans reveal that the element is higher 390 

density than either the matrix or the Meckelian bone within the intramandibular canal; its 391 

density is similar to that of other dermal bones of the lower jaw. Along with its external 392 

appearance, the element is clearly dermal (not endochondral) bone, and is therefore not part 393 

of the Meckelian ossification. Ahlberg and Clack (1998) noted that the postsymphysial might 394 

represent a separate ossification, but chose to adhere to conventional terminology and 395 

referred to this element as an anterior process of the prearticular. Scans of all three 396 

Eusthenopteron specimens demonstrate a clear, unambiguous sutural contact with the 397 

prearticular; thus, this element is not simply an anterior extension of the prearticular. 398 

  Primitively, the postsymphysial is absent and the Meckelian ossification is developed 399 

into a mentomandibular rib that is exposed at the symphysis and forms the medial margin of 400 

the precoronoid fossa. This is the condition in porolepiforms, the basal rhizodont Letognathus 401 

and the “osteolepiform” Gogonasus (Ahlberg 1992; Long et al. 1997; Brazeau 2005). Long et 402 

al. (1997) note that there is no forward extension of the prearticular in Gogonasus as in 403 

Medoevia. Ahlberg and Clack (1998) identify a raised, denticulated field with distinct edges 404 

as the “prearticular dental plate” in Gogonasus but the anterior edge of the prearticular is a 405 

very short distance in front of this field and there is no anterior process (and no 406 

postsymphysial) in this taxon. In contrast, the “osteolepiform” Medoevia features a 407 

“prearticular anterior process” that contacts the anterior coronoid (medially), the first 408 

infradentary (ventrally) and the Meckelian bone (medially), and is clearly distinct from the 409 

shagreen-covered main body of the prearticular (Lebedev 1995). It is likely that this 410 

“prearticular anterior process” represents the postsymphysial in this taxon, although CT scans 411 

would be necessary to confirm such a diagnosis. An anterior process of the prearticular also 412 

occurs in tristichopterids and elpistostegids, including Panderichthys (Ahlberg and Clack 413 
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1998), and may represent the postsymphysial. The postsymphysial is not present in later 414 

tetrapods such as Densignathus, Ventastega, Metaxygnathus, Acanthostega, Ymeria or 415 

Ichthyostega, as the medial lamina of the first infradentary (upper arm of the “Y”) expands 416 

dorsally to contact the dentary, adsymphysial and prearticular (Ahlberg and Clack 1998; 417 

Daeschler 2000; Clack et al. 2012; Porro et al. 2015). Therefore, we identify the 418 

postsymphysial as a novel ossification that occurs in Eusthenopteron and may be present in 419 

other “osteolepiforms”, tristichopterids and elpistostegids. Scans of individual taxa within 420 

these groups would be necessary to unambiguously support or refute the presence of this 421 

ossification. 422 

 423 

Prearticular. The dominant bone of the medial aspect of the lower jaw, the prearticular (Figs 424 

2A, D and 3B) is tallest at the anterior margin of the mandibular adductor fossa, tapering to a 425 

fine point anteriorly and a rounded margin posteriorly. The ventral margin of the prearticular 426 

is smoothly curved along its entire length; the dorsal margin is gently curved anterior to the 427 

mandibular adductor fossa and more deeply embayed posteriorly. In transverse section, the 428 

bone is mediolaterally thin with a thickened, outwardly (laterally) turned dorsal margin. It is 429 

medially bowed along most of its length, although it becomes vertical at its contact with the 430 

articular. Scans demonstrate that the anterior tip of the prearticular twists about its long axis, 431 

overlying the posterior tip of the postsymphysial. The prearticular contacts the first 432 

infradentary in a rounded butt joint in Eusthenopteron; similar contact between the 433 

prearticular and first infradentary occurs in most “osteolepiforms” (Lebedev 1995; Ahlberg 434 

and Johanson 1997; Ahlberg and Clack 1998). In contrast, the ventral margin of the 435 

prearticular rests on the Meckelian ossification and does not reach the first infradentary in 436 

porolepiforms or Gogonasus (Ahlberg 1992; Long et al. 1997). The laterally turned dorsal 437 

margin of the prearticular overlaps the medial shelves of the coronoids and forms the medial 438 



