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Abstract Introduction: The deposition of neurofibrillary tangles in neurodegenerative disorders is associated
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with neuronal loss on autopsy; however, their in vivo associations with brain atrophy across the con-
tinuum of Alzheimer’s disease (AD) remain unclear.
Methods: We estimated cortical thickness, tau ([18F]-AV-1451), and amyloid beta (Ab) status ([11C]-
PiB) in 47 subjects who were stratified into Ab2 (14 healthy controls and six mild cognitive impair-
ment–Ab2) and Ab1 (14 mild cognitive impairment–Ab1 and 13 AD) groups.
Results: Compared with the Ab2 group, tau was increased in widespread regions whereas cortical
thinning was restricted to the temporal cortices. Increased tau binding was strongly associated with
cortical thinning in each Ab group. Locally, regional tau was associated with temporoparietal atro-
phy.
Discussion: The strong coupling of tau with atrophy, even in the absence of significant Ab, positions
tau as a promising therapeutic target. Further studies are needed to elucidate the casual relationships
between tau pathology and trajectories of cortical thinning in AD.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Background

The prevailing disease model of Alzheimer’s disease
(AD) implicates amyloidosis as the initiating pathologic
event, followed by a cascade involving aggregation of neuro-
fibrillary tangles (NFTs), early synaptic dysfunction, down-
.
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stream progressive cerebral atrophy, and ultimately clinical
and functional decline [1]. However, evidence from post-
mortem and positron emission tomography (PET) studies
has not been able to demonstrate strong associations of am-
yloid beta (Ab) with neuronal loss or disease severity in AD
[2,3]. In contrast, NFTs accumulate in tandem with neuronal
loss, disease progression, and show strong correlations with
clinical phenotypes [4–6], findings which have since been
corroborated by cerebrospinal fluid evidence implicating
eimer’s Association. This is an open access article under the CC BY license
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tau as a key substrate of brain atrophy across various
neurodegenerative conditions [7–10].

The advent of PET radiotracers that bind to hyperphos-
phorylated paired helical filaments of aggregated tau has
permitted us to characterize the in vivo spatial distribution
of tau burden, and how it relates to other pathologic pro-
cesses in the AD cascade. To these ends, the neuropathologic
staging of tau has been consistently recapitulated across
research groups: tau pathology is localized in the medial
temporal lobe among cognitively normal elderly adults
before extending to the posterior parietal cortices in mild
cognitive impairment (MCI) and AD [11–15]. One of the
recurrent themes in the tau imaging literature concerns the
striking overlap of increased [18F]-AV-1451 binding with
brain regions that comprise the AD “cortical signature” of
atrophy [16], suggesting a close coupling between tau and
downstream neurodegeneration. To date, only a few studies
have delineated these relationships in cognitively normal
elderly [17,18] and small samples of patients with AD
[19]. It also remains unclear if and to what extent does Ab
levels modify the relationships between tau and brain atro-
phy.

The objective of our study was to elucidate the relation-
ships between tau pathology and brain atrophy across indi-
viduals varying degrees of Ab burden. We used a
multimodal paradigm that included [11C]-PiB PET for Ab
classification in MCI individuals, [18F]-AV-1451 PET for
quantification of tau pathology, and T1-MPRAGE for esti-
mation of cortical thickness. Individuals with mild AD and
[11C]-PiB 1 MCIs were treated as a single group, because
these individuals represent a continuum from prodromal to
early AD. We further examined the impact of tau on brain
atrophy in another group comprising cognitively normal
elderly and [11C]-PiB 2 MCI individuals, thereby enabling
us to inquire whether the influence of tau on brain atrophy
may be influenced by existing amyloid burden. First, we
compared the spatial distributions of tau burden and cortical
thickness between both Ab subgroups. Second, we tested the
hypothesis that the global topography of tau closely overlaps
with cortical atrophy. Third, we directly mapped local
burden of tau pathology onto regional cortical thickness.
Finally, the distributed patterns of tau-associated atrophy
were investigated using a seed-based approach, with the
inferior temporal tau selected as a proxy of early tau propa-
gation.
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2. Methods

