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Abstract

Topics in conditional causal inference Yao Zhang

With the growth of complex experimental designs and large-scale observational data,
causal questions arising in applications are now more targeted and precise. For example,
one might ask if the treatment is effective at a particular time point, or if the treatment
is effective for a particular individual. To answer many questions of this kind, this thesis
concerns conditional causal inference, generally referring to techniques of constructing or
interpreting conditional distributions or expectations for inference about a causal effect of
interest. This thesis consists of five chapters. In Chapter 1, we first review the classical
potential outcomes framework and some basic causal inference methods relevant to this thesis,
then provide a summary of the problems and methods studied in the following chapters.

In Chapter 2, we consider testing causal effects in complex experimental designs via
conditional randomization tests (CRTs). The CRTs we define are randomization tests con-
ditioning on a subset of treatment assignments tailored to the effect of interest. Because
many potential outcomes are missing in complex designs, a single CRT is rarely powerful.
We develop a general theory for constructing multiple jointly valid CRTs in arbitrary designs.
Following this theory, we propose practical methods that can collect and combine statistical
evidence in different parts of an experiment to test a global effect of interest. Under a general
framework of CRTs, we connect and discuss randomization tests developed for different
statistical problems in the literature, which may be of independent interest.

The following three chapters concern the problem of estimating conditional average
treatment effects (CATEs). CATEs quantify individual-level treatment effects by conditioning
on individual covariates. In Chapter 3, we consider estimating CATEs in the presence of
high-dimensional covariates. We propose a neural network-based dimensionality reduction
method that can transform high-dimensional covariates into a low-dimensional and informative
representation. Neural network models are overparameterized and non-convex. We propose a
sample-splitting and randomization method that enables the representation to be partially
identifiable and converge consistently. In Chapter 4, we consider estimating CATEs in



viii

the presence of imbalanced treated and control populations. We take a Bayesian method
to measure the overlap between the two populations and rebalance the populations by
minimizing the posterior variances of counterfactual outcomes. We propose a PAC-Bayes
generalization bound to show that this method is beneficial and consistent in estimating
CATEs. In Chapter 5, we introduce a recursive partitioning method that can convert any
black-box CATE estimates into interpretable subgroups. Our method uses a distribution-free
technique called conformal prediction to quantify the uncertainties in CATE estimates, then
leverage the uncertainties to construct robust subgroups. It leads to more well-identified
subgroups and fewer false discoveries due to random noise in the data.

All the methods proposed in this thesis are tested using multiple simulations or datasets.
Overall, experimental results support our theories and demonstrate the advantages of our
methods compared with some baseline methods.
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Chapter 1

Introduction

This thesis is built upon the classical potential outcomes framework for causal inference.
The framework is often attributed to the seminal work by Rubin (1974) who used potential
outcomes to define the causal effect of an educational treatment. Rubin (1990) acknowledged
that the framework can be dated back to Neyman (1923) who adopted the language of
potential outcomes to study agricultural field experiments. Nevertheless, Rubin (1974)’s
work changed the long-standing convention of analyzing observational data with the notation
purely in terms of observed outcomes. Ever since then, the framework has been popularized
and is now widely applied for causal inference in social and biomedical sciences. This chapter
starts by introducing the framework and reviewing the basic methods that are relevant
to our works in this thesis. It ends by summarizing the methodological contributions and
mathematical notation in the following chapters.

1.1 Potential outcomes

Drawing causal conclusions is often an informal task in our daily life. For example, one might
wonder if going to college gets us a better job, or if taking a painkiller reduces our toothache.
In the potential outcomes framework, establishing causality is about estimating the effect
of an action (e.g. a medical treatment, or an educational campaign) on the outcome of a
unit (e.g. an individual, or a school). Consider a unit i, we define its treatment variable
Ai ∈ A = {0, 1} (Ai = 1: treated, Ai = 0: control) and an outcome variable Yi ∈ Y. Let
Yi(1) be the outcome variable that would have been observed if unit i is treated (Ai = 1),
and Yi(0) be the outcome variable that would have been observed if unit i is control (Ai = 0).
The random variables Yi(0) and Yi(1) are referred to as potential outcomes of unit i, which
emphasize the fact that depending on whether unit i is treated or not, either of these two
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outcome variables can be potentially observed. The definition of potential outcomes seems
straightforward but makes two well-known assumptions in the literature.

Consider a finite population of N units, i ∈ {1, . . . } = [N ]. Defining potential outcomes
should take into account interference between the units. For example, carrying out an
educational campaign in one school (unit) may also affect the other N − 1 schools (units)
in the same city. Then, every school i’s outcome Yi depends on the treatment variables of
all the schools, A = (Aj : j ∈ [N ]) with Aj indicating if the campaign is given in school j;
every school i has 2N potential outcomes, Yi(a),∀a ∈ AN = {0, 1}N . To reduce the number
of unobserved outcomes, we often make the following assumption.

Assumption 1 (No interference). Yi(a) = Yi(ai) for any a ∈ AN and i ∈ [N ].

Under no interference, every school i has only two potential outcomes, Yi(ai), ai = 0, 1.
Causal inference methods that allow for interference (Hudgens and Halloran, 2008; Rosenbaum,
2007; Tchetgen and VanderWeele, 2012) often assume a known and local interference structure
between the units, then attempt to estimate the direct effect from a unit’s treatment variable
and the indirect effect from its neighbour units’ treatment variables.

To make sure that the observed outcomes are consistent with the defined potential
outcomes, the next assumption formalizes the connection between them.

Assumption 2 (Consistency). Yi = Yi(a) if A = a for any a ∈ AN and i ∈ [N ].

The consistency assumption implies that if the treatment variable is continuous, we may
have no observation of potential outcomes at some treatment levels in finite samples. A
naive solution to this problem is by converting the continuous treatment into a binary one
indicating if a unit is treated or not. For example, suppose that in a clinical trial, a group of
patients have taken different doses of an experimental drug while another group of patients
have taken a placebo. One may consider estimating the drug effect by comparing the groups
in terms of average outcomes. This comparison assumes that the drug effect does not depend
on the dose, i.e., the potential outcomes at any non-zero dose levels are the same, which is
not part of the consistency assumption above. If the drug effect is only realized at large
doses, this approach may underestimate or fail to detect the drug effect. A better estimation
strategy is to leverage the smoothness of the drug effect at different dose levels. This can be
done by applying causal inference methods adapted for continuous treatment variables (Gill
and Robins, 2001; Hirano and Imbens, 2004; Imai and Van Dyk, 2004; Kennedy et al., 2017).

In the literature, authors often make the stable unit treatment value assumption (SUTVA)
(Rubin, 1980b), which essentially refers to Assumptions 1 and 2 taken together.

Assumption 3 (SUTVA). Yi = Yi(a) if Ai = a for any a ∈ A and i ∈ [N ].
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Under SUTVA, causal inference problems become more tractable since we will observe
either Yi(0) or Yi(1) for all i ∈ [N ] given any A ∈ AN . Then we can formally call Yi(0) and
Yi(1) potential outcomes, because are indeed potentially observed. In this thesis, we also call
the observed potential outcome factual and the unobserved potential outcome counterfactual,
respectively. Under SUTVA, the factual outcome is Yi = Yi(Ai) = AiYi(1) + (1− A)Yi(0),
while the counterfactual outcome is Yi(1−Ai) = (1−Ai)Yi(1) +AiYi(0).

Given the treatment variables A and outcome variables Y = (Yi : i ∈ [N ]), one may
consider estimating the individual treatment effect of each unit i as the difference τi =
Yi(1) − Yi(0). However, τi is never observed and non-estimable using A and Y , which is
referred to as the fundamental problem of causal inference (Holland, 1986) and motivates
researchers to start by looking at constant or average effects at the population level.

1.2 Randomization inference

Echoing Freedman (2006)’s quote “Experiments should be analyzed as experiments, not
as observational studies”, we stress that causal inference methods developed for analyzing
experimental and observational data have one fundamental difference in their setups. In
experimental studies, the treatment assignment mechanism (i.e. the joint distribution of
A = (A1, . . . , AN )) is known from the experimenter, but Ai, . . . , AN are often not sampled
independently. In observational studies, the treatment assignment mechanism is unknown so
we often assume that A1, . . . , AN are independent and identically distributed (i.i.d) samples
from an unknown distribution. When we analyze experimental data with a model, we should
be mindful of whether the model assumptions are satisfied or not. For example, the treatment
variable Ai can be correlated with the error variable in a linear regression model (Freedman,
2008a,b). Next, we review a model-free inference method called Fisher randomization test
(FRT). It highlights the fact that causal or statistical inference on experimental data can be
based on randomization and nothing more than randomization.

1.2.1 Fisher randomization test

Given A and Y from a treated-versus-control experiment, Fisher (1935) proposes to test the
sharp null hypothesis of constant treatment effect on all the units, that is

HFisher : Yi(1) = Yi(0) + ∆, ∀i ∈ [N ].
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Under SUTVA, we let Y (a) = (Yi(ai) : i ∈ [N ]). The key observation is that under Fisher’s
null HFisher, we can observe or impute all the potential outcomes

Y (a) = Y + ∆(a−A), ∀a ∈ AN .

Let Ω be the support of the assigment mechanism P(A). The experimenter randomizes A

without knowing any potential outcomes Y (a),a ∈ Ω, so the following assumption holds.

Assumption 4 (Randomization). A ⊥⊥ Y (a) for any a ∈ Ω.

Using nothing but the act of physical randomization in the experiment, the classical
Fisher randomization test (FRT) computes the p-value as

P (A,Y ) =
∑

a∗∈Ω
P(a∗)1{T (a∗,Y ) ≥ T (A,Y )},

where the function T : AN ×YN → R is a chosen test statistics, e.g., the Wilcoxon’s rank-sum
statistic T (A,Y ) = ∑N

i=1
∑N

j=i+1 1{Ai > Aj} · 1{Yi > Yj}. FRT compares the statistics
under the observed assignment A with the statistics under any a∗ ∈ Ω, which is essentially all
the assignments that can possibly happen in the experiment provided that we can rerun the
experiment for many times. If the observed assignment has a larger statistics than (1− α)%
of the assignments a∗ ∈ Ω, the p-value P (A,Y ) is smaller than α hence we reject the Fisher’s
null HFisher. It is well-known that FRT controls the type I error in finite samples such that
P{P (A,Y ) ≤ α} ≤ α, under SUTVA, Assumption 4 (Randomization)1 and HFisher.

1.2.2 Discussions

Different from Fisher’s idea, Neyman (1923)’s analysis of randomized experiments is through
testing the sample-average treatment effect (SATE), N−1∑N

i=1 Yi(1)−N−1∑N
i=1 Yi(0). Ney-

man’s test for the null hypothesis HNeyman : SATE = ∆, is based on the asymptotic analysis
of the SATE estimator,

τ̂Neyman =
∑N

i=1AiYi∑N
i=1Ai

−
∑N

j=1(1−Aj)Yj∑N
j=1(1−Aj)

,

under the distribution P(A) and the assumption that Yi(0), Yi(1), i ∈ [N ] are i.i.d sam-
ples from an unknown bivariate distribution. The central limit theorem ensures that
τ̂Neyman

d−→ N (SATE,VNeyman). Using τ̂Neyman and a sample-variance estimator V̂Neyman,
1By the independence in the randomization assumption, we can marginalize out the potential outcomes in

P{P (A, Y ) ≤ α | Y (a), ∀a ∈ Ω} ≤ α and obtain the unconditional inequity P{P (A, Y ) ≤ α} ≤ α.
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we can implement a Student’s t-test for Neyman’s null HNeyman. We next give an up-to-date
discussion of the pros and cons of FRT (in comparison to Neyman’s test).

FRT is distribution-free, i.e., nonparametric. Neither does it make any assumption on
the potential outcomes Yi(0) and Yi(1), ∀i ∈ [N ], nor does it assume the individuals are
drawn from an imaginary distribution. FRT’s validity is not based on a large-sample normal
approximation as in Neyman’s test, so FRT is applicable even when τ̂Neyman fails to be
asymptotically normal. FRT is flexible in the use of test statistics. For example, when
we have covariates information in a study, we can let the statistics be a parameter from a
(semi-)parametric model. When there are outliers in the data, we can use the rank statistics
rather than the difference-in-means statistics. Statistics that can discriminate between the
observed assignment and the other assignments will potentially improve the test power.

FRT can be inverted to construct a finite-sample valid confidence interval of a treatment
effect if the effect is constant and additive; see Section 2.9, Imbens and Rubin (2015, Chapters
5.7) or Ernst (2004, Section 3.4) for more details. Assuming the effect parameter is constant
and additive is often part of the assumption of a linear parametric model. The confidence
interval from FRT is valid under a weaker assumption by only requiring the treatment effect
to be constant and additive. Even compared with a semiparametric partially linear model, the
validity of FRT is finite-sample hence more attractive to practitioners. One of our simulations
in the next chapter demonstrates this advantage of our proposed conditional randomization
tests in comparison to linear mixed-effects models; see Section 2.5.2 for more details.

FRT is often impossible to be implemented exactly due to the large number of assignments
in Ω. In practice, we often compute the p-value using a Monte Carlo approximation with a
large number of assignments randomly drawn from P(A). This idea is first proposed by Dwass
(1957). FRT loses its exactness when using Monte Carlo, but it is often close enough to be
considered as an exact test (Lunneborg, 2000). Jockel (1986) derives finite-sample bounds
for the power of the Monte Carlo version of FRT, which is useful to determine the required
simulation effort for approximating the original FRT. He also shows a lower bound for the
asymptotic efficiency loss in a FRT as a function of the number of random assignments,
which indicates that the efficiency loss decreases as the number of assignments increases.

The subtle difference between Fisher’s and Neyman’s nulls have confused both theoretical
and practical statisticians. In theory, Fisher’s null implies Neyman’s null. But in simulations,
Ding (2017) demonstrates an intriguing paradox that a rejection of Neyman’s null does not
imply a rejection of Fisher’s null in many realistic situations. This paradox is explained by
Loh et al. (2017) through the fact that Neyman’s test is anti-conservative (i.e. the rejection
probability of a α-level Neyman’s test is larger than α) under Fisher’s null in finite samples.
Thus, the paradox does not exist in large samples. By some careful constructions (e.g.
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prepivoting) of the test statistics, Cohen and Fogarty (2021); Fogarty (2021); Zhao and Ding
(2021) show that FRT is asymptotically valid for testing Neyman’s null, and Caughey et al.
(2021) show that FRT can be applied to test null hypotheses of bounded treatment effects
and quantiles of individual treatment effects. These recent developments encourage broader
applications of FRTs beyond the scope of constant treatment effects.

1.3 Treatment effects estimation

We next review the methods for estimating (conditional) average treatment effects from
observational data. Treatment effects are defined under the distribution of potential outcomes.
We start by introducing the assumptions for identifying treatment effects, i.e., expressing the
treatment effects as functionals of some observable distributions.

Besides from the observed vectors A and Y mentioned above, we now assume that we also
observe a set of covariates Xi = (Xi1, . . . , Xid) ∈ X for every unit i. Let X = (Xi : i = [N ]).
Let O = (X,A,Y ) = {Oi = (Xi, Ai, Yi)}Ni=1 be our observed data. We assume that the
units are random samples from an infinite population called super-population. In order words,
(Xi, Yi(0), Yi(1)), i ∈ [N ], are i.i.d samples from an unknown distribution P[X,Y (0), Y (1)].

The average treatment effect (ATE) at the super-population level is defined as

ATE = E[Y (1)− Y (0)]. (1.1)

The conditional average treatment effect (CATE), also known as individualized treatment
effects, is defined as

CATE(X) = E[Y (1)− Y (0) | X], (1.2)

which individualizes the treatment effect by conditioning on a unit’s covariates.

Both ATE and CATE are defined under P[X,Y (0), Y (1)], which is not our observed data
distribution. A general treatment assignment mechanism in observational studies is given by

P(A |X,Y (0),Y (1)).

One might wonder why A depends on the partially observed Y (0) and Y (1). The answer
is that there may exist unobserved covariates that are confounders of A, Y (0) and Y (1)
but not included in X. We often assume that there is no unmeasured confounder, i.e.,
the counterfactual outcomes are strongly ignorable (Rosenbaum and Rubin, 1983) such
P(A |X,Y (0),Y (1)) = P(A |X). In general, we make the following assumption.
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Assumption 5 (Unconfoundedness). A ⊥⊥ Y (a) |X for any a ∈ AN .

The unconfoundedness assumption is untestable. By contrast, randomized experiments
have a known assignment mechanism P(A) which satisfies Assumption 4 automatically.
This is one of the main reasons why randomized experiments remain the gold standard
of causal inference. In observational studies, A is randomized by an unknown conditional
distribution. Researchers may concern that the unconfoundedness assumption fails to hold in
practice, especially when a known confounder of Y (0), Y (1) and A is not included in X.
For example, age is an important confounder that determines both the illness (Y (0) and
Y (1)) of individuals infected with covid and the assignment of covid vaccines (A). Then the
assumption fails to hold if the age variable is not included in X.

In this thesis, we mainly study causal inference in either experimental studies or ob-
servational studies under the unconfoundedness assumption. Here we refer to two classes
of methods that can deal with unmeasured confounding under various assumptions. First,
sensitivity analysis methods (Cornfield et al., 1959; Imbens, 2003; Rosenbaum, 1987; Vander-
Weele and Ding, 2017) can validate how robust a treatment effect estimate is by violating
the assumption under some postulated models of unobserved confounders. The second class
of methods attempts to remove the effects from unobserved confounders with the help of
some additional variables, e.g., instrumental variable (Baiocchi et al., 2014), synthetic control
(Abadie et al., 2010) and negative controls (Lipsitch et al., 2010). A more unifying framework
called proximal causal inference is proposed by Tchetgen et al. (2020) recently.

To estimate the expected outcome in ATE or CATE, we also need the following assumption.

Assumption 6 (Positivity). P(A = a | X = x) ∈ (0, 1),∀a ∈ A and x ∈ X .

Under Assumptions 3 (SUTVA), 5 (Unconfoundedness) and 6 (Positivity), we can write

E[Y (a) | X = x] = E[Y (a) | X = x,A = a] = E[Y | X = x,A = a], and (1.3)

E[Y (a)] = E
[
E(Y | X = x,A = a)

]
. (1.4)

The positivity assumption ensures that the expectation E[Y (a) | X = x,A = a] is well
defined and the distribution of X | A = a has the same support for all a ∈ A. Finally, we
assume that Oi = (Xi, Ai, Yi), i ∈ [N ], are i.i.d samples from an observed data distribution
P(O) = P(Y | X,A)P(A | X)P(X), where P(Y | X,A) is connected with the data distribution
P[X,Y (0), Y (1)] above by Y = AY (1) + (1−A)Y (0) under Assumption 3 (SUTVA).
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1.3.1 Average treatment effect

Outcome regression (OR) estimator. Following (1.4), we can write the ATE in (1.1) as

ATE = E [µ1(X)− µ0(X)] , (1.5)

where µa(X) = E(Y | X = x,A = a), a = 0, 1. Suppose that we estimate µa(X) by a
regression model µ̂a(·) fitted to the data {(Xi, Yi) : Ai = a}. The outcome regression (OR)
estimator of ATE is given by

τ̂OR = 1
N

N∑
i=1

µ̂1(Xi)−
1
N

N∑
j=1

µ̂0(Xj).

Inverse probability weighted (IPW) estimator. We define the propensity score as the
probability e(X) = P(A = 1 | X) = E(A | X). We can write E [Y (1)] as

E
[
Y (1)
e(X)E(A | X)

]
= E

[
Y (1)
e(X)E(A | Y (1), X)

]
= E

[
E
(
AY (1)
e(X) | Y (1), X

)]
= E

[
AY

e(X)

]
.

The first equality is achieved by Assumption 5 (Unconfoundedness). Since A is a Bernoulli
random variable conditional on X, A2 = A and A(1− A) = 0. The last equality is due to
the fact that AY (1) = A2Y (1) + A(1 − A)Y (0) = A[AY (1) + (1 − A)Y (0)] = AY under
Assumption 3 (SUTVA). Then, it follows from the last equation that

ATE = E
[
AY

e(X) −
(1−A)Y
1− e(X)

]
. (1.6)

Suppose we estimate e(·) by a logistic regression model ê(·) fitted to the data {(Xi, Ai)}Ni=1.
The inverse probability weighting (IPW) estimator (Horvitz and Thompson, 1952) is given by

τ̂IPW = 1
N

N∑
i=1

Ai

ê(Xi)
Yi −

1
N

N∑
j=1

1−Aj

1− ê(Xj)Yj .

Augmented inverse probability-weighted (AIPW) estimator. Robins et al. (1994)
propose the well-known AIPW estimator which combines the outcome regression and propen-
sity score models to estimate ATE. We next introduce AIPW and its advantages in the
language of semiparametric theory (Kennedy, 2016; Tsiatis, 2006).

Suppose that we view ATE as a functional ψ : P → R, where P is a general class of
distributions, i.e., the set of all possible observed data distributions. Suppose that any P ∈ P
has a density function pO. We define a path through P as one-dimensional submodel that
passes through P at ϵ = 0 in the direction of a zero-mean function s s.t. ∥s∥2 < C and
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ϵ < 1/C for some constant C > 0. The submodel Pϵ has a density pO,ϵ(o) = pO(o)[1 + ϵs(o)]
for any o ∈ O = X × A × Y. The tangent space is the set of mean-zero functions s for
any paths through P. For nonparametric models, the tangent space is the Hilbert space of
zero-mean functions. Suppose that the ATE functional ψ(P) is path-wise differentiable:

ψ̇P(s) := d

dϵ
ψ(Pϵ)

∣∣∣
ϵ=0

=
∫

[ϕP(o)− ψ(P)] s(o)pO(o)do, (1.7)

where s(o) = d
dϵ log pO,ϵ(o)

∣∣
ϵ=0 and ϕP(o)− ψ(P) is the unique riesz representer of ψ̇P(·). In

semiparametric theory, we call ϕP(o) the uncentered efficient influence function (EIF) of
ψ(P). We obtain ϕP by taking a derivative of ψ(Pϵ) with respect to ϵ and rewriting it as an
inner product with s(o); see Levy (2019, Section 4.2) for the detailed derivation. We call
η = (µ0, µ1, e) the nuisance parameter (model) and η̂ = (µ̂0, µ̂1, ê) the nuisance estimator.
The uncentered EIF ϕP(O) depends on P through η so we denote it by

ϕη(O) = A

e(X) [Y − µ1(X)] + µ1(X)− 1−A
1− e(X) [Y − µ0(X)]− µ0(X),

which satisfies that
ATE = ψ(P) = Pϕη := E [ϕη(O)] . (1.8)

Let PN be the empirical measure of the samples Oi, . . . , ON , and GN =
√
N(PN − P). The

AIPW estimator is given by

τ̂AIPW = ψ̂(PN ) = PNϕη̂ = 1
N

N∑
i=1

ϕη̂(Oi).

Consider the following decomposition,

√
N
[
ψ̂(PN )− ψ(P)

]
= GN{ϕη̂ − ϕη}+ GNϕη +

√
N (Pϕη̂ − Pϕη) .

The first term GN{ϕη̂ − ϕη} = oP(1) if η and η̂ are in a Donsker class of functions (Van der
Vaart, 2000, Lemma 19.24) and η̂ is a consistent estimator of η. We can avoid the Donsker
assumption by using separate samples for constructing η̂ and the empirical measure PN .
Sample splitting opens the door for complex machine learning models to estimate ATE. The
asymptotic efficiency loss from sample splitting can be remedied by cross-fitting (Chernozhukov
et al., 2018). The second term GNϕη = oP(1) by the central limit theorem. We want the bias
Pϕη̂−Pϕη = oP(1/

√
N) so that the third term also equals to oP(1). Then ψ̂(PN ) is consistent

and asymptotically normal (CAN) estimator of ψ(P) such that

√
N [τ̂AIPW − ψ(P)] d−→ N (0,Var[ϕη]) . (1.9)



10 Introduction

For obtaining a CAN estimator, the squared bias of AIPW enjoys a multiplicative property
in its upper bound,

(Pϕη̂ − Pϕη)2 ≤ CE
{

[ê(X)− e(X)]2
}
· max

a∈{0,1}
E
{

[µ̂a(X)− µa(X)]2
}
, (1.10)

for some universal constant C > 0. The upper bound implies that Pϕη̂ − Pϕη = oP(1/
√
N)

even when (µ̂0, µ̂1) and ê converge at slower nonparametric rates. This is not the case for
the OR and IPW estimators. By applying the same decomposition, we can see that their
squared bias is upper bounded by the mean squared error of either (µ̂0, µ̂1) or ê. The upper
bound (1.10) also shows that the bias of AIPW is 0 as long as ê = e or µ̂a = µa for a = 0, 1.
This result is well known as the doubly robust property of AIPW in the literature.

AIPW is also known as semiparametric efficient, which means that it is more efficient than
any CAN estimators. This property of AIPW is due to the fact that the uncentered EIF ϕη in
(1.9) has a smaller variance than any other uncentered influence function. Roughly speaking,
deriving the EIF in (1.7) is similar to deriving the score function for a maximum likelihood
estimator in a parametric model. However, the nuisance parameter η in a semiparametric
model is infinite-dimensional. So we can no longer define the score function analogously.
From parametric models to semiparametric models, influence functions play a crucial role in
generalizing the asymptotic efficiency theory, e.g., the Cramer-Rao lower bound. We refer
the readers to a more formal discussion about the semiparametric efficiency theory in (Bickel
et al., 1993; Tsiatis, 2006; Van der Vaart, 2000).

In summary, the AIPW estimator is doubly robust and semiparametric efficient. It is a
very influential result in causal inference and related fields. It has been found that there
are various ways to obtain a doubly robust estimator (Bang and Robins, 2005; Cheng et al.,
2020a; Chernozhukov et al., 2018; Robins et al., 2007; Van Der Laan and Rubin, 2006; Zhao
and Percival, 2017). The idea of deriving doubly robust estimators based on EIFs has been
extended to estimate other important causal parameters such as continuous treatment effects
(Kennedy et al., 2017), time-varying treatment rules (Zhang et al., 2013) and so on.

1.3.2 Conditional average treatment effect

Following (1.3), we can write the CATE function in (1.2) as

τ(X) := CATE(X) = E[Y | X,A = 1]− E[Y | X,A = 0]. (1.11)

The CATE function is infinite-dimensional and not pathwise-differentiable. The one dimen-
sional ATE parameter can be viewed a function of the density value pO(o) for any o ∈ O,



1.3 Treatment effects estimation 11

assuming that pO(o) > 0, ∀o ∈ O. Any observation Oi ∈ O provides information about
the ATE parameter. As a comparison, only the observations nearby the point x provides
information about CATE(x).

Like any localized regression model (e.g. k-nearest neighbors (Altman, 1992), or Nadaraya-
Watson (Nadaraya, 1964; Watson, 1964)), conditioning on (nearby) observations not exactly
at x biases the CATE estimate at x. Similarly, the size of bias depends on the smoothness
of the CATE function τ . In nonparametric regression, if we know the conditional mean
f(x) = E[Y | X = x] is a β-Hölder continuous function (Tsybakov, 2008, Definition 1.2) (β is
known), it is possible to construct a valid confidence interval for f(x) at a particular x using
the minimax optimal root mean squared error of the estimator f̂ (Györfi et al., 2002; Low,
1997). The validity we discuss here is different from the honesty of confidence regions or balls
proposed by Li (1989), which intends to cover the error

√
N∥f̂ − f∥2 with high probability.

If only a lower bound β0 is known for the true β, constructing a valid confidence interval
for f(x) at a particular x turns out to be impossible (Genovese and Wasserman, 2008; Low,
1997). However, achieving nearly marginal coverage guarantee for f(x) at most of the points
x ∈ X is possible if β ≤ 2β0 (Cai et al., 2014; Hall and Horowitz, 2013).

These fundamental results in nonparametric regression also apply to CATE estimation.
In what follows, we will mainly discuss how to achieve a better rate of convergence in CATE
estimation. The key observation is that the CATE function τ is often smoother than µ0 and
µ1 because µ0 and µ1 are two similar functions and τ is given by their difference in (1.11).
Leveraging the smoothness of τ has led to some recent progress in CATE estimation.

The identification formulas for ATE above prepare us to estimate CATEs. In (1.5),
(1.6) or (1.8), ATE = E

[
E[fη(O) | X]

]
for some function fη(O) depending on (part of) the

nuisance parameter η = (µ0, µ1, e). Since ATE = E [τ(X)] and τ(X) = E[fη(O) | X], a CATE
estimator can be given by regressing fη̂(Oi) on Xi for some unit i ∈ [N ].

We now redefine the nuisance parameter η to formulate a more general CATE estimation
framework. Let τ̂1 be an estimator of

τ1(X) = E{Y − µ0(X) | X,A = 1},

obtained by regressing Yi− µ̂0(X) onto Xi for i ∈ [N ] with Ai = 1. Let τ̂0 be an estimator of

τ0(X) = E{µ1(X)− Yi | X,A = 0},

obtained by regressing µ̂1(X)− Yi onto Xi for i ∈ [N ] with Ai = 0. Let η = (µ0, µ1, τ0, τ1, e)
and η̂ = (µ̂0, µ̂1, τ̂0, τ̂1, ê). A general workflow to estimate τ consists of three steps:
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Table 1.1 A summary of CATE learners: the CATE estimator τ̂ is given by the minimizer h∗

of the loss function (1.12) defined by a pseudo-outcome fη̂(O) and a regressor Rη̂,h(O).

Method Sample-
splitting Pseudo-outcome fη̂(O) Regressor Rη̂,h(O)

T-learner No µ̂1(X)− µ̂0(X) from (1.5) h(X)

X-learner No ê(X)τ̂0(X) + [1− ê(X)]τ̂1(X) h(X)

IPW-learner Yes AY/ê(X)− (1−A)Y/[1− ê(X)] from (1.6) h(X)

DR-learner Yes ϕη̂(O) from (1.8) h(X)

R-learner Yes Y − µ̂0(X) [A− ê(X)]h(X)

(i) Split the samples [N ] into M1 and M2.2

(ii) Estimate η by η̂ = (µ̂0, µ̂1, τ̂0, τ̂1, ê) on the subsamples M1;

(iii) Construct the estimator τ̂ on the subsamples M2 as the minimizer

ĥ ∈ arg min
h

1
|M2|

∑
m∈M2

[fη̂(Om)−Rη̂,h(Om)]2 . (1.12)

In terms of the pseudo-outcome fη̂ and regressor Rη̂,h in (1.12), Table 1.1 summarizes the
CATE estimators (i.e. learners) in the literature, which includes the T-learner (Künzel et al.,
2019), X-learner (Künzel et al., 2019), IPW-learner (Kennedy, 2020; Knaus et al., 2021),
DR-learner (Kennedy, 2020) and R-learner (Nie and Wager, 2021).

In the T- and X-learners, Rη̂,h(O) and fη̂(O) only depend on X, then the step of pseudo-
outcome regression in (1.12) simply gives τ̂ = h∗ = fη̂. In the other learners, Rη̂,h and fη̂ also
depend on A and Y so sample-splitting is required to prevent overfitting in pseudo-outcome
regression. Fortunately, the efficiency loss from sample splitting can be remedied by cross-
fitting (Chernozhukov et al., 2018): for every i ∈ [N ], generate the pseudo-outcome fη̂−i(Oi)
using the nuisance estimator η̂−i fitted to the samples [N ] \ {i}, then let pseudo-outcome
regression base on the outcomes fη̂−i(Oi), i ∈ [N ]. More implementation details of the learners
can be found in the review article (Jacob, 2021).

Suppose that τ (i.e. τ0 and τ1) is γ-Hölder continuous, µ0 and µ1 are β-Hölder continuous,
e is λ-Hölder continuous. If τ is smoother than µ0, µ1 and e (i.e. γ > β, λ), the oracle learner
for CATE is given by regressing Yi(1)− Yi(0) onto Xi for all i ∈ [N ], provided that Yi(0) and
Yi(1),∀i ∈ [N ], are known. The oracle learner estimates τ with mean squared error O(N−γ).
In Table 1.1, each pseudo-outcome serves as a proxy of the unobserved Yi(1)−Yi(0) so inherit
the error from η̂. Perhaps surprisingly, even when γ > β, λ, some learners can still achieve

2The T- and X-learners in Table 1.1 do not require sample-splitting. We let M1 = M2 = [N ].
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the oracle error under some assumptions on β, λ and γ. For example, we know from Table 1.1
that the DR-learner’s pseudo-outcome is given by the uncentered EIF ϕη̂(O) in (1.8) which
depends on µ̂0, µ̂1 and ê. The learner needs to further split the samples in constructing µ̂0, µ̂1

and ê (Kennedy, 2020). However, by cross-fitting and ignoring the constant difference from
the further split, it estimates τ with mean squared error O(N−βN−λ +N−γ). If β + λ > γ,
it achieves the oracle error O(N−γ). Another example is the R-Learner (Nie and Wager,
2021), a nonparametric kernel regression extension of Robinson’s transformation (Robinson,
1988). It can also achieve the oracle error O(N−γ) if β, λ > γ/2.

To conclude, we note that besides leveraging the smoothness of CATEs, there is growing
interest in developing statistical and machine learning models to estimate heterogeneous
treatment effects, mostly CATEs. We summary some notable advances in the literature,
which includes lasso (Imai and Ratkovic, 2013), boosting (Powers et al., 2018), regression
trees (Athey and Imbens, 2016; Hahn et al., 2020; Hill, 2011; Su et al., 2009) random forests
(Wager and Athey, 2018), Gaussian processes (Alaa and Schaar, 2018; Alaa and van der
Schaar, 2017) and neural networks (Johansson et al., 2016; Kallus, 2020; Yao et al., 2018).
Using these models can further improve the finite-sample performance of CATE learners.

1.4 Summary of chapters

The remainder of this thesis consists of four chapters, contributing to the above-discussed
research topics, Fisher randomization tests (FRTs) (Section 1.2) and conditional average
treatment effects (CATEs) (Section 1.3), respectively.

With the growing application of causal inference, randomized experiments are increasingly
carried out with a complex design on a domain such as a period of time or a social network.
These designs are often motivated by estimating a special kind of causal effect or improving
the trial flexibility. For example, a network design tests the spill-over effect of a social
campaign; a stepped-wedge design allows participants to start the treatment at different time
points of the study. Despite the good incentives, they give rise to two general statistical
problems in practice. First, they may violate Assumption 1 (No interference) in the potential
outcomes framework and render standard causal inference methods based on Assumption 3
(SUTVA) unusable. Second, the designs may scatter the effect evidence over the domain,
which requires tools to collect the evidence and combine them effectively. In Chapter 2, we
propose a theory of multiple conditional randomization tests (CRTs) that addresses the two
challenges simultaneously. CRTs preserve the advantages of the classical FRTs discussed in
Section 1.2.2. CRTs reinforce the versatility of FRTs by introducing a conditioning mechanism,
which allows researchers to test granular causal hypotheses in a complex experiment, e.g.,
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if a treatment is only effective at a particular time point, or if a social network campaign
only affects some users but not their connected friends. Further, our theory establishes the
conditions for constructing multiple jointly valid CRTs in any arbitrary complex design. This
leads to new practical methods which can combine statistical evidence over the domain to
test the global effect of interest. The advantages of our method (e.g. better power and weaker
model assumption) are validated extensively through simulations.

As discussed at the beginning of Section 1.3.2, CATE estimation is essentially a non-
parametric regression problem, thereby overcoming the curse of dimensionality is crucial for
the performance of CATE learners. Linear dimensionality reduction methods (e.g. PCA)
can transform the observed covariates into a low dimensional representation. But the learnt
representation may fail to preserve the predictive information of the outcome and treat-
ment variables if the linear model is misspecified. On the other hand, applying nonlinear
dimensionality reduction methods in machine learning (e.g. deep autoencoder) may lead
to a non-identifiable and inconsistent representation. In Chapter 3, we resolve the non-
identifiability and inconsistency issue in a partially randomized energy-based model (EBM),
which is essentially an exponential family model parameterized by a deep neural network.
Theoretically, we show that the representation in our model is partially identifiable up to some
universal constants. We also show that by using our noise contrastive training strategy, the
learnt representation will converge consistently with an increasing sample size. Experiments
on simulated and real data confirm the convergence, as well as show that CATE learners
based on our representations perform better than on the raw covariates or the representations
obtained from other dimensionality reduction methods.

In observational studies, treatment assignment mechanisms often create a low overlap
region between the treated and control populations. Estimating CATEs in the low overlap
region is particularly challenging. A popular machine learning solution is to find a matching
representation of the covariates by minimizing a distributional distance between the two
populations. This approach is inevitably biased because the matching representation discards
the information predictive of the treatment variable, which is also the key information to
predict the outcome variable. In Chapter 4, we take a different approach to measure the
population mismatch. Our approach is based on the posterior variance of two Bayesian
outcome regression models µ̂0 and µ̂1. Intuitively, µ̂1 has a large posterior variance in the
region containing many control units, i.e., where µ̂1 is fitted to very few treated units, while
µ̂0 has a large posterior variance in the region containing many treated units, i.e., where
µ̂0 is fitted to very few control units. We learn an adaptive matching representation of the
covariates by minimizing the posterior variances of µ̂0 and µ̂1 in predicting the counterfactual
outcomes. The idea of our method is orthogonal to what we discuss in Section 1.3.2 about
leveraging the smoothness of CATEs. We propose a PAC-Bayes generalization bound to show
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that our method is effective and consistent in estimating CATEs. Experiments demonstrate
a superior performance of our method compared with a variety of baseline methods.

Despite good accuracy, CATE estimates from black-box models are often non-interpretable
and untrustworthy. To combat this challenge, Chapter 5 proposes a method that can convert
any black-box CATE estimates into interpretable subgroups. The method starts by converting
the point effect estimates into confidence intervals of CATEs, using a distribution-free
technique called conformal prediction. Then a proposed recursive partitioning procedure is
applied to divide the covariate space into subsets by minimizing the interval overlap between
units across subsets. In this way, our method can potentially identify subgroups of units with
significantly different effect sizes. Compared with CATE estimates from black-box models,
the subgroups are much more interpretable in terms of the threshold values that partition
the covariate space. Experiments on (semi-)synthetic datasets show that our method can
identify subgroups with higher effect homogeneity within subgroups and higher heterogeneity
across subgroups compared with various subgroup analysis methods.

1.5 Notation

Throughout this thesis, we always assume we have a study of N units (or individuals). In
Chapter 2, we denote the structural treatment variables in complex experimental designs by
Zi, . . . , ZN to distinguish with the binary treatment variables A1, . . . , AN in the standard
treated-versus-control studies. In Chapters 3 to 5, we assume every unit i has two potential
outcomes Yi(0) and Yi(1), a set of covariates Xi ∈ X , a treatment variable Ai ∈ A = {0, 1}
and an observed outcome Yi ∈ Y. The assumptions we make to CATEs from observational
data are 3 (SUTVA), 5 (Unconfoundedness) and 6 (Positivity). We combine these assumptions
into one below and will refer to this assumption when it is required.

Assumption 7 (SUTVA, Unconfoundedness and Positivity). For any i ∈ [N ] and a ∈ {0, 1},
Yi = Yi(a) if Ai = a. For any i ∈ [N ], the distribution of Xi, Ai, Yi(0) and Yi(1) satisfies that
Yi(0), Yi(1) ⊥⊥ Ai|Xi and P(Ai = a|Xi = x) ∈ (0, 1),∀x ∈ X and a ∈ {0, 1}.





Chapter 2

Multiple conditional randomization
tests

We propose a general framework for (multiple) conditional randomization tests that incorpo-
rate several important ideas in the recent literature. We establish a general sufficient condition
on the construction of multiple conditional randomization tests under which their p-values
are “independent”, in the sense that their joint distribution stochastically dominates the
product of uniform distributions under the null. The versatility of our framework is further
illustrated by a method developed for testing lagged treatment effects in stepped-wedge
randomized trials. A weighted Z-score test is further proposed to maximize the power when
the tests are combined. We compare the efficiency and robustness of our methods with
the commonly used mixed-effects models using simulated experiments and real trial data.
Conceptually, we argue that randomization should be understood as the mode of inference
precisely based on randomization. We show that under a change of perspective, many existing
statistical methods, including permutation tests for (conditional) independence and conformal
prediction, are special cases of our general conditional randomization test.