19 
 

margin of the mandibular adductor fossa. The prearticular is broadly applied to the medial 439 

aspect of the articular. The medial surface of the posterior prearticular of MHMN 06-538 and 440 

UMZC GN.1147 bears a shallow, anteroposteriorly elongated depression that may mark a 441 

muscle attachment site. This depression is bounded dorsally by a longitudinal ridge (Figs 2D 442 

and 3B, E); a similar ridge occurs on the prearticular of Medoevia (Lebedev 1995). The 443 

ventral margin of the prearticular weakly contacts the ventral margins of the second and third 444 

infradentaries; however, it is joined more firmly to the posterior part of the fourth 445 

infradentary. 446 

 447 

Anterior coronoid. The anterior coronoid (Figs 2 and 3C) of Eusthenopteron is 448 

anteroposteriorly short and dorsoventrally expanded. It is tallest at its midsection and tapers 449 

anteriorly and posteriorly. The anterior and posterior portions of the bone are thin vertical 450 

sheets in transverse section; the central portion (which bears the enlarged fangs) is shaped 451 

like an inverted “L” in cross-section. The lateral surface of the vertical lamina contacts the 452 

medial aspect of the dentary, with a small area contacting the dorsomedial aspect of the 453 

second infradentary. The edge of the medial shelf fits under the lateral margins of the 454 

postsymphysial and prearticular. The anterior margin of the anterior coronoid forms the 455 

lateral and posterior margins of the precoronoid fossa; the posterior edge of the anterior 456 

coronoid forms the anterior margin of the first intercoronoid fossa. The number of fangs (and 457 

replacement pits) borne on the coronoids varies among and within individuals, presumably as 458 

a result of different stages of tooth replacement; such variability in the number of fangs is 459 

also noted in Gogonasus (Long et al. 1997).  The right anterior coronoids of UMZC GN.1147 460 

(preserved portion) and MHMN 06-538 bear a single large fang, with a smaller tooth visible 461 

in MHMN 06-538 within a replacement pit posterior to the large fang. The left anterior 462 

coronoid of MHMN 06-538 and both anterior coronoids of UMZC GN.792 bear two large 463 
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fangs. The posterior tip of the anterior coronoid touches the anterior tip of the middle 464 

coronoid in UMZC GN.1147; there is no contact between these two elements in MHMN 06-465 

538 or UMZC GN.792. The anterior process of the coronoid does not contact the 466 

adsymphysial plate in Eusthenopteron, as is typical for tristichopterids (see previous 467 

discussion in “Adsymphysial” section). 468 

 469 

Middle coronoid. The middle coronoid (Figs 2 and 3C) is slightly shorter than the anterior 470 

coronoid. Its cross-sectional geometry resembles that of the anterior coronoid. Its anterior and 471 

posterior margins are more rounded than those of the anterior coronoid, the medial shelf is 472 

overlapped by the dorsal margin of the prearticular and the lateral aspect of the vertical 473 

lamina contacts the medial surfaces of the dentary and second and third infradentaries. The 474 

right middle coronoid of UMZC GN.1147 bears a large fang and a smaller, anterior tooth 475 

within a replacement pit; both middle coronoids of MHMN 06-538 bear two fangs. The 476 

anterior margin of the middle coronoid forms the posterior edge of the first intercoronoid 477 

fossa; the posterior margin of this bone forms the anterior edge of the second intercoronoid 478 

fossa. The posterolateral tip of the middle coronoid weakly contacts the anterior tip of the 479 

posterior coronoid. 480 

 481 

Posterior coronoid. The posterior coronoid of Eusthenopteron (Figs 2 and 3C) is twice the 482 

length of the anterior and middle coronoids. It resembles the other coronoids in cross-483 

sectional geometry and in its medial contact with the prearticular. The vertical lamina 484 

laterally contacts the medial aspects of the dentary and third infradentary; the tapered 485 

posterior tip laterally contacts the fourth infradentary and contributes to the lateral margin of 486 

the mandibular adductor fossa. The posterior coronoid bears two sets of enlarged fangs, 487 
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situated on either side of a deep concavity in the center of the bone that accommodated the 488 

posterior set of enlarged ectopterygoid fangs. The possession of two sets of fangs on the 489 

posterior coronoid is a derived condition unique to tristichopterids (Ahlberg and Clack 1998). 490 

