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Generalisable 3D printing error detection
and correction via multi-head neural
networks

Douglas A. J. Brion 1 & Sebastian W. Pattinson 1

Material extrusion is themost widespread additivemanufacturingmethod but
its application in end-use products is limited by vulnerability to errors.
Humans can detect errors but cannot provide continuous monitoring or real-
time correction. Existing automated approaches are not generalisable across
different parts, materials, and printing systems. We train a multi-head neural
network using images automatically labelled by deviation from optimal
printing parameters. The automation of data acquisition and labelling allows
the generation of a large and varied extrusion 3D printing dataset, containing
1.2 million images from 192 different parts labelled with printing parameters.
The thus trained neural network, alongside a control loop, enables real-time
detection and rapid correction of diverse errors that is effective across many
different 2D and 3D geometries, materials, printers, toolpaths, and even
extrusion methods. We additionally create visualisations of the network’s
predictions to shed light on how it makes decisions.

Material extrusion is the most common additive manufacturing (AM)
method for reasons including its relatively low-cost, little post-
processing, compatibility with many materials and multi-material
capability1. These have made extrusion AM promising in numerous
areas2 including healthcare3, medical devices4, aerospace5, and
robotics6. However, a key reason why many of these applications
remain at the research stage is that extrusion AM is vulnerable to
diverse production errors. These range from small-scale dimensional
inaccuracies and mechanical weaknesses to total build failures1,7–10. To
counteract errors, a skilled worker typically must observe the AM
process, recognise an error, stop the print, remove the part, and then
appropriately adjust the parameters for a newpart. If a newmaterial or
printer is used, this process takes more time as the worker gains
experience with the new setup11,12. Even then, errors may be missed,
especially if the worker is not continuously observing each process.
This can bedifficult ifmultiple printers are in operation simultaneously
or, as highlighted by the COVID-19 pandemic, personnel is limited due
to social distancing or illness. Not only does this cost material, energy,
and timebut it also limits both theuseofAMparts in end-useproducts,
particularly safety-critical ones such as medical devices, and the resi-
lience of AM-based supply chains. These challenges are set to become

more pressing as AM expands to living and functional materials,
complex multi-material lattice structures, and challenging environ-
ments such as remote, outdoor construction sites or on the
human body.

This has motivated diverse and interesting research into mon-
itoring extrusion AM13. Current14,15, inertial16,17, and acoustic18–22 sensors
have often been used for monitoring extrusion AM. Although these
approaches lead to the reliable detection of certain, typically large-
scale, error modalities during printing, many errors remain undetect-
able. Thesemethodologies are also yet to be used in most 3D printers,
as the cost of sensors and amplifiers for such approaches is often high.
Additionally, they are not sufficiently data-rich to enable online feed-
back and correction.

Camera-based approaches are potentially versatile and data-rich.
Single camerasmounted on the printer framewith a top-down or side-
on view, coupled with traditional computer vision and image proces-
sing techniques, have been used to detect diverse extrusion AM
errors23–32. This approach has the advantages of being relatively inex-
pensive, easier to set up and that the camera can often view much of
the manufactured part at any time. This allows many errors, such as
infill deformation or the presence of material ‘blobs’, to be detected.
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However, using a single camera can limit the amount of information
gained about the manufacturing process and thus the range of errors
and error types identified. Multi-camera approaches are more expen-
sive and complex to implement but potentially more capable. Multiple
views of the part, or the addition of infra-red cameras, can allow
defects, suchas incomplete prints, to be seen thatmaynotbe apparent
from a single viewpoint33–35. 3D reconstructions of printed parts, for
example, generated by multi-camera 3D structured light scanning and
digital image correlation, can be compared to the 3Ddigital partmodel
to detect dimensional inaccuracies35–43. However, these more sophis-
ticated systems are often expensive, sensitive to lighting conditions
and part surface properties, slower due to scan time and computation,
require precise positioning and calibration, and limited to detecting
errors large enough to see given scanner resolution limits.

Frame-mounted single and multi-camera approaches, as above,
also often find it difficult to view the material as it is being deposited
from thenozzle because theprint head canobscure the view. Typically,
prints must be paused to allow imaging of a layer, which prevents real-
time correction, slows production rates and can itself cause errors due
to inconsistent extrusion. This hasmotivated work onmounting single
and multiple cameras to the nozzle or extruder, which can view the
ongoing printing process and has enabled real-time feedback to cor-
rect over or under extrusion during printing44,45 as well as estimation of
the shapeofmaterial extruded from thenozzle46. Traditional computer
vision approaches are very promising for explicitly targeting specific
errors in specific parts in 3D printing systems for which they have been
calibrated. However, it is very challenging to handcraft feature
extraction algorithms that can generalise to different parts, printers,
materials, and setups. Hence, most examples only show a single com-
bination of printer, part geometry, material, and printing condition,
and none demonstrate correction of errors in multiple parts or setups.

Machine learning and particularly deep learning techniques have
achieved state-of-the-art performance across many applications,
including vision47, by expressing complex representations in terms of
other simpler representations48. This has led to several exciting recent
demonstrations of machine learning in extrusion AM error
detection49–56. Existing work has only demonstrated error detection in
a single part, though, and thus the effectiveness of existing techniques
for other parts, particularly parts not seen in the training data, is
unknown.Moreover,most existing approaches canonly detect a single
error modality: poor flow rate49, interlayer defects50, warp
deformation53, and large top surface defects52,54. Often existing meth-
ods also require an object to already have been printed successfully to
provide comparisons for the error detection51,54,55. This may be espe-
cially limiting for custom parts. Machine learning is most exciting in
error detection because it could potentially be more robust and gen-
eralisable to newmaterials, geometries, and printers thanhand-crafted
features. However, the potential of machine learning algorithms to
discover generalisable error features remains largely unexplored.

For error detection to reach its full potential in reducing 3D
printing waste and improving sustainability, cost, and reliability, it
must be coupled with error correction. There has been work in
detecting and correcting some kinds of errors between subsequent
prints of the same object51,55. However, many prints of that object are
required to build the dataset, enabling error correction in that object.
Moreover, these methods are not capable of real-time correction,
meaning that if an error is detected, that part cannot be recovered. A
previous study has examined real-time correction and control for
extrusion AM49. However, the implementation only demonstrates
correction of the flow rate printing parameter and only in one geo-
metry that is used for both training and testing the system. There is
also a significant delay between error detection and correction. As is
the case with error detection, the performance of existing error cor-
rection methods in unseen objects is unclear, which limits their
industrial applicability.

