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Machine learning for prediction in traumatic brain injury 

Take	home	message	
Flexible machine learning algorithms may not perform better than traditional regression approaches 
in a low-dimensional setting for outcome prediction after moderate or severe TBI. Similar to 
regression-based prediction models, ML algorithms should be rigorously validated to ensure 
applicability to new populations. 
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Objective	
We aimed to explore the added value of common machine learning (ML) algorithms for prediction of 
outcome for moderate and severe traumatic brain injury. 

Study	Design	and	Setting	
We performed logistic (LR), lasso, and ridge regression with key baseline predictors in the IMPACT-II 
database (15 studies, n=11,022). ML algorithms included support vector machines, random forests, 
gradient boosting machines, and artificial neural networks, and were trained using the same 
predictors. To assess generalizability of predictions, we performed internal, internal-external, and 
external validation on the recent CENTER-TBI study (patients with GCS<13, n = 1,554). Both 
calibration (calibration slope/intercept) and discrimination (AUC) was quantified.  
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Results	
In the IMPACT-II database, 3,332/11,022(30%) died and 5,233(48%) had unfavorable outcome 
(Glasgow Outcome Scale below 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had 
unfavorable outcome. Discrimination and calibration varied widely between the studies, and less so 
between the studied algorithms. The mean AUC was 0.82 for mortality and 0.77 for unfavorable 
outcome in CENTER-TBI.  

Conclusion	
ML algorithms may not outperform traditional regression approaches in a low-dimensional setting 
for outcome prediction after moderate or severe TBI. Similar to regression-based prediction models, 
ML algorithms should be rigorously validated to ensure applicability to new populations.  
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1. Introduction	
Traumatic brain injury (TBI) is a common disease, with a significant societal burden[1]: TBI is 
estimated to be responsible for around 300 hospital admissions and 12 deaths per 100,000 persons 
per year in Europe[2]. TBI is a heterogeneous disease in terms of phenotype and prognosis [3]. 
Therefore, prognostic models, which predict outcome for a patient given a particular combination of 
baseline characteristics, are important: they may give us insight in mechanisms of disease that lead 
to poor outcome, and allow for risk-based stratification of patients for logistic, research, and clinical 
reasons.  

A large number of prediction models have been developed to predict outcome for TBI patients, 
mostly using traditional regression techniques [4]. However, these models have not yet been widely 
implemented in clinical practice. In recent years, more flexible machine learning (ML) algorithms 
have enjoyed enthusiasm as a potentially promising techniques to improve outcome prognostication 
[5]. Frequently used methods are support vector machines (SVM)[6], deep neural networks (NN) [7], 
random forests (RF) [8], and gradient boosting machine (GBM) [9]. Some of these algorithms have 
been used to develop prediction models on small datasets (<200 events) [10–12]. Since ML 
algorithms are more prone to overfitting [13], it remains unclear what the impact on prognostication 
is of these novel techniques. 

Although the incremental value of flexible ML methods has been previously assessed, these 
comparisons were potentially subject to bias [14]. The incremental value of ML algorithms is 
potentially overrated, because studies up to this point mainly focused on the ability of the methods 
to discriminate between patients with good and poor outcome [15–19]. Performance of prediction 
models is however commonly measured across at least two dimensions: calibration and 
discrimination [20,21]. Calibration refers to the agreement of predicted probabilities of a model and 
observed outcomes (e.g. “if the risk of death is x%, do x% of the patients with this prediction actually 
die?”). Poor calibration of prediction models may lead to harmful decision making when applying 
these models [22–24].  

One of the more thoroughly validated prediction models with good performance exists in the field of 
traumatic brain injury (TBI): the IMPACT model [25]. This model comprises of baseline clinical 
characteristics, presence of secondary insults, imaging findings, and lab characteristics. Using the 
variables of this model, the current study aims to fairly assess the potential incremental value of 
flexible ML methods beyond classical regression approaches.  
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2. Methods	
This study was reported conform the TRIPOD guidelines [23]. 

2.1. Study	population	
We included 15 studies from the IMPACT-II database. These include four observational studies and 
eleven randomized controlled trials on moderate to severe TBI (Glasgow Coma Scale [GCS] ≤ 12), 
which were conducted between 1984 and 2004 [26]. Furthermore, we validated models in the 
moderate to severe TBI patients (GCS ≤ 12) from the CENTER-TBI Core study. This is a recent 
prospective study, which included patients from 2014 to 2018 [27]. Data for the CENTER-TBI study 
has been collected through the Quesgen e-CRF (Quesgen Systems Inc, USA), hosted on the INCF 
platform and extracted via the INCF Neurobot tool (INCF, Sweden). Version 1.0 of the CENTER-TBI 
data was used for this analysis.  

2.2. Model	specification	
The outcomes which were predicted were 6 months mortality and unfavourable outcome (Glasgow 
Outcome Scale < 3, or Glasgow Outcome Scale - Extended <5). The predictors included in the models 
were 11 predictors of the IMPACT laboratory model [25]. Continuous variables were included as 
continuous variables in the model (no categorization). An overview of the included variables, and 
their specifications, is shown in Table 1. The baseline GCS score was defined as the last GCS in the 
emergency department (“post-stabilization”). If this score was missing, the nearest GCS at an earlier 
moment was used. In total, eleven predictors were included, representing 19 parameters (or degrees 
of freedom [df]). In the case of mortality, 3491 events (or 184 events per parameter) were on 
average present in our database for each training. The variables were normalized or one-hot 
encoded, because this is standard practice for training algorithms which use gradient descent 
optimization.  
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Table 1, model specification: 11 predictors, with 19 degrees of freedom (df) 

Variable in the model  Characteristics 
Age Continuous 
Motor GCS score Categorical, 1-6  
Pupils Categorical, 3 levels: 

- Both reactive 
- One reactive 
- Two reactive 

CT class Categorical, 5 levels: 
- No visible pathology 
- Diffuse injury 
- Diffuse injury with swelling 
- Diffuse injury with shift 
- Mass 

Traumatic Subarachnoid Hemorrhage Binary  
Epidural hematoma Binary 
Hypoxia Binary  
Hypotension Binary 
Glucose, first measured Continuous 
Sodium, first measured Continuous 
Hemoglobin, first measured Continuous 
GCS = Glasgow Coma Scale; CT = computed tomography 

 

2.3. Regression	techniques	
The regression techniques which were compared to the ML algorithms included standard logistic 
regression, but also penalized regression: lasso and ridge regression [28]. These algorithms were 
developed to improve the performance of logistic regression models by shrinking the coefficients 
during estimation [29,30]. The objective is to obtain models that are less prone to making too 
extreme predictions (overfitting). The glmnet function from the glmnet package was used (alpha=0 
for ridge, and alpha=1 for lasso). No non-linear or interaction terms were included in the regression 
models.   

2.4. Machine	learning	algorithms	
All analyses were performed using R (R Core Team (2013). R: A language and environment for 
statistical computing. R Foundation for Statistical Computing, Vienna, Austria). The script can be 
found on https://github.com/bgravesteijn/ML_baseline_pred_code. 

The flexible ML algorithms that were compared to logistic regression were support vector machine, 
neural network, random forest, and gradient boosting machine. All these algorithms have so called 
“hyperparameters”, that need to be optimized for the algorithms to work optimally. To select the 
optimal hyperparameters, the framework of the caret package was used. The best combination of 
hyperparameters of the algorithms were chosen based on the highest log-likelihood. The average 
log-likelihood over 10 repetitions of tenfold cross-validation was used to select the optimal 
parameters (figure 1). For a detailed description of what algorithms were used, and what 
hyperparameters were considered, see appendix B.  
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Fig. 1 Overview of the experimental setup. Step 1 is selecting a study as a validation study. Step 2 is 
selecting the optimal hyperparameters through 10 times 10-fold cross validation. If the algorithm did 
not require hyperparameters, this step was skipped. Step 3 is the training of the final model with 
optimal hyperparameters on the full training data. The model of step 3) was validated in step 4 with 
the study that was left out of the training set. Step 5 is repeating 1 – 4 until all studies are used once 
as validation study. Finally step 6 is the presentation of the results, and pooling the results over the 
different studies.  
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The included flexible ML methods, just like regression, do not allow for missing values. Unlike 
regression, however, they are not readily compatible with multiple imputation: not every algorithm 
uses weights as core operators. Moreover, for the algorithms that use weights, there is no 
implementation of pooling these weights over multiple datasets using Rubin’s rules[31]. Therefore, 
multiple imputation using the mice package was performed[32], but only one imputed dataset was 
used to train the models. The outcome and all predictors were included in the imputation model. To 
check for stability of results, a sensitivity analysis was performed with a different imputed dataset. 

2.5. Cross-validation	
The models were validated using three different strategies. First, they were cross-validated per 
study: the algorithms were trained on all but one study, and calibration and discrimination were 
assessed by applying the models to the study not used at model development. This procedure has 
been referred to as ‘Internal-external cross-validation’ [33,34]. For an overview of the analytical steps 
of internal-external cross validation, see figure 1. Second, internal validation was performed in the 
IMPACT-II database using 10 times 10-fold random cross validation (10x10 CV). For this method, the 
data were randomly divided by deciles. The model was developed on 9/10, and validated on 1/10 of 
the data. This process was repeated until all patients were used once as validation sample. Finally, a 
fully external validation was performed, with training of the models in the IMPACT-II database, and 
validating in CENTER-TBI.  

The performance was assessed in three domains. First, calibration was examined graphically and 
quantified using a calibration slope and the calibration intercept: the calibration test proposed by 
Cox [35]. Second, discrimination was quantified using the c-statistic, also known as area under the 
ROC curve. The confidence intervals of the c-statistic were obtained using the DeLong et al method 
[36], using the ci.auc function from the pROC package. Third, as a measure of overall performance, 
the Brier score was calculated [37]. More extensive descriptions of these metrics can be found in 
appendix B.  

The estimates and 95% confidence intervals were plotted in forest plots, to visually inspect the 
variation. To obtain estimates per model and outcome, the estimates (and standard errors) in every 
validation were pooled using a random effects meta-analysis, using the DerSimonian and Laird 
estimator for τ2  [38]. Since the CENTER-TBI database is a recent study, unlike the IMPACT-II studies, 
the estimates obtained from validating in this study were presented separately. 

