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Abstract
We study bipartite unitary operators which stay invariant under the local actions
of diagonal unitary and orthogonal groups. We investigate structural properties
of these operators, arguing that the diagonal symmetry makes them suitable for
analytical study. As a first application, we construct large new families of dual
unitary gates in arbitrary finite dimensions, which are important toy models
for entanglement spreading in quantum circuits. We then analyze the non-local
nature of these invariant operators, both in discrete (operator Schmidt rank) and
continuous (entangling power) settings. Our scrutiny reveals that these opera-
tors can be used to simulate any bipartite unitary gate via stochastic local opera-
tions and classical communication. Furthermore, we establish a one-to-one con-
nection between the set of local diagonal unitary invariant dual unitary operators
with maximum entangling power and the set of complex Hadamard matrices.
Finally, we discuss distinguishability of unitary operators in the setting of the
stated diagonal symmetry.

Keywords: local diagonal orthogonal invariant (LDOI) unitary operators, dual
unitary operators, entangling power, operator Schmidt rank

1. Introduction

In quantum theory, the time evolution of the state of a closed quantum system is encoded in
a unitary operator. This operator, governing the Schrodinger equation, inherits the symmetries
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of the underlying Hamiltonian describing the energy of the system. In an open quantum system
setting [BP02], when the particular system of interest is coupled to an environment, one needs
to consider interaction terms in the Hamiltonian, which lead to a global system—environment
unitary evolution operator of a non-product form. Understanding the structure of such bipartite
unitary evolution operators is a major theme of foundational quantum theory.

In this work, we introduce and thoroughly study a new class of bipartite d ® d unitary
evolution operators X which have the following invariance property:

YUEeG, X=UaXUU) o X=U®HXWUc I,

where the invariance group G is either the diagonal unitary group DU (d) (consisting of diag-
onal matrices with complex phases on the diagonal) or the diagonal orthogonal group DO(d)
(consisting of diagonal sign matrices). In the unitary case, we call the invariant evolution
operators local diagonal unitary invariant (LDUI) and, respectively, conjugate local diagonal
unitary invariant (CLDUI). In the orthogonal case, the two conditions above are identical, and
we call the operators local diagonal orthogonal invariant (LDOI). The invariance property
encodes physical symmetries which might be present in the system + environment couple,
substantially simplifying the possible evolutions of the total system. Our inspiration comes
from the authors’ past work [SN21], where the exact same invariance property was required
of quantum states. The analysis in that work showed that the corresponding class of invariant
bipartite quantum states vastly generalized known important examples in quantum information
theory, and allowed us to obtain very strong analytical results characterizing the entanglement
properties of the states and of the corresponding quantum channels.

In the current paper, we report similar findings on local diagonal unitary/orthogonal
invariant bipartite unitary matrices. This large class of quantum evolution operators enjoys
many interesting properties, making it suitable for analytical study and a valuable source for
examples.

We start by providing a detailed analysis of invariant unitary operators, showing how to
construct them from elementary building blocks. The presence of this particular structure
renders them suitable for concrete analytical study. We then move on to study the effect of
fundamental linear operations (such as the partial transposition and the realignment) on our
invariant family of operators. This allows us to investigate the intersection of the family of
(CO)LDUI/LDOI unitary operators with a special class of bipartite unitary gates—the dual
unitary gates [BKP19b]—which have been shown to enjoy many interesting properties with
regard to entanglement spreading and quantum chaos [BKP19a]. We are able to construct large,
first of their kind families of dual unitary operators in all dimensions, arguing that the class of
(C)LDUI/LDOI operators is a rich source of examples in quantum information theory. We then
proceed to analyze the non-local properties of (C)LDUI/LDOI unitary operators. In the discrete
setting, non locality is characterized by the operator Schmidt rank [NDD*03]. For diagonal
invariant unitary matrices, this quantity admits a simple expression, allowing us to not only
reprove and strengthen the main results from [MHN18], but to also settle an open question
from the same paper. In a nutshell, we prove that an arbitrary bipartite unitary gate can be
probabilistically simulated by a real orthogonal LDOI operator via stochastic local operations
and classical communication. In the continuous setting, there are several measures of non-
locality, such as operator entanglement, entangling power [Zan01, ZZF00], and gate typicality
[JMdL17]. We derive explicit expressions for all these quantities for (C)LDUI/LDOI unitary
matrices. We then establish an intriguing connection between LDUI unitary matrices achieving
the maximum entangling power and complex Hadamard matrices, showing that they are in one-
to-one correspondence with each other. We finally discuss the problem of distinguishability of
(C)LDUI/LDOI unitary matrices.
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Our paper is organized as follows. Section 2 contains a review of known results about local
diagonal unitary/orthogonal invariant matrices. In section 3 we introduce the main classes
of bipartite unitary operators that we study, and discuss their general structural properties.
Section 4 is devoted to the study of invariant dual unitary matrices. Non locality properties are
discussed in sections 5 and 6, while distinguishability of the invariant operators is discussed in
section 7. We close the paper with a conclusion section, where further directions of study are
presented.

2. Local diagonal unitary and orthogonal invariant matrices

Recently, the authors developed the theory of local diagonal unitary/orthogonal invariant
bipartite matrices [NS21, SN21]J; this theoretical work already found several applications in
quantum information theory [Sin21, SN20]. Historically, these models of symmetry have been
introduced in [CKO06], and later studied in [JM19]. Previously, the focus was on quantum states,
different notions of positivity, and entanglement properties of bipartite density matrices. In the
present work, the focus is shifted on the dynamical aspects: we consider local diagonal uni-
tary/orthogonal invariant bipartite unitary transformations. Before studying the specifics of
the unitary model, we need to recall the general setting, and the main characterization of local
diagonal invariant matrices; we refer to [SN21, section 2] for the full details.

We will exclusively be working with the space of d x d complex matrices My4(C) and
the tensor product space My(C) ® My4(C). For a matrix A € My(C), AT, A, and A" denote
its transpose, entrywise complex conjugate, and adjoint (conjugate transpose), respectively.
The unitary groups in M,(C) and M4(C) ® M4(C) are denoted by U(d) and U(d ® d),
respectively, while the (real) orthogonal groups are similarly denoted by O(d) and O(d ® d),
respectively.

Definition 2.1. We consider the following local symmetries of matrices X € M4(C) ®
Md((C):

Acronym Symmetry Condition

LDUI Local diagonal unitary invariant (U UX(U o UHY =X

CLDUI  Conjugate local diagonal unitary invariant (U ® U)X(U'@ UT) =X

LDOI Local diagonal orthogonal invariant OR0)XO0"®0") =X

The conditions above hold for all diagonal unitary matrices U € DU, and diagonal
orthogonal matrices O € DO,. The subspaces of LDUI, CLDUI and LDOI matrices in
M 4(C) @ M,4(C) are denoted by LDUI,;, CLDUI,, and LDOI, respectively.