The posterior coronoids on both sides of MHMN 06-538 feature two large fangs anterior and 491 

one fang posterior to the concavity; the right posterior coronoid of UMZC GN.1147 features 492 

one large fang anterior and two smaller teeth posterior to the concavity, with no visible 493 

replacement pits. 494 

 495 

Articular. Scans show that the articular of Eusthenopteron is shaped like an inverted triangle 496 

in transverse section. In dorsal view, the articular is widest at the level of the jaw joint and 497 

tapers anteromedially to a fine point lying against the prearticular, as in Gogonasus (Long et 498 

al. 1997). This process reaches the anterior limit of the mandibular adductor fossa in MHMN 499 

06-538 but is substantially shorter in UMZC GN.1147. The articular is extensively 500 

overlapped by the fourth infradentary (laterally) and prearticular (medially). High-resolution 501 

CT scans of the posterior portion of MHMN 06-538 reveal the detailed morphology of the 502 

articular for the first time. Posteriorly, the articular expands laterally to form the posterior 503 

wall of the mandibular adductor fossa, which is strongly concave dorsally and anteriorly. The 504 

dorsal margin of this concavity is drawn up into a strong ridge that is U-shaped in dorsal 505 

view. This ridge defines the posterior margin of the adductor fossa and the anterior margin of 506 

the jaw joint. The jaw joint surface faces posterodorsally and is concave in lateral view; in 507 

dorsal view, it is mediolaterally wider than it is anteroposteriorly long. It bears a low, central 508 

eminence that separates the joint surface into lateral and medial faces (Jarvik 1980). Posterior 509 

to the jaw joint, the articular terminates as a transversely oriented, thickened ridge (which 510 

looks like a rounded point in lateral view). The ridges of the articular limited anterior and 511 

posterior movements of the lower jaw against the quadrate; additionally, the posterior ridge 512 
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may have served as a muscle attachment site (Jarvik 1980). A pair of canals anterior to the 513 

joint surface described by Jarvik (1980) cannot be discerned in CT scans. Because the fourth 514 

infradentary wraps around the posterior margin of the articular, there is no comma-shaped 515 

scar on the ventral aspect of the articular as reported in Gogonasus (Long et al. 1997) or by 516 

Jarvik (1980) in Eusthenopteron. 517 

 518 

The submandibular bones 519 

Closely associated with the bones of the lower jaw are the submandibular bones (Fig. 2B-C), 520 

which supported elements of the gill cover (Jarvik, 1944) and played a role in operating the 521 

pump mechanism by which Eusthenopteron and other “osteolepiforms” ventilated their gills 522 

(Long et al. 1997; Clack 2012; Schoch 2014). These bones were described by Jarvik (1944, 523 

1980) but CT scans of MHMN 06-538 and UMZC GN.1147 reveal new details of their 524 

contacts with each other and the infradentary series. There are eight marginal bones that lie 525 

medial to lower jaws, which are referred to here as branchiostegal rays (note that the large 526 

posterior element is referred to as the submandibulobranchiostegal plate by Jarvik [1980]). 527 

Branchiostegal rays 1-7 are ovoid or rectangular in shape, being anteroposteriorly elongate 528 

and mediolaterally narrow. Branchiostegal ray 8 is over twice the length of the anterior 529 

branchiostegal rays and transversely expanded; in ventral view, it is roughly triangular in 530 

shape with the apex directed medially. The substantially larger size of the posterior 531 

branchiostegal ray also occurs in Gogonasus (Long et al. 1997) and Medoevia (Lebedev 532 