To compare whether observed variation of the performance measures can be attributed to 
differences in performance across study population or type of model used we used mixed effects 
linear regression. This was performed in the internal-external validation framework. The 
performance measure was used as dependent variable, and two random intercepts were included in 
the model: one for what algorithm was used and one for what study the models were validated in. 
These random intercepts were assumed to follow a normal distribution with mean 0 and variance τ2. 
The percentage variation in performance attributable to in which study the model was validated was 
calculated by dividing the τ2 of study by the total variance (the sum of the variance of the random 
intercepts of study and algorithm, and the residuals): τ2

study/( τ2
study+ τ2

algorithm +τ2
residuals). Similarly, the 

percentage variation in performance attributable to what algorithm was trained, was calculated. 
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3. Results	

3.1. Patient	characteristics	
The baseline characteristics differed substantially between the IMPACT-II and the CENTER-TBI data. 
In the IMPACT-II database, patients were younger (35 versus 47.4 years), had less traumatic 
subarachnoid hemorrhages (4016 [45%] versus 759 [74%]), and presented less often with a motor 
GCS of one (1565 [16%] versus 615 [45%]). However, the patients showed similar Glasgow Outcome 
Scale in the two studies:  In the IMPACT-II database, 3332 (30%) died and 5233 (48%) had an 
unfavourable outcome, and in the CENTER-TBI study 348 (29%) died and 651 (54%) had unfavourable 
outcome (table 2). For an overview of the patient characteristics per study in IMPACT-II and CENTER-
TBI, see table A1.  

Table 2, baseline characteristics of the CENTER-TBI and IMPACT-II databases. 

 IMPACT-II CENTER-TBI 
Missing data, 
total % 

N 11022 1375      
Age (median [IQR]) 31 [22, 46] 48 [28, 65]  0.0 
Hypoxia (%) 1707 (22)  217 (16.8)  26.3 
Hypotension (%) 1518 (17.2)  205 (15.9)  18.3 
Marshall CT class (%)        40.6 

1 379 ( 5.9)  81 ( 8.3)       
2 2281 (36)  428 (43.9)       
3 1259 (20)  86 ( 8.8)       
4 248 ( 3.9)  19 ( 2.0)       
5 2223 (35)  360 (37.0)       

Traumatic subarachnoid 
hemorrhage (%) 4016 (44.6)  759 (73.6)  19.1 
Epidural hematoma (%) 1275 (13.4)  172 (16.7)  14.8 
Glucose (median mmol/l 
(SD)) 8.84 (3.46) 8.18 (2.95) 44.5 
Hemoglobin (mean g/dl 
(SD)) 12.46 (2.42) 7.96 (2.36) 

52.2 

GCS motor (%)        
7.4 

1 1565 (15.5)  615 (44.7)       
2 1285 (12.7)  77 ( 5.6)       
3 1362 (13.5)  80 ( 5.8)       
4 2438 (24.1)  136 ( 9.9)       
5 2791 (27.6)  357 (26.0)       
6 658 ( 6.5)  110 ( 8.0)       

Pupil (%)        12.8 
Both reactive 6292 (66.3)  973 (73.7)       
One reactive 1192 (12.6)  110 ( 8.3)       

None reactive 2010 (21.2)  238 (18.0)       
Glasgow outcome scale (%)       1.4 

2 3322 (30.1)  348 (29.0)       
3 1911 (17.3)  303 (25.2)       
4 2262 (20.5)  246 (20.5)       
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5 3527 (32.0)  303 (25.2)       
CT = computed tomography; GCS = Glasgow Coma Scale; SD = standard deviation; IQR = 
interquartile range 

 

3.2. Discrimination	
At internal-external validation, the difference between maximum and minimum c-statistic of the 
algorithms was only 0.02 for mortality and unfavourable outcome. The discriminatory performance 
of the implementation of random forest was suboptimal: the median and IQR of c-statistic of the 
random forest were 0.79 (0.77 – 0.82) for mortality (the overall average was 0.81) and 0.79 (0.76 – 
0.81) for unfavourable outcome (the overall average was 0.80). The discriminative performances 
varied substantially per study (figure A2 and table 3). At internal validation in IMPACT-II, a similar 
pattern was seen, but the c-statistics were somewhat higher. For example the gradient boosting 
machine showed a c-statistic of 0.81 (0.79 – 0.83) at internal-external validation, and 0.83 (0.82 – 
0.84) at internal validation. When performing external validation in CENTER-TBI, this pattern was also 
seen: The random forest showed a median and 95% CI for the c-statistic of 0.81 (0.78 - 0.84) for 
mortality (overall average was 0.82) and 0.76 (0.74 - 0.79) for unfavourable outcome (overall average 
was 0.77). Similar results were observed over a different imputed set, see table A5. 

Table 3, results for discriminative performance of all algorithms, in all three validation strategies: Internal-external (per-
study CV), internal (10-fold CV) and external (CENTER-TBI) validation. Estimates and 95% CI are shown. 

Algorithm Outcome Internal-external  Internal  External 
Logistic regression 

Mortality 

0.81 (0.79 - 0.84) 0.82 (0.81 - 0.83) 0.82 (0.79 - 0.84) 
Support vector 
machine 0.81 (0.78 - 0.83) 0.82 (0.82 - 0.83) 0.81 (0.79 - 0.84) 
Random forest 0.79 (0.77 - 0.82) 0.79 (0.78 - 0.81) 0.81 (0.78 - 0.84) 
Neural network 0.81 (0.79 - 0.84) 0.82 (0.81 - 0.83) 0.82 (0.79 - 0.84) 
Gradient boosting 
machine 0.81 (0.79 - 0.84) 0.83 (0.82 - 0.84) 0.83 (0.81 - 0.86) 
Lasso regression 0.81 (0.79 - 0.84) 0.82 (0.82 - 0.83) 0.82 (0.79 - 0.84) 
Ridge regression 0.81 (0.79 - 0.84) 0.82 (0.82 - 0.83) 0.82 (0.79 - 0.84) 
Logistic regression 

Unfavourable 
outcome 

0.81 (0.79 - 0.83) 0.82 (0.81 - 0.82) 0.77 (0.75 - 0.80) 
Support vector 
machine 0.80 (0.79 - 0.82) 0.81 (0.81 - 0.82) 0.78 (0.75 - 0.80) 
Random forest 0.79 (0.76 - 0.81) 0.79 (0.78 - 0.80) 0.76 (0.74 - 0.79) 
neural network 0.80 (0.79 - 0.82) 0.81 (0.81 - 0.82) 0.78 (0.76 - 0.80) 
Gradient boosting 
machine 0.80 (0.78 - 0.82) 0.81 (0.80 - 0.82) 0.78 (0.76 - 0.80) 
Lasso regression 0.81 (0.79 - 0.83) 0.81 (0.80 - 0.82) 0.77 (0.75 - 0.80) 
Ridge regression 0.81 (0.79 - 0.83) 0.81 (0.80 - 0.82) 0.77 (0.75 - 0.80) 

  

3.3. Calibration	
At internal-external validation, the average calibration intercepts across the algorithms did not vary 
substantially: the range of calibration intercepts was -0.08 - -0.02 for mortality, and for unfavourable 
outcome, the calibration intercepts were 0.02 (figure 2B and table A2). The range of calibration 
slopes was larger: 0.85 - 1.05 for mortality and 0.89 - 1.06 for unfavourable outcome (figure 2C and 
table A3). The random forest made too extreme predictions, with a median (95% CI) calibration slope 
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of 0.85 (0.77 - 0.93) for mortality, while the overall mean was 0.97; and 0.89 (0.82 - 0.96) for 
unfavourable outcome, while the overall mean was 0.99. At internal validation in IMPACT-II, 
calibration slopes and intercepts were similar. In external validation in CENTER-TBI, the random 
forest had again a too low calibration slope (0.88, 95% CI: 0.77 – 0.99 for mortality).  

The calibration intercept for mortality was generally low in CENTER-TBI: the overall mean was -0.58, 
indicating that the 6-month mortality was lower than expected in CENTER-TBI.  

3.4. Overall	predictive	ability	

The Brier score was very similar at internal-external validation, internal, and external validation for 
both outcomes (table A4). The brier score was somewhat higher at external validation, but consistent 
for all methods (e.g.: 0.19 versus 0.18 for logistic regression to predict unfavourable outcome).   

3.5. Explained	heterogeneity	

At internal-external validation, the variation in c-statistic, calibration intercept, and Brier score was 
mainly attributable to the study in which the algorithm was validated (table 4): for mortality, the 
variation in c-statistic was for 97% attributable to the study in which the algorithm was validated 
(versus 2.0% to what algorithm was used); while the variation in calibration intercept was for 98% 
attributable to the study in which the algorithm was validated (versus 0.3% to what algorithm was 
used); and variation in Brier score was for 96% attributable to the study in which the algorithm was 
validated (versus 2.0% to what algorithm was used). Variation in calibration slope was slightly more 
attributable to what algorithm was used, compared to the other metrics (Figure A1). For mortality, 
the variation in calibration slope was for 11% attributable to the algorithm used, and 86% 
attributable to the study in which the algorithm was validated. This was mostly caused by the low 
calibration slope of the random forest algorithm. This algorithm displayed the worst calibration 
slope, as indicated in figure 2C. For unfavourable outcome, the results were similar. 
Table 4, percentage of variation in performance attributable to what study the algorithms were validated in. An example is 
shown in the supplemental material (figure 1). 