2.1. Participants

As part of the Neuroinflammation in Memory and
Related Other Disorders study [21], 20 MCI and 13 AD sub-
jects were recruited from cognitive disorder clinics in
neurology, old age psychiatry, and related services at Cam-
bridge University Hospital and other Trusts within the re-
gion. MCI was defined as (1) Mini-Mental State
FLA 5.5.0 DTD � DADM279_proof �
Examination (MMSE) .24; (2) not demented but with
memory impairment beyond that expected for age and edu-
cation, which does not meet the criteria for probable AD de-
mentia and is not explained by another diagnosis [22].
Probable AD was diagnosed according to the National Insti-
tute on Aging-Alzheimer’s Association diagnostic guide-
lines [23]. Fourteen healthy control subjects were recruited
from spouses of subjects and from volunteers. They were
defined as subjects with MMSE scores .26 and with an
absence of (1) regular memory complaints; (2) symptoms
suggestive of dementia; and (3) unstable or significant med-
ical illnesses. All research participants underwent a detailed
clinical and neuropsychological assessment as previously
described [15].
2.2. Image acquisition

Participants underwent T1-weighted magnetic resonance
imaging (MRI) using an MPRAGE sequence
(TR 5 2300 ms, TE 5 2.98 ms, field of view 5 240 mm,
flip angle 5 9�) on a Siemens 3 T Tim Trio or Verio
(Siemens Healthcare, Erlangen, Germany Q). PET examina-
tions were performed on the GE Advance or GE Discovery
960, with the tau radioligand [18F]-AV-1451 (Avid Radio-
pharmaceuticals Q). A 15-minute 68Ge/68Ga rotating rod trans-
mission scan was used for attenuation correction on the
Advance, which was replaced by a low-dose computed to-
mography scan on the Discovery 690. The PET examination
protocols were the same for both scanners: 550 MBq [11C]-
PiB injection followed by acquisition of static emission data
from 40 to 70 minute after an injection; and collection of 90-
minute dynamic data after a 370 MBq [18F]-AV-1451 injec-
tion. Each emission frame was reconstructed using the
PROMIS three-dimensional filtered back projection algo-
rithm into a 128 ! 128 matrix 30 cm transaxial field of
view, with a transaxial Hann filter cutoff at the Nyquist fre-
quency Q. Corrections were applied for randoms, dead time,
normalization, scatter, attenuation, and sensitivity. In addi-
tion, subjects with MCI underwent [11C]-PiB PET imaging
to quantify the density of fibrillar Ab deposits for classifica-
tion of Ab (PiB cortical standardized uptake value ratio
[SUVR] .1.5) [24].
2.3. Processing of structural MRI and PET data
2.3.1. Structural MRI
The T1-MPRAGE data were processed with FreeSurfer

v6 to obtain cortical thickness measurements in 34 ROIs
per hemisphere, based on the Desikan-Killiany parcellation
scheme Q[25]. Briefly, for each T1-MPRAGE data, the pial
and white matter surfaces were generated and the cortical
thickness was measured as the distance between the bound-
aries of pial and white matter surfaces. Visual inspection was
carried while blinded to group diagnosis and corrections
were performed to ensure accurate skull stripping and
17 September 2018 � 10:50 am � ce
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reconstruction of white matter and pial surfaces, and one AD
subject was excluded as a result.

2.3.2. [18F]-AV-1451
The [18F]-AV-1451 emission image series were aligned

across the frames to correct for head motion during data
acquisition with SPM8. The realigned dynamic frames
were coregistered to the T1-MPRAGE. The data were cor-
rected for partial volume effects with the symmetric geomet-
ric transfer matrix in PetSurfer, following previously
adopted procedures in a growing number of multimodal
PET and MRI studies [17,28]. Using the gray matter
cerebellum as the reference region, kinetic modeling was
performed using the two-stage Multilinear Reference Tissue
Model [29] within the PetSurfer pipeline to derive partial
volume corrected nondisplaceable binding potential
(BPND) values for each ROI [30].