Here we report an easily deployable method using inexpensive
webcams and a single multi-head deep convolutional neural network
to augment any extrusion-based 3D printer with error detection, cor-
rection, and parameter discovery for new materials (Fig. 1). This has
been realised in this work through the development of CAXTON: the
collaborative autonomous extrusion network, which connects and
controls learning 3D printers, allowing fleet data collection and colla-
borative end-to-end learning. Each printer in the network can con-
tinuously print and collect data, aided by a part removal system. Unlike
existing deep learning AM monitoring work, which often uses the
human labelling of errors to train algorithms, CAXTON automatically
labels errors in terms of deviation from optimal printing parameters.
Uniquely, CAXTON thus knows not just how to identify but also how to
correct diverse errors because, for each image, it knows how far
printing parameters are from their optimal values. This autonomous
generation of training data enables the creation of larger and more
diverse datasets resulting in better accuracies and generalisability. The
final system is able to detect and correct multiple parameters simul-
taneously and in real-time. The multi-head neural network can self-
learn the interplay between manufacturing parameters due to the
single shared feature extraction backbone, even making the system
capable of recognising multiple solutions to solve the same error. As
part of this work, a large-scale, optical, in situ process monitoring
dataset for extrusion AM has been curated and will be released. It
contains over 1 million sample images of material deposition from the
printer nozzle labelled with their respective printing parameters from
192 prints of different 2D and 3D geometries. The system is highly
scalable, using commonly used firmware, and capable of growth
through the remote addition of further printers for larger and more
diverse future datasets. Despite being trained only on extruded ther-
moplastic polylactic acid parts, these capabilities generalise to pre-
viously unseen printers, camera positions, materials, and direct ink
write extrusion. We also describe several innovations such as toolpath
splitting and proportional parameter updates that enable correction
speeds to be improved by an order of magnitude compared to cur-
rently published real-time 3D printing error correction work. This is
enabled with low-cost equipment requiring only a network connec-
tion, a standard consumer webcam, and a low-cost single-board
computer (e.g., Raspberry Pi). Finally, the useof attention layerswithin
the network enables human operators to interpret what features the
network focuses on. Visualisation methods are then employed to gain
insights into how the trained neural network makes predictions both
to aid fundamental understanding and to help build trust or enable
traceability.

Results
Dataset generation, filtering and augmentation
Wegenerated a new 3Dprinting dataset containing parts printed using
polylactic acid (PLA), labelled with their associated printing para-
meters, for a wide range of geometries and colours using fused
deposition modelling 3D printers. Our CAXTON data generation
pipeline automates the entire process from STL file selection to tool-
path planning, data collection and storage (Fig. 1a). Model geometries
are automatically downloaded fromtheonline repository, Thingiverse.
The geometries are subsequently sliced with randomly sampled set-
tings (e.g. scale, rotation, infill density, infill pattern and wall thick-
ness). The generated toolpaths are then converted to have maximum
moves of 2.5mm by a custom Python script, to avoid excessively long
moves executing a single parameter set and to reduce the firmware
response time. During printing, images are captured every 0.4 sec-
onds. Each captured image is timestamped and labelled with the cur-
rent printing parameters: actual and target temperatures for the
hotend and bed, flow rate, lateral speed, and Z offset. These para-
meters are precisely known by either retrieving values from firmware
in real-time or by setting the value with a G-code command.
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Additionally, for each image, nozzle tip coordinates oneachprinter are
saved to allow for automated cropping around the region of interest
during training. After 150 images have been collected, a new combi-
nation of printing parameters is generated for every printer by sam-
pling uniform distributions of each parameter. The new parameter
combinations are sent to each printer over the network as G-code
commands which are subsequently executed with minimal delay due
to the toolpath conversion. Upon execution, another 150 labelled
images are gathered before the parameter update process happens
again. This continues until the end of the print, and results in sets of
images each with vastly different printing parameters (Fig. 1d). This
automated labelling procedure for each image provides greater reso-
lution than human-based labelling because no human operator could

label parameters with the same level of accuracy (for example, that the
current flow rate is 56%), and no human could label an image with an
exact combination of multiple printing parameters as they strongly
interact with each other (for example, is the nozzle too high, flow rate
too low, and temperature too lowor aweighted combination of these).

Due to sampling suboptimal parameter combinations, some
prints turn into complete failures, which after a certain point provide
little information on the associated parameters. Such images
are manually removed, leaving 1,166,552 labelled images (91.7% of the
original 1,272,273). The remaining dataset contains some noisy labels
due to the longer response times found when updating printing
parameters, such as flow rate before a noticeable change is present in
the image. The response time consists of a command execution delay

Fig. 1 | Overview of the CAXTON system used for automated data collection.
a Workflow for collecting varied datasets from extrusion 3D printers with the
automatic labelling of images with printing parameters. b Fleet of eight thermo-
plastic extrusion 3D printers (Creality CR-20 Pro) equipped with cameras focused
on the nozzle tip to monitor material deposition. c Renderings of generated tool-
paths for a single input geometry, with randomly selected slicing parameters.

d Snapshot of data gathered during an example print showing images with varying
parameter combinations. e Design of bed remover and dock utilising existing
motion system along with photographs taken during operation. f Distributions of
normalised parameters in the full dataset collected by CAXTON containing over 1.2
million samples.
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and mechanical delay. The first delay is mostly handled by only cap-
turing images after an acknowledgement of the parameter update
command has been received from the printer. For mechanical delay,
worst-case experiments were run to determine the response time for
changing each parameter from theminimum to themaximum value in
the dataset. It was found that changes are predominantly visiblewithin
6 s of an update being applied, and as such, 15 images are removed
post parameter updates. This leaves 1,072,500 samples where the
system has reached its desired state. Unrealistic parameter outliers
caused by printers not properly executing the G-code commands, or
glitches in sensors such as thermistors are filtered, leaving
991,103 samples. Finally, very dark images with a mean pixel value
across RGB channels of less than 10 are removed. This results in a
cleaned dataset of 946,283 labelled images (74.4% of the original). The
currently continuous parameter values are then binned into three
categories for each parameter: low, good, and high. The upper and
lower limits for these bins are selected based on our experience of AM
with PLA. This creates a possible81 different class combinations for the
neural network to predict (three categories for four parameters).