2.1 Introduction

Randomization is one of the oldest and most important topics in statistics and experimental
designs (Fisher, 1926, 1935). Randomization tests were proposed by Fisher (1935, Section
21) to substitute the t-test when normality is not true and to restore randomization as
“the physical basis of the validity of the test”. This idea was immediately extended by
Pitman (1937), Welch (1937), Wilcoxon (1945), and Kempthorne (1952), among many others.
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Randomization tests are appealing because they are exact and do not rely on distributional
assumptions. Due to this reason, they are often advocated with rank-based statistics under
the name of nonparametric tests (Lehmann, 1975). This has led to a wide held belief that
randomization tests are synonymous with permutation tests, which emphasize instead on
the algorithm rather than the basis of inference. The role of physical randomization has
also become obscure in practice. For example, at the time of writing, randomization tests
are being described on the Wikipedia page on “Resampling (statistics)” with the bootstrap,
subsampling, and cross-validation procedures. In the Cambridge dictionary of statistics
(Everitt and Skrondal, 2002), randomization tests are defined as “procedures for determining
statistical significance directly from data without recourse to some particular sampling
distribution” without referring to the physical act of randomization.

More recently, there has been a rejuvenated interest in randomization tests in several
areas of statistics, including testing associations in genomics (Bates et al., 2020; Efron et al.,
2001), testing conditional independence (Berrett et al., 2020; Candès et al., 2018), conformal
inference for machine learning methods (Lei et al., 2013; Tibshirani et al., 2019; Vovk et al.,
2005), analysis of complex experimental designs (Ji et al., 2017; Morgan and Rubin, 2012),
evidence factors for observational studies (Karmakar et al., 2019; Rosenbaum, 2010, 2017),
and causal inference with interference (Athey et al., 2018; Basse et al., 2019). Because
randomization tests are distribution-free, they offer an easy way out of the difficulties (or even
impossibilities) in theoretically deriving the sampling distribution, a frequent task in modern
statistical applications. One of the main goals of this chapter is to provide a unified framework
for (conditional) randomization tests and try to push some existing ideas to their natural
boundaries. This framework should subsume several general ideas and concepts that have
appeared in the literature: explicit conditioning on the counterfactual or potential outcomes
of the experiment (Rosenbaum, 1984; Rubin, 1980a); algebraic structure of permutation tests
(Lehmann and Romano, 2006; Rosenbaum, 2017; Southworth et al., 2009); randomization
model versus population model (Ernst, 2004; Lehmann, 1975); post-experiment conditioning
and randomization (Basse et al., 2019; Bates et al., 2020; Hennessy et al., 2016); using
exchangeability to obtain distribution-free predictive intervals (Vovk et al., 2005).

Some of these ideas were introduced recently, but many were re-introduced from the
earlier literature. For example, counterfactual outcomes were used in one of the earliest works
on randomization tests by Welch (1937). Conditioning is not a new technique in statistical
inference (e.g. Fisher’s exact test for 2× 2 tables (Fisher, 1925)), nor is a randomized test
(e.g., the Neyman-Pearson lemma for discrete distributions, where decision at the critical
value needs to be randomized to make the test exact). However, we believe that these ideas
have not been fully explored in the context of randomization inference, perhaps partly due to
the fact that they originated from some very different applications.



2.1 Introduction 19

Randomization inference should be precisely understood as its name suggests: it is
a mode of statistical inference that is based on randomization and nothing more than
randomization. To make the nature of randomization clear, we argue that it is helpful to
consider counterfactual versions of the data, even if they cannot be immediately conceptualized
for the problem at hand. The introduction of potential/counterfactual outcomes allows us to
trichotomize the randomness in data as

(i) Randomness in nature that is involved in all the counterfactual variables;

(ii) Randomness that is introduced by the experimenter through physical acts (e.g., drawing
balls from an urn or using a pseudo-random number generator on a computer);

(iii) Randomness that is optionally introduced by the analyst.

Using this trichotomy, a randomization test can be understood as a null hypothesis significance
test that conditions on the potential outcomes and obtains the sampling distribution (often
called the randomization distribution) by random variations from the second and third sources.
In other words, a randomization test is based solely on the randomness introduced by humans
and thus provides a coherent logic of scientific induction as envisioned by Fisher (1956).

The above trichotomy is hardly new, nor is the definition of randomization distribution.
As mentioned above, conditioning on the potential outcomes is almost always implicit.
The difference between randomization before and after the experiment has also been well
recognized by Basu (1980). However, these conceptual and methodological ideas often only
appear as neat tricks that solve some specific problems or witty points in a philosophical
debate about statistics. We argue that if these ideas are put together in a single rigorous
framework, a great deal can be learned: the structure of randomization tests becomes clearer,
one can understand the strengths and limitations of randomization tests much better, and
some confusions and misunderstandings in the literature can be settled.

As an example, a common belief is that randomization tests rely on certain kinds of group
structure or exchangeability (Lehmann and Romano, 2006; Rosenbaum, 2017; Southworth
et al., 2009), which is perhaps why some texts treat randomization tests and permutation
tests as synonyms. We will show that such algebraic structures are not necessary. This point
becomes almost immediately clear once randomization inference is understood as the mode
of inference based on randomization. That being said, in conditional randomization tests
some invariance properties are needed to ensure that conditioning is well defined. This point
can be easily overlooked from an algorithmic point of view and has led to mistakes.

Another frequent point of confusion is that randomization tests are applicable in two
different models, one involving physical randomization and one involving exchangeability.
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The former is usually referred to as the randomization model and the latter is referred to as
the population model (Ernst, 2004; Lehmann, 1975). Although such a classification may be
useful for pedagogic purposes, we argue that these two models are “two sides of the same
coin”. A randomization test not only tests the null hypothesis (relation between the potential
outcomes), but also tests the assumption that the treatment is independent of the potential
outcomes (Rubin, 1980a). The two models are thus unified: the first hypothesis is satisfied by
definition in the population model (so independence is tested), while the second hypothesis
is automatically satisfied by the physical act of randomization in the randomization model
(so the null hypothesis on the potential outcomes is tested).

Our main theoretical contribution is a very general sufficient condition in Theorem 2 below
that ensures the p-values from multiple conditional randomization tests are “independent”,
in the sense that their joint distribution stochastically dominates the multivariate uniform
distribution under the null. This is important because not only is the type I error of each test
under control, the individual tests can also be combined by standard methods such as Fisher’s
combination method to test the global null. Our sufficient condition generalizes the knit
product structure described by Rosenbaum (2017), which requires that the randomization
tests are constructed in a sequential manner. Our condition places fewer constraints on the
construction of randomization tests and allows common techniques like sample splitting.

We briefly introduce some notations used in this chapter. We use calligraphic letters
for other sets, boldface letters for vectors, upper-case letters for random quantities, and
lower-case letters for fixed quantities. We use 1l to denote a length l vector of ones and 0l a
length l vector of zeros. The subscript l is often omitted if the vector’s dimension is clear
from the context. We use a single integer in a pair of square brackets as a shorthand notation
for the indexing set from 1: [N ] = {1, . . . , N}. We use set-valued subscript to denote a
sub-vector; for example, Y{1,3,5} = (Y1, Y3, Y5).

The rest of this chapter is structured as follows. Section 2.2 builds a general framework
for constructing a conditional randomization test (CRT) by pooling ideas scattered in the
literature. Section 2.3 introduces and proves the main theorem of this chapter that gives
a sufficient condition for “independent” CRTs. Because the theory of CRTs in Sections 2.2
and 2.3 is quite abstract, some simple practical methods and techniques are provided in
Sections 2.2.5 and 2.3.3. Section 2.4 develops a multiple-CRTs-based method and proposes an
efficient p-value combination method for testing lagged effects in stepped-wedge randomized
controlled trials. Section 2.5 validates the robustness and improved power of our methods
by a set of numerical experiments and real trial data. Section 2.6 illustrates our theory by
discussing a variety of randomization tests or related methods in the literature. Section 2.7
concludes the chapter with a summary discussion.
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2.2 A single conditional randomization test

We start with a general construction of randomization tests for the existence of treatment
effect in randomized experiments. This requires us to adopt a causal inference perspective
and use the potential outcomes language (Neyman, 1923; Rubin, 1974). Many randomization
tests in the literature do not explicitly involve potential outcomes, but we argue in Section 2.6
that they can be viewed as special cases of our general construction.

2.2.1 Potential outcomes framework

Consider an experiment on N units in which a treatment variable Z ∈ Z is randomized. We
use boldface Z to emphasize that the treatment Z is usually multivariate. Most experiments
assume that Z = (Z1, . . . , ZN ) collects a common attribute of the experimental units (e.g.,
whether a drug is administered). However, the dimension and nature of the treatment variable
Z is not very important.1 All that is required by the general theory below is that

(i) Z is randomized in an exogenous way by the experimenter (e.g., by tossing coins or
using a random number generator);

(ii) The distribution of Z is known (this is often called the treatment assignment mecha-
nism);

(iii) One can reasonably define or conceptualize the potential outcomes of the experimental
units under different treatment assignments.

To formalize these requirements, we adopt the potential outcomes (also called the Neyman-
Rubin or counterfactual) framework for causal inference (Imbens and Rubin, 2015; Neyman,
1923; Rubin, 1974). In this framework, unit i has a vector of real-valued potential outcomes
(Yi(z) | z ∈ Z). We assume the observed outcome (or factual outcome) for unit i is
given by Yi = Yi(Z), where Z is the realized treatment assignment. This is often referred
to as the consistency assumption in the causal inference literature. When the treatment
Z = (Z1, . . . , ZN ) is an N -vector, it is often reasonable to assume that there is no interference
in the sense that Yi(z) only depends on z through zi.2 However, Our theory does not rely

1For example, consider an experiment where we randomize how the units interact. More specifically,
suppose the units only interact with their neighbours in an undirected network and we randomly choose
which pairs of units are connected. The theory in this chapter can be used for such an experiment, but the
dimension of the treatment Z is N(N − 1)/2 rather than N .

2The well-known stable unit treatment value assumption (SUTVA) assumes both no interference and
consistency (Rubin, 1980a).
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on this assumption; rather, we treat no interference as part of the sharp null hypothesis
introduced in Section 2.2.2 below.

It is convenient to introduce some vector notation for the potential and realized outcomes.
Let Y (z) = (Y1(z), . . . , YN (z)) ∈ Y ⊆ RN and Y = (Y1, . . . , YN ) ∈ Y. Furthermore, let
W = (Y (z) : z ∈ Z) ∈ W collect all the potential outcomes (which are random variables
defined on the same probability space as Z). We will call W the potential outcomes schedule,
following Freedman (2009)’s terminology.3 This is also known as the science table in the
literature (Rubin, 2005). It may be helpful to view potential outcomes Y (z) as a (vector-
valued) function that maps Z to Y; in this sense, W consists of all the functions from Z to
Y. We assume that the experiment is randomized in the following sense.

Assumption 8 (Randomized experiment). Z ⊥⊥W and the density function π(·) of Z (with
respect to some reference measure on Z) is known and positive everywhere.

We write the conditional distribution of Z given W in Assumption 8 as Z |W ∼ π(·).
This assumption formalizes the requirement that Z is randomized in an exogenous way.
Intuitively, the potential outcomes schedule W is determined by the nature of experimental
units. Since Z is randomized by the experimenter, it is reasonable to assume that Z ⊥⊥W .4 In
many experiments, the treatment is randomized according to some other observed covariates
X (e.g., characteristics of the units or some observed network structure on the units). This
can be dealt with by assuming Z ⊥⊥W |X. Notice that in this case the treatment assignment
mechanism π may depend on X. To simplify the exposition, unless otherwise mentioned we
will simply treat X as fixed, so Z ⊥⊥ W is still true (in the conditional probability space
with X fixed at the observed value).

Our theory allows an arbitrary support Z for the treatment variable, but we will start
with a finite Z (e.g., Z = {0, 1}N ) to be consistent with most of the existing causal inference
literature (Athey et al., 2018; Rosenbaum, 1984). In the discrete case, we always use the
counting measure on Z as the reference measure. This is convenient because all subsets of Z
are measurable. Section 2.2.4 extends the theory to an arbitrary Z.

2.2.2 Partially sharp null hypothesis

Treatment effects are defined as differences between potential outcomes, but only one potential
outcome Yi = Yi(Z) is observed for every unit i under the consistency assumption. A

3Freedman actually called this response schedule.
4From the perspective of measure-theoretic probability theory, we can view Z and W as random variables

on two different sample spaces. The former is determined by the experimenter while the latter is generated by
nature. We then consider the product space equipped with the product probability measure P, so Z ⊥⊥ W
under P by definition.
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causal hypothesis defines a number of relationships between the potential outcomes. Each
relationship allows us to impute some of the potential outcomes if another potential outcome
is observed. We can summarize these relationships using a set-valued mapping.

Definition 1. A (partially) sharp null hypothesis H defines an imputability mapping

H : Z × Z → 2[N ],

(z, z∗) 7→ H(z, z∗),

where H(z, z∗) is the largest subset of [N ] such that YH(z,z∗)(z∗) is imputable from Y (z)
under H.

Given the observed assignment Z and another assignment z∗ ∈ Z, H(Z, z∗) informs us
the subset of units whose outcome YH(Z,z∗)(z∗) is imputable from the observed outcome
Y = Y (Z). A randomization test for H is implemented by comparing the test statistics
under the realized Z and all other z∗ ∈ Z. Thus, the mapping H(Z, z∗) essentially tells
us the largest subset of units we can use in a randomization test that considers comparing
Z with z∗. Following Definition 1, we call a hypothesis H sharp if H(z, z∗) = [N ] for any
z, z∗ ∈ Z. Otherwise, we call H partially sharp. Some examples are provided to illustrate
the definitions as follows.

Example 1 (Simple experiment with two treatment arms). Suppose the treatment for each
unit is binary, i.e., Zi = 0 (control) or 1 (treated). Consider the constant treatment effect
hypothesis H : Yi(1) = Yi(0) + τ,∀i ∈ [N ]. With no interference and consistency, we can
impute any potential outcome by Yi(z∗

i ) = Yi + (z∗
i − Zi)τ . Thus, H(z, z∗) = [N ] for all

z, z∗ ∈ Z = {0, 1}N and the hypothesis H is sharp.

Example 2 (Interference). Consider a randomized experiment in which units interfere with
others in the same cluster (Hudgens and Halloran, 2008). For every unit i, Zi can take four
different values 0, 1, 2 and 3, denoting control, neighbour-treated, itself-treated, neighbour-
and itself-treated respectively. Consider a hypothesis H : Yi(1) = Yi(0) + τ,∀i ∈ [N ]. If
Zi = 2 or 3, the potential outcomes Yi(0) and Yi(1) are not imputable from Yi under H.
For any i such that zi ̸∈ {0, 1} and z∗

i ∈ {0, 1}, we have i ̸∈ H(z, z∗). Thus, H(z, z∗) is a
strict subset of [N ] in general, implying that H is partially sharp. As a comparison, a fully
sharp hypothesis is H : Yi(3) = Yi(2) = Yi(1) = Yi(0) + τ,∀i ∈ [N ], which assumes that the
treatment effect is the same for any treatment statuses of a unit and its neighbour.

Example 3 (Stepped-wedge trial (Brown and Lilford, 2006) or staggered adoption (Abraham
and Sun, 2018; Athey and Imbens, 2018)). Consider a sequential experiment that randomizes
each unit’s treatment starting time Zi ∈ [T ] ∪ {∞}; Zi =∞ denotes never-treated. Suppose
we only observe an outcome at the end of the experiment, YiT ,∀i ∈ [N ]. Consider the
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hypothesis H : YiT (1) = YiT (∞) + τ,∀i ∈ [N ], i.e., treating at time 1 has a constant
effect τ . This hypothesis is partially sharp because Yi(z∗

i ) is not imputable from Y (zi)
if zi ∈ {2, 3, . . . , T} and z∗

i ∈ {1,∞}. As a comparison, a sharp hypothesis is given by
H : YiT (1) = . . . = YiT (T ) = YiT (∞) + τ,∀i ∈ [N ], which further assumes that the treatment
starting time does not alter the treatment effect.

2.2.3 Conditional randomization tests for discrete treatments

A common feature of the complex designs (e.g. Examples 2 and 3) is that the units have more
than two potential outcomes, but the partially sharp hypotheses do not involve all of them.
In this case, H(z, z∗) depends on z and z∗ in a non-trivial way, and a randomization test
can no longer compare the observed test statistics with the entire randomization distribution
(i.e. all the test statistics under other assignments). As an alternative, conditioning offers a
principled way to address non-imputable potential outcomes arising from testing partially
sharp hypotheses. We confine ourselves to a smaller set of treatment assignments by parti-
tioning the assignment space Z into subsets Sm,m ∈ [M ]. We will construct a randomization
distribution for each subset Sm, which is given by the test statistics under all assignments
z∗ ∈ Sm. If the observed assignment Z ∈ Sm, we would only compare the observed test
statistic with the randomization distribution on Sm.

Definition 2. A conditional randomization test (CRT) for a discrete treatment Z is defined
by

(i) A partition R = {Sm}Mm=1 of Z such that S1, . . . ,SM are disjoint subsets of Z satisfying
Z = ⋃M

m=1 Sm; and

(ii) A collection of test statistics (Tm(·, ·))M
m=1, where Tm : Z ×W → R is a real-valued

function that computes a test statistic for each realization of treatment assignment Z

given the potential outcomes schedule W .

Any partition R defines an equivalent relation ≡R (and vice versa), so S1, . . . ,SM are
simply the equivalence classes generated by ≡R. With an abuse of notation, we let Sz ∈ R
denote the equivalence class containing z. For any z ∈ Sm, we thus have Sz = Sm and
Tz(·, ·) = Tm(·, ·). This notation is convenient because the p-value of the CRT defined below
conditions on Z∗ ∈ Sz when we observe Z = z. The following property follows immediately
from the fact that ≡R is an equivalence relation:

Lemma 1 (Invariance of conditioning sets and test statistics). For any z ∈ Z and z∗ ∈ Sz,
we have z ∈ Sz, Sz∗ = Sz and Tz∗(·, ·) = Tz(·, ·).
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Definition 3. The p-value of the CRT in Definition 2 is given by

P (Z,W ) = P∗{TZ(Z∗,W ) ≤ TZ(Z,W ) | Z∗ ∈ SZ ,W }, (2.1)

where Z∗ is an independent copy of Z conditional on W .

Because Z ⊥⊥W (Assumption 8), the independence copy Z∗ ∼ π(·) and is independent
of Z and W . In (2.1), we use the notation P∗ to emphasize that the probability is taken
over the randomness of Z∗.

The invariance property in Lemma 1 is important because it ensures that when computing
the p-value, the same conditioning set is used for all treatment assignments within it. By
using the equivalence relation ≡R defined by the partition R, we can rewrite (2.1) as

P (Z,W ) = P∗{TZ(Z∗,W ) ≤ TZ(Z,W ) | Z∗ ≡R Z,W }.

When Sz = Z for all z ∈ Z (so z ≡R z∗ for all z, z∗ ∈ Z), this reduces to an unconditional
randomization test.

Notice that TZ(Z∗,W ) generally depends on some unobserved potential outcomes in W .
Thus (2.1) may not be computable if the null hypothesis does not make enough restrictions
on W . By using the imputability mapping H(z, z∗) in Definition 1, this is formalized in the
next definition.

Definition 4. Consider a CRT defined by the partition R = {Sm}Mm=1 and test statistics
(Tm(·, ·))M

m=1. We say the test statistic Tz(·, ·) is imputable under a partially sharp null
hypothesis H if for all z∗ ∈ Sz, Tz(z∗,W ) only depends on the potential outcomes schedule
W = (Y (z) : z ∈ Z) through its imputable part YH(z,z∗)(z∗).

The proof of the next result can be found in Section 2.8.1.

Lemma 2. Suppose Assumption 8 is satisfied and Tz(·, ·) is imputable for all z ∈ Z. Then
the p-value P (Z,W ) only depends on Z and Y .

Definition 5. Under the assumptions in Lemma 2, we say the p-value is computable under
H and denote it by P (Z,Y ) with an abuse of notation.

Given a computable p-value, the CRT then rejects the null hypothesis H at significance
level α ∈ [0, 1] if P (Z,Y ) ≤ α. The next theorem establishes the validity of this test.

Theorem 1. Consider a CRT defined by the partition R = {Sm}Mm=1 and test statistics
(Tm(·, ·))M

m=1. Then the p-value P (Z,W ) stochastically dominates the uniform distribution
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on [0, 1] in the following sense:

P {P (Z,W ) ≤ α | Z ∈ Sz,W } ≤ α, ∀α ∈ [0, 1], z ∈ Z. (2.2)

In consequence, given Assumption 8 and a partially sharp null hypothesis H, if P (Z,W ) is
computable, then

P {P (Z,Y ) ≤ α} ≤ α, ∀α ∈ [0, 1]. (2.3)

Proof. We first write the p-value (2.1) as a probability integral transform. For any fixed
z ∈ Z, let Fz(·; W ) denote the distribution function of Tz(Z,W ) given W and Z ∈ Sz.
Given Z ∈ Sz (so SZ = Sz and TZ = Tz by Lemma 1), the p-value can be written as

P (Z,W ) = Fz(Tz(Z,W ); W ).

To prove (2.2), we can simply use the following probabilistic result: let T be a random
variable and F (t) = P(T ≤ t) be its distribution function, then P(F (T ) ≤ α) ≤ α for all
0 ≤ α ≤ 1. See Section 2.8.2 for a proof.

If the p-value is computable, we have P (Z,W ) = P (Z,Y ) by Lemma 2. By the law of
total probability, for any α ∈ [0, 1],

P {P (Z,Y ) ≤ α |W } =
M∑

m=1
P {P (Z,Y ) ≤ α | Z ∈ Sm,W }P(Z ∈ Sm |W )

≤
M∑

m=1
αP(Z ∈ Sm |W ) = α.

Marginalizing over the potential outcomes schedule W , we obtain (2.3).

2.2.4 Extension to continuous treatments

Although most randomized experiments only involve discrete treatment variables, the results
in Section 2.2.3 can be extended to the case of continuous treatments using measure-theoretic
probability theory. This allows us to not only consider experiments involving continuous
dosage, but also recast permutation tests as CRTs later in Section 2.6.1.

Suppose the treatment assignment Z and potential outcomes schedule W are defined on
a probability space (Ω,F ,P). That is, suppose (Z,W ) is a measurable function from the
sample space Ω to the product space Z ×W . As in the discrete setting, we assume Z ⊥⊥W

(Assumption 8). We modify Definition 2 to allow the CRT to be defined by a countable
partition R = {Sm}∞m=1 of Z where S1,S2, . . . are measurable subsets, and (Tm(·, ·))∞

m=1 is



2.2 A single conditional randomization test 27

a countable sequence of measurable functions (test statistics). We require
∫

Sm
π(z) dz > 0

for all m to avoid conditioning on zero probability events, although this (and countability of
the partition) can be relaxed if suitable conditional density function can be defined on zero
probability events. As in the discrete setting, we abduct the notation and denote Sz = Sm

and Tz(·, ·) = Tm(·, ·) for all z ∈ Sm. Similarly, the p-value P (Z,W ) is still given by (2.1).
This is well defined and P (Z,W ) is indeed measurable because (Tm(·, ·))∞

m=1 are measurable.

A benefit of this measure-theoretic formulation is that it provides a more concise way of
stating (2.2). Let G be the σ-algebra generated by the conditioning events in (2.1):

G = σ ({Z ∈ Sm}∞m=1) .

Because {Sm}∞m=1 is a partition of Z, G consists of all countable unions of {Sm}∞m=1. This
allows us to rewrite (2.2) as

P (P (Z,W ) ≤ α | G,W ) ≤ α, ∀α ∈ [0, 1]. (2.4)

The conditional probability on the left-hand side of (2.4) is a random variable (function
from Z ×W to [0, 1]) and is well defined by the Radon-Nikodym theorem as P (Z,W ) is
measurable. In fact, because G is generated by a countable partition, we may write

P (P (Z,W ) ≤ α | G,W ) =
∞∑

m=1
1{Z∈Sm} P (P (Z,W ) ≤ α | Z ∈ Sm,W ) .

This measure-theoretic formulation not only is more general but also allows us to state the
assumptions for multiple conditional randomization tests in Section 2.3 more easily. We will
adopt this formulation in what follows.

2.2.5 Practical methods

The theory above is quite abstract and does not offer any guidance on how to construct
computable and powerful CRTs by partitioning the assignment space Z. Next, we summarize
some practical techniques that have been proposed in the literature.

Conditioning on a function of the treatment

First, to construct invariant conditioning sets, it is common to condition on a function of Z

in a CRT (Hennessy et al., 2016). This idea is formalized by the following result.
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Proposition 1. Any function g : Z → N defines a countable collection of invariant condi-
tioning sets Sz = {z∗ ∈ Z : g(z∗) = g(z)}.

Proof. This follows immediately by the following equivalence relation: we define z∗ ≡R z if
g(z∗) = g(z) holds.

In the measure-theoretic view in Section 2.2.4, this means that we simply condition on
the σ-algebra G generated by the random variable g(Z). We require that the image of g(·) is
countable to avoid conditioning on zero probability events.5

Focal units

In practice, the test statistic of a CRT usually only depends on the potential outcomes
corresponding to z∗ and takes the form Tz(z∗,W ) = Tz(z∗,Y (z∗)). The fundamental
problem then is that only a sub-vector YH(z,z∗)(z∗) of Y (z∗) is imputable under H. To
solve this problem, a natural idea is to only use the imputable potential outcomes. This is
formalized in the next result.

Proposition 2. Given any partition R = {Sm}∞m=1 of Z, let Hm = ⋂
z,z∗∈Sm H(z, z∗).

Then, under Assumption 8, the partition R and test statistics (Tm(z,YHm(z)))∞
m=1 define a

computable p-value.

Although Proposition 2 provides a general way of constructing imputable test statistics,
the CRT is powerless if Hm is an empty set. More generally, the power of the CRT depends
on the size of Sm and Hm and there is a trade-off: with a coarser R, the CRT is able to
utilize a larger subset Sm of treatment assignments but a smaller subset Hm of experimental
units. In many problems, choosing a good partition R is not a trivial problem. This is
particularly challenging when the problem involves interference, as the imputability mapping
H(z, z∗) can be quite complex. In such cases, it may be helpful to impose some structure on
the imputability mapping.

Definition 6. A partially sharp null hypothesis H is said to have a level-set structure if
there exist exposure functions Di : Z → D, i = 1, . . . , N , such that D is countable and

H(z, z∗) = {i ∈ [N ] : Di(z) = Di(z∗)}. (2.5)
5In principle, the theory should extend to more general g(·) as long as the conditional distributions are

well defined, see e.g., Pollard (2002, Chapter 4).
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In other words, the imputability mapping is defined by the level sets of the exposure
functions. To the best of our knowledge, Definition 6 was first proposed by Athey et al.
(2018), but the concept of exposure mapping can be traced back to some earlier articles
(Aronow and Samii, 2017; Manski, 2013; Ugander et al., 2013).

An immediate consequence of the level-set structure is that H(z, z∗) is symmetric, i.e.,
H(z, z∗) = H(z∗, z) for all z, z∗ ∈ Z. Moreover, by using the level-set structure, we can
write Hm in Proposition 2 as

Hm =
⋂

z,z∗∈Sm

H(z, z∗) = {i ∈ [N ] : Di(z) is a constant over z ∈ Sm} . (2.6)

This provides a reasonable way to choose the test statistic (experimental units) once a
partition R = {Sm}∞m=1 is given. However, it is often more practical to proceed in the other
direction and choose the experimental units first. Aronow (2012) and Athey et al. (2018)
proposed to choose a partition R = {Sm}∞m=1 such that Hm is equal to a fixed subset of
“focal units”, I ⊆ [N ], for all m. Given any I ⊆ [N ], the conditioning set is given by all the
treatment assignments such that all the units in I receive the same exposure. That is,

Sz = {z∗ ∈ Z : I ⊆ H(z, z∗)} = {z∗ ∈ Z : DI(z∗) = DI(z)}, (2.7)

where DI(·) = (Di(·) : i ∈ I). From the right-hand side of (2.7), it is easy to see that
{Sz : z ∈ Z} satisfies Lemma 1 and thus forms a partition of Z. Furthermore, {Sz : z ∈ Z}
is countable because Sz is determined by DI(z), a subset of the countable set DI .

The next proposition summarizes the method proposed by Athey et al. (2018)6 and
immediately follows from our discussion above.

Proposition 3. Given a null hypothesis H with a level-set structure in Definition 6, and a
set of focal units I ⊆ [N ]. Under Assumption 8, the partition R = {Sz : z ∈ Z} as defined
in (2.7) and any test statistic T (z,YI(z)) induce a computable p-value.

Bipartite graph representation

Puelz et al. (2021) provided an alternative way to use the level-set structure. They consider
imputability mapping of the form (suppose 0 ∈ D)7

H(z, z∗) = {i ∈ [N ] : Di(z) = Di(z∗) = 0}, (2.8)
6They used the same test statistic in all conditioning events, which is reflected in Proposition 3. Our theory

can further allow the test statistic TZ(z, YI(z)) to depend on Z through DI(Z).
7The “null exposure graph” in (Puelz et al., 2021) actually allows Di(z) and Di(z∗) to belong to a

prespecified subset of D. This can be allowed in our setup by redefining the exposure functions.
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which is slightly more restrictive than (2.5). The “conditional focal units” Hm in (2.6) can
then be written as

Hm = {i ∈ [N ] : Di(z) = 0, ∀z ∈ Sm}. (2.9)

Their key insight is that imputability mapping of the above form can be represented as a
bipartite graph with vertex set V = [N ] ∪ Z and edge set

E = {(i, z) ∈ [N ]×Z : Di(z) = 0}.

Puelz et al. (2021) referred to this as the null exposure graph. Then by using (2.9), we have

Proposition 4. Vm = Hm ∪ Sm and Em = {(i, z) ∈ Hm × Sm} form a biclique (i.e., a
complete bipartite subgraph) in the null exposure graph.

Therefore, the challenging problem of finding a good partition of Z is reduced to finding
a collection of large bicliques {(Vm, Em)}Mm=1 in the graph such that {Sm}Mm=1 partitions Z
(this was called a biclique decomposition in (Puelz et al., 2021)). They further described an
algorithm to find a biclique decomposition by greedily removing treatment assignments in
the largest biclique (some approximate algorithm is needed to find the largest biclique as it
is generally an NP-hard problem).

Randomized CRTs

When using the method of focal units or bipartite cliques, the power of the CRT often heavily
depends on the set of focal units or the bipartite decomposition we use. The CRT is allowed
to use the treatment assignments in the conditioning set SZ that depends on the realized
assignment Z. In general, we may have several reasonable ways to partition Z and each
partition may have higher power for different realizations of Z. In this circumstance, a
natural idea is to post-randomize the test.

Consider a collection of CRTs defined by R(v) = {Sm(v)}∞m=1 and (Tm(·, ·; v))∞
m=1 that

are indexed by v ∈ V where V is countable. Each v defines a p-value

P (Z,W ; v) = P∗{TZ(Z∗,W ; v) ≤ TZ(Z,W ; v) | Z∗ ∈ SZ(v),W },

where Z∗ is an independent copy of Z. Since this defines a CRT for each fixed v, the theory in
Section 2.2.3 immediately applies. Similar to Definition 5, we say P (Z,W ; v) is computable
if it is a function of Z and Y and write it as P (Z,Y ; v). In a randomized CRT, the analyst
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can take V as a random variable that is independent of Z and W .8 The next result shows
that we can safely test a partially sharp null hypothesis by using a randomly drawn CRT.

Corollary 1. Under the setting above, the randomized CRT is valid in the following sense

P {P (Z,W ;V ) ≤ α | Z ∈ Sz(V ),W , V } ≤ α, ∀α ∈ [0, 1], z ∈ Z.

Proof. This immediately follows from Theorem 1.

We can further generalize Proposition 1 and Corollary 1 to allow conditioning on a random
variable G = g(Z, V ) that depends on both the randomness introduced by the experimenter in
Z and also the randomness introduced by the analyst in V . As above, suppose V ⊥⊥ (Z,W )
and G has a countable support (to avoid conditioning on zero probability events; see
footnote 5). Because G is generated by Z, the conditional distribution of G given Z is known.
Let π(· | g) be the density function of Z given G = g that can be obtained from Bayes’
formula:

π(z | g) = P(G = g | Z = z)π(z)∫
P(G = g | Z = z)π(z) dz

.

Let Tg(·,W ) be the test statistic that is now indexed by g in the support of G. Then the
randomized p-value is defined as

P (Z,W ;G) = P∗ {TG(Z∗,W ) ≤ TG(Z,W ) | G,W } ,

where the probability is taken over Z∗ | G,W d= Z | G,W . In other words, Z∗ ∼ π(· | G)
and the randomized p-value can be written as

P (Z,W ;G) =
∫

1{TG(z∗,W )≤TG(Z,W )}π(z∗ | G) dµ(z∗),

where µ is the reference measure on Z. Similar to above, we say P (Z,W ; g) is computable
if it is a function of Z and Y and write it as P (Z,Y ; g).

Corollary 2. Under the setting above, the randomized CRT is valid in the following sense

P {P (Z,W ;G) ≤ α |W , G} ≤ α, ∀α ∈ [0, 1].

Proof. This follows from the observation that once G is given, this is simply a unconditional
randomization test. The p-value is computed using Z∗ ∼ π(· | G), so given G, we can write
P (Z,W ;G) as a probability integral transform as in the proof of Theorem 1.

8This may require enlarging the sample space as in footnote 4, as the randomness in V is introduced by
the analyst of the experiment, which may be different from the experimenter who only randomizes Z. In what
follows, we use P to denote the product probability measure on (Z, W , V ) when the CRT is randomized.
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Corollary 2 is essentially the same as (Basse et al., 2019, Theorem 1), although we do not
require imputability of the test statistic. In other words, imputability only affects whether
the p-value can be computed using the observed data and is not necessary for the validity of
the p-value conditional on potential outcome schedule W .

2.3 Multiple conditional randomization tests

In the previous section, we have shown how to construct valid and computable CRTs for
partially sharp null hypotheses arising in complex experimental designs. Another key feature
of complex designs is that they offer scattered evidence of causation over the experimental
domain. However, combining the evidence (i.e. testing the intersection of partially sharp
null hypotheses) in a single CRT is not straightforward or requires careful consideration of
the design. This is because different partially sharp null hypotheses are based on different
potential outcomes, so testing each of them requires a different conditioning set of assignments
to ensure the test statistics is imputable. The difficulty of running a single CRT for multiple
hypotheses will be further illustrated in the next section by stepped-wedge trials (previewed
in Example 3) which spread the evidence of causation across time.

In this section, we introduce a theory concerning how to construct multiple jointly valid
CRTs. Building upon the general setup in the last section, our theory places the condition
only on the construction of randomization tests but not on the underlying design. Thus, it is
potentially applicable to any design with arbitrary treatment variable, assignment mechanism
and unit interference. The jointly valid CRTs we describe later can be combined by standard
methods such as Fisher’s method (Fisher, 1925) and can be easily extended to simultaneous
testing using the closed testing procedure (Marcus et al., 1976).

2.3.1 Main theorem

Consider K conditional randomization tests, defined by partitions R(k) =
{
S(k)

m

}∞

m=1
and

test statistics (T (k)
m (·, ·))∞

m=1, for K possibly different hypotheses H(k), k = 1, . . . ,K. We
denote the corresponding p-values (2.1) as P (1)(Z,W ), . . . , P (K)(Z,W ).

For any subset of tests J ⊆ [K], we define the union, refinement and coarsening of the
conditioning sets as

RJ =
⋃

k∈J
R(k), RJ =

⋂
j∈J
S(j)

z : z ∈ Z

 , and RJ =

⋃
j∈J
S(j)

z : z ∈ Z

 .
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As in Section 2.2.4, let G(k) = σ({Z ∈ S} : S ∈ R(k)) be the σ-algebra generated by the
conditioning events for test k. Let GJ be the σ-algebra generated by the sets in RJ , so
GJ = σ

(
{Z ∈ S} : S ∈ RJ ). Similarly, we define the σ-algebras GJ = σ

(
{Z ∈ S} : S ∈ RJ )

and GJ = σ
(
{Z ∈ S} : S ∈ RJ ).

Theorem 2. Suppose the following two conditions are satisfied for all j, k ∈ [K], j ̸= k:

R{j,k} ⊆ R{j,k}, (2.10)

T
(j)
Z (Z,W ) ⊥⊥ T (k)

Z (Z,W ) | G{j,k},W . (2.11)

Then we have

P
{
P (1)(Z,W ) ≤ α(1), . . . , P (K)(Z,W ) ≤ α(K) | G[K]

,W
}
≤

K∏
k=1

α(k),

∀α(1), . . . , α(K) ∈ [0, 1].
(2.12)

In consequence, given Assumption 8 and that the null hypotheses H(1), . . . ,H(K) are satisfied,
if the CRTs are computable, then

P
{
P (1)(Z,Y ) ≤ α(1), . . . , P (K)(Z,Y ) ≤ α(K)

}
≤

K∏
k=1

α(k), ∀α(1), . . . , α(K) ∈ [0, 1].

(2.13)

Before sketching a proof of this theorem, we first give a simple illustration of this general
result. When K = 2, condition (2.10) amounts to assuming a nested structure between the
two partitions: S(1)

z ⊆ S(2)
z or S(1)

z ⊇ S(2)
z for all z ∈ Z. In other words, S(1)

z ∩ S(2)
z = S(1)

z or
S(2)

z for all z ∈ Z. Notice that this condition allows S(1)
z ⊆ S(2)

z for some z and S(1)
z∗ ⊇ S(2)

z∗

for another z∗ ̸= z. Furthermore, when K = 2, condition (2.11) is equivalent to assuming

T (1)
z (Z,W ) ⊥⊥ T (2)

z (Z,W ) | Z ∈ S(1)
z ∩ S(2)

z ,W , ∀z ∈ Z.

Finally, when K = 2, the main conclusion (2.12) is equivalent to

P
{
P (1)(Z,W ) ≤ α(1), P (2)(Z,W ) ≤ α2 | Z ∈ S(1)

z ∪ S(2)
z ,W

}
≤ α(1)α(2)

for all z ∈ Z and α(1), α(2) ∈ [0, 1]. See Section 2.3.3 for a simple proof of the K = 2 case
under slightly stronger conditions than (2.10) and (2.11), which sheds some light on the proof
for the general case.
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2.3.2 Proof outline

We now outline a proof of Theorem 2. To this end, we need to consider the structure of the
conditioning sets given by (2.10). We start with the following observation (the proof can be
found in Section 2.8.3).

Lemma 3. Suppose (2.10) is satisfied. Then for any J ⊆ [K] and S,S ′ ∈ RJ , the sets S
and S ′ are either disjoint or nested, that is,

S ∩ S ′ ∈ {∅,S,S ′}.

Furthermore, we have R[K] ⊆ R[K] and R[K] ⊆ R[K].

The sets in R[K] can be partially ordered by set inclusion. This induces a graphical
structure on R[K]:

Definition 7. The Hasse diagram for R[K] = {S(k)
z : z ∈ Z, k ∈ [K]} is a graph where each

node in the graph is a set in R[K] and a directed edge S → S ′ exists between two distinct
nodes S,S ′ ∈ R[K] if S ⊃ S ′ and there is no S ′′ ∈ R[K] such that S ⊃ S ′′ ⊃ S ′.

It is straightforward to show that all edges in the Hasse diagram for R[K] are directed and
this graph has no cycles. Thus, the Hasse diagram is a directed acyclic graph. For any node
S ∈ R[K] in this graph, we can further define its parent set as pa(S) = {S ′ ∈ R[K] : S ′ → S},
child set as ch(S) = {S ′ ∈ R[K] : S → S ′}, ancestor set as an(S) = {S ′ ∈ R[K] : S ′ ⊃ S},
and descendant set as de(S) = {S ′ ∈ R[K] : S ⊃ S ′}.