From the above definition, it is clear that both LDUI,; and CLDUI, are vector subspaces of
LDOI,. Furthermore, it was shown in [SN21] that any X € LDOI, is of the form

X=xX0poy=—"1AT+ HBEH + ¢

d
=) Ayl (il + Y- Biliy(il+ Y- Cilig) il

ij=1 1<izj<d 1<i#j<d

)

3
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where A, B, C € M4(C), B:=B— diag B, C=C— diag C, and diag A = diag B = diag C. A
simple counting of free parameters above implies that dim¢ LDOI,; = 3d? — 2d. It would be
instructive for the reader to look at the matrix form of a general 3 x 3 LDOI matrix given

below.

A - - DBia B3
C Ap - O - ) )
- Az|o- C13
T Oy - | Ay - ) ;
By - - Ay - - B3 2)
) ) C Ags | - Ca -
C31 - | Az -
) ) ) ) . Cso | - Ay -
B3 - . - Bz - - Asg

Remark 2.2. If B (resp. C) in equation (1) is diagonal, then the resulting family of bipartite
matrices form the LDUI, (resp. CLDUI,) subspace. We denote these matrices by

xW A + C

d
O = Aylijl+ Y Cyliil, @
resp. X((Z{B) = +

1<i#j<d
Again, a simple counting of free parameters yields dim¢ CLDUl; = dim¢ LDUI,; = 2d° — d.

i,7=1

d
=Y Aglig)Gjl+ Y Bili)(ijl. 4

ij=1 1<i#j<d

Remark 2.3. In [SN21], the sets of matrix pairs and triples with equal diagonals were
denoted as
Ma(C)57 ={(A.B) € My(C) x My(C)| diag(A) = diag(B)}. (5)
My(C)5] = {(A, B,C) € Ma(C) x My(C) x My(C)| diag(A)
= diag(B) = diag(C)} . (6)

The above sets become vector spaces when equipped with the usual component-wise
addition and scalar multiplication. Clearly, the following vector space isomorphisms hold:

LDUI; = CLDUI, = Md((C)(éf and LDOI,; = Md((C)(éj.
Remark 2.4. In this paper, whenever we consider X((i?B’C) € LDOlI,, the defining matrix
triple (A, B, C) is implicitly assumed to lie in My(C)5.

The LDOI, subspace enjoys invariance properties under several operations [SN21,
proposition 4.3]. In addition to transposition and adjoint, we will consider two other operations:
realignment and partial transposition, which are defined in figure 1 for X € M ,(C) @ My4(C).

By defining coordinates X;; := (ij|X|kl), the above definitions are equivalent to saying

4



J. Phys. A: Math. Theor. 55 (2022) 255302 S Singh and | Nechita

e

<

Figure 1. From left to right: the partially transposed X' = [id ® transp](X) and the
realigned X* = realign(X).

T _ R vy
Xijjo = Xy and Xy = Xigji-

1

Proposition 2.5. The LDOI, subspace is invariant under the operations of transposition,
conjugate transposition, realignment, and partial transposition. More precisely, for X((:)B o €
LDOIl,, we have

T T
(3) _ v® (3) _v®
(X(A,B,C)) - X(A’BT’CT) (X(A,B,C)) - X(qutc‘()

R r
3) _x® 3 _x®
(X<A,B,C)) = XBao (X(A,B,C)) = Xocn-

The next result [SN21, proposition 4.1] shows that matrices in LDOI, exhibit an interesting
block diagonal structure, which will play a crucial role in later sections when we study the
intersection of LDOI, with the unitary group U(d ® d).

Proposition 2.6. For every XS?B’C) € LDOly, the following block decomposition holds:
@ _ Aij Gij
oo =5® (@ [Cﬁ AjiD '
i<j

In [SN21, lemma 9.3], a bilinear operation o was defined on the set /\/ld((C)Eg’ of matrix
triples with equal diagonals: (A}, By, C1) o (A3, B2, Cy) = (2,8, €), where

A=A A,
B =B, OB, +C; ©C, +diag(A14; — 24, ©® Ay),
€ =B,0C, +C; OB, +diag(A14; — 24| ©® Ay),

and © denotes the entrywise (or Hadamard) matrix product. This operation corresponds to
the composition of diagonal orthogonal covariant (DOC) linear maps between matrix alge-
bras [SN21, section 6]. In the LDOI, subspace, this corresponds to the tensor contraction
depicted in figure 2, top panel. We now introduce a new bilinear operation on M ;(C) é; triples,
corresponding to the (usual) matrix multiplication of the corresponding matrices in LDOI,,.

Definition 2.7. For two triples (A, By, C1), (A2, B2, C2) € ./\/ld((C)ég, define their product
My(©)Si 3 (A,B,C):=(A1,B1,C1) - (A2, B5,C2)
by
A=A OA+C ®C, +diag(BiB, —A; ®A, — C;©C,), B=B)B,,
and C=A,0C,+C OA, +diag(BiB, —A; © C, — C; ©® A, ).

5
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®3)
X(A1,B1,C'1>
(3) _
X(m%e) - [
3)
X(AQYBQYCQ)
T v® I R ) ] v® I
X(4,B,0) = X(41,81,01) X (As.B2,02)

Figure 2. Two binary operations on M(J(C)éj. Top: composition of DOC maps. Bottom:
matrix multiplication.

Remark 2.8. The diagonal matrices in the above formulas are there to ensure that
A, B, and C have equal diagonals. These terms can be replaced by the simpler expression
diag(B1B2 — 231 © Bg).

The product ‘-’ from definition 2.7 corresponds to the usual matrix multiplication of LDOI
matrices (see figure 2, bottom panel).

3) 3) . .
Lemma2.9. Let X(Aqul,Cl)’X(AZvBZ’CZ) € LDO\,. Then, their matrix product

@ 3 e
Xiay 8.0 Xayy.00) = Xia .0y
Where (A7 Ba C) - (Al’ Bla Cl) ° (A27B23 CZ)'

Proof. The result can be checked either graphically or by using the formula in equation (1).
|

3. Unitary and orthogonal LDOI matrices

Having introduced the subspaces of local diagonal unitary and orthogonal invariant matrices
in the previous section, we shall focus now on matrices which have additional structure: they
should be unitary (or orthogonal). Studying unitary operators is motivated by quantum theory,
where they model the time evolution of quantum states. The bipartite case is of great impor-
tance, since unitary operators acting on a tensor product space model the interaction between
two quantum systems. The other extra structure relevant for quantum theory, that of positivity
(used to model open quantum systems and density matrices), has been thoroughly investigated
in [SN21].