We use data augmentation to increase the size and quality of our
filtered dataset and thus avoid overfitting and improve generalisability

in ourmodel57. The location and shape of the depositedmaterial in the
captured images varies greatly depending upon the geometry of the
part being printed. Additionally, it was found that colour, reflectance,
and shadows all differed with camera position, material choice and
printer design. To simulate a wider variety of geometries, camera
locations and materials, each image in the dataset is subjected to a
wide range of data augmentation techniques (Fig. 2e). First, the full-
sized image captured by the camera is randomly rotated by up to 10
degrees in either direction. Then a minor perspective transform is
applied with a probability of 0.1. The image is then automatically
cropped to a 320 × 320 pixel square region focused on the nozzle tip
using the nozzle tip coordinates saved during data collection. The
rotation and perspective transforms are applied before the crop to
practically remove the need for padding in the cropped region. A
random square portion with an area between 0.9–1.0 of the 320 × 320
image is then cropped and resized to 224 × 224 pixels—the input size
for the deep neural network. Subsequently, a horizontal flip can be
applied to the image with a probability of 0.5, followed by applying a
colour jitter of ±10% to the image’s brightness, contrast, hue, and
saturation. This use of synthetic data augmentation is more time and
resource efficient than repositioning cameras on printers and
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Step 1: Single layer dataset
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Module 1 attention masks Module 2 attention masks Module 3 attention masksCropped input images

Fig. 2 | Multi-head residual attention network architecture, performance, and
visualisations for human interpretation. a The multi-head network architecture
consist of a single sharedAttention-56network58 backbone, which contains stacked
attention modules and residual blocks, followed by four separate fully connected
output heads after the flattening layer, one for each parameter. Each of these heads
classifies its associated parameter as either low, good, or high. Attention modules
consist of a trunk branch containing residual blocks and a mask branch which
performs down- and up-sampling. b Example attention masks at each module for

the given input images. Each module output consists of many channels of masks,
only a single sample is shown here. The masks show regions the network is
focussing on, such as the most recent extrusion as shown by the output of module
2. cConfusionmatrices of the final network after the three stages of training on our
test dataset for each parameter. d Training and validation accuracy plots from
training the network across three seeds, smoothed with an exponential moving
average, on three datasets: single layer, full and balanced. e Example data aug-
mentations used during training to make the model more generalisable.

Article https://doi.org/10.1038/s41467-022-31985-y

Nature Communications |         (2022) 13:4654 4



changing environmental lighting conditions during the dataset col-
lection. It also allows for a smaller raw dataset with augmentations
functionally applied at run-time during training instead of increasing
the dataset size with more samples. Finally, the channels in the trans-
formed image are normalised using each channel’s pixel mean and
standard deviation for all the images in the filtered dataset.

Model architecture, training and performance
The accurate prediction of current printing parameters in the extru-
sion process from an input image is achieved using a multi-head deep
residual attention network58 with a single backbone and four output
heads, one for each parameter. In deep learning, single-label classifi-
cation is very common and requires only a single output head to
classify the input as one of N possible classes. However, this work
requires multi-label classification to classify the input as one of three
possible classes (low, good, and high) for each of the four labels (flow
rate, lateral speed, Z offset and hotend temperature). To achieve this
multiple output heads are used with a shared backbone for feature
extraction. The weights of the shared backbone are updated during
the backward pass in training by a sum of the losses from each of the
separate output heads. This allows the backbone to learn its own
interpretationof the relationships between eachof the parameters and
the importance of certain features shared across the parameters. The
alternative approach is to use multiple separate networks, each with a
single output head and to treat the problem as four separate single-
label classificationproblems. This, however, looks at eachparameter in
isolation and, as such, fails to learn the interplay and relationships.
Additionally, it requires significantly more compute during training
and in real-world deployment as four separate networks must be
trained independently (as opposed to one), and then these networks
must be run in parallel during operation.

The use of attention in the network may reduce the number of
network parameters needed to achieve the same performance for our
application, whilst making the network more robust to noisy labels.
The attention maps may also aid in inspecting errors and explaining
predictions. The single backbone allows for feature extraction to be
shared for each parameter and, as such reduces inference time com-
pared to having separate networks. Additionally, it allows the single
network to model the interplay between different parameters. Each
head has three output neurons for classifying a parameter as low,
good, or high.With this structure, the networkpredicts the state of the
flow rate, lateral speed, Z offset, and hotend temperature simulta-
neously in one forward pass from a single RGB input image (Fig. 2a).
This multi-head structure and knowledge of multiple parameters may
lead to an improvement in predicting individual parameters. Inter-
estingly, it was found that a network solely trained to predict flow rate
class achieved a lower accuracy in classifying flow rate than a network
trained with knowledge of all four parameters. However, further
experiments are required to examine this result and whether addi-
tional context can be used to increase network performance.

The shared network backbone consists of three attention mod-
ules and six residual blocks and is based on the Attention-56model58.
The attention modules are composed of two branches: the mask and
the trunk. The trunk branch performs the feature processing of a
traditional network and is constructed from residual blocks. The
mask branch undertakes down sampling followed by upsampling to
learn an attention mask with which to weight the output features of
the module. This mask can not only be used during the forward pass
for inference, but also as a mask in the backward pass during back-
propagation. This was one of the reasons for choosing this network
architecture, as it is believed that these mask branches can make the
networkmore robust to noisy labels—which our dataset contains due
to parameter changes and subtle inconsistencies during printing.
After these blocks, the network backbone is flattened to a fully
connected layer which links to each of the separate four heads. The

heads need to be separate outputs of the network this work requires
multi-label classification as each full prediction requires each head to
always have a separate single prediction. An alternative approach
would be to use four separate complete neural networks; however,
this would be significantly more compute and memory intensive in
addition to not being able to model the relationships between
manufacturing parameters. The multi-head shared backbone
approach used in this work results in the backbone being used as a
feature extractor to compress the dimensionality of the input image
into a latent space representation learned from the sum of losses for
eachmanufacturing parameter. It can then be thought that each head
acts as a mapping from this latent space to the classification of the
parameter level.

To visualise which features the network is focussing on at each
stage, images of the attention maps after each module were created
(Fig. 2b). Here, the same attention mask from each module is applied
to each of the 3 input images with the areas not of interest darkened
(note: these masks are illustrative examples as each module contains
many different attention maps). The network appears to focus on the
printed regions in the example mask output for attention module 1,
and then only on the most recent extrusion for module 2. Module 3
applies the inverse to the previous, focusing on everything but the
nozzle tip.

