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Models of Genus One Curves

Mohammad Sadek

Summary

In this thesis we give insight into the minimisation problem of genus one curves defined

by equations other than Weierstrass equations. We are interested in genus one curves

given as double covers of P1, plane cubics, or complete intersections of two quadrics

in P3. By minimising such a curve we mean making the invariants associated to its

defining equations as small as possible using a suitable change of coordinates. We

study the non-uniqueness of minimisations of the genus one curves described above.

To achieve this goal we investigate models of genus one curves over Henselian discrete

valuation rings. We give geometric criteria which relate these models to the minimal

proper regular models of the Jacobian elliptic curves of the genus one curves above. We

perform explicit computations on the special fibers of minimal proper regular models of

elliptic curves. Then we use these computations to count the number of minimisations

of a genus one curve defined over a Henselian discrete valuation field. This number

depends only on the Kodaira symbol of the Jacobian and on an auxiliary rational point.

Finally, we consider the minimisation problem of a genus one curve defined over Q.
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Chapter 1

Introduction

Let E be an elliptic curve defined over a number field K. The problem of finding the

Mordell-Weil group E(K) has been a target for an enormous amount of research. It

is known that E(K) is a finitely generated abelian group. Furthermore, to determine

E(K) we only need to find E(K)/nE(K) for any integer n ≥ 2. The method of n-

descent is one of the methods which enable us to get a bound on E(K)/nE(K), n ≥ 2.

Indeed, the n-descent computes the n-Selmer group of E which contains E(K)/nE(K).

The difference between the two groups is the n-torsion of the Tate-Shafarevich group of

E/K.

An element of the n-Selmer group can be represented as a geometric object, namely

as a double cover of P1 ramified in four points when n = 2, a plane cubic curve when

n = 3, an intersection of two quadrics in P3 when n = 4. It follows from the definition

of the n-Selmer group that each of these curves has points everywhere locally. The

equations defining these genus one curves will be called genus one equations of degree

n. See §2.1 for the precise definitions of genus one equations and their invariants.

For using n-descent to search for points on E, we need the coefficients of the genus

one equations described above to be small. The solution has two parts: Reduction

and Minimisation. By reducing genus one equations, we mean reducing the size of the

coefficients by a unimodular linear change of coordinates, which does not change the

invariants. The problem of reduction is treated in [9] when n = 2, and in [11] when

n = 2, 3, 4. To minimise genus one equations, we need to make the associated invariants

smaller. The minimisation problem has been investigated intensively, for example see

[4] and [29] for n = 2, [14] for n = 3, and [30] for n = 4. An algorithmic approach to the

minimisation problem can be found in [11]. In this thesis we will be interested in the

minimisation question.

The question of minimisation has a local nature. More precisely, we minimise genus
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one equations of degree n over local fields. Usually, there are many further details to

consider when the residue field is not algebraically closed. Therefore, we prefer studying

genus one equations over strict Henselisations of local fields because these fields have

algebraically closed residue fields. Thus we assume that our base field K is a Henselian

discrete valuation field with ring of integers OK and algebraically closed residue field

k. Moreover, since our genus one curves represent elements in n-Selmer groups, they

have rational points everywhere locally. Therefore, when we treat a genus one curve C

over K, we will assume that C(K) 6= ∅. It has been shown in [11] that if C is defined

by a genus one equation φ of degree n, and C(K) 6= ∅, then the minimal discriminant

associated to φ has the same valuation as the minimal discriminant associated to the

Jacobian elliptic curve.

Unlike elliptic curves, the minimisations of the genus one curves described above are

not unique under the action of the group Gn(OK) defined in §2.1. We give the following

example to illustrate that a genus one equation of degree 2 might have more than one

minimisation. We consider the elliptic curve E : y2 + y = x3 + x2 − 83x + 244. We use

MAGMA, see [6], to perform 2-descent on E. We obtain the following genus one equation

φ : y2 = f(x) = 5x4 + 20x3 + 10x2 − 40x + 25. We apply the G2(Z5)-transformation

(1, A), where A =


 1 3

0 2


 ,

to move the zeros of f(x)/5 to 0 and ∞. Then we are able to apply the G2(Q5)-

transformations given by (1/25, diag(5, 1)) and (1/25, diag(1, 5)), so that we have the

following three minimal genus one equations which lie in the same G2(Q5)-equivalence

class.

y2 = 27500x4 + 17000x3 + 4000x2 + 416x + 16,

y2 = 1100x4 + 3400x3 + 4000x2 + 2080x + 400,

y2 = 44x4 + 680x3 + 4000x2 + 10400x + 10000.

It can be shown that the transformations stated above are the only ones relating these

genus one equations. Therefore, the genus one equations written above lie in three

distinct G2(Z5)-equivalence classes. In this thesis we study the non-uniqueness of min-

imisation by considering the problem geometrically. In fact, since E has reduction of

type IV∗ over Q5, Corollary 8.1.4 tells us that the number of G2(Z5)-equivalence classes

lying in the G2(Q5)-equivalence class containing φ is exactly 3.

The knowledge of all possible minimisations of a genus one curve can be exploited

to find rational points on elliptic curves. In fact, rational points on genus one curves,
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defined by minimal genus one equations of degree n, can be expected to be reasonably

of smaller height, and therefore will be found more easily. Our results on the number of

minimisations will be used to study heights on such genus one curves in [26].

In Chapter 3 we generalise the terminology of minimal Weierstrass models for elliptic

curves to minimal degree-n-models for genus one curves. In fact, we define a degree-n-

model for a genus one curve C → Pn−1
K to be a pair (C, α) consisting of a SpecOK-scheme

C defined by an integral genus one equation of degree n, and an isomorphism α from the

generic fiber CK of C onto C, where α is defined by an element in Gn(K). Now we show

why we insist on remembering the isomorphism α in our definition of a degree-n-model.

In the case C(K) 6= ∅, we pick P ∈ C(K). Then we identify the group structure on

(C,P ) with the group structure on the Jacobian elliptic curve E. The automorphism

group Aut(C) of C fits in an exact sequence

0 → E → Aut(C) → Aut(E, 0) → 0.

The first map is Q 7→ τQ, where τQ is the translation by Q. Let H be a hyperplane

section on C. We are interested in automorphisms λ of C such that λ∗H ∼ H. But

τ ∗QH ∼ H if and only if nQ = 0. Hence the elements of PGLn(K) that act fixed-

point-free on C correspond precisely to E[n](K). Therefore, we can have more than one

K-isomorphism between CK and C.

For example, we consider the elliptic curve E : y2 = x3 − x2 − 113x + 516 which

has a non-trivial 2-torsion point (−12, 0). Performing 2-descent on E will yield the

genus one equation φ : y2 = −3x4 − 56x3 − 399x2 − 1274x − 1519. We notice that

φ′ : y2 = −147x4 − 392x3 − 399x2 − 182x− 31 is a genus one equation which lies in the

G2(Q7)-equivalence class containing φ. The following two G2(Q7)-transformations carry

φ to φ′.

T1 = (1/72, diag(7, 1)), and, T2 = (1, A) where A =


 −7 1

−6 1


 .

Moreover, the transformation T1 is an element in G2(Q7) \ G2(Z7) while T2 is in G2(Z7).

The genus one equations φ and φ′ lie in the same G2(Z7)-equivalence class because they

are related via the transformation T2. Let C ′ be the SpecOK-scheme defined by φ′. We

distinguish between the two degree-2-models (C ′, α1) and (C ′, α2), where α1 and α2 are

defined by T1 and T2 respectively. The reason is that the special fibers of these two

models have different representatives in the special fiber of the minimal proper regular

model of the Jacobian.

It is known that an integral Weierstrass equation defining a Weierstrass model W for

an elliptic curve E is minimal if the minimal desingularisation of W is isomorphic to the
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minimal proper regular model of E. The analogous result for the case n = 2 has been

proved by Liu in [18]. Liu obtained his results using hyperelliptic involutions defined on

double covers of the projective line. We use our knowledge of invariant theory of genus

one curves to give geometric criteria for the minimality of genus one equations of degree

n for n ≤ 4, see Chapter 4.

In what follows we try to describe briefly how Liu obtained his results, and why we

did not use the hyperelliptic involution method to obtain our results. We suppose C

is a smooth curve defined by a minimal genus one equation. Let Cmin be the minimal

proper regular model of C. Since we assume C(K) 6= ∅, there exists a divisor of degree 2

on C. This divisor defines a separable morphism C → P1
K of degree 2. The generator of

Gal(K(C)/K(P1
K)) induces an automorphism σ of order 2 on C. We call σ a hyperelliptic

involution. Now σ extends to an automorphism σ̃ on Cmin. If Γ is an irreducible

component of multiplicity-1 in the special fiber of Cmin/〈σ̃〉, then we can find a model

P1 of P1
K which is birational to Cmin/〈σ̃〉 in a neighborhood of the generic point of

Γ. Liu produced models for C by taking the normalisation of P1 in C. The reason

why we could not use this method to construct minimal degree-n-models for C, when

n = 3, 4, is that it only gives models for C → P1
K , i.e., it gives models for C when C is

viewed as a double cover of the projective line. Moreover, even if we consider the models

produced as SpecOK-schemes, then the special fibers of these models either consist of

one irreducible component of multiplicity-m, m ≤ 2, or two irreducible components

of multiplicity-1. So, for example, we can not recover degree-n-models which contain

irreducible components of multiplicity-3 in their special fibers. But when n = 3, 4, there

are degree-n-models whose special fibers contain irreducible components of multiplicity-

3.

In Chapter 5 we give a necessary and sufficient condition for degree-n-models to

be isomorphic. In Chapter 6 we perform some explicit computations on the minimal

proper regular model of an elliptic curve. These computations are used to count minimal

degree-n-models for a soluble smooth genus one curve C → Pn−1
K , up to isomorphism,

in Chapter 7. Liu proved that there is a bijection between minimal degree-2-models

for C → P1
K , up to isomorphism, and the multiplicity-1 irreducible components in the

special fiber of the quotient of the minimal proper regular model by a hyperelliptic

involution, see ([18], Corollaire 5). Our results relate the number of minimal degree-n-

models for C → Pn−1
K when n ∈ {2, 3, 4}, up to isomorphism, to the cardinality of a

finite set which depends only on the Kodaira Symbol of the Jacobian of C and on an

auxiliary rational point, see Theorem 7.1.1.

Finding all integral genus one equations of degree 2 which have the same invariants,

up to G2(Q)-equivalence, is an essential part of the 2-descent algorithm described by
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Birch and Swinnerton-Dyer in [4]. The algorithm makes use of the fact that each G2(Q)-

equivalence class contains at least one reduced genus one equation of degree 2. Theorem

1 of [4] proves that reduced genus one equations of degree 2 are finite in number. The

problem of counting all the binary forms

f(x, z) = a0x
n + a1x

n−1z + . . . + anz
n,

with Z-coefficients and the same invariants, up to GL2(Z)-equivalence, is a classical

problem. For example, Theorem 1 of ([23], Chapter 18) asserts that the number of

such equivalence classes is finite. In a series of papers Bhargava studied the number

of many forms and tuples of forms, up to some equivalence relations defined over Z.

He presented interesting counting results for these equivalence classes. Moreover, he

defined composition laws on the equivalence classes of these objects. See [3] for some of

Bhargava’s results.

Our work contributes to the problem of counting forms and pairs of forms up to

relations defined over Z. In fact, we fix a Gn(Q)-equivalence class of genus one equations

of degree n, whose invariants are as small as possible, then we count the number of Gn(Z)-

equivalence classes within this Gn(Q)-equivalence class. We use arithmetic-geometric

methods to tackle this problem.

In Chapter 8 we get rid of the assumption that the residue field is algebraically

closed, and count the number of minimal degree-n-models for genus one curves defined

over p-adic fields. When the reduction of the Jacobian is split, we show that the number

of minimal degree-n-models for a genus one curve defined over a p-adic field is the same

as that number over the maximal unramified extension of the p-adic field. But maximal

unramified extensions are Henselian discrete valuation fields with algebraically closed

residue fields, and the number of models in this case is obtained in Chapter 7. Then

we work out how this number changes when the reduction of the Jacobian is non-split.

This step is a basic ingredient in counting minimal global degree-n-models for genus

one curves defined over Q. Our methods can be generalised easily to find the number

of minimal global degree-n-models for genus one curves defined over number fields with

class number one, as the problem reduces to considering genus one curves locally over

completions of number fields at non-archimedean places.