Outcome C-statistic 
Calibration 
intercept 

Calibration 
slope 

Brier score 

Mortality      
Algorithm 2.0 0.3 11 2.0 

Study 97 98 86 96 
Unfavourable          

Algorithm 2.9 0.0 12 2.5 
Study 96 99 85 97 

 

3.6. Non-additivity	and	non-linearity	
To explore whether non-additive and non-linear effects were frequently appropriate to assume in 
our data, we performed a post-hoc analysis. Per study, logistic regression models allowing for non-
additivity and non-linearity were tested with likelihood ratio tests (omnibus tests) to the model 
which did not allow for relaxation of those assumptions [20]. It was observed that the model 
predicting mortality had a better fit when non-linearity was allowed for in 7 (44%) studies. Less often, 
the assumption of non-additivity improved the model fit (Table A6). 
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Fig. 2 Results the internal-external cross-validation for mortality. Panel A shows the results of the c-
statistic/area under the ROC curve, panel B shows the calibration intercept, and panel C shows the 
calibration slope. The validation results are displayed per study (left: observational, right: 
randomized controlled trials), and per algorithm. 

 

4. Discussion	
This study aimed to compare flexible ML algorithms to more traditional logistic regression in 
contemporary patient data. We trained the algorithms to obtain a model with both high 
discrimination and good calibration. This was achieved by optimizing the log-likelihood for both 
regression and ML algorithms. All models and algorithms were developed and validated in large 
datasets, including the recent prospective cohort study CENTER-TBI [27]. Performance was assessed 
in terms of both discrimination and calibration, which are both important characteristics to be 
assessed in algorithm validation [22,24,39]. Similar performance of most methods was found across a 
large number of studies from different time periods.  

The algorithm that relatively underperformed was the random forest: the discrimination was 
somewhat lower, but it clearly underperformed in terms of calibration. In particular, the random 
forest showed a calibration slope that was far below one. This indicates overfitting, a problem often 
arising in small datasets [37]. According to theoretical arguments, the RF algorithm should not overfit 
[40]. The discrepancy between the theory and the empirical evidence of our study should be 
explored further. There could be a role for the selection of hyperparameters, in particular the 
number of random variables at the split, and the fraction of observations in the training sample [41]. 
Since the random forest shows signs of overfitting, even in large datasets, the discriminative 
performance should be interpreted with caution: due to optimism, the discrimination in new 
datasets can be lower [21]. As a contrast, this method was one of the better performing methods in 
other studies [15,42], which however did not assess calibration. Since calibration is a crucial step 
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before implementation of a prediction model in clinical practice [20,39,43], our study encourages the 
use of other modeling techniques than random forests for outcome prediction.  

The variation in observed performance was more explained by the cohorts where the algorithms 
were validated, than by which algorithms was used. This implies that prediction models need 
continuous updating and validation, because their performance is often worse in new cohorts[44]. 
This is a limitation which needs to be addressed, in order to effectively use these models in clinical 
practice [45]. This finding does raise concerns about the validity of individual patient data meta-
analysis in the context of prediction modeling.  

A recent systematic review compared flexible ML methods to traditional statistical techniques in 
relatively small datasets (median sample size was 1250), and did not find incremental value [14]. This 
was perhaps to be expected, since modern ML methods are known to be data hungry compared to 
classical statistical techniques [13,46]. However, due to the increased sharing of data, international 
collaborations, and the availability of data from electronical health records and other datasets with 
routinely collected data, datasets are becoming increasingly large [47–49]. Our study shows that in 
this situation, flexible ML methods are not improving outcome prognostication as well.  

A limitation of our study is that we only used a linear kernel function of support vector machine. 
Other kernels could have increased the performance of the algorithm, since the performance of the 
algorithm is substantially dependent on its hyperparameters [41]. Unfortunately, the computation 
time increased drastically when this kernel was implemented (the expected running time for one 
series of cross-validation was 21 days). Since the first six iterations did not show substantial increase 
in discriminative performance, we decided to use the linear basis function instead.  

Second, we only considered a relatively small number of predictors (11 predictors, with 19 df). The 
reason for not including more predictors is that there were no other common data elements 
between all databases. This potentially limits the performance of ML techniques, since it has been 
suggested that flexible ML techniques perform better than traditional regression techniques when a 
large number of predictors are being considered, i.e. high-dimensional data [50,51]. A reason for 
such presumed superiority is the flexibility of these algorithms, enabling them to capture complex 
non-linear and interaction effects. It should be noted that regression-based techniques can also be 
extended by non-linear and interaction effects [20]. Given that ML algorithms did not outperform 
regression, these effects are not likely to be essential in the field of outcome prediction in TBI 
patients. Our study was not able to fully utilize the potential benefit of multidimensional data, 
because of a phenomenon that is expected in big data research: larger volumes of data for better 
models may come at the price of less detailed or lower quality data. 

We do believe that although we could perhaps not utilize the full potential performance of ML 
algorithms, our comparison is just as relevant. Published machine learning based prediction 
algorithms often include a large number of predictors, sometimes with the suggestion to result in 
high discriminative performance [52,53]. We note that external validation of these high-dimensional 
prediction algorithms is challenging, since availability of predictors may differ from one setting to the 
other. For prediction with genomics data, this may be feasible if sufficient standardization and 
harmonization was performed [54]. However, clinical variables often have different definitions, 
notations, or units, which complicate the validation procedure with a large number (say n>50) of 
predictors. External validation remains an essential step before implementing prediction algorithms 
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in clinical practice. To train and validate high-dimensional data, a sophisticated IT environment is 
necessary [55]. Therefore, we believe that the low-dimensional setting, such as our study, might be 
more relevant for clinical practice, also for the near future. Powerful predictions for outcome after 
TBI can apparently be made with linear effects which are captured with simple algorithms.  

Finally, this study should be replicated in other fields than TBI to ensure the generalizability of our 
findings, again from a largely neutral perspective [54].  Preferably, a wide range of studies should be 
used, representing different settings in terms of study design (RCTs vs observational), geography 
(different countries), types of centers (level I trauma centers vs other), etc. Most studies that 
compared algorithms used only one or a limited number of study populations [15–19]. Since the 
performance heavily relies on the study population, comparing the methods in multiple populations 
is recommended. 

4.1. Conclusion	
In a low-dimensional setting, flexible machine learning algorithms do not perform better than more 
traditional regression models in outcome prediction after moderate or severe TBI. This is potentially 
explained by the most important prognostic effects acting as independent, linear effects. Predictive 
performance is more dependent on the population in which the model is applied, than the type of 
algorithm used. This finding has strong implications: continuous validation and updating of prediction 
models is necessary to ensure applicability to new populations of both machine learning algorithms 
and regression-based models. To improve prognostication for TBI, future studies should extend 
current prognostic models with new predictors (biomarkers, imaging, genomics) with strong 
incremental value, for the reliable identification of patients with poor versus good prognosis. 

List	of	abbreviations	
TBI Traumatic brain injury 
ML Machine learning 
SVM Support vector machine 
GBM Gradient boosting machine 
NN Neural network 
RF Random Forest 
LR Logistic regression 
GCS Glasgow coma scale 

Declarations	

Ethics approval and consent to participate 
The authors declare that all participants signed informed consent to be included in the study. Ethical 

approval was obtained for each recruiting sites. 

Consent for publication 
The authors declare that approval for publication was obtained. 

Availability of data and material 



 

15 
 

As a EU funded project, CENTER-TBI is an open-access database. Access can be obtained as 

collaborator, after declaring to adhere to the CENTER-TBI data use agreement. For more information, 

see https://www.center-tbi.eu/data.  

Competing interests 

The authors declare to have no competing interests. 

Funding 
Data used in preparation of this manuscript were obtained in the context of CENTER-TBI, a large 
collaborative project with the support of the European Union 7th Framework program (EC grant 
602150).  

The funder had no role in the study design, enrolment, collection of data, writing or publication decisions. 

Trial	registration	
ClinicalTrials.gov Identifier: NCT02210221 

 

 

 

Authors' contributions 

 Benjamin 
Y. 
Gravesteijn 

Daan 
Nieboer 

Ari 
Ercole 

Hester F. 
Lingsma  

David 
Nelson 

Ben van 
Calster 

Ewout W. 
Steyerberg 

Conceptualization X x    x x 
Data curation X X      
Formal analysis x x      
Funding 
acquisition 

  x x   X 

Investigation    x   X 
Methodology x x     X 
Project 
administration 

   X   x 

Resources    X    
Software        
Supervision  X  X   x 
Validation 
 

X       

Visualization X       
Writing – original 
draft 

x       

Writing – review 
& editing 

x x x x x x x 



 

16 
 

Acknowledgements 

The CENTER-TBI participants and investigators: 

