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Abstract

Background: Developmental pathways must be responsive to the environment. Phosphorylation of elF2a enables
a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental
consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms

from insects to mammals.

Results: Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation
and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the
elF2a phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by
GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in

vitro and rescues tissue development in vivo.

Conclusion: These results identify a novel mechanism by which the ISR modulates BMP signalling during development.
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Background

GCN2 belongs to a family of stress-sensing kinases that
phosphorylate the alpha subunit of eukaryotic transla-
tion initiation factor 2 (elF2a) to activate the integrated
stress response (ISR) [1]. When elF2a is phosphorylated,
the translation of most messenger RNAs (mRNAs) is re-
duced to limit amino acid consumption; however, a
small subset is translated more efficiently, including the
mRNA encoding the transcription factor ATF4 [2, 3].
Targets of ATF4 aid survival by promoting amino acid
import and the biosynthesis of aminoacyl-transfer RNAs
(tRNAs) [1]. One ISR target gene encodes an elF2«
phosphatase called PPPIR15A (also called GADD34),
which dephosphorylates elF2a to restore protein synthe-
sis and permit the translation of ISR targets [4—6].
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The importance of the ISR during stress is well appreci-
ated, but it also plays a less well-understood role during
development. In mice, a lack of the ISR owing to mutation
of elF2a (eIF2a™°'™) causes growth retardation in utero
and perinatal death [7], while exaggeration of the ISR by
deleting both elF2a phosphatases (PPP1R15A and B)
causes very early embryonic death [8]. Mutation of the
ISR kinase PERK in humans and mice has multiple effects
on development including skeletal dysplasia [9]. At least
some of the developmental effects of the ISR are mediated
by ATF4. Consequently, Atf4'~ mice have impaired
osteoblast differentiation and bone mineralisation [10].
We previously showed that ATF4 regulates protein
secretion via the transcription factor CHOP [5] and that
Chop"/ ~ mice have retarded bone formation [11]. The role
of the ISR in osteogenesis may involve bidirectional
crosstalk between elF2a phosphorylation and bone
morphogenetic protein (BMP) signalling. For example,
treatment of primary bone cultures with BMP2 triggers
endoplasmic reticulum stress and induces ATF4 in a
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PERK-dependent manner [12], while CHOP promotes dif-
ferentiation of osteoblasts upon treatment with BMP [13].

How BMP and GCN2 signalling might interact is not
known. Here, we use Drosophila melanogaster to identify
a novel mechanism by which GCN2 regulates BMP-
dependent MAD phosphorylation.

Results

Depletion of dPPP1R15 or dGCN2 alters wing venation

To understand the role of the ISR in tissue development,
we used the model organism Drosophila melanogaster. It
shares ISR components with mammals [14, 15], but its
smaller genome reduces redundancy. We previously re-
ported that changes in the expression of the elF2a kinase
dGCN?2 or the elF2a phosphatase dPPP1R15 impair fly de-
velopment [15]. To determine which tissues are sensitive
to altered ISR signalling, we have now expressed ppplrl5
RNA interference (RNAi) under the control of a panel of
tissue-selective drivers (Additional file 1: Figure S1A). Ubi-
quitous knockdown of pppIri5 or knockdown limited to
the ectoderm markedly impaired larval development. In
contrast, ppplrl5 depletion in multiple tissues including
the fat body, somatic muscle, salivary gland, midgut vis-
ceral mesoderm, eye, central nervous system (CNS), ring
gland or heart had no detectable consequence for develop-
ment. However, the use of the escargot driver (esgGAL4),
which is expressed in several tissues including the imaginal
discs, caused larval delay at the third instar stage
(Additional file 1: Figure S1B-D). Larvae expressing esg-
GAL4-driven pppIrl5 RNAI (esg > pppIrl5 RNAI) were
followed until 21 days after egg laying (AEL) with less than
10% reaching adulthood. Similarly, using an engrailed
driver (enGAL4) to express ppplrl5 RNAI primarily in the
posterior compartments of the imaginal discs also led to
developmental delay (Additional file 1: Figure S1E). Larvae
expressing enGAL4-driven ppplrl5 RNAi (en > ppplrlS
RNAi) were delayed, but approximately 45% reached
adulthood by 14 days. Delayed larvae appeared phenotyp-
ically normal, continuing to feed and grow in size.

Since loss of the phosphatase dPPP1R15 would be ex-
pected to cause hyperphosphorylation of its substrate
elF2a, we hypothesised that loss of the eIlF2a kinases might
rescue the effects of pppIrl5 RNAI. Indeed, depletion of
the elF2a kinase perk by RNAi driven either by esgGAL4
or enGAL4 largely rescued pppIrl5 RNAi-expressing ani-
mals to adulthood (Additional file 1: Figure S1D, E). Simi-
larly, although depletion of gcn2 by RNAI driven either by
esgGAL4 or enGAL4 caused a modest developmental delay,
with only = 70% of animals reaching adulthood by 14 days,
esgGAL4 > gen2 RNAI partially rescued the developmental
delay caused by ppplri5 knockdown (Additional file 1:
Figure SIC-E).

These results revealed that the development of Dros-
ophila could be impaired by a genetic perturbation
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predicted to enhance phosphorylation of elF2a. This
sensitivity displayed a restricted tissue distribution that
included the imaginal discs but excluded much of the
animals’ tissue mass. Raising animals on a high protein
diet rather than standard food had no measurable effect
on the frequencies of wing phenotypes or on the number
of animals eclosing (not shown). Low protein diets led
to fewer adults, but the frequency of each phenotype
was unaffected. These findings suggested that protein
deprivation was unlikely to account for the observed role
of the ISR in our model.

In most respects, en > ppplrl5 RNAI animals appeared
normal, although their wings lacked the anterior crossvein
(ACV) (Fig. 1a, open triangle). By contrast, depletion of
dGCN2 in the posterior compartment of the wing (en >
gen2 RNAI) led to ectopic venation between longitudinal
veins 4 (L4) and L5 (Fig. 1a, closed triangles). Frequently,
en > gen2 RNAI animals lacked the posterior half of the
ACV (Fig. 1a, b). When en > pppIrl5 RNAi and en >
gen2 RNAI were expressed together, the phenotype more
closely resembled that of en > gcn2 RNAi with ectopic
venation between L4 and L5, and frequent absence of the
posterior portion of the ACV (Fig. 1a, b). The effect of de-
pleting dPPP1R15 on venation appeared to be dose-
dependent, since augmentation of RNA interference by
co-expression of dicer2 led to combined loss of the ACV,
the posterior crossvein (PCV) and L4 (Fig. 1c).

When gcn2 RNAi was driven by nabGAL4, ectopic
venation was observed adjacent to the longitudinal veins
(Fig. 1d, £, closed triangles). Because crossvein formation
is sensitive to dpp (Drosophila BMP2/4) signalling [16],
we examined the effect of manipulating dGCN2 and
dPPPIR15 in animals with one hypomorphic allele of
dpp, dpp™ [17]. dpp™’* heterozygous animals retained
normal wing venation (Additional file 1: Figure S1F),
while dpp®™’* animals showed significantly less ectopic
venation caused by depleting dGCN2 with nab > gen2
RNAI (Fig. 1d—f). In contrast, loss of one wild-type allele
(dpp™’*) sensitised animals to depletion of ppplris,
causing loss of posterior wing blade tissue and distal
portions of L5 (Additional file 1: Figure S1F).