We start with a simple result, namely the characterization of unitary (resp. orthogonal)
matrices within the LDOI,; subspace. We will denote the unit circle in the complex plane by

T:={zeC| |z =1}
Proposition 3.1. An LDOI matrix X((z?B,C) is unitary if and only if

e B is unitary,
o Vi < j, there exists a phase w;; € T such that Aj; = w,-jfT-j and Cj = —wijC_,-j,
o Vi< j Ay +[Cyf =1L
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Orthogonal LDOI matrices admit precisely the same characterization, with the field of
complex numbers replaced by that of real numbers (and phases w € T replaced by signs
0 =+1).

Proof. We first note that the identity matrix 1, ® 1, =X ®

Uplp g where J; € M4(C) is the

f . .
all ones matrix. Moreover, since (XS?B’C)) =xY (see proposition 2.5), we can write

(A,BT,CT)

Xpo €UASd) = Xy (X)) = 1@ 14
< (A,B,C)-(A,B",C") = (Ju, 14, 12). (7
By definition 2.7, this amounts to saying that B € U/(d) and
Vi, JAP+|CP=1 and A;C;=—CjA; (8)

Let us now fix some i # j. If both A;; and C;; are non-zero, we have
Sh = = — .z for somez € C. “

When combined with the other condition in equation (8), this yields |z| = 1, and the claim
follows. If, say A;; = 0, then |C;;| = 1. Hence, Aj; = 0; again, the claim follows. O

Remark 3.2. Diagonal bipartite unitary matrices U correspond to B = C = diag(A):

d
U= Aylij){ijl.

i,j=1
where A;; € T. Such gates have been studied in [LPZ14], see also [NTM12].
Remark 3.3. From proposition 3.1, it is clear that X(()\?C) € LDUIy is unitary if and only if
e Vic[d,Ai=C;eT,
e Vi < j, there exists a phase w;; € T such that A ; = w;;A;;and Cj; = —w;;Cyj,
o Vi< Ayl +[Cyl* = L.
Similarly, X&?B) € CLDUI, is unitary if and only if B is unitary and A;; € T for all i # .

Perhaps a more intuitive understanding of the above result can be obtained by analyzing the
block structure of matrices in LDOI,. Indeed, from proposition 2.6, it is obvious that

A C::

(3) — i i

X3 sy =B® (6? { c, AJ"D cUd®d) < BeU@d)
i<j

and {Cﬁ Aj,} ceUR) Vi<]j.

Note that the conditions on A, C given in proposition 3.1 are precisely those which ensure that
the 2 x 2 matrices in the above block decomposition are unitary. If we consider U(d ® d) N
LDOI, as a subgroup of the full unitary group U(d ® d), it is clear that the following group
isomorphism holds:

UdRd)NLDOl, = Ud) x x UQ). (10)

1<i<j<d
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Similar group isomorphisms can be easily obtained for the LDUI,; and CLDUI, classes as well.

UdRd)NLDUl; =2 xU)x x UQR), (11)
i=1 <i<j<d
Udod)NCLDUl;, = Ud) x x UQ). (12)
1<i<j<d

4. Dual unitary LDOI matrices

Dual unitary matrices have been considered recently in relation to various problems in many
body physics. Basically, if the nearest neighbor interactions in certain 1 + 1 many body lattice
models are facilitated by dual unitary operators, then correlations between initially localized
observables can be explicitly and analytically computed [BKP19b, PBCP20]. There are several
related sets of bipartite unitary operators, relevant to other fields, such as unitary matrices which
are still unitary after partial transposition [BN17, DNP16], and perfect unitaries [PYHP15] or
absolutely maximally entangled (AME) states [HCL™ 12] or two-unitary gates [GALT15].

In this section, we describe the intersection of these special classes of unitary matrices with
the LDUI,, CLDUI,, and LDOI, subspaces. We shall see that these properties are translated into
certain non-trivial constraints that the A, B, C matrices have to satisfy. We are able to explicitly
construct families of dual unitary operators having extra local symmetries, providing several
examples of such evolution operators. Let us start by recalling the definitions of the particular
classes of bipartite unitary operators that are of interest to us.

Definition 4.1. A bipartite unitary operator U € U(d ® d) is called:

e Dual if its realignment is also a unitary operator: UR € U(d ® d).
e PT if its partial transpose is also a unitary operator: U" € U(d ® d).
e Perfect if it is both dual and PT: UX, U" € U(d ® d).

We recall that the realignment and the partial transposition are defined in figure 1.

Recall from proposition 2.5 that the LDOI subspace is invariant under the operations of
realignment and partial transposition:

R r
(3) _ 3 (3) _ v®
(X(A,B,C)) = Xpac and (X(A,B,C)) = Xu.cp):
In what follows, we shall focus on the case of dual unitary operators; the case of PT unitaries

is very similar, and can be easily deduced from the results in the dual case, see remark 4.3.

Proposition 4.2. An LDOI matrix X((:?BQ is dual unitary if and only if

e A and B are unitary,
o Vi< j Ayl =Byl =1-[CyP,
o Vi < j, there exist complex phases wi; € T such that

Aj=wiij,  Bi=wiBy,  Cji=—wiCi.
In particular, an LDUI matrix X((fl\?c) is dual unitary if and only if

Vi,jeldl, C;€T and A = diag(C).
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D

Figure 3. Graphical representation of the swap gate.

CLDUI dual unitary matrices X&?B) do not exist for d > 3, while for d = 2, they are given by
A, B with diagA = diag B = 0 and A,‘j, B,‘j € T fori 7’5 J-

Proof. The main claim follows from proposition 3.1 by demanding that both

R
® ) _x®
Xapc) and (X(A,B,C)) = X540

are unitary. In the LDUI case, the unitary matrix B must be diagonal, hence B;; € T for all
i € [d]. Since |A;;|> = |B;;|* for all i # j, the same must hold for the unitary matrix A. The
only restriction on the off-diagonal elements of C is that |C;;| = 1, which proves the claim.

In the CLDUI case, when d > 3, a similar line of reasoning shows that the off-diagonal
entries of A and B must have modulus one; this is impossible, since each column of A (or B)
has norm one and at least two off-diagonal elements. We leave the proof of the 2 x 2 case to
the reader (figure 3). O

The canonical example of a dual unitary operator is the swap gate S € U(d ® d). It can be
easily verified that § = X((XC) € LDUI,, where C = J; is the all ones matrix and A = diag C.

YY), o) €CS(Y) ® o) = o) @ [¥). (13)

Remark 4.3. By using the block structure of LDOI matrices (see proposition 2.6), we can
restate the above result as follows. An LDOI matrix X((,?\?B,C) is dual unitary if and only if

e A and B are unitary,

. . . Al.] Cl] Bl.] Cl] .
e Vi< j,the 2 X 2 matrices [ C, Aj,] s [ Ci By are unitary.

Similarly, an LDOI matrix X((:?BQ is PT unitary if and only if
e B and C are unitary,

e Vi< j,the 2 X 2 matrices Ef; g’; ] s {2'; fﬂ are unitary.