Cecilia Åkerlund1, Krisztina Amrein2, Nada Andelic3, Lasse Andreassen4, Audny Anke5, Anna 
Antoni6, Gérard Audibert7, Philippe Azouvi8, Maria Luisa Azzolini9, Ronald Bartels10, Pál 
Barzó11, Romuald Beauvais12, Ronny Beer13, Bo-Michael Bellander14, Antonio Belli15, Habib 
Benali16, Maurizio Berardino17, Luigi Beretta9, Morten Blaabjerg18, Peter Bragge19, Alexandra 
Brazinova20, Vibeke Brinck21, Joanne Brooker22, Camilla Brorsson23, Andras Buki24, Monika 
Bullinger25, Manuel Cabeleira26, Alessio Caccioppola27, Emiliana Calappi 27, Maria Rosa Calvi9, 
Peter Cameron28, Guillermo Carbayo Lozano29, Marco Carbonara27, Giorgio Chevallard30, 
Arturo Chieregato30, Giuseppe Citerio31, 32, Maryse Cnossen33, Mark Coburn34, Jonathan 
Coles35, D. Jamie Cooper36, Marta Correia37, Amra Čović 38, Nicola Curry39, Endre Czeiter24, 
Marek Czosnyka26, Claire Dahyot-Fizelier40, Helen Dawes41, Véronique De Keyser42, Vincent 
Degos16, Francesco Della Corte43, Hugo den Boogert10, Bart Depreitere44, Đula Đilvesi 45, 
Abhishek Dixit46, Emma Donoghue22, Jens Dreier47, Guy-Loup  Dulière48, Ari Ercole46, Patrick 
Esser41, Erzsébet Ezer49, Martin  Fabricius50, Valery L. Feigin51, Kelly  Foks52, Shirin Frisvold53, 
Alex Furmanov54, Pablo Gagliardo55, Damien Galanaud16, Dashiell Gantner28, Guoyi Gao56, 
Pradeep George57, Alexandre Ghuysen58, Lelde Giga59, Ben Glocker60, Jagoš Golubovic45, 
Pedro A. Gomez 61, Johannes Gratz62, Benjamin Gravesteijn33, Francesca Grossi43, 
Russell L. Gruen63, Deepak Gupta64, Juanita A. Haagsma33, Iain Haitsma65, Raimund Helbok13, 
Eirik Helseth66, Lindsay Horton 67, Jilske Huijben33, Peter J. Hutchinson68, Bram Jacobs69, 
Stefan Jankowski70, Mike Jarrett21, Ji-yao  Jiang56, Kelly Jones51, Mladen Karan47, 
Angelos G. Kolias68, Erwin Kompanje71, Daniel Kondziella50, Evgenios Koraropoulos46, 
Lars-Owe Koskinen72, Noémi Kovács73, Alfonso Lagares61, Linda Lanyon57, Steven Laureys74, 
Fiona Lecky75, Rolf Lefering76, Valerie Legrand77, Aurelie Lejeune78, Leon Levi79, Roger 
Lightfoot80, Hester Lingsma33, Andrew I.R. Maas42, Ana M. Castaño-León61, Marc Maegele81, 
Marek Majdan20, Alex Manara82, Geoffrey Manley83, Costanza Martino84, Hugues Maréchal48, 
Julia Mattern85, Catherine McMahon86, Béla Melegh87, David Menon46, Tomas Menovsky42, 
Davide Mulazzi27, Visakh Muraleedharan57, Lynnette Murray28, Nandesh Nair42, Ancuta 
Negru88, David Nelson1, Virginia Newcombe46, Daan Nieboer33, Quentin Noirhomme74, József 
Nyirádi2, Otesile Olubukola75, Matej Oresic89, Fabrizio Ortolano27, Aarno Palotie90, 91, 92, 
Paul M. Parizel93, Jean-François Payen94, Natascha Perera12, Vincent Perlbarg16, Paolo 
Persona95, Wilco Peul96, Anna Piippo-Karjalainen97, Matti Pirinen90, Horia Ples88, 
Suzanne Polinder33, Inigo Pomposo29, Jussi P. Posti 98, Louis Puybasset99, Andreea Radoi 100, 
Arminas Ragauskas101, Rahul Raj97, Malinka Rambadagalla102, Ruben Real38, Jonathan 
Rhodes103, Sylvia Richardson104, Sophie Richter46, Samuli Ripatti90, Saulius Rocka101, Cecilie 
Roe105, Olav Roise106 140, Jonathan Rosand107, Jeffrey V. Rosenfeld108, Christina Rosenlund109, 
Guy Rosenthal54, Rolf Rossaint34, Sandra Rossi95, Daniel Rueckert60, Martin Rusnák110, Juan 
Sahuquillo100, Oliver Sakowitz85, 111, Renan Sanchez-Porras111, Janos Sandor112, Nadine 
Schäfer76, Silke Schmidt113, Herbert Schoechl114, Guus Schoonman115, Rico Frederik Schou116, 
Elisabeth Schwendenwein6, Charlie Sewalt33, Toril Skandsen117, 118 , Peter Smielewski26, 



 

17 
 

Abayomi Sorinola119, Emmanuel Stamatakis46, Simon Stanworth39,  Ana Kowark34, 
Robert Stevens120, William Stewart121, Ewout W. Steyerberg33, 122, Nino Stocchetti123, 
Nina Sundström124, Anneliese Synnot22, 125, Riikka Takala126, Viktória Tamás119, Tomas 
Tamosuitis127, Mark Steven Taylor20, Braden Te Ao51, Olli Tenovuo98, Alice Theadom51, Matt 
Thomas82, Dick Tibboel128, Marjolein Timmers71, Christos Tolias129, Tony Trapani28, 
Cristina Maria Tudora88, Peter Vajkoczy 130, Shirley Vallance28, Egils Valeinis59, Zoltán 
Vámos49, Gregory Van der Steen42, Joukje van der Naalt69, Jeroen T.J.M. van Dijck 96, 
Thomas A. van Essen96, Wim Van Hecke131, Caroline van Heugten132, Dominique Van Praag133, 
Thijs Vande Vyvere131, Audrey Vanhaudenhuyse16, 74, Roel P. J. van Wijk97,  Alessia Vargiolu32, 
Emmanuel Vega79, Kimberley Velt33, Jan Verheyden131, Paul M. Vespa134, Anne Vik117, 135, 
Rimantas Vilcinis127, Victor Volovici65, Nicole von Steinbüchel38, Daphne Voormolen33, 
Petar Vulekovic45, Kevin K.W. Wang136, Eveline Wiegers33, Guy Williams46, Lindsay Wilson67, 
Stefan Winzeck46, Stefan Wolf137, Zhihui Yang136, Peter Ylén138, Alexander Younsi85, Frederik 
A. Zeiler46,139, Veronika Zelinkova20, Agate Ziverte59 , Tommaso Zoerle27  



 

18 
 

1 Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, 
Karolinska Institutet, Stockholm, Sweden 

2 János Szentágothai Research Centre, University of Pécs, Pécs, Hungary  
3 Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and 

Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway 
4 Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway 
5 Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, 

Tromso, Norway 
6 Trauma Surgery, Medical University Vienna, Vienna, Austria 
7 Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy, France 
8 Raymond Poincare hospital, Assistance Publique – Hopitaux de Paris, Paris, France 
9 Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy 
10 Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The 

Netherlands 
11 Department of Neurosurgery, University of Szeged, Szeged, Hungary 
12 International Projects Management, ARTTIC, Munchen, Germany 
13 Department of Neurology, Neurological Intensive Care Unit, Medical University of 

Innsbruck, Innsbruck, Austria 
14 Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska 

University Hospital, Stockholm, Sweden 
15 NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK 
16 Anesthesie-Réanimation, Assistance Publique – Hopitaux de Paris, Paris, France 
17 Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino - 

Orthopedic and Trauma Center, Torino, Italy 
18 Department of Neurology, Odense University Hospital, Odense, Denmark  
19 BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, 

Australia 
20 Department of Public Health, Faculty of Health Sciences and Social Work, Trnava 

University, Trnava, Slovakia 
21 Quesgen Systems Inc., Burlingame, California, USA 
22 Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology 

and Preventive Medicine, School of Public Health and Preventive Medicine, Monash 
University, Melbourne, Australia 

23 Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden 
24 Department of Neurosurgery, Medical School, University of Pécs, Hungary and 

Neurotrauma Research Group, János Szentágothai Research Centre, University of Pécs, 
Hungary 

25 Department of Medical Psychology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, 
Germany 

26 Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of 
Cambridge, Addenbrooke’s Hospital, Cambridge, UK 

27 Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy 
28 ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive 

Medicine, Melbourne, Victoria, Australia 
29 Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain 
30 NeuroIntensive Care, Niguarda Hospital, Milan, Italy 
31 School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy 



 

19 
 

32 NeuroIntensive Care, ASST di Monza, Monza, Italy 
33 Department of Public Health, Erasmus Medical Center-University Medical Center, 

Rotterdam, The Netherlands 
34 Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany 
35 Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS 
Foundation Trust, Cambridge, UK 
 36 School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, 

Victoria, Australia 
37 Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, UK 
38 Institute of Medical Psychology and Medical Sociology, Universitätsmedizin Göttingen, 

Göttingen, Germany 
39 Oxford University Hospitals NHS Trust, Oxford, UK  
40 Intensive Care Unit, CHU Poitiers, Potiers, France 
41 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, 

Oxford, UK 
42 Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, 

Edegem, Belgium 
43 Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara, Italy 
44 Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium 
45 Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University 

of Novi Sad, Novi Sad, Serbia 
46 Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK 
47 Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member 

of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 
Berlin, Germany 

48 Intensive Care Unit, CHR Citadelle, Liège, Belgium 
49 Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary 
50 Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region 

Hovedstaden Rigshospitalet, Copenhagen, Denmark 
51 National Institute for Stroke and Applied Neurosciences, Faculty of Health and 

Environmental Studies, Auckland University of Technology, Auckland, New Zealand 
52 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands 
53 Department of Anesthesiology and Intensive care, University Hospital Northern Norway, 

Tromso, Norway 
54 Department of Neurosurgery, Hadassah-hebrew University Medical center, Jerusalem, 

Israel 
55 Fundación Instituto Valenciano de Neurorrehabilitación (FIVAN), Valencia, Spain 
56 Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong University/school 

of medicine, Shanghai, China 
57 Karolinska Institutet, INCF International Neuroinformatics Coordinating Facility, 

Stockholm, Sweden 
58 Emergency Department, CHU, Liège, Belgium 
59 Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia 
60 Department of Computing, Imperial College London, London, UK 
61 Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain 
62 Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, 

Austria 



 

20 
 

63 College of Health and Medicine, Australian National University, Canberra, Australia 
64 Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All India 

Institute of Medical Sciences, New Delhi-110029, India 
65 Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands 
66 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway 
67 Division of Psychology, University of Stirling, Stirling, UK 
68 Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital 
& University of Cambridge, Cambridge, UK 
69 Department of Neurology, University of Groningen, University Medical Center Groningen, 

Groningen, Netherlands 
70 Neurointensive Care , Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK 
71 Department of Intensive Care and Department of Ethics and Philosophy of Medicine, 

Erasmus Medical Center, Rotterdam, The Netherlands 
72 Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden 
73 Hungarian Brain Research Program - Grant No. KTIA_13_NAP-A-II/8, University of Pécs, 

Pécs, Hungary 
74 Cyclotron Research Center , University of Liège, Liège, Belgium 
75 Emergency Medicine Research in Sheffield, Health Services Research Section, School of 

Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK 
76 Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, 

Germany 
77 VP Global Project Management CNS, ICON, Paris, France 
78 Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France 
79 Department of Neurosurgery, Rambam Medical Center, Haifa, Israel 
80 Department of Anesthesiology & Intensive Care, University Hospitals Southhampton NHS 

Trust, Southhampton, UK 
81 Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic 

Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany 
82 Intensive Care Unit, Southmead Hospital, Bristol, Bristol, UK 
83 Department of Neurological Surgery, University of California, San Francisco, California, 