It was found that splitting the training process into three sepa-
rate stages and using transfer learning was themost robust. For each
stage three differently seeded networks were trained. In the first
stage, the network is trained on a sub-dataset containing only images
of the first layers with 100% infill. The features are more visible for
each parameter in these prints and by first training, with this subset,
the network can more quickly learn to detect important features. It
was found that this separation sped up the learning process as fea-
tures were more learnable for the single layer and could subse-
quently be tuned on the full dataset making the network
generalisable to complex 3D geometries. A training accuracy of 98.1%
and validation accuracy of 96.6% was achieved by the best seed. A
transfer learning approach was then used to retrain the model of the
best seed on the full dataset containing images for all 3D geometries.
This was done three times, with the best seed achieving a training and
validation accuracy of 91.1 and 85.4%, respectively. Neural networks
can learn inherent biases in the data given to them; therefore, due to
imbalances in our full dataset (for example, the Z offset can have
many more values which are too high than too low because the
nozzle would crash into the print bed) transfer learning was used a
final time. This time, however, only the final fully connected layer to
each of the four heads was trained on a balanced sub-dataset con-
taining an equal number of samples for each of the possible 81
combinations (four parameters, each of which can be low, good or
high). The weights in the network backbone for feature extraction
were frozen. This achieved a training accuracy of 89.2% and valida-
tion of 90.2%. Then, the final trained network was tested on our test
set, where it achieved an overall accuracy of 84.3%. For each para-
meter, the classification accuracies on our test set were: flow rate
87.1%, lateral speed 86.4%, Z offset 85.5% and hotend temperature
78.3%. More information on the training process can be found in
Supplementary Fig. S1. Not only would this task be very challenging
for an expert human operator, given the diverse, multi-layer test set,
but this accuracy also understates the efficacy of the network for
error correction. The parameters are interdependent and thus, for
many error types, there will be multiple combinations of parameter
changes that could correct it. For example, a higher Z offset with the
nozzle far from the print bed can easily be mistaken as having a low
flow rate—both appear as under extrusion—and could be corrected
by changing either parameter. However, only one of these parameter
combinations will be counted as ‘correct’ in the accuracy calculation
given the labels in the training data.
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Online correction and parameter discovery pipeline
To test the ability of the network to correct printing errors and dis-
cover optimal parameters for new materials, random 3D models were
again downloaded, but this time for testing correction. Each 3Dmodel
was sliced with different settings for scale, rotation, infill density,
number of perimeters and number of solid layers by randomly sam-
pling from uniform distributions. The infill pattern was chosen at
random from a given list of common patterns. The set of toolpaths
generated were subsequently converted to have maximum moves of
1mm using a custom script to enable significantly faster firmware
response times for parameter changes during printing while keeping
print file sizesmanageable and preventing jitters due to the printer not
being able to read and process the G-code lines quickly enough.

During the printing process, images of the nozzle tip andmaterial
deposition are taken at 2.5Hz and sent to a local server for inference
(Fig. 3a). Each received image is automatically cropped to a 320 × 320
pixel region focused on the nozzle tip. The user needs to specify the
pixel coordinates of the nozzle once when mounting the camera at
setup. Furthermore, users may want to alter the size of the cropped
region depending on the camera position, focal length, and size of the
printer nozzle. Choosing a suitable region around the nozzle affects
the performance of the network and the best balance between accu-
racy and response time is seen when ~5 extrusion widths are visible on
either side of the nozzle tip.

The cropped image is then resized to 224 × 224 pixels and nor-
malised across RGB channels. Next, the classification network pro-
duces a prediction (too high, too low, good) for each parameter given
this image as input. These predicted parameters are stored in separate
lists of different set lengths, L, for each parameter. If a particular pre-
diction is made frequently enough that it makes up a proportion of a
full list greater than or equal to the mode threshold (θmode), then a
mode is found, and that prediction is accepted. If no mode is found,

then no updates are made, and the printing parameter is considered
acceptable, just as in the case where the mode prediction is ‘good’. If a
mode is found to be ‘too high’ or ‘too low’, the proportion of the list
length constitutedby themode value is used to scale the adjustment to
the parameter facilitating proportional correction. Specifically, one-
dimensional linear interpolation is applied tomap the range between a
parameter threshold (θmode) and 1 to a new minimum (Imin) and 1. The
interpolated value is then used to linearly scale the maximum update
amount (A+ for parameter increases and A− for decreases). The specific
values of θmode, L, Imin, A+ and A− were obtained iteratively via experi-
mentation for each parameter individually (Fig. 3b) to balance
response timewith accuracy and to prevent overshooting. The hotend
list length andmode threshold are particularly conservative due to the
long response time of this parameter and also the safety risk in
overshooting.

Once the final update amounts have been calculated for the
printing parameters, they are sent to a Raspberry Pi attached to each
printer. The Pi retrieves the current value for each parameter and
creates a G-code command to update the parameter. The Pi then looks
for acknowledgement of the command’s execution by the firmware
over serial. Once all commands have been executed by the firmware,
the Pi sends an acknowledgement to the server. When the server
receives an acknowledgement that all updates have been executed it
begins to make predictions again. Waiting for this acknowledgement
of all parameter updates is crucial to stop oscillations caused by over
and undershooting the target.

To demonstrate the system’s correction capability, an experi-
mentation pipeline was constructed to take an input STL file, slice it
with goodprint settings, insert aG-code command to alter a parameter
to a poor value and then parse the generated G-code and split the
model into 1mm sections (Fig. 4). The same model of the printer was
used as in training butwith an altered cameraposition (slightly rotated
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images of the extrusion process. b Table containing θmode (mode threshold),
L (sequence length), Imin (interpolation minimum), A+ (the largest increase),

A− (largest decrease) for each printing parameter along with the possible levels of
update amounts. c Simple example single layer geometry illustrating toolpath
splitting into equal smaller segments. 1mm lengths are used in the feedback pro-
cess to enable rapid correction and reduce response time.

Article https://doi.org/10.1038/s41467-022-31985-y

Nature Communications |         (2022) 13:4654 6



and translated with respect to the nozzle), a new 0.4mm nozzle with
different external geometry, and an unseen single layer printing sam-
ple. To compare the responses between parameters, each was printed
using the same spool of PLA filament (Fig. 4a). These single-layer prints
are used as a clearly interpretable benchmark to test each of the
individual parameters and combinations of parameters across differ-
ent printers, setups, and materials. The flow rate, Z offset, and hotend
temperature parameter defects are clearly visible, while the lateral
speed defect can be observed as a darker line where print speed was
slowed. The delay between the command being sent (black arrows in
Fig. 4a) and the parameter updating is observable, demonstrating the
importance of waiting for acknowledgements from the printer. In each
case, the network, in combination with mode thresholding, is rapidly
able to recover good printing parameters (see Supplementary
Movie S1).