While the conditions given in proposition 4.2 completely characterize the class of dual uni-
tary LDOI matrices, it is difficult to explicitly find matrices A, B, C € M,(C) that actually
fulfill these conditions. This has been a recurring theme in the theory of dual unitary matrices:
except for the d = 2 case (where a complete characterization of dual unitary matrices has been
derived [BKP19b]), very few explicit examples of dual unitary matrices are known in higher
dimensions [ARL21, CL21, RAL20]. In our case, the problem boils down to finding

(a) Two matrices A, B € U(d) satisfying diag A = diag B and |A;;| = |B;;| for all i # j,
(b) Phases w;; € T such that A ; = w;;A;j and Bj; = w;;B;; for all i < j.

Once we have found A, B satisfying these conditions, it is easy to construct C by simply
fixing C; = Aj; = Bj; for all i and choosing arbitrary C;; € C satisfying [C;;|* = 1 — [A;]* =
1 — |Byj|* for all i < j. The remaining entries must then be Cj; = —w;;C;; for all i < j.

9
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We now construct some examples of A, B € M,(C) that satisfy (a) and (b) above:

e Forevery orthogonal projection P € M (C), itis easy to see thatA = B = 2P — 1, satisfy
the conditions given in (a) and (b) with w;; = 1 for all i < j. Notice that A = B are both
Hermitian and unitary in this case. Constructing C as above then gives rise to a family of
dual unitary LDOI matrices for each orthogonal projection P.

e We can generalize the last example as follows. If, for an orthogonal projection P € M ,(C),
we choose A = B = w!/2(2P — 1,) for some w € T, then (a) and (b) will again be satis-
fied, this time with w;; = w for all i < j. Constructing C in the same way as before will
give us a new family of dual unitary LDOI matrices for each orthogonal projection P and
phase w.

e It is easy to see that if A = B = diag C for arbitrary C with C;; € T V i, j, then we get
another family of dual unitary LDOI matrices, parametrized by all C matrices of the stated
form. Recall from proposition 4.2 that this is precisely the class of dual unitary LDUI
matrices. These matrices have been constructed in earlier works as well [ARL21, CL21],
albeit without exploiting their inherent local diagonal unitary invariance property.

It would be interesting to see if one can completely characterize pairs of matrices satisfying
conditions (a) and (b) above. We leave this as an open problem for the readers.

Our final result in this section illustrates that demanding dual and PT unitarity simultane-
ously turns out to be too strong a constraint to satisfy in the LDOI subspace.

Proposition 4.4. No perfect LDOI unitary matrices exist.

Proof. Requiring that the three LDOI matrices

R r
3) 3) —_ y® 3) — y®
X(A,B,C)’ (X(A,B,C)) - X(BA,C)’ and (X(A,B,C)) - X(A,C,B)

be unitary leads us to the following set of conditions:

e A, B, C are unitary,
e Foralli < j, |A,‘j‘2 = |B,‘j‘2 =1- |C,‘j|2 and ‘B,‘j|2 = |C,‘j|2 =1- ‘A,‘j|2,
e Forall i < j, there exists a complex phase w;; € T such that

Aj=wiAi;  Bi=wyBy  Ci=—w;Cy,
and a complex phase A;; € T such that
Bji=\Bi;  Ci=X\Cj  Aj=—NjAy.
The second and third conditions above imply that for all i # j, |A;j| = |Bi| = |Cij| =

1/ V2: in particular, the off-diagonal entries of A, B, C are non-zero. From the third
condition for B, we obtain w;; = \;;, which contradicts the same condition for A and C. [

5. Operator Schmidt rank

In this section, we introduce an important discrete measure of non-locality of bipartite matrices,
namely the operator Schmidt rank, and study it for LDOI unitary matrices. Let us begin with
the operator Schmidt decomposition of X € My(C) ® M4(C) [NDDT03]:

10
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Q
X = Z )\,‘Ai ® B,‘, where (14)
i=1

e Q(X) = rank X® is called the operator Schmidt rank of X.
e )\; > 0 are the (non-zero) singular values of X® (known as the Schmidt coefficients of X),
e And {A;}%,, {B;}{L, in My(C) are orthonormal.

The number 2(X) is the minimum number for which X admits a decomposition of the above
form. Clearly, X is of the product form if and only if Q(X) = 1. Higher values of €2(X) indicate
higher levels of non-locality of X, with the maximum being attained for Q(X) = d°. Therefore,
it is clear that Q(X) is a discrete measure of non-locality of X. For any non-empty subset S of
M 4(C) @ M4(C), we define the set of all allowed operator Schmidt ranks for matrices in S as

QS ={QUX)eN|X € S} C{1,2,...,d*}. (15)

We have the following result for computing the operator Schmidt ranks of matrices in
LDOl,.

Proposition 5.1. The operator Schmidt rank of X((z?B,C) € LDOI, admits the following
expression:

B.. Ci
3) _ i i
Q0 (X(A,B’C)) =rank A + E rank (iji B;) .

i<j

Proof. The proof follows by noting that (see propositions 2.5 and 2.6)
3 @ \f @)
Q (X(A,B’C)) = rank (X(A’B,C)) = rank X3y o, = rank A

+ Zrank (?’ gij> ) (16)

Ji

O

In the bipartite unitary group U(d ® d), it is known that different operator Schmidt ranks
split the group into a finite number (at most d”) of distinct equivalence classes, where two uni-
taries X, X' € U(d ® d) are defined to be SLOCC-equivalent if both of them can be probabilis-
tically simulated from the other via (stochastic) local operations and classical communication
(SLOCC). In other words, X, X’ are SLOCC-equivalent if and only if Q(X) = Q(X’) [DVCO02].
It was shown in the same paper that only three such equivalence classes exist when d = 2, since
for X € U(2 ® 2), the operator Schmidt rank 2(X) = 3 is forbidden. Whether similar restric-
tions also arise in higher dimensions was an open question until the authors in [MHN18] proved
that it was not the case.

Theorem 5.2. [MHNIS8] For X c U(d®d), all operator Schmidt ranks QUX) €
{1,2,..., dz} are allowed whenever d > 3. In other words,
3 With respect to the Hilbert Schmidt inner product defined as (A, B) = Tr(A'B).
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Vd=3:QUded)={1,2,...,d"}.

Within the context of the present paper, it is natural to ask whether the above theorem holds
for bipartite unitary matrices in LDOI,. In what follows, we prove that this is indeed the case.
Moreover, we go a step further and show that the above result holds even for (real) orthogonal
matrices in LDOI,. The validity of theorem 5.2 for real orthogonal matrices was left as an open
problem in [MHN18]. In summary, the LDOI constraint allows us to

e Provide a simple and more uniform proof of theorem 5.2,
e Strengthen theorem 5.2 to work for real orthogonal matrices as well.