USA 
84 Department of Anesthesia & Intensive Care,M. Bufalini Hospital, Cesena, Italy 
85 Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany 
86 Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, UK 
87 Department of Medical Genetics, University of Pécs, Pécs, Hungary  
88 Department of Neurosurgery, Emergency County Hospital Timisoara , Timisoara, Romania 
89 School of Medical Sciences, Örebro University, Örebro, Sweden 
90 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland 
91 Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & 

Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, 
Massachusetts General Hospital, Boston, MA, USA 

92 Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, 
The Broad Institute of MIT and Harvard, Cambridge, MA, USA 

93 Department of Radiology, Antwerp University Hospital and University of Antwerp, 
Edegem, Belgium 

94 Department of Anesthesiology & Intensive Care, University Hospital of Grenoble, 
Grenoble, France 



 

21 
 

95 Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, 
Padova, Italy 

96 Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and 
Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands 

97 Department of Neurosurgery, Helsinki University Central Hospital 
98 Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury 

Centre, Turku University Hospital and University of Turku, Turku, Finland 
99 Department of Anesthesiology and Critical Care,  Pitié -Salpêtrière Teaching Hospital, 

Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France 
100 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research 

Institute, Barcelona, Spain 
101 Department of Neurosurgery, Kaunas University of technology and Vilnius University, 

Vilnius, Lithuania 
102 Department of Neurosurgery, Rezekne Hospital, Latvia 
103 Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University of 

Edinburg, Edinburgh, UK 
104 Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK 
105 Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University 

of Oslo, Oslo, Norway 
106 Division of Orthopedics, Oslo University Hospital  
107 Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts 

General Hospital, Boston MA, USA 
108 National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, 

Victoria, Australia 
109 Department of Neurosurgery, Odense University Hospital, Odense, Denmark 
110 International Neurotrauma Research Organisation, Vienna, Austria 
111 Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany 
112 Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University 

of Debrecen, Debrecen, Hungary 
113 Department Health and Prevention, University Greifswald, Greifswald, Germany 
114 Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, 

Austria 
115 Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, the Netherlands 
116 Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, 

Odense, Denmark 
117 Department of Neuromedicine and Movement Science, Norwegian University of Science 

and Technology, NTNU, Trondheim, Norway 
118 Department of Physical Medicine and Rehabilitation, St.Olavs Hospital, Trondheim 

University Hospital, Trondheim, Norway 
119 Department of Neurosurgery, University of Pécs, Pécs, Hungary  
120 Division of Neuroscience Critical Care, John Hopkins University School of Medicine, 

Baltimore, USA 
121 Department of Neuropathology, Queen Elizabeth University Hospital and University of 

Glasgow, Glasgow, UK 
122 Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center, 

Leiden, The Netherlands  



 

22 
 

123 Department of Pathophysiology and Transplantation, Milan University, and Neuroscience 
ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy 

124 Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, 
Sweden 
125 Cochrane Consumers and Communication Review Group, Centre for Health 

Communication and Participation, School of Psychology and Public Health, La Trobe 
University, Melbourne, Australia 

126 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University 
Hospital and University of Turku, Turku, Finland 

127 Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania 
128 Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia 

Children’s Hospital, Rotterdam, The Netherlands 
129 Department of Neurosurgery, Kings college London, London, UK 
130 Neurologie, Neurochirurgie und Psychiatrie, Charité – Universitätsmedizin Berlin, Berlin, 

Germany 
131 icoMetrix NV, Leuven, Belgium 
132 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, 

Oxford, UK 
133 Psychology Department, Antwerp University Hospital, Edegem, Belgium 
134 Director of Neurocritical Care, University of California, Los Angeles, USA 
135 Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital, 

Trondheim, Norway 
136 Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA 
137 Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of 
Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 
Germany 
138 VTT Technical Research Centre, Tampere, Finland 
139 Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, 

University of Manitoba, Winnipeg, MB, Canada 
140 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo 

References	
[1] Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: 

integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 
2017;4422. doi:10.1016/S1474-4422(17)30371-X. 

[2] Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, Feigin V, et al. Epidemiology of 
traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Heal 2016;1:e76–
83. doi:10.1016/S2468-2667(16)30017-2. 

[3] Saatman KE, Duhaime A, Bullock R, Maas AI, Valadka A, Manley GT, et al. Classification of 
Traumatic Brain Injury for Targeted Therapies 2008. doi:10.1089/neu.2008.0586. 

[4] Lingsma HF, Roozenbeek B, Steyerberg EW, Murray GD, Maas AI. Early prognosis in traumatic 
brain injury: from prophecies to predictions. Lancet Neurol 2010;9:543–54. 
doi:10.1016/S1474-4422(10)70065-X. 

[5] Liu NT, Salinas J. Machine Learning for Predicting Outcomes in Trauma. SHOCK 2017;48:504–
10. doi:10.1097/SHK.0000000000000898. 



 

23 
 

[6] Burges CJC. A Tutorial on Support Vector Machines for Pattern Recognition. vol. 2. 1998. 

[7] Jain AK, Jianchang Mao, Mohiuddin KM. Artificial neural networks: a tutorial. Computer (Long 
Beach Calif) 1996;29:31–44. doi:10.1109/2.485891. 

[8] Afanador NL, Smolinska A, Tran TN, Blanchet L. Unsupervised random forest: a tutorial with 
case studies. J Chemom 2016;30:232–41. doi:10.1002/cem.2790. 

[9] Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot 2013;7:21. 
doi:10.3389/fnbot.2013.00021. 

[10] Rau C-S, Kuo P-J, Chien P-C, Huang C-Y, Hsieh H-Y, Hsieh C-H. Mortality prediction in patients 
with isolated moderate and severe traumatic brain injury using machine learning models. 
PLoS One 2018;13:e0207192. doi:10.1371/journal.pone.0207192. 

[11] Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, Kohmura E. Machine Learning to Predict 
In-Hospital Morbidity and Mortality after Traumatic Brain Injury. J Neurotrauma 
2019:neu.2018.6276. doi:10.1089/neu.2018.6276. 

[12] Feng J, Wang Y, Peng J, Sun M, Zeng J, Jiang H. Comparison between logistic regression and 
machine learning algorithms on survival prediction of traumatic brain injuries. J Crit Care 
2019;54:110–6. doi:10.1016/j.jcrc.2019.08.010. 

[13] van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a 
simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 
2014;14:137. doi:10.1186/1471-2288-14-137. 

[14] Evangelia  christodoulou, Jie MA, Collins GS, Steyerberg EW, Verbakel JY, van Calster B. A 
systematic review shows no performance benefit of machine learning over logistic regression 
for clinical prediction models. J Clin Epidemiol 2019;0. doi:10.1016/j.jclinepi.2019.02.004. 

[15] van Os HJA, Ramos LA, Hilbert A, van Leeuwen M, van Walderveen MAA, Kruyt ND, et al. 
Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of 
Machine Learning Algorithms. Front Neurol 2018;9:784. doi:10.3389/fneur.2018.00784. 

[16] Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. Multicenter 
Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical 
Deterioration on the Wards. Crit Care Med 2016;44:368–74. 
doi:10.1097/CCM.0000000000001571. 

[17] Lee H-C, Yoon S, Yang S-M, Kim W, Ryu H-G, Jung C-W, et al. Prediction of Acute Kidney Injury 
after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model. J Clin 
Med 2018;7:428. doi:10.3390/jcm7110428. 

[18] Bisaso KR, Karungi SA, Kiragga A, Mukonzo JK, Castelnuovo B. A comparative study of logistic 
regression based machine learning techniques for prediction of early virological suppression 
in antiretroviral initiating HIV patients. BMC Med Inform Decis Mak 2018;18:77. 
doi:10.1186/s12911-018-0659-x. 

[19] Decruyenaere A, Decruyenaere P, Peeters P, Vermassen F, Dhaene T, Couckuyt I. Prediction of 
delayed graft function after kidney transplantation: comparison between logistic regression 
and machine learning methods. BMC Med Inform Decis Mak 2015;15:83. doi:10.1186/s12911-
015-0206-y. 

[20] Harrell FE. Regression Modeling Strategies. New York, NY: Springer New York; 2001. 



 

24 
 

doi:10.1007/978-1-4757-3462-1. 

[21] Steyerberg EW. Clinical Prediction Models. New York, NY: Springer New York; 2009. 
doi:10.1007/978-0-387-77244-8. 

[22] Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration 
hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 
2016;74:167–76. doi:10.1016/J.JCLINEPI.2015.12.005. 

[23] Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Ann 
Intern Med 2015;162:55. doi:10.7326/M14-0697. 

[24] Moons KGM, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, et al. Risk 
prediction models: II. External validation, model updating, and impact assessment. Heart 
2012;98:691–8. doi:10.1136/heartjnl-2011-301247. 

[25] Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting Outcome 
after Traumatic Brain Injury: Development and International Validation of Prognostic Scores 
Based on Admission Characteristics. PLoS Med 2008;5:e165. 
doi:10.1371/journal.pmed.0050165. 

[26] Marmarou A, Lu J, Butcher I, McHugh GS, Mushkudiani NA, Murray GD, et al. IMPACT 
Database of Traumatic Brain Injury: Design And Description. J Neurotrauma 2007;24:239–50. 
doi:10.1089/neu.2006.0036. 

[27] Maas AIR, Menon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al. Collaborative 
European neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): A 
prospective longitudinal observational study. Neurosurgery 2015;76:67–80. 
doi:10.1227/NEU.0000000000000575. 

[28] Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation 
and Updating. New York: Springer; 2009. 

[29] Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B 1996;58:267–
88. doi:10.1111/j.2517-6161.1996.tb02080.x. 

[30] FIRTH D. Bias reduction of maximum likelihood estimates. Biometrika 1993;80:27–38. 
doi:10.1093/biomet/80.1.27. 

[31] Rubin DB. Multiple imputation for nonresponse in surveys. Wiley-Interscience; 2004. 

[32] Buuren S van. Flexible imputation of missing data. CRC Press; 2018. 

[33] Royston P, Parmar MKB, Sylvester R. Construction and validation of a prognostic model across 
several studies, with an application in superficial bladder cancer. Stat Med 2004;23:907–26. 
doi:10.1002/sim.1691. 