Notice that one conditioning set S ∈ R[K] can be used in multiple CRTs. To fully
characterize this structure, we introduce an additional notation.

Definition 8. For any S ∈ R[K], let K(S) = {k ∈ [K] : S ∈ R(k)} be the collection of indices
such that S is a conditioning set in the corresponding test. Furthermore, for any collection
of conditioning sets R ⊆ R[K], denote K(R) = ∪S∈RK(S).

Lemma 4. Suppose (2.10) is satisfied. Then for any S ∈ R[K], we have

(i) If ch(S) ̸= ∅, then ch(S) is a partition of S;

(ii) {K(an(S)),K(S),K(de(S))} forms a partition of [K].

(iii) For any S ′ ∈ ch(S), K(an(S ′)) = K(an(S) ∪ {S}) and K({S ′} ∪ de(S ′)) = K(de(S)).

Using Lemma 4, we can prove the following key lemma that establishes the conditional in-
dependence between two p-values. The proof of Lemmas 4 and 5 can be found in Sections 2.8.4
and 2.8.5.
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Lemma 5. Suppose (2.10) and (2.11) are satisfied. Then for any S ∈ R[K], j ∈ K(S), and
k ∈ K(an(S) ∪ {S}) \ {j}, we have

P (j)(Z,W ) ⊥⊥ P (k)(Z,W ) | Z ∈ S,W .

Finally, we state a result based on the above Hasse diagram that is more general than
Theorem 2.

Lemma 6. Given conditions (2.10) and (2.11), we have, for any S ∈ R[K],

P
{
P (1)(Z,W ) ≤ α(k), . . . , P (K)(Z,W ) ≤ α(K) | Z ∈ S,W

}
≤ P

{
P (k)(Z,W ) ≤ α(k) for k ∈ K(an(S)) | Z ∈ S,W

} ∏
j∈K({S}∪de(S))

αj .
(2.14)

Theorem 2 almost immediately follows from Lemma 6. The proof of Lemma 6 and Theo-
rem 2 can be found in Sections 2.8.6 and 2.8.7, respectively.

2.3.3 Practical methods

Theorem 2 provides a sufficient condition for jointly sufficient valid CRTs: the partitions
R(k), k = 1, . . . ,K, need to satisfy the nested relation characterized by (2.10), and the test
statistics need to satisfy the conditional independence in (2.11). However, these two conditions
are quite abstract. To illustrate the versatility of the theorem, we provide some practical
techniques to construct CRTs that satisfy both conditions. To simplify the exposition, below
we assume that the test statistics satisfy T (k)(·, ·) = T

(k)
m (·, ·) for all m and k.

Independent treatment variables

We begin by noting that (2.10) is immediately satisfied if all the randomization tests are
unconditional (i.e., S(k)

z = Z for all z ∈ Z and k ∈ [K]). Further, the conditional independence
(2.11) may be satisfied if the problem structure allows the treatment Z to be decomposed
into independent components. This strategy is summarized in the proposition below.

Proposition 5. The conditions (2.10) and (2.11) are satisfied for all j, k ∈ [K], j ̸= k if

(i) S(k)
z = Z for all k and z; and

(ii) T (k)(Z,W ) only depends on Z through Z(k) = h(k)(Z) for all k and Z(j) ⊥⊥ Z(k) for
all j ̸= k.
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This result can be easily extended to the case if the same partition is used for all the
tests, i.e., R(1) = · · · = R(K).

Sequential CRTs

Our next strategy is to construct a sequence of CRTs, where each CRT conditions on the
randomness utilized by the preceding CRTs. Mathematically, we assume that the CRTs are
constructed in a way such that G(1) ⊆ · · · ⊆ G(K). By definition, this is equivalent to using a
sequence of nested partitions so that S(1)

z ⊇ · · · ⊇ S(K)
z for all z. Under this construction, it

is easy to see that R{j,k} = R(max(j,k)) and (2.10) is immediately satisfied. Moreover, (2.11)
is automatically satisfied if T (j)(z,W ) does not depend on z when z ∈ S(k)

m for any m and
k > j.9 To see this, the condition independence

T (j)(Z,W ) ⊥⊥ T (k)(Z,W ) | Z ∈ S(k)
m ,W ,

is immediately satisfied because T (j)(Z,W ) is just a constant given Z ∈ S(k)
m .

To summarize, we have the following result.

Proposition 6. The conditions (2.10) and (2.11) are satisfied for all j, k ∈ [K], j ̸= k if

(i) S(1)
z ⊇ · · · ⊇ S(K)

z for all z ∈ Z; and

(ii) T (j)(z,W ) does not depend on z when z ∈ S(k)
m for all m and k > j.

Under the conditions in Proposition 6, the proof of Theorem 2 can be greatly simplified. To
illustrate this, we consider the simplest case that K = 2. Let ψ(k)(Z,W ) = 1{P (k)(Z,W )≤α(k)}
for k = 1, 2 be the test functions. By Proposition 6(i), G(1) ⊆ G(2). By Proposition 6(ii) and
the definition of the p-value (2.1), P (1)(Z,w) and thus ψ(1)(Z,w) are G(2)-measurable for
any fixed w. Then by the law of iterated expectation, for any w ∈ W,

P
{
P (1)(Z,w) ≤ α(1), P (2)(Z,w) ≤ α(2) | G(1)

}
= E

{
ψ(1)(Z,w)ψ(2)(Z,w) | G(1)

}
= E

{
E
[
ψ(1)(Z,w)ψ(2)(Z,w) | G(2)

]
| G(1)

}
= E

{
ψ(1)(Z,w)E

[
ψ(2)(Z,w) | G(2)

]
| G(1)

}
≤ α(1)α(2).

9In other words, T (j)(z, W ) only depends on z through the indicator function for the event {z ∈ S(k)
m }. In

our measure-theoretic language, this means that T (min(j,k))(Z, W ) is G(max(j,k))-measurable given W .
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By using the Hasse diagram for the conditioning sets, our proof of Theorem 2 essentially
extends this argument to the more general setting.

Randomized CRTs

One can also randomize the CRTs as in Section 2.2.5. We illustrate this idea here using
a proposal by Bates et al. (2020). In that problem, the test statistics are of the form
T (k)(Z(k),W ) (as in Proposition 5) and there exists a random variable U such that

Z(1) ⊥⊥ · · · ⊥⊥ Z(K) | U.

The challenge is that U is unobserved, although the joint distribution of (U,Z) is known. The
key idea of Bates et al. (2020) is to construct a post-treatment random variable G = g(Z, V )
(V is randomized by the analyst), where the function g(·, ·) and the distribution of V are
chosen such that G has the same conditional distribution as U given Z. Then we have

Z(1) ⊥⊥ · · · ⊥⊥ Z(K) | G. (2.15)

Conditional on G, (2.10) is satisfied because the tests are unconditional and (2.11) is also
immediately satisfied due to (2.15). To summarize, we have the following result.

Proposition 7. Suppose the test statistics are constructed in a randomized way as in
Corollary 2. Then conditional on G, conditions (2.10) and (2.11) are satisfied for all
j, k ∈ [K], j ̸= k if

(i) S(k)
z = Z for all k and z; and

(ii) T (k)(Z,W ) only depends on Z through Z(k) = h(k)(Z) for all k and Z(j) ⊥⊥ Z(k) | G
for all j ̸= k.

In consequence, (2.12) is satisfied conditional on G.

Proposition 7 is basically the post-randomized version of Proposition 5. The nontrivial
idea is that when conditional independence between treatment variables requires conditioning
on some unobserved variable U , we can instead generate another variable G that follow the
known distribution of U given Z and treat it as given. This proposal might seem magical
at first, but notice that the power of the test will depend crucially on G and on how well it
resembles U . If G is not similar to U , the post-randomized CRTs may have little power.
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2.4 Testing lagged treatment effect in stepped-wedge random-
ized trials

We next demonstrate the versatility of our theory using the stepped-wedge randomized
controlled trials, a widely used experimental design in medical and policy research. Mixed-
effects models are commonly used to analyze stepped-wedge randomized trials (Hemming
et al., 2018; Hussey and Hughes, 2007; Li et al., 2021). However, it is well recognized that
the statistical inference tends to be biased (such as inflated type I error and poor confidence
coverage) when the model is misspecified (Ji et al., 2017; Thompson et al., 2017). In light
of this, unconditional randomization tests have been proposed to test null hypotheses of no
treatment effect whatsoever by several authors (Hughes et al., 2020; Ji et al., 2017; Thompson
et al., 2018; Wang and De Gruttola, 2017). However, this approach cannot be used to
test fine-grained hypotheses such as those involving lagged treatment effects. Following
our theory, we develop a method (Algorithm 1) to construct nearly independent CRTs for
lagged treatment effects in Section 2.4.2. We also consider methods to combine the tests in
Section 2.4.3.

2.4.1 Hypotheses for lagged treatment effects

The stepped-wedge randomized controlled trial is a monotonic cross-over design in which all
units start out in the control and then cross over to the treatment at staggered times (Group
et al., 1987; Hussey and Hughes, 2007). Figure 2.1 shows the treatment schedule for a typical
stepped-wedge trial; the name “stepped-wedge” refers to the wedge shape given by the treated
groups over subsequent crossover points. This design is also known as staggered adoption in
econometrics (Abraham and Sun, 2018; Athey and Imbens, 2018). Many stepped-wedge trials
are cluster-randomized, i.e., the units in the same cluster always have the same treatment
status. For simplicity, here we assume that the cross-over times are randomized at the unit
level. The same method below applies to cluster-randomized trials design by considering
aggregated cluster-level outcomes (Middleton and Aronow, 2015; Thompson et al., 2018).

Consider a stepped-wedge trial on N units over some evenly spaced time grid [T ] =
{1, · · · , T}. Let N1, . . . , NT be positive integers that satisfy ∑T

t=1Nt = N . The cross-overs
can be represented by a binary matrix Z ∈ {0, 1}N×T , where Zit = 1 indicates that unit i
crosses over from control to treatment at time t. We assume that the treatment assignment
mechanism is given by the uniform distribution over

Z =
{

z ∈ {0, 1}N×T : z1 = 1,1⊤z = (N1, · · · , NT )
}
. (2.16)
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Figure 2.1 Stepped-wedge randomized trials. A group of 9 units or clusters switch from
control to treatment at each time point and then remain exposed to the treatment. This
figure shows the treatment status of the units right before the treatment assignment at each
time point.

The set Z contains all binary matrices with exactly one element of 1 in each row and Nt

elements of 1 in the t-th column, so |Z| = N !/(N1! · · ·NT !).

We can view the uniform distribution over Z as a sequentially randomized experiment.
This key observation allows us to invoke the theory in Section 2.3. Let Zt be the t-th
column of Z. It is not difficult to show that the uniform distribution over Z over Z is
equivalent to randomly assigning treatment to Nt control units at time t = 1, . . . , T . Denote
z[t] = (z1, . . . ,zt) ∈ {0, 1}N×t and N[t] = ∑t

s=1Ns. More precisely, we may decompose the
uniform distribution π(z) over z ∈ Z as

N1! · · ·NT !
N ! = π(z) = π1(z1)π2(z2 | z1) · · ·πT (zT | z[T −1]),

where

πt(zt | z[t−1]) =
Nt!(N −N[t])!
(N −N[t−1])!

for all zt ∈ {0, 1}N such that (1N − z[t−1]1t−1)T zt = Nt.

After the cross-overs at time t, the experimenter then measures the outcomes of all units,
which we denote as Yt ∈ RN . Let Y = (Y1, . . . ,YT ) denote all the realized outcomes and
Y (z) denote the collection of potential outcomes under treatment assignment z ∈ Z. Like
before, we maintain the consistency assumption that Y = Y (Z).

Recall that a null hypothesis H is fully sharp if its imputability mapping H(z, z∗) = [N ]
for any z, z∗ ∈ Z (Section 2.2.2). An example of the fully sharp null hypothesis in this
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setting is that the treatment has no effect whatsoever, i.e.,

H : Y (z) = Y (z∗), ∀z, z∗ ∈ Z, i ∈ [N ], and t ∈ [T ]. (2.17)

This hypothesis can be tested by an unconditional randomization test in a straightforward
manner. Because Z is completely randomized, this is a permutation test and has been
previously studied in the literature (Hughes et al., 2020; Ji et al., 2017; Wang and De Gruttola,
2017). The test statistic is usually obtained by fitting some linear mixed-effects model.
However, this sharp null hypothesis is rather restrictive. In particular, the staggered treatment
assignment offers an opportunity to investigate how soon the treatment takes effect, which is
ignored in (2.17). This is what we will consider next.

To make the problem more tractable, we assume no interference and no anticipation effect
(Athey and Imbens, 2018) in the following sense:

Assumption 9. For all i ∈ [N ] and t ∈ [T ], Yit(z) only depends on z through zi,[t], the
treatment history of unit i.

The hypothesis we consider assumes that the lag l treatment effect is equal to a constant
τl (l is a fixed integer between 0 and T − 1). More precisely, consider the following sequence
of partially sharp null hypotheses,

H(t) : Yi,t+l((0t−1, 1,0l))− Yi,t+l(0t+l) = τl, ∀i ∈ [N ], (2.18)

for t = 1, . . . , T − l. The hypothesis H(t) states that the treatment that cross-overs at time t
has a constant effect τl on the outcome at time t+ l for all the units. We are interested in
testing the intersection of H(1), . . . ,H(T −l). Note that this intersection is not the same as
the fully sharp hypothesis in (2.17) as it only concerns the lag-l effect.

2.4.2 Multiple conditional randomization tests for testing lagged treat-
ment effects

We first note that H(t) is partially sharp. In fact, if we denote the imputability mapping
of H(t) as H(t)(z, z∗) (see Definition 1), then unit has imputable potential outcome (i.e.,
i ∈ H(t)(z, z∗)) if and only if i crosses over either at time t or after t+l under both assignments
z and z∗. Therefore,

H(t)(z, z∗) =
{
i ∈ [N ] : zi,[t+l], z

∗
i,[t+l] ∈ {(0t−1, 1,0l),0t+l}

}
.
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This motivates us to only use the units that have imputable potential outcomes. We let the
CRT for H(t) use the conditioning set

S(t)
Z = {z∗ ∈ Z : g(t)(z∗) = g(t)(Z)},

where g(t)(Z) is a subset of units that cross over at time t or after t+ l,

g(t)(Z) =
{
i ∈ [N ] : Zi,[t+l] = (0t−1, 1,0l) or 0t+l

}
. (2.19)

and use Proposition 1.

The conditioning sets S(t)
z , z ∈ Z, form a partition R(k) = {S(t)

z : z ∈ Z} of Z based on
the value of g(t). We may then compute the p-value (2.1) since both outcomes in (2.18) are
either observed or imputable. Since the treatment assignment is completely randomized, the
CRT is essentially a permutation test with SZ consisting of all the possible permutations of
units that cross over at time t and after t+ l.

However, a careful examination reveals that the conditioning sets S(1)
Z , . . . ,S(T −l)

Z fail to
satisfy the nested condition (2.10) in Theorem 2 when lag l ≥ 1. Consider the case of l = 1.
The t-th CRT (i.e. CRT t) is a permutation test that compares the time t+ 1 outcome of
units that cross over at t with the units that cross over after t+1: (i) The first CRT compares
units that cross over at time 1 and units that cross over at time 3, 4, . . . ; (ii) The second CRT
compares units that cross over at time 2 and units that cross over at time 4, 5 . . . ; and so on
(see Figure 2.2a for an illustration). It is easy to see that the corresponding conditioning sets
are not nested. For example, the conditioning set of CRT 1 includes cross over (i.e. starting
the treatment) at time 3 but not time 2, while the reverse is true for the conditioning set of
CRT 2. The independence of the CRTs thus cannot be established.

The discussion above also suggests that no single CRT can be constructed to test the
intersection of the hypotheses H(t), t = 1, . . . , T at multiple times. For instance, suppose we
would like to test H(1) ∩H(2) with lag l = 1 by using potential outcomes at t = 2 and 3.
Notice that the potential outcome at time 3, Yi3(Z∗

i ) is not imputable when Zi,1 = 1 and
Z∗

i,2 = 1 under because the lag is l = 1 (see CRT2 in Figure 2.2a), so units treated at time 1
must be excluded from the test (by conditioning on Zi,1 = 0). The dilemma is that those are
precisely the treated units whose outcomes are useful for testing the lag 1 effect at time 2.

This inspires us to modify the tests for the l = 1 case as follows: (i) The first CRT
compares units that cross over at time 1 and units that cross over at time 3, 5, . . . ; (ii) The
second CRT compares units that cross over at time 2 and units that cross over at time
4, 6, . . . ; (iii) The third CRT compares units that cross over at time 3 and units that cross
over at time 5, 7, . . . ; and so on (see Figure 2.2b for an illustration). By considering smaller
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(b) Nested CRTs.

Figure 2.2 Illustration of the CRTs for the lagged treatment effect in a stepped-wedge
randomized trial with T = 8 time points (lag l = 1).

conditioning sets, the odd tests become a sequence of nested CRTs and so do the even tests.
Thus, the nesting condition (2.10) in Theorem 2 holds. Moreover, because all the CRTs
further condition on

g(Z) = {i ∈ [N ] : Zi,t = 1 for some odd t} ,

it is not difficult to show that

(Z1,Z3, . . . ) ⊥⊥ (Z2,Z4, . . . ) | g(Z). (2.20)

For every t, the t-th CRT only depends on Z through Zt and uses the randomization
distribution of Zt given Z[t−1] and g(Z). Then it is straightforward to verify that every pair
of odd tests are conditionally independent and thus satisfy the condition (2.11) in Theorem 2.
Similarly, (2.11) also holds for the even tests. Finally, any pair of odd and even tests satisfy
(2.11) due to (2.20). Therefore, the p-values of the modified CRTs satisfy (2.13) and can be
combined using the standard global testing methods such as Fisher’s method (Fisher, 1925).
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Algorithm 1 Multiple conditional randomization tests (MCRTs) for testing lag-l treatment
effect in stepped-wedge randomized controlled trials

1: Input: Number of units N , Number of time steps T , Time lag l, Outcomes Y = (Yit :
i ∈ [N ], t ∈ [T ]), Treatment assignments Z = (Zit : i ∈ [N ], t ∈ [T ]), Test statistics T .

2: Initialization: J ← min(l + 1, T − l − 1) and It ∈ {i ∈ [N ] : Zit = 1},∀t ∈ [T ]
3: for j ∈ [J ] do ▷ Divide the time steps [T ] into J subsets
4: t← j, Cj ← {t}
5: while t+ l + 1 ≤ T do
6: t← t+ l + 1, Cj ← Cj ∪ {t}
7: for j ∈ [J ] do
8: for k ∈ Cj do ▷ Define the k-th permutation test
9: T (k) ←

{
t ∈ Cj : t ≥ k

}
10: I(k)

1 ← Ik, Y
(k)

treated ←
{
Yi,k+l : i ∈ I(k)

1
}

▷ Create a treated group
11: I(k)

0 ← (⋃t∈T (k) It
)
\ Ik, Y

(k)
control ←

{
Yi,k+l : i ∈ I(k)

0
}

▷ Create a control group
12: P (k)(Z,Y )← Permutation Test

(
Y

(k)
treated,Y

(k)
control;T

)
13: Output: P-values

{
P (k) := P (k)(Z,Y )

}

The main idea in the discussion above is that we can further restrict the conditioning
sets when the most obvious conditioning sets are not nested. This argument can be easily
extended to a longer time lag l. When l = 1, we have divided [T ] into two subsets of cross-over
times (odd and even). To test the lag l effect for l > 1, we can simply increase the gap and
divide [T ] into disjoint subsets: C1 = {1, l + 2, 2l + 3, . . . }, C2 = {2, l + 3, 2l + 4, . . . }, . . . . A
formal algorithm for general l is given in Algorithm 1 and will be referred to as multiple
conditional randomization tests (MCRTs) in what follows.

2.4.3 Method of combining p-values

A remaining question is how to combine the permutation tests obtained from Algorithm 1
(MCRTs) efficiently. Heard and Rubin-Delanchy (2018) compared several p-value combination
methods in the literature. By recasting them as likelihood ratio tests, they demonstrated
that the power of a combiner crucially depends on the distribution of the p-values under the
alternative hypotheses. In large samples, the behaviour of permutation tests is well studied
in the literature. Lehmann and Romano (2006, Theorem 15.2.3) showed that if the test
statistics in a permutation test converges in distribution, the permutation distribution will
converge to the same limiting distribution in probability. These results form the basis of our
investigation of combining CRTs.
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Suppose that K permutation p-values P (1), . . . , P (K) are obtained from from Algorithm 1.
Suppose the kth test statistic, when scaled by

√
N , is asymptotically normal so that it

converges in distribution to T (k)
∞ ∼ N (τl, V

(k)
∞ ) under the null hypothesis (τl = 0) and some

local alternative hypothesis (τl = h/
√
N) indexed by h. The limiting distributions have the

same mean but different variances. Suppose that we define the p-value likelihood ratio as the
product of the alternative p-value distributions for all k divided by the product of the null
p-value distributions for all k. Since the permutation p-values are standard uniform10, it is
easy to verify that the logarithm of this p-value likelihood ratio is proportion to a weighted
sum of Z-scores, T∞ = ∑K

k=1w
(k)
∞ Φ−1(P (k)). This motivates a weighted version of Stouffer’s

method (Stouffer et al., 1949) for combing the p-values. The weights are non-negative and sum
to one, thus T∞ ∼ N (0, 1) if the p-values are independent. Then we can reject ⋂k∈[K]H

(k)
0 if

Φ(T∞) ≤ α. This test has been shown to be uniformly most powerful for all h in the normal
location problem (Heard and Rubin-Delanchy, 2018).

To formalize the discussion above, next we consider the difference-in-means statistics
as an example. Following the notation in Algorithm 1 (see lines 6 and 11), the treated
group I(k)

1 for the kth CRT crosses over at time k and the control group I(k)
0 crosses over

time t ∈ T (k) \ {k}, where T (k) \ {k} is a subset of Cj that collects some time points after
k + l. Let N (k)

1 = |I(k)
1 |, N

(k)
0 = |I(k)

0 | and N (k) = N
(k)
0 +N

(k)
1 Let A(k)

i = 1 or 0 denote unit
i ∈ I(k)

0 ∪I
(k)
1 starting the treatment at time k or after k+ l, i.e., Zi,k+l = (0k−1, 1,0l) or 0k+l.

To simplify the exposition, we use the abbreviations Y (k)
i = Yi,k+l, Y (k)

i (1) = Yi,k+l(0k−1, 1,0l)
and Y

(k)
i (0) = Yi,k+l(0k+l) in the results below. We further assume that the N units are

i.i.d draws from a super-population model, and every unit’s potential outcome Y (k)
i (a) is a

random copy of some generic Y (k)(a) for a ∈ {0, 1} and k ∈ K.

Proposition 8. Suppose that the K permutation tests in Algorithm 1 use the difference-in-
means statistics. We assume that for every k ∈ [K] and a ∈ {0, 1},

(i) Y (k)(a) has a finite and nonzero variance;

(ii) N
(k)
1 /N and N (k)

0 /N are fixed as N →∞;

The weighted Z-score combiner T∞ is then given with weights w(k)
∞ =

√
Λ(k)∑K

j=1 Λ(j) , where

Λ(k) =
(

N

N
(k)
0

Var
[
Y (k)(1)

]
+ N

N
(k)
1

Var
[
Y (k)(0)

])−1

(2.21)

is the inverse of the asymptotic variance V (k)
∞ of the statistics in the k-th test.

10The p-value from a permutation test is exactly standard uniform by further randomizing the rejection
when the p-value is close to any α ∈ [0, 1]; see Lehmann and Romano (2006, Equation 5.51).
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We can estimate Var
[
Y (k)(a)

]
in Λ(k) consistently using the sample variance of Y (k)

i , ∀i ∈
I(k)

a . We denote the estimator of Λ(k) by Λ̂(k). The empirical version of T∞ is given by

T̂ =
K∑

k=1
ŵ(k)Φ−1(P (k)) where ŵ(k) =

√√√√ Λ̂(k)∑K
j=1 Λ̂(j)

. (2.22)

Proposition 9. Suppose that the p-values P (1), . . . , P (K) from Algorithm 1 are valid, the
combined p-value P̂ (Z,Y ) = Φ(T̂ ) is also valid such that under the null hypotheses,

P{P̂ (Z,Y ) ≤ α} ≤ α.

In general, maximizing the statistical power in combining multiple CRTs is a independent
task on top of choosing the most efficient test statistics for the permutation tests. Different
test statistics may have different asymptotical distributions and the optimal p-value combiners
(if exist) may be different. Nonetheless, a key insight from the discussion above is that we
should weight the CRTs appropriately, often according to their sample sizes.

2.5 Experiments

Next, we examine the empirical performance of the methods proposed in Section 2.4 by
comparing their power with Bonferroni’s Method (Simulation I), checking their validity when
there are unit-by-time interactions (Simulation II), and investigating two real trial datasets.
We let MCRTs+F and MCRTs+Z denote the combination of MCRTs with Fisher’s method
(Fisher, 1925) and the weighted Z-score method introduced above, respectively. In both
MCRTs+F and MCRTs+Z, the test statistic is the simple difference-in-means.

2.5.1 Simulation I: Size and power

As illustrated in Figure 2.2, the non-nested CRTs have larger control groups than our nested
CRTs created in MCRTs. However, the non-nested CRTs are not independent and there are
limited ways to combine them. The most widely used method in this case is Bonferroni’s
method that rejects the intersection of K hypotheses if the smallest p-value is less than
α/K. One remaining question is whether the reduced sample size in MCRTs can indeed be
compensated by a better p-value combiner. Simulation I is designed to answer this question
empirically by investigating varying the sample size N , trial length T , time lag l, and effect
sizes τl, respectively.
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Figure 2.3 Performance of MCRTs+F, MCRTs+Z and Bonferroni’s method: type I error
rates and powers in testing lagged effects at five different numbers of units, numbers of time
steps, time lags and effect sizes. The results were averaged over 1000 independent runs.

In this simulation, we fixed N1 = . . . = NT = N/T and NT = N −
∑T −1

t=1 Nt. The
treatment assignment Z was randomly drawn from Z given in (2.16). Let Ai to denote the
treatment starting time of unit i, i.e., the index of the non-zero entry of Zi. Outcomes were
generated by a linear mixed-effects model,

Yit = µi + 0.5(Xi + t) +
T −1∑
l=0

1{Ai−t=l}τl + ϵit, i = 1, . . . , N, t = 0, . . . , T,

where µi ∼ N (0, 0.25), Xi ∼ N (0, 0.25) and ϵit ∼ N (0, 0.1). This assumes that the baseline
outcome Yi0 is measured, which is not uncommon in real clinical trials. Basic parameters
were varied in the following ranges: (i) number of units N ∈ {100, 200, 300, 400, 500};
(ii) number of time steps T ∈ {4, 6, 8, 10, 12}; (iii) time lag l ∈ {0, 1, 2, 3, 4}; effect size
τl ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. Empirical performance of the methods was examined when
one of N , T , and l is changed while the other two are fixed at the median of their ranges,
respectively. For example, we increased N from 100 to 500 while keeping T = 8 and l = 2. In
these simulations, τl was set to 0 and 0.03 to investigate type I error and power of the methods,
respectively. One more simulation was created to study the power as the effect size τl varies, in
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which we keep the first three basic parameters at their median values (N = 300, T = 8, l = 2)
and increase τl from 0.01 to 0.05. For all permutation tests, difference-in-means was used as
the test statistic, and the number of permutations was fixed at 1000.

The upper panels of Figure 2.3 show that all the methods control the type I errors at
any number of units, time steps and time lags. The lower panel shows that our methods
are more powerful than Bonferroni’s method in all the simulations. MCRTs+Z is slightly
more powerful than MCRTs+F in all experiments. This shows that the weighted z-score is
more effective than Fisher’s combination method for MCRTs. Panels (d) and (g) show that
our methods outperform Bonferroni’s method by a wider margin as the sample size or the
effect size increases. Panel (e) establishes the same observation for trial length, which can be
explained by the fixed sample size (so fewer units start treatment at each step as trial length
increases). This is not an ideal scenario for applying Bonferroni’s method, as the individual
tests have diminishing power. Finally, panel (f) shows that all the methods have smaller
power as the lag size increases, and our methods are particularly powerful when the time lag
is small. These results are due to facts. First, there are fewer permutation tests available for
larger time lags. Moreover, only including the units that are treated after a large time lag,
the control groups in the permutation tests are small.

Overall, these simulations support the conclusion that the sample splitting in MCRTs
is a worthy sacrifice as a more powerful p-value combiner can be applied. Note that every
outcome relevant to the lag l effect is still used in at least one of our permutation tests in
MCRTs. So the reduced sample size in MCRTs may not be as damaging as it might first
appear.

2.5.2 Simulation II: Overcome misspecification of mixed-effects models

Simulation II is designed to investigate the finite-sample properties of confidence intervals
obtained by inverting conditional randomization tests (see Section 2.9 for more details). In
particular, we are interested in comparing its efficiency and robustness with mixed-effects
models for estimating lagged treatment effect.

In Simulation II, the treatment generating process was kept the same as Simulation
I. Simulation parameters are set as N = 200, T = 8 and lagged effects (τ0, . . . , τ7) =
(0.1, 0.3, 0.6, 0.4, 0.2, 0, 0, 0). The treatment effect is gradually realized and then decayed to
0 over time. For every i ∈ [N ] and t = 0, 1, . . . , T , we generate the outcome Yit using a
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Figure 2.4 Performance of MCRTs+F, MCRTs+Z and the mixed-effects model: coverage
rates and lengths of confidence intervals (CIs) under the outcome generating processes with
no interaction effect and with three different types of covariate-and-time interactions. The
results are averaged over 1000 independent runs.

mixed-effects model,

Yit = µi + 0.5(1− 0.1 · 1{m̸=0})(Xi + t) + 0.1fm(Xi + t) +
7∑

l=0
1{Ai−t=l}τl + ϵit,

where µi ∼ N (0, 0.25), Xi ∼ N (0, 0.25), ϵit ∼ N (0, 0.1) and the unit-by-time interaction is
given by

fm(Xi + t) =



0, if m = 0,

(Xi + t)2, if m = 1,

2 exp[(Xi + t)/2], if m = 2,

5 tanh(Xi + t), if m = 3,

which correspond to no, quadratic, exponential and hyperbolic tangent interactions.

We tasked our methods (MCRTs+F and MCRTs+Z) and a mixed-effects model described
below to construct valid 90%-confidence interval (CIs) for the lagged effects τ0, . . . τ4. Our
methods were implemented in exactly the same way as in Simulation I except that the
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permutation tests were inverted to obtain interval estimators. The mixed-effects model takes
the form

Yit = β0i + β1xi + β2t+
7∑

l=0
ξl1{Ai−t=l} + ϵit, (2.23)

where β0i is a random unit effect, β1, β2 are fixed effects and ξ0, . . . , ξ7 are lagged effects,
and were fitted using the R-package lme4 (Bates et al., 2015). Recently, Kenny et al. (2021)
proposed mixed-effects models that can leverage the shapes of time-varying treatment effects.
Their models are given by specifying some parametric effect curves with the help of basis
functions (e.g. cubic spline). Besides the unit-by-time interaction, the model (2.23) is
already correctly specified for modelling the treatment effects and other parts of the outcome
generating process above. Excluding some of the lagged effect parameters ξ5, . . . , ξ7 from the
model may change the effect estimates but not the validity of its CIs.

As the unit-by-time interactions are unknown and fully specifying them would render
the model unidentifiable, they are typically not considered in mixed-effect models. If the
stepped-wedge trial is randomized at the cluster levels, one can introduce cluster-by-time
interaction effects in a mixed-effects model; see Ji et al. (2017, Equation 3.1) as an example.
However, the cluster-by-time interactions are not exactly the same as the interaction between
time and some covariates of the units. It depends on if the interaction varies within each
cluster and the clusters are defined by the covariates which interact with time.

The results of Simulation II are reported in Figure 2.4. The upper panels show that
the CIs of the mixed-effects model only achieve the target coverage rate of 90% for all the
lagged effects when there is no unit-by-time interaction (panel a). By contrast, the CIs of
our methods fulfil the target coverage rate of 90% under all scenarios. The lower panels show
that the valid CIs given by our methods have reasonable lengths between 0.05 and 0.10 for
covering the true lagged effects (τ0, . . . , τ4) = (0.1, 0.3, 0.6, 0.4, 0.2). We also note from panel
(e) that when the linear mixed-effects model is specified correctly, it gives valid CIs that are
narrower than our nonparametric tests.

2.5.3 Real data applications

We next demonstrate an application of MCRTs+Z in comparison to mixed-effects models
(with and without time effect parameters) on real data collected from two stepped-wedge
randomized trials. The results are reported as 90%-confidence intervals (CIs) of lagged effects
in Figure 2.5.

Trial I was conducted to examine if a chronic care model was more effective than usual
care in the Netherlands between 2010 and 2012 (Muntinga et al., 2012). The study consisted
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(a) (b)

Figure 2.5 Effect estimates from MCRTs+Z and mixed-effects models with and without time
effect parameters: 90%-confidence intervals (CIs) of lagged effects on real data collected from
four different stepped-wedge randomized trials.

of 1,147 frail older adults in 35 primary care practices. The primary outcome in the dataset
was quality of life measured by a mental health component score (MCS) in a 12-item Short
Form questionnaire (SF-12). The outcome for each adult was measured at a baseline time
point and every 6 months over the study. The trial randomly assigned some practices to
start the chronic care model every 6 months. We treated each practice as an experimental
unit. We used MCRTs+Z and two mixed-effects models to estimate lag 0, 1 and 2 effects on
the average outcome of each practice, Yit, i = 1, . . . , 35 and t = 0, 1, . . . , 4. In panel (a) of
Figure 2.5, the mixed-effects model without using a time effect parameter would conclude
that the chronic care model improved the quality of life significantly. However, as noted by
Twisk (2021, Section 6.3.1), this model fails to take into account the increase in the quality
of life over time, irrespective of the intervention. In contrast, adding a time effect parameter
to the mixed-effects model and applying MCRTs+Z produced similar CIs, both showing that
the effect of the chronic care model on quality of life is not statistically significant.

Trial II was a stepped-wedge trial performed over the pain clinics of 17 hospitals to
estimate the effectiveness of an intervention in reducing chronic pain for patients (Twisk,
2021, Chapter 6.4). The outcome was a pain score from 1 (least pain) and 5 (most pain) and
six measurements were taken over time: one at the baseline and five more equally spaced
over a period of twenty weeks. After each measurement, the intervention was started in a few
randomly selected untreated hospitals. We considered each hospital as an experimental unit
and estimated the lag 0, 1, 2 and 3 effects using hospital-level average outcomes. Panel (b) of
Figure 2.5 shows that the CIs of the mixed-effect models with and without a time effect do
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not overlap. The CIs of MCRTs+Z lie roughly between those, showing that the effectiveness
of the intervention appears to increase over time.

2.6 Conditional randomization tests in the literature

In this section, we apply the general theory in Sections 2.2 and 2.3 to better understand
some (conditional) randomization tests that have been proposed in the literature.

2.6.1 Permutation tests for treatment effect

Permutation test is the most well known form of conditional randomization tests. In a
permutation test, the p-value is obtained by calculating all possible values of the test
statistics under all possible permutations of the observed data points. In our setup, this
amounts to use the conditioning sets (suppose Z is a vector of length N)

Sz = {(zσ(1), . . . , zσ(N)) : σ is a permutation of [N ]}. (2.24)

In view of Proposition 1, permutation test is a CRT that conditions on the order statistics of
Z. In permutation tests, the treatment assignments are typically assumed to be exchangeable,

(Z1, . . . , ZN ) d= (Zσ(1), . . . , Zσ(N)) for all permutations σ of [N ],

so each permutation of Z has the same probability of being realized under the treatment
assignment mechanism π(·). See Kalbfleisch (1978) for an alternative formulation of rank-
based tests based on marginal and conditional likelihoods. Examples of exchangeable
assignments include repeated Bernoulli trials and simple random sampling with or without
replacement (let Zi be the number of times unit i is sampled). Exchangeability makes it
straightforward to compute the p-value (2.1), as Z∗ is uniformly distributed over SZ if Z

has distinct elements. In this sense, our assumption that the assignment distribution of Z is
known (Assumption 8) is more general than exchangeability. See Roach and Valdar (2018)
for some recent development on generalized permutation tests in non-exchangeable models.

Notice that in permutation tests, the invariance of Sz in Lemma 1 is satisfied because the
permutation group is closed under composition, that is, the composition of two permutations
of [N ] is still a permutation of [N ]. This property can be violated when the test conditions on
additional events. Southworth et al. (2009) gave a counterexample in which Z is randomized
uniformly over Z = {z ∈ {0, 1}N : zT 1 = N/2}, so exactly half of the units are treated.
They consider the “balanced permutation test” in (Efron et al., 2001, Section 6) that uses
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the following conditioning set

Sz = {z∗ : z∗ is a permutation of z and zT z∗ = N/4}. (2.25)

Southworth et al. (2009) showed that the standard theory for permutation tests in (Lehmann
and Romano, 2006) does not establish the validity of the balanced permutation tests, because
Sz is not a group under balanced permutations (nor is Sz∪{z}). They also provided numerical
examples in which the balanced permutation test has an inflated type I error. With the
general theory in Section 2.2 in mind, (2.25) clearly does not satisfy the invariance property
in Lemma 1. Moreover, a group structure is not necessary in the construction of a valid
randomization test in Section 2.2. The crucial algebraic structure is that R = {Sz : z ∈ Z}
must be a partition of Z, or equivalently that the conditioning set Sz must be defined by an
equivalence relation. This is clearly not satisfied by (2.25).

2.6.2 Permutation tests for independence

Randomization tests are frequently used to test the independence of random variables. In
this problem, it is typically assumed that we observe independent and identically distributed
random variables (Z1, Y1), . . . , (Zn, Yn) and would like to test the null hypothesis that Z1

and Y1 are independent. In the classical treatment of this problem (Lehmann and Romano,
2006), the key idea is to establish the following permutation principle:

(Z1, . . . , ZN , Y1, . . . , YN ) d= (Zσ(1), . . . , Zσ(N), Y1, . . . , YN ) for all permutations σ of [N ].

Let Z = (Z1, . . . , ZN ), Y = (Y1, . . . , YN ), and Zσ = (Zσ(1), . . . , Zσ(N)). Then given a test
statistic T (Z,Y ), independence is rejected if the following p-value is less than the significance
level (recall that there are N ! permutations of [N ]):

P (Z,Y ) = 1
N !

∑
σ

1{T (Zσ ,Y )≤T (Z,Y )}. (2.26)

We are using the same notation P (Z,Y ) for the p-value of this permutation test in (2.26),
because they are indeed identical. It might seem that the permutation test is solving a
different problem from testing a causal null hypothesis—after all, no counterfactuals are
involved in testing independence. In fact, Lehmann (1975) referred to the causal inference
problem as the randomization model and the independence testing problem as the population
model. Ernst (2004) argued that the reasoning behind these two models is different.

However, a statistical test not only explicitly tests the null hypothesis H0 but also
implicitly tests any assumptions needed to set up the problem. Therefore, the CRT described
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in Section 2.2 tests not only a partially sharp null hypothesis about the causal effect but also
the assumption that the treatment is randomized (Assumption 8). If we simply “define” the
potential outcomes as Y (z) = Y for all z ∈ Z so W consists of many identical copies of Y ,
the “causal” null hypothesis H0 : Y (z) = Y (z∗),∀z, z∗ ∈ Z would be automatically satisfied.
Recall that the p-value (2.1) of a CRT is given by

P (Z,W ) = P∗{TZ(Z∗,W ) ≤ TZ(Z,W ) | Z∗ ∈ SZ ,W },

and suppose the test statistic is given by Tz(z∗,W ) = T (z∗,Y (z∗)) as in Section 2.2.5.
Because of how the potential outcomes schedule W is defined in this case, the test statistics
is equal to T (z∗,Y ). Furthermore, the independence of Z and Y is equivalent to the
independence of Z and W . When SZ is given by all the permutations of Z as in (2.24),
Z∗ | Z∗ ∈ SZ has the same distribution as Zσ where σ is a random permutation. Combining
these observations, we see that the permutation test of independence is identical to the
conditional randomization test of no causal effect.