2.3.3. [11C]-PiB
[11C]-PiB data were quantified using an SUVR with the

superior cerebellar gray matter as the reference region.
The [11C]-PiB SUVR data were similarly subjected to the
geometric transfer matrix technique for partial volume
correction and treated as a dichotomous variable for Ab clas-
sification. MCI subjects were classified as Ab1 if the aver-
aged cortical [11C]-PiB SUVR was .1.5 [24]. This
classification resulted in 14 Ab1 and six Ab2 MCI sub-
jects.
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2.4. Statistical analyses

All statistical analyses were performed in MATLAB
2017A and R. First, linear regressions were performed to
adjust the imaging data for age, gender, and scan interval be-
tween structural MRI and PET assessments, consistent with
our previous methodology [31]. The specific analyses cater-
ing to the main objectives of the study are described as fol-
lows: (1) Student’s t tests were used to compare regional tau
burden and cortical thickness between the Ab2 (healthy
control subjects and MCI-Ab2) and Ab1 (MCI-Ab1 and
AD) groups and corrected for multiple comparisons with
Benjamini-Hochberg false discovery rate (FDR; adjusted
P , .05). (2) To examine the spatial overlap between tau
and cortical thickness, we used mixed effects models to eval-
uate the inter-regional associations between both imaging
modalities across the cortex. Specifically, cortical thickness
was assigned as the dependent variable, with [18F]-AV-1451
BPND as a fixed factor, allowing for random intercepts across
subjects and cortical lobes. A second reduced model was
derived by omitting the fixed effects of [18F]-AV-1451
BPND from the original model. Likelihood ratio tests were
used to infer statistical significance by comparing the fit be-
tween the full and reduced models [32]. (3) To delineate the
topography of local relationships between tau and cortical
thickness, we pursued an unbiased approach and investi-
gated correlations between the adjusted [18F]-AV-1451
FLA 5.5.0 DTD � DADM279_proof �
BPND and cortical thickness data within the same ROI.
One-way analysis of covariance was performed with the
Ab1 and Ab2 groups as a factor and cortical thickness as
a covariate to investigate potential interactions of Ab status
on tau-associated cortical thinning. (4) To investigate the
local-to-distributed influence of tau pathology, we selected
the inferior temporal cortex as a proxy measure of early
tau seeding and assessed its correlations with cortical thick-
ness ROIs. Two AD subjects were excluded from the statis-
tical analyses as they were outliers on [18F]-AV-1451 BPND
data (Grubb’s test) and were inflating many of the regional
correlations between tau burden and cortical thickness.
3. Results

3.1. Demographics of study sample

Participant clinical and demographic characteristics are
shown in Table 1. Although there were no significant differ-
ences between both Ab groups in terms of age, gender, and
education, the Ab1 group was significantly more impaired
on the MMSE and underwent a longer scan interval between
MRI and PET imaging.

3.2. Global and regional comparisons of cortical
thickness and tau accumulation

Although there were no significant differences in mean
cortical thickness (P 5 .2), mean cortical tau burden was
significantly increased in the Ab1 group relative to the
Ab2 group (P , .001) (Fig. 1). Next, we compared the
regional cortical thickness and [18F]-AV-151 binding be-
tween both groups. Relative to the Ab2 group, the Ab1
group exhibited a trend-level pattern of cortical thinning
that was largely restricted to the temporal cortices and bilat-
eral precuneus (P, .05; Fig. 2, top row). However, these dif-
ferences did not survive FDR correction across the 68 ROIs.
In contrast, significantly increased [18F]-AV-151 binding
was Qobserved in widespread regions, predominantly span-
ning the temporoparietal cortices in the Ab1 group (FDR
corrected, P , .05; Fig. 2, middle row). Topographically,
the trend-level pattern of cortical thinning was embedded
within a wider extent of tau accumulation (Fig. 2, bottom
row).