[34] Steyerberg EW, Harrell FE. Prediction models need appropriate internal, internal-external, and 
external validation HHS Public Access. J Clin Epidemiol 2016;69:245–7. 
doi:10.1016/j.jclinepi.2015.04.005. 

[35] Cox D. Two further applications of a model for binary regression. Biometrika 1958;45:562–5. 

[36] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more 
correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 



 

25 
 

1988;44:837–45. 

[37] Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the 
performance of prediction models: a framework for traditional and novel measures. 
Epidemiology 2010;21:128–38. doi:10.1097/EDE.0b013e3181c30fb2. 

[38] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88. 
doi:10.1016/0197-2456(86)90046-2. 

[39] Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: Seven steps for 
development and an ABCD for validation. Eur Heart J 2014;35:1925–31. 
doi:10.1093/eurheartj/ehu207. 

[40] Breiman L. Random Forests. vol. 45. 2001. 

[41] Probst P, Boulesteix A-L, Bischl B. Tunability: Importance of Hyperparameters of Machine 
Learning Algorithms. 2018. 

[42] Sakr S, Elshawi R, Ahmed AM, Qureshi WT, Brawner CA, Keteyian SJ, et al. Comparison of 
machine learning techniques to predict all-cause mortality using fitness data: the Henry ford 
exercIse testing (FIT) project. BMC Med Inform Decis Mak 2017;17:174. doi:10.1186/s12911-
017-0566-6. 

[43] König IR, Malley JD, Weimar C, Diener H-C, Ziegler A, German Stroke Study Collaboration. 
Practical experiences on the necessity of external validation. Stat Med 2007;26:5499–511. 
doi:10.1002/sim.3069. 

[44] Thelin EP, Nelson DW, Vehvilä Inen J, Nyströ H, Kivisaari R, Siironen J, et al. Evaluation of novel 
computerized tomography scoring systems in human traumatic brain injury: An observational, 
multicenter study 2017. doi:10.1371/journal.pmed.1002368. 

[45] Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet 
Oncol 2019;20:e262–73. doi:10.1016/S1470-2045(19)30149-4. 

[46] van der Ploeg T, Nieboer D, Steyerberg EW. Modern modeling techniques had limited external 
validity in predicting mortality from traumatic brain injury. J Clin Epidemiol 2016;78:83–9. 
doi:10.1016/J.JCLINEPI.2016.03.002. 

[47] Poldrack RA, Gorgolewski KJ. Making big data open: data sharing in neuroimaging. Nat 
Neurosci 2014;17:1510–7. doi:10.1038/nn.3818. 

[48] Neurology TL. The changing landscape of traumatic brain injury research. Lancet Neurol 
2012;11:651. doi:10.1016/S1474-4422(12)70166-7. 

[49] Charles D, Gabriel M, Searcy T. Adoption of Electronic Health Record Systems among U.S. 
Non-Federal Acute Care Hospitals: 2008-2014. 2015. 

[50] Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. ARTICLE Scalable and accurate 
deep learning with electronic health records 2018;1:18. doi:10.1038/s41746-018-0029-1. 

[51] Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA 2018;319:1317. 
doi:10.1001/jama.2017.18391. 

[52] Delahanty RJ, Kaufman D, Jones SS. Development and Evaluation of an Automated Machine 
Learning Algorithm for In-Hospital Mortality Risk Adjustment Among Critical Care Patients. 
Crit Care Med 2018. doi:10.1097/CCM.0000000000003011. 



 

26 
 

[53] Desautels T, Das R, Calvert J, Trivedi M, Summers C, Wales DJ, et al. Prediction of early 
unplanned intensive care unit readmission in a UK tertiary care hospital: A cross-sectional 
machine learning approach. BMJ Open 2017. doi:10.1136/bmjopen-2017-017199. 

[54] Klau S, Jurinovic V, Hornung R, Herold T, Boulesteix A-L. Priority-Lasso: a simple hierarchical 
approach to the prediction of clinical outcome using multi-omics data. BMC Bioinformatics 
2018;19:322. doi:10.1186/s12859-018-2344-6. 

[55] Reps JM, Schuemie MJ, Suchard MA, Ryan PB, Rijnbeek PR. Design and implementation of a 
standardized framework to generate and evaluate patient-level prediction models using 
observational healthcare data n.d. doi:10.1093/jamia/ocy032. 

 

 

	
 	



 

27 
 

Appendix	A	
 Table 1 Baseline characteristics the 15 IMPACT studies (n=…) and selected patients from the CENTER-TBI Core study (n=1554) 

 TINT TIUS SLIN SAP BYR HITI UK4 TCDB SKB EBIC HITII NABIS CSTAT PHAMOS APOE CENTER-
TBI NA 

N 1118 1041 409 919 1510 350 791 603 126 822 819 385 517 856 756 1554      
Age 
(mean 
(sd)) 

 33·61 
(14·52) 

 32·78 
(12·48) 

32·35 
(13·4) 

 35·63 
(15·43) 

 30·44 
(13·26) 

 35·49 
(15·38) 

39·64 
(19·2) 

 32·97 
(16·74) 

 30·61 
(13·28) 

41·79 
(20·3) 

36·30 
(15·6) 

 31·82 
(12·47) 

31·79 
(13·2) 

 35·01 
(13·78) 

41·14 
(18·8) 

 47·42 
(20·98)  1·4 

Hypoxia 
(%) 

   149 
(15·1)  

   265 
(28·7)  

   24 
(5·9)  

   110 
(12·9)  

- -   197 
(25·5)  

   109 
(18·1)  

    29 
(34·5)  

  233 
(28·5)  

-    124 
(33·4)     62 (13·0)     212 (24·8)    193 

(28·1)     217 (16·8)  27·4 

Hypotens
ion (%) 

   153 
(14·1)  

   224 
(22·1)  

-    128 
(14·9)  

-     17 
(5·0)  

  205 
(26·2)  

   143 
(23·7)  

    21 
(20·2)  

  199 
(24·4)  

   81 
(9·9)  

    56 
(15·1)     85 (16·8)     132 (15·4)     74 

(10·8)     205 (15·9)  19·4 

Marshall 
CT class 
(%) 

                                                           41·4 

1     51 
(4·6)  

    98 
(9·5)  

    2 
(0·5)  

    39 
(4·3)  

- - - -      3 
(2·4)  

   98 
(12·2)  

   69 
(8·5)  

     4 
(1·1)  

- 
    15 (1·8)  

- 
    81 (8·3)       

2    421 
(38·1)  

   360 
(35·0)  

  152 
(37·2)  

   358 
(39·4)  

- - - -     51 
(40·5)  

  226 
(28·0)  

  270 
(33·4)  

    31 
(8·9)  

- 
   412 (48·5)  

- 
   428 (43·9)       

3    218 
(19·7)  

   196 
(19·1)  

   94 
(23·0)  

   145 
(16·0)  

- - - -     40 
(31·7)  

   81 
(10·0)  

   89 
(11·0)  

   193 
(55·3)  

- 
   203 (23·9)  

- 
    86 (8·8)       

4     46 
(4·2)  

    39 
(3·8)  

   26 
(6·4)  

    22 
(2·4)  

- - - -      2 
(1·6)  

   21 
(2·6)  

   31 
(3·8)  

     5 
(1·4)  

-     56 (6·6)  -     19 (2·0)       

5    370 
(33·5)  

   335 
(32·6)  

  135 
(33·0)  

   344 
(37·9)  

- - - -     30 
(23·8)  

  380 
(47·1)  

  350 
(43·3)  

   116 
(33·2)  

- 
   163 (19·2)  

- 
   360 (37·0)       

Traumati
c 
subarach
noid 
hemorrha
ge (%) 

   566 
(52·5)  

   420 
(42·7)  

  317 
(78·5)  

   399 
(43·9)  

   619 
(41·0)  

    71 
(27·6)  

-    227 
(43·2)  

    99 
(78·6)  

  327 
(41·9)  

  268 
(32·7)  

- - 
   511 (59·7)    192 

(25·7)     759 (73·6)  20·3 

Epidural 
hematom
a (%) 

   181 
(16·5)  

    88 ( 
8·6)  

-    186 
(20·5)  

   147 ( 
9·7)  

    63 
(18·0)  

  110 
(14·6)  

-     14 
(11·1)  

   76 ( 
9·2)  

  134 
(16·4)  

- 
   60 (11·7)     166 (19·4)     50 

(6·6)     172 (16·7)  16·0 

Glucose 
(mean 
(sd)) 

  8·60 
(3·58) 

  9·22 
(3·43) 

-   7·74 
(2·78) 

  9·70 
(3·66) 

  8·78 
(3·30) 

- -   9·99 
(5·95) 

- -   9·51 
(2·89) 

-   8·02 (2·68) -   8·18 (2·95) 45·3 
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Table 1, continued 

 TINT TIUS SLIN SAP BYR HITI UK4 TCDB SKB EBIC HITII NABIS CSTAT PHAMOS APOE CENTER-
TBI NA 

N 1118 1041 409 919 1510 350 791 603 126 822 819 385 517 856 756 1554      
GCS 
motor 
(%) 

                                                            8·8 

1      5 
(0·4)  

     9 
(0·9)  

    0 
(0·0)  

   141 
(15·4)  

   475 
(31·5)  

   122 
(35·8)  

  113 
(18·9)  

   136 
(23·8)  

    34 
(31·2)  

  150 
(22·1)  

  210 
(27·6)  

    82 
(21·9)     40 (7·7)      43 (5·9)      5 (1·2)     615 (44·7)       

2    136 
(12·2)  

   143 
(13·7)  

   55 
(13·4)  

   123 
(13·4)  

   180 
(11·9)  

    41 
(12·0)  

   85 
(14·2)  

   107 
(18·7)  

    22 
(20·2)  

   80 
(11·8)  

   70 
(9·2)  

    62 
(16·5)     88 (17·0)      91 (12·5)      2 (0·5)      77 (5·6)       

3    237 
(21·2)  

   132 
(12·7)  

   91 
(22·2)  

   143 
(15·6)  

   165 
(10·9)  