Despite being trained only using extruded thermoplastic PLA,
the control pipeline generalises to diverse materials, colours, and
setups. Figure 4b shows online correction for four different ther-
moplastics printed with different combinations of random multiple
incorrect printing parameters on similar interpretable single layer
benchmarks as Fig. 4a. In each case, the network successfully updates
multiple parameters resulting in good extrusion (see Supplementary
Movie S2). The TPU and carbon fibre-filled samples have no printed
perimeter due to poor initial conditions. Not only is this useful for
automated parameter discovery, aiding users in tuning their printers
for new materials by quickly obtaining the best parameter combi-
nations, but also it shows that control systems can improve pro-
ductivity by saving failing prints where the initial toolpaths fail to
adhere to the bed.

Thanks to having all parameter predictions in one network
structure, the trained model learns the interactions between multiple
parameters and can offer creative solutions to incorrect parameters
like a human operator. We printed a sample using the control loop
setup but without making online corrections. This sample contained a
regionwith a high Z offset. A high Z offset results in separated paths of
extruded material—the same result can occur from a low flow rate.
Figure 4c shows that the network determines that increasing the flow
rate along with lowering the Z will result in good extrusion. As the
trainedmodel can findmultiple ways to solve the sameproblem, it can
be more robust to incorrect predictions for a single parameter and
enable faster feedback by combining updates across multiple para-
meters. The prediction plots also demonstrate the speed at which the
network notices that parameters are nowgood, which is vital to ensure
the control system does not overshoot when making online
corrections.

Figure 4d applies the control pipeline using the same printer
model as used in training (Creality CR-20 Pro) on an unseen rook
geometry to demonstrate that our methodology could be used in a
production setting for full 3D geometries. Multiple random incorrect
printing parameters were introduced halfway through printing, spe-
cifically a very high flow rate, lateral speed and hotend temperature
and a low Z offset. The rook printed without correction dramatically
failed, whereas the rook printed with the same conditions with cor-
rection enabled was completed successfully. Figure 4e shows six
copies of the same 3D spanner geometry, each started with the same
combination of incorrect printing parameters: lowflow rate and lateral
speed, high Z offset and good hotend temperature. Of the six span-
ners, three were printed without correction resulting in one complete

a Hotend temp (°C)Flow rate (%) Z offset (mm)Lateral speed (%) c

b

Carbon Fiber FilledTPU PVA HT+ABS-X

CorrectedError

Original Correction

e

Final prediction
Single prediction

Z offset change

d

Fig. 4 | Printer and feedstock agnostic online parameter correction and dis-
covery. aRapid correctionof amanually induced erroneous single parameter using
the trained multi-head neural network. Printed with PLA feedstock on a known
printer with an unseen 0.4mm nozzle not used in training data. b Online simulta-
neous optimisation of multiple incorrect parameters on unseen thermoplastic
polymers. Demonstrates that the control pipeline is robust to a wide range of
feedstocks with different material properties, colour and initial conditions. cMuch

like a human operator, the system uses self-learned parameter relationships for
corrective predictions. A high Z offset can be fixed by both reducing the Z offset
and/or by increasing the material flow rate. d Correction of multiple incorrect
printing parameters introduced mid-print. Both rooks were printed in the same
conditions, with the only difference being correction. eCorrection of prints started
with incorrectparameter combinations.All six spannerswereprintedwith the same
conditions.
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failure due to detachment from the print bed and a very poor surface
finish on the remaining two. These errors are due to the poor initial
layer caused by the suboptimal printing parameters. The three printed
with correction were all completed successfully and exhibit the same
improved surface finish, particularly on the initial layer. It should be
noted that these corrected prints do not match a perfectly printed
part. Imperfections are present until all the necessary corrections have
been applied, and as such, some of the initial layer is printed with poor
starting parameters. Though rare, a correction can also be applied
when it is not needed leading to an imperfection.

To demonstrate the system’s generality, a different camera and
lens were attached to a new location on anunseen printer (Lulzbot Taz
6) with a differently shaped nozzle and nozzle width—0.6mm instead
of 0.4mm as used in training (Fig. 5a). This printer uses an extrusion
system which takes 2.85mm diameter filament as input over 1.75mm
as used in the training printers. Figure 5b shows the same control
system applied to an unseen bishop geometry. Random incorrect
printing parameters were introduced early on in the print, specifically
during layer 7. These incorrectparameterswere a low lateral speed and
high flow rate, Z offset and hotend temperature. The erroneous bishop

printed without correction failed, whereas the bishop printed with the
exact same conditions with the control pipeline enabled was com-
pleted successfully with greater detail. Single-layer benchmark prints
were completed with each individual erroneous parameter introduced
using white PLA (Fig. 5c). These demonstrate that the multi-head
neural network and control pipeline generalise to correct parameters
across fused deposition modelling printers. The size of the poorly
printed region in these samples appears larger than in the ones printed
for Fig. 4a, as the larger nozzle on the Lulzbot Taz six results in a far
larger extrusion width for each line. The number of lines is approxi-
mately the same between the printers.

The control pipeline was further tested on a direct ink writing
setupusing a steppermotorwith a threaded rod tomove a plunger in a
syringe (Fig. 5d). This used a different cameramodel and lensmounted
at a different angle and distance from the nozzle with a transparent
and reflective glass print bed instead of the black bed used during the
thermoplastic tests. With this setup, PDMS, mayonnaise and ketchup
were printed using a variety of nozzles –0.21mm for the PDMS and
0.84mm for the condiments (Fig. 5e). All samples were printed at
room temperature with no hotend correction. For PDMS printing, the
network only corrected the flow rate. Figure 5e shows that for PDMS,
the network learns to increase flow rate by raising the pressure applied
to the syringe. Once the required pressure is reached, the network
reduces the flow rate to stop over extrusion. However, during long
prints, the flow rate sometimes overshoots due to a large build of
pressure in the syringe, especially when the network does not reduce
the flow rate fast enough. Balancing this pressure is especially chal-
lenging in this specific setup due to the viscous material and small
nozzle diameter requiring high pressures for printing, creating a time
gap between plunger movement and extrusion. When printing less
viscous materials this overshoot and pressure delay are less of a pro-
blem, especially with larger nozzle diameters. For the mayonnaise and
ketchup examples, the network mostly adjusted the flow rate and Z
offset. We found both condiments tended to over extrude, and the
network often reduced theflow rate and, for the first layer, lowered the
Z offset. When printing multi-layered structures, the network tended
to raise the Z offset at each layer and reduce the flow rate to stop the
nozzle tip from being submerged in the previous layer.