In Appendix A we work over complete discrete valuation fields with algebraically

closed residue fields. We treat the case when the genus one curve has no rational point

on it. We prove, using explicit computations, that the number of minimal degree-n-

models for such a curve is n when n ∈ {2, 3}. Then we give an example to show

that the number of minimal degree-4-models for insoluble genus one curves can become

arbitrarily large.
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We have to mention that we proved our counting results only when the residue field

has characteristic greater than 3. We believe that similar results hold when the residue

characteristic is 3 but we have not checked the details. When the residue characteristic is

2, we believe that our counting results hold for minimal degree-n-models, when n = 3, 4,

but the problem needs deeper analysis. When the residue characteristic is 2 and n = 2,

we have to consider generalised genus one equations of degree 2, i.e., genus one equations

of the form φ : y2 + g(x)y = f(x), where deg g ≤ 2 and deg f ≤ 4. Moreover, the

invariants associated to φ are more complicated. When n = 2, Liu’s treatment of the

problem provided him with results when the residue characteristic is 2, see [18].
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Chapter 2

Preliminaries

2.1 Genus one equations of degree n

In this section we will give a brief description of several genus one curves and the

equations defining them. We work over a perfect field K with algebraic closure K. We

write GK = Gal(K/K). We assume further that char(K) 6= 2, 3.

By a K-curve, or a curve over K, we mean a proper K-scheme that is geometrically

connected and of dimension 1.

Let C be a smooth curve of genus one over K. The function field of C will be denoted

by K(C). By a closed point P ∈ C we mean the GK-orbit of P considered as a geometric

point in C(K). The divisor group of C, called Div(C), is the free abelian group generated

by the closed points of C, i.e., a divisor D ∈ Div(C) is a formal sum

D =
∑
P∈C

nP (P )

with nP ∈ Z and nP = 0 for all but finitely many closed points P ∈ C. The divisor D

is said to be effective if nP ≥ 0 for every P ∈ C. The degree of D is defined by

deg D =
∑
P∈C

nP [K(P ) : K].

Let CK = C ×K K. If we assume that the GK-orbit of P is {P1, . . . , PdP
}, where dP =

[K(P ) : K], then we get a map

Div(C) → Div(CK),
∑

nP (P ) 7→
∑

nP (

dP∑
i=1

Pi).
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We define an action of GK on Div(CK) in the following way:

σ :
∑

P∈C(K)

nP (P ) 7→
∑

P∈C(K)

nP (P σ).

Now we obtain Div(C) as the subgroup of GK-invariant divisors of Div(CK). In other

words, we have

Div(C) = Div(CK)GK .

We will call a divisor D ∈ Div(C) a K-rational divisor on C.

The local ring of C at P will be denoted by OC,P . The ring OC,P is a discrete

valuation ring with maximal ideal mP and valuation νP .

Let f ∈ K(C)∗. Then we can associate to f the divisor

div(f) =
∑
P∈C

νP (f)(P ).

A divisor D ∈ Div(C) is said to be principal if D = div(f) for some f ∈ K(C)∗. Two

divisors D1, D2 are linearly equivalent, denoted D1 ∼ D2, if D1 −D2 is principal. The

divisor class [D] of a divisor D ∈ Div(C) is the set of all divisors linearly equivalent to

D. The quotient of Div(C) by the subgroup of principal divisors is the Picard group of

C, denoted Pic(C).

Let D ∈ Div(C) be of degree n > 0. Set

L(D) = {f ∈ K(C)∗| div(f) + D is effective} ∪ {0}.

Then Riemann-Roch Theorem implies that dimK L(D) = deg D.

In what follows we aim to write explicit equations for the pair (C, [D]) when n =

1, 2, 3, 4, see [1]. We assume A is a Dedekind domain.

Genus one equations of degree 1

If deg D = 1, then any effective rational divisor linearly equivalent to D is a rational

point P ∈ C(K). Let x, y ∈ K(C) be such that L(2(P )) and L(3(P )) have bases {1, x}
and {1, x, y} respectively. Note that x has a pole of exact order 2 at P, and y has a

pole of exact order 3 at P. There is a linear dependence relation between the 7 elements

1, x, y, x2, xy, x3, y2 in the 6-dimensional space L(6(P )). Furthermore, the coefficients

of x3 and y2 are non-zero. Rescaling x and y this linear dependence relation can be

assumed to be

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ K. (2.1)
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We will call the Weierstrass equation (2.1) a genus one equation of degree 1.

Two genus one equations of degree 1 with coefficients in A are A-equivalent, some-

times we will write G1(A)-equivalent, if they are related by the substitutions

x′ = u2x + r, y′ = u3y + su2x + t, r, s, t ∈ A, u ∈ A∗.

The group G1(A) is the group of all such transformations [u; r, s, t]. We define det([u; r, s, t]) =

u−1.

We will write down the standard notations b2, b4, b6, b8, c4, c6, and the discriminant

∆ associated to equation (2.1), see ([27], Chapter III).

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4, (2.2)

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

It is easy to verify that 1728∆ = c3
4 − c2

6.

Genus one equations of degree 2

If deg D = 2, then we pick x, y ∈ K(C) such that L(D) and L(2D) have bases {1, x}
and {1, x, y, x2}. The 9 elements 1, x, x2, y, x3, xy, x4, x2y, y2 in the 8-dimensional space

L(4D) satisfy a linear dependence relation. Moreover, the coefficient of y2 is non-zero.

Therefore, (C, [D]) has equation

y2 + (α0x
2 + α1x + α2)y = ax4 + bx3 + cx2 + dx + e. (2.3)

We will always assume that char(K) 6= 2. Therefore, by completing the square it

suffices to consider equations of the form

y2 = ax4 + bx3 + cx2 + dx + e. (2.4)

Equation (2.4) is called a genus one equation of degree 2.

Two genus one equations of degree 2 with coefficients in A are A-equivalent, or

G2(A)-equivalent, if they are related by the substitutions

x′ = (m11x + m21)/(m12x + m22), y′ = µ−1y
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where µ ∈ A∗, M = (mij) ∈ GL2(A). The group G2(A) is the group of all such trans-

formations [µ,M ]. We define det([µ,M ]) = µ det(M).

We associate the classical invariants I and J to equation (2.4), where

I = 12ae− 3bd + c2,

J = 72ace− 27ad2 − 27b2e + 9bcd− 2c3. (2.5)

We set c4 = 24I, c6 = 25J, and ∆ = (c3
4 − c2

6)/1728.

Genus one equations of degree 3

If deg D = 3, then we pick x, y, z ∈ K(C) such that {x, y, z} is a basis for L(D). We write

a linear dependence relation between the 10 elements x3, y3, z3, x2y, x2z, y2x, y2z, z2x, z2y, xyz

in the 9-dimensional space L(3D). Therefore, (C, [D]) has a homogeneous ternary cubic

equation

ax3 + by3 + cz3 + a2x
2y + a3x

2z + b1y
2x + b3y

2z + c1z
2x + c2z

2y + mxyz = 0. (2.6)

Equation (2.6) is called a genus one equation of degree 3.

Two genus one equations of degree 3 with coefficients in A are A-equivalent, or

G3(A)-equivalent, if they are related by multiplying by µ ∈ A∗ and then substituting

x′ = m11x + m21y + m31z, y′ = m12x + m22y + m32z, z
′ = m13x + m23y + m33z,

where M = (mij) ∈ GL3(A). The group G3(A) is the group of all such transformations

[µ,M ]. We define det([µ,M ]) = µ det(M).

We define the Hessian of a genus one equation φ(x, y, z) = 0 of degree 3 to be

H(φ) = −1/2× det




φxx φxy φxz

φyx φyy φyz

φzx φzy φzz


 .

Then we have

H(λφ + µH(φ)) = 3(c4λ
2µ + 2c6λµ2 + c2

4µ
3)φ + (λ3 − 3c4λµ2 − 2c6µ

3)H(φ).

Moreover, we put ∆ = (c3
4 − c2

6)/1728, see [14].
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Genus one equations of degree 4

If deg D = 4, then we pick x1, x2, x3, x4 ∈ K(C) such that {x1, x2, x3, x4} is a basis for

L(D). Now we consider the 10 elements x2
1, x

2
2, x

2
3, x

2
4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4 in

the 8-dimensional space L(2D). Therefore, (C, [D]) has equations

F1(x1, x2, x3, x4) = F2(x1, x2, x3, x4) = 0, where F1, F2 are quaternary quadratic forms.

(2.7)

We will call the equations (2.7) a genus one equation of degree 4.

Two genus one equations of degree 4 with coefficients in A are A-equivalent, or

G4(A)-equivalent, if they are related by

F ′
1 = m11F1 + m12F2, F

′
2 = m21F1 + m22F2, M = (mij) ∈ GL2(A),

and then substituting

x′j =
4∑

i=1

nijxi, N = (nij) ∈ GL4(A).

The group G4(A) is the group of all such transformations [M, N ]. We define det([M, N ]) =

det(M) det(N).

Let M1 and M2 be the 4 × 4 symmetric matrices of second partial derivatives of

F1 and F2 respectively. We associate a genus one equation φ of degree 2 to the genus

one equation {F1 = F2 = 0}, where φ : y2 = F (x, z) := det(M1x + M2z). Then we

set c4 = I, c6 = J/2 where I, J are the invariants associated to φ, see (2.5). We put

∆ = (c3
4 − c2

6)/1728.

Definition 2.1.1. Let Kn be the polynomial ring in the coefficients of a genus one

equation φ of degree n = 1, 2, 3, 4. A polynomial G ∈ Kn is an invariant of weight k if

G ◦ g = det(g)kG for all g ∈ Gn(K).

The following theorem indicates the properties of the invariants c4, c6, and ∆ defined

above.

Theorem 2.1.2. Let φ be a genus one equation of degree n = 1, 2, 3, 4. Let c4, c6, and

∆ be the associated invariants.

(i) The polynomials c4, c6, ∆ ∈ Kn are invariants of weight 4, 6 and 12 respectively.

(ii) The equation φ defines a smooth curve Cφ of genus one if and only if ∆ 6= 0.
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(iii) If char(K) 6= 2, 3, and ∆ 6= 0, then the Jacobian of Cφ has equation

y2 = x3 − 27c4x− 54c6.

Proof: See [15]. 2

Definition 2.1.3. Let R be a Dedekind ring with fraction field K. A genus one equation

φ of degree n with discriminant ∆ 6= 0 is

(i) integral if the defining polynomials have coefficients in R.

If R is a discrete valuation ring with normalised valuation ν, then φ is

(ii) minimal if it is integral and ν(∆) is minimal among all the valuations of the dis-

criminants of the integral genus one equations of degree n which are K-equivalent

to φ.

2.2 Models of curves and contraction

In this section we recall the definition of a model of a curve, introduce some well-known

models of smooth curves and record their basic properties. Then we define contraction

morphisms and give some results on their existence and uniqueness. References for this

are [5], [8] and [20].

2.2.1 Models of curves

Let R be a Dedekind domain with fraction field K. Put S = Spec R.

We recall that an S-scheme X is reduced at x ∈ X if the local ring OX,x has no

nilpotent elements. X is reduced if it is reduced at all its points. X is said to be integral

if it is reduced and irreducible. X is normal at x ∈ X if OX,x is integrally closed in

Frac(OX,x). We say X is normal if it is irreducible and normal at all of its points. The

scheme X is said to be regular at x ∈ X if OX,x is regular, i.e., dimOX,x = dimk mx/m
2
x,

where mx is the maximal ideal corresponding to x. X is regular if it is regular at all of

its points.

Definition 2.2.1. An S-curve is an integral, projective, flat, normal S-scheme f : X →
S of dimension 2.

We define what an S-model for a smooth curve over K is.

12



Definition 2.2.2. Let C be a smooth projective curve over K. An S-model for C is a

pair (C, i), where C → S is an S-curve and i : CK
∼= C is an isomorphism. A morphism

of S-models (C, i) → (C ′, i′) is an S-morphism α : C → C ′ such that i′ ◦ αK = i. An

S-model (C, i) for C dominates another model (C ′, i′) if there exists a morphism C → C ′
of S-models. We generally omit the explicit mention of i unless there is a danger of

confusion.

Now we introduce two of the most interesting models of smooth curves.

Definition 2.2.3. Let C be a smooth projective curve over K. A minimal proper regular

model for C is a regular S-model Cmin for C such that any domination map Cmin → C
to another regular S-model C for C is an isomorphism.

Theorem 2.2.4. Let C be a smooth projective curve over K. If C has positive genus,

then a minimal proper regular model Cmin for C exists and is unique up to unique

isomorphism. In particular, Cmin is dominated by all regular S-models for C.

Proof: See ([8], Theorem 3.9). 2

Definition 2.2.5. Let C be an S-model for a smooth curve C over K. A proper mor-

phism f : C ′ → C of S-models for C with C ′ regular is called a desingularisation of C.
We call a desingularisation morphism C̃ → C such that every other desingularisation

morphism C ′ → C factors uniquely through C ′ → C̃ → C a minimal desingularisation of

C. Moreover, C̃ is an S-model for C. By definition, if a minimal desingularisation exists,

then it is unique up to unique isomorphism.

Theorem 2.2.6. Let C be an S-model for a smooth curve C over K. If C has posi-

tive genus, then a minimal desingularisation C̃ → C exists and is unique up to unique

isomorphism.