These results suggested that components of the ISR, spe-
cifically dGCN2 and dPPP1R15, could modulate wing im-
aginal disc development, and that this might involve effects
on dpp/BMP signalling. In support of this, we also ob-
served that depletion of dally, a cell-surface glypican in-
volved in dpp signalling [18], also interacted genetically
with dPPP1R15 and dGCN2. Alone, expression of dally
RNAi using the nab driver had no effect on wing venation,
but when combined with knockdown of pppIri5, it exacer-
bated the loss of wing blade tissue and, once again, led to
loss of distal portions of L5 (Additional file 1: Figure S1F).
When combined with nab > gcn2 RNAI, depletion of dally
caused disorganised venation (not shown).
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Fig. 1 Depletion of dPPP1R15 or dGCN?2 alters wing venation. a Representative photomicrographs (5x objective) of adult wings of the indicated
genotypes. Lower panels are enlargements of the crossvein territories: anterior crossvein (ACY) (open arrowhead) and posterior crossvein (PCV).
Note extra venation (closed arrowheads) in wings expressing gcn2 RNAI. Scale bars = 250 um. b Quantification of ACV phenotypes. For brevity,
enGAL4 > UAS-ppp1r15 RNAI is indicated as en > pppTr15 RNAIL. enGAL4 > UAS-gcn2 RNAI is indicated as en > gcn2 RNAI. n denotes number of
animals counted. P values calculated using X? statistics with Bonferroni correction for multiple comparisons. ¢ Representative photomicrographs
of adult wings (5% objective) of the indicated genotypes. en > dicer? indicates enGAL4 > UAS-dicer2. en > dicer2;pppir15 RNAI indicates enGAL4 >
UAS-dicer2;ppp1r15 RNAI. Lower panels are enlargements of the crossvein territories. Scale bars = 250 um. d, e Representative photomicrographs
of adult wings (5x objective) of the indicated genotypes. nab > gcn2 RNAI indicates enGAL4 > UAS-gcn2 RNAI. dpp™”*; nab > gen2 RNAV indicates
Dpp™”*; nab > UAS-gcn2 RNAI. Lower panels are enlargements of the crossvein territories. Note extra venation (closed arrowheads). f Quantification

of wings from d and e. Scale bars = 250 um. g Representative photomicrographs of adult eyes (dorsal view) of the indicated genotypes; inset
shows zoom of eye. Scale bar = 200 um

with overexpression of dpp, it rescued eye growth to a
normal size, albeit with a rough eye phenotype.

Overgrowth of the eye reports on elevated dpp signal-
ling [19]. We therefore tested the effect of depleting

dPPP1R15 in the eye using a gmrGAL4 driver (Fig. 1g).
As expected, overexpression of dpp in the eye led to eye
overgrowth. Knockdown of dPPP1R15 alone had no de-
tectable effect on eye development, but when combined

These observations suggested that the developmental ef-
fects of modulating the ISR were sensitive to the intensity
of dpp signalling, revealing a novel genetic interaction be-
tween the ISR and BMP pathways during fly development.
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dPPP1R15 or dGCN2 affects MAD phosphorylation in the
developing wing

To define the effects of the ISR on more proximal read-
outs of dpp signalling, we next examined MAD phosphor-
ylation in pupal wings. During pupation, longitudinal
veins are specified by epidermal growth factor receptor
and dpp signalling [20]. After the longitudinal veins have
formed, the ACV and PCV are generated in response to
Dpp that is transported from the adjacent longitudinal
veins [21, 22]. As expected, 30 h after pupariation, pMAD
staining was detected in the presumptive ACV and PCV
territories of driver control wings (Fig. 2a, left panel).
When dPPP1R15 was knocked down in the posterior
compartment of the wing using en > ppplrl5 RNAi],
pMAD staining was evident in the PCV provein but was
absent from ACV territory (Fig. 2a, middle panel, ACV
territory indicated by open triangle), whereas when
dGCN2 was instead depleted in the posterior compart-
ment using en > gen2 RNAI, ectopic pMAD staining was
detected between the L4 and L5 proveins (Fig. 2a, right
panel, closed triangle). These changes in the distribution
of MAD phosphorylation correlated well with the ven-
ation phenotypes observed in the adult wings of escapers
(Fig. 1a).

To determine if the altered distribution of pMAD had
functional consequences, we used a reporter comprising
the promoter of a dpp-sensitive gene, dad, fused to the
coding sequence of green fluorescent protein (GFP) [23].
As expected, in driver controls the GFP reporter signal
was detected at the regions of the ACV and PCV pro-
veins 30 h after pupariation (Fig. 2b, left panel). When
ppplrl5 was knocked down by en > ppplrl5 RNAI, the
GFP signal was undetectable in the ACV provein terri-
tory (Fig. 2b, middle panel), but when dGCN2 was de-
pleted with en > gen2 RNAI, widespread ectopic reporter
activation was seen, especially in the L4-L5 intervein re-
gion, and there was broadening of the GFP signal into
the L3-L4 intervein region (Fig. 2b, right panel). To-
gether, these data show that the precise arrangement of
dpp signalling required for normal vein distribution in
the pupal wing is dependent upon an intact ISR.

Because our in vivo studies had suggested that MAD
phosphorylation is inhibited by activation of the ISR, we
next turned to an in vitro model of dpp signalling to de-
termine the mechanism of this interaction. Schneider 2
(S2) cells were generated to conditionally express a con-
stitutively active dGCN2 tagged with the V5 epitope,
dGCN2-CA-V5. In the absence of dGCN2-CA-V5, treat-
ment with dpp caused robust phosphorylation of MAD
(Fig. 2¢, d). Induction of dGCN2-CA-V5 for 16 h was
sufficient to activate the ISR as evidenced by expression
of the transcription factor crc (dATF4). Remarkably, ex-
pression of dGCN2-CA-V5 abolished dpp-induced phos-
phorylation of MAD (Fig. 2c, lanes 7 and 8; Fig. 2d).
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Activation of the ISR inhibits translation initiation [24].
Metabolic labelling with >°S-methionine and cysteine
confirmed that expression of dGCN2-CA-V5 for 8 or 16 h
reduced global translation (Fig. 2e). It seemed plausible
that loss of total MAD protein might therefore contribute
to the loss of pMAD following induction of dGCN2-CA-
V5. There are no antibodies that detect total MAD, so to
estimate its half-life we transfected S2 cells with FLAG-
tagged MAD and inhibited protein synthesis with cyclo-
heximide (Fig. 2f-h). Consistently, the level of total
FLAG-MAD had halved by 4 h after inhibiting translation
but was insensitive to dpp (Fig. 2f, h). The levels of pMAD
and phosphorylated FLAG-MAD were much lower than
half of their starting level by 4 h after treatment with cy-
cloheximide (Fig. 2f, g). These results indicate that activa-
tion of dGCN2 is sufficient to inhibit global protein
synthesis and that inhibition of translation is sufficient to
decrease the levels of both MAD and pMAD. The appar-
ently preferential effect of translational attenuation on the
levels of pMAD suggested, however, that additional short-
lived proteins may be required for efficient MAD phos-
phorylation or that pMAD is preferentially destabilised.