1995). In cross-section, these marginal bones are thickest at their rounded, lateral margins 533 

and taper medially to a fine point. 534 

Between these marginal bones, Eusthenopteron exhibits a pair of large, triangular 535 

principal gular plates and a single, unpaired, diamond-shaped median gular. Like the 536 
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marginal bones, the principal gulars are thickest laterally and taper medially to a fine point in 537 

cross-section. The median gular, which is partially preserved in UMZC GN.1147, is thickest 538 

in its center and thins laterally. Anteriorly, the median gular becomes triangular in cross-539 

section with the apex forming a ventrally-directed keel that inserts between the first 540 

branchiostegal rays. As illustrated by Jarvik (1944, 1980), the posterolateral margins of the 541 

median gular ventrally lap the anteromedial margins of the principal gulars, which exhibit a 542 

distinct overlap surface. The principal gulars also exhibit overlap surfaces along their lateral 543 

margins, which correspond to the medial margins of the branchiostegal rays. The medial 544 

margins of the principal gulars approach each other at the midline, and the right principal 545 

gular underlaps its counterpart anteriorly in MHMN 06-538; however, this may be due to 546 

deformation. 547 

 The medial margins of branchiostegal rays 2-8 underlap the principal gular plate; 548 

branchiostegal rays 1 and 2 underlap the lateral margin of the median gular plate; a similar 549 

arrangement between the branchiostegal rays and gulars is reported in Gogonasus (Long et 550 

al. 1997). The posterior margin of each branchiostegal ray ventrally laps the anterior margin 551 

of the succeeding branchiostegal ray, as illustrated by Jarvik (1944, 1980). The rounded 552 

lateral margins of the branchiostegal rays are not underlapped by the infradentaries as 553 

described by Jarvik (1944, 1980) but articulate with a continuous groove (previously 554 

described) along the ventromedial margins of the infradentaries. The morphology of this 555 

contact may have permitted the branchiostegal rays to rotate against the lower jaws during 556 

buccal expansion associated with ventilation of the gills or suction feeding. 557 

 During the early evolution of tetrapods, the operculogular series (including the 558 

submandibular bones) is reduced and eventually lost: Panderichthys retains a full set of 559 

operculogular bones, although these are reduced in anteroposterior length compared to 560 

Eusthenopteron (Clack 2012); Tiktaalik features submandibulars and gulars but the status of 561 
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the opercular bones is indeterminate (Daeschler e al. 2006); and the operculogular series is 562 

entirely absent in Acanthostega. This progressive loss of the submandibular bones is mirrored 563 

by the reduction and loss of the opercular series and transformation of the hyomandibula into 564 

the stapes; all of these components worked to maintain a tight connection between and ensure 565 

coordinated movements of the skull and gill skeleton during ventilation (Jarvik 1954). These 566 

trends are thought to reflect a reduced reliance on gills for breathing or suction feeding 567 

(Clack 2012). 568 

 569 

3D Reconstruction of the Eusthenopteron lower jaw 570 

The lateral aspect of the 3D model (Fig. 3A) closely resembles previous reconstructions 571 

(Jarvik 1944, Jarvik 1980): the infradentaries and tips of the coronoid fangs are visible in 572 

external view, the sutures between the infradentaries are anterodorsally-directed, and the 573 

second infradentary is the longest in the series. In contrast, there are notable differences 574 

between previous reconstructions and the 3D model in medial view (Fig. 3B). The 575 

symphysial pit, illustrated by Jarvik (1944, 1980), is not present; instead, the elongate 576 

postsymphysial forms a substantial part of the mandibular symphysis. Although absent from 577 

earlier descriptions, Jarvik (1980) later figured and described a small “parasymphyseal dental 578 

plate” between the dentary, prearticular and Meckelian bone. Scans reveal that such an 579 

element, the adsymphysial, is present at the anteromedial tip of the lower jaw between the 580 

dentary and postsymphysial, capping the Meckelian bone (Fig. 3B-C). The posterodorsal 581 

margin of the prearticular is more deeply embayed than depicted by Jarvik (1944, 1980), 582 

exposing the articular and medial aspect of the surangular in medial view. The dorsal aspect 583 

of the lower jaw of Eusthenopteron has never been reconstructed and CT scans confirm the 584 

presence of the precoronoid fossa and two intercoronoid fossae. Finally, the ventral aspect of 585 
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the 3D reconstruction demonstrates the intermittent contacts between the prearticular and 586 

infradentaries, with the Meckelian bone occupying gaps between these elements. 587 