Proof: See ([20], Proposition 9.3.36 (b)). 2

2.2.2 Contraction

Let K be a discrete valuation field with normalised valuation ν. We write OK for its

ring of integers. Fix a uniformiser t ∈ K and write k = OK/tOK for the residue field.

Put S = SpecOK . If X is an S-scheme, then we will denote its generic fiber by XK and

its special fiber by Xk.
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Definition 2.2.7. Let C be an S-curve. Let (Γi)i∈I be the family of irreducible compo-

nents of the special fiber Ck. For a strict subset J ⊂ I, a contraction of the components

Γj, j ∈ J, in C consists of an S-morphism u : C → CJ of S-schemes such that

(a) For each j ∈ J , the image u(Γj) consists of a single point xj ∈ CJ , and

(b) u defines an isomorphism C −⋃
j∈J Γj

∼−→ CJ −⋃
j∈J xj.

Theorem 2.2.8. Assume that OK is Henselian. Let C be an S-curve. Let (Γi)i∈I be

the family of irreducible components of Ck. For a strict subset J ⊂ I, the contraction

u : C → CJ of the components Γj, j ∈ J, exists. Moreover, the morphism u is unique up

to unique isomorphism.

Proof: For the existence of u : C → CJ , see ([20], Theorem 8.3.36) or ([5], §6.7,

Proposition 4). For the uniqueness of u : C → CJ , see ([20], Proposition 8.3.28). 2

Let X be a scheme over S. We recall that a Cartier divisor D is a system {(Ui, fi)i},
where the Ui are covering open subsets of X, fi is the quotient of two regular elements

of OX(Ui), and fi|Ui∩Uj
∈ fj|Ui∩Uj

OX(Ui ∩ Uj)
∗ for every i, j. Two systems {(Ui, fi)i}

and {(Vj, gj)j} represent the same Cartier divisor if on Ui ∩ Vj, fi and gj differ by a

multiplicative factor in OX(Ui ∩ Vj)
∗.

To a Cartier divisor D we associate an invertible sheafOX(D) defined byOX(D)|Ui
=

f−1
i OX |Ui

. We define the support of D to be the set of points x ∈ X such that OX(D)x 6=
OX,x, we denote it by Supp D. The set Supp D is a closed subset of X.

The Cartier divisor D is effective if it can be represented by {(Ui, fi)i} with fi ∈
OX(Ui). It is principal if it can be represented by a system {(X, f)}. An effective relative

Cartier divisor on X is an effective Cartier divisor on X which is flat over S when

considered as a closed subscheme of X. Linear equivalence is defined in the obvious

way. The group of isomorphism classes of Cartier divisors modulo linear equivalence is

denoted by CaCl(X).

A prime divisor on X is a closed integral subscheme of codimension one. A Weil

divisor is an element of the free abelian group generated by the prime divisors, i.e., we

write a Weil divisor D as
∑

niYi, where the Yi are prime divisors, the ni are integers, and

only finitely many ni are different from zero. If ni ≥ 0 for every i, then D is effective. A

Weil divisor is said to be principal if it can be written as
∑

νY (f).Y, where f ∈ K(X)∗,
and the sum is over all prime divisors of X and hence is finite. A Weil divisor D is locally

principal if X can be covered by open sets U such that D|U is principal for each U. We

define the linear equivalence as usual, and denote the group of isomorphism classes of

Weil divisors modulo linear equivalence by Cl(X).
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Remark 2.2.9. If C is an S-curve, then CaCl(C) is isomorphic to the group Pic(C) of

isomorphism classes of invertible sheaves on C, see ([20], Corollary 7.1.19). Moreover,

the group of Cartier divisors on C is isomorphic to the group of locally principal Weil

divisors on C, see ([16], Chapter II, Proposition 6.11 and Remark 6.11.2).

If C is regular, then the group of Cartier divisors on C is isomorphic to the group of

Weil divisors on C, and CaCl(C) is isomorphic to Cl(C), see ([20], Proposition 7.2.16).

Proposition 2.2.10. Let C be an S-curve. Let L be an invertible sheaf on C generated

by global sections s0, . . . , sn. Let us consider the morphism f : C → Pn
S associated to

these sections. Let Γ be an irreducible component of Ck. Then f(Γ) is reduced to a point

if and only if L|Γ ' OΓ.

Proof: See ([20], Lemma 8.3.29). 2

The following theorem describes the contraction morphism explicitly. In fact, we use

it repeatedly in this thesis.

Theorem 2.2.11. Let C be an S-curve. Let (Γi)i∈I be the family of irreducible compo-

nents of Ck. Let D be a non-trivial effective relative Cartier divisor on C. Let J be the

set of all indices j ∈ I such that Supp(D) ∩ Γj = ∅. Then the canonical morphism

u : C → CJ := Proj(
∞⊕

m=0

H0(C,OC(mD)))

is a contraction of the components Γj, j ∈ J, and CJ is an S-curve.

Proof: Theorem 1 of ([5], §6.7) proves that the morphism u is a contraction of the

components Γj, j ∈ J, and that CJ is projective and normal. The proof that CJ is

integral is similar to the proof that CJ is normal with replacing the integral closeness

property with being an integral domain, see the proof of Lemma 2 of ([5], §6.7) and

([20], Proposition 2.4.17). The flatness is a direct consequence of the integrality of CJ

and that J 6= I, see ([20], Corollary 4.3.10). 2

Definition 2.2.12. Let C → S be a regular S-curve. Let Γ be an irreducible component

of Ck. Γ is called an exceptional divisor (or (−1)-curve) if there exist a regular S-curve

CΓ → S and a morphism u : C → CΓ of S-schemes such that u(Γ) is reduced to a point,

and that u : C−Γ
∼−→ CΓ−u(Γ) is an isomorphism, i.e., Γ can be contracted to a regular

point.

15



Example 2.2.13. Let C be a smooth curve defined over K. Assume that C has positive

genus. Let Cmin be the minimal proper regular model for C. Let C be an S-model for

C with minimal desingularisation C̃ → C.
Theorem 2.2.4 implies that there exists a unique morphism C̃ → Cmin as S-models

for C. Indeed, this morphism is the contraction morphism of the exceptional divisors in

C̃, see ([20], §10.1).

2.3 Canonical sheaves

In this section we define what a canonical sheaf is, and review some of its properties.

For a reference see ([20], Chapter 6).

Let f : X → Y be a morphism of schemes. Let ∆ : X → X ×Y X be the diagonal

morphism. The morphism ∆ gives an isomorphism of X onto its image ∆(X). Moreover,

∆(X) is a closed subscheme of an open subset U of X ×Y X.

Definition 2.3.1. Let I be the sheaf of ideals of ∆(X) in U. We define the sheaf of

relative differentials of degree 1 of X over Y to be Ω1
X/Y := ∆∗(I/I2) on X. For any

r ≥ 1, we call the quasi-coherent sheaf Ωr
X/Y := ∧rΩ1

X/Y the sheaf of differentials of

order r.

Recall that an immersion of schemes is a morphism which is an open immersion

followed by a closed immersion.

Definition 2.3.2. Let f : X → Y be a morphism of schemes. Assume that there exists

an open subscheme V of Y such that f factors through a closed immersion i : X → V.

Let J be the sheaf of ideals defining i(X). The sheaf i∗(J /J 2) on X is called the

conormal sheaf of X in Y, and we denote it by CX/Y . This sheaf does not depend on the

choice of V.

Definition 2.3.3. Let F be a quasi-coherent sheaf on a scheme X. Assume moreover

that F is of constant rank ri on each connected component Xi of X. We define the

invertible sheaf detF by setting (detF)|Xi
= ∧ri(F|Xi

).

Example 2.3.4. Let X = Spec A[T1, . . . , Tn], where A is a Noetherian ring. Then

Ω1
X/ Spec A is locally free on X, and det Ω1

X/ Spec A = Ωn
X/ Spec A is free over OX , generated

by dT1 ∧ . . . ∧ dTn.

Definition 2.3.5. Let Y be a locally Noetherian scheme, and let f : X → Y be a

quasi-projective local complete intersection. Let i : X → Z be an immersion into a
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scheme Z that is smooth over Y. We define the canonical sheaf of X → Y to be the

invertible sheaf

ωX/Y := det(CX/Y )∨ ⊗OX
i∗(det Ω1

Z/Y ).

This sheaf is independent of the choice of the decomposition X → Z → Y, up to

isomorphism.

Let f : X → Y be a smooth morphism of relative dimension d, i.e., for x ∈
X, dimx Xf(x) = d. It is known that ωX/Y = ∧dΩ1

X/Y .

The reason we are interested in canonical sheaves and not in sheaves of differentials

is that we are dealing with non-smooth schemes most of the time.

If A is a ring and {a1, . . . , an} is a sequence of elements of A. We say that it is a

regular sequence if a1 is not a zero divisor and for any i ≥ 2, ai is not a zero divisor

in A/(a1, . . . , ai−1). Now we state a lemma which enables us to compute the canonical

sheaves of S-curves.

Lemma 2.3.6. Let Y = Spec A be a Noetherian integral scheme, and let X be an

integral closed subscheme of Z = Spec A[T1, . . . , Tn] defined by an ideal generated by a

regular sequence F1, . . . , Fr with r ≤ n. Let us suppose that

∆ := det(
∂Fi

∂Tj

)1≤i,j≤r

is non-zero in K(X). Let ξ be the generic point of X.

(i) Let ti be the image of Ti in OX(X). Then

ωX/Y,ξ = (dtr+1 ∧ . . . ∧ dtn)OX,ξ.

(ii) As a subsheaf of ωX/Y,ξ, we have

ωX/Y = ∆−1.(dtr+1 ∧ . . . ∧ dtn)OX .

Proof: See ([20], Corollary 6.4.14). 2
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Chapter 3

Degree-n-models

In this chapter we define what we mean by a degree-n-model for a smooth genus one

curve C over a discrete valuation field K. Then we prove that if such a model is minimal,

then it is an S-model for C, see Definition 2.2.2. We conclude by describing the singular

loci of these models.

3.1 Definitions

Let R be a Dedekind domain with fraction field K. Put S = Spec R.

The S-scheme defined by an integral genus one equation φ of degree 1 is simply the

S-scheme C ⊂ P2
S defined as follows

Proj R[x, y, z]/(φ : y2z + a1xyz + a3yz2 − (x3 + a2x
2z + a4xz2 + a6z

3)), ai ∈ R.

Definition 3.1.1. Let φ be a genus one equation of degree 1. Let C be the elliptic

curve over K defined by φ. A degree-1-model for C is a pair (C, α) where C ⊂ P2
S is an

S-scheme defined by an integral genus one equation of degree 1, and α : CK
∼= C is an

isomorphism defined by a K-equivalence of genus one equations of degree 1, i.e., α is

defined by an element of G1(K), see §2.1 for the definition of Gn(K).

An isomorphism β : (C1, α1) ∼= (C2, α2) of degree-1-models is an isomorphism β :

C1
∼= C2 of S-schemes defined by an R-equivalence of genus one equations of degree 1,

i.e., β is defined by an element of G1(R), with βK = α−1
2 α1, see §2.1.

Note that our definition of a degree-1-model for an elliptic curve C is the definition

of a Weierstrass model for C as given in ([20], §9.4.4).

The S-scheme C defined by an integral genus one equation φ : y2 = F (x, z) of degree

2 is the scheme obtained by glueing {y2 = F (x, 1)} ⊂ A2
S and {v2 = F (1, u)} ⊂ A2

S via
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x = 1/u and y = x2v. It comes with a natural morphism C → P1
S given on these affine

pieces by (x, y) 7→ (x : 1) and (u, v) 7→ (1 : u).

The S-scheme defined by an integral genus one equation φ of degree n = 3, 4, is

simply the subscheme C ⊂ Pn−1
S defined by φ.

Definition 3.1.2. (i) Let φ be a genus one equation of degree n ∈ {2, 3, 4}. Let

C → Pn−1
K be the genus one curve defined by φ, where this morphism is a double

cover when n = 2, and it is an embedding when n ≥ 3.

A degree-n-model for C is a pair (C, α) where C → Pn−1
S is an S-scheme defined

by an integral genus one equation of degree n, and α : CK
∼= C is an isomorphism

defined by a K-equivalence of genus one equations of degree n, i.e., α is defined

by an element of Gn(K).

(ii) An isomorphism of degree-n-models (C1, α1) ∼= (C2, α2) is an isomorphism β : C1
∼=

C2 of S-schemes defined by an R-equivalence of genus one equations of degree n,

i.e., β is defined by an element of Gn(R), with βK = α−1
2 α1.

If there is no confusion, then we will omit mentioning the isomorphism α in the

degree-n-model (C, α) and write C instead.

Definition 3.1.3. Let R be a discrete valuation ring. A degree-n-model (C, α) for a

smooth genus one curve over K is said to be minimal if the defining genus one equation

of degree n of C is minimal, see Definition 2.1.3.

3.2 Normality

We will fix the following notations for the rest of this section unless otherwise stated.