3.3. Topographical relationship between tau
accumulation and cortical thickness

Mixed effect models indicated significant and negative
associations between tau burden and cortical thickness irre-
spective of Ab grouping (Ab2: b 5 20.5, standard
error 5 0.03, T 5 214.6; Ab1: b 5 20.3, standard
error5 0.02, T5214.8 Q). These topographical associations
are illustrated in the scatterplots of Fig. 3. In addition, we
evaluated the robustness of these relationships within each
cortical lobe. Intralobar associations from the mixed effect
models are reported in Supplementary Fig. 1 and
17 September 2018 � 10:50 am � ce
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Table 1

Sample characteristicsQ23

Healthy control

subjects and MCI-Ab2 MCI-Ab1 and AD P value

N 20 24

Age (y) 70 6 8.8 74.0 6 8.0 .1*

Male:female 12:8 14:10 .9y

MMSE 28.8 6 2.1 26.1 6 1.9 ,.001z

Education (y) 14.4 6 2.8 13 6 3.2 .1z

Scan interval (d) 72.1 6 81.5 204.8 6 169.6 .002z

Abbreviations: Ab, amyloid beta; AD, Alzheimer’s disease; MCI, mild

cognitive impairment; MMSE, Mini-Mental State Examination, MRI, mag-

netic resonance imaging.

*t Test.
yc2 Test.
zMann-Whitney rank sum.
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Supplementary Table 1, showing consistent, significant as-
sociations of tau pathology with cortical thinning across
the lobes.
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3.4. Local associations of tau pathology with cortical
thickness

Although previous analyses examined the degree of
global and lobar overlap between tau burden and cortical
thinning, here we delineated the extent to which the regional
intensity of tau burden is associated with cortical thinning
within the same ROI. We observed strong local associations
between tau burden and cortical thinning in widespread re-
gions. The most robust associations that retained signifi-
cance after Benjamini-Hochberg FDR correction for
multiple comparisons were predominantly in the temporo-
parietal cortices. The spatial profile of these local associa-
tions is represented as a heat map on the Desikan-Killiany
template, where the color gradient depicts the strength of
the local correlations (i.e., increasing in magnitude from
blue to cyan) (Fig. 4, top row). The regional scatterplots
are also reported in Supplementary Fig 2. Visually, the
heat map suggested that tau-associated cortical thinning fol-
lowed a posterior bias across the cortex. This was subse-
quently confirmed by a significant main effect of lobes in
our analysis of variance comparisons of the correlational co-
efficients (F [3, 67]5 11.7, P, .001). Post hoc Tukey-HSD
tests revealed significantly stronger local associations in
both the temporal and parietal lobes relative to the frontal
lobe (Fig. 4, bottom row). Furthermore, one-way analysis
of covariance was performed with the Ab1 and Ab2 groups
as a factor and cortical thickness as a covariate, although we
did not find any significant interaction of Ab status on the
relationship between tau and cortical thickness.
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3.5. Local and distributed patterns of cortical thinning
associated with inferior temporal tau

In addition to local atrophy, inferior temporal tau burden
was significantly associated with cortical thinning in multi-
ple nearby regions within the temporal lobe (left temporal
FLA 5.5.0 DTD � DADM279_proof �
banks, left fusiform gyrus, left middle temporal cortex, left
superior temporal cortex) and distant regions including the
bilateral inferior parietal cortex, left lateral occipital cortex,
bilateral precuneus, and right superior parietal cortex (Fig. 5
and Supplementary Fig 4; FDR P, .05). There were no sig-
nificant interactions of Ab group.
4. Discussion

Determining the in vivo relationships between tau pathol-
ogy and other neurodegenerative processes is essential for
the evaluation of early biomarkers and to facilitate the devel-
opment of therapeutic candidates in AD. Our findings
collectively demonstrated that tau pathology, measured
in vivo with [18F]-AV-1451 PET, is strongly associated
with cortical thinning. In addition, we demonstrated that
the phenomenon of tau-associated atrophy exists irrespec-
tive of amyloid burden. Broadly, these findings suggest
that the impact of tau pathology on brain atrophy may be un-
derway even at subthreshold accumulation of Ab, raising the
possibility that early anti-tau interventions may have greater
therapeutic potential than anti-Ab, especially early in the
course of disease.