 588 

DISCUSSION 589 

Mandibular symphysis 590 

The mandibular symphysis of Eusthenopteron has been previously described and figured 591 

(Jarvik 1944, 1980); however, CT scans reveal numerous new details. The symphysial region 592 

of MHMN 06-538 is broken and rich in high-density precipitates, creating scanning artifacts; 593 

scans of UMZC GN.792 are clearer and provide much of the information presented below. 594 

Jarvik (1944) states that the Meckelian bone is exposed at the mandibular symphysis 595 

at the bottom of the symphysial pit, a feature roofed by the anteromedial extension of the 596 

dentary. Evidence from CT scans suggests the symphysial pit is absent and that Meckelian 597 

bone fills the anterior portion of the intramandibular canal but is not exposed at the 598 

mandibular symphysis in either MHMN 06-538 or UMZC GN.792. Instead, the symphysis is 599 

formed by the dentary, postsymphysial and first infradentary, and the intramandibular canal 600 

does not open into the symphysis in Eusthenopteron as in Acanthostega (Porro et al. 2015). 601 

The anterior intramandibular canal is bounded by the dentary (laterally and dorsally), 602 

adsymphysial (dorsally), first infradentary (laterally and ventrally), and postsymphysial 603 

(medially), and opens posteriorly into the precoronoid fossa (Fig. 3C).  604 

In both MHMN 06-538 and UMZC GN.792, the dorsoventrally expanded and 605 

flattened medial surface of the postsymphysial closely approaches but does not directly 606 

contact its counterpart across the midline at the symphysis. Likewise, the flat medioventral 607 
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surface of the dentary approaches but does not contact its opposite, and presumably both of 608 

these elements were joined across the symphysis by strong ligaments. 609 

Scans reveal that the medioventral flange of the left first infradentary of UMZC 610 

GN.792 extensively underlaps the right first infradentary across the symphysis (Fig. 2F).  The 611 

most anterior portion of the left infradentary of MHMN 06-538 is broken; however, it also 612 

appears that the left first infradentary underlapped its counterpart in this specimen. This 613 

asymmetrical contact between the first infradentaries was described and figured by Jarvik 614 

(1944) and is not a result of postmortem deformation but genuine symphysial morphology. 615 

As the only bone-bone contact at the mandibular symphysis of Eusthenopteron, the first 616 

infradentaries would have been subjected to high stress as force was transferred across the 617 

symphysis, particularly during unilateral biting.  618 

A longitudinal row of four symphysial dermal bones or ossicles occur between the 619 

anterior and anteroventral tips of the dentary (but not the first infradentary) in UMZC 620 

GN.792 (Fig. 2F), externally lapping the symphysis as described by Jarvik (1944, 1980). 621 

 622 

Sutural morphology in the lower jaw of Eusthenopteron 623 

Skulls are made up of individual bones joined by collagen fibres at sutures, which assume a 624 

number of forms: butt joints that meet at flat edges; overlapping scarf joints; and convoluted 625 

interdigitations. Experimental and modelling studies have suggested that sutures perform a 626 

functional role by modifying and absorbing strain during feeding and other behaviours, and 627 

particular sutural shapes have been linked to specific loading regimes. Butt joints are 628 

associated with tension or bending, interdigitations are associated with compression, and 629 

scarf joints have been associated with torsion, shear, or both compression and tension (Bolt, 630 
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1974; Herring and Mucci 1991; Busbey 1995; Rafferty and Herring 1999; Herring and Teng 631 