K is a Henselian discrete valuation field with normalised valuation ν. We write OK for

its ring of integers. Fix a uniformiser t ∈ K and write k = OK/tOK for the residue

field. We will assume moreover that k is algebraically closed and that char(k) 6= 2. Set

S = SpecOK

In this section we find necessary and sufficient conditions for a degree-n-model for a

smooth genus one curve C to be normal, and hence to be an S-model for C.

If f(x1, . . . , xn) =
∑m

i=1 aix
l1i
1 . . . xlni

n ∈ OK [x1, . . . , xn], then f̃(x1, . . . , xn) will denote

its image in k[x1, . . . , xn]. Moreover, ν(f) = min{ν(ai) : 1 ≤ i ≤ m}.
A Noetherian S-scheme X is said to be Cohen-Macaulay if OX,x is a Cohen-Macaulay

ring for every x ∈ X.

Let (A,m) be a regular Noetherian local ring of dimension d. Any system of gener-

ators of m with d elements is called a coordinate system for A.
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Lemma 3.2.1. Let (A, m) be a regular Noetherian local ring.

(i) Suppose that f ∈ m\{0}. Then A/fA is regular if and only if f 6∈ m2.

(ii) Suppose that I is a proper ideal of A. Then A/I is regular if and only if I is

generated by r elements of a coordinate system for A, with r = dim A− dim A/I.

In other words, if and only if I is generated by r elements of m which are linearly

independent mod m2.

Proof: See ([20], Corollary 4.2.12 and Corollary 4.2.15). 2

We state the following lemma which we use throughout this section.

Lemma 3.2.2. Let C → S be a local complete intersection. Assume that CK is normal.

Then the following statements are true.

(i) C is normal if and only if C is regular at the generic points of Ck.

(ii) If Ck is reduced, then C is normal.

Proof: (i) Since C is a local complete intersection, it follows that it is a Cohen-

Macaulay scheme, see ([20], Corollary 8.2.18). Therefore, as a consequence of Serre’s

criterion for normality, it follows that C is normal if and only if it is normal at its points

of codimension 1, i.e., either closed points of the generic fiber, or the generic points of

the special fiber, see for example ([20], Corollary 8.2.24). Since CK is normal, we have

that C is normal if and only if C is normal at the generic points of its special fiber and

that is equivalent to regularity at these generic points.

(ii) See ([20], Lemma 4.1.18). 2

It is known that if C is a curve over K, then the normality of C coincides with the

regularity.

We need to define the concept of multiplicity of an irreducible component. Let X

be a locally Noetherian scheme over k. Let Γ be an irreducible component of X with

generic point ξ. Let mξ be the maximal ideal corresponding to ξ. Then the multiplicity

of Γ in X is the dimension d of OX,ξ/mξ as a k-vector space. Moreover, d = 1 if and

only if OX,ξ is reduced (or, equivalently, if X is reduced on a non-empty open subset

containing ξ), see ([20], Definition 7.5.6).

If C is an S-curve, then there is a normalised valuation νΓ of K(C) corresponding

to each irreducible component Γ of Ck. The multiplicity of Γ in Ck is equal to νΓ(t), see

([20], Exercise 8.3.3 (a)).

Let C be a genus one curve defined by a genus one equation φ of degree n = 1, 2,

and let C be the degree-n-model for C defined by φ.
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If n = 1, then Ck is one of the following

(1) smooth cubic (2) nodal cubic (3) cuspidal cubic.

If n = 2, i.e., φ : y2 = f(x), then we can classify Ck according to the repeated roots

of f(x). Therefore, Ck is one of the following

(1) smooth quartic (2) nodal quartic (3) cuspidal quartic

(4) two intersecting lines (5) two tangent conics (6) double line.

The forms (1), (2), (3), (4), (5) and (6) above correspond to f(x) having no repeated

roots, one and only one double root, a cubic root, two double roots, a root of order 4,

and f(x) = 0 mod t respectively.

Now we state the conditions for C to be normal in the following two propositions.

Proposition 3.2.3. Let C be a smooth genus one curve over K defined by an integral

genus one equation φ of degree 1. Let C be the degree-1-model for C given by φ. Then

the model C is normal.

Proof: Since Ck consists of one irreducible component of multiplicity-1, in particular

Ck is reduced, and C is smooth, it follows that C is normal, see Lemma 3.2.2 (ii). 2

The following normality condition, when n = 2, can be found in ([18], Lemme 5).

Proposition 3.2.4. Let C be a smooth genus one curve over K defined by an integral

genus one equation φ : y2 = f(x) of degree 2. Let C be the degree-2-model for C → P1
K

given by φ. The model C is normal if and only if ν(f) ≤ 1.

Proof:

(i) If t - f(x), then the defining equation y2 − f̃(x) = 0 of Ck has no square factor,

and so Ck is reduced, see ([20], Exercise 2.4.1). Since C is smooth, and hence it is

normal, and Ck is reduced, it follows that C is normal, see Lemma 3.2.2 (ii).

(ii) If t | f(x), then the maximal ideal corresponding to the generic point ξ of Ck

is mξ = 〈t, y〉. Lemma 3.2.2 (i) implies that C is normal if and only if Ck is

regular at ξ, and Lemma 3.2.1 (i) shows that the latter statement is equivalent to

y2 − f(x) 6∈ m2
ξ . Since y2 ∈ m2

ξ and t | f(x), whence C is normal if and only if

t || f(x), i.e., ν(f) = 1.

2

When C is a genus one curve defined by a genus one equation φ of degree n = 3, 4,

and C is the degree-n-model for C → Pn−1
K defined by φ, the combinatorial possibilities

for the special fiber Ck increase.
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We start with φ : F (x, y, z) = 0 of degree 3, then the special fiber Ck is one of the

following, see ([25], p. 266).

(1) smooth cubic (2) nodal cubic (3) cuspidal cubic

(4) conic + line (5) conic + tangent (6) line + double line

(7) three lines (8) three concurrent lines (9) triple line.

When φ : F (x1, x2, x3, x4) = G(x1, x2, x3, x4) = 0 is of degree 4, we will assume that

Ck is a curve, hence F̃ and G̃ are coprime. The special fiber Ck is in one of the forms

given below, see [12] or ([7], p. 46).

(1) smooth quartic (2) nodal quartic (3) cuspidal quartic

(4) two secant conics (5) two tangent conics (6) four lines (skew quadrilateral)

(7) four concurrent lines (8) cubic + secant line (9) cubic + tangent line

(10) conic + two lines not crossing on it (11) conic + two lines crossing on it

(12) conic + double line (13) double conic (14) double line + two lines

(15) triple line + line (16) two double lines (17) quadruple line.

Remark 3.2.5. Let C be a degree-4-model for a smooth genus one curve. We will need

explicit defining equations for Ck when Ck contains a component of multiplicity greater

than one. These equations can be obtained after applying transformations in G4(k). For

the whole list of defining equations for the special fiber Ck, see [12] or ([7], p. 46).

Ck Defining equations

conic + double line x1x3 = x1x4 + x2
2 = 0

double conic x2
1 = x2

2 + x2
3 + x2

4 = 0 which is k-equivalent to

x2
1 = x2

2 + x3x4 = 0

double line + two lines x2
1 + x2

2 = x1x3 + µx2x4 = 0, µ ∈ k

triple line + line x1x2 = x2
1 + x2x4 = 0

two double lines x2
1 = x2x4 + µx1x3 = 0, µ ∈ k

quadruple line x2
1 = x2

2 + µx1x3 = 0, µ ∈ k
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Consider a genus one equation φ of degree 3 given by

φ : by3 + f1(x, z)y2 + f2(x, z)y + f3(x, z) = 0, (3.1)

where f1(x, z) = b1x+ b3z, f2(x, z) = a2x
2 +mxz +c2z

2, f3(x, z) = ax3 +a3x
2z +c1z

2x+

cz3.

Let C be the degree-3-model defined by φ. Assume that its special fiber Ck contains

an irreducible component of multiplicity-m, m ≥ 2. Using a matrix in GL3(OK) we can

assume that the defining equation of this multiplicity-m component is y = 0. This means

that min{ν(f2), ν(f3)} ≥ 1, ν(f1) = 0 when m = 2, and min{ν(f1), ν(f2), ν(f3)} ≥
1, ν(b) = 0 when m = 3.

Proposition 3.2.6. Let C be the smooth genus one curve over K defined by the integral

equation φ : F (x, y, z) = 0 given in (3.1). Let C be the degree-3-model for C → P2
K given

by the same equation.

(i) If Ck contains only multiplicity-1 components, then C is normal.

(ii) If Ck contains a multiplicity-m component, m ≥ 2, whose defining equation is

y = 0, then C is normal if and only if ν(f3) = 1.

Proof: (i) Since C is normal and Ck is reduced, then C is normal, see Lemma 3.2.2

(ii).

(ii) Assume that Ck contains an irreducible component Γ : {y = 0} of multiplicity

m = 2. Using a matrix in GL3(OK) we can assume that Ck is defined by y2x = 0. The

maximal ideal corresponding to the generic point ξ of Γ is mξ = 〈t, y〉, and the maximal

ideal corresponding to the generic point ξ′ of {x = 0} is mξ′ = 〈t, x〉. Lemma 3.2.1 and

Lemma 3.2.2 imply that C is normal if and only if F (x, y, z) 6∈ m2
ξ and F (x, y, z) 6∈ m2

ξ′ .

Since ν(f2) ≥ 1, we have y3, y2, f2(x, z)y ∈ m2
ξ . Therefore, F (x, y, z) 6∈ m2

ξ if and only

if t || f3(x, z), i.e., ν(f3) = 1. Moreover, it is always true that F (x, y, z) 6∈ m2
ξ′ because

ν(by3 + b3y
2z + c2yz2 + cz3) = 0. Hence C is normal if and only if ν(f3) = 1.

Assume that Ck consists of a multiplicity-3 irreducible component Γ : {y = 0}. The

maximal ideal corresponding to the generic point ξ of Ck is mξ = 〈t, y〉. Since ν(f2) ≥ 1,

it follows that C is normal if and only if ν(f3) = 1. 2

Now we study the normality of degree-4-models for smooth genus one curves. Con-

sider a genus one equation φ of degree 4 given by F (x1, x2, x3, x4) = G(x1, x2, x3, x4) = 0,

where F and G are given by the following two integral equations respectively

a1x
2
1 + a2x1x2 + a3x1x3 + a4x1x4 + a5x

2
2 + a6x2x3 + a7x2x4 + a8x

2
3 + a9x3x4 + a10x

2
4,

b1x
2
1 + b2x1x2 + b3x1x3 + b4x1x4 + b5x

2
2 + b6x2x3 + b7x2x4 + b8x

2
3 + b9x3x4 + b10x

2
4,

(3.2)
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where F̃ , G̃ are coprime, and do not define coplanar lines.

Proposition 3.2.7. Let C be the smooth genus one curve over K defined by the integral

equation φ given in (3.2). Let C be the degree-4-model for C → P3
K given by the same

equation.

(i) If Ck contains a multiplicity-1 component Γ, then C is normal at Γ.

(ii) If Ck is a conic and a double line with F̃ = x1x3 and G̃ = x1x4 + x2
2, then C is

normal if and only if

ν(x4F (0, 0, x3, x4)− x3G(0, 0, x3, x4)) = 1.

(iii) Assume that Ck is a double conic with F̃ = x2
1 and G̃ = x2

2 + x3x4. Then C is

normal unless F (0, x2, x3, x4) ≡ µ(x2
2 + x3x4) mod t2, for some µ ∈ OK.

(iv) Assume that Ck contains a line Γ : {x1 = x2 = 0} of multiplicity-m, m ≥ 2, with

F̃ = q(x1, x2) and G̃ = x1x3 + µx2x4 + q′(x1, x2), µ ∈ k. If ν(F (0, 0, x3, x4)) = 1,

then C is normal at Γ.

Proof: (i) If Ck contains a multiplicity-1 component Γ, then Ck is reduced at the generic

point ξ of Γ, but C is normal, hence C is normal at ξ, see ([20], Lemma 4.1.18).

Now we use Lemma 3.2.1 (ii) and Lemma 3.2.2 (i) to study the normality of C
at components of multiplicity greater than 1. The model C is normal if and only if

F, G 6∈ m2
ξ , and F,G are linearly independent mod m2

ξ , for every generic point ξ of Ck.

Note that the linear independence condition for F, G mod m2
ξ , ξ ∈ C, is: for λ1, λ2 ∈

OK [x1, . . . , x4]ξ, if λ1F + λ2G ∈ m2
ξ , then λ1, λ2 ∈ mξ.