crc regulates wing venation and antagonises MAD
phosphorylation

crc is a bZIP transcription factor sharing sequence and
functional homology with mammalian ATF4 [25, 26]. In
order to confirm activation of the ISR, we generated an
antibody able to detect endogenous crc by western blot
(Fig. 2c and Additional file 2: Figure S2). This technique
recognised a doublet of 65—70 kDa. After in vitro treat-
ment with lambda phosphatase, crc doublets collapsed
to a single band, indicating that, like ATF4, crc is a
phosphoprotein (Additional file 2: Figure S2). Similar to
ATF4, the 5 untranslated region (5'UTR) of the crc
mRNA contains several small upstream open reading
frames (uORFs), the last of which overlaps out of frame
with the crc coding sequence (Additional file 2: Figure
S2B). To confirm the observation by Kang et al. (2015)
[26] that translation of crc is regulated in a manner simi-
lar to that of ATF4, we generated a reporter construct
comprising the 5’UTR of crc fused to the coding se-
quence of luciferase. The reporter or a control consisting
of a luciferase coding sequence lacking the cr¢c 5’UTR
was expressed in mammalian human embryonic kidney
293T (HEK293T) cells, and the ISR was activated using
tunicamycin (Additional file 2: Figure S2C). The transla-
tion of the crc-reporter luciferase mRNA rose upon
treatment with tunicamycin, while translation of the
control fell. The ISR mediates its inhibitory effects on
global translation through phosphorylation of elF2a,
rendering it an inhibitor of its own guanine nucleotide
exchange factor, elF2B [27]. The inhibition of elF2B is
also ultimately responsible for the increased translation
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Fig. 2 dPPP1R15 or dGCN2 affects MAD phosphorylation in the developing wing. a Representative fluorescence micrographs of pupal wings

of the indicated genotypes at 30 h after pupariation stained red for pMAD. Open arrowheads indicate ACV territory. Closed arrowheads indicate
ectopic pMAD signal. Scale bars = 100 um. b Representative fluorescence micrograph of pupal wings of the indicated genotypes at 30 h after
pupariation. Green fluorescence indicates activation of the dad-GFP.N reporter. Scale bars = 100 um. ¢ Immunoblot of cell lysates: lanes 1-4, S2
cells stably transfected with V5. pMT-Puro; lanes 5-8, S2 cells stably transfected with dGCN2-CA-V5.pMT-Puro. Cu”* indicates treatment with 0.7
mM copper sulphate for 16 h; dpp indicates treatment with 1 nM Dpp for 1 h prior to lysis. dGCN2-CA-V5 was detected with anti-V5 antibody.
crc, pMAD and actin were detected using specific antibodies. d Quantification of pMAD staining in ¢ with strongest signal with each experiment
set as 1. n = 3. P value calculated using analysis of variance (ANOVA) with Bonferroni post hoc testing. e S2 cell lysates: lanes 1-3, V5.pMT-Puro

52 cells; lanes 4-6, dGCN2-CA-V5.pMT-Puro S2 cells. Cu?* indicates treatment with 0.7 mM copper sulphate for the indicated times. **S-labelled
cysteine and methionine were added to cells for 10 min prior to lysis. **S-labelling indicates autoradiograph. Coomassie staining served as a
loading control. f Immunoblot of S2 cell lysates expressing FLAG-MAD. CHX indicates treatment with 14 pg/ml cycloheximide for the indicated
times. dpp indicates treatment with 0.5 nM dpp for 1 h prior to lysis. FLAG-MAD was detected with an anti-FLAG antibody. pMAD and actin were
detected with specific antibodies. Filled arrowhead indicates phosphorylated MAD-FLAG; open arrowhead indicates endogenous pMAD. g Quantification
of phosphorylated FLAG-MAD (pMAD) and (h) total FLAG-MAD from f, both normalised to actin signal with the strongest signal in each experiment
setas 1. n = 3. P value calculated using ANOVA with Bonferroni post hoc testing

of ATF4. These effects can be overcome in mammalian
cells by the elF2B-activating drug ISRIB [28, 29]. We
therefore treated the HEK293T cells with ISRIB and ob-
served a selective reduction of the translation of the crc-
luciferase reporter (Additional file 2: Figure S2C).

We had previously shown that overexpression of the
ISR kinase dPERK in the eye imaginal disc (gmr > perk)
impairs eye development [14]. To test if this effect of the
ISR on development might be mediated by crc, we
expressed gmr > crc RNAi simultaneously with gmr >
perk (Additional file 2: Figure S2D). This rescued eye
growth and confirmed crc as a mediator of the ISR in
Drosophila.

The ACV was unaffected when crc was depleted in
the developing wing using en > crc RNAI, but en > crc
RNAI suppressed the ACV phenotype of en > pppIris
RNAi (Fig. 3a, b). In the presence of dicer2, RNAi
against crc driven by enGAL4 caused loss of the ACV’s
posterior portion similar to that observed with depletion
of gen2 (Additional file 2: Figure S2E, F). Similar results
were obtained with a whole-wing nab driver (Additional
file 2: Figure S2G). In situ hybridisation was performed
to examine the distribution of crc mRNA in the develop-
ing wing (Fig. 3c and Additional file 2: Figure S2H). In
wing imaginal discs, crc expression was widespread
throughout the pouch (Additional file 2: Figure S2H),
while the pupal wing showed staining along the wing
margin and surrounding the presumptive longitudinal
and crossveins (Fig. 3c). Similar results were obtained
using a second probe targeting a separate region of the
crc mRNA (not shown).

Next, we generated transgenic flies overexpressing crc.
Wing imaginal discs expressing crc in the posterior
compartment using the enGAL4 driver showed reduced
tissue mass and an absence of pMAD in the posterior
portion of the disc (Fig. 3d). In adult wings, crc expres-
sion in the posterior compartment of the wing reduced
blade size and impaired venation (Fig. 3e). When
expressed in the whole wing using nabGAL4, crc

generated smaller wings with evidence of inadequate
crossvein L3, L4 and L5 formation (Additional file 2:
Figure S2I). These results indicated that crc can modify
signals regulating venation iz vivo. To examine this fur-
ther, we generated S2 cells that conditionally expressed
crc. As we had seen for dGCN2, crc expression blocked
the phosphorylation of MAD caused by dpp (Fig. 3f, g).

These results suggest that crc mediates at least some
of the inhibition of BMP signalling that is caused by
elF2a hyperphosphorylation, and that crc is capable of
attenuating MAD phosphorylation.