2000; Markey et al. 2006; Markey and Marshall 2007a). By correlating sutural morphology 632 

in the skull roof with in vivo strain orientations and feeding mode in living Polypterus, 633 

Markey and Marshall (2007b) inferred that Eusthenopteron used suction feeding (not biting) 634 

to capture and ingest prey. 635 

Jarvik (1944, 1980) illustrated sutural contacts on the lateral aspect of the lower jaw 636 

of Eusthenopteron. Evidence from CT scans largely agrees with Jarvik’s illustrations - 637 

anterior bones overlap posterior bones in the infradentary series and the dentary extensively 638 

overlaps the second, third and fourth infradentaries (Fig. 4A). Contrary to Jarvik’s 639 

illustrations, the dorsal margin of the first infradentary meets the dentary in a butt joint. Scarf 640 

joints are the most common suture type in the lower jaw, while butt joints occur at the 641 

anterior end and ventral margin of the lower jaw and interdigitations are only found between 642 

the dentary and the coronoids. The bones of the dorsal margin of the lower jaw (dentary, 643 

coronoids and prearticular) are strongly joined through broad overlaps and interdigitations 644 

(Fig. 4D); CT scans also reveal the contact between the coronoids and second, third and 645 

fourth infradentaries for the first time. In contrast, the ventral margin of the lower jaw is 646 

weakly sutured (Fig. 4C), particularly in its mid-section, with the second, third and fourth 647 

infradentaries contacting the prearticular only intermittently. However, the slender rod of 648 

Meckelian bone wedged between the prearticular and infradentaries presumably filled any 649 

gaps and strengthened the ventral margin of the lower jaw. 650 

 Extensive scarf joints, as well as the box-like cross-sectional geometry of the lower 651 

jaw of Eusthenopteron, are well-adapted to resisting a loading regime involving torsion, shear 652 

and bending. The coronoids, which bear the largest teeth, meet the dentary at interdigitated 653 

contacts. This sutural morphology suggests resistance to laterally-directed forces on the 654 

coronoid fangs, such as those generated by prey attempting to escape. If Eusthenopteron 655 
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employed suction to capture and ingest prey as suggested by Markey and Marshall (2007b), 656 

the elongate coronoid fangs may have functioned as “place holders” during capture of prey 657 

too large to ingest in a single suction feeding event (see Conclusions below). 658 

 The first infradentary contacts dorsal elements (dentary, postsymphysial, and 659 

prearticular) via butt joints, which are presumably adapted to resist tension. As noted above, 660 

the contact between the left and right first infradentaries is the strongest of the mandibular 661 

symphysis (the only bone-bone contact at the symphysis), with connections between 662 

opposing postsymphysials and dentaries being ligamentous. As force transfer (from the 663 

balancing- to working-side) during unilateral biting would have occurred primarily through 664 

the first infradentaries, butt joints may have allowed some ‘give’ between these bones and the 665 

dentaries and postsymphysials that were more loosely joined at the symphysis. Similar 666 

deformation at the symphysis during biting has been suggested for rhizodonts (Jeffery 2003), 667 

although the longitudinal intramandibular hinge of rhizodonts is absent in Eusthenopteron. 668 

 669 

CONCLUSIONS 670 

In this article we provide the first comprehensive description of the lower jaw of 671 

Eusthenopteron foordi, including new information on sutural morphology, the mandibular 672 

symphysis, the jaw joint and the arrangement and contacts of the submandibular bones. 673 

Additionally, we have identified a novel ossification, the postsymphysial, which occurs on 674 

the anteromedial aspect of the lower jaw in Eusthenopteron and other “osteolepiform”, 675 

tristichopterid and elpistostegid taxa. Data from CT scans and visualization software were 676 

used to create a 3D digital reconstruction of the lower jaw and sutural morphology was used 677 

to predict load regime and feeding behavior in this iconic fossil taxon. 678 
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Suction, which relies on rapid expansion of the oropharyngeal cavity, is the primary 679 

feeding mechanism in fishes and many other aquatic vertebrates, being used to capture prey 680 

and during intraoral transport (Westneat 2006). Biting fishes are defined as species that 681 

depend on forceful contact of the oral jaws with the prey during acquisition (Alfaro et al. 682 