(ii) Let ξ be the generic point of the double line {x1 = x2 = 0} in Ck, then mξ =

〈x1, x2, t〉. It is clear that F,G 6∈ m2
ξ . Now we consider the linear independence of F

and G. If λ1F + λ2G ∈ m2
ξ , then the fact that x1 and t are linearly independent mod

m2
ξ implies that λ1x3 + λ2x4 ∈ mξ, i.e., λ1 ≡ µx4 mod mξ and λ2 ≡ −µx3 mod mξ for

some µ ∈ OK . Therefore, C is normal if and only if ν(f) = 1, where

f = x4(a8x
2
3 + a9x3x4 + a10x

2
4)− x3(b8x

2
3 + b9x3x4 + b10x

2
4).

(iii) Let mξ = 〈x1, x
2
2 + x3x4, t〉 be the maximal ideal corresponding to the generic

point ξ of the conic. We have G 6∈ m2
ξ . If a5x

2
2 + a9x3x4 = tu(x2

2 + x3x4), u ∈ OK , then

F 6∈ m2
ξ if and only if ν(a6x2x3 + a7x2x4 + a8x

2
3 + a10x

2
4) = 1, otherwise F 6∈ m2

ξ if and

only if ν(a5x
2
2 + a6x2x3 + a7x2x4 + a8x

2
3 + a9x3x4 + a10x

2
4) = 1.

To investigate the linear independence of F and G, we note that if λ1F + λ2G ∈ m2
ξ ,

then λ2 ∈ mξ. The reason is t and x2
2 +x3x4 are linearly independent mod m2

ξ . Therefore,
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the condition we obtained from F 6∈ m2
ξ implies that λ1 ∈ mξ, and hence we get linear

independence.

(iv) Assume that ξ is the generic point of Γ : {x1 = x2 = 0}. The ideal mξ is given

by 〈x1, x2, t〉. Since F̃ = q(x1, x2), and ν(a8x
2
3 + a9x3x4 + a10x

2
4) = 1, we have F 6∈ m2

ξ .

Since G̃ = x1x3 + µx2x4 + q′(x1, x2), where µ ∈ k, we have G 6∈ m2
ξ because x1x3 6∈ m2

ξ .

Therefore, we need to check the linear independence only. Let λ1, λ2 ∈ OK [x1, . . . , x4]ξ
be such that λ1F + λ2G ∈ m2

ξ . Since x1, x2 and t are linearly independent mod m2
ξ , it

follows that λ2 ∈ mξ. Moreover, as ν(a8x
2
3 + a9x3x4 + a10x

2
4) = 1, we get λ1 ∈ mξ, hence

F and G are linearly independent mod m2
ξ . 2

The proof of the following lemma can be found in §2.5.1 of [30].

Lemma 3.2.8. Let C be the smooth genus one curve over K defined by the integral

equation φ given in (3.2). Let C be the degree-4-model for C → P3
K given by the same

equation.

(i) Assume that F̃ and G̃ have a common factor. Then φ is not minimal.

(ii) Assume that Ck is a quadruple line with F̃ = x2
1 and G̃ = x2

2. Then either φ is not

minimal, or C(K) = ∅.
Proof: (i) Applying a transformation in GL4(OK) we can assume that x1 | F̃ , G̃. Now

we deduce that φ is not minimal by applying the transformation

1

t
F (tx1, x2, x3, x4) =

1

t
G(tx1, x2, x3, x4) = 0.

(ii) If ν(F (0, 0, x3, x4)) > 1, then φ is not minimal as we can apply the following trans-

formation
1

t2
F (tx1, tx2, x3, x4) =

1

t
G(tx1, tx2, x3, x4) = 0.

Similarly, if ν(G(0, 0, x3, x4)) > 1, then φ is not minimal.

Now we assume that ν(F (0, 0, x3, x4)) = ν(G(0, 0, x3, x4)) = 1. Consider the pair of

quadrics

F ′ =
1

t
F (tx1, tx2, x3, x4) and G′ =

1

t
G(tx1, tx2, x3, x4).

If F̃ ′ and G̃′ have a common factor, then the genus one equation F ′ = G′ = 0 is

not minimal by (i). So we assume that F̃ ′ and G̃′ have no common factor. Let

(x1, x2, x3, x4) ∈ C(K). Clearing denominators, we can assume that min1≤i≤4 ν(xi) = 0.

Reducing F,G mod t, we have t | x1, x2. Reducing F,G mod t2, we get t | x3, x4, which

is a contradiction. Therefore, C(K) = ∅. 2

25



Theorem 3.2.9. Let φ be an integral genus one equation of degree n ∈ {1, 2, 3, 4}
defining a genus one smooth curve C over K. Let C be the degree-n-model defined by φ.

When n = 4, assume that C is not isomorphic to a degree-4-model whose special fiber is

of the form {x2
1 = x2

2 = 0}. If φ is minimal, then C is normal. In particular, C is an

S-model for C.

Proof: If Ck consists only of multiplicity-1 components, then Ck is reduced and hence

C is normal, see Lemma 3.2.2 (ii). Therefore, we only need to assume that φ is of degree

n, n ≥ 2, and Ck contains a component of multiplicity greater than 1.

For n = 2, let φ : y2 = f(x) be minimal with t | f(x). Then C is normal, since

otherwise ν(f) ≥ 2, see Proposition 3.2.4 (ii), and φ is not minimal as we can apply the

transformation y2 = 1
t2

f(x).

For n = 3, let φ : F (x, y, z) = 0 be a minimal genus one equation of degree 3 as

in equation (3.1). Let Ck contain a multiplicity-m component, m ≥ 2. It follows that

after using a matrix in GL3(OK), we can assume that ν(f2), ν(f3) ≥ 1. We claim that

ν(f3) = 1, and hence C is normal, see Proposition 3.2.6 (ii), since otherwise ν(f3) ≥ 2

and φ is not minimal because we can apply the transformation 1
t2

F (x, ty, z).

For n = 4, let φ be a minimal genus one equation of degree 4 given by F = G =

0, where F and G are given as in equation (3.2). Let Ck contain a multiplicity-m

component, m ≥ 2. We will go through the different cases of Proposition 3.2.7.

If Ck : {x1x3 = x1x4+x2
2 = 0}, then we claim that ν(x4F (0, 0, x3, x4)−x3G(0, 0, x3, x4)) =

1, and hence C is normal. To prove that claim, we assume on the contrary that the latter

valuation is greater than 1. We use a matrix in GL4(OK) to get rid of the x2
1, x1x2 and

x1x4-terms in F and of the x2
1, x1x2 and x1x3-terms in G. We notice that in the equation

x4F (0, 0, x3, x4)− x3G(0, 0, x3, x4) = −b8x
3
3 + (a8 − b9)x

2
3x4 + (a9 − b10)x3x

2
4 + a10x

3
4,

we have min{ν(b8), ν(a8 − b9), ν(a9 − b10), ν(a10)} ≥ 2. We apply the transformation

x1 7→ x1 − a8x3 − a9x4, xi 7→ xi, i = 2, 3, 4, to get rid of the terms a8x
2
3 and a9x3x4.

Thereafter, we obtain the genus one equation φ′ : F ′ = G′ = 0, where

F ′ = x1x3 + a5x
2
2 + a6x2x3 + a7x2x4 + a10x

2
4,

G′ = x1x4 + x2
2 + b6x2x3 + b7x2x4 + b8x

2
3 + (b9 − a8)x3x4 + (b10 − a9)x

2
4.

We deduce that φ′ is not minimal by applying the transformation

1

t2
F ′(t2x1, tx2, x3, x4) =

1

t2
G′(t2x1, tx2, x3, x4) = 0.

Assume that Ck : {x2
1 = x2

2 + x3x4 = 0}. If C is not normal, then ν(F (0, x2, x3, x4)−
µ(x2

2 + x3x4)) ≥ 2 for some µ ∈ OK , see Proposition 3.2.7 (iii). But then φ is not
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minimal as we can apply the transformation

1

t2
(F (tx1, x2, x3, x4)− µG(tx1, x2, x3, x4)) = G(tx1, x2, x3, x4) = 0.

Now assume that Ck contains a line Γ : {x1 = x2 = 0} of multiplicity-m, m ≥ 2,

with F̃ = q(x1, x2) and G̃ = x1x3 + µx2x4 + q′(x1, x2), where µ ∈ k. We claim that

ν(a8x
2
3 + a9x3x4 + a10x

2
4) = 1, and hence C is normal at Γ, see Proposition 3.2.7 (iv),

since otherwise φ is not minimal because we can apply the transformation

1

t2
F (tx1, tx2, x3, x4) =

1

t
G(tx1, tx2, x3, x4) = 0.

2

The following corollary is a direct consequence of Lemma 3.2.8 and Theorem 3.2.9.

Corollary 3.2.10. Let φ be an integral genus one equation of degree n ∈ {1, 2, 3, 4}
defining a genus one smooth curve C over K. Assume that C(K) 6= ∅. Let C be the

degree-n-model defined by φ. If φ is minimal, then C is normal.

3.3 Singular Loci

Let C be an S-curve with a smooth generic fiber. Then it is known that the normality of

C implies that there are only finitely many non-regular points on C, and all these points

are closed points in the special fiber, see for example ([8], p. 8). The set of non-regular

points of C will be called the singular locus of C, and we will denote it by Sing(C).

In this section we will compute the singular locus Sing(C) of a normal degree-n-model

C for a smooth genus one curve where n ∈ {1, 2, 3, 4}.
The set of zeros of a polynomial f ∈ OK [x1, . . . , xn] will be denoted V (f). If f ∈

OK [x1, . . . , xn], then we will write fi(x1, . . . , xn) = f(x1, . . . , xn)/ti.

Proposition 3.3.1. Let C be a smooth genus one curve over K defined by an integral

genus one equation φ of degree 1. Let C be the degree-1-model for C given by φ. Then

Sing(C) consists of one point at most.

Proof: This point is the node of Ck if C has multiplicative reduction, and it is the

cusp of Ck if C has additive reduction. 2
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Proposition 3.3.2. Let C be a smooth genus one curve over K defined by an integral

genus one equation φ : y2 = f(x) of degree 2. Assume that φ defines a normal degree-2-

model C for C → P1
K . Then

Sing(C) =




{(x0, 0) : (x− x0)

2|f̃(x)} if ν(f) = 0

{(x0, 0) : x0 ∈ V (f̃1)} if ν(f) = 1

Proof: Assume that ν(f) = 0. Lemma 3.2.1 (i) implies that the singular locus of C
consists of points P = (x0, 0) ∈ C such that y2 − f(x) ∈ m2

P = 〈x− x0, y, t〉2. Therefore,

if ν(f) = 0, then Sing(C) is the set {(x0, 0) : (x− x0)
2 | f̃(x)}.

Now assume that ν(f) = 1. The maximal ideal corresponding to the generic point

ξ of Ck is mξ = 〈t, y〉. Therefore, Sing(C) consists of the points P = (x0, 0) such that

f̃1(x0) = 0. 2

Remark 3.3.3. Keep the notations of Proposition 3.3.2. If ν(f) = 0, then there are

at most two points in the singular locus of C. If ν(f) = 1, then there are at most four

points in the singular locus of C corresponding to the zeros of f̃1(x).

Proposition 3.3.4. Let C be a smooth genus one curve over K defined by an integral

genus one equation φ of degree 3 given by

F (x, y, z) := by3 + f(x, z)y2 + g(x, z)y + h(x, z) = 0.

Assume that φ defines a normal degree-3-model C for C → P2
K .

(i) If Ck consists of l multiplicity-1 irreducible components, then Sing(C) consists of

one point at most when l = 1, and is contained in the set of intersection points of

these components when l ≥ 2.

(ii) If min{ν(g), ν(h)} ≥ 1, then Sing(C) = {(x0 : 0 : z0) : (x0, z0) ∈ V (h̃1(x, z))}.
Proof: (i) If Ck is a nodal cubic or a cuspidal cubic, then Sing(C) consists of the node

or the cusp respectively. If Ck consists of more than one multiplicity-1 component, then

each point of Ck is regular except possibly the intersection points of these components.

(ii) Now assume that min{ν(g), ν(h)} ≥ 1. The normality implies that ν(h) = 1,

see Proposition 3.2.6. The maximal ideal corresponding to the generic point of the

multiplicity-m component, m ≥ 2, is 〈y, t〉. We dehomogenise by setting z = 1. Let

P = (x0 : 0 : 1) ∈ C. The maximal ideal corresponding to P is mP = 〈x − x0, y, t〉.
Lemma 3.2.1 (i) implies that P ∈ C is non-regular if and only if F (x, y, 1) ∈ m2

P .

Since y3, y2, g(x, 1)y ∈ m2
P and ν(h) = 1, it follows that P is non-regular if and only

h̃1(x0, 1) = 0. 2
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Remark 3.3.5. Keep the notations of Proposition 3.3.4. If Ck consists only of multiplicity-

1 components, then the number of points in the singular locus of C is three points at

most.

If Ck contains a multiplicity-m component, m ≥ 2, then the fact that h(x, z) is a

homogeneous polynomial of degree 3 implies that Ck has at most three points in its

singular locus corresponding to the factors of h̃1(x, z).