    45 
(13·2)  

   37 
(6·2)  

    74 
(12·9)  

    14 
(12·8)  

   55 ( 
8·1)  

   92 
(12·1)  

    55 
(14·7)     86 (16·6)     136 (18·6)      0 (0·0)      80 (5·8)       

4    327 
(29·2)  

   300 
(28·8)  

  127 
(31·1)  

   223 
(24·3)  

   334 
(22·1)  

    56 
(16·4)  

  141 
(23·6)  

   121 
(21·2)  

    16 
(14·7)  

  113 
(16·6)  

  181 
(23·8)  

    76 
(20·3)    180 (34·8)     225 (30·8)     18 

(4·2)     136 (9·9)       

5    384 
(34·3)  

   406 
(39·0)  

  134 
(32·8)  

   286 
(31·2)  

   309 
(20·5)  

    77 
(22·6)  

  191 
(32·0)  

   113 
(19·8)  

    21 
(19·3)  

  182 
(26·8)  

  199 
(26·2)  

    97 
(25·9)    122 (23·6)     235 (32·2)     35 

(8·2)     357 (26·0)       

6     29 
(2·6)  

    51 
(4·9)  

    2 
(0·5)  

     0 
(0·0)  

    47 
(3·1)  

     0 
(0·0)  

   30 
(5·0)  

    21 
(3·7)  

     2 
(1·8)  

   99 
(14·6)      8 (1·1)       3 

(0·8)      1 (0·2)       0 (0·0)    365 
(85·9)     110 (8·0)       

Pupil (%)                                                         14·0 
Both 
reactive 

   757 
(72·4)  

   673 
(67·9)  

  308 
(77·4)  

-    758 
(52·0)  

   230 
(66·9)  

  387 
(54·3)  

   299 
(49·6)  

-   503 
(65·1)  

  570 
(71·3)  

   229 
(61·9)    302 (70·9)     642 (78·1)    634 

(84·4)     973 (73·7)       

One 
reactive 

   165 
(15·8)  

   114 
(11·5)  

   77 
(19·3)  

-    153 
(10·5)  

    50 
(14·5)  

  103 
(14·4)  

    55 
(9·1)  

-    73 
(9·4)  

   96 
(12·0)  

    48 
(13·0)     72 (16·9)     147 (17·9)     39 

(5·2)     110 (8·3)       

None 
reactive 

   123 
(11·8)  

   204 
(20·6)  

   13 
(3·3)  

-    548 
(37·6)  

    64 
(18·6)  

  223 
(31·3)  

   249 
(41·3)  

-   197 
(25·5)  

  133 
(16·6)  

    93 
(25·1)     52 (12·2)      33 (4·0)     78 

(10·4)     238 (18·0)       

Glasgow 
outcome 
scale (%) 

                                                         2·8 

2    322 
(28·8)  

   267 
(25·6)  

  108 
(26·4)  

   236 
(25·7)  

   476 
(31·5)  

   109 
(31·1)  

  372 
(47·0)  

   298 
(49·4)  

    40 
(31·7)  

  299 
(36·4)  

  220 
(26·9)  

   119 
(30·9)    142 (27·5)     191 (22·3)    123 

(16·3)     348 (29·0)       

3    134 
(12·0)  

   128 
(12·3)  

   69 
(16·9)  

   142 
(15·5)  

   298 
(19·7)  

    62 
(17·7)  

  146 
(18·5)  

    95 
(15·8)  

    30 
(23·8)  

  123 
(15·0)  

  108 
(13·2)  

    98 
(25·5)     69 (13·3)     246 (28·7)    163 

(21·6)     303 (25·2)       

4    171 
(15·3)  

   180 
(17·3)  

   84 
(20·5)  

   174 
(18·9)  

   374 
(24·8)  

    64 
(18·3)  

  130 
(16·4)  

   103 
(17·1)  

    27 
(21·4)  

  159 
(19·3)  

  199 
(24·3)  

    91 
(23·6)     92 (17·8)     203 (23·7)    211 

(27·9)     246 (20·5)       

5    491 
(43·9)  

   466 
(44·8)  

  148 
(36·2)  

   367 
(39·9)  

   362 
(24·0)  

   115 
(32·9)  

  143 
(18·1)  

   107 
(17·7)  

    29 
(23·0)  

  241 
(29·3)  

  292 
(35·7)  

    77 
(20·0)    214 (41·4)     216 (25·2)    259 

(34·3)     303 (25·2)       

HB 
(mean 
(sd)) 

 11·90 
(2·75) 

 13·06 
(2·16) 

-  11·44 
(1·96) 

 13·22 
(2·10) 

 13·21 
(2·09) 

- -  12·10 
(2·33) 

- -  12·88 
(2·12) 

-  12·72 (2·50) -   7·96 (2·36) 
52·2 
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CT = computed tomography; GCS = Glasgow Coma Scale; HB= hemoglobin. For the study descriptions, see http://www.tbi-impact.org/?p=impact/datasets.  
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Table 2 Results of the calibration intercept at internal-external (per study CV), internal 
(10-fold cross validation), and external (CENTER-TBI) validation 

Algorithm Outcome 
Internal-
external 

Internal External 

Logistic regression 

Mortality 

-0.02 (-0.20 - 0.15) -0.01 (-0.04 - 0.03) -0.61 (-0.75 - -0.47) 

Support vector machine -0.02 (-0.20 - 0.16) 0.02 (-0.01 - 0.05) -0.44 (-0.57 - -0.30) 
Random forest -0.08 (-0.26 - 0.11) -0.04 (-0.10 - 0.03) -0.83 (-0.97 - -0.69) 
neural network -0.03 (-0.20 - 0.15) 0.01 (-0.05 - 0.07) -0.49 (-0.63 - -0.35) 
Gradient boosting machine -0.03 (-0.21 - 0.15) -0.00 (-0.05 - 0.05) -0.57 (-0.71 - -0.42) 
Lasso regression -0.02 (-0.20 - 0.15) 0.00 (-0.07 - 0.08) -0.60 (-0.74 - -0.46) 
Ridge regression -0.02 (-0.19 - 0.15) 0.00 (-0.07 - 0.07) -0.55 (-0.69 - -0.42) 
Logistic regression 

Unfavourable 
outcome 

0.02 (-0.15 - 0.20) -0.01 (-0.05 - 0.03) -0.18 (-0.30 - -0.05) 
Support vector machine 0.02 (-0.15 - 0.19) -0.02 (-0.05 - 0.01) -0.04 (-0.17 - 0.08) 
Random forest 0.02 (-0.15 - 0.19) 0.02 (-0.02 - 0.06) -0.32 (-0.45 - -0.20) 
neural network 0.02 (-0.15 - 0.20) -0.03 (-0.07 - 0.02) -0.08 (-0.21 - 0.05) 
Gradient boosting machine 0.02 (-0.15 - 0.19) 0.01 (-0.03 - 0.05) -0.08 (-0.21 - 0.04) 
Lasso regression 0.02 (-0.15 - 0.20) 0.00 (-0.07 - 0.07) -0.17 (-0.29 - -0.04) 
Ridge regression 0.02 (-0.15 - 0.19) 0.00 (-0.06 - 0.07) -0.14 (-0.26 - -0.02) 

  

Table 3 Results of the calibration slope at internal-external (per study CV), internal (10-
fold cross validation), and external (CENTER-TBI) validation  

Algorithm Outcome 
Internal-
external 

Internal External 

Logistic regression 

Mortality 

0.98 (0.90 - 1.05) 0.98 (0.94 - 1.03) 0.96 (0.84 - 1.07) 
Support vector machine 1.00 (0.91 - 1.08) 1.00 (0.98 - 1.02) 0.97 (0.85 - 1.09) 
Random forest 0.85 (0.77 - 0.93) 0.78 (0.72 - 0.83) 0.88 (0.77 - 0.99) 
neural network 0.99 (0.91 - 1.08) 0.99 (0.95 - 1.03) 0.98 (0.86 - 1.09) 
Gradient boosting machine 0.96 (0.89 - 1.04) 0.98 (0.93 - 1.03) 0.92 (0.81 - 1.03) 
Lasso regression 0.99 (0.91 - 1.07) 1.01 (0.96 - 1.06) 0.97 (0.85 - 1.09) 
Ridge regression 1.05 (0.96 - 1.13) 1.07 (1.02 - 1.12) 1.03 (0.90 - 1.15) 
Logistic regression 

Unfavourable 
outcome 

0.99 (0.93 - 1.05) 1.00 (0.97 - 1.04) 0.82 (0.71 - 0.92) 
Support vector machine 1.00 (0.94 - 1.06) 1.01 (0.97 - 1.05) 0.82 (0.72 - 0.92) 
Random forest 0.89 (0.82 - 0.96) 0.81 (0.77 - 0.85) 0.76 (0.66 - 0.86) 
neural network 0.98 (0.92 - 1.03) 0.99 (0.94 - 1.05) 0.81 (0.71 - 0.91) 
Gradient boosting machine 1.01 (0.95 - 1.07) 1.02 (0.97 - 1.06) 0.82 (0.72 - 0.92) 
Lasso regression 1.00 (0.94 - 1.06) 1.01 (0.96 - 1.06) 0.83 (0.73 - 0.93) 
Ridge regression 1.06 (1.00 - 1.13) 1.07 (1.02 - 1.12) 0.88 (0.77 - 0.99) 
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Table 4 Results of the Brier score at internal-external (per study CV), internal (10-fold 
cross validation), and external (CENTER-TBI) validation 

Algorithm Outcome 
Internal-
external 

Internal External 

Logistic regression 

Mortality 

0.15 (0.14 - 0.16) 0.15 (0.15 - 0.15) 0.16 (0.15 - 0.17) 
Support vector machine 0.15 (0.14 - 0.17) 0.15 (0.15 - 0.15) 0.16 (0.15 - 0.17) 
Random forest 0.16 (0.15 - 0.17) 0.16 (0.16 - 0.16) 0.17 (0.16 - 0.18) 
neural network 0.15 (0.14 - 0.16) 0.15 (0.15 - 0.15) 0.16 (0.15 - 0.17) 
Gradient boosting machine 0.15 (0.14 - 0.16) 0.15 (0.14 - 0.15) 0.15 (0.14 - 0.16) 
Lasso regression 0.15 (0.14 - 0.16) 0.15 (0.14 - 0.15) 0.16 (0.15 - 0.17) 
Ridge regression 0.15 (0.14 - 0.16) 0.15 (0.14 - 0.15) 0.16 (0.15 - 0.17) 
Logistic regression 