In summary, the two formulations of permutation (or more broadly, randomization) tests
are unified in our framework. The CRT tests not only a partially sharp null hypothesis about
the potential outcomes schedule W but also the independence of Z and W (Assumption 8).
In the randomization model, Z ⊥⊥ W is guaranteed by randomization, so the CRT gives
a test of the causal null hypothesis. In the population model, the causal null hypothesis
about W is automatically satisfied by definition, so the CRT gives a test of independence.
We would like to stress that such a unification is only a mathematical one; the logic and
philosophy behind the two formulations are fundamentally different. In the randomization
model, inference is justified by the belief that randomness introduced by the experimenter is
exogenous. In the population model, inference is justified by mathematical assumptions such
as the exchangeability of observations. See Section 2.7 for further discussion.

2.6.3 Randomization tests for conditional independence

Recently, there has been a growing interest in randomization tests for conditional independence
(Berrett et al., 2020; Candès et al., 2018; Katsevich and Ramdas, 2020; Liu et al., 2020; Tansey
et al., 2021). Similar to the last section, it is assumed that we observe independent and
identically distributed random variables (Z1, Y1, X1), . . . , (Zn, Yn, Xn) and would like the test
Z1 ⊥⊥ Y1 | X1. This can be easily incorporated in our framework by treating X = (X1, . . . , Xn)
as fixed; see the last paragraph in Section 2.2.1. In this case, the randomization distribution of
Z = (Z1, . . . , Zn) is given by the conditional distribution of Z of X. The same randomization
test can then be applied; see Candès et al. (2018, Section 4.1) for more detail. Berrett et al.
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(2020) extended this test by further conditioning on the order statistics of Z, resulting in a
permutation test.

As a remark on the terminology, the test in the last paragraph was called “conditional
randomization test” by Candès et al. (2018), because the procedure conditions on X. However,
such conditioning is fundamentally different from the post-experimental conditioning on SZ ,
which we use to distinguish conditional randomization tests from unconditional ones. When
Z is randomized according to X, conditioning on X is obligatory in randomization inference
because it needs to use the randomness introduced by the experimenter (which is conditional
on X). On the other hand, conditioning on SZ (or g(Z) in Proposition 1) can be introduced
by the analyst to improve the power or make the p-value computable. For this reason, we
advocate reserving the terminology “conditional randomization test” for the latter case.

2.6.4 Covariate imbalance and rerandomization

Morgan and Rubin (2012) proposed to use rerandomization to improve covariate balance in
experiments and regenerated some interest in randomization inference (Banerjee et al., 2017;
Ding et al., 2015; Heckman and Karapakula, 2019). They recounted a conversation between
Cochran and Fisher, in which Fisher suggested rerandomizing if some baseline covariates
are not well balanced by the randomly chosen assignment. The key insight of Morgan and
Rubin (2012) is that the experiment should then be analyzed with the rerandomization taken
into account. More specifically, rerandomization is simply a rejection sampling algorithm for
randomly choosing Z from

Z = {z : g(z) ≤ η},

where g(z) measures the covariate imbalance implied by the treatment assignment z and η is
the experimenter’s level of tolerance. Therefore, we simply need to use the randomization
distribution over Z to carry out the randomization test. This provides an excellent example
for our main thesis that randomization inference should be based exactly on the randomization
introduced by the experimenter and the analyst.

Another way to deal with unlucky draws of treatment assignment is to condition on
the covariate imbalance g(Z) (Hennessy et al., 2016). This inspires our Proposition 1 in
Section 2.2.5. In our terminology, this is a conditional randomization test because the analyst
has the liberty to choose which function g(Z) to condition on. On the other hand, the
randomization test proposed by Morgan and Rubin (2012) is unconditional.
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2.6.5 Evidence factors for observational studies

So far our discussion has been focused on randomized experiments, but the same theory
also applies to randomization inference for observational studies (Rosenbaum, 2002b). Many
observational studies are analyzed under the ignorability or no unmeasured confounders
assumption that the treatment is randomly assigned after conditioning on some covariates X.
In our notation, this means that Z ⊥⊥W |X. However, the distribution of Z given X (often
called the propensity score) is typically unknown and needs to be estimated (Rosenbaum and
Rubin, 1983).

Alternatively, one can match the treated units with control units to recreate a paired
or blocked randomized experiment. In the simplest setup with a binary treatment and pair
matching, each pair has one treated unit and one control unit, but they have exactly the
same covariates. So the treatment vector can be written as Z = (Z1, . . . , ZN ) (suppose N is
even) and is supported on

Z =
{

z ∈ {0, 1}N : z1 + z2 = 1, . . . , zN−1 + zN = 1
}
.

Typically, it is assumed that Z is uniformly distributed over Z, and a randomization test
can be conducted by permuting the treatment assignments within the pairs. The uniform
distribution over Z can be justified by, for example, assuming the distribution of Zi only
depends on Xi and are independent across i (Rosenbaum, 2002b, Section 3.2).11

When there are concerns about unmeasured confounders, Rosenbaum (1987, 2002b)
introduced a general sensitivity analysis framework of the ignorability assumption. In essence,
Rosenbaum’s sensitivity model allows the distribution Z to be non-uniform over Z, but the
“degree” of non-uniformness is bounded. More specifically, it assumes that

1
1 + Γ ≤ P(Zi = 1) ≤ Γ

1 + Γ , i = 1, . . . , N, (2.27)

where Γ ≥ 1 is chosen by the analyst.

Let Π be the set of distributions of Z that satisfy (2.27). We denote the p-value in (2.1)
as P (Z,Y ;π) to emphasize that it depends on the unknown randomization distribution π of
Z. For simplicity, we will assume that the p-value is always computable when discussing

11In practice, units within a pair are not always exactly matched, which complicates the randomization
inference (Rosenbaum, 2002b, Section 3.6); also see Abadie and Imbens (2006) from the perspective of large
sample properties of the matching estimator of average treatment effect. Another complication being omitted
here is that the matched sets are typically constructed from a larger set of units. The standard permutation
test can be regarded as a CRT that conditions on Z. However, our general theory in Section 2.2 may be
inapplicable because Z depends on treatment variables of a larger set of units and may not induce a partition.
To our knowledge, this subtle issue has not been acknowledged in the literature yet.
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sensitivity analysis. Because each p-value P (Z,Y ;π) satisfies (2.3) under the null hypothesis
if π is indeed the distribution of Z, by applying the union bound,

P (Z,Y ) = sup
π∈Π

P (Z,Y ;π) (2.28)

satisfies (2.3) (stochastically dominates the uniform distribution over [0, 1]) if the actual
distribution of Z is indeed in Π. Rosenbaum (1987, 2002b) provided analytical solutions to
the optimization problem in (2.28) for a class of sign-score statistics.

In subsequent works, Rosenbaum (2010, 2011, 2017) introduced a concept for observational
studies called “evidence factors”. This is closely related to our theory of multiple CRTs
in Section 2.3. Loosely speaking, a causal theory can usually be represented by several
hypotheses. For example, the conclusion “smoking does not cause lung cancer” entails at
least two hypotheses: whether or not a person smokes does not alter the risk of lung cancer,
and given that the person smokes, the amount of cigarettes he or she smokes does not alter
the risk of lung cancer either. Therefore, we can then reject the null causal theory if either
hypothesis is rejected. When there are concerns about unmeasured confounders, we may
represent the evidence factors by the p-values obtained from suitable sensitivity analyses.
This typically requires us to specify a sensitivity model Π for each hypothesis and compute
the upper bound in (2.28). Rosenbaum’s key observation is that in certain problems, these
evidence factors (p-value upper bounds) are “independent” in the sense that they satisfy (2.13)
when all the null hypotheses are true. This allows one to test the global null and the partial
conjunction hypotheses using standard methods (Karmakar et al., 2019). Rosenbaum (2010,
2011) provided some concrete examples of evidence factors, which essentially correspond to
the sequential CRTs described in Section 2.3.3.

Rosenbaum (2017) demonstrated that the permutation groups of a general class of
“independent” evidence factors have a knit product structure. Similar to our remark on
(Southworth et al., 2009) in Section 2.6.1, we believe that the requirement that Z is a group
or has a knit product structure is not necessary. Instead, the key is to construct sequential
CRTs that satisfy the conditions in Proposition 6. Because the conditions in Proposition 6
do not rely on the distribution of Z, the key stochastic dominance result (2.13) holds for
the p-values P (1)(Z,Y ;π), . . . , P (K)(Z,Y ;π) for any distribution π of Z. By computing the
p-value suprema as in (2.28), we see that the evidence factors satisfy the same stochastic
dominance result if the sensitivity model is correct.
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2.6.6 Conformal prediction

Conformal prediction is another topic related to randomization inference that is receiving
growing interest in statistics and machine learning (Lei et al., 2018a, 2013; Shafer and
Vovk, 2008; Vovk et al., 2005). Consider a typical regression problem where the data
points (X1, Y1), . . . , (XN , YN ) are drawn exchangeably from the same distribution and YN is
unobserved. We would like to construct a prediction interval Ĉ(XN ) for the next observation
(XN , YN ) such that

P(YN ∈ Ĉ(XN )) ≤ 1− α.

The key idea of conformal inference is that the exchangeability of (X1, Y1), . . . , (XN , YN )
allows us to test the null hypothesis H0 : YN = y using permutation tests. More concretely,
we may fit any regression model to (X1, Y1), . . . , (XN−1, YN−1), (XN , y) and let the p-value
be one minus the percentile of the absolute residual of (XN , y) among all N absolute
regression residuals. Intuitively, a large residual of (XN , y) indicates that the prediction
(XN , y) “conforms” poorly with the other observations, so H0 : YN = y should be rejected.

We argue that conformal prediction is a special instance of the randomization inference
described in Section 2.2. The key idea is to view random sampling as a kind of randomiza-
tion. Notice that conformal prediction implicitly conditions on the unordered data points
(X1, Y1), . . . , (XN , YN ). To make this more explicit, let the treatment variable Z be the order
of the observations, which is a random permutation of [N ] or equivalently a random bijection
from [N ] to [N ]. The “potential outcomes” are given by

Y (z) =
(
(Xz(1), Yz(1)), . . . , (Xz(N), Yz(N))

)
, (2.29)

where Yz(N) is unobserved (that is, the observed Y is the first 2N − 1 elements of Y (Z)).
The notation Y is overloaded here to be consistent with Section 2.2. The “potential outcomes
schedule” in our setup is W = {Y (z) : z is a permutation of [N ]}. The null hypothesis in
conformal prediction can be represented as a regression model f(x) such that the missing
Yz(N) is imputed by f(Xz(N)). This is a sharp null hypothesis and our theory in Section 2.2
can be directly used to construct a randomization test. Notice that the key randomization
assumption Z ⊥⊥W in our theory (Assumption 8) is justified here by the assumption that
(X1, Y1), . . . , (XN , YN ) are exchangeable. In other words, we may view random sampling as
a form of randomizing the order of the observations.

The above argument can be extended to allow “covariate shift” in the next observation
XN (Hu and Lei, 2020; Tibshirani et al., 2019). The key idea is, again, to consider the
randomization involved in sampling. For this we need to consider a (potentially infinite)
super-population (Xi, Yi)i∈I . The “treatment” Z : [N ]→ I selects which units are observed.
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For example, Z(1) = i means that (Xi, Yi) is the first data point. The “potential outcomes”
are still given by (2.29). By conditioning on unordered Z, we can obtain a conditional
randomization test for the unobserved Yz(N). Covariate shift in XN can be easily incorporated
by conditioning on (XZ(1), . . . , XZ(N)) and deriving the conditional distribution of Z. For
example, suppose the first N − 1 units are sampled from the population according to a
covariate distribution π1(x) and the last unit is sampled according to another covariate
distribution π2(x), that is,

P(Z(k) = i) ∝ π1(Xi) for k = 1, . . . , N − 1, i ∈ I,
P(Z(N) = i) ∝ π2(Xi) for i ∈ I.

(2.30)

For simplicity, we assume the data points are sampled without replacement. Then the
unordered Z = {Z(1), . . . , Z(N)} is a set S = {s1, . . . , sN} of N distinct units. Let X =
(Xs1 , . . . , XsN ). The conditional randomization distribution of Z is given by

P (Z(N) = si |X,S) ∝ π2(Xz(N))
N−1∏
j=1

π1(Xz(j)) ∝
π2(Xsi)
π1(Xsi)

, i = 1, . . . , N,

by using the fact that the product ∏N
j=1 π1(Xz(j)) = ∏N

j=1 π1(Xsj ) only depends on S. By
normalizing the probabilities, we obtain

P (Z(N) = si |X,S) = π2(Xsi)/π1(Xsi)∑N
j=1 π2(Xsj )/π1(Xsj )

, i = 1, . . . , N.

The last display equation was termed “weighted exchangeability” in (Tibshirani et al., 2019).
Again, we would like to stress that exchangeability (unweighted or weighted) is not necessary
here. What is necessary is a careful consideration of the randomization Z in the problem.
This could be either explicit as in a physical intervention, or implicit as in random sampling.
Once the randomization distribution of Z is given and a suitable conditioning set SZ is found,
the rest is just a straightforward application of the general CRT.

2.7 Discussion

As described in the Section 2.1, randomization inference is a mode of statistical inference
that is based on randomization and nothing more than randomization. This is made precise
by trichotomizing the randomness in the data and conditioning on the potential outcomes
schedule (the randomness in nature). Through a number of examples, we demonstrate how
conditional randomization tests can be applied to classical and modern problems. This
sometimes requires an artificial definition of counterfactuals (e.g., Section 2.6.2) or viewing
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random sampling as a form of randomization (e.g., Section 2.6.6). Some might argue that such
a change of perspective is unnecessary, but we believe it provides a unified understanding of
the literature and makes the basis of the inference clear. After all, it is easy for us statisticians
to assume the data are independent and identically distributed and forget that this is only
a theoretical model. On this, Fisher (1922) offered the following sobering remark: “The
postulate of randomness thus resolves itself into the question, ‘Of what population is this a
random sample?’ which must frequently be asked by every practical statistician.”

The framework introduced in Sections 2.2 and 2.3 generalizes the existing ideas mentioned
in Section 2.1. In Section 2.2 we have described three perspectives on conditioning in
randomization tests: conditioning on a set of treatment assignments, conditioning on a
σ-algebra, and conditioning on a random variable. They are useful for different purposes:
the first perspective is useful when the null hypothesis is partially sharp and one needs
to construct a computable p-value; the second perspective is useful to describe the nested
structure of multiple CRTs in Section 2.3; and the third perspective allows us to consider
post-experimental randomization. In Sections 2.2.5 and 2.3.3, we have summarized many
useful practical techniques. Another common technique not mentioned above is sample
splitting. A tangential example in Section 2.4 is the method MCRTs which divides the units
into subsets in estimating lagged treatment effects from stepped-wedge randomized trials.
Experiments in Section 2.5 demonstrate the merits of MCRTs on simulated and real data.
All the techniques mentioned above are useful when the most obvious randomization tests
are not computable, not nested, or not independent, thereby greatly expanding the scope of
randomization inference in complex experiments.

2.8 Technical Proofs

2.8.1 Proof of Lemma 2

Proof. By Definition 1, WZ = (YH(Z,z∗)(z∗) : z∗ ∈ SZ) denote all the potential outcomes
imputable from Y = Y (Z) under H. Then WZ is fully determined by Z and Y . By
assumption, TZ(z∗,W ) only depends on W through WZ for all z∗ ∈ SZ . Thus, TZ(z∗,W )
is a function of z∗, Z, and Y . With an abuse of notation we denote it as TZ(z∗,Y ). By the
definition of the p-value in (2.1) and Z∗ ⊥⊥ Z ⊥⊥W ,

P (Z,W ) = P∗{TZ(Z∗,W ) ≤ TZ(Z,W ) | Z∗ ∈ SZ ,W }

= P∗{TZ(Z∗,Y ) ≤ TZ(Z,Y ) | Z∗ ∈ SZ ,W }

= P∗{TZ(Z∗,Y ) ≤ TZ(Z,Y ) | Z∗ ∈ SZ}
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is a function of Z and Y (since P∗ only depends on the known density π(·)).

2.8.2 Proof of Lemma 7

Lemma 7. Let T be a random variable and F (t) = P(T ≤ t) be its distribution function.
Then F (T ) has a distribution that stochastically dominates the uniform distribution on [0, 1].

Proof. Let F−1(α) = sup{t ∈ R | F (t) ≤ α}. We claim that P{F (T ) ≤ α} = P{T < F−1(α)};
this can be verified by considering whether T has a positive mass at F−1(α) (equivalently, by
considering whether F (t) jumps at t = F−1(α)). By using the fact that F (t) is non-decreasing
and right-continuous, we have

P {F (T ) ≤ α} = P
{
T < F−1(α)

}
= lim

t↑F −1(α)
F (t) ≤ α.

2.8.3 Proof of Lemma 3

Proof. Consider S ∈ R(j) and S ′ ∈ R(k) for some j, k ∈ [K] and S ∩S ′ ̸= ∅. By the definition
of refinement and (2.10), S ∩ S ′ ∈ R{j,k} ⊆ R(j) ∪R(k), so there exists integers m such that
S ∩ S ′ = S(j)

m or S(k)
m . Because R(j) and R(k) are partitions, this means that S = S(j)

m or
S ′ = S(k)

m . In either case, S ∩ S ′ = S or S ′.

Now consider any z ∈ Z and j, k ∈ [K]. Because S(j)
z ,S(k)

z ∈ R[K] and S(j)
z ∩ S(k)

z ̸= ∅
(because they contain at least z), either S(j)

z ⊇ S(k)
z or S(k)

z ⊇ S(j)
z must be true. This means

that we can order the conditioning events S(k)
z , k ∈ [K] according to the relation ⊇. Without

loss of generality, we assume that, at z,

S(1)
z ⊇ S(2)

z ⊇ · · · ⊇ S(K−1)
z ⊇ S(K)

z .

Then ⋂K
k=1 S

(k)
z = S(K)

z and ⋃K
k=1 S

(k)
z = S(1)

z . Thus the intersection and the union of
{S(k)

z }Kk=1 are contained in R[K] which collects all S(k)
z by the definition. As this is true for

all z ∈ Z, we have R[K] ⊆ R[K] and R[K] ⊆ R[K].
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2.8.4 Proof of Lemma 4

Proof. (i) Suppose S ′, S ′′ are two distinct nodes in ch(S). By Lemma 3, they are either
disjoint or nested. If they are nested, without loss of generality, suppose S ′′ ⊃ S ′. However,
this contradicts with the definition of the edge S → S ′, as by Definition 7 there should be no
S ′′ satisfying S ⊃ S ′′ ⊃ S ′. This shows that any two nodes in ch(S) are disjoint.

Next we show that the union of the sets in ch(S) is S. Suppose there exists z ∈ S such
that z ̸∈ S ′ for all S ′ ∈ ch(S). In consequence, z ̸∈ S ′ for all S ′ ∈ de(S). Similar to the proof
of Lemma 3, we can order S(k)

z , k ∈ [K] according to set inclusion. Without loss of generality,
suppose

S(1)
z ⊇ S(2)

z ⊇ · · · ⊇ S(K−1)
z ⊇ S(K)

z .

This shows that S = S(K)
z , so ch(S) = de(S) = ∅. This contradicts the assumption.

(ii) Consider any S ∈ R[K], S ′ ∈ an(S) and S ′′ ∈ de(S). By definition, S ′ ⊃ S ⊃ S ′′.
Because the sets in any partition R(k) are disjoint, this shows that no pairs of S,S ′,S ′′ can
belong to the same partition R(k). Thus, K(S ′),K(S),K(S ′′) are disjoint. Because this is true
for any S ′ ∈ an(S) and S ′′ ∈ de(S), this shows K(an(S)), K(S), and K(de(S)) are disjoint.

Now consider any z ∈ S. By the proof of (i), S is in a nested sequence consisting of
S(1)

z , . . . ,S(K)
z . Hence, K(an(S)) ∪ K(S) ∪ K(de(S)) = K(an(S) ∪ {S} ∪ de(S)) = [K].

(iii) The first result follows immediately from the fact that an(S ′) = an(S) ∪ {S}. The
second result is true because both K({S ′}∪de(S ′)) and K(de(S)) are equal to [K]\K(an(S)∪
{S}).

2.8.5 Proof of Lemma 5

Proof. First, we claim that for any j, k ∈ [K] and z ∈ Z, given that Z ∈ S(j)
z ∩ S(k)

z ,
P (k)(Z,W ) only depends on Z through T

(k)
z (Z,W ). This is true because of the definition

of the p-value (2.1) and Lemma 1 (so S(k)
Z = S(k)

z and TZ(·, ·) = Tz(·, ·)). By using this claim,
the conditional independence (2.11) implies that

P (j)(Z,W ) ⊥⊥ P (k)(Z,W ) | S(j)
z ∩ S(k)

z ,W , ∀j, k ∈ [K], z ∈ Z.

Now fix S ∈ R[K] and consider any j ∈ K(S) and k ∈ K(an(S) ∪ {S}) \ {j}. By Lemma 3,
S(j)

z ∩S(k)
z = S(j)

z = S for any z ∈ S. Then the claimed independence follows immediately.
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2.8.6 Proof of Lemma 6

Proof. Let ψ(k) = ψ(k)(Z,W ) = 1{P (k)(Z,W )≤α(k)} for k ∈ [K], so the left-hand side of (2.14)
can be written as

P
{
P (1)(Z,W ) ≤ α(1), . . . , P (K)(Z,W ) ≤ α(K) | Z ∈ S,W

}
= E

{
K∏

k=1
ψ(k) | Z ∈ S,W

}
.

We prove Lemma 6 by induction. First, consider any leaf node in the Hasse diagram, that
is, any S ∈ R[K] such that ch(S) = ∅. By Lemma 4, K(S) ∪ K(an(S)) = [K]. Then by
Lemma 5, ψ(j) ⊥⊥ ψ(k) for any j ∈ K(S) and k ̸= j. By using the validity of each CRT
(Theorem 1), we obtain

E
{

K∏
k=1

ψ(k) | Z ∈ S,W
}

= E

 ∏
k∈K(an(S))

ψ(k) | Z ∈ S,W

 ∏
j∈K(S)

E
{
ψ(j) | Z ∈ S,W

}

≤ E

 ∏
k∈K(an(S))

ψ(k) | Z ∈ S,W

 ∏
j∈K(S)

α(j).

This is exactly (2.14) for a leaf node. Now consider a non-leaf node S ∈ R[K] (so ch(S) ̸= ∅)
and suppose (2.14) holds for any descendant of S. We have

E
{

K∏
k=1

ψ(k) | Z ∈ S,W
}

= E

 ∑
S′∈ch(S)

1{Z∈S′}E
{

K∏
k=1

ψ(k) | Z ∈ S ′,W

}
| Z ∈ S,W

 (By Lemma 4(i))

≤ E

 ∑
S′∈ch(S)

1{Z∈S′}E

 ∏
k∈K(an(S′))

ψ(k) | Z ∈ S ′,W

 ∏
j∈K({S′}∪de(S′))

α(j) | Z ∈ S,W


(By the induction hypothesis)

= E

 ∏
k∈K(an(S)∪{S})

ψ(k) | Z ∈ S,W

 ∏
j∈K(de(S))

α(j) (By Lemma 4(iii))

= E

 ∏
k∈K(an(S))

ψ(k) | Z ∈ S,W

 ∏
j∈K(S)

E
{
ψ(j) | Z ∈ S,W

} ∏
j∈K(de(S))

α(j)

(By Lemma 4(ii) and Lemma 5)

≤ E

 ∏
k∈K(an(S))

ψ(k) | Z ∈ S,W

 ∏
j∈K({S}∪de(S))

α(j). (By Theorem 1)

By induction, this shows that (2.14) holds for all S ∈ R[K].
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2.8.7 Proof of Theorem 2

Proof. Lemma 3 shows that R[K] ⊆ R[K], thus (2.14) holds for every S ∈ R[K] ⊆ R[K].
Moreover, any S ∈ R[K] has no superset in R[K] and thus has no ancestors in the Hasse
diagram. This means that the right-hand side of (2.14) is simply ∏K

k=1 α
(k). Because G[K] is

the σ-algebra generated by the events {Z ∈ S} for S ∈ R[K], equation (2.12) holds. Finally,
equation (2.13) holds trivially by taking the expectation of (2.12) over G[K].

2.8.8 Proof of Proposition 8

We denote the units used in the k-th test by I(k) = I(k)
0 ∪ I(k)

1 . We denote the treatment
variables and outcomes used in the k-th test by A(k) = (Ai : i ∈ I(k)) and Y (k) = (Y (k)

i : i ∈
I(k)), respectively. We define the difference-in-means statistics in the k-th test as

T (A(k),Y (k)) =
√
N(Ȳ (k)

1 − Ȳ (k)
0 ), (2.31)

where the average outcomes are given by

Ȳ
(k)

1 = (N (k)
1 )−1 ∑

i∈I(k)

A
(k)
i Yik and Ȳ

(k)
0 = (N (k)

0 )−1 ∑
i∈I(k)

(1−A(k)
i )Yik.

Let W (k) =
(
Y

(k)
i (0), Y (k)

i (1) : i ∈ I(k)). The randomization distribution in the k-th test is

Ĝ(k)(b(k)) = P∗
{
T
(
A

(k)
∗ ,Y (k)(A(k)

∗ )
)
≤ b(k) |W (k)

}
where A

(k)
∗ is a permutation of A(k), i.e., A

(k)
∗ is drawn from the same uniform assignment

distribution as A(k). Under assumption (i), using the bivariate Central Limit Theorem,(
T
(
A(k),Y (k)), T (A(k)

∗ ,Y (k)(A(k)
∗ )

)) d−→
(
T (k)

∞ , T
(k)
∞,∗
)
,

where T (k)
∞ and T

(k)
∞,∗ are independent, each with a common c.d.f G(k)(·). By Lehmann and

Romano (2006, Theorem 15.2.3),

Ĝ(k)(b(k)) P−→ G(k)(b(k))

for every b(k) which is a continuity point of G(k)(·).
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Under assumptions (i), (ii) and the zero-effect null hypothesis H(k)
0 , following Lehmann

and Romano (2006, Theorem 15.2.5), we have

T (k)
∞ ∼ g(k)

0 = N (0, V (k)
∞ ), (2.32)

where the variance V (k)
∞ takes the form

V (k)
∞ = 1/Λ(k) = N

N
(k)
0

Var
[
Y (k)(1)

]
+ N

N
(k)
1

Var
[
Y (k)(0)

]
.

This expression of the asymptotic variance can be found in Imbens and Rubin (2015, Section
6.4). For completeness, an alternative derivation is provided in Section 2.8.8. Under
assumptions (i), (ii) and the constant effect alternative hypothesis H(k)

1 (with τ = h/
√
N),

we have
T (k)

∞ ∼ g(k)
1 = N (h, V (k)

∞ ). (2.33)

The c.d.f of T (k)
∞ under H(k)

0 and H
(k)
1 are given by

G
(k)
0 (b(k)) = Φ

(
b(k)/

√
V

(k)
∞

)
and G

(k)
1 (b(k)) = Φ

([
b(k) − h

]
/

√
V

(k)
∞

)
.

Let b̃(k) =
[
G

(k)
0
]−1(p(k)). The p-value density function under H(k)

1 can be rewritten as

f
(k)
1 (p(k)) = g

(k)
1
(
b̃(k)) ∣∣∣∣∣db̃(k)

dp(k)

∣∣∣∣∣ = g
(k)
1 (b̃(k))

∣∣∣∣∣
([
G

(k)
0
]′(b̃(k))

)−1∣∣∣∣∣ = g
(k)
1 (b̃(k))/g(k)

0 (b̃(k)).

Since the p-values from the permutation tests follow a standard uniform distribution under
the null, the log-likelihood ratio of the p-values P (1) . . . , P (K) is given by

K∑
k=1

log
[
f

(k)
1
(
p(k))] =

K∑
k=1

log
[
g

(k)
1 (b̃(k))
g

(k)
0 (b̃(k))

]
∝

K∑
k=1

√
Λ(k)Φ−1(p(k)).

Using the p-value weights Λ(k), k ∈ [K], from the log-likelihood ratio, we obtain

T∞ =
K∑

k=1
w(k)

∞ Φ−1(P (k)) where w(k)
∞ =

√√√√ Λ(k)∑K
j=1 Λ(j)

. (2.34)

Additional proof for Equation (2.32)

Lehmann and Romano (2006, Theorem 15.2.3) uses the fact that under assumptions (i)
and (ii), V (k)

∞ = Var[T
(
A(k),Y (k))], but leaves the calculation of Var[T

(
A(k),Y (k))] (their

Equation 15.15) as an exercise for readers. Here we provide the calculation to complete
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our proof for (2.32). To simplify the exposition, we let m = N
(k)
1 , n = N

(k)
0 . Suppose that

I(k) = [m+ n], I(k)
1 = [m] and I(k)

0 = {m+ 1, . . . ,m+ n}, and that

Y (k) = (Y (k)
1 , · · · , Y (k)

m︸ ︷︷ ︸
treated outcomes

, Y
(k)

m+1, . . . , Y
(k)

m+n︸ ︷︷ ︸
control outcomes

).

Let Π =
[
Π(1), . . . ,Π(m+ n)

]
be an independent random permutation of 1, . . . ,m+ n. We

rewrite the difference-in-means statistics (2.31) as

T := T
(
A(k),Y (k)) =

√
N

m

m+n∑
i=1

EiY
(k)

i , where Ei =

1 if Π(i) ≤ m

−m/n otherwise
,∀i ∈ [m+ n].

Let D be the number of i ≤ m such that Π(i) ≤ m. The value of T is determined by m−D,
the number of units swapped between the treated group (i = 1, . . .m) and control group
(i = m+ 1, . . . ,m+ n). Since all the treated (control) units have the same outcome variance,
it does not matter which units are swapped in computing the variance of T .

We first consider the case that m ≤ n. Using the expectation of the hypergeometric
distribution, we know

E[D] =
m∑

d=0

(m
d

)( n
m−d

)(m+n
m

) d = m2

m+ n
.

Let σ2
1 = Var[Y (k)(1)] and σ2

0 = Var[Y (k)(0)]. The variance of T is given by

Var(T ) = N

m2

m∑
d=0

(m
d

)( n
m−d

)(m+n
m

) [
dσ2

1 + (m− d)σ2
0 + (m− d)m

2

n2 σ
2
1 + (n−m+ d)m

2

n2 σ
2
0

]

= N

m2

[
m2

m+ n
σ2

1 + mn

m+ n
σ2

0 + mn

m+ n

m2

n2 σ
2
1 + m2

m+ n
σ2

0

]

= N

m2

[
m2

n
σ2

1 +mσ2
0

]

= N

n
σ2

1 + N

m
σ2

0.

If m > n, we let D denote the number of i ∈ {m + 1, . . . ,m + n} such that Π(i) ∈
{m+ 1, . . . ,m+ n}. Then, E[D] = n2

m+n , and

Var(T ) = N

m2

n∑
d=0

(m
d

)( n
m−d

)(m+n
n

) [
d
m2

n2 σ
2
0 + (n− d)m

2

n2 σ
2
1 + (n− d)σ2

0 + (m− n+ d)σ2
1

]

= N

m2

[
m2

m+ n
σ2

0 + mn

m+ n

m2

n2 σ
2
1 + mn

m+ n
σ2

0 + m2

m+ n
σ2

1

]

= N

m2

[
m2

n
σ2

1 +mσ2
0

]
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= N

n
σ2

1 + N

m
σ2

0.

The variance is the same for m ≤ n and m > n. This proves our claim and Equation 15.15
in Lehmann and Romano (2006): Var(m−1/2∑m+n

i=1 EiY
(k)

i ) = Var(
√

m
N T ) = m

n σ
2
1 + σ2

0.

2.8.9 Proof of Proposition 9

In Algorithm 1, the time steps in Cj define a sequence of nested permutation tests. For
example, C1 = {1, 3, 5, 7} defines CRTs 1,3,5 and C2 = {2, 4, 6, 8} defines CRTs 2,4,6 in
Figure 2.2. Suppose that we only have one subset C = {c1, . . . , cK} consists of K time points.
We next prove the tests defined on C are valid to combine. It is suffices to show that the test
statistics T̂ = ∑K

k=1 ŵ
(k)Φ−1(P (k)) stochastically dominates the random variable

T̃ :=
K∑

k=1
ŵ(k)Φ−1(U (k)) ∼ N

(
0,

K∑
k=1

[
ŵ(k)]2) = N (0, 1).

where each U (k) is a standard uniform random variable. The second equality is achieved by
the definition of ŵ(k), k ∈ [K].

By conditioning on the potential outcomes (W (k), k ∈ [K]), the weights ŵ(k), k ∈ [K],
are fixed. The derivation follows the same steps as Proposition 6 (the conditioning on W ’s
is suppressed). By construction, c1 < . . . < cK and the conditioning sets S(1) ⊇ · · · ⊇ S(K)

for all z ∈ Z. This implies that G(1) ⊆ · · · ⊆ G(K). Conditioning on G(k′), the term∑k′−1
k=1 ŵ

(k)Φ−1(P (k)) is fixed. By the law of iterated expectation,

E
[
1
{
T̂ ≤ b

}]
= E

[
1
{
ŵ(K)Φ−1(P (K)) ≤ b−

K−1∑
k=1

ŵ(k)Φ−1(P (k))
}]

= E
(
E
[
1
{
ŵ(K)Φ−1(P (K)) ≤ b−

K−1∑
k=1

ŵ(k)Φ−1(P (k))
} ∣∣∣ G(K)

])

≤ EU(K)

(
E
[
1
{
ŵ(K)Φ−1(U (K)) ≤ b−

K−1∑
k=1

ŵ(k)Φ−1(P (k))
} ∣∣∣ U (K)

])

= EU(K)

(
E
[
1
{
ŵ(K−1)Φ−1(P (K−1)) ≤ b−

K−2∑
k=1

ŵ(k)Φ−1(P (k))

− ŵ(K)Φ−1(U (K))
} ∣∣∣ G(K−1), U (K)

])

≤ EU(K−1),U(K)

(
E
[
1
{
ŵ(K−1)Φ−1(U (K−1)) ≤ b−

K−2∑
k=1

ŵ(k)Φ−1(P (k))
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− ŵ(K)Φ−1(U (K))
} ∣∣∣ U (K−1), U (K)

])
...

≤ EU(1),...,U(K)

(
E
[
1
{ K∑

k=1
ŵ(k)Φ−1(U (k)) ≤ b

} ∣∣∣ U (1), . . . , U (K)
])

= E
[
1
{
T̃ ≤ b

}]
.

The inequalities are attained by the validity of the p-values P (1), . . . , P (K), i.e., each P (k)

stochastically dominates the standard uniform variable U (k). Since T̂ stochastically dominates
the standard normal random variable T̃ ,

P{P̂ ≤ α} = P{Φ(T̂ ) ≤ α} ≤ P{Φ(T̃ ) ≤ α} = α (2.35)

The last equality is achieved by the fact that Φ(T̃ ) is a standard uniform random variable.

Suppose that Algorithm 1 creates multiple subsets Cj , j ∈ [J ]. Applying the same proof
to the tests defined on each Cj , we will have

E
[
1
{
T̂j ≤ b

}]
≤ E

[
1
{
T̃j ≤ b

}]
where T̂j = ∑

c∈Cj
ŵ(c)Φ(P (c)) and T̃j = ∑

c∈Cj
ŵ(c)Φ(U (c)) ∼ N

(
0,∑c∈Cj

[
ŵ(c)]2). Because

of sample splitting, we can combine the p-values from the tests based on different Cj . The
test statistics T̂ = ∑

j∈J T̂j stochastically dominates the random variable

T̃ =
∑
j∈J

T̃j ∼ N
(

0,
∑
j∈J

∑
c∈Cj

[
ŵ(c)]2) = N (0, 1),

which implies that (2.35) still holds for the combined p-value P̂ = Φ(T̂ ).

2.9 Confidence intervals from randomization tests

Here we describe how to invert (a combination of) permutation tests and the complexity
involves; see also Ernst (2004, Section 3.4) for an introduction. Consider a completely random-
ized experiment with treated outcomes (Y1, . . . , Ym) and control outcomes (Ym+1, . . . , Ym+n).
Consider the constant effect null hypothesis

H0 : Yi(1) = Yi(0) + ∆, ∀i ∈ [m+ n],
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We can implement a permutation test for H0 by testing the zero-effect hypothesis on the
shifted outcomes Y∆ = (Y1 −∆, . . . , Ym −∆, Ym+1, . . . , Ym+n).

To construct a confidence interval for the true constant treatment effect τ , we can consider
all values of ∆ for which we do not reject H0. We define the left and right tails of the
randomization distribution of T (Z∗,Y∆) by

P1(∆) = P∗{T (Z∗,Y∆) ≤ T (Z,Y∆)} and P2(∆) = P∗{T (Z∗,Y∆) ≥ T (Z,Y∆)},

where Z = [1m/m,−1n/n] is observed assignment, Z∗ is a permutation of Z, T is the test
statistics, e.g., difference-in-means, T (Z,Y∆) = Z⊤Y∆. The complexity of computing P1(∆)
and P2(∆) with b different permutations is O(mb+ nb). The two-sided (1− α)-confidence
interval for ∆ is given by

[∆L,∆U ] :=
[

min
P2(∆)>α/2

∆, max
P1(∆)>α/2

∆
]
.

We use a grid search to approximately find the minimum and maximum ∆ in [∆L,∆U ]. Since
P1(∆) and P2(∆) are monotone functions of ∆, we can also consider obtaining the optimal
∆’s via a root-finding numerical method (see e.g. Garthwaite, 1996).

Inverting a combination of permutation tests can be done similarly. For example, by
searching the same ∆’s for every permutation test, the lower confidence bound ∆L is given
by the minimum ∆ under which the p-value of the combined test (e.g. P̂ in Proposition 9)
is larger than α/2. The complexity of inverting a combined test scales linearly in terms of
the number of tests. The total complexity is manageable as long as the numbers of units
and permutations are not very large at the same time. If we have covariates information
in the dataset, we can consider fitting a linear regression model (with basis functions for
nonlinearity). We can compute the matrix inversion in the least-squares solution once, then
update the solution by shifting the outcome vector with different ∆’s. Inverting the test
returns an interval with coverage probability approximately equal to 1 − α. When the
probability is slightly below 1−α, we can decrease α by a small value (e.g. 0.0025) gradually
and reconstruct the interval based on the previously searched ∆’s. We stop if we obtain an
interval with coverage probability above 1− α.



Chapter 3

Identifiable representations for the
estimation of conditional average
treatment effects

Conditional average treatment effects (CATEs) allow us to understand the effect heterogeneity
across a large population of individuals. However, typical CATE learners assume all con-
founding variables are measured in order for the CATE to be identifiable. This requirement
can be satisfied by collecting many variables, at the expense of increased sample complexity
for estimating CATEs. To combat this, we propose an energy-based model (EBM) that
learns a low-dimensional representation of the variables by employing a noise contrastive
loss function. With our EBM we introduce a preprocessing step that alleviates the dimen-
sionality curse for any existing learner developed for estimating CATEs. We prove that our
EBM keeps the representations partially identifiable up to some universal constants. These
properties enable the representations to converge and keep the CATE estimates consistent.
Experiments demonstrate the convergence as well as show that estimating CATEs on our
representations performs better than on the variables or the representations obtained through
other dimensionality reduction methods.

3.1 Introduction

Average treatment effect (ATE) is arguably the most popular estimand in the causal inference
literature. With the ATE, one measures if a treatment is effective on average over a population
of individuals. However, even if we estimate an ATE accurately, we can not conclude if a
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treatment is beneficial for a particular individual. In order to get treatment effect estimates
for one individual, we condition the ATE on the individual of interest, and arrive at the
conditional average treatment effect (CATE). CATEs know successful applications in areas
such as healthcare and education.