We should point out that any bipartite unitary matrix X € U(2 ® 2) is locally equivalent
to a matrix in (2 ® 2) N LDOI, [KCO1, ZVSWO03], where we say that X, X’ € U(d ® d) are
locally equivalent if there exist local unitary matrices U;, V; € U(d) such that

X = (U, ® U)X(V, @ Va). (17)

Since locally equivalent unitary matrices have equal operator Schmidt ranks (see remark 6.1),
it is clear that the set of allowed Schmidt ranks for the full unitary group (2 ® 2) is the same
as that for the subgroup U(2 ® 2) N LDOI,. For all higher dimensions, we have the following
theorem.

Theorem 5.3. For X € O(d®d)NLDOl,, all operator Schmidt ranks $Q(X) €
{1,2,..., dz} are allowed whenever d > 3. In other words,

Vd=>3:Q(0d®dnLDO0l) ={1,2,....d°}.

Proof. Let us start the proof by recalling that for X((,?\?B,C) € LDOl,,

Aij Cl]

X5 € Od@d) < B € O(d) and {c- ) } € 0(2) foralli< j.
Ji Ji

(18)

For every LDOI matrix constructed in this proof, the readers should check that the above
conditions on A, B, C are satisfied. Moreover, we know from proposition 5.1 that

) (XS?B’C)) =rank A + Z rank (2” g”) . (19)
Ji Jji

i<j

The following proof is split into three parts.
Part 1. Ranks Q(X) € {1,2,...,d} are possible.
Choose A € M 4(R) to be a sign matrix (4;; = +1) and B = C = diagA, so that

12
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QX p.c) = rank A. (20)

Note that rank(J; — 21,) = d, where J; € M,4(C) is the all ones matrix and 1, € M4(C) is
the identity matrix. Now, by duplicating as many columns of J; — 21, as needed, A can be
constructed to have any given rank in {1,2,...,d}.

Part 2. Ranks Q(X) € {d2 —dd—d+1,... ,dz} are possible.

Let Be€ O(d), A=diagB, and C € M R) be such that diagC = diagB and
Cij = £1V i # j. Moreover, let B be such that all its off-diagonal entries are non-zero
and there are exactly m(B) zero entries present on the diagonal. Then, equation (19) reads

Q(Xp0)) = [d = mB) + (@ = d) = & = m(B). 21

Except for (d, m) = (3,2) and (d, m) = (3, 3), a B € O(d) with m(B) = m always exists for all
d>3and me {0,1,...,d} [BC19, theorem 5.8]. Hence, B can be appropriately chosen so
that all Schmidt ranks in {d* —d,d* —d + 1,...,d"} are attained if d > 4. When d = 3, the
same argument shows that the ranks in {8,9} are possible. For the remaining ranks, we can
easily construct the required matrix triples explicitly:

10 0
A=|0 1 1|, B=diaga,
0 +1 +1
11 6, ifAs; = 1
c=(1 1 0] = (xDo)= .
1 40 1 7, if Ay = —1

Part 3. Ranks Q(X) € {d + 1,d +2,...,d> —d — 1} are possible.
We first deal with dimensions d > 5. Let B € O(d), C = diag B, and A € M ,(R) be such
that diagA = diag B and A;; = +1V i # j. Then, equation (19) reads

Q (X((i?m) = rank A + [d* — d — n(B)), 22)

where n(B) denotes the number of zero entries present in the off-diagonal part of B. By suitably
permuting the rows/columns of B, we can arrange for all its zero entries to be present only in
the off-diagonal part. When d > 5, the total number of zero entries in ad x d orthogonal matrix
can be anything within the set ([SC20, theorem 2.5])

{0,1,2,...,d* —d—4,d* —d —2,d* — d}.

Hence, by choosing B € O(d) to have the appropriate number n(B) of off-diagonal zeros,
all Schmidt ranks in {d+4,d+5,.. Ld*—d— 1} can be attained, irrespective of what
rank A is. For the remaining ranks {d + 1,d + 2,d + 3}, let us construct the desired matri-
ces explicitly for the d = 5 case. We will now choose B = diag A = diag C, so that according
to equation (19),

L (XS?B,Q) = rank A +n'(C), (23)

where n/(C) = d> — d — n(C) is the total number of non-zero off-diagonal entries of C. Then,

13
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10 1 1 1
0 -1 1 1 1
a=1 1 11 1],
TS TS B R
S T R T
1 1 0 0 0
I =1 0 0 0
3
c={o 0o -1 0 0= 0(xd)=6
0 0 0 -1 0
0 0 0 0 -1
1 0 1o
0 -1 1 1 1
a=1 1 11 1|,
TS TS TS R
11 -1
1 1 0 0 0
I =1 0 0 0
3
c={o 0o -1 0 0| =0(x)=7
0 0 0 -1 0
0 0 0 0 -1
1 0 1o
0 -1 1 1 1
a=lo 1 -1 1 1|,
TS SRS HRS R
S T B T
11 1 0 0
I =1 0 0 0
3
c=[1 0 -1 0 0= 0(x)=5
0 0 0 -1 0
0 0 0 0 -1

The idea above is to keep #'(C) € {2,4} and construct A appropriately to either have rank
A =d— 1 orrankA = d. These constructions can be easily generalized to higher dimensions
d > 5. Moreover, the same idea of keeping B diagonal while changing n’(C) and rank A appro-
priately can be applied to obtain all the required Schimdt ranks in dimensions d = 3,4 as well.
The details can be found in the appendix. (]

Remark 5.4. The product unitary matrices in LDOI; are of the form Y ® Z, where
Y,Z € U(d) are diagonal unitary matrices. When d =2, Y,Z can also be of the form
(for some w;; € T):

0 wp
wr1 0 ’
This result can be derived by analyzing the condition for the operator Schmidt rank of an LDOI
matrix to be one, see proposition 5.1. See also [SN21, proposition 3.1 and remark 3.2].

14
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In a nutshell, theorem 5.3 informs us that the intersection of the full bipartite (real) orthog-
onal group O(d ® d) C U(d ® d) with LDOI, is still rich enough to accommodate all levels of
discrete non-locality as measured by the operator Schmidt rank. In terms of probabilistic inter-
convertibility of bipartite unitary operators via SLOCC, the following consequence of theorem
5.3 is evident.

Corollary 5.5. Any unitary operatorinU(d ® d) is SLOCC-equivalent to a real orthogonal
operator in LDOI,.