2001).  Changes in skull morphology, muscle activity patterns and behaviour accompany the 683 

transition from suction feeding to biting (Alfaro et al. 2001): biting fish have more robust 684 

skulls, better developed adductor muscles (Alfaro et al. 2001; Van Wassenbergh et al. 2004, 685 

2007) and produce higher forces rather than faster jaw movements (Westneat 2004). 686 

Although the “optimal” design for a biter and a suction feeder are different, modifications to 687 

increase bite performance do not necessarily reduce the ability to use suction (Van 688 

Wassenbergh et al. 2007).  Many species effectively combine suction and biting to position 689 

prey (Alfaro et al. 2001) and all biters retain the ability to generate suction for intraoral 690 

transport (Westneat 2006). Biters often take larger prey than suction feeders, and biting may 691 

represent a strategy to overcome dietary restrictions imposed by maximum gape size 692 

(Westneat 2006).  693 

Suction has been inferred as the feeding mechanism used by Eusthenopteron based on 694 

various aspects of skull morphology. Hitchcock (1995) suggested that the anterior vertebrae 695 

and posterior aspect of the skull in Eusthenopteron accommodated powerful epaxial muscles 696 

that raised the cranium and opened the opercula. According to Hitchcock’s model, this action 697 

forced the quadrate forward, causing depression of the lower jaw. At the same time, 698 

contraction of the sternohyoideus muscle acted on the hyobranchial apparatus to ventrally 699 

expand the oral cavity while mobile joints between the palatoquadrate, braincase and cheek 700 

region allowed lateral expansion of oral cavity. This model placed greater emphasis on the 701 

role of suction during feeding in Eusthenopteron and less reliance on biting. More recently, 702 

the sutural morphology of the skull roof has also been used to support suction-feeding in 703 
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Eusthenopteron (Markey and Marshall 2007b). Other anatomical features, such as the well-704 

developed operculogular series and small marginal teeth, support suction feeding in this 705 

taxon.  706 

In contrast, the extensive scarf joints and enlarged coronoid and palatal fangs of 707 

Eusthenopteron suggest that biting was used to some extent during prey capture. The 708 

coronoid/palatal fangs of Eusthenopteron superficially resemble the long, sharp dentary teeth 709 

of the pike (Esox lucius). Pike primarily employ suction to capture and ingest prey; however, 710 

during the capture of very large prey, the teeth are used as ‘place holders’ during successive 711 

suction events that draw prey through the buccal cavity and into the pharynx (LBP personal 712 

observations). Fish that employ both biting and suction feature enlarged jaw adductor 713 

muscles and reinforced articulations of the suspensorium with the neurocranium, which limit 714 

lateral expansion of the buccal cavity; these taxa compensate by larger and faster ventral 715 

expansion of the buccal cavity by depression of the hyoid and branchiostegal rays (Van 716 

Wassenbergh et al. 2004, 2007). Examination of the skulls of both Gogonasus and 717 

Eusthenopteron by Long et al. (1997) suggests that any movements between the braincase, 718 

palatoquadrate and cheek region of these taxa were minor, if even possible (contra 719 

Hitchcock, 1995); this suggests that lateral expansion of the oral cavity was limited. On the 720 

other hand, the well-developed hyoid skeleton of Eusthenopteron (Jarvik 1954) coupled with 721 

the potential for rotation of the branchiostegal rays against the infradentaries supports the 722 

idea that Eusthenopteron may have combined suction feeding (generated primarily by ventral 723 

expansion of the oral cavity) with biting, possibly to permit the capture of larger prey. 724 

Morphological adaptations associated with this feeding mode may have set the stage for the 725 

evolution of biting as the primary mode of prey capture in later tetrapods. 726 

 727 
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Appendix S1. µCT sections through the three specimens (left) with black line indicating 750 

position on corresponding 3D surfaces (right). A, Transverse section through the left first 751 

intercoronoid fossa of MHMN 06-538. B, Transverse section through the right precoronoid 752 

fossa of UMZC GN.792. C, Transverse section through the anterior lower jaw of UMZC 753 