While clinical trials represent the gold standard for causal inference, they often have a
small number of individuals and narrow inclusion criteria, rendering them unsuitable for
use in estimating the causal effects conditional on some particular individual’s confounding
variables (covariates). On the other hand, observational datasets are becoming increasingly
available, but require careful attention to the biases in the datasets. There is growing interest
in leveraging observational data to estimate CATEs, e.g., electronic healthcare records used
to determine which patients should get what treatments, or school records to optimize
educational policy in low- and high-income communities.

Treated population

Control population

Health score

Figure 3.1 Imbalanced treated and control (i.e. untreated) populations. Individuals with
lower health scores are more likely to receive the treatment.

A fundamental assumption for valid causal inference on observational data is called
the strong ignorability assumption (Rosenbaum and Rubin, 1983, 1984), also known as the
unconfoundedness assumption. It assumes independence between the potential outcomes of
interest and the treatment variable, conditional on the confounding covariates. Because this
assumption is untestable, we often estimate causal effects using all the observed covariates.
However, estimating CATEs with moderate or high dimensional covariates is challenging.
For example, in Section 3.1 we illustrate the treatment assignment process based on one
observed covariate, health score. Here, the assignment process creates a discrepancy between
the treated and control populations. That is to say, we rarely observe healthy individuals who
receive the treatment, and unhealthy individuals who do not receive the treatment. Then the
CATE (i.e., the treatment effect conditional on the health score) becomes difficult to estimate
for these individuals. The main reason for this is due to work with finite samples: the
probability of observing two comparable individuals in a dataset decreases as the covariates
dimension increases. However, many covariates in the high-dimensional space are often
generated by some common and low-dimensional (latent) variables.
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Contributions. In this chapter, we propose a representation learning method based
on a partially randomized energy-based model (EBM) to embed the covariates into a low-
dimensional space before estimating CATEs. This preprocessing step can be used alongside
any regression model and learner to reduce their dimensionality curse in CATE estimation.
We prove that the representation in the partially randomized EBM is partially identifiable up
to some universal constants for any value of the covariates. To our best knowledge, identifying
representations in deep learning models exactly is still infeasible. Existing theory settles
on achieving weaker versions of identifiability with the help of some auxiliary information,
e.g., time steps and class labels. Auxiliary information does not exist in most observational
datasets. We prove that by optimizing the partially randomized EBM with a noise contrastive
loss function and a sample splitting strategy, the representations can converge consistently
with increasing sample sizes. Experiments on multiple datasets complement our theoretical
results. We empirically validate the convergence of the representations with increasing sample
sizes. We also show that estimating CATEs based on our representations achieve better
performance than directly on the covariates or the representations obtained via a variety of
benchmark dimensionality reduction methods.

3.2 Setup

We use the potential outcome framework (Neyman, 1923; Rubin, 1974) to define causal effects.
Consider an observational dataset D = {Oi = (Xi, Ai, Yi) : i ∈ [N ]}, where [N ] = {1, . . . , N}.
Each individual i is described by a set of covariates Xi ∈ X ⊆ Rd, a binary treatment variable
Ai ∈ A = {0, 1} and an observed outcome Yi ∈ Y ⊆ R. We assume that the samples in D
are N i.i.d copies of the random variable

O = (X,A, Y ) ∼ P(O) = P(Y | A,X)P(A | X)P(X).

We assume every individual i has two potential outcomes, the control outcome Yi(0) and the
treated outcome Yi(1). The treatment assignment depends on the individuals’ covariates,
i.e., Ai ̸⊥⊥ Xi. This dependence is quantified via the conditional distribution e(Xi) =
P(Ai = 1|Xi), also termed as the propensity score in the literature. We make the standard
assumptions on observational data. We divide D into a control set and a treated set,
Dc = {(Xi, Ai, Yi) : Ai = 0, i ∈ [N ]} and Dt = {(Xi, Ai, Yi) : Ai = 1, i ∈ [N ]}. We
denote the sample sizes of Dc and Dt by Nc = |Dc| and Nt = |Dt|. Under Assumption 7,
µa(x) := E{Y (a) | X = x} = E{Y | X = x,A = a} for a ∈ {0, 1}. Then we can identify the
conditional average treatment effect (CATE) τ(x) by

τ(x) = E[Y (1)− Y (0)|X = x] = µ1(x)− µ0(x). (3.1)
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In nonparametric regression, the dimension and smoothness of the data generating function
jointly determine the mean squared error of a regression model (Stone, 1980). The error of
the used regression model determines the error of a CATE learner.

Definition 9 (Hölder ball). The Hölder ball Hd(s) is the set of functions f : Rd → R
supported on X ⊆ Rd with their partial derivatives satisfying that∣∣∣∣ ∂mf

∂m1 · · · ∂md
(x)− ∂mf

∂m1 · · · ∂md
(x′)

∣∣∣∣ ≲ ∥x− x′∥s−⌊s⌋
2 ,

∀x, x′ ∈ X and m = (m1, · · · ,md) s.t. ∑d
j=1mj = ⌊s⌋.

The notation a ≲ b denotes the relation a ≤ Cb for some universal constant C. Essentially,
Hd(s) is the class of smooth functions that are close to their ⌊s⌋-order Taylor approximations.
We assume µ0, µ1, e and τ are s-smooth functions in the Hölder balls Hd(s) for some
non-negative smoothness parameter s = α0, α1, β, γ, respectively.

The identification formula (3.1) motivates a common estimation strategy called a “T-
learner”, where “T” refers to “Two” regression models. A T-learner estimates µ0 and µ1 by
fitting two separate regression models, µ̂0 and µ̂1, on Dc and Dt, respectively. It estimates the
CATE as the difference τ̂(·) = µ̂1(·)− µ̂0(·). Suppose the mean squared error of µ̂0 and µ̂1 are

N
− 2α0

2α0+d
c and N

− 2α1
2α1+d

t , respectively. A T-learner’s mean squared error E
{
[τ̂(X)− τ(X)]2

}
is O(N

− 2α0
2α0+d

c +N
− 2α1

2α1+d

t ). There are other advanced learners based on different identification
formulas, e.g., X-learner (Künzel et al., 2019), R-learner (Nie and Wager, 2021) and DR-
learner (Kennedy, 2020). For example, the identification formula of the DR-learner is based
on the uncentered first-order influence function ϕ of the ATE,

ϕ(O) = A

e(X) [Y − µ1(X)] + µ1(X)− 1−A
1− e(X) [Y − µ0(X)]− µ0(X). (3.2)

As discussed in Section 1.3.2, the DR-learner uses ϕ̂(O) as the pseudo-outcome for estimating
CATEs, where ϕ̂(O) is generated by plugging the models µ̂0, µ̂1 and ê into the expression
(3.2). More specifically, splitting D into three subsets D1, D2 and D3, it estimates µ0 and µ1

using D1, estimates e using D2, then estimates the CATE τ using D3 (via regressing ϕ̂(O)
onto X). Kennedy (2020, Theorem 2) shows that it estimates τ with mean squared error

O

(
Ñ

− 2β
2β+d

2

(
Ñ

− 2α0
2α0+d

1,c + Ñ
− 2α1

2α1+d

1,t

)
+ Ñ

− 2γ
2γ+d

3

)
,

where Ñm = |Dm|,m = 1, 2, 3, Ñ1,c and Ñ1,t are the numbers of control and treated
individuals in D1. The efficiency loss from sample splitting can be remedied by cross-fitting
(Chernozhukov et al., 2018; Nie and Wager, 2021). DR-learner can improve CATE estimation
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by leveraging the smoothness of τ . But for an accurate CATE estimator to exist in finite
samples, the requirement on the smoothness parameters (α0, α1, β and γ) is restrictive if the
amount of dimensions d is large, regardless of which learner we use.

Observational studies often include covariates that represent the same aspect of an
individual. For example, an individual’s health status can be represented by some collection
of covariates, e.g., blood pressure, temperature and some disease-specific symptoms. These
covariates are correlated and contain overlapping information about the individual. This
hints at a potentially more sample-efficient estimation strategy: first learning these aspects
as a low-dimensional representation of the covariates, then fitting µ̂0, µ̂1 (and ê) on the
low dimensional representation to estimate the CATE. The limitation of representation
learning is that the representation itself is non-smooth and takes many samples to learn. In
supervised learning on a fully labelled dataset, there is no obvious advantage of learning the
representations first over learning the label directly. By contrast, observational datasets for

CATE estimation are often imbalanced (Nt ≪ Nc) so that the term N
− 2α1

2α1+d

t in a T-learner’s
mean squared error is very large. Rather than directly using all the covariates to construct
µ̂0, µ̂1 (and ê), we employ representation learning based on all the samples, i.e., Nt + Nc

samples from both the treated and control group. Then by using the low dimensional
representation to estimate CATEs, the learners will potentially have smaller errors.

We consider the representation learning model, concatenated together with the outcome
(propensity score) model, as an outcome (propensity score) model based on the observed
covariates. The consistency of the resulting CATE estimator thus depends on the consistency
of both models. This requires the representation to be identifiable, which is so far still
impossible to achieve exactly for overparameterized neural networks. In our next section, we
provide an approximate solution to this problem, sufficient for CATE estimation.

3.3 Partially identifiable energy-based models

A parameter is identifiable in a class of statistical models if every model describing the same
distribution has the same value of the parameter. If models with different parameter-values
give the same distribution, i.e., generate the same observed data in the large data limit, we
can no longer find the true model from the data even if the sample size is large (Lewbel,
2019). Identifiability is often achieved by introducing some constraint on the model class,
as is also the case here. We will construct partially identifiable representations in a class
of partially randomized energy-based models (EBMs). By partially identifiable, we mean if
two models give the same distribution, then their representations are only different by some
universal constants. A partially randomized EBM is constructed as follows.
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Suppose that we want to learn a k-dimensional representation of the covariates (k < d)1.
We let fθ : X → Rk be a neural network that generates the k-dimensional data representation.
To simplify the exposition in what follows, we assume fθ is linear, i.e., fθ(x) = θx for
θ ∈ Θ ⊂ Rk×d. We define k standard EBMs (LeCun et al., 2006) on X with a shared fθ:

pθ,j(x) = Z−1
θ,j exp

[
−β⊤

j fθ(x)
]
, ∀j ∈ [k], (3.3)

where Zθ,j =
∫

X exp
[
−β⊤

j fθ(x)
]
dx. We let P = {pθ,j | βj ∈ Rk, θ ∈ Θ} and P(βj) denote

the subset of P with a fixed βj . We define a partially randomized EBM as a mixture of
uniformly weighted EBMs pθ,j ∈ P(βj), j ∈ [K], with a fixed orthogonal k × k matrix
B = (β1, . . . , βk)2 and a shared fθ (θ is the only learnable parameter). By construction, the
partially randomized EBM satisfies the partial identifiability defined as follows.

Theorem 3. For any k × k orthogonal matrix B = (β1, . . . , βk) and pθ,j , pθ̃,j ∈ P(βj) such
that pθ,j(·) = pθ̃,j(·), ∀j ∈ [k], we have

fθ(·)− fθ̃(·) = C for some constant vector C. (3.4)

Next, we will introduce a training strategy for our partially randomized EBM, which will
enable the learnt representation model to converge to some limits that are only different by
some constants C like fθ and fθ̃ in (3.4). This will enable the follow-up CATE estimates
to converge consistently because the regression models µ̂0, µ̂1 (and ê) are indifferent to
conditioning on a random variable, or the same random variable plus some constant vector.
Furthermore, by standardizing the learnt representations, we can fix their mean to 0 and their
variance to 1 in any sample size. Given that the representations have mean 0 and variance 1,
the representations obtained from different runs of the experiments will have a correlation
close to 1 at each dimension in large samples, as will be demonstrated in Section 3.6.2.

3.4 Noise contrastive learning

Fitting energy-based models (EBMs) by maximum likelihood estimation (MLE) is often
infeasible because the partition function (Zθ,j) is intractable. Noise Contrastive Estimation
(NCE) proposed by Gutmann and Hyvärinen (2010, 2012) is a consistent and computationally
efficient alternative. The high-level idea of NCE is to optimize an EBM by contrasting it

1The errors of CATE learners depend on the performance of the outcome and propensity score models µ̂0,
µ̂1 and ê. Because some CATE learners do not use a propensity score model, the dimension k is tuned as a
hyper-parameter via cross-validation on the observed outcomes in this chapter.

2B is generated by first generating a matrix B0 ∈ Rk×k, where each entry is drawn independently from a
standard normal distribution, and then taking B as the matrix of eigenvectors of B0.
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with another noise distribution with known and easy-to-sample density. Advanced methods
have been proposed to tune the noise distribution, e.g., see Bose et al. (2018); Ceylan and
Gutmann (2018); Gao et al. (2020).

Here for every individual i ∈ [N ], we draw b corrupted samples X̃i1, . . . , X̃ib from a noise
distribution pX̃|X(x̃ | Xi) defined as follows. Each X̃ia is generated in two steps: (1) we
sample an independent binary variable with some probability for each feature of Xi, used
to decide which features of Xi will be corrupted, then (2) corrupt each selected continuous
feature by adding white noise drawn from a standard normal distribution, and corrupt each
selected categorical feature by uniformly sampling a value from its range. A mathematical
description of pX̃|X(x̃ | Xi) is provided in Section 3.9. Overall, the original and corrupted
data of individual i is given by

X̄i = (Xi, X̃i1, . . . , X̃ib) ∼ pX(x)
b∏

a=1
pX̃a|X(x̃a | x).

We split the N individuals into k subsets Ij , j ∈ [k], to train each of of k models pθ,j(x)
in the partially randomized EBM. Suppose we randomly permute the columns of X̄i and let
Vi = (Via : a ∈ [b+ 1]) be the permuted X̄i. Then each column of Vi has equal probability
(b+ 1)−1 for being the original sample Xi. We derive the predictive probability of Via = Xi

from the posterior distribution,

qθ,j(a | Vi) = (b+ 1)−1pθ,j(Via)p̃−a(Vi)∑b+1
c=1(b+ 1)−1pθ,j(Vic)p̃−c(Vi)

, (3.5)

where p̃−a(Vi) = ∏
a∈[b+1]:a′ ̸=a pX̃|X(Via′ | Via). It is noteworthy that the intractable partition

function Zθ,j in pθ,j (in (3.3)) cancels out in the expression of qθ,j(a | Vi). Let Wi ∈ {0, 1}b+1

indicate which column of Vi is Xi. We can think of {(Vi,Wi) : i :∈ Ij} as a set of labeled
“images” and optimize the probability qθ,j(a | Vi) to predict Wi. Let Nj = |Ij |. Our objective
function is the negative cross-entropy3,

Ln(θ) = k−1
k∑

j=1
LN,j(θ),

where LN,j(θ) is given by

LN,j(θ) = N−1
j

∑
i∈Ij

b+1∑
a=1

Wia log qθ,j(a | Vi) = N−1
j

∑
i∈Ij

log qθ,j(1 | X̄i). (3.6)

3This is essentially the ranking objective in (Józefowicz et al., 2016; Ma and Collins, 2018) with a different
noise distribution. We reformulate the training strategy as a more intuitive multiclass classification task.
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The representation model fθ is trained on all the samples, even though we split the samples
across the models pθ,j , j ∈ [k], in our partially randomized EBM. The training strategy
here follows the same principle as the other representation learning methods (Vincent, 2011;
Vincent et al., 2010): assume the covariates Xi live in some d∗-dimensional manifold (d∗ < d).
If qθ,j(a | Vi) is predictive of Wi, i.e., can distinguish any true sample Xi ∼ pX(x) from its
noisy proxy X̃i ∼ p̃X̃|X(x̃ | Xi), we have pθ,j(x) ≈ pX(x) in (3.5). This implies that the
low-dimensional representation given by fθ(x) is informative of the true covariates Xi; the
representation is also predictive of the outcome and treatment because they are generated by
the covariates. More formally, Theorem 4 below shows that by our training strategy, θ̂N will
converge to some θ0 such that pθ0,j(x) = pX(x) for any x ∈ X . Then by (3.4) in Theorem 3,
the limits of fθ̂N

(x) are only different by some universal constants.

Theorem 4. Suppose that the covariate space X is a compact subset of Rd, fθ(x) has a
compact parameter space Θ ⊂ Rk×d, and fθ(x) is continuous with respect to θ for any x ∈ X .
Assume that the density function pX(x) = pθ0,j(x) for some θ0 ∈ Θ. For any number of noise
samples b and θ̂N ∈ arg maxθ∈Θ Ln(θ), limN→∞ pθ̂N ,j(x) = pX(x) with probability 1.

The theorem is proven by showing that L∞,j(θ) is maximized by qθ,j(a | Vi) with
pθ,j(x) = pX(x), and verify the standard conditions for a consistent M-estimator θ̂N under a
weaker identifiability assumption; see Section 3.8.2 for more details.

3.5 Related works

Identifiability theory. Khemakhem et al. (2020b) propose two definitions of identifiability
for EBMs; weak and strong identifiability (in their Definitions 1 and 2). Their EBM is more
complex than ours with βj as a learnable parameter, while their objective is to identify both
βj and fθ(x). This is unnecessary for CATE estimation. Arguably, the partial identifiability
we define is stronger than both of their definitions. In their strong identifiability, under
some assumptions, each dimension of fθ is identifiable up to be multiplied by and plus some
constants, and each dimension of fθ can be permuted in any order. They also require a
specific network architecture for fθ. In our work, we use a simpler partially randomized EBM
to achieve a stricter version of identifiability, without restricting the architecture of fθ.

The works on nonlinear ICA and its generalization (Hyvarinen and Morioka, 2016;
Hyvarinen et al., 2019; Khemakhem et al., 2020a; Mita et al., 2021) propose the idea of using
contrastive learning for identifiable feature extraction when some auxiliary information (e.g.,
time steps) about the features is available. We use sample splitting and a noise contrastive
loss function for training the partially randomized EBM, assuming no auxiliary information
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is provided in the observational data. Monti et al. (2020) and Wu and Fukumizu (2020)
propose non-linear ICA based methods for causal inference on structural causal models (Pearl,
2009). The setup and problems studied in their works are different from our method which is
developed within the potential outcomes framework.

Representation learning. Representation learning is recently applied to balance or
match the covariate distribution between the treated and control group in observational data,
by minimizing the distributional distance between the group (Shalit et al., 2017), preserving
local similarity (Yao et al., 2018), minimizing counterfactual variance (Zhang et al., 2020)
and adversarial training (Kallus, 2020). We note that supervised dimensionality reduction in
a deep learning model is not reliable because the model can easily overfit the limited outcome
data without finding an informative representation of the covariates. Our proposed method
works as a preprocessing step to reduce the dimensionality curse for any regression model,
including these deep learning models which balance the distribution in their hidden layers.

In statistics, sufficient dimensionality reduction (SDR) (Adragni and Cook, 2009; Cook,
2009; Lee et al., 2013; Li, 1991) has been used in the models for estimating ATE and CATE
(Cheng et al., 2020b; Ghosh et al., 2021; Huang and Yang, 2022; Luo et al., 2019; Ma et al.,
2019). If the subspace spanned by the columns of a d × k matrix θ with k ≤ d satisfies
that Y ⊥⊥ X | θ⊤X, we call this subspace a SDR subspace. The idea of SDR is to project
the covariates X onto this subspace before feeding it into a parametric or nonparametric
regression model to estimate Y . To achieve the desired conditional independence, θ is jointly
learnt with the regression model. This is not straightforward for some of the ML models.
e.g., decision tree. Kallus et al. (2018) propose a matrix factorization based method for
preprocessing noisy and missing covariates. In contrast with these methods, our method
performs nonlinear dimensionality reduction of the covariates, which is more general for the
data living in some low-dimensional manifold, including linear subspace. Nabi and Shpitser
(2020) and Berrevoets et al. (2020) propose methods to deal with high-dimensional treatment
variables, which is not the problem we consider.

Covariates selection. When there are irrelevant covariates in a dataset, data analysis
should start with a covariates selection method, e.g., (De Luna et al., 2011; Greenewald
et al., 2021; Shortreed and Ertefaie, 2017). However, covariates selection methods often
have no guarantee to find the correct adjustment set for causal inference in finite samples.
Furthermore, (selected) covariates are correlated, especially when we allow more covariates to
be selected in order to satisfy the unconfoundedness assumption. Our representation learning
method can be applied to further reduce the dimensionality of the correlated covariates and
improve treatment effect estimation. In general, covariates selection and our method are
applied in different stages and complement each other in the data analysis process.
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3.6 Experiments

We make two claims in this chapter: (1) using our method as a preprocessing step increases
the performance of CATE learners; (2) the representation in our model is partially identifiable
so that the learnt representations and downstream CATE estimates are consistent. We next
test these two claims. Throughout our experiments, we use four different CATE learners:
X-Learner, DR-learner, T-Learner, and R-learner (Microsoft Research, 2019). We provide
more details of our experiments (on learners and hyperparameters) in Section 3.10.

3.6.1 CATE estimation

Our main contribution is a way to increase performance for any learner. We evaluate
learners’ performance using precision of estimating heterogeneous effects (PEHE) introduced
by Hill (2011) and now standard in CATE estimation. PEHE is essentially the expected risk
E
{
[τ̂(X)− τ(X)]2

}
we define in Section 3.2. Because any individual’s treated and control

outcomes are never observed jointly, CATEs are unobserved in any real-world data. The
literature thus relies on (semi-)synthetic data to evaluate CATE learners.

In our synthetic setup, the generating process of the observed variables O = (X,A, Y )
starts by sampling a latent variable U ∼ N (0, I5×5). Then we generate a set of covariates
X = N (g(U), Id×d), two potential outcomes, µ0(U) and µ1(U) and a treatment assignment
A ∼ Ber[e(U)]. The observed outcome is given by Y = N (Aµ0(U) + (1−A)µ1(U), 1). The
CATE is given by τ(U) = µ1(U) − µ0(U). The function g is a deep ReLU network; µ0

and µ1 are one-layer neural networks, with an exp-function on their output layers; e is a
one-layer network with a sigmoid-function on its output layer. By generating i.i.d samples
from this process, we create a training set (with size N specified in Table 3.1) and a large
testing set with 20k samples. Given a training set, we first use it to optimize our partially
randomized EBM. Then we preprocess it and apply CATE learners on these lower-dimensional
representations. As a comparison, we also apply the same CATE learners on the original
covariates.

Lower PEHE across CATE learners. Table 3.1 shows that our method greatly
benefits a broad spectrum of CATE learners on the synthetic dataset and semi-synthetic
dataset Twins (Almond et al., 2005) with real covariates, especially in small sample sizes.
While the gain of using our method diminishes somewhat in larger sample sizes, it is
still significant. More importantly, we observe that with our EBM, the performance gaps
between different learners shrink significantly. Specifically, R-learner with EBM has the best
performance on average over the table while it performs poorly in small samples without
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Table 3.1 Results on synthetic data and semi-synthetic data (Twins). Each row reports the
average PEHE (lower is better) over ten runs for each CATE learner (standard deviation
in script size): both with representations (indicated as “✓”), and without representation
(indicated as “✗”). For each run, we learn a new representation. In the above two blocks, we
vary sample sizes and dimensions using our synthetic setup, and in the bottom block, we
vary the sample size for the Twins-dataset. The best result is indicated in bold. In green ,
we emphasize the best results per row, each time with EBM.

Methods X-Learner DR-Learner T-Learner R-Learner

EBM ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

d N Synth. data with increasing sample size and increasing dimensions

50 100 2.309 ±.00 1.994 ±.02 4.594 ±.56 2.017 ±.04 2.441 ±.00 1.993 ±.01 3.194 ±.26 1.982 ±.04
100 250 2.779 ±.00 2.018 ±.01 4.056 ±.32 2.154 ±.39 2.838 ±.00 2.019 ±.01 3.702 ±.23 2.018 ±.01
150 500 2.618 ±.00 2.000 ±.01 3.030 ±.12 2.001 ±.01 2.641 ±.00 2.000 ±.01 2.877 ±.08 2.000 ±.01
200 1k 2.185 ±.00 1.940 ±.01 2.283 ±.02 1.941 ±.01 2.189 ±.00 1.939 ±.01 2.271 ±.01 1.940 ±.01
250 1.5k 2.267 ±.00 1.949 ±.02 2.427 ±.01 1.976 ±.00 2.271 ±.00 1.948 ±.01 2.436 ±.02 1.949 ±.02

N Synth. data with increasing sample size and dimensions fixed at d = 100
100 2.134 ±.00 1.927 ±.01 24.61 ±9.9 2.096 ±.09 2.279 ±.00 1.929 ±.01 3.192 ±.13 1.925 ±.01
250 2.779 ±.00 2.018 ±.01 4.056 ±.32 2.154 ±.39 2.838 ±.00 2.019 ±.01 3.702 ±.23 2.018 ±.01
500 2.155 ±.00 2.056 ±.02 2.334 ±.07 2.273 ±.67 2.166 ±.00 2.053 ±.02 2.271 ±.05 2.056 ±.02
1k 2.059 ±.00 1.964 ±.02 2.105 ±.01 2.016 ±.16 2.061 ±.00 1.964 ±.02 2.086 ±.01 1.965 ±.02

1.5k 2.013 ±.00 1.998 ±.02 2.043 ±.01 1.998 ±.02 2.014 ±.00 1.998 ±.02 2.024 ±.01 1.991 ±.02

N Twins (d = 48) with increasing sample size

500 0.214 ±.00 0.144 ±.00 0.236 ±.04 0.182 ±.05 0.221 ±.00 0.145 ±.00 0.222 ±.02 0.145 ±.00
1k 0.294 ±.00 0.162 ±.00 0.348 ±.12 0.173 ±.03 0.301 ±.00 0.162 ±.01 0.532 ±.11 0.161 ±.00

1.5k 0.165 ±.00 0.154 ±.00 0.189 ±.06 0.159 ±.01 0.165 ±.00 0.154 ±.00 0.172 ±.01 0.154 ±.00
2k 0.167 ±.00 0.156 ±.00 0.197 ±.03 0.159 ±.00 0.167 ±.00 0.156 ±.00 0.222 ±.05 0.157 ±.00

2.5k 0.297 ±.00 0.153 ±.00 0.390 ±.19 0.156 ±.00 0.297 ±.00 0.153 ±.00 0.358 ±.22 0.153 ±.00

EBM. Overall, our experimental results align with our theoretical discussion in Section 3.2:
by reducing the dimensionality d to a smaller number, the learners will have lower errors, i.e.,
lower PEHEs and smaller performance gaps on the testing sets.

Lower PEHE than benchmark dimensionality reduction methods. Based on
our previous experiment, a logical next question to ask is whether other dimensionality
reduction methods may also help. We compare our EBM method to various linear and
nonlinear dimensionality reduction methods in prepossessing the real covariates of the Twins
dataset. Specifically, we compare against Principal Components Analysis (PCA), Feature
Agglomeration (FA), Spectral Embedding (SE), Isomap, KernelPCA with an RBF kernel, and
an Autoencoder (AE). Table 3.2 shows that our EBM method outperforms all the benchmarks
significantly over different sample sizes.
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Table 3.2 Results using different dimensionality reduction methods. Using an R-learner, we
report the PEHE of our EBM and other benchmark methods over 10 runs (standard deviation
in script size): PCA, Feature Agglomeration (FA), Spectral Embedding (SE), Isomap, and
KernelPCA (K-PCA) and Autoencoder (AE).

Methods PCA FA SE Isomap K-PCA AE EBM

N Twins (d = 48) with increasing sample size

500 1.092 ±.11 1.758 ±1.1 1.011 ±.00 1.006 ±.00 1.015 ±.00 0.580 ±.03 0.145 ±.00
1k 1.015 ±.00 0.963 ±.00 1.010 ±.00 1.004 ±.00 1.010 ±.00 0.549 ±.04 0.161 ±.00

1.5k 1.014 ±.00 0.965 ±.00 1.005 ±.00 1.006 ±.00 1.012 ±.00 0.546 ±.04 0.154 ±.00
2k 1.013 ±.00 0.957 ±.00 1.009 ±.00 1.007 ±.00 1.013 ±.00 0.579 ±.03 0.157 ±.00

2.5k 1.007 ±.00 0.951 ±.00 1.002 ±.00 1.006 ±.00 1.006 ±.00 0.542 ±.04 0.153 ±.00

To further validate our proposed method, we repeat the same experiment using additional
regression models and data, and report consistent results to those we present in this
section, in Section 3.10. Overall, we do not find sample splitting increase the variance of
our method across all our experiments. As we explained below eq. (3.6), the representation
model fθ is trained with all the samples in our objective function.

3.6.2 Partial identifiability of representations

In this section, we empirically validate that our method produces identifiable representations.
Having an identifiable method is important for later inspection of the representations, but
also to produce consistent CATE learners. Both of which are important in practice.
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Figure 3.2 Results on identifiability. Above— For each model (an autoencoder (AE), and
our model (EBM)) we learn ten distinct representations. We then fit an R-Learner on
each representation, and calculate the standard deviation of their CATE estimates. Our
method has lower standard errors compared to AE. Below— We report the mean correlation
coefficient (MCC) between the representations on the Twins data (higher is better). Our
EBM becomes more consistent with larger samples (error bars indicate standard deviation
on MCC), and even tends to 1 in large samples.
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Converging CATE estimates. The first panel in Figure 3.2 reports the standard
deviation of the CATE-estimates, by an R-learner when fitted on the representations of an
autoencoder (AE) and our method (EBM). The representations have the same amount of
dimensions (k = 5). Figure 3.2 shows that our model decreases the standard deviation with
increasing sample size—this is important, as applications require estimates to be consistent.

Converging representations. As discussed at the end of Section 3.4, the learnt
representations after standardization should correlate as the sample size increases. We train
our EBM ten times using distinct random initializations, while keeping the orthogonal matrix
fixed across runs. We subsequently compute the mean correlation coefficient (MCC) between
the representations of the test-set from different runs. The MCC is computed by averaging
the correlation between each dimension in the representations of 20k samples from the test
set. Note that the latter is a strict definition as it requires the representation to be consistent
for each individual dimension.4 Reported in the second panel, we see that our EBM’s MCC
grows as the sample size increases, leaving the (unidentifiable) AE behind, indicating that
our EBM is identifiable, further confirming our theory.

3.7 Conclusions

We propose a partially randomized EBM to learn a partially identifiable low-dimensional
representation of moderate or high-dimensional covariates in CATE estimation. We show
theoretically and empirically that by training our EBM with a noise contrastive loss function
and a sample splitting strategy, our representations converge to a set of limits differing only
by some constants. Experiments on multiple datasets with various dimensions and sample
sizes verify our theories and demonstrate a significant performance increase when using our
method as a preprocessing step for CATE estimation.

Our work opens a few new directions for future research. First, our method currently
operates within the standard setup of observational data in causal inference, while our partial
identifiability theory does not rely on the network architecture of fθ. Extending our work
to other high-dimensional settings such as time series or vision could prove useful for many
real world applications. Second, as an interpretable approach within CATE estimation,
matching is concerned with finding similar individuals across treated and control groups.
While effective, matching becomes harder in high-dimensions. Extending our approach to
remain interpretable (e.g. by measuring each covariate’s influence to each dimension in the
representation) can arm matching approaches against the dimensionality curse.

4Previous work (Khemakhem et al., 2020b) tests identifiability using the MCC maximized by canonical-
correlation analysis (CCA). Here we compute the exact correlation to test our stronger version of identifiability.
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3.8 Technical Proofs

3.8.1 Proof of Theorem 3

Proof. Consider two different parameter values θ and θ̃ such that pθ,j(x) = pθ̃,j(x). Using
the expression (3.3) and applying logarithm to both sides,

β⊤
j fθ(x) = β⊤

j fθ̃(x) + log Zθ̃,j

Zθ,j
. (3.7)

By concatenating the last equation for all j ∈ [k], we have

B⊤fθ(x) = B⊤fθ̃(x) +G, (3.8)

where G =
(

log Zθ̃,j

Zθ,j
: j ∈ [k]

)
is a k-dimensional vector. By definition, BB⊤ = Ik×k. Then

multiplying the two side of (3.8) by B proves (3.4),

fθ(x) = fθ̃(x) + C for any x ∈ X and C = BG. (3.9)

Reversely, multiplying two sides of (3.9) by β⊤
j , we obtain (3.7),

β⊤
j fθ(x) = β⊤

j fθ̃(x) + β⊤
j BG = β⊤

j fθ̃(x) +Gj = β⊤
j fθ̃(x) + log Zθ̃,j

Zθ,j
.

Then multiplying −1 and applying exp(·) to both sides,

pθ,j(x) = Z−1
θ,j exp

[
−β⊤

j fθ(x)
]

= Z−1
θ̃,j

exp
[
−β⊤

j fθ̃(x)
]

= pθ̃,j(x).

3.8.2 Proof of Theorem 4

Proof. We first show qθ,j(a | Vi) with pθ,j(x) = pX(x) is a maximizer of L∞,j(θ), then we
show the standard conditions of consistent M-estimators hold for LN,j(θ). We assume the
sample splitting always keep the individuals in the same folds as N → ∞. This can be
achieved by keeping the existing individuals in the same folds and randomly assigning a new
individual to a fold as N →∞. For large N , each fold will have roughly the same number of
individuals, and Nj = |Ij | → ∞ for every j ∈ [k] as N →∞.

Step 1. Recall that for every i ∈ [N ], X̄i = (Xi, X̃i1, . . . , X̃ib) ∼ pX(x)∏b
a=1 p̃X̃|X(x̃ | x).

We randomly permute the columns of X̄i and let Vi = (Vi,1, · · ·Vi,b+1) be the permuted X̄i.
Each column of Vi has equal probability (b+ 1)−1 for being the clean sample Xi. The variable
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Wi ∈ {0, 1}b+1 indicate which column of Vi is Xi. Here, we define a categorical variable
Si ∈ [b+ 1] such that Si = a if Wia = 1. We know that

pSi(a) = 1/(b+ 1), ∀a ∈ [b+ 1].

We define the marginal distribution of v = (vc : c ∈ [b+ 1]) as

Λj(v) =
b+1∑
a=1

pS(a)pV |S(v|a) =
b+1∑
a=1

(b+ 1)−1pX(va)p̃−a(v),

where p̃−a(v) = ∏
a∈[b+1]:a′ ̸=a pX̃|X(va′ | va). We define the posterior probability of S = a as

pS|V (a | v) = (b+ 1)−1pX(va)p̃−a(v)∑b+1
c=1(b+ 1)−1pX(vc)p̃−c(v)

.

This corresponds to the posterior probability qθ,j(a | v) based on the model pθ,j(x) in (3.5).

As N →∞, i.e., Nj →∞, the objective function in (3.6) is given by

L∞,j(θ) =
∫

Λj(v)
[

b+1∑
a=1

pS|V (a | v) log qθ,j(a | v)
]
dv.

Because Λj(v) > 0 and Lemma 8, L∞,j(θ) is maximized when

qθ,j(a | v) = pS|V (a | v), ∀a ∈ [b+ 1]. (3.10)

Suppose v = (va′ : a′ ∈ [b+ 1]) satisfies that va′ = ξ for all a′ ∈ [b+ 1] \ {a}. Then

p̃−c(v) = p̃X̃|X(va | ξ)
[
pX̃|X(ξ | ξ)

]b−1
,∀c ∈ [b+ 1] \ {a}

and
p̃−c(v) = p̃−c′(v),∀c, c′ ∈ [b+ 1] \ {a}. (3.11)

We continue to rewrite (3.10) as

pθ,j(va)p̃−a(v)∑b+1
c=1 pθ,j(vc)p̃−c(v)

= pX(va)p̃−a(v)∑b+1
c′=1 pX(vc′)p̃−c′(v)

pθ,j(va)∑b+1
c=1 pθ,j(vc)p̃−c(v)

= pX(va)∑b+1
c′=1 pX(vc′)p̃−c′(v)∑b+1

c=1 pθ,j(vc)p̃−c(v)
pθ,j(va) =

∑b+1
c′=1 pX(vc′)p̃−c′(v)

pX(va)

p̃−a(va) +
∑
c ̸=a

pθ,j(vc)p̃−a(vc)
pθ,j(va) = p̃−a(va) +

∑
c′ ̸=a

pX(vc′)p̃−a(vc′)
pX(va)
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pθ,j(ξ)
pθ,j(va) = pX(ξ)

pX(va)
β⊤

j [fθ(ξ)− fθ(va)] = β⊤
j [fθ0(ξ)− fθ0(va)] ,

The fifth line is attained by (3.11). The last line is achieved by the assumption in the
theorem. Combing the last equation for all j ∈ [k] and using the fact that B orthogonal,

B⊤ [fθ(ξ)− fθ(va)] = B⊤ [fθ0(ξ)− fθ0(va)]
fθ(ξ)− fθ(va) = fθ0(ξ)− fθ0(va)

fθ(va) = fθ0(va) + C(θ, θ0).

Then,

pθ,j(x) = Z−1
θ,j exp

[
−β⊤

j fθ(x)
]

=
exp

[
−β⊤

j fθ0(x)− β⊤
j C(θ, θ0)

]
∫

X exp
[
−β⊤

j fθ0(x)− β⊤
j C(θ, θ0)

]
dx

= pX(x).

For any θ̂ ∈ arg maxθ∈Θ L∞,j(θ), we have pθ̂,j(x) = pX(x) for any x ∈ X .

Step 2. Because X and Θ are compact, the value of each covariate and network pa-
rameter is bounded. Then the function we optimize in (3.6), gj(x̄; θ) = log qθ,j(1 | x̄), is
bounded for any x̄ = (x, x̃i1, . . . , x̃ib). Then we denote LN,j(θ) in (3.6) by EN

[
gj(X̄; θ)

]
=

N−1
j

∑
i∈Ij

gj(X̄i; θ). Using the uniform law of large number (ULLN) (Jennrich, 1969, Theo-
rem 2) and (Newey and McFadden, 1994, Lemma 2.4), we have

sup
θ∈Θ

∣∣∣EN

[
gj(X̄; θ)

]
− E

[
gj(X̄; θ)

]∣∣∣ p→ 0.

Now we change the exact identifiability assumption in (Wooldridge, 2010, Theorem 12.2)
and (Newey and McFadden, 1994, Theorem 2.5) to our partial identifiability assumption.
Suppose that there is a subset Θ0 ⊂ Θ such that for every θ0 ∈ Θ0, pθ0,j(x) gives the same
distribution as pX(x), and any θ0 is a non-unique maximizer of E

[
gj(X̄; θ)

]
.

We define an open ball with radius equal to η > 0 for every θ0 ∈ Θ0. The region inside
and outside these open balls is given by

Θη =
{
θ ∈ Θ

∣∣∣∣ arg min
θ0∈Θ0

∥θ − θ0∥2 < η

}
and Θc

η =
{
θ ∈ Θ

∣∣∣∣ arg min
θ0∈Θ0

∥θ − θ0∥2 ≥ η
}
.
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Using the proof of (Newey and McFadden, 1994, Theorem 2.1), ∀ϵ > 0, θ0 ∈ Θ0 and
θ̂N ∈ arg maxEN

[
gj(X̄; θ)

]
, we have with probability approaching to 1:

E
[
gj(X̄; θ̂N )

]
> E

[
gj(X̄; θ0)

]
− ϵ. (3.12)

By the compactness of Θc
η and the assumption that fθ is continuous w.r.t to θ, we have

sup
θ∈Θc

η

E
[
gj(X̄; θ)

]
= E

[
gj(X̄; θ∗)

]
< E

[
gj(X̄; θ0)

]
for some θ∗ ∈ Θc

η.

Thus, by ϵ = E
[
gj(X̄; θ0)

]
−supθ∈Θc

η
E
[
gj(X̄; θ)

]
, it follows from (3.12) that with probability

approaching to 1,
E
[
gj(X̄; θ̂N )

]
> sup

θ∈Θc
η

E
[
gj(X̄; θ)

]
⇒ θ̂N ∈ Θη. (3.13)

Since (3.13) is true for any η > 0, we have θ̂N ∈ Θ0 with probability 1 as N →∞. We note
that the same proof holds if we consider the summation of EN

[
gj(X̄; θ)

]
over all j ∈ [k].

Lemma 8. Suppose w = (w1, . . . , wb) > 0 and
∑b

a=1wa = 1,

f(w̃;w) =
b∑

a=1
wa log w̃a subject to w̃ = (w̃1, . . . , w̃b) > 0 and

b∑
a=1

w̃a = 1.