4E-BP mediates part of the crc effect on wing venation
and MAD phosphorylation

To characterise the genes whose expression was altered by
cre, we performed transcriptional profiling of S2 cells ex-
pressing crc for 3 or 6 h (Fig. 4a). As expected, pathway
analysis showed crc to induce genes involved in amino acid
sufficiency and ribosome function (Additional file 3: Figure
S3 and Additional file 4: Tables S1, S2). Gene Ontology
(GO) term enrichment revealed the induction of many
additional factors affecting translation (Additional file 4:
Tables S1, S2). Transcripts that were significantly reduced
included positive regulators of the cell cycle and nucleic
acid biogenesis. Similar transcriptional changes were in-
duced by expression of dGCN2-CA-V5 (Additional file 3:
Figure S3 and Additional file 4: Tables S9, S10). In contrast
to dGCN2-CA-V5, an inactive mutant of dGCN2
(dGCN2-K552R-V5) failed to induce genes involved in
ribosome biogenesis, suggesting that increased protein
synthetic load was not responsible for these effects (not
shown).

The preponderance of regulators of translation among
the crc-sensitive transcripts raised the possibility that
MAD phosphorylation might be affected in crc-expressing
cells through additional changes to protein synthesis over
and above those caused by elF2a phosphorylation. An
antibody capable of detecting the endogenous type I BMP
receptor Tkv is lacking, so to determine if crc-induced
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Fig. 3 crc regulates wing venation and antagonises MAD phosphorylation. a Representative photomicrographs (5x objective) of adult wings of
the indicated genotypes. £n indicates enGAL4 driver control. en > crc RNAi indicates enGAL4 > UAS-crc RNAI. en > ppp1r15 RNAI indicates enGAL4 >
UAS-ppp1r15 RNAI. en > ppp1r15 RNAi;crc RNAI indicates enGAL4 > UAS-crc RNAj;UAS-ppp1r15 RNAI. Lower panels are enlargements of the crossvein
territories. Scale bars = 250 um. b Quantification of ACV phenotype in a. P values calculated using X? statistics with Bonferroni correction for multiple
comparisons. ¢ In situ hybridisation of w'''® pupal wings with sense or antisense probes to residues 1405-1900 of crc transcript A. Scale bars = 250
pum. d Representative fluorescence micrograph (40x objective) of wing imaginal discs: signal = pMAD. En indicates enGAL4 driver control. en > crc
indicates enGAL4 > UAS-HA-crcA. Orientation: left = anterior. Arrowhead indicates expected position of posterior pMAD zone. Scale bars = 50 um. e
Representative photomicrographs of adult wings of the indicated genotypes. £n indicates enGAL4 driver control. en > crc indicates enGAL4 > UAS-crc.
Scale bars = 250 um. f Immunoblot of S2 cell lysates: lanes 1-4, S2 cells stably transfected with HA.pMT-Puro; lanes 5-8, S2 cells stably transfected with
HA-crcA.pMT-Puro. Cu?* indicates treatment with 0.7 mM copper sulphate for 24 h. dpp indicates treatment with 0.5 nM dpp for 1 h prior to lysis. HA-
crc was detected with anti-HA antibody. pMAD and actin were detected using specific antibodies. g Quantification of pMAD staining in f with highest
signal per experiment set as 1. n = 5. P value calculated using analysis of variance (ANOVA) with Bonferroni post hoc testing
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using X° statistics with Bonferroni correction for multiple comparisons. i Schematic of interaction between integrated stress response (ISR) and BMP
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translation of mMRNAs, but induces expression of crc (Drosophila ATF4). Targets of crc further affect translation, e.g. 4E-BP antagonises translation of some
mRNAs. Ongoing translation is necessary for efficient BMP signalling, and so repression of protein synthesis by the ISR inhibits BMP signalling
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inhibition of translation might affect Tkv protein levels,
we expressed myc-tagged Tkv in the inducible crc-
expressing S2 cells. Crc significantly suppressed myc-Tkv
protein levels by approximately 20%, and this could not be
rescued by inhibition of the proteasome with MG132, in-
dicating an effect on synthesis rather than proteasomal
degradation of the protein (Fig. 4b, c).

Although it is likely that many crc-sensitive factors co-
operate to achieve this effect on protein synthesis, we
chose to focus on elF4E-binding protein (4E-BP), as it
was one of the most highly induced negative regulators
of translation in our transcriptional profiling (Fig. 4a and
Additional file 4: Tables S1, S2, S9, S10). The Drosophila
homologue of 4E-BP (Thor) was up-regulated 30-fold at

the mRNA level after 6 h of crc expression (Fig. 4a and
Additional file 3: Figure S3D). This induction was con-
firmed at the protein level by western blot (Additional
file 3: Figure S3E). Depletion of d4E-BP by RNAi in S2
cells significantly augmented dpp-induced MAD phos-
phorylation, suggesting that d4E-BP exerts a tonic inhib-
ition on dpp-MAD signalling (Fig. 4d, e).

To test the relevance of this effect in vivo, we generated
animals haploinsufficient for d4E-BP. In d4E-PB™"* [30],
the phosphorylation of MAD within the pupal wing vein
territories was normal, as were the adult wing veins (Fig.
4f and g). However, loss of one d4E-BP allele significantly
rescued both the numbers of animals eclosing and the
normal formation of the ACV in wings depleted of
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pppIrlS in the posterior compartment using en >
ppplIrl5 RNAI (Fig. 4f-h). These findings indicate that the
impaired dpp-MAD signalling observed in this model is
sensitive to the levels of d4E-BP. Taken together, our ob-
servations suggest that targets of crc that regulate transla-
tion contribute to the inhibition of dpp signalling during
development.

Discussion

We have shown that the ISR modulates tissue morpho-
genesis through the regulation of dpp-induced MAD
phosphorylation. In wing tissue, this mechanism is
driven primarily by the elF2a kinase dGCN2. These re-
pressive effects are achieved directly by the reduction in
translation that accompanies phosphorylation of elF2a,
and indirectly by the induction of the transcription fac-
tor crc (dATF4) and its targets including d4E-BP (Fig.
4i). Since the ISR is conserved between metazoans, our
findings may have wider significance in developmental
biology.

Developmental signals orchestrate tissue patterning by
following predetermined programmes. Environmental fac-
tors also have an impact on development, and so crosstalk
between stress signalling and developmental pathways is
necessary. It is known that overexpression of non-
phosphorylatable mutants of elF2a accelerates develop-
ment of enlarged adult female flies, while expression of a
phosphomimetic elF2a delays larval development [31].
We previously reported that depletion of the elF2a phos-
phatase dPPP1R15 causes a developmental delay similar
to that of phosphomimetic elF2a [14]. We have now
shown that expression of dPPP1R15 is necessary for larval
development only in specific larval tissues, including the
imaginal discs, and shares an antagonistic relationship
with dGCN2.