Unfavourable 
outcome 

0.18 (0.17 - 0.19) 0.17 (0.17 - 0.18) 0.19 (0.18 - 0.21) 
Support vector machine 0.18 (0.17 - 0.19) 0.18 (0.17 - 0.18) 0.19 (0.18 - 0.20) 
Random forest 0.19 (0.18 - 0.20) 0.19 (0.18 - 0.19) 0.20 (0.19 - 0.21) 
neural network 0.18 (0.17 - 0.19) 0.18 (0.17 - 0.18) 0.19 (0.18 - 0.20) 
Gradient boosting machine 0.18 (0.17 - 0.19) 0.18 (0.17 - 0.18) 0.19 (0.18 - 0.21) 
Lasso regression 0.18 (0.17 - 0.19) 0.18 (0.17 - 0.18) 0.19 (0.18 - 0.21) 
Ridge regression 0.18 (0.17 - 0.19) 0.18 (0.17 - 0.18) 0.19 (0.18 - 0.21) 

 

Table 5 Results of the c-statistic at internal-external (per study CV), internal (10-fold cross 
validation), and external (CENTER-TBI) validation, in a different imputed dataset. 

Algorithm Outcome 
Internal-
external 

Internal External 

Logistic regression 

Mortality 

0.81 (0.79 - 0.84) 0.83 (0.82 - 0.84) 0.82 (0.79 - 0.84) 
Support vector machine 0.81 (0.78 - 0.83) 0.83 (0.82 - 0.83) 0.81 (0.79 - 0.84) 
Random forest 0.79 (0.77 - 0.82) 0.81 (0.80 - 0.81) 0.81 (0.78 - 0.84) 
neural network 0.81 (0.79 - 0.84) 0.83 (0.82 - 0.84) 0.82 (0.79 - 0.84) 
Gradient boosting machine 0.81 (0.79 - 0.84) 0.83 (0.82 - 0.84) 0.83 (0.81 - 0.86) 
Lasso regression 0.81 (0.79 - 0.84) 0.83 (0.82 - 0.84) 0.82 (0.79 - 0.84) 
Ridge regression 0.81 (0.79 - 0.84) 0.83 (0.82 - 0.84) 0.82 (0.79 - 0.84) 
Logistic regression 

Unfavourable outcome 

0.81 (0.79 - 0.83) 0.81 (0.80 - 0.82) 0.77 (0.75 - 0.80) 
Support vector machine 0.80 (0.79 - 0.82) 0.81 (0.80 - 0.82) 0.78 (0.75 - 0.80) 
Random forest 0.79 (0.76 - 0.81) 0.78 (0.78 - 0.79) 0.76 (0.74 - 0.79) 
neural network 0.80 (0.79 - 0.82) 0.81 (0.80 - 0.81) 0.78 (0.76 - 0.80) 
Gradient boosting machine 0.80 (0.78 - 0.82) 0.81 (0.80 - 0.82) 0.78 (0.76 - 0.80) 
Lasso regression 0.81 (0.79 - 0.83) 0.81 (0.80 - 0.82) 0.77 (0.75 - 0.80) 
Ridge regression 0.81 (0.79 - 0.83) 0.81 (0.80 - 0.82) 0.77 (0.75 - 0.80) 
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Figure 1 Two algorithms are compared in two studies: A+B is CENTER-TBI, C+D is UK4, A+C is ridge 
regression, and B+D random forest. The c-statistic is primarily determined by study: the c-statistics between 
studies (A-C and B-D) differ more than within studies (A-B and C-D). This is also found with respect to the 
calibration intercept, and calibration slope.  

A) CENTER-TBI Ridge regression 

 

B) CENTER-TBI Random Forest 

 
C) UK4 Ridge regression 

 

D) UK4 Random Forest 
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Table 6 Results for empirical testing of the assumption of non-linearity and non-additivity 
in the datasets. The p-value, both crude and adjusted by the false discovery rate, are 
shown.  

Study Assumption P-value Adjusted p-value  
TINT 

Non-linearity 

0.207 0.476 

TIUS 0.567 0.798 

SLIN 0.662 0.820 

SAP 0.003 0.026 

BYR 0.473 0.798 

HITI 0.101 0.312 

UK4 0.643 0.820 

TCDB 0.021 0.108 

SKB 0.821 0.877 

EBIC 0.001 0.012 

HIT II <0.001 0.005 

NABIS 0.158 0.446 

CSTAT 0.073 0.251 

PHAMOS 0.882 0.911 

APOE 0.005 0.031 

CENTER-TBI <0.001 0.005 

TINT 

Non-additivity 
(interaction) 

0.782 0.865 

TIUS 0.966 0.966 

SLIN 0.527 0.798 

SAP 0.246 0.509 

BYR 0.543 0.798 

HITI 0.215 0.476 

UK4 0.549 0.798 

TCDB 0.759 0.865 

SKB NA* NA* 

EBIC 0.739 0.865 

HIT II 0.556 0.798 

NABIS 0.595 0.802 

CSTAT 0.417 0.798 

PHAMOS 0.048 0.211 

APOE 0.071 0.251 

CENTER-TBI 0.195 0.476 
* Too few observations to fit the model with all interaction terms 

 

Appendix	B	
Calibration		
Calibration refers to the agreement between the predicted probability of the outcome versus the 
observed. Calibration was examined graphically and quantified using a calibration slope and the 
calibration intercept: the calibration test proposed by Cox [1]. The calibration slope was calculated by 
fitting a logistic regression model with the observed outcome as dependent variable and the log odds of 
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the predicted probability of the model. The calibration slope is given by the coefficient of the log odds of 
the predicted probability, and should ideally be equal to one. To assess calibration in the large, or 
calibration intercept, a similar model was fitted, with the log-odds of the predictions as an offset 
variable. The intercept of this model is the calibration intercept, which reflects calibration-in-the-large, 
or difference between observed and predicted risks. Ideally, this measure should be equal to zero [2,3].  

Discrimination	
Discrimination refers to the ability of the model to distinguish between patients with and without the 
event of interest. It was quantified using the c-statistic, also known as area under the ROC curve. The c-
statistic ranges from 0.5 to 1 where 0.5 indicates that model predictions are no better than a coin toss 
and 1 indicates perfect discrimination. The confidence intervals of the c-statistic were obtained using 
the DeLong et al method [4], using the ci.auc function from the pROC package. 

Brier	score	
The Brier score is both influenced by discrimination and calibration, and can therefore be seen as a 
metric of overall performance [5]. It is calculated by summarizing the distance of the calculated 
probability of an event to its realization (1 in case the event occurred, and 0 if not). The brier score of 
flipping a fair coin is 0.25, and perfect prediction translates into a brier score of 0: a probability of 1 if 
the event will occur, and a probability of 0 if not.  

Machine	learning	algorithms	
Extended tuning grids of possible combinations of hyperparameters in was used, see the table below.  

Support vector machine constructs hyperplanes in a multidimensional space, defined by both the kernel 
function and the input variables [6]. The hyperplane then discerns classes. The most commonly used 
kernel functions are radial, polynomial, and linear. The linear kernel function was used in this study, 
because using other kernel functions lead to convergence problems. Using the distance to this 
hyperplane, the probability of belonging to a class can be calculated. The svmLinear function from the 
e1071  package was used.  

Standard neural networks are ‘multilayer perceptrons’. These start with an input layer that contains the 
predictors (input neurons), and output layer to generate predictions (output neurons), and then one or 
more hidden layers in between (consisting of hidden neurons). In each layer,  neurons are activated by 
input from neurons of the previous layer [7]. This activation is similar to regression to the extent that the 
neurons evaluates all input signals with weights to come to an output signal to the next layer. The 
networks can be built with different gradients of complexity. We considered neural networks with 1 
hidden layer only. The hyperparameters of this algorithm were size (1, 3, 5, 10, or 15 middle neurons), 
and decay (0, 0.1, 0.01, and 0.001). By using one binary output neuron, the network functions as a 
logistic regression model, in the sense that it trains to predict probabilities. The nnet function from the 
nnet package was used.  

Finally, random forest and gradient boosting machine are both decision-tree based methods. They 
classify by partitioning the classes based on input variables. Both methods consist of multiple created 
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decision trees. The random forest algorithm uses a repeated bootstrap sample procedure to randomly 
create decision trees [8]. The hyperparameters of the algorithm are the number of trees (500) and the 
number of random variables used for partitioning the tree (2, 5, 10, or 18). The ranger function from the 
ranger package was used. This function creates as a default 500 trees in the forest. The size of the 
terminal nodes is used as a criterion for the maximum tree depth: if 5 or less patients are left at the end 
of the creating of a tree, the algorithm terminates. 

The gradient boosting machine uses information from prior created trees to optimize the creation or 
branching of consecutive trees[9]. The proportion of trees that voted in favor of the outcome was used 
as the predicted probability of the outcome. The hyperparameters of the algorithm are depth of the 
trees (1, 2, or 3 layers), number of trees (50, 100, 150, 200, 300), shrinkage (0, 0.1, 0.01), and the 
minimal number of patients per node (50, 100, or 150). The gbm function from the gbm package was 
used.  
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The grid of hyperparemeters used to optimize the machine learning algorithms.  

Algorithm Hyperparameter Values to select from 
Lasso/Ridge Lambda log(-6) - log(2) 
SVM Cost 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
NNet Size 1, 3, 5, 10, 15  
 Decay 0, 0.1,0.01, 0.001 
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RF N trees 500 
 N random variables 2, 5, 10, 18 
GBM Tree depth 1, 2, 3,5 
 N trees 50, 100, 150, 200, 300 
 Shrinkage 0, 0.01, 0.1 
 Min N observed per node 50, 100, 150 

 

 