Then f(w̃;w) is maximized at w̃ = w.

Proof. Suppose g(w̃;w) = ∑b
a=1wa log w̃a + λ

(∑b
a=1 w̃a − 1

)
. We have

∂g(w̃;w)
∂w̃c

= 0⇒ w̃c = −wc

λ
and ∂g(w̃;w)

∂λ
= 0⇒

b∑
a=1

w̃a = 1.

Combining both conditions, we have ∑b
a=1 w̃a = − 1

λ

∑b
a=1wc = − 1

λ = 1 ⇒ λ = −1. Then,
w̃c = −wc

−1 ⇒ w̃c = wc. Then by a second-derivative test on the bordered Hessian of g(w̃;w),
we have w̃ = (w̃1, . . . , w̃b) = (w1, . . . , wb) is a maximizer of the function f(w̃;w).

3.9 Noise sampler

We draw a noise sample from pX̃|X(x̃ | Xi). For each feature Xis of the d-dimensional Xi,
s ∈ [d], we sample an independent binary variable Ris ∼ Ber(q) to decide if the s-th feature
Xis will be corrupted. If Ris = 1, we will corrupt the s-th feature, otherwise not. Overall,
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the first part of pX̃|X(x̃ | Xi) is given by

d∏
s=1

qRis(1− q)1−Ris ,

where q is the only hyperparameter in pX̃|X(x̃ | Xi). We use the same q for all j ∈ [k]. In
Section 3.10.2, we describe how q (called perturbation prob.) is selected by validation.

Suppose that Ris = 1. If the s-th feature is continuous, we will corrupt it by adding a
white noise Eis drawn from a standard normal distribution, i.e.,

Eis ∼ pEs|Rs
(es | 1) = N (0, 1).

If the s-th feature is categorical and takes its value in Xs, we will corrupt it by replacing Xis

with a uniform sample Eis drawn from the same range Xs, i.e.,

Eis ∼ pEs|Rs
(es | 1) = 1/|Xs|.

Suppose that Ris = 0. We do not corrupt the s-th feature. That is,

• Eis = 0 and pEs|Rs
(0 | 0) = 1 if the s-th feature is continuous and Ris = 0;

• Eis = Xis and pEs|Rs,Xs
(Xis | 0, Xis) = 1 if the s-th feature is categorical and Ris = 0.

Overall, the probability pX̃|X(X̃i | Xi) is computed using Ris, Eis and Xis for all s ∈ [d],

pX̃|X(X̃i | Xi) =
d∏

s=1
qRis(1− q)1−RispEs|Rs,Xs

(Eis | Ris, Xis).

where pEs|Rs,Xs
(Eis | Ris, Xis) only depends on Xis if the s-th feature is categorical and

Ris = 0, otherwise pEs|Rs,Xs
(Eis | Ris, Xis) = pEs|Rs

(Eis | Ris). The corrupted sample X̃i is
obtained by either adding Eis to Xis or replacing Xis by Eis for every s ∈ [d]. We do not
need to consider this step when we compute the probability p̃X̃|X(X̃i | Xi).

3.10 Additional experiments & hyperparameters

In Section 3.10.1 we repeat our experiments in Table 3.1 using different regression models
to estimate the outcomes and propensity score in the same CATE learners, and using an
additional real-world dataset. For hyperparameter settings we refer to Section 3.10.2.
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Table 3.3 Results on (semi-)synthetic data with PowerTransform Regression. Results are
averaged over ten runs with and without the same representations in Table 3.1.

Methods X-Learner DR-Learner T-Learner R-Learner
EBM ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

d N Synth. data with increasing sample size and increasing dimensions
50 100 2.267 ±.00 2.010 ±.03 5.593 ±2.2 2.015 ±.05 2.455 ±.00 2.011 ±.03 53.17 ±5.2 11.16 ±3.9
100 250 2.754 ±.00 2.019 ±.01 3.963 ±.24 2.027 ±1.2 2.798 ±.00 2.020 ±.01 60.10 ±4.2 10.70 ±3.9
150 500 2.575 ±.00 2.002 ±.01 2.986 ±.08 2.001 ±.01 2.595 ±.00 2.001 ±.01 49.78 ±4.2 12.31 ±1.8
200 1k 2.197 ±.00 1.952 ±.00 2.293 ±.03 1.941 ±.01 2.202 ±.00 1.951 ±.01 42.76 ±3.9 2.838 ±.64
250 1.5k 2.288 ±.00 1.966 ±.04 2.410 ±.04 1.979 ±.03 2.295 ±.00 1.968 ±.04 42.03 ±3.6 2.535 ±.15

N Synth. data with increasing sample size and dimensions fixed at d = 100
100 2.150 ±.00 1.964 ±.02 32.63 ±13 2.147 ±.15 2.289 ±.00 1.973 ±.03 58.80 ±5.1 5.713 ±2.2
250 2.754 ±.00 2.019 ±.01 3.963 ±.24 2.027 ±1.2 2.798 ±.00 2.020 ±.01 60.10 ±4.2 10.70 ±3.9
500 2.150 ±.00 2.029 ±.02 2.319 ±.06 2.006 ±.05 2.160 ±.00 2.028 ±.03 41.85 ±3.4 3.884 ±.79
1k 2.053 ±.00 1.986 ±.02 2.102 ±.01 1.989 ±.01 2.057 ±.00 1.987 ±.02 39.49 ±3.2 2.637 ±.20

1.5k 2.008 ±.00 1.999 ±.02 2.354 ±.01 1.999 ±.52 2.008 ±.00 2.000 ±.02 37.17 ±2.9 3.949 ±.77

N Twins (d = 48) with increasing sample size
500 0.203 ±.00 0.187 ±.06 4.383 ±.22 0.185 ±.02 0.204 ±.00 0.248 ±.24 300.0 ±16. 2.176 ±.89
1k 0.177 ±.00 0.169 ±.03 0.194 ±.01 0.163 ±.01 0.177 ±.00 0.159 ±.02 31.39 ±2.5 1.029 ±1.1

1.5k 0.169 ±.00 0.154 ±.00 0.172 ±.01 0.183 ±.08 0.169 ±.00 0.155 ±.00 31.23 ±2.3 0.459 ±.15
2k 0.167 ±.00 0.161 ±.00 0.168 ±.00 0.163 ±.00 0.168 ±.00 0.161 ±.00 29.95 ±2.4 0.629 ±.30

2.5k 0.169 ±.00 0.162 ±.00 0.170 ±.00 0.163 ±.00 0.169 ±.00 0.162 ±.00 29.79 ±2.4 0.439 ±.19

N IHDP (d = 25) with increasing sample size
100 1.814 ±.01 1.502 ±.03 3.755 ±.72 1.637 ±.12 1.845 ±.00 1.507 ±.05 35.77 ±6.3 21.36 ±17.
250 1.713 ±.00 1.598 ±.04 1.837 ±.09 1.653 ±.13 1.727 ±.00 1.593 ±.03 11.71 ±1.5 9.552 ±4.0
500 1.603 ±.00 1.554 ±.02 1.672 ±.05 1.571 ±.03 1.627 ±.00 1.556 ±.02 23.45 ±2.5 15.19 ±3.9

3.10.1 CATE learners with different regression models and datasets

Consider Tables 3.3-3.4-3.5, where we report the PEHE given the same experimental setup
as we have in Table 3.1; for additional data (Infant Health Development Program (IHDP)
(MacDorman and Atkinson, 1999)), and three additional regression models (PowerTransform
Regression (Yeo and Johnson, 2000), Polynomial Regression, and Ridge Regression,
respectively). From our results we learn that our EBM is agnostic to the choice of regression
model, and is versatile enough to also perform well given other data. These results are
promising and should give some assurance regarding our method before application in practice.

As we have in Table 3.1, we ran each CATE learner on ten distinct representations, given
different folds of the data, and averaged the results. Note that we have not specifically
optimised the EBM’s hyperparameters for these different regression models, but rather kept
them as they were in Table 3.1 (actual hyperparameter values are reported in Table 3.6).
Note that these results are in line with those reported earlier using different regression models.
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Table 3.4 Results on (semi-)synthetic data using Polynomial Regression. Results are
averaged over ten runs with and without the same representations in Table 3.1.
Methods X-Learner DR-Learner T-Learner R-Learner

EBM ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

d N Synth. data with increasing sample size and increasing dimensions
50 100 2.095 ±.00 2.089 ±.09 75.12 ±26. 2.500 ±.44 2.124 ±.00 2.095 ±.09 110.8 ±7.1 26.61 ±7.6
100 250 2.109 ±.00 2.026 ±.03 11.67 ±1.9 2.138 ±.30 2.168 ±.00 2.028 ±.03 50.45 ±4.4 10.72 ±4.0
150 500 2.048 ±.00 2.008 ±.02 8.668 ±1.5 2.006 ±.01 2.142 ±.00 2.008 ±.02 44.29 ±3.4 12.35 ±1.8
200 1k 1.964 ±.00 1.949 ±.02 7.278 ±1.3 1.949 ±.02 2.088 ±.00 1.949 ±.02 42.04 ±3.4 2.973 ±.57
250 1.5k 1.945 ±.00 1.945 ±.03 6.764 ±1.2 1.979 ±.03 2.109 ±.00 1.945 ±.04 41.71 ±3.5 2.555 ±.18

N Synth. data with increasing sample size and dimensions fixed at d = 100
100 2.009 ±.00 1.987 ±.09 157.1 ±50. 2.176 ±.13 2.038 ±.00 1.992 ±.09 54.81 ±4.3 6.612 ±3.5
250 2.109 ±.00 2.019 ±.01 11.67 ±1.9 2.028 ±.02 2.168 ±.00 2.019 ±.01 50.46 ±4.4 9.623 ±3.0
500 1.897 ±.00 2.055 ±.05 8.020 ±1.7 2.003 ±.00 2.007 ±.00 2.051 ±.05 43.56 ±3.9 3.758 ±.82
1k 2.210 ±.00 1.995 ±.02 5.871 ±.90 2.289 ±.88 2.338 ±1.4 1.996 ±.02 40.38 ±3.1 2.965 ±.69

1.5k 2.341 ±.00 2.002 ±.02 4.637 ±.75 2.156 ±.47 2.474 ±.00 2.000 ±.02 38.31 ±2.9 3.945 ±.76

N Twins (d = 48) with increasing sample size
500 0.345 ±.00 0.155 ±.00 4.538 ±1.4 0.158 ±.00 0.377 ±.00 0.155 ±.00 116.0 ±14. 0.847 ±.19
1k 0.486 ±.00 0.149 ±.00 1.747 ±.33 0.157 ±.01 0.529 ±.00 0.149 ±.00 78.22 ±7.3 0.482 ±.11

1.5k 0.455 ±.00 0.153 ±.00 1.453 ±.40 0.186 ±.06 0.481 ±.00 0.153 ±.00 142.3 ±21. 0.395 ±.13
2k 0.426 ±.00 0.159 ±.00 1.109 ±.32 0.162 ±.00 0.451 ±.00 0.159 ±.00 38.13 ±4.2 0.655 ±.33

2.5k 0.403 ±.00 0.159 ±.00 0.921 ±.14 0.163 ±.01 0.418 ±.00 0.159 ±.00 33.39 ±2.8 0.459 ±.19

N IHDP (d = 25) with increasing sample size
100 1.608 ±.02 1.565 ±.25 8.076 ±2.4 1.956 ±.64 1.944 ±.00 1.542 ±.18 24.53 ±5.1 11.52 ±8.4
250 2.335 ±.00 1.637 ±.02 8.607 ±.82 1.964 ±.49 2.219 ±.00 1.627 ±.03 35.37 ±3.8 18.13 ±7.8
500 2.177 ±.00 1.536 ±.00 4.216 ±.35 1.739 ±.36 2.233 ±.00 1.535 ±.00 26.06 ±4.5 10.18 ±5.6

Table 3.5 Results on (semi-)synthetic data with Ridge Regression. Results are averaged
over ten runs with and without the same representations in Table 3.1.
Methods X-Learner DR-Learner T-Learner R-Learner

EBM ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

d N Synth. data with increasing sample size and increasing dimensions
50 100 2.373 ±.00 2.001 ±.02 10.53 ±4.8 2.028 ±.06 2.471 ±.00 1.997 ±.02 53.24 ±5.3 11.33 ±3.9
100 250 2.802 ±.00 2.021 ±.01 8.769 ±1.5 2.041 ±.05 2.871 ±.00 2.021 ±.01 130.6 ±75. 22.30 ±8.3
150 500 2.581 ±.00 2.001 ±.01 3.074 ±.10 2.001 ±.01 2.601 ±.00 2.001 ±.01 50.13 ±4.1 12.31 ±1.8
200 1k 2.187 ±.00 1.942 ±.01 2.304 ±.03 1.941 ±.01 2.192 ±.00 1.941 ±.01 42.77 ±3.8 2.839 ±.62
250 1.5k 2.270 ±.00 1.958 ±.02 2.412 ±.04 1.977 ±.03 2.274 ±.00 1.957 ±.02 42.03 ±3.5 2.511 ±.17

N Synth. data with increasing sample size and dimensions fixed at d = 100
100 2.124 ±.00 1.946 ±.03 78.12 ±24. 2.145 ±.11 2.272 ±.00 1.948 ±.04 58.24 ±4.9 5.346 ±1.9
250 2.802 ±.00 2.018 ±.00 4.489 ±.26 2.025 ±.01 2.871 ±.00 2.019 ±.01 60.27 ±4.1 9.607 ±3.0
500 2.152 ±.00 2.059 ±.04 2.373 ±.08 2.003 ±.05 2.164 ±.00 2.056 ±.04 42.13 ±3.5 3.755 ±.83
1k 2.062 ±.00 1.984 ±.02 2.109 ±.01 2.022 ±.09 2.064 ±.00 1.983 ±.02 39.49 ±3.2 2.608 ±.19

1.5k 2.013 ±.00 2.003 ±.02 2.052 ±.01 2.398 ±1.2 2.014 ±.00 2.001 ±.02 37.19 ±2.9 3.954 ±.77

N Twins (d = 48) with increasing sample size
500 0.182 ±.00 0.151 ±.00 1.161 ±.20 0.168 ±.02 0.183 ±.00 0.151 ±.00 134.6 ±12. 0.842 ±.22
1k 0.196 ±.00 0.159 ±.00 0.261 ±.02 0.172 ±.01 0.196 ±.00 0.159 ±.00 58.70 ±4.4 0.455 ±.14

1.5k 0.166 ±.00 0.156 ±.00 0.171 ±.01 0.159 ±.00 0.166 ±.00 0.156 ±.00 29.72 ±2.4 0.415 ±.14
2k 0.163 ±.00 0.153 ±.00 0.319 ±.04 0.157 ±.00 0.163 ±.00 0.153 ±.00 176.0 ±13. 0.601 ±.30

2.5k 0.169 ±.00 0.162 ±.00 0.321 ±.04 0.164 ±.00 0.169 ±.00 0.162 ±.00 207.8 ±17. 0.479 ±.19

N IHDP (d = 25) with increasing sample size
100 1.807 ±.00 1.673 ±.02 5.933 ±1.2 2.456 ±.47 1.739 ±.00 1.675 ±.02 23.56 ±3.2 14.19 ±9.3
250 1.659 ±.00 1.579 ±.03 2.883 ±.12 2.426 ±.09 1.693 ±.00 1.577 ±.03 11.01 ±2.0 7.985 ±3.1
500 1.625 ±.00 1.614 ±.01 1.819 ±.16 1.673 ±.09 1.641 ±.00 1.610 ±.02 6.614 ±.59 5.602 ±1.6
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3.10.2 Hyperparameters

We report our chosen hyperparameters for each sample-size in Table 3.6. We noticed that
the architecture and amount of noisy samples made little difference to performance in PEHE.
The perturbation probability, and the value of k did make a difference, especially in larger
sample sizes. We use EconML (Microsoft Research, 2019) to evaluate the CATE learners.
We keep the hyperparameters for each learner as their default. In Table 3.1 we replace each
regressor by a KernelRidge regressor, and each classifier by a support vector machine (SVC);
both implemented by Pedregosa et al. (2011).

Table 3.6 Chosen hyperparameters for Table 3.1. We performed hyperparamter sweeps for
each setup using a Bayesian optimisation scheme (Biewald, 2020). Our searched ranges are
reported in Table 3.7. Twins settings were also used in Figure 3.2, but with a fixed k = 5
for both AE and EBM. Each integer (separated by a dash) in “Architecture” indicates layer
width; “20-20” thus means a neural network with two hidden layers, each of width 20.
Setup b k Architecture Perturbation prob.
d N Synth. data, increasing dim
50 100 10 3 20-20-20 0.20
100 250 10 4 20-20-20 0.50
150 500 5 3 20-20 0.20
200 1k 3 15 20-20-20-20 0.50
250 1.5k 3 20 20-20-20 0.50

N Synth. data, fixed dim (d=100)
100 5 15 20-20-20-20-20-20 0.20
250 10 4 20-20-20 0.50
500 3 10 20-20-20-20 0.50
1k 3 20 20-20 0.35

1.5k 3 10 20-20 0.30
N Twins, increasing N

500 5 15 20-20-20-20-20-20 0.45
1k 5 16 20-20-20-20-20-20 0.55

1.5k 5 16 20-20-20-20-20-20 0.55
2k 4 14 20-20-20-20-20-20 0.55

2.5k 4 12 20-20-20-20-20-20 0.50
N IHDP, increasing N

100 1 5 36-36-36-36-36-36 0.45
250 1 5 36-36-36-36-36-36 0.45
500 1 5 36-36-36-36-36-36 0.45

Table 3.7 Ranges for hyperparameter sweeps in Table 3.6. For each setup: (I) Synth. data,
increasing dim, (II) Synth. data, fixed dim (d=100) (III) Twins, increasing dim, and (IV)
IHDP, increasing dim; we used a Bayesian optimization (BO) scheme to find our selected
hyperparameters. In or BO setup, we maximized the loss (3.6) on a (20%) validation-set.
Setup b k # layers Perturbation prob.
(I) U(1; 2; ...; 10) U(3; 4; ...; 25) U(2; 3; 4; 5; 6) U(0.2; 0.8)
(II) U(1; 2; ...; 10) U(3; 4; ...; 25) U(2; 3; 4; 5; 6) U(0.2; 0.8)
(III) U(1; 2; ...; 10) U(3; 4; ...; 25) U(2; 3; 4; 5; 6) U(0.2; 0.8)
(IV) U(1; 2; ...; 10) U(3; 4; ...; 25) U(2; 3; 4; 5; 6) U(0.2; 0.8)





Chapter 4

Overlapping representations for the
estimation of conditional average
treatment effects

The choice of making an intervention depends on its potential benefit or harm in comparison
to alternatives. Estimating the likely outcome of alternatives from observational data is
a challenging problem as all outcomes are never observed, and treatment assignment bias
precludes the direct comparison of differently intervened groups. Despite their empirical
success, we show that algorithms that learn domain-invariant representations of inputs (on
which to make predictions) are often inappropriate, and develop generalization bounds that
demonstrate the dependence on domain overlap and highlight the need for invertible latent
maps. Based on these results, we develop a deep kernel regression algorithm and posterior
regularization framework that outperforms a variety of baseline methods in simulations.

4.1 Introduction

Counterfactual estimation poses the question of what would have been the outcome if a
different intervention had been applied. In order to make decisions in complex domains,
making predictions on the causal effects of different actions and how these may vary across
individuals is critical. In this chapter, we focus on the problem of making these predictions
based on observational data, which is increasingly available in many domains such as medicine,
public policy and advertising. In this setting, past actions, outcomes and context are available,
but not the treatment assignment mechanism – we do not know why a given individual was
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intervened or not. The treatment assignment mechanism will often be causally affected by
context variables that also causally influence the outcome. As an example in Figure 4.1,
suppose the context variable (Xi) is individual i’s motivation for finding a new job, the
treatment (Ai) is a government training program and the outcome (Yi) is how soon individual
i finds a new job. It is often that motivated individuals are more likely to both take advantage
of the government training program and find a new job soon.

Xi

AiYi

Figure 4.1 Causal graph of three random variables Xi (individual’s motivation), Ai (govern-
ment training program) and Yi (employment outcome).

Learning from observational data requires adjusting for the covariate shift that exists
between groups of individuals that are observed to have received different interventions. The
challenge is how to untangle confounding factors and make valid predictions of counterfactual
outcomes. Recent methods in machine learning have predominantly focused on learning rep-
resentations regularized to balance these confounding factors by enforcing domain invariance
with distributional distances (Johansson et al., 2016, 2018a; Yao et al., 2018). In this chapter,
we argue that domain invariance is often too strict a requirement; overlapping support is
sufficient for identifiability of the causal effect and equality in densities is not necessary.
We interpret the loss in the predictive power of domain-invariant representations by the
loss of information in the input variables that causally influence the treatment assignment,
which is also often highly predictive of the treatment effect. Consider the example above
for illustration: it is because motivation is predictive of the employment outcome that it
confounds the treatment assignment (i.e. the assignment of the government training program).
If enforcing domain invariance requires removing the predictive information of the treatment,
e.g., motivation, which is also the key information to predict the employment outcome.

We introduce an optimization framework based on regularizing posterior distributions of
the treatment effect that includes existing representation learning algorithms for different
choices of regularization terms. We take advantage of this framework to introduce a novel
type of regularization criterion for the problem of treatment effect estimation: the posterior
counterfactual variance for enforcing domain overlap, and invertible representations to
preserve the information content of the underlying context. Such an objective enjoys better
generalization in small sample regimes, smoother representation surfaces with respect to the
outcomes, as can be seen in Figure 4.2, and a Bayesian treatment of parameters which allows
consistent uncertainty estimation in predictions. In summary, our contribution is 3-fold: we
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Representation optimized for 
Gaussian Likelihood and Wasserstein Distance

Representation optimized for 
Gaussian Likelihood

Representation optimized for 
Gaussian Likelihood and Counterfactual Variance

Figure 4.2 T-SNE (Van der Maaten and Hinton, 2008) visualizations of the learnt embeddings
for the control potential outcomes of the IHDP dataset. Each panel shows representations
regularized by different criteria and the coloured heatmap represents different outcome
magnitudes with different colours. The left panel shows representations regularized by the
Wasserstein distributional distance and results in poor discrimination. The middle panel
shows representations optimized only for the factual data with the Gaussian likelihood. The
right panel shows representations regularized by the counterfactual variance, our proposed
criterion. Much better separation in outcomes is obtained by regularizing for the predictive
variance, in contrast to using integral probability metrics such as the Wasserstein distance.

develop a theory to justify regularizing for the posterior variance to improve generalization
error and establish the limitations of distributional distances; we propose to use deep kernels
(Wilson et al., 2016) and posterior regularization (Zhu et al., 2014) as a general framework to
estimate conditional average treatment effects (CATEs), also called individualized treatment
effects (ITEs); we provide an instantiation of this method informed by our generalization
bounds, which improves CATE estimation compared with a variety of baseline methods.

4.2 Related work

Due to the ability of deep neural nets to learn rich representations of observed covariates,
recent advances in estimating conditional average treatment effects (CATEs) have focused on
learning representations invariant to the treatment assignment policy that achieve a small
error on the factual data. The hope is that the learnt representation and prediction function
can generalize to predict counterfactual outcomes. Several methods follow this approach.
Johansson et al. (2016) propose learning a representation of the data that makes the treated
and control distributions more similar, fitting a linear ridge-regression model on top of it.
Shalit et al. (2017) build on their approach to derive a more flexible family of methods
including non-linear hypotheses. However, both methods insist on quantifying divergence
between treated and control groups with integral probability metrics.
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In this chapter, we share the need for good representations but argue for enforcing support
overlap rather than equality in densities. Inspired by nearest-neighbour methods, Yao et al.
(2018) learn a representation that preserves local similarity information in feature space
and was able to show a decrease in the generalization error in counterfactual estimation.
Kallus (2020) develops a representation learning method using a discriminative discrepancy
metric which is learnt by solving a game between a weighting and a discriminator network
through adversarial training. Adapting Bayesian methods for the problem of conditional
average treatment effects has attracted a lot of interest, in particular in the field of medicine
where quantifying uncertainty is important. Alaa and van der Schaar (2017) regularize
counterfactual predictions through their posterior variance and similarly stress the importance
to provide confidence in their estimates using credible intervals, but did not investigate the
generalization properties of their method and only allowed for limited expressiveness in their
method. Similarly, Jean et al. (2018) use posterior variance regularization to learn from
unlabeled data in situations where labelled data is scarce for improved performance.

Our work has also strong connections with work on domain adaptation. In particular,
estimating CATEs requires predictions of outcomes over a different distribution from the
observed one. Our upper bound of the error in estimating CATEs has similarities with
generalization bounds in domain adaptation given by Johansson et al. (2016, 2018a). Johans-
son et al. (2018a); Zhao et al. (2019) similarly argue against enforcing domain-invariance
and related the loss of predictive power of those representations to the loss of information
due to the non-invertibility of learnt representations. Covariates matching (Imbens, 2015;
Rosenbaum, 1989, 2002a; Stuart, 2010; Stuart et al., 2004) is class of methods in statistics
that can directly estimate average causal effects by comparing the matched individuals in an
observational studies. Representation learning methods in machine learning and matching
methods are similar in terms of measuring the mismatch between the treated and control
groups in a study. The former focuses on achieving the best performance of a black-box
neural network in estimating treatment effects while the latter is used for better transparency
and interpretability in estimating treatment effects. Finally, weighting methods (Crump et al.,
2006, 2009; Li et al., 2018) can potentially deal with limited overlap in the estimation of
average treatment effects. Extending this approach to estimate CATEs with limited overlap
is an interesting direction for future research.

4.3 Setup

Consider a population of N individuals (i.e. units) with each individual i described by
a context (a set of covariates) Xi ∈ X ⊂ Rd, a treatment variable Ai ∈ {0, 1} and an
outcome variable Yi ∈ Y ⊂ R. Individual i’s outcome to the treatment is a random
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variable denoted by Yi(1), whereas individual i’s natural outcome without the treatment is
denoted by Yi(0). Let Ia = {i ∈ [N ] : Ai = a} , a = 0, 1, denote the control and treated
populations, respectively. For a = 0, 1, we define Na = |Ia|, Xa = (Xi : i ∈ Ia) and
Ya = (Yi : i ∈ Ia). To estimate the CATE τ(X) = E[Y (1)−Y (0) | X], we make the standard
assumptions in observational studies (Assumption 7). Under this assumption, it holds that
µa(x) := E[Y (a)|X = x] = E[Y |X = x,A = a]. Then we can estimate E[Y (a)|X = x] by a
regression model µ̂a : X → Y, a = 0, 1. More specifically in the setup of Gaussian process
regression (Williams and Rasmussen, 2006), for a = 0, 1, under a Gaussian prior distribution,

πa(x) = N (0,K(x, x)) , (4.1)

with a covariance kernel function K : X × X → R, our Bayesian outcome regression model
has a Gaussian posterior distribution

ρ̂a(x) = N
(
µ̂a(x), σ̂2

a(x)
)
. (4.2)

The posterior distribution ρ̂a is a distribution conditional on the observed samples (Xa,Ya).
But we omit the conditioning on (Xa,Ya) in our notation. Intuitively, the kernel function
K(·, ·) defines the function class F we will work with; πa and ρ̂a are two distributions over
F , i.e., a random draw from πa(·) or ρ̂a(·) is a function f(·) ∈ F .

Assumption 10. We assume the data space X × Y is compact and any function f ∈ F is
bounded in l2 norm, i.e., F = {f : E{f2(X)} <∞}.

We quantify the accuracy of a CATE estimator τ̂ by its mean squared error in estimating
τ , also called the empirical precision in estimating heterogeneous effects (PEPE),

ϵPEHE =
∫

(τ̂(x)− τ(x))2 pX(x)dx.

Estimating τ for unobserved individuals involves predictions of both potential outcomes, but
we never observe the counterfactual outcomes or the true treatment effect in an observational
dataset. This makes the problem of causal inference fundamentally different from supervised
learning. In the next section, suppose that we estimate τ(x) by a T-learner τ̂(x) = µ̂1(x)−
µ̂0(x), we analyse the generalization properties of τ̂ with respect to ϵPEHE under Assumptions 7
and 10. Section 1.3.2 reviews a variety of CATE learners which leverages the smoothness of
τ . The method we will present later is a regularization method for the outcome regression
models µ̂0 and µ̂1. The regularized models can be used to generate pseudo-outcomes for
any CATE learner as usual. Our analysis still holds assuming that we use our method in
other learners because the errors of outcome regression and pseudo-outcome regression are
separated in the error analysis of those advanced learners.
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Figure 4.3 Toy example illustrates the shortcomings of distributional distances, like integral
probability metrics (IPMs), for regularizing representations in causal inference. Despite the
fact that sufficient support is satisfied in the red populations and not in the green populations,
IPMs (bottom) give the opposite result, with a larger discrepancy in the red populations
than in the green populations. In contrast, the counterfactual variance predicted by σ̂2

a (top)
accurately describes the lack of support in the green populations.

4.4 Intuition and theoretical results

Inherent to the approach of learning representations for counterfactual inference is that
the representation must trade-off between containing predictive information about factual
outcomes while mitigating the information content that drives the treatment assignment
policy to ensure good generalization on counterfactuals. In this section, we make several
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observations about the deficiencies of enforcing domain invariance for this purpose and
propose alternatives based on the posterior counterfactual variance.

Example 4 (Counterfactual variance vs. Distributional distances). In the middle panels
of Figure 4.3 we show two simulated datasets. The left-hand/red dataset arises from two
truncated normal distributions with a large overlap in the tails; the right-hand/green dataset
arises from two ordinary normal distributions with a small overlap in the tails. In both
cases, we show the treated and control populations in different shades. In both cases, the
outcome is y = sinc(4x). The red populations satisfy sufficient assumptions for identifiability
of causal effects; the green populations do not. However, as shown in the bottom panels,
both integral probability metrics (IPMs), the maximum mean discrepancy (MMD) (Gretton
et al., 2012) and Wasserstein distances (Villani, 2009) are smaller in the green populations
than in the red populations. In contrast, the top panel shows that the predictive variance of
the counterfactual outcomes, σ̂2(Xi),∀i ∈ I1−a, much better describes this lack of overlap.
Counterfactual variance is adaptive to the prediction problem of interest, providing a data-
dependent measure to quantify distances in the underlying function class, perhaps more
precise when the underlying function to be estimated are unknown. IPMs are defined as
worst-case distances dependent on a pre-specified function class. We make the observation also
that IPMs need to be approximated in practice which may be inaccurate for high-dimensional
and small training data samples (Boissard and Le Gouic, 2014).

4.4.1 Generalization bounds

We develop a PAC-Bayes generalization bound (McAllester, 1999; Shawe-Taylor and Williamson,
1997) for ϵPEHE = E

{
[µ̂1(X)− µ̂0(X)− τ(X)]2

}
with µ̂0 and µ̂1 defined in (4.2), that shows

specifically why minimizing counterfactual variance can improve generalization performance.
The proofs the theoretical results in this subsection can be found in Section 4.8.

Theorem 5. Under Assumptions 7 and 10, for any δ ∈ (0, 1] and πa in (4.1) and ρ̂a in
(4.2), with probability at least 1− δ, we have

ϵPEHE ≤
1∑

a=0

[
2CaL(Xa,Ya; ρ̂a) + (Ca + 1)V (Xa; ρ̂a) + V (X1−a; ρ̂a)

+
( 1

2
√
N1−a

+ 2Ca√
Na

)
(2 KL(ρ̂a∥πa) + ln(2/δ) + C2)

]
,

(4.3)

where the mean squared error L(Xa,Ya; ρ̂a) = N−1
a

∑
i∈Ia

[Y − µ̂a(Xi)]2 , the mean factual
variance V (Xa; ρ̂a) = N−1

a

∑
i∈Ia

σ̂2
a(Xi), the mean counterfactual variance V (X1−a; ρ̂a) =

N−1
1−a

∑
i∈I1−a

σ̂2
a(Xi), the constant Ca = 1 + supx∈X

[
pX|A(x | 1− a)/pX|A(x | a)

]
, C2 is a

universal constant and KL(·∥·) is the Kullback-Leibler divergence.
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The empirical terms in the upper bound (4.3) are L(Xa,Ya; ρ̂a), V (Xa; ρ̂a), V (X1−a; ρ̂a)
and KL(ρ̂a∥πa). The variance V (Xa; ρ̂a) is also part of the marginal log-likelihood of our
Bayesian model; see (4.6) for details. As the sample size (N = N1−a +Na) increases and we
keep minimizing these empirical terms to zero, we would have ϵPEHE → 0, i.e., τ̂ → τ in l2

norm consistently. If the sample size is large, minimizing KL(ρ̂a∥πa) is unnecessary.

Suppose that µ̂a(x) = w⊤
a ϕ(x) where ϕ is a feature map (parameterized by a neural

network). Minimizing the counterfactual variance (as a measure of overlap in Figure 4.3)
will learn a feature map ϕ that can increase the overlap between the treated and control
populations in the space Z. We can expect the representations ϕ of counterfactual data to
encode a relatively smoother prediction function w⊤

a ϕ(x), as can be seen in Figure 4.2. The
estimation of treatment effects is inherently a label-scarce problem as counterfactual data is
not observed, representations resulting in smooth prediction curves are especially important
to generalize beyond the factual data. This view of the problem of estimating treatment
effects emphasizes the need for regularization for good generalization.

Why distributional distances may be inadequate?

While the toy example clearly illustrates the inability of distributional distances to capture
domain overlap, we argue that by enforcing equality in full marginals, optimizing for distribu-
tional distances may also overly penalize the model’s ability to predict factual observations
when sufficient data is available, that is, when domain overlap is satisfied.

In the following theorem, we provide a bound on the generalization error of estimating
counterfactual outcomes, which illustrates the interplay between distribution mismatch and
prediction loss on factual data. We show that distribution mismatch between the treated
and control populations becomes decreasingly relevant with increasing sample size.

Theorem 6. Under Assumptions 7 and 10, for the posterior distribution ρ̂a in (4.2),

L1−a(ρ̂a) ≤ 1
2V1−a(ρ̂a) +Da,∞

[
La(ρ̂a) + 1

2Va(ρ̂a)
]

(4.4)

where Lc(ρ̂a) = E
{
[Y − µ̂a(X)]2 | A = c

}
, Vc(ρ̂a) = E

{
σ̂2(X)|A = c

}
for c = a, 1 − a, and

Da,∞ = supx∈X

[
pX|A(x | 1− a)/pX|A(x | a)

]
.

The bound Equation (4.4) describes the interaction between the distribution mismatch
and the prediction error on factual data La(ρ̂a) = E

{
[Y − µ̂a(X)]2 | A = a

}
. The term Da,∞

is large if, for some x, pX|A(x | a) is small while pX|A(x | 1− a) is large (that is when there is
poor overlap between them), which understandably, makes minimizing the counterfactual
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risk L1−a(ρ̂a) harder because few examples from the other population are observed for a
given context. However, note that Da,∞ is multiplied by the expected factual loss La(ρ̂a)
(which decreases as Na increases if µ̂a is constant estimator of µa). The distribution mismatch
thus becomes less important for generalization, if we can minimize the expected factual loss
La(ρ̂a) arbitrarily well. This suggests that optimizing for distributional distances between
treated and control groups at the expense of prediction error on the factual data may be
counterproductive. Representations regularized with distributional distances may thus shrink
the function class and converge on solutions that, although balanced between treated and
control groups, lose their predictive power.

4.4.2 Why encourage preserving information content?

Assumption 7 gives sufficient conditions for identifying treatment effects conditioning on X,
but identifiability need not hold with respect to the feature representation Z = ϕ(X), even if
it does with respect to X. For instance consider ϕ−1(z) := {x : ϕ(x) = z},

pY (c)|Z,A(y|z, a) =
∫

x∈ϕ−1(z) pY (c)|X,A(y|x, a)pX|A(x|a)∫
x∈ϕ−1(z) pX|A(x|a)

=
∫

x∈ϕ−1(z) pY (c)|X(y|x)pX|A(x|a)∫
x∈ϕ−1(z) pX|A(x|a)

̸= pY (c)|Z(y|z),

In general, with equality only if ϕ is invertible, i.e, ϕ−1(z) corresponds to a point x∗ ∈ X
The conditional independence in the unconfoundedness assumption required for estimating
treatment effects need not hold for non-invertible transformations. In this sense, we may be
introducing unobserved confounders in representation space we hypothesize by the information
lost in the map ϕ. Observe also that our objective, the conditional average treatment effect
τ(x) = E[Y (1)− Y (0)|X = x], is expressed in terms of expectations. Similarly, it holds that
in feature space, E[Y (1)− Y (0)|Z = ϕ(x)] =

∫
x∈ϕ−1(z) E[Y (1)− Y (0) | X = x]dx will not be

equal to our quantity of interest τ(x) = E[Y (1)− Y (0) | X = x] unless ϕ is invertible.

4.5 DKITE

In this section, we describe a method for counterfactual estimation, called DKLITE (Deep
Kernel Learning for Individualized Treatment Effects), motivated by our analysis. We keep
the method’s name the same as in our original publication (Zhang et al., 2020). Individualized
treatment effects is another name for CATEs in the literature. Our proposed method works
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with a feature map ϕ : X → Z ⊂ Rdϕ that defines a kernel function K(·, ·) = ⟨ϕ(·), ϕ(·)⟩.
We let ϕ be parameterized by a neural network to encode the information content of input
covariates. Neural network-based kernels are called deep kernels in the literature (Wilson
et al., 2016). The dimension dϕ of Z can be chosen arbitrarily.

For individual i with Ai = a, we assume its observed outcome follows the linear model

Yi = w⊤
a ϕ(Xi) + ϵi,a, a = 0, 1, (4.5)

where wa is a dϕ-dimensional weight vector and ϵi,a ∼ N (0, β−1
a ) is a noise variable, a = 0, 1.

4.5.1 Predictive distribution

By using a Gaussian prior distribution wa ∼ N (0, λ−1
a 1), the posterior of wa is given by

p(wa|Xa,Ya, ϕ) = N
(
ma,K

−1
a

)
,

where the mean vector ma and the kernel matrix Ka are given by

ma = βaK−1
a Φ⊤

a Ya, Ka = βaΦ⊤
a Φa + λaIdϕ×dϕ

,

respectively, and Φa = (ϕ(Xi) : i ∈ Ia) is the representation of Xa. The posterior derivation
is based on Bayesian linear regression; see Bishop (2006, Chapter 3.3) for more details.

Then in our assumed model (4.5), the prior distribution πa(x) in (4.1) has a kernel
function

K(x, x) = λ−1
a ϕ⊤(x)ϕ(x).

To predict the outcomes at a given x, we use the posterior distribution ρ̂a(x) in (4.2) with

µ̂(x) = m⊤
a ϕ(x) and σ̂2(x) = ϕ(x)⊤K−1

a ϕ(x) for a = 0, 1.

Point estimates are given for example by the posterior mean or median, optimal for minimizing
squared loss or absolute loss, respectively. Note also that knowledge of the full posterior
allows us to quantify our uncertainty around point estimates through credible intervals,
especially useful in medicine and public policy, for example.
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4.5.2 Learning ϕ

Factual Likelihood. Marginalizing out wa w.r.t its prior, we can define the negative
marginal log-likelihood of (4.5) (Williams and Rasmussen, 2006, Chapter 2.7.1), denoted by
La. We rewrite La to encode our insights from Section 4.4:

La = − log [p(Ya |Xa, ϕ)]

= −dϕ

2 lnλa −
Na

2 ln βa + Na

2 ln(2π) + βa

2 ∥Ya −Φama∥2 + λa

2 m⊤
a ma + 1

2 ln |Ka|

= KL(ρ̂a∥πa) + dϕ

2 −
λa

2 Tr(K−1
a ) + Na

2 ln(2πβ−1
a ) + βa

2 ∥Ya −Φama∥2

= KL(ρ̂a∥πa) + 1
2 Tr(KaK−1

a )− λa

2 Tr(K−1
a ) + Na

2 ln(2πβ−1
a ) + βa

2 ∥Ya −Φama∥2

= KL(ρ̂a∥πa) + 1
2 Tr((Ka − λaI)K−1

a ) + Na

2 ln(2πβ−1
a ) + βa

2 ∥Ya −Φama∥2

= KL(ρ̂a∥πa) + βa

2 Tr((Φ⊤
a ΦaK−1

a ) + Na

2 ln(2πβ−1
a ) + βa

2 ∥Ya −Φama∥2

= KL(ρ̂a∥πa) + Na

2 ln(2πβ−1
a ) + βa

2 Tr((ΦaK−1
a Φ⊤

a ) + βa

2 ∥Ya −Φama∥2

= KL(ρ̂a∥πa) + Na

2 ln(2πβ−1
a ) + Naβa

2
[
V̂a(Xa; ρ̂a) + L̂a(Xa,Ya; ρ̂a)

]
,

(4.6)

where the third equality is achieved by

KL(ρ̂a∥πa) = λa

2 Tr(K−1
a ) + λa

2 m⊤
a ma −

dϕ

2 −
dϕ

2 lnλa + 1
2 ln |Ka|.