Gradient-based visual explanations of network predictions
It is helpful to seek possible explanations for whymodels make certain
decisions, particularly when deploying deep neural networks in pro-
duction for safety-critical applications. Two popular visualisation
methods that may help users gain some understanding of why neural
networks make their predictions are guided backpropagation59 and
Gradient-weightedClassActivationMapping (GradCAM)60. The former
helps to show finer resolution features learned by the network in
making predictions and the latter provides a coarser localisation
showing important regions in the image (this can be thought of as post
hoc attention). For both approaches, the target category (low, good,
and high) for each of the four parameters is provided to determine
which features or regions are specifically important for that category.
On top of this, a method was developed to apply the techniques for
each parameter separately within the whole network allowing us to
produce up to 12 tailored visualisations for an input image (the three
classes for each of the four parameters, e.g. low flow rate, high lateral
speed, good Z offset).

Multiple combinations of erroneous parameters can result in
either separated paths of extruded material (under extrusion) or
overlapping paths of material (over extrusion). Guided back-
propagation was used to try to determine if the network uses similar
features across parameters to detect these physical extrusion prop-
erties. Representative example images for under, good, and over
extrusion caused by different parameters are shown in Fig. 6a. It
appears that similar features are shared between parameters for the
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Lateral speed (%) Z offset (mm) Hotend temp (°C)Flow rate (%)

Error

Corrected
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Fig. 5 | Approachgeneralises across setups andextrusionprocesses. aPhotos of
a tested unseen 3D printer with a 0.6mm inner diameter nozzle (Lulzbot Taz 6). A
different camera model (Raspberry Pi Camera v1) and lens were used compared to
the collection of training data along with a new camera position with respect to
material deposition. b A bishop chess piece with erroneous parameters introduced
and the same erroneous print with correction enabled. Both were printed using
2.85mm PLA on the unseen Lulzbot Taz 6 setup. c Rapid correction of a manually
induced erroneous single parameter using the trained multi-head neural network.
Printed with white PLA feedstock on an unseen printer with an unseen 0.6mm
nozzle not used in training data.d Syringe-basedprinter for direct inkwriting (DIW)
modified from a Creality Ender 3 Pro. An unseen camera model (Raspberry Pi
Camera v1) and lens were used alongwith a different camera position. eAutomated
correction and parameter discovery showed for PDMS with 0.21mm nozzle (27-
gauge), alongside mayonnaise and ketchup with 0.84mm nozzle (18-gauge).
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same extrusion classification: separated paths for under extrusion, an
outline of the current path for good extrusion, and around the nozzle
for over extrusion.

GradCAM was applied to every layer of the shared network
backbone for each of the parameters separately. We show in Fig. 6b, c
the visualisations from the first and last layers (residual blocks 1 and 6,
respectively). Earlier stages in the network appear to detect large
structural features in the image, such as differentiating between the
deposited material and the print bed. By the last layer, the network
predominantly focuses on the most recent extrusion from the nozzle
irrespective of parameter or target class. This is desired as for fast
response times and corrections, we want the network to use infor-
mation from themost recently depositedmaterial for its prediction. In
Fig. 6d, example visualisations are shown images from direct ink
writing tests. These images demonstrate that the trained network can
use similar features at each stage during prediction as it uses for
thermoplastic predictions. Further visualisations can be found in
Supplementary Fig. S2 and Supplementary Movie S3.

Discussion
We demonstrate that training a multi-head neural network using
images labelled in terms of deviation from optimal printing para-
meters enables robust and generalisable, real-time extrusion AM error
detection and rapid correction. The automation of both data acquisi-
tion and labelling allows the generation of a training image-based
dataset sufficiently large and diverse to enable error detection and

correction that generalises across realistic 2D and 3D geometries,
materials, printers, toolpaths, and even extrusion methods. The deep
multi-head neural network was able to simultaneously predict with
high accuracy the four key printing parameters: flow rate, lateral
speed, Z offset and hotend temperature from images of the nozzle
during printing. It was found that this additional context and knowl-
edge of multiple parameters even may lead to an improvement in
predicting individual parameters—though further research to support
this finding is needed. Like a human, the system was able to creatively
propose multiple solutions to an error and could even discover new
parameter combinations and learn how to print new materials. Unlike
humans, though, the system operated continuously and made cor-
rections instantaneously. Alongside this network, we present numer-
ous advances in the feedback control loop with new additions such as
proportional parameter updates, toolpath splitting, and optimised
prediction thresholding, which combined provide an order of magni-
tude improvement in correction speed and response time compared
to previous work.

Whilst significantly advancing the capabilities of AM feedback
through the generalised control of more parameters with faster
response times, this work also lowers the cost and complexity of
existing approaches. The use of off-the-shelf cameras, small single-
board computers (e.g., Raspberry Pi), and networking allow the system
tobe added tonew and existing printerswith ease. The systemextends
and plugs into popular software and firmware packages meaning that
existing user workflows are minimally affected. Furthermore, the fully
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Fig. 6 | Visual explanations using separate saliency maps for each parameter
may assist in verifying the robustness of the network. a Under, good or
over extrusion can be achieved by multiple incorrect parameters. Guided
backpropagation59 is applied to highlight important features in the image used
for classification. Representative example unseen images suggest that the network
uses similar features across parameters to identify the same physical property.
b Gradient-weighted Class Activation Mapping (GradCAM)60 shows that across

parameters and unseen inputs, the early stages of the network differentiate
between the deposited material and the print bed. c GradCAM applied to the final
stages shows that the network as a whole focuses on the nozzle tip across para-
meters and unseen inputs. d The trends shown in guided backpropagation and
GradCAM at different stages also apply to different unseen extrusion methodolo-
gies, such as direct ink writing.
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in-built networking enables each added printer to increase the training
data available and also allows for the system to be deployed in more
remote environments where only an internet connection is required.

There is room for improvement in themethodology. For example,
testing the network on a wider range of printers and materials and
adding data gathered to the training dataset could make the system
more generalisable and robust. More data for low Z offset values may
also be beneficial as small differences in value can have a large impact
on print quality. Also, there is a smaller range of values low Z offsets
can take over high ones before hitting the bed, this causes a bias in the
dataset as more values are present in the high classification. Plus, we
believe the small movements in Z offset may be the primary weakness
of the current dataset and improved camera focus, resolution and
attention to positioning would greatly improve the next iteration of
large AM datasets. It is also important to raise the role which bias may
play in the performance of the trained model given the dataset pro-
vided. Future work would be enhanced by using an even larger and
more balanced dataset with an equal number of samples at more
granular levels of classification. For example, at present, in the dataset,
theremay be certain combinations of parameters which only appear in
during a specific print or with a single colour of filament, and thus the
network has learned these incorrect features as mappings. Addition-
ally, while 3Dmodels, slicing settings, and parameter values have been
randomly sampled, there is still some bias including in the given ran-
ges, additional slicing settings, and feedstock choice.