6. Continuous measures of non-locality

In the last section, we focused on the analysis of a discrete measure of non-locality of LDOI
unitary matrices, namely the operator Schmidt rank. In this section, we develop and study
several continuous measures of non-locality of LDOI unitary matrices. As before, let us start
with the operator Schmidt decomposition of X € U(d ® d):

Q
X =) NA;®B, (24)
i=1

where, Q(X) = rank X* is the operator Schmidt rank of X, \; > 0 are the (non-zero) Schmidt
coefficients of X, and the matrix sets {A;}$2,, {B;}5%, in M,(C) are orthonormal. Then,

Q
1
Tr(xx") = &> = EZ A2 =1, (25)
i=1

Thus, we can use different kinds of entropies of the discrete probability vector {\?/d*}i2, to
characterize the non-locality of X. In particular, we will be interested in the two-Tsallis entropy:

Q
1 1
i=1

which we simply refer to as the operator entanglement of X. It can be easily verified that

e E(X) takes values within the interval [0, 1 — 1 /dz] forall X € U(d ® d),

e E(X) = 0if and only if X is a product of local unitary matrices,

e E(X)=1— 1/d* if and only if X is a dual unitary operator.
Remark 6.1. The Schmidt coefficients stay invariant under local unitary operations, i.e.
locally equivalent unitary operators X and X' = (U; ® Ux)X(V; ® V») (for U;, V; € U(d)) have
the same Schmidt coefficients, which implies that E(X) = E(X’) as well. This is because if X

has a Schmidt decomposition as given in equation (24), then X’ admits the following Schmidt
decomposition:

Q
X' =) NA{®B, ©2))
i=1
where the matrix sets {A! = U;A,U3}$, and {B} = U,B,U,}$%, are again orthonormal.
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It turns out that the average entanglement generated by a unitary operator X € U(d ® d)
when acting upon local product vectors admits a neat expression in terms of the operator entan-
glement of X and XS, where S € U(d ® d) is the swap gate. To elaborate on this further, let us
look at the quantity E(XS) in some depth. We have

1
1 1
EXXS) =1 — EE w=1-— Tr[(x X 1], (28)
i=1

where S is the swap gate, [ = (XS) is the operator Schmidt rank of XS, and {y,}/_, are
the Schmidt coefficients of XS. E(XS) stays invariant under local unitary operations, since
XS and X'S = (U, @ U2)X(U; @ Uy)S = (U, ® Ux)XS(Vy @ Vo) are locally equivalent (for
U;, V; € U(d)), see remark 6.1. Moreover, this quantity is in some sense complementary to
the operator entanglement, since for local unitary operators U;, U, € U(d), it is evident that

EU, @Uy)=0 but E(U; ®@U)S)=1- %, (29)

and for the swap gate, we have E(S) = 1 — 1/d* but E(SS) = E(1, ® 14) = 0.

Now, if we choose the linear entropy E(|v)) = 1 — Tr[(Tr, pu)?] as our measure of entan-
glement for pure bipartite states p,, = [1)(1)| (here |¢)) € C! ® C? and Tr, denotes the par-
tial trace with respect to the second subsystem), we can define the entangling power of
X € U(d ® d) as [ZZF00]:

d+1
ep(X) = (%) Eyp~taar [EX| @) [ )], (30)

where the unit vectors |p), |1)) € C? are distributed independently and identically according
to the Haar measure on the unit sphere in €4, With this definition in hand, it can be shown that

1
ep(X) = ﬁ[E(X) + E(XS) — E(9)], €1y}

see [ZanOl1]. Clearly, 0 < E(X), E(XS) < E(S) = 0 < ep(X) < 1. It is easy to show that
ep(X) = 1if and only if X is perfect (definition 4.1). On the other hand, local gates have zero
entangling power. It is worthwhile to note that even though the swap gate has maximum oper-
ator entanglement, its entangling power is zero since S|o)|1) = |¥)|p) for all unit vectors
|o), [1) € CY. Thus, by looking at the entangling power alone, we cannot distinguish between
local gates and the swap gate. Hence, it is meaningful to study another linear combination of
the quantities E(X) and E(XS) for a given X € U(d ® d), which is known as the gate typicality
of X [IMdL17]:

1
&(X) = F(S)[E(X) — E(XS) + E(S)]. (32)

Simple computations reveal that 0 < g,(X) < 1. Moreover, g,(X) = 0 if and only if X is a local
gate and g,(X) = 1 if and only if X is locally equivalent to a swap gate.

16
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Now that we have all the relevant quantities defined, let us get back into LDOI, to do some
explicit calculations. As the following proposition illustrates, for an LDOI unitary matrix, we
can easily compute the expressions for all the above introduced measures of non-locality in
terms of the associated matrix triple.

Proposition 6.2. For an LDOI unitary matrix XS?B’C) € U(d ® d), the following relations
hold:

E(XDpe) =1~ % Tr {(AAT)}
+ 3 {8 +1CPY + 1B,T5 + BrciP} |
i#]
E (X((z?B,C)S) =1- a}j Tr {(CC)*}
T Z {(‘Bij‘z + ‘Aij|2)2 + [BijAji +B_jiAij‘2}
i#]

Proof. Recall from equation (26) that

1 2
3) _ (3R (3)RT
E (X(A,B,C)) =1- ﬁ Tr |:(X(A,B,C)X(A,B,C)) ]

1 3 0O 2
—1- T {(X(B o Xo Atcn)

1 3)
— 1= T (X)) -
where
(A, B,¢) = [(B,A,C) - (B,AT,C] - [(B,A, C) - (B, AT, C1].

Note that the product ‘-” used above was introduced in definition 2.7 and we have used lemma
2.9 twice in obtaining the above formula. Now, since Tr(X((gl)jB,Q) = >_;;2ij, we can easily

obtain the desired result. For the second relation, observe that XEZ?B’C)S = XE?,B A)- U

Remark 6.3. Once we have the expressions for E(X) and E(XS) for any X € LDOI,,
the entangling power and gate typicality can also be easily computed from equations (31)
and (32).

In order to motivate our next result, let us first recall from proposition 4.4 that perfect unitary
matrices do not exist in the LDOI subspace. However, we now prove that in the asymptotic
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limit of the matrix size d — o0, it is possible to get arbitrarily close to the set of perfect unitary
matrices within the LDOI subspace, with entangling power serving as the distance measure.

Theorem 6.4. The maximum entangling power of an LDUI dual unitary matrix X&?C) is
achieved when C is a complex Hadamard matrix, with the maximum value being

d
X)= " 51 asd— .
gy, X =gt edmee

X XReu(dod)

Proof. Recall that a dual unitary matrix X has maximal operator entanglement E(X) = E(S),
so that we have the following expression for its entangling power:

X) = —=I[EX) + E(XS ES]—@
en(X) = T IBO0) + EXS) ~ B = o

Thus, maximization of ¢,(X) is the same as maximization of E(XS) for dual unitary matrices.
In particular, for X((A)C) € LDUI,; with C;; € T and A = diag C (proposition 4.2), we have

I .
E(X{oS) = 1= - T(CCh?,

see proposition 6.2 (recall that X((fl\)c) = X((i?diag c.c))- Moreover, since

2
Y L P=d ) )P

i#J i#J

Tr{(CCT)*] =

ik Cjk

ik|2

and equality is attained if and only if CCT = d1, (i.e. C is a complex Hadamard matrix), it is
clear that e,,(X((fl\?C)) attains its maximum value (within the LDUI dual unitary class) whenever
C is a complex Hadamard matrix. Finally, this maximum value can be easily evaluated:

(1
. (X(l) )_E(X(A,C)S) o l=1/d d
PATAO) RS 1—1)d> d+ 1

O

Remark 6.5. Since complex Hadamard matrices exist for each dimension d € N, the
maximum entangling power stated in theorem 6.4 is attained for all d € N.