Summing up the likelihood for a = 0, 1, we define

Llik =
1∑

a=0

(
Na

2 ln(2πβ−1
a ) + Naβa

2
[
V̂a(Xa; ρ̂a) + L̂a(Xa,Ya; ρ̂a)

]
+ KL(ρ̂a∥πa)

)

We see from Theorem 5 that the empirical quantities to optimize for in the upper-bound
(4.3) are V (X1−a; ρ̂a), V (Xa; ρ̂a), L(Xa,Ya; ρ̂a) and KL(ρ̂a∥πa), a = 0, 1. The latter three
already exist in the final expression of the likelihood L above.

Counterfactual variance. Therefore, by including an empirical estimate of the coun-
terfactual variance V (X1−a; ρ̂a) as a regularizer in our objective function we are effectively
optimizing for all terms given by the PAC-Bayes upper-bound of ϵPEHE in Theorem 5. We
write this regularization term as

Lvar =
1∑

a=0
V (X1−a; ρ̂a) =

1∑
a=0

N−1
1−a

∑
i∈I1−a

σ̂2(Xi) (4.7)
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The neural net ϕ is encouraged to learn a feature representation in which the counterfactual
examples are close to the factual examples, thereby reducing the variance in our predictions.
The implication is that we are optimizing for representations where counterfactual data tend
to cluster around the representations of factual data. This is a way to see how intuitively
we are encouraging overlap in support in representation space without enforcing equality in
densities (i.e. the size of the factual and counterfactual clusters need not coincide).

Invertibility as regularization. While the loss due to non-invertible representations
is not directly observable, we may associate it with the information content of x lost in ϕ(x)
and we found it to be an important source of gain in performance, empirically. We can
encourage information content preservation with an additional decoder ψ : Rdϕ → X , which
is a neural network with the reversed structure of network ϕ trained to reconstruct the input
x from ϕ(x). The reconstruction loss is given by

Lrec =
1∑

a=0
N−1

a

∑
i∈Ia

∥Xi − ψ(ϕ(Xi))∥22 (4.8)

We note that there are other advanced techniques (Behrmann et al., 2019; Rezende and
Mohamed, 2015) in machine learning that can be used to achieve strict invertibility, so the
reconstruction loss Lrec is not needed if we apply any of these techniques.

Final loss function. Based on the objectives described above, our final loss trades-off
between maximizing the likelihood of the observed (factual) data under our model, minimiz-
ing the predictive variance of the counterfactual outcomes and minimizing the reconstruction
loss of the representations. The loss is given by

Lfin = Llik + α1Lvar + α2Lrec, (4.9)

where α1 > 0 and α2 > 0 are hyperparameters. Standard methods for hyperparameter
selection, such as cross-validation, are not generally applicable for choosing hyperparameters
because counterfactuals are never observed. As an approximation scheme, we follow the
approach of Shalit et al. (2017), and replace the missing counterfactuals with their nearest
factual neighbour (in the opposite group) to compute a (approximated) treatment effect for
each example and optimize hyperparameters for the PEHE.
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Table 4.1 Performance of DKLITE and benchmarks: mean and standard deviation of
√

PEHE.

Dataset IHDP Twins
Method In-sample Out-sample In-sample Out-sample
OLS/LR1 5.8 ± .3 5.8 ± .3 .319 ± .001 .318 ± .007
OLS/LR2 2.4 ± .1 2.5 ± .1 .320 ± .002 .320 ± .003
BLR 5.8 ± .3 5.8 ± .3 .312 ± .003 .323 ± .018
k-NN 2.1 ± .1 4.1 ± .2 .333 ± .001 .345 ± .007
BART 2.1 ± .1 2.3 ± .1 .347 ± .009 .338 ± .016
R-Forest 4.2 ± .2 6.6 ± .3 .366 ± .002 .321 ± .005
C-Forest 3.8 ± .2 3.8 ± .2 .366 ± .003 .316 ± .011
BNN 2.2 ± .1 2.1 ± .1 .325 ± .003 .321 ± .018
TARNET .88 ± .02 .95 ± .02 .317 ± .002 .315 ± .003
CARWASS .72 ± .02 .76 ± .02 .315 ± .007 .313 ± .008
CMGP .63 ± .08 .74 ± .11 .320 ± .002 .319 ± .008
DKLITE .52 ± .02 .65 ± .03 .288 ± .001 .293 ± .003

4.6 Experiments

Our experiments will compare DKLITE with benchmark methods, analyze the source of
performance gain, and demonstrate the use of the posterior variance for decision-making.

Baseline methods. We compare DKLITE with a total of 11 methods. First we evaluate
the least-squares regression using treatment as an additional input feature OLS/LR1), we
consider separating the least-squares regression for each treatment (OLS/LR2), we evaluate
balancing linear regression (BLR) (Johansson et al., 2016), k-nearest neighbors (k-NN)
(Crump et al., 2008), Bayesian additive regression trees (BART) (Chipman et al., 2010),
random forests (R-Forest) (Breiman, 2001), causal forests (C-Forest) (Wager and Athey, 2018),
balancing neural networks (BNN) (Johansson et al., 2016), treatment-agnostic representation
network (TARNET), counterfactual regression with Wasserstein distance (CARWASS) (Shalit
et al., 2017), and multi-task gaussian process (CMGP) (Alaa and van der Schaar, 2017).

Datasets. Causal inference models are often impossible to reliably validate using real-
world data due to the absence of counterfactual outcomes. Various established approaches
for evaluating causal models have been proposed, which we use for our analysis. We describe
these briefly below and refer the reader to the accompanying references and Section 4.10 for
further details. We consider IHDP (747 instances described by 25 covariates) (Alaa and
van der Schaar, 2017; Hill, 2011; Shalit et al., 2017; Yao et al., 2018; Yoon et al., 2018) in
which counterfactual outcomes are randomly generated via a predefined probabilistic model;
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Twins (11300 instances described by 30 covariates), in which outcomes are observed but the
treatment assignment in the dataset is simulated.

Metrics. The metrics used to evaluate each data set differ slightly depending on the
available outcome (real or simulated). For IHDP, we use the empirical precision in estimating
treatment effects ϵ̂PEHE = 1

N

∑N
i=1(τ(Xi)− τ̂(Xi))2. For Twins, we use the observed precision

in estimating heterogeneous effects, ϵ̃PEHE = 1
N

∑N
i=1(Yi(1) − Yi(0) − τ̂(Xi))2. We report

in-sample performance on the training samples with one missing outcome and out-sample
performance on the testing samples with both outcomes missing.

4.6.1 Predictive performance

We report in-sample and out-of-sample performance in Table 4.1. DKLITE targets aspects
of the treatment effect estimation problem that have not been considered before. Learning
with such an objective outperforms all competing methods on both datasets. The most
relevant comparison is perhaps with BNN (Johansson et al., 2016) and CARWASS (Shalit
et al., 2017), neural network models that enforces domain invariance through distributional
distances. The performance gain highlights the predictive power of our representations.

4.6.2 Source of gain

Table 4.2 Source of performance gain in DKLITE.

Dataset
√

PEHE Llik Llik + Lvar Llik + Lrec

IHDP
In-sample 1.46 ± .01 .98 ± .04 .96 ± .04

Out-sample 1.95 ± .14 1.24 ± .09 1.28 ± .13

Twins
In-sample .308 ± .004 .292 ± .002 .291 ± .001

Out-sample .323 ± .008 .294 ± .007 .293 ± .003

In this section, we analyze more deeply the contribution to the performance gain of each
component of our loss. We evaluate DKLITE optimized for different components of Lfin =
Llik + α1Lvar + α2Lrec. As can be seen in Table 4.2, including regularization based on the
counterfactual variance (Llik +α1Lvar) and reconstruction loss (Llik +α2Lrec), each evaluated
separately, already provides a significant gain in performance with respect to optimization on
the factual data only (Llik). Importantly though, combining them (Lfin) improves performance
further by an order of magnitude (see DKLITE in Table 4.1), which suggests that Lvar and
Lrec capture to some extent orthogonal sources of gain. The gain is especially important on
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relatively smaller data sets, such as IHDP with 747 individuals, and to a lesser extent on
bigger data sets. These results illustrate the behaviour suggested by (4.4) in Theorem 6: low
overlap between groups becomes decreasingly relevant with increasing data set size. In this
setting, the error on the factual data (Llik) drives generalization performance.

4.6.3 Leveraging the predicted uncertainty

Table 4.3 Performance of DKLITE and DKLITE-U on IHDP and Twins.

Dataset
√

PEHE DKLITE DKLITE-U

IHDP
In-sample .52 ± .02 .46 ± .02

Out-sample .60 ± .03 .53 ± .02

Twins
In-sample .288 ± .001 .287 ± .001

Out-sample .293 ± .003 .292 ± .002

Data-driven solutions for decision support have most often been proposed without methods
to quantify and control the uncertainty in a decision. In contrast, for example, in medicine, a
physician knows whether she/he is uncertain about a case and will consult more experienced
colleagues if needed. We use this idea to show that uncertainty informed treatment effect
estimation can improve performance. An instantiation of this approach, termed DKLITE-
U, is given by referring to the 10 % most uncertain predictions for further scrutiny. The
uncertainty is measured by the posterior variances σ̂2

0 and σ̂2
1. Performance in comparison

to DKLITE is given in Table 4.3. Note that especially on small data sets, such as IHDP,
DKLITE-U achieves a better PEHE by removing the 10 % most uncertain samples, which
indicates that the posterior variances can capture the true CATE estimation error.

4.7 Discussion

In many domains, understanding the effect of interventions at an individual level is crucial,
but predicting those potential outcomes is challenging. Despite their empirical success, we
find that methods enforcing representations to satisfy domain invariance are often too strong
a requirement for causal predictions. This stems from the fact that overlapping support is
sufficient for identifiability of the causal effect and equality in densities is not necessary. We
have proposed generalization bounds that show the dependence on domain overlap through
the counterfactual variance which we interpret as a proxy for domain overlap, and highlighted
the need for invertible latent maps. These results motivated the novel posterior regularization
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method that we incorporated into a deep kernel learning framework, which led to a superior
empirical performance in estimating CATEs.

4.8 Technical Proofs

4.8.1 Preliminary: PAC-Bayes theory

We first introduce the concepts called Gibbs model and Bayesian model in PAC-Bayesian
theory (McAllester, 1999; Shawe-Taylor and Williamson, 1997). Given a posterior distribution
ρ̂ over the functions in a function class F , a Gibbs model Gρ̂ makes its prediction for every
example by randomly sampling a function f ∈ F . A Bayesian model Bρ̂ makes its prediction
by averaging all the functions in F with respect to ρ̂. We define the expected risks

R(Gρ̂) = Ef∼ρ̂

{
E
[
(Y − f(X))2

]}
and R(Bρ̂) = E

{(
Y − Ef∼ρ̂

[
f(X)

])2}
.

The following is the PAC-Bayes theorem in supervised learning (Alquier et al., 2016; Germain
et al., 2016; Pentina and Lampert, 2014) that we will apply in our proofs.

Theorem 7. Given a function class F and a prior distribution π on F . For any δ ∈ (0, 1],
κ > 0 and posterior distribution ρ̂ on F , with probability at least 1− δ,

R(Gρ̂) ≤ RN (Gρ̂) +
{

KL(ρ̂∥π) + ln(1/δ) +N lnEf∼π

[
E
(
e

κ
N

R̄f (X,Y )
)]}

/κ (4.10)

where RN (Gρ̂) = Ef∼ρ̂

{
1
N

∑N
i=1 [Y − f(Xi)]2

}
and

R̄f (X,Y ) = [Y − f(X)]2 − E
{

[Y − f(X)]2
}
.

By Jensen’s inequality, R(Bρ̂) ≤ R(Gρ̂). An upper bound for R(Gρ̂) is also an upper
bound for R(Bρ̂). To make the upper bound in (4.10) fully empirical, we need to upper
bound the moment generating function E

(
e

κ
N

R̄f (X,Y )
)

for the mean-zero random variable
R̄f (X,Y ), e.g., by applying Hoeffding’s lemma if every f ∈ F is bounded.

To extend the PAC-Bayes theory to our problem, for a ∈ {0, 1} and c = a, 1−a, we define
the expected factual risks (c = a) and counterfactual risks (c = 1− a):

Rc(Bρ̂a) = E
{

(Y − µ̂a(X))2 | A = c
}
, (4.11)

and
Rc(Gρ̂a) = Ef∼ρ̂a

{
E
[
(Y − f(X))2 | A = c

]}
. (4.12)



4.8 Technical Proofs 107

4.8.2 Proof of Theorem 5

Proof. By Lemma 9, we have an upper bound of ϵPEHE in terms of Rc(Bρ̂a), a, c ∈ {0, 1}:

ϵPEHE ≤ 2
1∑

a=0
[Ra(Bρ̂a) +R1−a(Bρ̂a)] ≤ 2

1∑
a=0

[Ra(Gρ̂a) +R1−a(Gρ̂a)] . (4.13)

Combing the PAC-Bayes bounds for the expected factual risk Ra(Gρ̂a) in Lemma 10 and the
expected counterfactual risk R1−a(Gρ̂a) in Lemma 11, we have

Ra(Gρ̂a) +R1−a(Gρ̂a)

≤ (Da,∞ + 1)L(Xa,Ya; ρ̂a) + (Da,∞/2 + 1)V (Xa; ρ̂a) + 1
2 V̂a(X1−a; ρ̂a)

+
( 1/4√

N1−a
+ Da,∞√

Na

)
(2 KL(ρ̂a∥πa) + ln(2/δ) + ξ2)

+ 1√
Na

[KL(ρ̂a∥πa) + ln(2/δ) + ξ1]

≤ (Da,∞ + 1)L(Xa,Ya; ρ̂a) + (Da,∞/2 + 1)V (Xa; ρ̂a) + 1
2V (X1−a; ρ̂a)

+
( 1/4√

N1−a
+ Da,∞ + 1√

Na

)
(2 KL(ρ̂a∥πa) + ln(2/δ) + 2C)

where Da,∞ = supx∈X

[
pX|A(x | 1− a)/pX|A(x | a)

]
, the second inequality is achieved by C =

max(ξ1, ξ2) and the fact that the Kullback-Leibler divergence is non-ngeative. Substituting
the upper bound of Ra(Gρ̂a) +R1−a(Gρ̂a) into (4.13) with Ca = Da,∞ + 1, we otain (4.3).

4.8.3 Proof of Theorem 6

Proof. By Jensen’s inequality and Lemma 12,

R1−a(Bρ̂a) ≤ R1−a(Gρ̂a) ≤ 1
4D1−a(Gρ̂a) +Da,∞La(Gρ̂a). (4.14)

where R1−a(Bρ̂a) and R1−a(Gρ̂a) are defined in (4.11) and (4.12), respectively. For the
posterior distribution ρ̂a in (4.2),

D1−a(Gρ̂a) = E(f1,f2)∼ρ̂2
a

{
E
[(
f1(X)− f2(X)

)2 ∣∣∣∣ A = 1− a
]}

= 2E{σ̂2
a(X) + µ2

a(X) | A = 1− a} − 2E{µ̂2
a(X) | A = 1− a}

= 2E{σ̂2
a(X) | A = 1− a}

= 2V1−a(ρ̂a)
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and

La(Gρ̂a) = E(f1,f2)∼ρ̂2
a

{
E
[(

f1(X) + f2(X)
2 − Y

)2 ∣∣∣∣ A = a

]}

= E
[

2σ̂2
a(X) + 2µ̂2

a(X) + 2µ̂2
a(X)

4 − 2µ̂a(X)Y + Y 2
∣∣∣ A = a

]

= E
[(
Y − µ̂a(X)

)2 | A = a
]

+ 1
2E
[
σ̂2

a(X) | A = a
]

= La(ρ̂a) + 1
2Va(ρ̂a)

Substituting the expressions of D1−a(Gρ̂a) and La(Gρ̂a) into (4.14), we obtain (4.4).

4.9 Supporting lemmas

4.9.1 Proof of Lemma 9

The expected Precision in Estimation of Heterogeneous Effects, PEHE, can be bounded using
the expected factual risk Ra(Bρ̂a) and the expected counterfactual risk R1−a(Bρ̂a).

Lemma 9. For the Bayesian models Bρ̂a defined by ρ̂a in (4.2), a ∈ {0, 1}, it holds that

ϵPEHE ≤ 2
1∑

a=0
[Ra(Bρ̂a) +R1−a(Bρ̂a)] (4.15)

Proof.

ϵPEHE =
∫

(τ̂(x)− τ(x))2 pX(x)dx

=
∫ [(

µ̂1(x)− µ̂0(x)
)
−
(
µ1(x)− µ0(x)

)]2
pX(x)dx

=
∫ [(

µ̂1(x)− µ1(x)
)

+
(
µ̂0(x)− µ0(x)

)]2
pX(x)dx

≤ 2
1∑

a=0

∫ (
µ̂a(x)− µa(x)

)2
pX(x)dx

= 2
1∑

a=0

1∑
a′=0

∫ (
µ̂a(x)− µa(x)

)2
pX,A(x, a′)dx

= 2
1∑

a=0

∫ (
µ̂a(x)− µa(x)

)2
pX,A(x, a)dx+ 2

1∑
a=0

∫ (
µ̂a(x)− µa(x)

)2
pX,A(x, 1− a)dx

≤ 2
1∑

t=0

[
Ra(Bρ̂a) +R1−a(Bρ̂a)− β−1

a − β−1
1−a

]
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≤ 2
1∑

t=0
[Ra(Bρ̂a) +R1−a(Bρ̂a)]

The second last equality is achieved as follows.

Rc(Bρ̂a) =
∫ (

µ̂a(x)− y
)2
pX,Y (a)|A(x, y | c)dxdy

=
∫ (

µ̂a(x)− µa(x)− ϵa
)2N (ϵa; 0, β−1

a )pX|A(x | c)dxdϵa

=
∫ ((

µ̂a(x)− µa(x)
)2 − 2ϵa

(
µ̂a(x)− µa(x)

)
+ ϵ2a

)
N (ϵa; 0, β−1

a )pX|A(x | c)dxdϵa

=
∫ (

µa(x)− µa(x)
)2
pX|A(x | c)dx+ β−1

a .

which implies that
∫ (
µa(x)− µa(x)

)2
pX|A(x | c)dx = Rc(Bρ̂a)− β−1

a .

4.9.2 Proof of Lemma 10

Lemma 10. Under Assumption 10, for any δ ∈ (0, 1] and πa in (4.1) and ρ̂a in (4.2), with
probability at least 1− δ,

Ra(Gρ̂a) ≤ L(Xa,Ya; ρ̂a) + V (Xa; ρ̂a) + [KL(ρ̂a∥πa) + ln(1/δ) + ξ1] /
√
Na, (4.16)

where ξ1 is a universal constant.

Proof. Factual risk minimization is essentially a supervised learning problem where we have
access to the outcome information. Under Assumption 10, the random variable R̄a,f (X,Y ) :=
[Y − f(X)]2 − E

{
[Y − f(X)]2 | A = a

}
is bounded. Suppose that R̄a,f (X,Y ) ∈ [b1, b2] for

some constants b1, b2 > 0. By Hoeffding’s lemma, the moment generating function of the
mean-zero R̄a,f (X,Y ),

E
[
e

κ
N

R̄a,f (X,Y )
]
≤ exp

[
κ2(b2 − b1)2

8N2
a

]
.

Then applying Theorem 7, we have

Ra(Gρ̂a) ≤ Ra,N (Gρ̂a) +
[
KL(ρ̂a∥πa) + ln(1/δ) + κ2(b2 − b1)2

8Na

]
/κ

= Ra,N (Gρ̂a) + [KL(ρ̂a∥πa) + ln(1/δ) + ξ1] /
√
Na,
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where κ =
√
Na and ξ1 = (b2 − b1)2/8 and

Ra,N (Gρ̂a) = Ef∼ρ̂

{
1
Na

N∑
i=1

1{Ai = a} [Y − f(Xi)]2
}

= 1
Na

N∑
i=1

1{Ai = a}
[(
Yi − µ̂a(Xi)

)2 + σ̂2
a(Xi)

]
= L(Xa,Ya; ρ̂a) + V (Xa; ρ̂a).

4.9.3 Proof of Lemma 11

Unlike the factual risk Ra(Gρ̂a) in Lemma 10, the PAC-Bayes bound for supervised learning
is not directly applicable to the counterfactual risk R1−a(Gρ̂a). This issue is resolved by
importance weighting (Cortes et al., 2010; Germain et al., 2013).

Lemma 11. Under Assumptions 7 and 10, for any δ ∈ (0, 1], πa in (4.1) and ρ̂a in (4.2),
with probability at least 1− δ, we have

R1−a(Gρ̂a) ≤ 1
2Va(X1−a; ρ̂a) +Da,∞

[
La(Xa,Ya; ρ̂a) + 1

2Va(Xa; ρ̂a)
]

+
( 1/4√

N1−a
+ Da,∞√

Na

)
(2 KL(ρ̂a∥πa) + ln(1/δ) + ξ2),

(4.17)

where Da,∞ = supx∈X

[
pX|A(x | 1− a)/pX|A(x | a)

]
and ξ2 is a universal constant.

Proof. In the upper bound of R1−a(Gρ̂a) from Lemma 12, D1−a(Gρ̂a) does not depend on
any outcome and La(Gρ̂a) is the expected factual risk. Then we can bound both terms using
Theorem 7. First, we define the empirical version of D1−a(Gρ̂a) and La(Gρ̂a),

D1−a,N (Gρ̂a) = E(f1,f2)∼ρ̂2
a

{
N−1

1−a

N∑
i=1

1{Ai = 1− a} [f1(Xi)− f2(Xi)]2
}

= 1
N1−a

N∑
i=1

1{Ai = 1− a}
[
2σ̂2

a(Xi) + 2µ̂2
a(Xi)− 2µ̂2

a(Xi)
]

= 2Va(X1−a; ρ̂a)

(4.18)
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and

La,N (Gρ̂a) = E(f1,f2)∼ρ̂2
a

{
1
Na

N∑
i=1

1{Ai = a}
[
f1(Xi) + f2(Xi)

2 − Yi

]2}

= 1
Na

N∑
i=1

1{Ai = a}
[
µ̂2

a(Xi) + 1
2 σ̂

2
a(Xi)− 2µ̂a(Xi)Yi + Y 2

i

]

= 1
Na

N∑
i=1

1{Ai = a}
[
(Yi − µ̂a(Xi))2 + 1

2 σ̂
2
a(Xi)

]
= La(Xa,Ya; ρ̂a) + 1

2Va(Xa; ρ̂a)

(4.19)

Under Assumption 10 the random variable

D̄1−a,f1,f2(X,Y ) := [f1(X)− f2(X)]2 − E
{

[f1(X)− f2(X)]2 | A = a
}

is bounded, and that D̄1−a,f1,f2(X,Y ) ∈ [b3, b4] for some constants b3, b4 > 0. By Hoeffding’s
lemma, the moment generating function of the mean-zero D̄1−a,f1,f2(X,Y ),

E
[
e

κ
N1−a

D̄1−a,f1,f2 (X,Y )
]
≤ exp

[
κ2(b4 − b3)2

8N2
1−a

]
.

Then applying Theorem 7 with κ =
√
N1−a, we have

D1−a(Gρ̂a) ≤ D1−a,N (Gρ̂a) +
[
2 KL(ρ̂a∥πa) + ln(1/δ) + (b4 − b3)2/8

]
/
√
N1−a, (4.20)

where the double KL divergence is from the fact that

KL(ρ̂2∥π2) =
∫
ρ̂(f1) log ρ̂(f1)

π(f1)df1 +
∫
ρ̂(f2) log ρ̂(f2)

π(f2)df2 = 2 KL(ρ̂∥π).

Similarly, suppose that

L̄a,f1,f2(X,Y ) :=
(
f1(X) + f2(X)

2 − Y
)2
− E

{(
f1(X) + f2(X)

2 − Y
)2 ∣∣∣ A = a

}
∈ [b5, b6],

for some constants b5, b6 > 0. By Hoeffding’s lemma,

E
[
e

κ
Na

L̄a,f1,f2 (X,Y )
]
≤ exp

[
κ2(b6 − b5)2

8N2
1−a

]
.

Then applying Theorem 7 with κ =
√
Na, we have

La(Gρ̂a) ≤ La,N (Gρ̂a) +
[
2 KL(ρ̂a∥πa) + ln(1/δ) + (b6 − b5)2/8

]
/
√
Na (4.21)
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Substituting (4.20) and (4.21) into the upper bound in Lemma 12, we obtain

R1−a(Gρ̂a) ≤ 1
4D1−a,N (Gρ̂a) +Da,∞La,N (Gρ̂a)

+
( 1/4√

N1−a
+ Da,∞√

Na

)
(2 KL(ρ̂a∥πa) + ln(1/δ) + ξ2),

with ξ2 = max{(b4− b5)2, (b6− b5)2}/8. Substituting the expression of D1−a,N (Gρ̂a) in (4.18)
and the expression of La,N (Gρ̂a) (4.19) into the last equation, we obtain (4.17).

4.9.4 Proof of Lemma 12

Lemma 12. Under Assumptions 7 and 10, it holds that

R1−a(Gρ̂a) ≤ 1
4D1−a(Gρ̂a) +Da,∞La(Gρ̂a) (4.22)

where Da,∞ = supx∈X

[
pX|A(x | 1− a)/pX|A(x | a)

]
,

D1−a(Gρ̂a) = E(f1,f2)∼ρ̂2
a

{
E
[(
f1(X)− f2(X)

)2 ∣∣∣∣ A = 1− a
]}

, and

La(Gρ̂a) = E(f1,f2)∼ρ̂2
a

{
E
[(

f1(X) + f2(X)
2 − Y

)2 ∣∣∣∣ A = a

]}
.

Proof. We rewrite R1−a(Gρ̂a) as

Ef∼ρ̂a

{
E
[
(f(x)− Y )2 | A = 1− a

]}
= 1

2E(f1,f2)∼ρ̂2
a

{
E
[
(f1(X)− Y )2 + (f2(X)− Y )2 | A = 1− a

]}
= 1

2E(f1,f2)∼ρ̂2
a

{
E
[
f2

1 (X) + f2
2 (X)− 2Y f1(X)− 2Y f2(X) + 2Y 2 | A = 1− a

]}
= 1

2E(f1,f2)∼ρ̂2
a

{
E
[

1
2
(
f2

1 (X) + f2
2 (X)− 2f1(X)f2(X)

)
+ 1

2
(
f2

1 (X) + f2
2 (X)

+ 2f1(X)f2(X)− 4Y (f1(X) + f2(X)) + 4Y 2
) ∣∣∣∣ A = 1− a

]}

= 1
2E(f1,f2)∼ρ̂2

a

{
E
[

1
2 (f1(X)− f2(X))2 + 2

(
f1(X) + f2(X)

2 − Y
)2 ∣∣∣∣ A = 1− a

]}

= 1
4D1−a(Gρ̂a) + L1−a(Gρ̂a).
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where

L1−a(Gρ̂a) = E(f1,f2)∼ρ̂2
a

{
E
[(

f1(X) + f2(X)
2 − Y

)2 ∣∣∣∣ A = 1− a
]}

= E(f1,f2)∼ρ̂2
a

{∫
pX|A(x | 1− a)
pX|A(x | a) pX|A(x | a)lf1,f2(x, y)dx

}

≤
{∫ (

pX|A(x | 1− a)
pX|A(x | a)

)α

dx

} 1
α

·
{
E(f1,f2)∼ρ̂2

a

[
E
(
l

α
α−1
f1,f2

(X,Y )
∣∣∣ A = a

)]}α−1
α

where lf1,f2(x, y) = ([f1(x) + f2(x)]/2− y)2. The inequality is attained by applying Hölder’s
inequality and the positivity assumption. Taking α→∞, we obtain (4.22).

4.10 Further experimental details

Following the hyperparameter optimization method in (Shalit et al., 2017), we choose the
hyperparameters using a random search over the hyperparameter space in Table 4.4. The
missing counterfactual outcomes in the PEHE loss are approximated by the observed outcome
of the nearest neighbour in the opposite group.

Table 4.4 Hyperparameters and ranges of DKLITE

Hyperparameters Range
Variance regularization parameter α1 {0.001, 0.01, 0.1, 1, 10, 25, 50, 75, 100}

Reconstruction regularization parameter α2 {0.001, 0.01, 0.1, 1, 10, 25, 50, 75, 100}
Number of hidden layers {1, 2, 3}
Number of hidden units {50, 100, 150, 200}

Dimension of the feature map {25, 50, 75, 100}
Regression Form {Primal,Dual}

IHDP. Counterfactual outcomes are randomly generated via a predefined probabilistic
model (Alaa and van der Schaar, 2017; Hill, 2011; Shalit et al., 2017; Yao et al., 2018).
The objective is to estimate the effects of specialist home visits to individuals on their
future cognitive test scores. Patient covariates X were collected from the actual randomized
experiment but the overall cohort was made artificially imbalanced by removing a subset of
the treated population. The dataset comprises 747 units (139 treated, 608 control) and 25
covariates measuring aspects of children and their mothers. Outcomes Y (0) and Y (1) are
obtained by implementing the setting “A” in the NPCI package (Dorie, 2016).
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Twins. Outcomes are observed but the treatment assignment is simulated. The objective
is to predict the mortality of each of one of two twins in their first year. We consider the
treated twin to be the one with higher weight at birth and, since we have records for both
twins, we treat their outcomes as two potential outcomes, i.e. Y (1) and Y (0). Now, in order
to simulate an observational study, we need to select one of the two twins for inclusion in our
data, that is defining P(A | X). We do so by sampling from A | X ∼ Bern(Sigmoid(W⊤X+ϵ))
where W⊤ ∼ Uniform((−0.1, 0.1)30×1) and ϵ ∼ N (0, 0.1). The final data contains 11400
individuals with 30 measured covariates relating to their parents, pregnancy and birth.

For the IHDP dataset, we average over 1000 realizations of the outcomes with 63/27/10%
train/validation/test split. For the Twins dataset, each dataset is divided 56/24/20% into
training/validation/testing sets, and we report the results averaged over 100 realizations.



Chapter 5

Robust recursive partitioning: from
conditional average treatment
effects to interpretable subgroups

Subgroup analysis of treatment effects plays an important role in applications from medicine
to public policy to recommender systems. It allows physicians to identify groups of patients
for whom a given drug or treatment is likely to be effective and groups of patients for which
it is not. In this chapter, we propose a new method called R2P, which can turn black-box
conditional average treatment effect (CATE) estimates into interpretable subgroups. In R2P,
we quantify the errors in the CATE estimates by a distribution-free technique called conformal
prediction and make use of the quantified uncertainties to recursively partition the covariates
space for identifying subgroups. Experiments using synthetic and semi-synthetic datasets
demonstrate that R2P can construct partitions in which individual treatment effects are more
homogeneous within subgroups and more heterogeneous across subgroups, compared with the
partitions produced by various baseline methods. Moreover, leveraging the predictive power
of black-box machine learning models, R2P produces narrower valid confidence intervals for
CATEs than the model-specific baseline methods.

5.1 Introduction

The understanding of treatment effects plays an important role in shaping interventions and
treatments in areas from clinical trials (Rothwell, 2005; Zhou et al., 2017) to recommender
systems (Lada et al., 2019) to public policy (Grimmer et al., 2017). In many settings, the
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relevant population is diverse, and different parts of the population display different reactions
to treatment. In such settings, heterogeneous treatment effect (HTE) analysis, also called
subgroup analysis, is used to find subgroups consisting of subjects who have similar covariates
and display similar treatment outcomes (Foster et al., 2011; Imai and Ratkovic, 2013). The
identification of subgroups is informative of itself; it also improves the interpretation of
treatment effects across the entire population and makes it possible to develop more effective
interventions and treatments and to improve the design of further experiments. In a clinical
trial, for example, HTE analysis can identify subgroups of the population for which the
studied treatment is effective, even when it is found to be ineffective for the population in
general (Hobbs et al., 2011).

To identify subjects who have similar covariates and display similar treatment outcomes,
it is necessary to create reliable estimates of the treatment effects conditional on individual
covariates, e.g., conditional average treatment effects (CATEs). The existing works on
subgroup analysis (Athey and Imbens, 2016; Johansson et al., 2018b; Su et al., 2009; Tran
and Zheleva, 2019) proceed by estimating CATEs with a specific machine learning model (e.g.
decision tree) and recursively partitioning the subject population for subgroup identification.
In these methods, the criteria for partitioning maximize the heterogeneity of treatment effects
across subgroups, using a sample mean estimator. In particular, the population (or any
previously identified subgroups) would be partitioned into smaller subgroups provided that
the sample means of these subgroups are sufficiently different. These methods focus on
inter-group heterogeneity with less attention to intra-group homogeneity.

Figure 5.1 Two subgroups identified by the method (Tran and Zheleva, 2019). The solid red
line shows the CATE estimates and 95% confidence intervals filled in red.

An important problem with this approach is that, because it overly relies on inter-group
heterogeneity based on sample means, it may lead to false discovery. To illustrate, consider
the toy example depicted in Figure 5.1. In this example, individual treatment effects (the
dots in the figure) are generated by i.i.d random draws from a Gaussian distribution with
mean 0 and standard deviation 0.1. In truth, the treatment under consideration is in fact
totally ineffective and innocuous; on average, it has no effect at all and the treatment effects
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are entirely uncorrelated with the single covariate (shown on the horizontal axis). However,
if the observed data – the realization of the random draws – happens to be the one shown in
Figure 5.1, standard methods will typically partition the population as shown in the figure,
thereby “discovering” a segment of the population for whom the treatment is effective and a
complementary segment where the treatment is dangerous. Obviously, decisions based on
such a false discovery are not useful. Note that this false discovery occurs because, although
the outcome variations between the two groups are indeed substantially different, the outcome
variations within each group are just as different – but the latter variation is entirely ignored
in the creation of subgroups. We propose a robust recursive partitioning (R2P) method that
can avoid false discoveries. R2P has several distinctive characteristics summarized below.

R2P discovers interpretable subgroups in a way that is not tied to any particular CATE
estimator. This is in sharp contrast with previous methods (Athey and Imbens, 2016;
Johansson et al., 2018b; Seibold et al., 2016; Su et al., 2009; Tran and Zheleva, 2019), each
of which relies on a specific CATE estimator. R2P can leverage any black-box model for
subgroup analysis, e.g. an CATE estimator based on random forest (Wager and Athey, 2018),
or on multi-task Gaussian processes (Alaa and van der Schaar, 2017) or on deep neural
networks (Shalit et al., 2017; Yoon et al., 2018; Zhang et al., 2020). Many of these CATE
estimators are based on non-interpretable black-box models. R2P divides individuals (units)
into subgroups with respect to a tree structure which is much easier to interpret than black
boxes. Leveraging an uncertainty quantification method called split conformal prediction
(Lei et al., 2018b), R2P employs a novel criterion we call confident homogeneity to create
partitions that take into account both heterogeneity across groups and homogeneity within
groups. Extensive experiments using synthetic and semi-synthetic datasets demonstrate that
R2P outperforms baseline methods, by more robustly identifying subgroups while providing
much narrower valid confidence intervals for CATEs.

5.2 Robust recursive partitioning

To highlight the core design principles, we begin by introducing robust recursive partitioning
(R2P) in the regression setting; we extend to the more complicated CATE estimation
setting in the next section. We consider a standard regression problem with a d-dimensional
covariate space X ⊆ Rd and an outcome space Y ⊆ R. We are given a dataset of N samples,
D = {(Xi, Yi)}Ni=1. We assume the samples are independently drawn from an unknown
distribution P(X,Y ) defined on X × Y. We are interested in estimating the conditional
mean µ(x) = E[Y |X = x] for x ∈ X . We denote the estimator by µ̂ : X → Y; µ̂ predicts
an outcome ŶN+1 = µ̂(XN+1) for a new testing sample XN+1. To quantify the error in this
prediction, we apply the split conformal prediction (SCP) algorithm (Lei et al., 2018b) (also
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called inductive conformal prediction in (Papadopoulos et al., 2002; Vovk et al., 2005)) to
construct a prediction interval Ĉ for YN+1 with marginal coverage guarantee in finite samples.

In SCP, we take as given a miscoverage rate α ∈ (0, 1). We split the samples in D into a
training set I1 and a validation set I2. We let the two sets have the same sample size. We
obtain the outcome estimator µ̂I1 using I1 and compute the absolute residual of µ̂I1 on each
validation sample in I2. On a new sample XN+1, the prediction interval of SCP is given by

Ĉ(XN+1) =
[
µ̂lo(XN+1), µ̂up(XN+1)

]
=
[
µ̂I1(XN+1)− Q̂I2

1−α, µ̂
I1(XN+1) + Q̂I2

1−α

]
,

(5.1)

where Q̂I2
1−α is defined as the (1−α)(1+1/|I2|)-th quantile of the residual set {|Yi− µ̂I1(Xi)| :

i ∈ I2}, i.e., the ⌊(|I2|+ 1)α⌋-th largest absolute residual. Assuming that the N + 1 samples
are drawn exchangeably from P(X,Y ), the prediction interval (5.1) satisfies the following
marginal coverage guarantee,

P[YN+1 ∈ Ĉ(XN+1)] ≥ 1− α. (5.2)

To understand why (5.2) holds, we consider the following example.

Example 5. Let Z1, . . . , ZM , ZM+1 be random variables exchangeably drawn from P(Z)
and Z(1), . . . , Z(M+1) denote the order statistics of Z1, . . . , ZM+1. We define the (1− α)-th
quantile of Z(1), . . . , Z(M+1) as

Q̂1−α =

Z(⌈(M+1)(1−α)⌉, if ⌈(M + 1)(1− α)⌉ ≤M

∞, otherwise

The key observation is that the rank of ZM+1 among Z1, . . . , ZM+1 is uniformly distributed
over the set {1, ...,M + 1} under the exchangeability assumption that the joint distribution
of Z1, . . . , ZM+1 is invariant of the sampling order of Z1, . . . , ZM+1. Thus, for any given
miscoverage level α ∈ (0, 1), we have

P[ZM+1 ≤ Q̂1−α] ≤ 1− α, (5.3)

by summing the uniform distribution up to Q̂1−α. Suppose that M = N/2, and Zi =
|Yi − µ̂I1(Xi)| for i ∈ I2 and ZM+1 = |YN+1 − µ̂I1(XN+1)|. The coverage guarantee (5.2) is
essentially a result from (5.3) and the construction of Ĉ in (5.1).

Marginal coverage vs. conditional coverage. To illustrate the guarantee implied
by (5.2), assume that we are given 1000 testing samples and set α to 0.05. SCP prescribes a
prediction interval for each sample in a way that we can expect the prediction to be within
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the associated prediction interval on at least 950 samples. However, this coverage guarantee
is marginal over the covariate space X . Suppose that we divide X into two subsets X1 and
X2 in a way that X1 has 800 samples and X2 has 200 samples, it might be the case that
790 samples in X1 are covered but only 160 samples in X2 are covered. In this case, 80%
of the samples in X2 would be covered, which is lower than the target coverage rate 95%.
Lei and Wasserman (2014); Vovk (2012) show that conformal prediction can not achieve the
conditional coverage guarantee at a given x in a distribution-free setup. Nevertheless, we will
see later that the intervals with marginal coverage guarantee are still useful for subgroup
analysis by informing us about a region that contains 95% of the outcomes.