Recent PET imaging studies have demonstrated close re-
lationships of tau aggregation with Ab burden [34–36] and
hypometabolism [33]. In addition to corroborating previous
findings in populations of cognitively normal elderly and
smaller samples of patients with different AD variants
(n 5 6) [17,19], our study also confirmed the large body
of neuropathologic evidence implicating NFTs as a
precursor of downstream neuronal loss in AD. However,
previous studies have relied on case-control samples or did
include groups with varying degrees of amyloid burden.
As such, our findings extended the literature by demon-
strating a tight coupling between tau and atrophy that may
not be contingent on existing severity of Ab burden.

Despite being a necessary condition of AD, the precise
involvement of Ab underlying disease progression or brain
atrophy has been tenuous (see [38] for a systematic review).
For instance, it remains uncertain if—and to what extent—
tauopathy in the absence of Ab can perpetuate the neurode-
generative cascade that ultimately leads to clinical and func-
tional impairment. Our mixed effect analyses revealed
prominent associations between increased tau burden and
cortical thinning, which were surprisingly also found among
individuals classified in the Ab2 group (Fig. 3). Further-
more, we did not detect a significant interaction of Ab levels
on the local-to-local associations between tau burden and at-
rophy (Supplementary Fig. 2). Together, both lines of evi-
dence may be interpreted as evidence against the
hypothesis of a dose-dependent relationship between tau-
associated atrophy and severity of Ab levels. These findings
are broadly consistent with recent data showing Ab-inde-
pendent relationship between tau and hypometabolism in a
large sample of cognitively normal elderly [39]. Indeed,
the practical implications of these observations are
17 September 2018 � 10:50 am � ce



w
e
b
4
C
=
F
P
O

w
e
b
4
C
=
F
P
O

w
e
b
4
C
=
F
P
O

w
e
b
4
C
=
F
P
O

Fig. 1. Between-group comparisons of mean cortical thickness and [18F]-AV-151 burden. Student’s t tests revealed no significant differences in mean cortical

thickness between Ab groups, although tau accumulation was significantly increased in the Ab1 group (P , .001). Abbreviation: Ab, amyloid beta.
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manifold. First, the presence of tau-related atrophy in indi-
viduals with minimal Ab may reflect subtle neurodegenera-
tion that coexists with primary age-related tauopathy. The
ubiquity of NFTs is well documented in the brains of the
older population, even in the absence of Ab plaques, and
may be associated with mild or diffuse cortical atrophy
[40]. Second, these findings could be taken to support the
growing recognition that clearance of Ab pathology alone
Fig. 2. Group comparisons of regional cortical thickness and tau accumulation bet

themagnitude and spatial extent of tau accumulation (red, FDR P, .05) were in exc

overlap in the distributions of cortical thinning and tau accumulation is visually app

Ab, amyloid beta; FDR, false discovery rate.

FLA 5.5.0 DTD � DADM279_proof �
is insufficient as a treatment approach, with the corollary
that anti-tau interventions may have more therapeutic poten-
tial in the early phases of AD. Indeed, in contrast to the pre-
vailing theory that tau hyperphosphorylation is secondary to
the build up of Ab, other groups have argued that tau pathol-
ogy is a necessary precursor for Ab2induced neurotoxicity
[41], thereby highlighting the potential of tau-targeting ther-
apies to have beneficial impact on both pathologies [42].
ween both Ab subgroups. (Top and middle rows) Relative to the Ab2 group,

ess of trend-level cortical thinning (cyan,P, .05). (Bottom row) The spatial

arent when the contrast maps are superimposed on each other. Abbreviations:
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Taken together, these findings position tau pathology as an
important and early therapeutic target, even in preclinical
AD.