In vitro studies indicate that inhibition of protein syn-
thesis mediates some of the inhibitory effects of dGCN2
on BMP signalling, reflecting the short half-lives of com-
ponents of the BMP signalling cascade. Vein formation
in the fly wing is governed by BMP signalling. Dpp (the
Drosophila BMP2/4 homologue) binds to the type I re-
ceptors, Tkv or Sax, and type II receptor Punt to phos-
phorylate and activate the transcription factor MAD
[32]. Crossvein morphogenesis requires secretion of dpp
from nearby longitudinal veins and its chaperoning by
the molecules tsg, cv and sog, which are subsequently
degraded by TIr to release dpp at sites defined by high
levels of cv-2 [21, 33]. The formation of the dpp gradient
also requires the expression of extracellular glypicans,
such as dally, and their post-translational modification
by enzymes including sulfateless [34, 35]. Changes in the
expression levels of at least some of these components
may contribute to impaired BMP signalling during acti-
vation of the ISR. dally RNAi had a more dramatic effect
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on wing development when expressed with pppIris
RNAI, compared with pppIri5 RNAI in flies with one
hypomorphic allele of dpp®. This might relate to
differences in the degree to which dally and dpp were
depleted, but it might also reflect the dual role of dally in
both stabilising and dispersing dpp in the extracellular
space and as a co-receptor involved directly in dpp signal-
ling [36]. Examination of wing imaginal discs has not yet
revealed dramatic effects of the ISR on signalling via the
wnt or hedgehog pathways (not shown), but further stud-
ies are necessary before the regulation of developmental
signalling by the ISR can be said to show specificity to-
wards the BMP pathway.

crc, the Drosophila homologue of ATF4, also inhibits
MAD phosphorylation. The large number of genes sen-
sitive to crc suggests that its effect on BMP signalling
may be multifaceted. Our data reveal, however, that part
of this effect is mediated by the induction of d4E-BP. Of
note, ATF4 binding sites have recently been identified
within the d4E-BP gene [37]. By binding to eIF4E, 4E-BP
prevents assembly of elF4F and so selectively inhibits
cap-dependent translation [38]. Interestingly, expression
of a hyperactive mutant of d4E-BP in the wing has been
shown to result in selective loss of the ACV, although
the mechanism was unknown [39]. How elevated d4E-
BP levels inhibit phosphorylation of MAD in the absence
of detectable effects on global translation rates is un-
clear. It is plausible that the extent of translational at-
tenuation may vary among cap-dependent mRNAs, and,
in such a model, as levels of available eIF4E decline,
some mRNAs might compete more efficiently than
others for a limited supply of the eIF4F. Such sensitivity
could explain some of the effects we have described, al-
though the mRNAs responsible for altered MAD phos-
phorylation have yet to be fully identified. Nevertheless,
there are numerous instances in which d4E-BP selectively
regulates mRNA translation. For example, insulin signal-
ling inhibits neurotransmitter release via d4E-BP-mediated
repression of complexin mRNA translation [40], while diet-
ary restriction enhances the expression of mitochondrial
respiratory components by inducing d4E-BP [41]. Indeed,
there is emerging evidence in Drosophila that ISR-induced
d4E-BP plays a role in biasing translation during infection
[42], development and aging [37].

Mice generated to be insensitive to the ISR kinases
owing to mutation of the target serine 51 of elF2a re-
vealed a role for the ISR in mammalian development [7].
Homozygous pups were growth retarded and died from
hypoglycemia due to impaired gluconeogenesis, while
heterozygous animals developed diabetes if fed high-fat
chow owing to impaired pancreatic 3-cell survival.

Pulmonary arterial hypertension (PAH) is a family of
diseases that predominantly affects young adults and car-
ries a high mortality. Although most cases are idiopathic,
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in 70% of familial cases and 20% of sporadic cases hetero-
zygous germline mutations are identified in the type II
BMP receptor (BMPR2) [43-45]. The penetrance of the
BMPR2 mutation is highly variable, suggesting that
additional modifying factors must exist. Recently, two rare
subtypes of PAH, pulmonary veno-occlusive disease
(PVOD) and capillary haemangiomatosis, were shown to
be caused by mutations of EIF2AK4, which encodes the
kinase GCN2 [46, 47]. Interestingly, BMPR2 mutations
have also been associated with PVOD, suggesting that
similar mechanisms may underlie typical PAH and PVOD
[48, 49]. It is tempting to speculate that the mechanism
linking GCN2 and BMP signalling that we have described
here might have relevance to PAH. Why loss of GCN2-
mediated inhibition of BMP signalling should cause a dis-
order more commonly associated with insufficient SMAD
phosphorylation is intriguing. However, mammalian BMP
signalling is more complex than that of insects, and it is
known that loss of signalling via one BMP type II receptor
in pulmonary artery smooth muscle cells can lead to ex-
cessive signalling through other type II receptors [50]. Fur-
ther studies will be necessary to determine if the ISR
regulates BMP signalling within the mammalian pulmon-
ary vasculature.

Conclusion

In summary, we report a novel mechanism for the
modulation of BMP signalling by the ISR. This involves
direct modulation of translation initiation through elF2a
phosphorylation and indirect effects via the crc-d4E-BP
axis. This raises the possibility that pharmacological ma-
nipulation of the ISR may represent a therapeutic ap-
proach for the regulation of BMP signalling.

Methods

Drosophila genetics

The following strains were obtained from the Vienna
Drosophila RNAi Center: ppplri5 (RNAi #1: 15238; RNAi
#2: v107545); gen2 (v103976); cre (v109014); dally (14136)
and 51D background as a control line. Stocks obtained
from the Bloomington Drosophila Stock Center (National
Institutes of Health (NIH) P400OD018537) were UAS-dally
(5397); engrailed-Gald (6356); UAS-dicer2; en-Gal4, UAS-
eGFP (25752); UAS-dpp (1486); dpp™ (2071); dpp™™°
(36528); GMR-Gal4 (1104). Other lines were supplied as
follows: isogenic w''*® line; w''®; if/CyO; gmr-GAL4/
TM6B (from Dr S Imarisio, University of Cambridge);
escargot™"7*7-Gald; yw.hs-flp"*%; Act5c > y* > Gald, UAS-
GFEP; MKRS/TM6b, tb (from Dr ] de Navascues Melero,
University of Cardiff); nab™""*¥’_Gal4 (from Prof S
Russell, University of Cambridge); UAS-dGcn2-CA (from
Dr P Leopold, University of Nice) [51]; d4E-BpN*!
line (from Dr J Carmichael, University of Cambridge)
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[30]; dad-GFP.N [52]; the uas-perk line was described
previously [14].

Unless stated otherwise, crosses were performed at 25
°C with three to four virgins and two males in standard
food vials. Each 2—4 days these flies were then flipped
into fresh vials to avoid overcrowding of progeny. The
food used was a standard ‘lower maize, higher yeast agar’
recipe consisting of 2% (w/v) yeast, 8% (w/v) dextrose,
7% (w/v) maize and 1% (w/v) agar with the addition of
nipagin and dry yeast pellets. In specific experiments
modified foods were used: ’high protein food’ [5.9% (w/
v) glucose, 6.6% (w/v) cornmeal, 4% (w/v) dried yeast
and 0.7% agar] or 'low protein foods’ [5.9% (w/v) glu-
cose, 6.6% (w/v) cornmeal, 0.25% (w/v) dried yeast and
0.7% agar].