Prediction intervals vs. confidence intervals. Before moving on to subgroup
analysis, we want to first clarify the difference between prediction intervals and confidence
intervals. The prediction interval given by SCP is designed to cover the random variable
Yn+1 with high probability. And Yn+1 is not a parameter in some parametric models, so
Ĉ(XN+1) is not a confidence interval we often refer to. However, in practice, a prediction
interval for YN+1 can still be applied to cover µ(XN+1) = E[YN+1 | XN+1]. This is because
the mean of YN+1 | XN+1 often has less variability than the random variable YN+1 | XN+1.
Of course, there are special cases. For example, the mean of a distribution can undergo a
large shift if the distribution is contaminated with outliers. Then a prediction interval will
fail to cover the mean with any guarantee. Some additional assumption (e.g. continuity or
smoothness) on the outcome distribution is needed to establish the equivalence between the
two types of intervals. However, in the literature, conformal prediction methods are mainly
studied in a distribution-free manner. In what follows, we will use prediction intervals from
SCP as confidence intervals for conditional means since the CATE function is defined as
the difference between two conditional means. And we only verify the marginal coverage
guarantee of our confidence intervals empirically.

5.2.1 Robust heterogeneity analysis

Let Π = {lj} be a partition of the covariate space X . Let Dl = {(Xi, Yi) ∈ D|Xi ∈ l} collect
the samples in the subgroup l. Let I l

2 be the subset of samples in I2 that belongs to the
subgroup l. We obtain the interval Ĉl(X) for the subgroup l by setting the upper and lower
endpoints to be

µ̂up
l (X) = µ̂I1(X) + Q̂

Il
2

1−α and µ̂lo
l (X) = µ̂I1(X)− Q̂Il

2
1−α. (5.4)

Compared with the interval (5.1), Ĉl(X) better captures the local error of µ̂I1 in the
subgroup l. If we further partition the subgroup l, we can further subsample I l

2 to construct
the intervals. There is almost no additional computational cost because all the validation
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errors for I2 is computed in the first place. All we need to do is simply compute the quantile
Q̂1−α’s locally. (To avoid notational complications, omit reference to the subsets I1 and
I l

2 hereafter. Throughout, we follow the convention that the confidence bound have been
computed based on the split.) To estimate the center of the subgroup l, we use the average
outcome µ̂l,mean = E[µ̂(X) | X ∈ l]. We define the expected absolute deviation of the subgroup
l as Sl = E[vl(X) | X ∈ l], where

vl(x) =
(
µ̂l,mean − µ̂up

l (x)
)
I
[
µ̂l,mean > µ̂up

l (x)
]

+
(
µ̂lo

l (x)− µ̂l,mean
)
I
[
µ̂l,mean < µ̂lo

l (x)
]
.

By definition, µ̂up
l (x) is larger than µ̂lo

l (x) as long as the quantile Q̂1−α > 0. When the first
indicator function is 1, i.e. the average outcome (the group center) µ̂l,mean is larger than
the upper bound µ̂up

l (x) at x, we are confident that the outcome value at x is significantly
smaller than the group mean. Similarly, when the second indicator function is 1, we are
certain that the outcome value at x is significantly larger than the group mean. When
Ĉl(x) =

[
µ̂lo

l (x), µ̂up
l (x)

]
contains µ̂l,mean, both indicator functions are 0 and vl(x) = 0.
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Figure 5.2 Illustration of the space partition and confident homogeneity in R2P. The regions
shaded in red and grey represent Wl and Sl, respectively. Start by partitioning the covariate
space X (the left panel). The partition with smaller impurity (the middle panel) makes the
heterogeneity across subgroups and the homogeneity within subgroups stronger than others
with larger impurity (e.g., the right panel).

The deviation Sl evaluates the outcome homogeneity in the subgroup l by measuring
the proportion of x ∈ l at which a confidence interval Ĉl(x) does not cover the group mean
µ̂l,mean. If this value is small, the outcome for the subgroup l is not significantly different
from the group mean. Our criterion for partitioning is more conservative than the mean
difference |µ̂l(x)− µ̂l,mean|, and has the potential to provide greater protection against false
discoveries of subgroups, e.g., the one in Figure 5.1. From the left panel of Figure 5.2, we can
see how conformal prediction plays a role in our procedure. The confidence intervals given by
SCP cover the red region with marginal guarantee, which means that 95% of the outcomes
are in this red region. When we initialize the partition, we treat the entire covariate space X
as a group, but the group mean (the dashed line in the left panel) falls outside the red region.
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This indicates that the outcome homogeneity in X is very low and a partition (e.g. the one
in the middle panel) is needed to increase the outcome homogeneity within each subgroup.

However, minimizing Sl is not enough to maximize subgroup homogeneity. If the intervals
Ĉl(x) for all x ∈ l are very wide and contain the average outcome µ̂l,mean, the outcome
homogeneity can be very low even though Sl = E[vl(X) | X ∈ l] is 0. To resolve this issue, as
we partition the covariate space, we jointly minimize Sl and the expected confidence interval
width Wl = E

[
|Ĉl(X)| | X ∈ l

]
. Overall, we formalize our partitioning problem as

minimize
Π

∑
l∈Π

λWl + (1− λ)Sl, (5.5)

where λ ∈ [0, 1] is a hyperparameter that balances the impact of Wl and Sl. We call the
weighted sum, λWl + (1− λ)Sl, the impurity of the confident homogeneity for the subgroup l.
Figure 5.2 illustrates how minimizing the impurity of the confident homogeneity improves
both homogeneity within each subgroup and heterogeneity across subgroups. We can see
both Wl (the area of the red region) and Sl (the area of the grey region) are minimized by
the partition in the middle panel (compared with the partition in the right panel). We can
also see from the middle panel that by reconstructing the intervals using the local samples
I l

2, l = 1, 2, the intervals reflect the local errors better than the intervals in the left panel.

5.2.2 Confident homogeneity

We now describe our robust recursive partitioning (R2P) method for solving the mimization
problem (5.5). There may be more than one partition that achieves the minimum; because a
larger number of subgroups is harder to interpret, we will always choose the minimizer with
the smallest number of subgroups.

We begin with the trivial partition Π = {X}. We let Πc denote the set of subgroups whose
objectives in (5.5) can be potentially improved. In the initialization step, we set Πc = Π and
apply SCP on D to obtain the confidence interval (5.1). With the intervals for the samples
in the subgroup l, we estimate Wl and Sl by

Ŵl = 1
N l

2

∑
i∈Il

2

|Ĉl(Xi)| and Ŝl = 1
N l

2

∑
i∈Il

2

vl(Xi), (5.6)

where N l
2 = |I l

2| and |Ĉl(Xi)| is the width of Ĉl(Xi). After initialization, we recursively
partition X by splitting the subgroups in Πc with respect to the criterion in (5.5). To split
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Algorithm 2 Robust Recursive Partitioning
1: Input: Samples D = {(Xi, Yi)}Ni=1, miscoverage rate α ∈ (0, 1), Π = {X}
2: Initialization: Πc = Π, split D into I1 and I2, obtain a regression model µ̂ using I1,

construct the confidence interval (5.1), ŴX and ŜX using I2
3: for l ∈ Πc do
4: Obtain Ŵ ∗

l± , Ŝ∗
l± , i∗, and ϕ∗

5: if λŴ ∗
l± + (1− λ)Ŝ∗

l± ≤ (1− γ)
[
λŴl + (1− λ)Ŝl

]
then

6: Partition l into l+(i∗, ϕ∗) and l−(i∗, ϕ∗)
7: Π← Π ∪ {l+(i∗, ϕ∗), l−(i∗, ϕ∗)} \ {l}
8: Πc ← Πc ∪ {l+(i∗, ϕ∗), l−(i∗, ϕ∗)}
9: Πc ← Πc \ {l}

10: Output: Π, µ̂, and Ĉl for all l ∈ Π

each subgroup l ∈ Πc, we first consider the two disjoint subsets from the subgroup l given by

l+k (ϕ) = {x ∈ l|xk ≥ ϕ} and l−k (ϕ) = {x ∈ l|xk < ϕ},

where ϕ ∈ (xl,min
k , xl,max

k ) is the threshold for splitting, xk is the k-th covariate and xl,min
k and

xl,max
k are the minimum and maximum values of the k-th covariate within the subgroup l,

respectively. We split I l
2 into two subsets with respect to l+k (ϕ) and l−k (ϕ):

I l+
k

(ϕ)
2 =

{
(Xi, Yi) ∈ I l

2 : Xi ∈ l+k (ϕ)
}

and I l−
k

(ϕ)
2 =

{
(Xi, Yi) ∈ I l

2 : Xi ∈ l−k (ϕ)
}
.

Using the absolute residuals for the samples in I l+
k

(ϕ)
2 and I l−

k
(ϕ)

2 , we can construct the
confidence intervals Ĉl+

k
(ϕ)(x) and Ĉl−

k
(ϕ)(x) and the associated quantities in the objective

function, Ŵl+
k

(ϕ), Ŵl−
k

(ϕ), Ŝl+
k

(ϕ) and Ŝl−
k

(ϕ). Then we find the optimal covariate k∗
l and

threshold ϕ∗
l for splitting subgroup l as

(k∗
l , ϕ

∗
l ) = arg min

(k,ϕ)
λ
(
Ŵl+

k
(ϕ) + Ŵl−

k
(ϕ)

)
+ (1− λ)

(
Ŝl+

k
(ϕ) + Ŝl−

k
(ϕ)

)
.

For (k∗
l , ϕ

∗
l ), we compute Ŵ ∗

l± = Ŵl+
k∗ (ϕ∗) + Ŵl−

k∗ (ϕ∗) and Ŝ∗
l± = Ŝl+

k∗ (ϕ∗) + Ŝl−
k∗ (ϕ∗). To improve

the objective in (5.5), we split the subgroup l into l+k∗(ϕ∗) and l−k∗(ϕ∗) only if the reduction
in the impurity of the confident homogeneity is sufficiently large:

λŴ ∗
l± + (1− λ)Ŝ∗

l±

λŴl + (1− λ)Ŝl

≤ 1− γ (5.7)

Here, γ ∈ [0, 1) is a hyperparameter for regularization. We refer to (5.7) as the confident
criterion which prevents overfitting that leads to a large number of small subgroups.
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After the splitting decision, we remove l from Πc; if we have split l, we remove l from
Π and add the two split sets to both Π and Πc. We continue recursively until Πc is empty,
i.e., no further splitting is productive. When the procedure stops, we will have obtain an
estimator µ̂ and a partition Π and a confidence interval Ĉl(x) =

[
µ̂(x)− Q̂l

1−α, µ̂(x) + Q̂l
1−α

]
for every l ∈ Π. The entire procedure of our R2P method is summarized in Algorithm 2.

5.3 Robust recursive partitioning for CATEs

We now apply the R2P method to convert conditional average treatment effect (CATE)
estimates into subgroups. We consider a setup with N units (i.e. samples). For every unit
i ∈ {1, 2, ..., N}, there exists a pair of treated and control potential outcomes, Yi(1) and
Yi(0). Every unit has a set of covariates Xi, a treatment variable Ai ∈ {0, 1} and an observed
outcome Yi. The observational data is D = {(Xi, Ai, Yi)}Ni=1. Under Assumption 7, the
CATE at x is given by

τ(x) = E[Y (1)− Y (0) | X = x] = µ1(x)− µ0(x),

where µa(x) = E[Y | X = x,A = a] for a = 0, 1. We estimate each µa by a regression model
µ̂a, then estimate τ(x) by τ̂(x) = µ̂1(x)− µ̂0(x).

To construct an accurate τ̂(x), we can let µ̂0(x) and µ̂1(x) be one of the powerful machine
learning models in the literature (Alaa and van der Schaar, 2017; Athey and Imbens, 2016;
Shalit et al., 2017; Wager and Athey, 2018; Yoon et al., 2018; Zhang et al., 2020). We set the
target coverage rate of µ̂0(x) and µ̂1(x) as

√
1− α. We can construct a confidence interval

for µ0(x) and µ1(x) using SCP, respectively. Denote the
√

1− α confidence intervals by

Ĉ1(x) =
[
µ̂1(x)− Q̂1√

1−α
, µ̂1(x) + Q̂1√

1−α

]
and Ĉ0(x) =

[
µ̂0(x)− Q̂0√

1−α
, µ̂0(x) + Q̂0√

1−α

]
.

We set the confidence interval for τ(x) to be

Ĉτ (x) =
[
µ̂1(x)− µ̂0(x)− Q̂1√

1−α
− Q̂0√

1−α
, µ̂1(x)− µ̂0(x) + Q̂1√

1−α
+ Q̂0√

1−α

]
.

In the confidence interval Ĉτ (x), the upper endpoint is given as the difference between the
upper endpoint of Ĉ1 and the lower endpoint of Ĉ0, and the lower endpoint is given as the
difference between the lower endpoint of Ĉ1 and the upper endpoint of Ĉ0. If the coverage
rates for Ĉ1 and Ĉ0 are

√
1− α, the coverage rate for Ĉτ will be 1−α. A parallel work by Lei

and Candès (2021) develops a less conservative conformal prediction method for individual
treatment effects based on the weighted conformal prediction method in (Tibshirani et al.,
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2019). Our contribution in this chapter is different by converting CATE estimates into
interpretable subgroups, rather than prediction intervals.

With τ̂(x) and its confidence interval Ĉτ,l(x) for each subgroup l, we can calculate the
quantities Ŵl and Ŝl in (5.6), and solve the robust partitioning problem in (5.5) by applying
the R2P method in Algorithm 2, with two minor changes: 1) each sample in the dataset is
a triple (Xi, Ai, Yi), and the model µ̂(x) is replaced by τ̂(x). We call this modified method
R2P-CATE. If the confidence intervals overlap across the subgroups, we can not conclude that
the subgroups are well-identified. If the intervals have little or no overlap across subgroups,
we can conclude that the subgroups are well-identified. By identifying subgroups this way,
R2P is more robust against inconclusive and false discoveries in applications, e.g., drug
development, which may save a large amount of resources spent on confirmatory trials.

5.4 Related works

Subgroup analysis methods with recursive partitioning have been widely studied based on
regression trees (Athey and Imbens, 2016; Johansson et al., 2018b; Su et al., 2009; Tran
and Zheleva, 2019). In these methods, once the subgroups (i.e., leaves in the tree structure)
are constructed, the treatment effects are estimated by the corresponding sample mean
estimator on each leaf. To represent the non-linearity such as interactions between treatment
and covariates, Seibold et al. (2016) integrate a parametric model into the regression trees
for subgroup analysis. However, such an approach only works for limited types of models,
which is not particularly satisfying given the fact that causal inference is more accurate
by estimating the outcomes with machine learning models (Alaa and van der Schaar, 2017;
Shalit et al., 2017; Zhang et al., 2020). The global model interpretation method proposed by
Yang et al. (2018) can analyze the subgroup structure of arbitrary models but it depends on
local model interpreters and does not consider an application to treatment effects estimation.

A variety of criteria have been proposed in regression trees for recursive partitioning in
the literature. The adaptive criterion (Johansson et al., 2018b) identifies subgroups with
heterogeneous treatment effects by maximizing the heterogeneity across subgroups. The
honest criterion (Athey and Imbens, 2016) splits the samples into two subsets, then use the
first subset to build a tree structure and the second subset for estimating the treatment
effects. This criterion can prevent overfitting and eliminate the bias in the adaptive criterion.
Modelling the interactions between the treatment and covariate variables is proposed in the
partitioning criterion (Su et al., 2009). Yang et al. (2018) propose to use the contribution
matrix of the samples from local model interpreters for partitioning. Some of these criteria
construct confidence intervals using the estimated variances, but these intervals may fail to
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achieve the coverage guarantee in finite samples. Johansson et al. (2018b) propose a conformal
prediction method to construct confidence intervals is proposed for regression trees. The
adaptive criterion they use for partitioning does not take into account the confidence intervals.
The confident criterion in R2P is different from these criteria. It constructs subgroups based
on both heterogeneity and homogeneity measured by the confidence intervals.

5.5 Experiments

In this section, we evaluate R2P-CATE (abbreviated as R2P) by comparing its performance
with some baseline subgroup analysis methods. Specifically, we compare R2P-CATE with
four baselines: standard regression trees for causal effects (CT-A) (Breiman et al., 1984),
conformal regression trees for causal effects (CCT) (Johansson et al., 2018b), causal trees
with honest criterion (CT-H) (Athey and Imbens, 2016), and causal trees with generalization
costs (CT-L) (Tran and Zheleva, 2019). Details of the baseline methods are provided in
Section 5.7.2. For the CATE estimator of R2P, we use the causal multi-task Gaussian process
(CMGP) (Alaa and van der Schaar, 2017). Because individual treatment effects are never
observed in any real data, we use two synthetic and two semi-synthetic datasets. The first
synthetic dataset (Synthetic dataset A) is taken from the article (Athey and Imbens, 2016).
Dataset A has little homogeneity within subgroups. We offer the second synthetic dataset
(Synthetic dataset B) that has more covariates and greater homogeneity within subgroups
than dataset A. Dataset B is inspired by the initial clinical trial developed for remdesivir
(Wang et al., 2020) which is a treatment for COVID-19. The trial reports a result that
remdesivir leads to a faster time of clinical improvement for patients with a shorter time
from symptom onset to starting the trial. The two semi-synthetic datasets are based on
real-world covariates; the first uses the Infant Health and Development Program (IHDP)
dataset (Hill, 2011) and the second uses the Collaborative Perinatal Project (CPP) dataset
(Dorie et al., 2019). More details of the datasets can be found in Section 5.7.1. We next
present experimental results averaged over 50 independent runs on these datasets.

The optimal ground truth of subgroups depends on multiple objectives, including homo-
geneity, heterogeneity, and the number of subgroups. In the literature, the usual metric used
is variance, because greater heterogeneity across subgroups and homogeneity within each
subgroup on a large testing set generally indicate a good subgroup analysis method. We
denote the set of test samples by D∗ and the test samples that belong to the subgroup l as D∗

l .
We define the mean and variance of treatment effects on the test samples in the subgroup l

as Mean(D∗
l ) and Var(D∗

l ), respectively. We define the heterogeneity across subgroups V across

as the sample variance of the group means {Mean(D∗
l )}l∈Π. We measure the homogeneity

within subgroups by the average intra-subgroup variance V in(D∗) = |Π|−1∑
l∈Π Var(D∗

l ). We
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Table 5.1 Performance of R2P and baseline methods: the measures V across and V in, the
widths and coverage rates of confidence intervals. The best results are highlighted in bold.

Metrics V across V in # SGs CI width Coverage (%)
Synthetic dataset A

R2P 0.22±.01 0.03±.001 4.9±.16 0.08±.003 98.98±.24
CCT 0.18±.02 0.05±.01 4.4±.24 7.42±.48 100.0±.00
CT-A 0.19±.02 0.04±.01 4.7±.21 3.96±.16 99.99±.02
CT-H 0.12±.03 0.11±.02 3.1±.39 4.39±.22 99.98±.02
CT-L 0.12±.02 0.10±.02 2.9±.35 5.22±.02 99.97±.06

Synthetic dataset B
R2P 2.39±.04 0.12±.01 5.0±.16 0.88±.06 98.86±.23
CCT 1.97±.14 0.58±.15 5.0±.13 5.95±.59 99.86±.13
CT-A 2.24±.06 0.30±.05 5.1±.15 2.77±.20 97.73±.76
CT-H 2.07±.13 0.53±.13 4.5±.15 3.38±.32 98.20±.73
CT-L 0.80±.26 1.77±.27 3.1±.28 6.92±.53 99.44±.47

IHDP dataset
R2P 0.46±.04 0.38±.03 4.1±.12 1.27±.22 97.93±.39
CCT 0.30±.04 0.53±.05 4.3±.13 5.70±.23 99.59±.12
CT-A 0.31±.04 0.57±.05 4.1±.08 3.71±.08 97.41±.42
CT-H 0.28±.05 0.56±.05 3.8±.14 3.76±.14 97.76±.40
CT-L 0.27±.06 0.64±.05 2.8±.23 4.75±.15 98.97±.30

CPP dataset
R2P 0.06±.02 0.10±.01 5.7±.30 1.11±.13 98.52±.34
CCT 0.03±.02 0.12±.01 6.4±.20 3.60±.12 99.54±.23
CT-A 0.03±.01 0.12±.01 6.6±.18 2.45±.06 96.60±.50
CT-H 0.01±.00 0.14±.01 5.2±.23 2.67±.06 98.01±.40
CT-L 0.01±.01 0.14±.01 2.9±.29 3.23±.07 99.49±.23

also report the average number of subgroups discovered by the methods. We set α to 0.05,
so we demand a 95% marginal coverage of CATEs on the testing samples.

Table 5.1 reports the performance of R2P and the baseline methods on the four datasets
described above. Keep in mind that larger V across means greater heterogeneity across
subgroups, while smaller V in means greater homogeneity within subgroups. As the table
shows, R2P displays by far the best performance on all four datasets: the greatest heterogeneity
across subgroups, the greatest homogeneity within subgroups, and the narrowest confidence
intervals. It delivers all these results while identifying comparable numbers of subgroups. We
conclude that R2P identifies subgroups more effectively than the baseline methods. All the
methods achieve the 95% target coverage rate. The confidence intervals from R2P are much
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narrower than the other methods. This reflects one of the strengths of R2P, which is the
ability to leverage any black-box machine learning models to estimate CATEs.

However, the confidence intervals from R2P are not well-calibrated, i.e. covering more
than 95% of the samples. This is due to two reasons mentioned above: (1) the intervals from
SCP are targeted to cover the random variable (individual treatment effect) Yi(1) − Yi(0)
rather than the conditional mean (CATE); (2) we combine the

(√
1− α

)
-confidence intervals

for µ0 and µ1 to construct the (1 − α)-confidence interval for τ . In general, applying
distribution-free uncertainty quantification techniques (e.g. conformal prediction) to some
unobserved parameters is challenging because we take into account the most complex and
simple data generating distribution at the same time; see Barber (2020); Lee and Barber
(2021) for theoretical results on binary regression.

Figure 5.3 Treatment effects for the identified subgroups on Synthetic dataset B. Each box
represents the range between the 25th and 75th percentiles of the treatment effects on the
test samples; each whisker represents the range between the 5th and 95th percentiles.

The effectiveness of R2P can also be seen in Figure 5.3, which provides, for R2P and
each of the four baseline methods, boxplots of the distribution of treatment effects for
each identified subgroup on Synthetic dataset B. R2P identifies subgroups reliably: the
distributions of treatment effects are non-overlapping or well-discriminated across subgroups.
By contrast, the other methods have false discoveries of overlapping subgroups.

Table 5.2 Normalized V in of R2P

Dataset Synthetic dataset A Synthetic dataset B IHDP CPP

Ṽ in 0.110±.005 0.046±.003 0.459±.033 0.691±.076

To indicate the gain from subgroup analysis obtained by R2P, and hence to indicate the
effectiveness of recursive partitioning, we compare V in, the homogeneity within subgroups
obtained by R2P in Table 5.1, against the homogeneity within the entire population, V pop. We
divide V in by V pop to obtain the normalized V in, denoted by Ṽ in in Table 5.2. R2P reduces
the average intra-subgroup variance by 89% and more than 95% on Synthetic datasets A and
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B, respectively. On the IHDP and CPP datasets, R2P reduces the average intra-subgroup
variance by more than 50% and 30%, respectively.

5.6 Conclusion

The understanding of treatment effects plays an important role in many areas, especially
in medicine and public policy. In medicine, subgroup analysis makes it possible to identify
groups of patients suffering from a particular disease for whom a particular drug is effective
and safe and other groups for whom the same drug is ineffective and unsafe. Similarly,
subgroup analysis may make it possible to identify groups of patients for whom one course of
treatment (e.g. a particular mode of radiotherapy or chemotherapy) is preferable to another.
In public policy, subgroup analysis can identify groups of people or geographic regions for
which particular interventions (e.g., providing mosquito nets to combat malaria) are likely to
be successful or unsuccessful. Our subgroup analysis method R2P improves over the baseline
methods and therefore has an impact on a variety of applications.

We believe R2P opens up some future research directions for subgroup analysis with
conformal prediction. In R2P, the intervals and subgroups are constructed using the same
validation data, which breaks the data exchangeability to establish subgroup-level coverage
guarantees. One possible solution to this problem is by applying concentration inequalities
(Kim et al., 2021; Park et al., 2020; Vovk, 2012) and controlling the partition complexity. R2P
can be implemented on any CATE learners reviewed in Section 1.3.2. If a learner estimates τ̂
directly, we can let µ̂1 = µ0 + τ̂ and construct the confidence interval for τ̂ as in R2P-CATE
above. It is interesting to study how to better construct intervals and subgroups by conformal
prediction when using advanced CATE learners.

5.7 Further experimental details

5.7.1 Datasets

Synthetic dataset A. We first consider the synthetic treatment effect model proposed in
(Athey and Imbens, 2016). The potential outcome Yi(a) for a ∈ {0, 1} is given by

Yi(a) = η(Xi) + 1
2(2a− 1)κ(Xi) + ϵi,

where ϵi ∼ N (0, 0.01), Xi,k ∼ N (0, 1), and η(·) and κ(·) are the design functions. The
outcome Yi is determined by the design functions. The functions η(·) and κ(·) are the control
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outcome and conditional average treatment effect for some given covariates, respectively. We
consider the following design functions with two covariates,

η(Xi) = 1
2Xi1 +Xi2 and κ(Xi) = 1

2Xi1.

In the experiments, we generate 300 samples for training and 1000 samples for testing.

Synthetic dataset B. We introduce a synthetic model based on the initial clinical trial
results of remdesivir to COVID-19 (Wang et al., 2020). The result shows that remdesivir
results in a faster time to clinical improvement for the patients with a shorter time from
symptom onset to starting the trial. Since the clinical trial data is not public, we construct
a synthetic model following this result. We consider the following 10 baseline covariates:
age ∼ N (66, 4), white blood cell count (×109 per L) ∼ N (66, 4), lymphocyte count (×109

per L) ∼ N (0.8, 0.1), platelet count (×109 per L) ∼ N (183, 20.4), serum creatinine (U/L)
∼ N (68, 6.6), aspartate aminotransferase (U/L) ∼ N (31, 5.1), alanine aminotransferase (U/L)
∼ N (26, 5.1), lactate dehydrogenase (U/L) ∼ N (339, 51), creatine kinase (U/L) ∼ N (76, 21),
and time from symptom onset to starting the trial (days) ∼ Unif(4, 14).

We use a logistic function on the time covariate to produce different effectiveness (i.e.,
the faster time to clinical improvement with a shorter time from symptom onset to the trial).
The control and treatment outcomes are given by

Y (0) ∼ N (βX−0 + 1/(1 + e−(X0−9)) + 5, 0.1), and

Y (1) ∼ N (βX−0 + 5/(1 + e−(X0−9)), 0.1),

where X−0 represents the matrix of the standardized (zero-mean and unit standard deviation)
covariates except for the time covariate X0. The coefficients in β are randomly sampled
among the values (0, 0.1, 0.2, 0.3, 0.4) with the probability (0.6, 0.1, 0.1, 0.1, 0.1), respectively.
This synthetic model is constructed to be consistent with the trial result in (Wang et al.,
2020) such that the time to clinical improvement (i.e., the treatment effect) becomes faster
with a shorter time from symptom onset to the trial.

IHDP dataset. The Infant Health and Development Program (IHDP) is a randomized
experiment intended to enhance the cognitive and health status of low-birth-weight, premature
infants through intensive high-quality child care and home visits from a trained provider.
Based on the real experimental data about the impact of the IHDP on the subjects’ IQ scores
at the age of three, the semi-synthetic (simulated) dataset is developed and has been used to
evaluate methods for treatment effects estimation (Alaa and van der Schaar, 2017; Hill, 2011;
Louizos et al., 2017; Shalit et al., 2017). All outcomes are simulated using the real covariates.
The dataset consists of 747 subjects (608 untreated and 139 treated), and 25 input covariates
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for each subject. We generated the outcomes using the standard non-linear mean outcomes of
“Response surface B” setting in (Hill, 2011). A noise ϵ ∼ N (0, 0.1) is added to each observed
outcome. In the experiments, we use 80% samples for training and 20% samples for testing.

CPP dataset. In the 2016 Atlantic Causal Inference Conference competition (ACIC), a
semi-synthetic dataset is created based on the data from the Collaborative Perinatal Project
(CPP) (Dorie et al., 2019). It consists of multiple datasets that are generated by distinct
data generating processes (causal graphs) and random seeds. Each dataset consists of 4802
observations with 58 covariates of which 3 are categorical, 5 are binary, 27 are count data,
and the remaining 23 are continuous. The factual and counterfactual samples are drawn
from a generative model and a noise ϵ ∼ N (0, 0.1) is added to each observed outcome. In
the experiments, we use the dataset with index 1 provided in (Dorie et al., 2019) and drop
the rows whose Y (1) or Y (0) above the 99% quantile or below the 1% quantile to avoid the
outliers. The dataset consists of 35% treated units and 65% control units. We randomly pick
500 samples for training and 300 samples for testing in this dataset.

5.7.2 Benchmark methods

Robust recursive partitioning for CATE (R2P-CATE). In R2P-CATE, our CATE
estimator τ̂(x) is the causal multi-task Gaussian process (CMGP) in (Alaa and van der
Schaar, 2017). Using µ̂1(x) and µ̂0(x) in CMGP, we construct the confidence interval for
τ̂(x) as described in Section 5.3. We set λ in (5.5) to 0.5 and γ in (5.7) to 0.05.

Standard regression trees for causal effects (CT-A). Because the standard regres-
sion trees in (Breiman et al., 1984) is not developed for estimating treatment effects, we
implement a modified version of the standard regression trees for causal effects estimation in
(Athey and Imbens, 2016). In this modified version, the regression trees recursively partitions
according to a criterion based on the mean squared error (MSE) of the treatment effects. In
the literature, this criterion is called the adaptive criterion. In the experiments, we set the
minimum number of training samples in each leaf as 20 since CT-A does not need to split
the data samples into two subsets for validation as in other methods.

Conformal regression trees for causal effects (CCT). We modify the conformal re-
gression trees in (Johansson et al., 2018b) for our experiments of treatment effect estimation.
We implemented CCT by applying the split conformal prediction method to CT-A.

Causal trees with honest criterion (CT-H). We implement the causal trees method in
(Athey and Imbens, 2016). The method modifies the standard regression trees for causal
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effects in which an honest criterion is used instead of the adaptive criterion. It divides
tree-building and treatment effect estimation into two steps. The samples are split into
two subsets: training samples to build the trees and samples to estimate treatment effects.
This two-step procedure makes the tree-building and the treatment effect estimation process
independent, which prevents overfitting in treatment effect estimation.

Causal trees with generalization costs (CT-L). We implement causal trees with a
criterion considering generalization costs in (Tran and Zheleva, 2019). This method is a
modified version of the causal trees in (Athey and Imbens, 2016). It splits the data samples
into the training and validation samples and builds the trees using the training samples while
penalizing based on generalization ability using the validation samples. In the experiments,
we use half of the samples for the training and validation, respectively.

In R2P-CATE, CCT, CT-H and CT-L, we set the minimum number of training samples in
each leaf as 10. We also implement a pruning step to prevent overfitting.

5.8 Additional experiments

5.8.1 Average overlap of treatment effects across subgroups

The average overlap of treatment effects across subgroups indicates whether the subgroups
are false discoveries. Specifically, we define a treatment effect interval of each subgroup l as
[al(p), bl(q)], where al(p) and bl(q) are p-th and q-th percentiles of the treatment effects in
the subgroup l. We define the average overlap of treatment effects across subgroups as the
overlapped width of the treatment effect intervals between all the pairs of the subgroups. We
provide the average overlap of R2P and the baselines for all datasets with p = 20 and q = 80.
Table 5.3 shows that the average overlap in R2P is significantly small than the baselines,
which implies that R2P performs best for identifying non-overlapping subgroups.

Table 5.3 Average overlap of treatment effects across subgroups.

Synthetic dataset A Synthetic dataset B IHDP CPP

R2P 0.45±.06 0.14±.03 0.32±.04 0.23±.03
CCT 1.35±.04 0.63±.15 0.81±.09 0.55±.04
CT-A 1.13±.21 0.44±.09 0.59±.08 0.47±.05
CT-H 0.60±.20 0.60±.16 0.76±.10 0.45±.05
CT-L 0.87±.18 2.27±.55 0.46±.10 0.24±.04
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5.8.2 Maximum depth for partitioning

We set the maximum depth of each method to be 2, which limits the maximum number of
identified subgroups by 4. Table 5.4 shows that overall, R2P has both the highest variance
across subgroups and the lowest intra-subgroup variance. This implies that every partition
R2P makes is more effective for identifying subgroups than the other methods. In Synthetic
dataset B, The variance across subgroups in CT-A is slightly larger than R2P. But the
intra-subgroup variance of CT-A is much larger than R2P.

Table 5.4 Results with maximum depth for partitioning.

Metrics V across V in # SGs CI width Coverage (%)

Synthetic dataset A

R2P 0.27±.01 0.04±.001 4.0±.04 0.09±.002 99.06±.23
CCT 0.20±.02 0.07±.01 3.4±.22 8.28±.42 100.0±.00
CT-A 0.24±.02 0.06±.01 3.6±.15 4.29±.16 99.99±.02
CT-H 0.14±.03 0.11±.02 2.5±.27 4.71±.18 99.99±.01
CT-L 0.13±.03 0.12±.02 2.4±.25 5.49±.16 99.99±.01

Synthetic dataset B

R2P 2.19±.04 0.14±.01 4.0±.00 0.98±.07 99.28±.16
CCT 2.10±.08 0.43±.09 3.9±.09 6.05±.46 99.99±.01
CT-A 2.23±.06 0.30±.06 3.9±.08 2.97±.20 98.68±.52
CT-H 2.13±.09 0.45±.09 3.8±.12 3.45±.25 98.66±.68
CT-L 0.82±.23 1.74±.25 2.8±.19 6.71±.53 99.70±.30

IHDP dataset

R2P 0.52±.05 0.42±.05 3.5±.14 1.21±.13 97.24±.50
CCT 0.28±.05 0.62±.06 3.5±.14 6.11±.21 99.55±.14
CT-A 0.33±.04 0.58±.05 3.7±.13 3.64±.08 97.25±.43
CT-H 0.30±.05 0.60±.05 3.5±.14 3.72±.12 97.17±.43
CT-L 0.30±.06 0.67±.04 2.7±.18 4.72±.17 98.99±.23

CPP dataset

R2P 0.05±.02 0.12±.01 3.7±.13 1.22±.14 99.04±.23
CCT 0.05±.03 0.13±.01 3.4±.14 3.66±.13 99.50±.21
CT-A 0.02±.01 0.13±.01 3.5±.14 2.44±.05 96.17±.51
CT-H 0.01±.00 0.14±.01 3.4±.14 2.59±.06 97.31±.56
CT-L 0.02±.02 0.13±.01 2.7±.21 3.25±.07 99.55±.22
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5.8.3 Different CATE estimators

We provide the results of R2Ps with different CATE estimators in Table 5.5. For this, we
integrate R2P with the CATE estimators based on dragonnet (DN) (Shi et al., 2019), random
forest (RF), and CT-H (Athey and Imbens, 2016). To evaluate the precision of the CATE
estimation, we use the empirical precision in the estimation of heterogeneous effect (PEHE)
(Hill, 2011), PEHE = N−1∑N

i=1[µ̂1(Xi)− µ̂0(Xi)− τ(x)]2. The lower PEHE implies a more
accurate CATE estimation. In the table, we can see that with a more accurate CATE
estimator, R2P constructs better subgroups.

Table 5.5 Results of R2Ps with different CATE estimators.

Metrics V across V in # SGs CI width
√

PEHE
Synthetic dataset A

R2P 0.22±.01 0.03±.001 4.9±.16 0.08±.003 0.01±.00
R2P-DN 0.21±.02 0.05±.01 4.9±.27 0.71±.05 0.06±.00
R2P-RF 0.18±.02 0.08±.01 4.9±.26 2.91±.12 0.33±.01

R2P-CT-H 0.12±.02 0.07±.03 4.3±.49 8.87±.32 0.51±.02
Synthetic dataset B

R2P 2.39±.04 0.12±.01 5.0±.16 0.88±.06 0.16±.01
R2P-DN 2.32±.06 0.19±.03 5.1±.17 2.24±.09 0.41±.02
R2P-RF 2.20±.08 0.33±.07 5.1±.15 3.10±.32 0.42±.04

R2P-CT-H 1.05±.25 1.51±.25 4.6±.41 6.42±.51 0.92±.12
IHDP dataset

R2P 0.46±.04 0.38±.03 4.1±.12 1.27±.22 0.22±.02
R2P-DN 0.41±.03 0.44±.04 4.3±.13 1.92±.09 0.33±.01
R2P-RF 0.32±.05 0.55±.05 4.0±.32 3.07±.13 0.39±.02

R2P-CT-H 0.09±.04 0.75±.05 2.7±.50 6.56±.25 0.83±.03
CPP dataset

R2P 0.06±.02 0.10±.01 5.7±.30 1.11±.13 0.13±.01
R2P-DN 0.06±.02 0.10±.01 6.0±.26 1.52±.07 0.19±.01
R2P-RF 0.04±.02 0.12±.01 6.0±.27 1.80±.06 0.23±.01

R2P-CT-H 0.00±.00 0.14±.00 1.0±.004 4.20±.10 0.41±.01

5.8.4 Interpretable versus non-interpretable subgroups

One naive way to construct subgroups is by dividing the covariate space with respect to
the quantiles of estimated CATEs. However, this approach fails to satisfy the essential
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requirement of subgroup analysis: interpretability. The estimates from a black-box CATE
estimator are non-interpretable. Similarly, the subgroups defined by the estimated quantiles
also fail to explain why the samples are assigned to a particular subgroup (in terms of the
covariates). To demonstrate this problem clearly, in Figure 5.4, we divide the covariate
space of the IHDP dataset into four subgroups based on the estimated quantiles by CMGP,
[0, 25), [25, 50), [50, 75) and [75, 100]. The colours indicate which subgroup each sample
belongs to. The subgroups are overlapped and hard to interpret in terms of the covariates.
In contrast, R2P constructs easy-to-interpret subgroups based on a tree structure.
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Figure 5.4 Subgroups on four intervals of the estimated quantiles by CMGP.

5.8.5 Impacts of hyperparameters

Here we evaluate the impacts of the hyperparameters γ and λ on the performance of R2P.
We provide the results with the hyperparameters γ ∈ {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5} and
λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We use the same experiment setup above and
repeat each experiment 50 times for each hyperparameter.

The impact of the hyperparameter γ in (5.7) is illustrated in Figure 5.5. As γ increases
from 0 to 1, the number of subgroups converges to one since no partition is accepted. The
performance of R2P degrades in the following aspects: V across decreases, V in increases,
and the confidence interval width increases generally. Thus, a smaller γ may be a better
choice. However, if γ is too small, the subgroups constructed by R2P overfit the data. This
overfitting issue results in the loss of generalization ability on the unseen data and leads
to a large number of non-informative subgroups. The impact of the hyperparameter λ is
illustrated in Figure 5.6. The hyperparameter λ ∈ [0, 1] determines the importance of Wl

and Sl in the objective function (5.5) for partitioning. With smaller λ, the homogeneity
within each subgroup is more emphasized in the objective. Then R2P constructs a larger
number of subgroups, which results in larger V across and smaller V in. On the other hand,
with a larger λ, Sl is weighted higher in the objective, then the confidence interval width
decreases generally. In practice, we should search for the hyperparameters γ and λ that
achieve desirable intra-subgroup homogeneity and inter-subgroup heterogeneity.
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(a) Results on Synthetic dataset A.

(b) Results on Synthetic dataset B.

(c) Results on the IHDP dataset.

Figure 5.6 Results on different λ. (the red line indicates the target coverage rate).

(a) Results on Synthetic dataset A.

(b) Results on Synthetic dataset B.

(c) Results on the IHDP dataset.

(d) Results on the CPP dataset.

Figure 5.5 Results on different γ. (the red line indicates the target coverage rate).
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