GN.1147. 754 

Appendix S2. Transformation matrices for three-dimensional surface models of individual 755 

bones of the lower jaw of Eusthenopteron foordi. 756 
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 930 

EXPLANATIONS OF FIGURES AND TABLES 931 

FIG. 1. Photographs of original Eusthenopteron foordi specimens used in this study. A, Left 932 

lateral view of MHMN 06-538. B, Right lateral view of MHMN 06-538. C, Right lateral 933 

view of UMZC GN.1147. D, Dorsal view of UMZC GN.792. E, Ventral view of UMZC 934 

GN.792. F, Close up of mandibular symphysis (inset shown in E). Scale bars equal 50 mm 935 

(A-B), 20 mm (C– E), and 10 mm (F). 936 

FIG. 2. Surface models of Eusthenopteron foordi specimens prior to retrodeformation. A, 937 

Dorsal view of MHMN 06-538, showing only the bones of the lower jaw. B, Ventral view of 938 

MHMN 06-538 showing the submandibular bones (opaque) and bones of the lower jaw 939 

(transparent).  C, Right lateral view of UMZC GN.1147 showing the right lower jaw and 940 

submandibular bones. D, Medial view of UMZC GN.1147 showing the right lower jaw 941 

bones. E, Dorsal view of the anterior end of UMZC GN.792. F, Ventral view of the anterior 942 

end of UMZC GN.792. Individual bones are shown in various colours. Anatomical 943 
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abbreviations: ad, adsymphysial; ar, articular; br1 – br8, branchiostegal rays 1 through 8; co1, 944 

anterior coronoid; co2, middle coronoid; co3, posterior coronoid; d, dentary; gu, principal 945 

gular; ic1, first intercoronoid fossa; ic2, second intercoronoid fossa; if1, first infradentary; if2, 946 

second infradentary; if3, third infradentary; if4, fourth infradentary; mc, Meckelian bone; mg, 947 

median gular; os, symphysial dermal ossicles; pa, prearticular; pf, precoronoid fossa; ps, 948 

postsymphysial. 949 

FIG. 3. Three-dimensional reconstruction of the lower jaw of Eusthenopteron foordi. Right 950 

lateral (A) and right medial (B) views of the right lower jaw ramus; dorsal (C), ventral (D) 951 

and oblique (E) views of the lower jaw. Individual bones are shown in various colours. 952 

Anatomical abbreviations: ad, adsymphysial; af, mandibular adductor fossa; ar, articular; co1, 953 

anterior coronoid; co2, middle coronoid; co3, posterior coronoid; d, dentary; ic1, first 954 

intercoronoid fossa; ic2, second intercoronoid fossa; if1, first infradentary; if2, second 955 

infradentary; if3, third infradentary; if4, fourth infradentary; mc, Meckelian bone; pa, 956 

prearticular; pf, precoronoid fossa; ps, postsymphysial. 957 

FIG. 4. Suture maps of the lower jaw of Eusthenopteron foordi. Right lower jaw ramus in 958 

lateral (A), medial (B), ventral (C) and dorsal (D) views. Heavy solid lines indicate butt 959 

joints; medium shading indicates scarf joints and the direction (but not the extent) of 960 

underlap; cross-hatches indicate interdigitated sutures. Some sutures (such as those between 961 

the coronoids and dentary) are a combination of suture types. The adsymphysial is not shown 962 

as it is loosely attached to the dentary and postsymphysial. Black shading indicates openings 963 

in the lower jaw. Dark shading at the anterior end of the jaw (C and D) indicates the 964 

symphysis; dark shading in the middle and posterior sections of the lower jaw (C) indicates 965 

the Meckelian bone visible between the infradentaries and the prearticular. The articular is 966 

overlapped by all surrounding elements and is shown in light shading. 967 