Proposition 3.3.6. Let C be a smooth genus one curve over K defined by an integral

genus one equation φ : F = G = 0 of degree 4 given as in equation (3.2). Assume that

φ defines a normal degree-4-model C for C → P3
K .

(i) If Ck consists of l multiplicity-1 irreducible components, then Sing(C) consists of

one point at most when l = 1, and is contained in the set of intersection points of

these components when l ≥ 2.

(ii) If Ck is a conic and a double line with F̃ = x1x3 and G̃ = x1x4 + x2
2, then

Sing(C) = {(0 : 0 : x : y) : (x, y) ∈ V (h̃1(x3, x4))},

where h(x3, x4) = x4F (0, 0, x3, x4)− x3G(0, 0, x3, x4).

(iii) If Ck is a double conic with F̃ = x2
1 and G̃ = x2

2 + x3x4, then

Sing(C) = {(0 : xy : −x2 : y2) : (x, y) ∈ V (h̃1(x2, x4))},

where h(x2, x4) = F (0, x2x4,−x2
2, x

2
4).

(iv) Assume that Ck contains a line Γ : {x1 = x2 = 0} of multiplicity-m, m ≥ 2, with

F̃ = q(x1, x2) and G̃ = x1x3 + µx2x4 + q′(x1, x2) where µ ∈ k. Then

S ′ ⊆ Sing(C) ∩ Γ ⊆ S ′ ∪ {(0 : 0 : 0 : 1)},

where S ′ = {(0 : 0 : x : y) : (x, y) ∈ V (F̃1(0, 0, x3, x4))}.

Proof: (i) If Ck is a nodal or a cuspidal quartic, then Sing(C) consists of the node or

the cusp respectively. If Ck consists of more than one multiplicity-1 component, then

each point of Ck is regular except possibly the intersection points of these components.

Therefore, we assume that Ck contains a component of multiplicity greater than 1,

we want to find the points of Sing(C) which lie on this multiple component. Let P ∈ C.
Then Lemma 3.2.1 (ii) implies that P ∈ C is non-regular if and only if either F ∈ m2

P ,

or G ∈ m2
P , or F,G are linearly dependent mod m2

P .
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(ii) The maximal ideal corresponding to the generic point of the double line is

〈x1, x2, t〉. Let P be a closed point on the double line. Since x1 and t are linearly

independent, we have F ∈ m2
P if and only if x3(P ) = 0 and ν(a10) ≥ 2, in other words

F ∈ m2
P if and only if P = (0 : 0 : 0 : 1) and ν(a10) ≥ 2.

Similarly, G ∈ m2
P if and only if P = (0 : 0 : 1 : 0) and ν(b8) ≥ 2.

Now for a point P = (0 : 0 : x : y) on the double line of Ck, we have F and G are lin-

early dependent if and only if (x, y) ∈ V (h̃1(x3, x4)), where h(x3, x4) = x4F (0, 0, x3, x4)−
x3G(0, 0, x3, x4), see Proposition 3.2.7 (ii). Note that if a point P makes either F or G

lie in m2
P , then it is a point at which F and G are linearly dependent.

(iii) Let l(x2, x3, x4) = F (0, x2, x3, x4)−µ(a5x
2
2+a9x3x4), where µ = 1 if a5 = a9, and

µ = 0 otherwise. We have F ∈ m2
p if and only if P ∈ V (l̃1(x2, x3, x4))∩V (x2

2+x3x4), i.e.,

P = (0 : xz : −x2 : z2) where (x, z) ∈ V (h̃1(x2, x4)) and h(x2, x4) = F (0, x2x4,−x2
2, x

2
4).

For any P ∈ C, we have G 6∈ m2
P because x3x4(P ) 6∈ m2

P for any P ∈ C. There are no

new non-regular points which can cause linear dependence because x2
2(P ) + x3x4(P ) 6∈

m2
P for any P ∈ C.

(iv) Now let P be a point on the multiple line Γ. F ∈ m2
P if and only if P = (0 : 0 :

x : y), where (x, y) ∈ V (F̃1(0, 0, x3, x4).

Consider G̃ = x1x3 + µx2x4 + q′(x1, x2) where µ ∈ k. If µ 6= 0, then G 6∈ m2
P for any

P ∈ Γ. If µ = 0, then the linear independence of t and x1 implies that G ∈ m2
P if and

only if x3(P ) = 0 and G̃1(0, 0, x3(P ), x4(P )) ∈ mP . Therefore, G ∈ m2
P if and only if

P = (0 : 0 : 0 : 1) and ν(b10) ≥ 2. We have no new non-regular points which can cause

linear dependence. 2

Remark 3.3.7. Assume that the special fiber Ck is given by x2
2 = x1x3+µx2x4 = 0, µ ∈

k. We have

S ′ ∪ S ′′ ⊆ Sing(C) ⊆ S ′ ∪ S ′′ ∪ {(0 : 0 : 0 : 1)},
where S ′ is as in Proposition 3.3.6 and S ′′ = {(x : 0 : 0 : y) : (x, y) ∈ V (F̃1(x1, 0, 0, x4)}.
Hence Sing(C) consists of five points at most.

In any other case, the above proposition implies that a degree-4-model for a smooth

genus one curve has at most four points in its singular locus. Indeed, if Ck consists

of multiplicity-1 components, then the number of points in Sing(C) is bounded by the

number of these components. If Ck is a conic and a double line as in (ii), then the

number of points in Sing(C) is at most three points corresponding to the factors of the

degree-3 polynomial h̃1 given in (ii). If Ck is a double conic as in (iii), then Sing(C)

consists of at most four points corresponding to the factors of the degree-4 polynomial

h̃1 of (iii). If Ck consists of a double line and two simple lines, then Sing(C) consists at

most of three points on the double line plus the intersection point of the simple lines.
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Chapter 4

Criteria for minimality

In this chapter we will assume that K is a Henselian discrete valuation field with nor-

malised valuation ν. We write OK for the ring of integers. We fix a uniformiser t. The

residue field k = OK/tOK is not necessarily algebraically closed. Set S := SpecOK .

When we are dealing with degree-2-models for smooth genus one curves, we are going

to assume that char k 6= 2.

In this chapter we give geometric criteria for the minimality of normal degree-n-

models for smooth genus one curves. The main result introduced in this chapter is

stated in the following theorem.

Theorem 4.0.1. Let φ be an integral genus one equation of degree n = 1, 2, 3, 4. Assume

that φ defines a smooth genus one curve C over K, and that C(K) 6= ∅. Assume moreover

that φ defines a normal degree-n-model C for C. Let E/K be the Jacobian elliptic curve

of C, and Emin be the minimal proper regular model of E.

Then φ is minimal, see Definition 2.1.3, if and only if C̃ ∼= Emin, where C̃ → C is the

minimal desingularisation of C.

Theorem 4.0.1 is known for the case n = 1, see ([20], §9.4) or [8]. Moreover, Liu

gave a proof for the case n = 2, see ([18], Proposition 8 (b)). We will give a proof which

works for n = 1, 2, 3, 4.

4.1 Canonical sheaves of degree-n-models

Let φ be an integral genus one equation of degree n = 1, 2, 3, 4. Assume that φ defines

a smooth genus one curve C/K whose Jacobian elliptic curve is E. Assume moreover

that C(K) 6= ∅. Then C ∼=K E, whence the minimal proper regular model Cmin of C
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is isomorphic to the minimal proper regular model Emin of E. For this reason we will

dispense with Cmin and write Emin from here on.

The following proposition describes the canonical sheaf ωEmin/S of Emin.

Proposition 4.1.1. Let E/K be an elliptic curve. Let Emin be its minimal proper

regular model. Then the canonical sheaf ωEmin/S of Emin is a trivial line bundle on Emin.

In other words, there exists ω0 ∈ H0(Emin, ωEmin/S) such that ωEmin/S = ω0OEmin .

Proof: See ([8], Example 7.7). 2

If C is an S-model for a smooth genus one curve C, then the canonical sheaf ωC/S

of C satisfies ωC/S|C = ωC/K , see ([20], Theorem 6.4.9 (b)). Moreover, the restriction of

the canonical sheaf ωC/S on C gives a canonical injection H0(C, ωC/S) ↪→ H0(C, ωC/K),

see ([20], Corollary 9.2.25 (a)).

Lemma 4.1.2. Let C be a normal degree-n-model for a smooth genus one curve C/K

with minimal desingularisation g : C̃ → C. Assume that C(K) 6= ∅. Let Emin be the

minimal proper regular model of the Jacobian E of C. Then

H0(Emin, ωEmin/S) = H0(C̃, ωC̃/S) ⊆ H0(C, ωC/S).

Proof: Since C̃ and Emin are two regular S-curves with a contraction map C̃ →
Emin, we have H0(Emin, ωEmin/S) = H0(C̃, ωC̃/S) as subgroups of H0(E,ωE/K), see ([20],

Corollary 9.2.25 (b)).

Let F be the divisor such that C̃ \F ∼= C \g(F ). Then we have the following relations

in H0(E, ωE/K) :

H0(C̃, ωC̃/S) ⊆ H0(C̃ \ F, ωC̃/S) = H0(C \ g(F ), ωC/S) = H0(C, ωC/S),

the second equality holds because g(F ) has codimension 2 in C, see ([20], Lemma 9.2.17

(a)). 2

In the following proposition we compute the canonical sheaf of a degree-n-model for

a smooth genus one curve.

Proposition 4.1.3. Let φ be an integral genus one equation of degree n = 1, 2, 3, 4.

Assume that φ defines a smooth genus one curve C/K. Assume moreover that φ defines

a normal degree-n-model C for C. Then ωC/S = ωOC, where ω ∈ H0(C, ωC/K) is

(i) if n = 1 and φ : y2 + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3, then

ω =
du

2v + (a1u + a3)
, where u = x/z, v = y/z ∈ K(C),
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(ii) if n = 2 and φ : y2 = f(x, 1), then

ω =
dx

2y
,

(iii) if n = 3 and φ : F (x, y, z) = 0, then

ω =
du

∂F/∂v
, where u = x/z, v = y/z ∈ K(C),

(iv) if n = 4 and φ : F1(x1, x2, x3, x4) = F2(x1, x2, x3, x4) = 0, then

ω =
du

∂F1

∂w
∂F2

∂v
− ∂F1

∂v
∂F2

∂w

, where u = x2/x1, v = x3/x1, w = x4/x1 ∈ K(C).

Proof: According to the definition of the canonical sheaf, see Definition 2.3.5, we have

to check first that C is a local complete intersection. In fact, C is a global complete

intersection over S. That follows directly from the fact that C can be embedded in P2
S

for n = 1, 2, 3, and it can be embedded in P3
S as an intersection of a pair of quadrics for

n = 4.

For n = 1, 3, let V1 be the open affine subset of C obtained by setting z = 1. Then

we can write OC(V1) as

OC(V1) = OK [u, v]/(bv3 + f1(u, 1)v2 + f2(u, 1)v + f3(u, 1)),

where b = 0 and f1(u, 1) = 1 when n = 1. Therefore, ωV1/S = ωOV1 , see Lemma 2.3.6.

Let V2 be the open affine subset of C given by setting y = 1. Set r = x/y, s = z/y. Then

OC(V2) = OK [r, s]/(g(r, s)) where

g(r, s) = b + f1(r, s) + f2(r, s) + f3(r, s).

Hence ωV2/S = ω′OV2 , where ω′ = ds
∂g/∂r

.

We note that r = u/v, s = 1/v in K(C), and ds = − 1
v2 dv in H0(C, ωC/K). Therefore,

ω′ = ω.

For n = 2, the first affine piece V1 satisfies OC(V1) = OK [x, y]/(y2 − f(x, 1)) and

therefore ωV1/S = ωOV1 . Let V2 be the open affine subset of C given by s2 = f(1, r),

where r = 1/x, y = x2s. Then OC(V2) = OK [r, s]/(s2 − f(1, r)) and ωV2/S = ω′OV2 ,

where ω′ = dr
2s

. Since r = 1/x ∈ K(C) and dr = − 1
x2 dx ∈ H0(C, ωC/K), it follows that

ω′ = ω.

Now as C = V1 ∪ V2, we have ωC/S = ωOC.
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The proof is similar for n = 4. Let V1 be the open subset of C given by x1 = 1. We

have

OC(V1) = OK [u, v, w]/(F1(1, u, v, w), F2(1, u, v, w)),

hence ωV1/S = ωOV by Lemma 2.3.6.

Now let V2 be the open subset of C given by x2 = 1. Set q = x1/x2, r = x3/x2, s =

x4/x2. Then OC(V2) = OK [q, r, s]/(F1(q, 1, r, s), F2(q, 1, r, s)).

Therefore, ωV2/S is generated by the rational differential

ω′ :=
dq

∂F1

∂s
∂F2

∂r
− ∂F1

∂r
∂F2

∂s

.