For the tissue-specific screen, virgin females of the
ppplrl5 RNAi #1 or w'™® were crossed to males of
various GAL4-driver lines. Fourteen days after egg laying
(AEL), the progeny were analysed. Developmental ana-
lysis was performed as described previously [15]. To
generate flip out clones in wing imaginal discs, we
crossed ywhs-flp'*%; actSc > y* > Gald, UAS-GFP;
MKRS/TM6b, tb to either w8 (control), ppp1rl5 RNAi
#1 or UAS-dGcn2-CA flies. Vials were heat shocked 4
days AEL for 15 min at 37 °C. The following day, wing
imaginal discs of non-Tubby third instar larvae were
dissected.

Immunohistochemistry

Larval wing imaginal discs were dissected in phosphate-
buffered saline (PBS) and fixed with 4% paraformalde-
hyde in PBS for 30 min at room temperature, followed
by washes with PBT (PBS, 0.1% Triton X-100). For pupal
wing dissections, pupae were collected at the appropriate
number of hours after puparium formation (APF) and
fixed with an opened case overnight at 4 °C with 4%
paraformaldehyde in PBS. After dissection, an additional
fixation for 30 min at room temperature was performed.
Tissues were stained with the primary rabbit anti-
pSMAD antibody (PS1) 1:500 (from Prof P. ten Dijke,
University of Leiden) overnight at 4 °C followed by anti-
rabbit Alexa 594 1:250/500 (Thermo Fisher Scientific)
for 1 h at room temperature. Samples were mounted in
ProLong Gold Antifade with 4,6-diamidino-2-phenylin-
dole (DAPI, Thermo Fisher Scientific). Images were
taken using a Zeiss LSM880 microscope with a 20x and
a 40x objective. Merged images of Z-stack focal planes
were generated with Image] (NIH) showing maximum
intensity.

Generation of transgenic flies

The UAS-HA-crcA line was generated by amplification
of the HA-crcA sequence from the construct HA-crcA.
pMT-Puro and directionally cloned between NotI and



Malzer et al. BMIC Biology (2018) 16:34

Xhol into pUASTattB. Microinjection was performed by
the Department of Genetics core facility, University of
Cambridge, and stock number 13-14 yielded an insertion
on the third chromosome (86F8).

Expression plasmids

The HA-tag sequence was directionally cloned between
BamHI and EcoRI into pcDNA3.1 (HA.pcDNA3.1) and
then subcloned between Kpnl and X#hol of the pMT-Puro
vector (Addgene 17,923) to generate HA.pMT-Puro. The
crc transcript A coding sequence was amplified from
c¢DNA clone RH01327 (Drosophila Genomics Research
Center (DGRC), Indiana University, Bloomington, IN,
USA) and directionally cloned between EcoRI and Xhol
into the HA.pcDNA3.1 plasmid; then HA-crcA was sub-
cloned between Kpnl and Xhol into the pMT-Puro vector
(Addgene 17,923) to generate HA-crcA.pMT-Puro. To
generate dGCN2-CA-V5.pMT-Puro, the gen2 coding se-
quence was amplified from the ¢cDNA clone AT10027
(DGRC) and mutated to incorporate an activating muta-
tion in the translated protein (F751 L) and then cloned
into the pMT-Puro vector (from David Sabatini, Addgene
stock 17,923). To generate the 5'UTR-crcE-luciferase re-
porter construct, a synthesised DNA fragment (GeneArt,
Thermo Fisher) containing the 5UTR of crcE and the first
three amino acids of the protein coding sequence was
cloned in frame into a luciferase-pcDNA3.1 plasmid [15]
by Gibson assembly. The crc-pGEX-6P-1 expression con-
struct was generated by amplifying the crcA coding se-
quence from the cDNA clone RH01327 (DGRC) followed
by cloning between Sall and Notl in pGEX-6P-1 (Invitro-
gen). The construct pAFW-MAD-FLAG [53] was used to
express MAD-FLAG; the construct myc-tkv.pAc5.1 was
used to express myc-Tkv and was generated from the
myc-tkv.pMT plasmid [54]. For punt-V5 expression, the
punt coding sequence was amplified from plasmid
FMO13005 (DGRC) and cloned between Kpnl and Xhol
into the pAc5.1 plasmid (Thermo Fisher); for myc-sax ex-
pression, the sax coding sequence was amplified from
plasmid 02439 (DGRC) and similarly cloned in pAc5.1.

S2 cell culture

Cycloheximide was from Sigma-Aldrich; dpp was from
R&D Systems. Drosophila Schneider 2 (S2) cells (from
Dr J Hirst, Cambridge) were grown at 25 °C in Schneider
medium (Sigma-Aldrich) supplemented with 10% fetal
bovine serum (FBS, Invitrogen) and 100 U/ml strepto-
mycin/penicillin (Sigma-Aldrich). Transfection reagent
TransIT 2020 (Mirus Bio) was used for all experiments.
To generate stable inducible lines, S2 cells were trans-
fected with dGCN2-CA-V5.pMT-Puro or HA-crcA.
pMT-Puro constructs and cultured for 2 weeks in 4 pg/
ml puromycin. In parallel, control cell lines were gener-
ated with pMT-Puro or HA.pMT-Puro. Transgene
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expression was induced with 0.7 mM copper sulphate.
For measurement of Dpp signalling, 2.5 x 10° cells per
well were seeded in 6-well plates, and expression was in-
duced for 16 h (dGCN2-CA-V5) or 24 h (HA-crcA),
followed by treatment with 0.5 nM or 1 nM Dpp for 1 h.
When assessing protein half-lives, S2 cells were trans-
fected in 6-well plates with 250 ng of myc-tkv.pAC5.1,
myc-sax pAC5.1 or punt-V5.pAC5.1. Twenty-four hours
after transfection, cells were treated with 100 pug/ml cy-
cloheximide for up to 12 h as indicated. To assess level
of pMAD-FLAG and total MAD-FLAG, S2 cells were
transfected with 1 pg of MAD-FLAG.pAFW. Twenty-
four hours post-transfection, cycloheximide (14 pg/ml or
100 pg/ml as indicated) was added for the indicated
times with 1 nM dpp present for the final hour.

Microarray

dGCN2-CA-V5.pMT-Puro or HA-crcA.pMT-Puro indu-
cible cell lines were induced with 0.7 mM copper
sulphate for indicated times. pMT-Puro and HA-pMT-
Puro lines were induced with 0.7 mM copper sulphate
for control purposes. Total RNA was prepared from cells
by homogenisation and extraction using TRIzol reagent
(GibcoBRL). Each total RNA sample (50 pg) was sub-
jected to reverse transcription and direct labelling with
Cy3- or Cy5-deoxycytidine triphosphates (dCTPs, Amer-
sham). Appropriate Cy3-dCTP- or Cy5-dCTP-labelled
samples were mixed together and hybridised to the
International Drosophila Array Consortium (INDAC)
oligo array FLOO3 for 16 h at 51 °C (Genetics core facil-
ity, University of Cambridge, UK). After hybridisation,
slides were washed, spun dry and scanned with 635-nm
and 532-nm lasers using a Genepix 4000B scanner (Axon
Instruments). Spot intensities were normalised using vari-
ance stabilisation [55] in the Vsn package in R/Bioconduc-
tor. The magnitude and significance of each spot intensity
were estimated using linear models in the LIMMA package
in R/Bioconductor. False discovery rates (FDRs) were cal-
culated using the Benjamini-Hochberg method [56]. Differ-
entially expressed genes (exhibiting log,-fold changes < 0.7
or >0.7 and an FDR-adjusted P value of < 0.05) were sub-
jected to GO and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis using
FlyMine [57].