The effectiveness of ourmethodology canbe further improvedby
tuning the many variables used during the online correction feedback
pipeline, along with the sampling rate and toolpath split length. More
extensive testing with a wider and deeper search of values may yield
enhanced performance. Better values for these correction variables
would help to reduce the chance of correction oscillations during
feedback which we have experienced in testing by improving predic-
tions over lists or reducing response time. Parameter oscillations can
occur if the network can still see a previously bad region and over-
shoots its correction or upon a series of incorrect predictions from the
neural network.

Furthermore, we realise that whilst this approach helps solve
many common extrusion-based printing errors, many still remain.
Mechanical failures on the printer caused by skipped steps, belt slip-
ping, or external interference remains unsolved and the addition of
closed-loop control for positioning errors would increase the number
of error modalities covered. Electrical issues caused by faulty sensors
or underperforming power supplies may be detectable in some
instances but cannot be autonomously corrected. Additionally, large
errors such as cracking, warp deformation, and bed adhesion issues
resulting in part detachment are not entirely solved.Whilst the precise
real-timecontrol of printing parameters canhelp reduce the likelihood
of these errors occurring, it is not able to detect or resolve many of
them once they have formed due to its localised approach to mon-
itoring. Combining this local imagingwith a global camera systemmay
yield significant improvements in detecting more errors and could
provide a link between local extrusion issues and global scale faults.

The gradient-based saliency maps we used to examine how the
network reaches its decisions suggest that the network learns to focus
on the most recent extrusion when making predictions, which aids
rapid response to errors. This, together with the ability of the network
to accurately predict different parameters across different geometries,
materials and setups suggest that the network identifies visual features
that are universal to extrusion processes, such as the shape of the
extrudate. The methodology developed in this paper is, to a large
extent, agnostic to the sensors andmanufacturing process it is applied
to. This points to a range of areas for future investigation. For instance,
in integrating new infra-red or other sensors into the system or
applying it to further challenging manufacturing processes61,62.
Applying it to metal AM methods is particularly exciting given the

complexity of these processes and the need for quality assurance63.
Optical techniques are the most common methods used thus far in
metal AM for monitoring features such as the powder bed surface and
melt pool64,65. These would be appropriate for use with our metho-
dology andmay be especially beneficial for AM of metals that it can be
difficult to work with66. This could be aided by fine-tuning the model
on specific setups with transfer learning on small, specialised datasets
(with uniformly good lighting), to boost performance in known
environments.

Methods
CAXTON system for autonomous data collection
A network of eight FDM 3D printers were used for data collection.
Creality CR-20 Pro printers were chosen due to their low cost, pre-
installed bootloader and included Z probe. The firmware for each
printer was flashed to Marlin 1.1.9 to ensure thermal runaway protec-
tionwas enabled. Eachprinterwas equipped thenwith a Raspberry Pi 4
Model B acting as the networked gateway for sending/receiving data
to/from theprinter via serial. The Pi runs a Raspbian-baseddistribution
of Linux and an OctoPrint server with a custom-developed plugin. A
low-cost, consumer USB webcam (Logitech C270) was connected to
the Pi for taking snapshots. The camerawasmounted facing the nozzle
tip using a single 3D printed part. These components can easily be
fitted to new and existing printers at low cost; aiding calability and
deployability.

The printer used for direct ink writing was a modified Creality
Ender 3 Pro. The extruder setup was designed and built in-house and
utilised a stepper motor-driven syringe with a Luer lock nozzle. The
printer is equipped with a Raspberry Pi 4 Model, Z probe and Rasp-
berry Pi Camera v1 with a zoom lens. The firmware is a configured
version of Marlin 2.0. For further experiments, a Lulzbot Taz 6 with its
firmware flashed to Marlin 1.1.9 was used. The default nozzle was
swapped for an E3D 0.6mm inner diameter nozzle.

STL files were downloaded from the Thingiverse 3D model repo-
sitory using a Python script. This tool allowedmodels in the repository
to be easily searched for by multiple avenues, such as keyword,
popularity, time, creator, and license. With this tool, popular files (to
increase the likelihood that they were printable) with appropriate
licences were pseudo-randomly selected and downloaded. Addition-
ally, some of the standard 3D printing benchmark files were manually
added to this set of STLs.

For slicing parts to create varied toolpaths, STLs were randomly
rotated (angle sampled from a uniformdistribution ranging from0° to
360°) and scaled before being centred on the build plate (scale factor
sampled from a uniform distribution ranging from 0.8 to 2—for some
already large models the scale factor was clipped to reduce printing
time). Then the number of solid top and bottom layers was randomly
sampled fromauniformdistribution ranging from2 to4 alongwith the
infill pattern, infill density (0% to 40%), and the number of external
perimeter walls (2 to 4). The following range of infill patterns were
used: rectilinear, grid, triangles, stars, cubic, line, concentric, honey-
comb, 3Dhoneycomb, gyroid, Hilbert curve, Archimedeanchords, and
octagram spiral. The lines in the G-code output from the slicer were
subsequently chopped into smaller segments with a maximum move
length of 2.5mm to reduce the firmware response times For the online
correctiondemonstrationswith amaximummove length of 1mmused
instead to further reduce firmware response time.

During printing, images are captured at a resolution of 1280 × 720
pixels from the nozzle-facing camera at a sampling rate of 2.5 Hz. Each
image is labelled with the actual and target hotend and bed tempera-
tures at that point in time and the printer’s current relative flow rate
and lateral speed (both percentages) along with the Z offset (in mm).
After 150 of these labelled images have been collected and stored
(~1min of printing), new flow rate, lateral speed, Z offset, and hotend
target temperature values are randomly sampled from uniform

Article https://doi.org/10.1038/s41467-022-31985-y

Nature Communications |         (2022) 13:4654 10



distributions of the following respective ranges of flow rate: 20 to
200%, lateral speed: 20 to 200%, Z offset: −0.08 to 0.32mm, and
hotend: 180 to 230 °C. It was found that some additional flow rates at
higher levels needed to be added to the training set as they were
sufficiently out of distribution that the trained models would incor-
rectly predict the classification. This was not necessary for the other
parameters. After sampling, the new values are sent to the printer. The
printer begins capturing another 150 images for this new combination
of parameters. This process can happen in parallel across all eight
printers we used, each of which uses a different colour of feedstock,
helping to cover the large parameter space.