Using the relations

q = 1/u, r = v/u, s = w/u, dq = − 1

u2
du in K(C) and H0(C, ωC/K),

we find that ω′ = ω. As C = V1 ∪ V2, we have ωC/S = ωOC. 2

Recall the definitions of the groups Gn(K) from §2.1. Now we state the following

corollary of Proposition 5.19 in [15].

Corollary 4.1.4. Let φ1, φ2 be two K-equivalent integral genus one equations of degree

n = 1, 2, 3, 4, where φ1 = g.φ2, g ∈ Gn(K). Assume that φ1, φ2 define smooth genus

one curves whose Jacobian elliptic curve is E/K. Assume moreover that φ1, φ2 define

two normal degree-n-models C1, C2. If ωCi/S = ωiOCi
, i = 1, 2, where ωi is defined as in

Proposition 4.1.3, then ω2 = α(det g)ω1 as elements in H0(E, ωE/K), where α ∈ O∗
K .

Proof: The genus one equation φi defines a smooth genus one curve Ci, i = 1, 2. The

element g ∈ Gn(K) defines an isomorphism γ : C1
∼= C2. The isomorphism γ satisfies

γ∗ω2 = (det g)ω1, see ([15], Proposition 5.19). 2

Corollary 4.1.5. Let φ1, φ2 be two K-equivalent integral genus one equations of degree

n = 1, 2, 3, 4, with corresponding discriminants ∆1, ∆2. Assume that φ1, φ2 define smooth

genus one curves whose Jacobian elliptic curve is E. Assume moreover that φ1, φ2 define

two normal degree-n-models C1, C2. If ωCi/S = ωiOCi
, i = 1, 2, then

∆1ω
⊗12
1 = λ∆2ω

⊗12
2 ∈ H0(E, ωE/K)⊗12, where λ ∈ O∗

K .

Proof: Assume that φ1 = g.φ2 where g ∈ Gn(K). Since ∆1 = (det g)12.∆2, see Theorem

2.1.2 (i), and ω1 = α(det g)−1ω2, where α ∈ O∗
K , see Corollary 4.1.4, we have ∆1ω

⊗12
1 =

α12∆2ω
⊗12
2 . 2
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Let φ1 be a minimal genus one equation of degree n = 1, 2, 3, 4. Let φ2 be a genus

one equation K-equivalent to φ1. Let ω1, ω2 be as in Corollary 4.1.4. We will call the

integer m such that ω2 = ut−mω1, u ∈ O∗
K , the level of φ2, and denote it by level(φ2).

Corollary 4.1.5 implies that the level of an integral genus one equation of degree

n does not depend on the choice of the minimal genus one equation φ1. It follows

immediately that an integral genus one equation φ of degree n is minimal if and only if

level(φ) = 0.

Note that according to Corollary 4.1.5, we have ν(∆2) = ν(∆1)+12 level(φ2). Hence

∆2 = u−1t12 level(φ2)∆1.

Lemma 4.1.6. Let C be an S-model for a smooth genus one curve C. Then we have

H0(C,OC) = OK . In particular, if ωC/S = ωOC, then H0(C, ωC/S) = ωOK .

Proof: The OK-module H0(C,OC) is integral over OK , see ([20], Proposition 3.3.18).

Moreover, H0(C,OC) is contained in OC(C), but OC(C) = K as C is geometrically

integral, see ([20], Corollary 3.3.21). 2

Lemma 4.1.7. Assume that φ1, φ2 are two genus one equations of degree n defining two

normal degree-n-models C1, C2 for a smooth genus one curve C. Let E be the Jacobian

elliptic curve of C. Then we have H0(C1, ωC1/S) ⊆ H0(C2, ωC2/S) as sub-OK-modules of

H0(E, ωE/K) if and only if ν(∆(φ1)) ≤ ν(∆(φ2)). Moreover, the equality of the two

submodules holds if and only if φ1 and φ2 have the same level.

Proof: Let ωCi/S = ωiOCi
, ωi ∈ H0(E, ωE/K), i = 1, 2. The assumption H0(C1, ωC1/S) ⊆

H0(C2, ωC2/S) is equivalent to ω1OK ⊆ ω2OK , by Lemma 4.1.6, i.e., ω1 ∈ ω2OK .

Since ∆(φ1)ω
⊗12
1 = λ∆(φ2)ω

⊗12
2 for some λ ∈ O∗

K , see Corollary 4.1.5, it follows that

ω1 ∈ ω2OK is equivalent to ∆(φ2) ∈ ∆(φ1)OK , i.e., ν(∆(φ1)) ≤ ν(∆(φ2)).

The equality of the sub-OK-modules H0(C1, ωC1/S) = H0(C2, ωC2/S) means that

ω1OK = ω2OK as OK-modules, i.e., ω1 ∈ ω2O∗
K . The latter statement means that

φ1 and φ2 have the same level. 2

The following lemma compares the generators of the canonical sheaves of Emin and

C when Emin ∼= C̃.

Lemma 4.1.8. If f : Emin → C is a contraction morphism, where C is a degree-

n-model for a smooth genus one curve, then f∗ωEmin/S = ωC/S. In other words, if

ωEmin/S = ω0OEmin and ωC/S = ωOC, then ω0 ∈ ωO∗
K .

Proof: See ([20], Corollary 9.4.18 (b)). 2

Now we will prove the first part of Theorem 4.0.1.
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Proposition 4.1.9. Let φ be an integral genus one equation of degree n = 1, 2, 3, 4.

Assume that φ defines a smooth genus one curve C over K, and that C(K) 6= ∅. Assume

moreover that φ defines a normal degree-n-model C for C. Let E/K be the Jacobian

elliptic curve of C, and Emin be the minimal proper regular model of E.

If C̃ ∼= Emin, where C̃ → C is the minimal desingularisation of C, then φ is minimal.

Proof: The assumption C̃ ∼= Emin means that C is obtained from Emin by contracting

the components different from those of Ck, thus we have a contraction morphism f :

Emin → C.
We are going to prove that if C ′ is another normal degree-n-model for C given by a

genus one equation φ′ of degree n, then

H0(C, ωC/S) ⊆ H0(C ′, ωC′/S), (4.1)

hence ν(∆(φ)) ≤ ν(∆(φ′)), see Lemma 4.1.7, therefore φ is minimal.

To prove (4.1), let C̃ ′ → C ′ be the minimal desingularisation of C ′. According to

Lemma 4.1.2, we have

H0(Emin, ωEmin/S) = H0(C̃ ′, ωC̃′/S) ⊆ H0(C ′, ωC′/S).

The fact that C is obtained from Emin by contraction implies that f∗ωEmin/S = ωC/S,

see Lemma 4.1.8. Therefore, we have H0(C, ωC/S) = H0(Emin, ωEmin/S), and (4.1) holds.

2

4.2 Constructing minimal degree-n-models

Let φ be a genus one equation of degree n ∈ {1, 2, 3, 4} defining a smooth genus one

curve C/K. Assume that C(K) 6= ∅. Let E be the Jacobian elliptic curve of C with

minimal proper regular model Emin. If P ∈ C(K), then {P} will denote the Zariski

closure of {P} in Emin.

When n = 1, set D1 = 3.{P} where P ∈ C(K). When n ≥ 2, let
∑

(Pi) ∈ Div(C) be

a K-rational divisor of a hyperplane section on C. In particular, the degree of this divisor

is n. Assume moreover that {Pi} ∩ Emin
k is contained in one and only one irreducible

component of Emin
k . Consider the following Weil divisor on Emin

Dn =
∑

{Pi}.

Since Emin is regular, the divisor Dn is a Cartier divisor, see Remark 2.2.9.
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We define an S-model Cn for C as follows

Cn := Proj(
∞⊕

m=0

H0(Emin,OEmin(mDn))).

There is a canonical morphism u : Emin −→ Cn contracting all the irreducible compo-

nents of Emin
k apart from the ones having nonempty intersection with Dn, see Theorem

2.2.11.

Lemma 4.2.1. Let Dn, n ∈ {1, 2, 3, 4}, be as above. Then H0(Emin,OEmin(mDn)), m ≥
1, is a free OK-module of rank 3m if n = 1, and of rank mn if n ≥ 2.

Proof: It is known that H0(Emin,OEmin(mDn)) ⊗OK
K ∼= H0(C,OC(mDn|C)), see

for example ([20], Corollary 5.2.27). Moreover, by virtue of Riemann-Roch Theorem,

H0(C,OC(mDn|C)) is a 3m-dimensional K-vector space when n = 1, and an mn-

dimensional K-vector space when n ≥ 2.

SinceOEmin(mDn) is an invertible sheaf on Emin, it follows that H0(Emin,OEmin(mDn))

is a flat OK-module, see ([20], Lemma 5.2.31). But since OK is a principal ideal

domain, an OK-module is flat if and only if it is torsion-free over OK . Therefore,

H0(Emin,OEmin(mDn)) is torsion-free over OK .

Since OK is a local ring, it is a general fact that a finitely generated flat OK-module

is free. Hence H0(Emin,OEmin(mDn)) is free over OK . Thus H0(Emin,OEmin(mDn)) is

a free OK-module of rank 3m if n = 1, and of rank mn if n ≥ 2. 2

Lemma 4.2.2. Let E be an elliptic curve over K with minimal proper regular model

π : Emin → S. Let Dn be the divisor on Emin defined above. Then the following are true.

(i) H1(Emin,OEmin) is a free OK-module of rank 1.

(ii) For any m ≥ 2, there exists an exact sequence

0 → H0(Emin,OEmin((m− 1)Dn)) → H0(Emin,OEmin(mDn)) → A⊗m → 0,

where A is a free OK-module.

Proof: (i) Since OEmin is invertible on Emin, we have H1(Emin,OEmin) is a finitely

generated OK-module, see ([20], Theorem 5.3.2). Moreover, since OK is a local ring, it

follows that H1(Emin,OEmin) is free.

We have H1(Emin,OEmin)⊗OK
K = H1(E,OE) ∼= K and H1(Emin,OEmin)⊗OK

k =

H1(Emin
k ,OEmin

k
) ∼= k, see ([20], Lemma 9.4.28).
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Let L := R1π∗OEmin be the first higher direct image of OEmin . By definition we have

H0(S,L) = H1(Emin,OEmin), see ([20], Proposition 5.2.28). Now we have L is locally

free of rank 1 and hence H0(S,L) is a flat OK-module, see ([20], Lemma 5.2.31), which

implies that it is torsion-free over OK . It follows that H1(Emin,OEmin) is free of rank 1.

(ii) Let i : Dn → Emin be the canonical closed immersion. For any m ≥ 1, we

have a canonical isomorphism OEmin(mDn)⊗OEmin
i∗ODn → i∗i∗OEmin(mDn), see ([20],

Exercise 5.1.1). But ODn fits in

0 → OEmin(−Dn) → OEmin → ODn → 0.

Therefore, i∗i∗OEmin(mDn) ∼= OEmin(mDn) ⊗OEmin
OEmin/OEmin(−Dn), and thus we

have the following short exact sequence

0 → OEmin((m− 1)Dn) → OEmin(mDn) → i∗i∗OEmin(mDn) → 0. (4.2)

Consider the morphism Emin → Pd
S determined by Dn. We note that

(πi)∗(i∗OEmin(mDn)) ∼= (πi)∗(i∗OPd
S
(m)|Emin) ∼= (πi)∗(ODn(m)) ∼= ((πi)∗ODn)(m),

see ([20], Lemma 7.1.29 (b) and Exercise 5.1.16 (c)) for the second and last isomorphisms

respectively. Thus we have the following exact sequence by applying π∗ to sequence (4.2)

0 → π∗OEmin((m− 1)Dn) → π∗OEmin(mDn) → L′⊗m → 0, (4.3)

where L′ = ((πi)∗ODn)(1). Taking global sections in (4.3) we have

0 → H0(Emin,OEmin((m− 1)Dn)) → H0(Emin,OEmin(mDn)) → H0(S,L′⊗m)

→ H1(Emin,OEmin((m− 1)Dn)) → . . . (4.4)

For m ≥ 1, we have H1(Emin,OEmin(mDn)) ⊗ K = H1(E,OE(mDn|K)) = 0, see for

example ([24], Chapter III). Therefore, we have H1(Emin,OEmin(mDn)) = 0 when m ≥
1. Therefore, taking m ≥ 2 in sequence (4.4) we have

0 → H0(Emin,OEmin((m− 1)Dn)) → H0(Emin,OEmin(mDn)) → H0(S,L′⊗m) → 0.

Taking m = 1 in sequence (4.4) we will have

0 → OK → H0(Emin,OEmin(Dn)) → H0(S,L′) → H1(Emin,OEmin) → 0. (4.5)

Now L′ is an invertible sheaf over OS, therefore H0(S,L′) is a finitely generated torsion-

free OK-module over a local ring, and hence it is free. 2

The following theorem is classical for n = 1, 2, see for example ([20], §9.4) and [18].