Immunoblotting

S2 cells were lysed in radioimmunoprecipitation assay
(RIPA) buffer (50 mM Tris-HCI pH 7.4; 150 mM NaCl;
1% NP-40; 0.5% sodium deoxycholate; 0.1% sodium dode-
cyl sulphate (SDS); 2 mM ethylenediaminetetraacetic acid
(EDTA)) supplemented with 1 mM phenylmethylsulpho-
nyl fluoride (PMSF) and EDTA-free protease inhibitors
(Sigma-Aldrich). Commercially available primary anti-
bodies used were rabbit anti-phospho-SMAD 1/5 (which
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recognises Drosophila pMAD; 9516; Cell Signaling Tech-
nology, Danvers, MA, USA); rabbit anti-Actin (A2066;
Sigma-Aldrich); rabbit 4E-BP (4923; Cell Signaling
Technology).

crc antibody preparation

BL21(DE3) pLysS Escherichia coli were transformed with
crc-pGEX-6P-1 and then treated overnight at 37 °C with
1 mM isopropyl p-bD-1-thiogalactopyranoside (IPTG) to
induce expression. Recombinant protein was purified on
Glutathione Sepharose 4B resin and eluted with PreScis-
sion Protease (GE Healthcare). Rabbit polyclonal antibodies
were generated by Cambridge Research Biochemicals, Bill-
ingham, UK, using this antigen.

In situ hybridisation

The 3'UTR of crcA was amplified (residues 1405-1900)
from the crcA ¢DNA clone RH01327 (DGRC) and
cloned into pcDNA3 (Invitrogen) by Gibson assembly
(New England Biolabs, Ipswich, MA, USA). Antisense
and sense digoxigenin (DIG)-labelled RNA probes were
synthesised from linearised plasmid DNA using an SP6/
T7 DIG-RNA labelling kit (Roche Molecular Biochemi-
cals, Mannheim, Germany). Wing imaginal discs and
pupal wings were dissected in PBS and fixed in 4% para-
formaldehyde in PBS for 20 min at room temperature,
and then washed twice with PBT and once with metha-
nol. Fixed samples were washed twice with ethanol and
incubated in a mixture of xylene and ethanol (1:1 v/v)
for 60 min, washed twice in ethanol and rehydrated by
immersion in a graded methanol series (80%, 50%, 25%
v/v in water) and then water. Samples were treated with
acetone (80%) at —20 °C and then washed twice with
PBT. They were fixed again in 4% paraformaldehyde be-
fore being washed further with PBT then incubated at
room temperature with 1:1 PBT:hybridisation buffer
(HB, 50% formamide, 5X SSC, 5X Denhardt’s solution,
0.1% Tween 20, 100 pg/ml yeast tRNA, RNAse-free
water). They were pre-hybridised for 3 h in HB at 60 °C.
Sense and antisense riboprobes were diluted 1:1000 in
HB and denatured at 80 °C. Samples were hybridised
with diluted riboprobes at 60 °C for 18 h. The following
day, samples were washed with HB solution at 60 °C and
then sequentially in 50% and 25% HB solution (v/v) in
PBT. Following further washes in PBT, the hybridised
probes were detected using anti-DIG-alkaline phosphat-
ase conjugated sheep IgG (Fab fragments) secondary
antibody using nitro-blue tetrazolium (NBT)/5-bromo-
4-chloro-3’-indolyphosphate (BCIP) chromogenic sub-
strates (Roche Molecular Biochemicals).

355 labelling of cultured S2 cells
Expression of dGCN2-CA-V5 or HA-crc was induced in
stable S2 cell lines by treatment with 0.7 mM copper
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sulphate. Thirty minutes prior to cell harvest, ten million
cells were washed in PBS and resuspended in 1 ml of
cysteine- and methionine-free Dulbecco’s modified Ea-
gle’s medium (DMEM) (MP Biomedicals, Santa Ana,
CA, USA; Cat.1642454) supplemented with 10% dialysed
FBS and 10% Schneider medium. **S-labelled cysteine
and methionine Easy Tag Express Protein Labeling Mix
(Perkin Elmer) were added to cells for the final 10 min of
the time course before addition of 20 pg/ml cycloheximide
and incubation on ice. Cells were harvested and washed in
cold PBS containing 20 pg/ml cycloheximide, then lysed in
harvest buffer (hydroxyethyl piperazineethanesulfonic acid
(HEPES) pH 7.9, 10 mM; NaCl 50 mM; sucrose 0.5 M;
EDTA 0.1 mM; 0.5% v/v Triton X-100) supplemented with
protease inhibitor cocktail (Roche, Welwyn Garden City,
UK) and 1 mM PMSEF. Post-nuclear supernatants were
separated by SDS-PAGE on 12.5% acrylamide gels and
stained with InstantBlue Coomassie stain (Expedeon, San
Diego, CA, USA). %S incorporation was analysed by
exposure to a phosphor storage plate.

Luciferase assay

To analyse the regulatory function of the 5’UTR of the
crcE mRNA, HEK293T cells were transfected with Luc-
pcDNA3.1 or 5UTRcrcE-Luc.pcDNA3.1 constructs and
TK-Renilla luciferase plasmid as a transfection control. Six
hours post-transfection, cells were treated for 16 h with
tunicamycin (2.5 pg/ml) and/or ISRIB (45 ng/ml). Control
cells were treated with the appropriate vehicle controls. A
Dual-Glo® Luciferase Reporter Assay (Promega, South-
ampton, UK) was subsequently run according to the man-
ufacturer’s instructions to quantify the fold induction of
luciferase upon drug treatment. The ratio of firefly/Renilla
luciferase luminescence was calculated and expressed as a
fold change compared to that of untreated samples.

Additional files

Additional file 1: Figure S1. Modulation of the ISR delays developmental
delay and causes wing venation defects. (A) Phenotypes of animals expressing
ppp1rl5 RNAI under the control of a panel of tissue-selective drivers.