Following on the previous remark, in the real case of dual orthogonal LDUI matrices, the
question of whether the maximum entangling power is attained or not is more subtle. This is
because real Hadamard matrices can only exist when the dimension d is 1,2 or a multiple of
4. Moreover, the existence of real Hadamard matrices of order d = 4n (for each n € N) is a
fundamental open problem in combinatorics. The following quantity appears in the proof of
theorem 6.4: for a sign matrix C € M, ({£1}), define

Z Cix c,k

k=1

d
h(C) = Tr[(CCTY] = Z (Ci., C}.) Z : (33)

i,j=1
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Table 1. Values for min h over sign matrices for dimensions which are not multiples
of 4. We also print the number of elements achieving the minimal value (in dephased
form, with first row and columns being ones), as well as the first such sign matrix in
lexicographic order.

min h(C) for sign matrices C

Matrix size min h(C) # argmin b C € argmin b
1 -1 -1
d=3 33 6 1 -1 -1
1 -1 -1
1 -1 -1 -1 -1
1 -1 -1 -1 -1
d=5 145 120 1 -1 -1 -1 -1
1 -1 -1 -1 -1
1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
d=6 264 28800 bbbl

-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

—

where C;, denotes the ith row of the matrix C. The following lemma was proven alongside
theorem 6.4 and motivates calling the quantity h a measure of the ‘Hadamardness’ of the
sign matrix C.

Lemma 6.6. For a sign matrix C € My({£1}), we have h(C) > d°, with equality being
attained if and only if C is a Hadamard matrix (CC' = d1,).

Proof. Write the expression in equation (33) as

d | d 2 d
HO =D D ICl’| +2 > D CuCr
i=1 k=1

1<i< j<d| k=1

2

d
Z CuCj|

k=1

2
=d'+2 )

1<i<j<d

with equality if and only if all the terms ZZZI CicCj, are zero. But this is precisely the condition
that the rows of the sign matrix C are orthogonal, i.e. the matrix C is Hadamard. (]

Clearly, for dimensions for which (real) Hadamard matrices exist, min h(C) = d°, where
the minimum is taken over sign matrices C. For dimensions d > 3 which are not multiples of
4, we list in table 1 the values of the minimum of h obtained by enumerating sign matrices.

We note that for the odd values of d considered above, min §(C) = d° + d(d — 1), obtained
for matrices C with the property that all the scalar products between different works have
absolute value 1. We conjecture that this is the case for all odd integers d.

7. Distinguishability of LDOI unitary matrices

Suppose we know that a quantum operation is equally likely to be either one of the two unitary
operators X, X, € U(d). Our task is to distinguish between the two equally likely choices.
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Clearly, X1, X, can be perfectly discriminated if and only if there exists a probe state |)) € C?
(|]]] = 1) such that X;|¢) and X;|)) are orthogonal, i.e. <’(/)|X;X1W)> = 0, since then (and
only then) we can use the Holevo—Helstrom theorem to find an optimal measurement that
perfectly discriminates between the states X;|v¢)) and X;|). Historically, these results were
first noted in [AciO1, DLPPO1]. We introduce the notion of numerical range to formulate the
above discussion.

Proposition 7.1. For X € M 4(C), we define its numerical range as
NGO = {{®IX|¢) | [4) € CL |9l =1} .

Then, X1,X, € U(d) can be perfectly discriminated if and only if 0 € N(X;Xl ).

It is reasonable to think that even if X, X, € U/(d) cannot be perfectly discriminated in
the sense of proposition 7.1, we can still find a suitable d'-level ancillary system such that
X;®1 and X, ® 1 in U(d @ d’) can be perfectly discriminated (by using entangled probe
states, for instance). Unfortunately, this intuition is flawed, since by using the convexity of the
numerical range—which itself is a consequence of the celebrated Toeplitz—Hausdorff theorem
[Haul9, Toel8]—it is easy to show that N(X ® 1) = N(X) for all X € M (C).

For normal operators X € M ,(C), one can use the spectral theorem to show that N(X) is
simply the convex hull of all the eigenvalues, i.e. N(X) = convspec X. In particular, for unitary
operators X € U(d), if we denote by 6(X) the length of the smallest arc (in radians) that contains
all the eigenvalues of X on the unit circle, then it should be clear that the following equivalences
hold:

X1, X, € U(d) can be perfectly discriminated <= 0 € N(X1X)) <= 0(XIX)) > 7. (34)

Moreover, even if G(XzX 1) < m,itis possible to find a finite k € N such that 9[(X2TX NP > 7.
This is because for any X, Y € M (C), the spectrum of the tensor product X ® Y is precisely
the set of all pairwise products of eigenvalues of X and Y, which clearly implies that

V ke N,V X €Ud): X = min{k6(X), 27} (35)

We can thus formulate a more general version of proposition 7.1 as follows.
Proposition 7.2. For X, X, € U(d), define

s
k(Xl,Xz) = ’Vm“ 5

where [-| denotes the ceiling function. Then, k is the minimum positive integer such that X‘f@k
and Xf‘k can be perfectly discriminated.
For LDOI unitary matrices, we can easily provide a simple upper bound on k as follows.

. 3) ©)
Proposition 7.3. Let X(i'p ), Xy p 1)

. A G Ay C
km'_rg?{kKCﬁ Aﬁ)’(C}i A) S

Then, the following bound holds:

be LDOI unitary matrices and let
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@) 0
k[X(A,B,C) ’ X(A’,B’,C’

)] < min {k(B, B/), kg[@} .
Proof. The proof follows simply from proposition 7.2 by noting that the bound
01X} ] > max {9<B>, 0 KA"J‘ C"f‘)] } (36)
- Cii Aji

holds for all LDOI unitary matrices X((z?B,C) and i < j. The validity of the stated bound can be
checked by computing the eigenvalues of XS?B’C), which are given by (see proposition 2.6)

A;i ”

spec XS?B’C) = spec BU U spec {iji Cﬂ . (37)
i<j

|

We should emphasize that the above proposition deals with the problem of global discrim-
ination of bipartite unitary operators. More precisely, we have assumed that both subsystems
upon which the bipartite operators X, X, € U(d ® d) act are in the possession of a single party,
thus enabling the use of entangled probe states |1)) € C¢ @ C? in the discrimination process.
It is thus quite natural to ask what happens if the underlying subsystems are in the control of
different spatially separated parties, so that they only have local resources at their disposal to
conduct the discrimination process. This question was first considered and solved in [DFY08].