Random parameter value selection was chosen over systematic
parameter selection to provide different surrounding contexts in the
captured images. Specifically, by choosing a randomised approach, the
outer region of the image can contain extrusion for a significantly
different previous parameter combination, and this may help train the
network to use local features around the nozzle tip. A systematic
approachmay instead introduce patterns into the levels of parameters
for previously depositedmaterial which can be learned by the network
reducing the locality of the data used for predictions and introducing a
weakness during online printing in unseen conditions where the sur-
rounding contextwill notbe systematic andmaybeout of distribution.

Bed remover
To reduce the need for human intervention in the printing process and
aid continuous printing, a new and simple method for removing
completed prints has been developed. Numerous methods have pre-
viously been implemented to automatically remove parts upon
completion67,68; however, previous implementations either require
extensive hardware modification, are costly, or only able to remove a
relatively limited range of parts. Our bed removal system requires no
additional electronics, motors, or complex mechanical parts. The
proposed solution can be retrofitted to any extrusion printer and is
composed primarily of printed parts which can be produced by the
printer in question. The already mobile print head moves and docks
with a scraper located to the rear of the build platform. Subsequently,
the printer’s in-built motors are used to move the print head and
scraper across the build surface removing the printed object. After
removal, the print head returns the scraper to its home location and
undocks (see Supplementary Movie S4). To ensure that the scraper
always remains in the same position, a scraper-dock with magnets is
attached to the print bed to hold the scraper in place until the next
object requires removal. Further details on this system can be found in
Supplementary Fig. S3 and Supplementary Note 1 in the Supplemen-
tary Information, and also in a GitHub repository containing the
modifiable CAD STEP files, STL files for printing, and example G-code
scripts for part removal (https://github.com/cam-cambridge/creality-
part-remover).

Training procedure
To train the network we determine the cross-entropy loss at each of
theheads and then sum these losses together before backpropagation.
This results in the shared backbone of the network being updated to
accommodate the loss for each head,with the fully connected layers to

each head only being updated by that head’s loss. The initial learning
ratewas selected at eachof the 3 training stages by sweeping a rangeof
values and selecting a learning rate with a large drop in loss69. Learning
rates for each of the stages can be seen in the supplementary infor-
mation. Selection of the correct learning rate was of key importance—a
high learning rate led topoor attentionmaps,whereas too low learning
rates took longer to train or got stuck in early localminima.AnAdamW
optimiser70,71 was used during training with a reduce on plateau
learning rate scheduler to decrease the learning rate by a factor of 10
when 3 epochs in a row didn’t improve the loss by more than 1%. Plots
of the learning rate during training can be found in the supplementary
information. A training, validation, and test split of 0.7, 0.2 and 0.1,
respectively, was used with a batch size of 32. The three stages of
trainingwere trained for 50, 65 and 10 epochs, respectively. Each stage
was trained three times with three different seeds. During the transfer
learning the best seed from the previous stage was chosen as the base
to continue training from.

To determine the importance of this multistage training and
the use of attention, four different ResNets47 were trained using the
same configuration except only with a single seed and a single stage
on the full dataset. The test accuracies can be seen in Table 1
alongside the accuracy of our chosen attention network trained
using the three stages. It was found that larger models with these
additions actually drop in test accuracy. Applying further pre-
training on each model on other datasets would likely improve
accuracy across the board.

The use of multiple parameters in a single multi-head network to
provide additional context may lead to improved performance over
training single parameters in separate networks. After 50 epochs of
training, a ResNet18 model with a single head output for predicting
flow rate achieved an accuracy of 77.5%. The samemodel withmultiple
heads (one for each of the four parameters) after 50 epochs of training
achieved a final accuracy of 82.1% at predicting flow rate.

Computing and software requirements
Final models were trained using half-precision floating-point format
(FP16) on two Nvidia Quadro RTX 5000 GPUs with a i9-9900K CPU
(eight cores and 16 threads) and 64GB of RAM. This setup was also
used for the online correction. Some prototyping work took place
on an HPC GPU cluster equipped with Nvidia Tesla P100 GPUs.
Neural networks were developed with PyTorch v1.7.1 (https://
github.com/pytorch/pytorch), Torchvision v0.8.2 (https://github.
com/pytorch/vision), Tensorboard v2.4.1 (https://github.com/
tensorflow/tensorboard). Data analysis used Python v3.6.9
(https://www.python.org/), NumPy v1.19.5 (https://github.com/
numpy/numpy), Pandas v1.1.5 (https://github.com/pandas-dev/
pandas), SciPy v1.5.4 (https://www.scipy.org/), Seaborn v0.11.1
(https://github.com/mwaskom/seaborn), Matplotlib v3.3.3 (https://
github.com/matplotlib/matplotlib), Jupyter v1.0.0 (https://jupyter.
org/), JupyterLab v.2.2.9 (https://github.com/jupyterlab/jupyterlab)
and Pillow v8.1.0 (https://github.com/python-pillow/Pillow). Data
collection and parameter correction servers were developed with
Flask v1.1.1 (https://github.com/pallets/flask), Flask–SocketIO
v5.1.0 (https://github.com/miguelgrinberg/Flask–SocketIO), Octo-
Print v1.6.1 (https://octoprint.org/), Marlin 1.1.9 (https://marlinfw.
org/). Slicing and print preparation used PrusaSlicer v2.3.3 (https://
github.com/prusa3d/PrusaSlicer) and Simplify3D v4.1.2 (https://
www.simplify3d.com/).

Data availability
The labelled image data generated in this study and used to train the
model has been deposited in the University of Cambridge data repo-
sitory (https://doi.org/10.17863/CAM.84082). Source data for plots in
figures are provided with this paper. Source data are provided with
this paper.

Table 1 | Comparison of model size and types and their
respective test set accuracies across all four parameters

Model type Test accuracy across four parameters

ResNet18 80.4%

ResNet34 82.5%

ResNet50 81.8%

ResNet101 81.4%

This work 84.3%
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Code availability
Code used to generate the results in the paper is available in a GitHub
repository (https://github.com/cam-cambridge/caxton). Further detail
on the bed remover can also be found in a GitHub repository (https://
github.com/cam-cambridge/creality-part-remover).
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