(B) Representative photomicrographs (5x objective) of w'''%.esgGAL4
(esg) and esgGAL4 > UAS-ppp1r15 RNAI (esg > ppplr15 RNAI) animals at
5and 14 days after egg laying (AEL). Scale bar = 1 mm. (C) Representative
photomicrographs of ng;engAM (esq), esgGAL4 > UAS-ppp1r15 RNAI (esg
> ppp1r15 RNAI), esgGAL4 > UAS-gcn2 RNAI (esg > gcn2 RNAT) and esgGAL4
> UAS-gcn2;:UAS-ppp1r15 RNAI (esg > ppp1r15 RNAi;gcn2 RNAI) animals at
14 days AEL. (D) Quantification of indicated crosses at days 5 and 14 AEL.
esgGAL4 > UAS-ppp1r15 RNAI (esg > pppTr15 RNAI), esgGAL4 > UAS-dGCN2
RNAI (esg > gcn2 RNAI) and esgGAL4 > UAS-dPERK RNAI (esg > perk RNAI).

n denotes number of animals counted. P values calculated using X° statistic
with Bonferroni correction for multiple comparisons. (E) Quantification
of indicated crosses at days 5 and 14 AEL. enGAL4 > UAS-ppp1r15 RNAI
(en > ppp1ri5 RNAI), enGAL4 > UAS-gcn2 RNAI (en > gcn2 RNAI) and
enGAL4 > UAS-perk RNAI (en > perk RNAI). n denotes number of animals
counted. P values calculated using X ? statistics with Bonferroni correction
for multiple comparisons. (F) Representative photomicrographs of adult

wings of the indicated genotypes. Scale bars = 250 um. (PDF 1057 kb)
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Additional file 2: Figure S2. crc is Drosophila ATF4. (A) HA-crc-expressing
S2 lysates and matched samples incubated with A phosphatase (A ppase)
were subjected to SDS-PAGE and transferred to nitrocellulose. Immunoblot-
ting was performed using an anti-HA antibody. (B) The 5'UTR of crc tran-
script E: small upstream open reading frames (UORFs) in orange; coding
sequence in red. (C) Luminescence signal of luciferase control (blue bars) or
5'UTR-crcE-luciferase reporter (red bars) expressed in HEK293T cells presented
as the ratio of firefly/Renilla luminescence fold change compared to vehicle-
treated samples. Cells were treated with the indicated concentrations of
ISRIB and/or tunicamycin for 16 h. Mean + standard error of the mean
(SEM). n = 3. P value calculated using ANOVA with Bonferroni post hoc
testing. (D) Representative photomicrographs of adult eyes. Gmr (gmrGAL4
driver control), gmr > perk (gmrGAL4 > UAS-perk), gmr > crc RNAi (gmrGAL4
> UAS-crc RNAI) and gmr > perkicrc RNAi (gmrGAL4 > UAS-crc RNAi;UAS-perk).
Scale bar = 200 pum. (E) Representative photomicrographs (5x objective)
of adult wings of the indicated genotypes. en (enGAL4 driver control),
en > dicer2;ppp1r15 RNAi (enGAL4 > UAS-dicer2,UAS-pppiri5 RNAI), en >
dicer2;crc RNAI (enGAL4 > UAS-dicer2;UAS-crc RNAI) and en > dicer2;crc
RNAi;pppTr15 RNAI (enGAL4 > UAS-dicer2;UAS-crc RNA;;UAS-pppTrls
RNAI). Lower panels are enlargements of the crossvein territories. Scale bars
= 250 pm. (F) Quantification of ACV phenotype in (E). (G) Representative
photomicrographs of adult wings of the indicated genotypes. nab (nabGAL4
driver control), nab > ppp1r15 RNAi (nabGAL4 > UAS-ppp1r15 RNAI), nab >
crc RNAi (nabGAL4 > UAS-crc RNAI) and nab > pppir15 RNAi,crc RNAI
(nabGAL4 > UAS-crc RNALUAS-ppp1r15 RNAI). Lower panels are enlargements
of the crossvein territories. Scale bars = 250 um. (H) /n situ hybridisation of
w'""® wing imaginal disc with sense or antisense probes to residues
1405-1900 of crc transcript A. () Representative photomicrographs of adult
wings of the indicated genotypes. nab (nabGAL4 driver control), nab > crc
(nabGAL4 > UAS-crcA). Lower panels are enlargements of the crossvein
territories. Scale bar = 250 um. (PDF 3370 kb)

Additional file 3: Figure S3. crc regulates genes involved in translation
including 4E-BP. (A, B) KEGG pathway analysis performed on microarray
data HA-crcA pMT-Puro S2 stable cells relative to HA.pMT-Puro S2 stable
cells, each treated with 0.7 mM CuSOy, for 3 h or 6 h to identify pathways
significantly enriched within the list of differentially expressed up- or
down-regulated genes with fold change of at least 1.62. Similar analysis
was performed on microarrays of dGCN2-CA-V5.pMT-Puro S2 stable cells
at 12 h. () Venn diagram to illustrate “Translation” Gene Ontology (GO)
term genes induced by dGCN2, crc or both. (D) d4E-BP (Thor) mRNA level
following expression of crc for the indicated times. (E) Immunoblot of cell
lysates of cells expressing crc for the indicated times. (F) Effect of d4£-BP
RNAI (16 h) on MAD phosphorylation over a range of dpp concentrations
(1 h treatment). (PDF 2491 kb)

Additional file 4: Tables S1-S15. Analysis of transcriptional data.
Table S1. mRNAs induced in S2 cells expressing HA-crc for 3 h.
Table S2. mRNAs induced in S2 cells expressing HA-crc for 6 h.
Table S3. mRNAs repressed in S2 cells expressing HA-crc for 3 h.
Table S4. mRNAs repressed in S2 cells expressing HA-crc for 6 h.
Table S5. Gene Ontology (GO) term enrichment of mRNAs induced
in S2 cells expressing HA-crc for 3 h. Table S6. GO term enrichment
of mRNAs induced in S2 cells expressing HA-crc for 6 h. Table S7.
GO term enrichment of mRNAs repressed in S2 cells expressing HA-crc for

3 h. Table S8. GO term enrichment of mRNAs repressed in S2 cells expressing
HA-crc for 6 h. Table $9. mRNAs induced in S2 cells expressing dGCN2-CA-V5
for 6 h. Table S10. mRNAs induced in S2 cells expressing dGCN2-CA-V5 for
12 h. Table S11. mRNAs repressed in S2 cells expressing dGCN2-CA-V5 for
12 h. Table S12. mRNAs repressed in S2 cells expressing dGCN2-CA-V5

for 12 h. Table S13. GO term enrichment of mRNAs induced in S2 cells
expressing dGCN2-CA-V5 for 6 h. Table S14. GO term enrichment of mMRNAs
induced in S2 cells expressing dGCN2-CA-V5 for 12 h. Table S15. GO term
enrichment of mMRNAs repressed in S2 cells expressing dGCN2-CA-V5 for 12 h.
(XLSX 284 kb)

Abbreviations

ACV: anterior cross vein; AEL: after egg laying; ATF4: activating transcription
factor 4; BMP: bone morphogenetic protein; bZIP: basic leucine zipper;
CHOP: C/EBP-homologous protein; CNS: central nervous system;

Crc: cryptocephal; Dpp: decapentaplegic; elF2a: eukaryotic translation
initiation factor 2 alpha; GADD34: growth arrest and DNA damage 34;
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GCN2: general control nonderepressible 2; GFP: green fluorescent protein;
ISR: integrated stress response; MAD: mothers against decapentaplegic;

PAH: pulmonary arterial hypertension; PCV: posterior cross vein; PERK: protein
kinase R-like endoplasmic reticulum kinase; PPP1R15: protein phosphatase 1
regulatory subunit 15; PVYOD: pulmonary veno-occlusive disease;

UTR: untranslated region; 4E-BP: eukaryotic translation initiation factor 4E
binding protein
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