After demonstrating the spatial concordance of tau and
cortical thinning across the cortex as well as within each
lobe, we delineated the cortical landscape of colocalized
tau and atrophy. As hypothesized, we found significant local
relationships that were predominantly in the inferior tempo-
ral and parietal cortices, retaining statistical significance
even at a relatively stringent FDR-adjusted threshold
(Fig. 4. top row). The posterior bias of the local associations,
confirmed by our analysis of variance comparisons of the in-
tralobar correlational coefficients (i.e., temporoparietal
lobes . frontal lobe; Fig. 4, bottom row), is in keeping
with the Braak staging of tau propagation where tau first
originates in the medial temporal lobe before spreading to
posterior cortices along neural pathways [43]. Rather
intriguingly, the topography of tau-associated atrophy in
this study is highly reminiscent of the cortical signature of
AD, a set of brain regions that are highly susceptible to un-
dergo atrophy in patients with established AD [16]. Extrap-
olating the concept of ischemic penumbra to our
observation, it is conceivable that peak regions showing
the strongest tau-atrophy correlations may form a “neurode-
generative penumbra” that subsequently serves as the path-
ologic scaffold from which atrophy ultimately emerges in
a pattern akin to the cortical signature of AD. Such a model
would be consistent with evidence from transgenic mice that
Ab plaques in situ have a penumbra of soluble Ab oligomers
in which the loss of synaptic density decreases at further dis-
tances from the plaque edge [44]. In other words, these tau-
related associations may reflect the initial processes
affecting structural morphology, and thus represent a pattern
Fig. 3. The cortical topography of tau pathology overlaps with reduced cortical thi

negative associations between [18F]-AV-151 binding and cortical thickness in both

b 5 20.3, SE 5 0.02, T 5 214.8; P , .001). The scatterplots depict individual

across the subjects (i.e., data adjusted for age, gender, and scan interval days betwe

binding potential; MCI, mild cognitive impairment; MRI, magnetic resonance im

FLA 5.5.0 DTD � DADM279_proof �
of disease propagation in AD. Longitudinal studies will be
necessary to disentangle the temporal sequence of these
events. If our hypothesis is borne out in prospective and lon-
gitudinal studies, it would provide compelling evidence for a
mechanistic bridge between tau, a cardinal pathologic sub-
strate of AD, and cortical atrophy—the common end point
of neurodegeneration.

In addition to tau-related local atrophy, distal neurode-
generation may also be plausible through means of connec-
tional diaschisis. Using the inferior temporal cortex as a
proxy of tau burden within a seed-based framework, we
showed that its associations with atrophy extended locally
to encompass adjacent temporal cortices and the bilateral
precuneus (Fig. 5). These results also confirm previous
studies, in cognitively normal individuals, that implicated
inferior temporal tau with diffuse patterns of atrophy and
Ab in temporoparietal cortices [17,18]. Interpreted from a
network-mapping perspective [45], these findings are in
keeping with a role of the inferior temporal cortex as a
“gateway region” for disease propagation in AD. To eluci-
date the diaschisistic underpinnings of tau-related neurode-
generation in AD, one key area of interest will be in
discerning the remote consequences of local tau pathology
on the connectomic architecture in AD.

Finally, through the between-group comparisons of tau
and cortical thickness, we endeavored to indirectly probe
the spatiotemporal relationships between tau and atrophy
with complementary lines of evidence. Relative to Ab2
group, the Ab1 group showed a pattern of increased tau
accumulation that was more widespread than atrophy, which
only followed a restricted trend of cortical thinning in the
temporal cortices. Interestingly, the atrophic sites—tempo-
ral cortex and precuneus—were embedded and surrounded
ckness in both Ab subgroups. Mixed effect models indicated significant and

groups (left: Ab2: b520.5, SE5 0.03, T5214.6, P, .001; right: Ab1:

data points of the adjusted [18F]-AV-1451 BPND and cortical thickness data

en PETand MRI). Abbreviations: Ab, amyloid beta; BPND, nondisplaceable

aging; PET, positron emission tomography; SE, standard error Q24.
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Fig. 4. The topography of tau-associated brain atrophy. (Top row) Significant local correlations between tau and cortical thickness are overlaid on the cortical

surface as parcellated by the Desikan-Killiany atlas (FDR P, .05, data adjusted for age, gender, and scan interval between PET and MRI). The color gradient

represents the strength of the negative correlations, increasing in magnitude from dark blue to cyan. (Bottom row) Box plots of correlation coefficients across the

major cortical lobes. The degree of local associations was significantly stronger in the temporal and parietal lobes compared with the frontal lobe (Post hoc