Proposition 74. For X € M,4(C) ® M4(C), we define its local numerical range as
NoX) = {(@ @ olX|Y @ @) : |9),]p) € C/ [l9] = [lgll =1}

Then, X,,X, € U(d ® d) can be locally perfectly discriminated if and only if 0 € N®(X§X1 ).

For LDOI matrices, we now illustrate how one can obtain an expression for the local
numerical range in terms of the defining matrix triple (A, B, C).

Proposition 7.5. For X((z?B,C) € LDOI,, the following expression holds:
N® (X((zi?B,C)) = {<U OD|A|lw © W) + (v O w|Blv © w)
+ (v OB|Clo o) : |v),|w) € C v = |w| = 1} ,

where B =B — diag B, C=C- diag C, and ©® represents entrywise multiplication of vectors.
Proof. A simple calculation reveals that for any |v), |w) € C¢ (see equation (1)),
(v @ wIXG g oy lv @w) =Y Ayluil*lw;* + ) (Byoiwvw; + Cijowo,w;)
iJ i#]
= (v OTAlW O ) + (v © w|Blv® w) + (v O BW|Clv © ).
O

Many of the nice properties of the normal numerical range N(X), such as convexity, no
longer hold for the local numerical range N¥(X) [DFY08 PGM™ 11], thus making the problem
of local distinguishability more difficult. We expect that the same difficulties would carry over
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to the LDOI case as well. While respecting the LDOI unitarity constraints on matrix triples
(A, B, C) (see proposition 3.1), we leave the problem of determining if 0 € N® (X((z?B,C)) open
for the readers.

8. Conclusion

Time evolution of isolated quantum systems is governed by unitary operations on the state
space of the system. Hence, studying the structure of such evolutions is crucial to the under-
standing of the dynamical aspects of quantum theory. In this paper, we have looked at the
intersection of the bipartite d ® d unitary group with the symmetry class of local diagonal
unitary/orthogonal invariant (LDUI/LDOI) matrices. We have completely characterized this
intersection as a subgroup of the full bipartite unitary group. We have further studied special
classes of unitary matrices—such as dual and PT unitary matrices—within the said inter-
section. Notably, we have constructed explicit parametrizations of several large families of
LDOI dual unitary matrices in arbitrary dimensions. This is interesting because at the moment,
explicit examples of dual unitary matrices are very scarce in the literature. Furthermore, we
have shown that although no perfect unitary matrices exist in the LDOI class, it is still pos-
sible to get arbitrarily close to such unitary matrices (where the distance to the set of perfect
unitary matrices is measured in terms of the entangling power) while staying within the LDOI
class in the limit of d — co. Our analysis of the nonlocal properties of LDOI unitary matrices
reveal that any arbitrary bipartite unitary matrix can be simulated by a real orthogonal LDOI
matrix via (stochastic) local operations and classical communication with non-zero probability.
Finally, we have found simple expressions of several natural measures of non-locality—such
as the operator Schmidt rank, entangling power, and gate typicality—for unitary matrices in
the LDOI class. Intriguingly, LDUI unitary matrices with maximum entanglement generation
capacity are shown to be in one-to-one correspondence with complex Hadamard matrices.
Several open problems stem from our research, some of which are listed below.

e It would be interesting to obtain a complete parameterization of matrix triples (A, B, C)
that satisfy the LDOI dual unitarity conditions as stated in proposition 4.2.

e An analogue of theorem 6.4 for the larger class of LDOI dual unitary matrices would
be desirable to obtain. Since the constraints defining the LDOI dual unitary class are not
well understood at the moment, we expect that maximizing the entangling power while
respecting these constraints would be difficult.

e Further analysis of the non-local properties of LDOI unitary operators is required to
ascertain whether, for instance, universal entanglers [CDJT08] exist within the LDOI
class.

e It would be compelling to properly analyze the function b: My ({£1}) =R (see
equation (33)) as a measure of the ‘Hadamardness’ of sign matrices.

e A detailed analysis of the product numerical range of LDOI operators is needed to fully
understand the problem of local distinguishability of LDOI unitary operators.
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Appendix A. Proof of theorem 5.3

Proof of theorem 5.3 continued. For dimensions d = 3,4, we now explicitly construct LDOI
matrices with Schmidt ranks in the set {d + 1,d + 2,.. .. Jd*—d— 1}. We will always take
B = diag A = diag B unless stated otherwise. For all the constructed matrices, equation (19)
can be readily used to compute the Schmidt ranks. Let us first deal with the d = 3 case.

1 1 1 1
— ——= -1 — —— 0
V2 V2 V2 V2
A= 0 e | T T s 0(x) =4
V2 V2 V2 V2
1 —1 1 0 0 —1
1 0 1 10
3
a={o 1 1], c=[10 0] = 2(xDe) =5
1 1 0 0 1
The constructions for d = 4 are going to be slightly more tedious.
-1 0 1 1 -1 1 0 o
o -1 1 1 |1t -1 0 0 3) _
A=11 1 o1 4 “=lo o -1 o 2 (Xino) =5
1 1 1 1 o o0 0 -1
-1 0 1 1 -1 1 0 o0
10 -1 1 1 |t -1 0 O 3) _
A=11 1 o1o “=lo o -1 o 2 (Xiao) =6
1 1 1 -1 0o 0 0 -1
-1 0 0 1 -1 1 1 0
0o -1 -1 1 |1t -1 0 0 3) -
A= 0 1 1 1 €= 1 0o -1 o0 @ (X(A*B'C)) =7
1 1 1 -1 o 0 0 -1
-1 0 0 1 -1 1 1 0
o -1 1 1 |1t -1 0 0 3) _
A=1lo 1 -1 1 =11 o -1 o 2 (Xino) =3
1 1 1 -1 o o0 0 -1
-1 0 0 O -1 1 1 1
o -1 1 1 |1t -1 0 0 3) _
A=1o 1 -1 4 =11 o -1 o 2 (Xino) =9
0 1 1 1 1 0o 0 -1
-1 0 0 O -1 1 1 1
o -1 1 1 |1t -1 0 0 3) -
A= 0 1 -1 1 C= 1 0o -1 o0 @ (X(A*B'C)) = 10.
0 1 1 -1 1 0o 0 -1




J. Phys. A: Math. Theor. 55 (2022) 255302 S Singh and | Nechita

To obtain Schmidt rank 11, we must break the above pattern and make B non-diagonal.

| | | 1
— 0 0 — 0 o0
voy? oy?

Al — = o 1 B=| - — o o],
V2 V2 ’ V2 V2
o o0 1 1 0 0 -1 0
0o 1 -1 -1 o 0 0 -1
1 1
1
Y2

_ _ _ 3) _

c=|l5 5 ! °o|= Q(X(AqB'C))—ll.
1 T
10 0 -1
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