Tukey-HSD, P , .05). Abbreviations: FDR, false discovery rate; MRI, magnetic resonance imaging; PET, positron emission tomography.
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by regions of significant tau accumulation, raising the possi-
bility that these regions may represent the “epicenters” of
AD. This notion is in accord with previous evidence demon-
strating early vulnerability of the precuneus and the medial
temporal lobe in AD [46]. Taken together, the dispropor-
tionate increase in tau accumulation relative to cortical thin-
FLA 5.5.0 DTD � DADM279_proof �
ning also confers primacy to NFTs as an upstream event
relative to atrophy.

Several important caveats should be noted. Given the
sample size, our findings will benefit from further replication
in larger samples, although it is assuring that our findings re-
tained statistical significance even after stringent FDR
17 September 2018 � 10:50 am � ce
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Fig. 5. Delineating the local and distributed associations of tau in inferior temporal cortex and cortical thinning. (A) Mean PET signal was extracted from bilat-

eral inferior temporal cortex for each subject and their associations with cortical thickness were assessed with Spearman correlations due to non-normality of the

inferior temporal tau ROI. (B) Significant local correlations surviving FDR correction are overlaid on the cortical surface, as parcellated by the Desikan-Killiany

atlas. The color gradient represents the strength of the negative correlations, increasing in magnitude from dark blue to cyan. Abbreviations: FDR, false dis-

covery rate; PET, positron emission tomography.
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correction and adjustment for important covariates, such as
age, gender, and scan interval durations between PET and
MRI assessments. In the absence of longitudinal data, our in-
ferences regarding the spatiotemporal relationships between
tau and atrophy are limited by the assumption that cross-
sectional measurements are indices reflecting the summed
pathologic accumulation over time. However, these pro-
cesses may or may not follow a linear trajectory and accrual
of these measures does not necessarily reflect the duration of
their presence.
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5. Conclusions

The findings in this report serve to triangulate observa-
tions from postmortem and cerebrospinal fluid studies and
provide in vivo evidence that tau aggregation is tightly asso-
ciated with both the spatial profile and severity of brain atro-
phy. Of note, we further showed the consistency of these
relationships across groups with varying degrees of Ab pa-
thology, suggesting that tau pathology should be recognized
as an early therapeutic target in preclinical AD. Locally, the
FLA 5.5.0 DTD � DADM279_proof �
distributions of tau-associated cortical thinning are strik-
ingly reminiscent of the cortical signature of AD and may
indicate early vulnerability to the neurotoxicity of AD-
related pathologies. Ultimately, although this study is the
first to comprehensively delineate the topography of tau-
associated atrophy, we stress that prospective longitudinal
studies with larger samples are necessary to replicate our
findings.
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RESEARCH IN CONTEXT

1. Research in context: Despite postmortem evidence
that tau accumulation is implicated in synaptic injury
and cell death, the extent to which in vivo distribu-
tions of tau pathology maps onto patterns of brain at-
rophy in Alzheimer’s disease (AD) remain unclear.

2. Systematic review: We recently published a system-
atic review of tau positron emission tomography im-
aging studies in 2017, and further reviewed the
literature (i.e., PubMed). There are very few investi-
gations into the associations of tau positron emission
tomography with brain atrophy, and samples in pre-
vious studies mainly involved cognitively elderly co-
horts or smaller case series with AD. These studies
have been cited.

3. Interpretation: Consistent with the aforementioned
evidence in normal aging cohorts, our findings sug-
gest that tau pathology is strongly associated with
stereotypical patterns of atrophy that recapitulated
the cortical signature of AD.

4. Future directions: Longitudinal designs are neces-
sary to replicate these findings in larger prospective
cohorts comprising individuals across the disease
spectrum of the AD.
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