Recall that when n = 2, we assume that char k 6= 2.
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Theorem 4.2.3. Let Cn and Dn, n ∈ {1, 2, 3, 4}, be as above. Then there exists an

integral genus one equation φn of degree n defining Cn. Moreover, φn is minimal.

Proof: For n = 1, Lemma 4.2.2 (ii) allows us to pick a basis {1, x, y} of the free module

H0(Emin,OEmin(3D1)) such that {1, x} is a basis of H0(Emin,OEmin(2D1)). Now proceed

as in §2.1 to write a genus one equation φ1 : f(x, y) = 0 of degree 1, where f is some

dependence relation in H0(Emin,OEmin(6D1)). The morphism

λ1 : C1 := Proj(
⊕
m≥0

H0(Emin,OEmin(mD1))) −→ P2
S

associated to the basis {1, x, y} of H0(Emin,OEmin(3D1)) sends C1 into the cubic C ′1
defined by f(x, y) = 0. We know that both C1 and C ′1 are normal and integral, hence

λ1 : C1 → C ′1 is a birational morphism, see ([20], Exercise 3.2.6). Since the special fibers

of both C1 and C ′1 are irreducible, it follows that λ1 : C1 → C ′1 is an isomorphism, see

([20], Exercise 8.3.8 (b)).

For n = 2, we pick a basis {1, x} of H0(Emin,OEmin(D2)). Let λ2 be the morphism

λ2 : C2 := Proj(
⊕
m≥0

H0(Emin,OEmin(mD2))) → P1
S = SpecOK [x] ∪ SpecOK [1/x]

associated to the basis {1, x}. Let U = λ−1
2 (SpecOK [x]), V = λ−1

2 (SpecOK [1/x]). We

have C2 = U ∪ V. Taking the integral closure of OK [x] in K(C2), we have

OC2(U) = OK [x]⊕ yOK [x], for some y ∈ OC2(U),

moreover there exist g(x), f(x) ∈ OK [x] such that deg g ≤ 2, deg f ≤ 4 and y2+g(x)y =

f(x), see ([18], Lemme 1). As 2 is invertible in OK , we can complete the square and

assume that g = 0. The surjective homomorphism

OK [x, y]/(y2 − f(x)) → OC2(U), y 7→ y,

is an isomorphism because the left-hand term is integral of dimension 2, see ([20], Remark

8.3.25). Following the same argument we have OK [w, z]/(z2 − h(w)) ∼= OC2(V ), where

w = 1/x, z = y/x2, and h(w) = w4f(1/w). Therefore, C2 is the union of the two affine

open schemes

U = SpecOK [x, y]/(y2 − f(x)), V = SpecOK [w, z]/(z2 − w4f(1/w)).

For n = 3, 4, we pick a basis {x1, . . . , xn} of H0(Emin,OEmin(Dn)). Let λn : Emin →
Pn−1

S be the morphism associated to the basis {x1, . . . , xn}. Let Zn be the closed subset
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λn(Emin) ⊂ Pn−1
S endowed with the reduced scheme structure. We are going to show

that Zn is defined by an integral genus one equation of degree n. Then we show that

Cn
∼= Zn, where Cn := Proj(

⊕
m≥0 H0(Emin,OEmin(mDn))).

When n = 3, the free OK-module H0(Emin,OEmin(3D3)) is of rank-9, see Lemma

4.2.1, but it contains the 10 elements x3
1, x

3
2, x

2
3, x

2
1x2, x

2
1x3, x

2
2x1, x

2
2x3, x

2
3x1, x

2
3x2, x1x2x3.

It follows that there are ai ∈ OK such that

F := a1x
3
1+a2x

3
2+a3x

3
3+a4x

2
1x2+a5x

2
1x3+a6x

2
2x1+a7x

2
2x3+a8x

2
3x1+a9x

2
3x2+a10x1x2x3 = 0.

Rescaling x, y and z, we can assume that there is at least one ai ∈ O∗
K . Hence Z3 is

contained in ProjOK [x1, x2, x3]/(F ).

When n = 4, we consider the 10 elements x2
1, x1x2, x1x3, x1x4, x

2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4

in the rank-8 free OK-module H0(Emin,OEmin(2D4)). They satisfy two linearly inde-

pendent quadrics Q and R. Therefore, Z4 is contained in the intersection of Q and

R.

We want to show that Zn = ProjOK [x1, . . . , xn]/In, where I3 = (F ) and I4 =

(Q,R). Since Zn ⊆ ProjOK [x1, . . . , xn]/In, we have ProjOK [x1, . . . , xn]/In = Zn ∪
Z ′

n, for some closed subscheme Z ′
n ⊂ Pn−1

S , Z ′
n 6= ProjOK [x1, . . . , xn]/In. Recall that

C is the generic fiber of Emin. Since Dn|C is a divisor of degree n, n ∈ {3, 4}, on

C, it follows that Proj(OK [x1, . . . , xn]/In ⊗ K) is irreducible, see ([24], Chapter III).

Hence, ProjOK [x1, . . . , xn]/In is irreducible itself, see for example ([2], Lemma 2.2). It

follows from the definition of irreducibility that Z ′
n = ∅, and the closed subscheme Zn

is ProjOK [x1, . . . , xn]/In.

According to the description of the contraction morphism included in the proof of

([20], Proposition 8.3.30), the morphism λn : Emin → Zn ⊆ Pn−1
S , n = 3, 4, factors into

un : Emin → Cn followed by vn : Cn → Zn, where vn is the normalisation morphism. It is

understood that vn is a finite morphism, hence for an irreducible component Γ of Emin
k ,

λn(Γ) is a point if and only if un(Γ) is a point. In other words, the special fibers of Cn

and Zn have the same number of irreducible components. We have shown that Zn is

integral of dimension 2. Hence both Cn and Zn have dimension 2, their generic fibers are

isomorphic, and their special fibers have the same number of irreducible components.

By virtue of ([20], Remark 8.3.25), vn : Cn → Zn is an isomorphism.

Since Cn is obtained by contracting components in Emin, i.e., the minimal desingu-

larisation of Cn is isomorphic to Emin, we have that Cn is minimal, see Proposition 4.1.9.

2
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4.3 Geometric criteria

In this section we will prove Theorem 4.0.1 and state some direct corollaries.

Lemma 4.3.1. Let φ be an integral genus one equation of degree n = 1, 2, 3, 4. As-

sume that φ defines a smooth genus one curve C over K, and that C(K) 6= ∅. Assume

moreover that φ defines a normal degree-n-model C for C. Let E/K be the Jacobian

elliptic curve of C, and Emin be the minimal proper regular model of E. Then we have

H0(Emin, ωEmin/S) = H0(C, ωC/S) as sub-OK-modules of H0(E, ωE/K) if and only if φ is

minimal.

Proof: Assume that H0(Emin, ωEmin/S) = H0(C, ωC/S). Let C ′ be another degree-n-

model for C. Let C̃ ′ → C ′ be the minimal desingularisation of C ′. Then we have

H0(C, ωC/S) = H0(Emin, ωEmin/S) = H0(C̃ ′, ωC̃′/S) ⊆ H0(C ′, ωC′/S),

see Lemma 4.1.2. Therefore, φ is minimal by virtue of Lemma 4.1.7.

Now assume that φ is minimal. Let H be the K-rational hyperplane section divisor

defined by φ, see §2.1. If n = 1, then H = 3(P ) for some P ∈ C(K). Set D1 = 3{P},
where {P} is the Zariski closure of {P} in Emin. If n ≥ 2, then pick x ∈ Emin

k such that

x lies on a multiplicity-1 component and on no other component, and x is defined over

k. Hensel’s Lemma allows us to lift x to a point P ∈ C(K). Set Q ∈ C(K) to be such

that (Q) ∼ H − (n− 1).(P ). Set Dn = (n− 1).{P}+ {Q}.
Consider the S-model C ′ for C given by

C ′ = Proj(
∞⊕

m=0

H0(Emin,OEmin(mDn))).

Let φ′ be the minimal genus one equation of degree n defining C ′, see Theorem 4.2.3.

Since Hn and Dn|C have the same degree and sum, they are linearly equivalent and the

genus one equations φ and φ′ are K-equivalent, see for example [10].

Moreover, since C ′ is obtained from Emin by contraction, Lemma 4.1.8 shows that

ωEmin/S = ω′OEmin where ω′ ∈ H0(E, ωE/K) is such that ωC′/S = ω′OC′ .
Since the genus one equations φ and φ′ are both minimal, in particular they have

the same level, Lemma 4.1.7 implies the second equality of the following

H0(Emin, ωEmin/S) = H0(C ′, ωC′/S) = H0(C, ωC/S).

2
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Proof of Theorem 4.0.1: We proved one of the implications of the theorem in

Proposition 4.1.9.

Assume that φ is minimal and that ωC/S = ωOC for some ω ∈ H0(E, ωE/K).

We assume on the contrary that C̃ 6∼= Emin, and therefore Ck contains an exceptional

divisor Γ.

Let B be the set of points x ∈ C̃ where ωC̃/S is not generated by its global sections.

Since Γ is an exceptional divisor, we have deg ωC̃/S|Γ < 0, see ([20], Proposition 9.3.10),

it follows that H0(Γ, ωC̃/S|Γ) = 0, therefore Γ ⊆ B. But we have

ωC̃/S|Γ = ωC/S|Γ = ωOC|Γ,

and the global sections of ωC̃/S are

H0(C̃, ωC̃/S) = H0(Emin, ωEmin/S) = H0(C, ωC/S) = ωOK ,

where the second equality is justified by C being minimal, see Lemma 4.3.1. Therefore,

ωC̃/S is generated by its global sections at every x ∈ Γ, whence a contradiction. Thus

Ck contains no exceptional divisors and C̃ ∼= Emin. 2

Now we state more criteria for normal degree-n-models to be minimal.

Corollary 4.3.2. Let φ,C, C, E, C̃ and Emin be as in Theorem 4.0.1. Assume that

ωC/S = ωOC for some ω ∈ H0(E, ωE/K). Then the following statements are equivalent.

(i) φ is minimal.

(ii) ωC̃/S = ωOC̃.

(iii) H0(C̃, ωC̃/S) = H0(C, ωC/S) = ωOK .

Proof: (i) ⇒ (ii): Since φ is minimal, we have C̃ ∼= Emin. But ωEmin/S = ωOEmin , see

Lemma 4.1.8. Whence (ii).

(ii) ⇒ (iii) follows directly from Lemma 4.1.6.

(iii) ⇒ (i): Since H0(C̃, ωC̃/S) = H0(Emin, ωEmin/S), see Lemma 4.1.2, then φ is

minimal, see Lemma 4.3.1. 2

In §3.2 we stated all the combinatorial possibilities for the special fiber of a degree-

n-model C for a smooth genus one curve C. Theorem 4.0.1 allows us to find out which

of these possibilities occur for minimal degree-n-models for C according to the Kodaira

symbol of the Jacobian elliptic curve E of C. That can be done by looking at the pull-

back of the irreducible components of Ck \ Sing(C) under the contraction morphism
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u : Emin → C, where Sing(C) is the singular locus of C. The pull-back of an irreducible

component Γ of Ck \ Sing(C) in Emin
k is called the strict transform of Γ. It is understood

that the strict transform of an irreducible component Γ has the same multiplicity as Γ.

For example, if Ck consists of a conic and a double line, then the strict transform of Ck

in Emin
k consists of a multiplicity-1 irreducible component corresponding to the conic,

and a multiplicity-2 irreducible component corresponding to the double line.

We set

T1 = {nodal cubic, conic + line, three lines},
T2 = {cuspidal cubic, conic + tangent, three concurrent lines},
T3 = {line + double line, triple line},

T4 =





nodal quartic, secant conics, conic + two lines not crossing on it, four lines,

cubic + secant line



 ,

T5 =





cuspidal quartic, tangent conics, conic + two lines crossing on it,

four concurrent lines, cubic + tangent line



 ,

T6 = {two lines + double line, conic + double line, double conic, two double lines},
T7 = {triple line + line, quadruple line}.

In the following corollary we assume that k is algebraically closed.

Corollary 4.3.3. Let φ be a minimal genus one equation of degree n = 1, 2, 3, 4. Assume

that φ defines a smooth genus one curve C, C(K) 6= ∅. Let E be the Jacobian elliptic

curve of C with Kodaira symbol T. Assume that C is a minimal degree-n-model for C

defined by φ. Then Ck lies in one of the sets determined by the following tables.

T n=1 n=2

I0 {smooth cubic} {smooth quartic}
Im,m ≥ 1 {nodal cubic} {nodal quartic, intersecting lines}

II {cuspidal cubic} {cuspidal quartic}
III, IV {cuspidal cubic} {cuspidal quartic, tangent conics}

I∗m,m ≥ 0, IV∗, III∗ {cuspidal cubic} {cuspidal quartic, tangent conics, double line }
II∗ {cuspidal cubic} {cuspidal quartic, double line}
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T n=3 n=4

I0 {smooth cubic} {smooth quartic}
Im,m ≥ 1 T1 T4

II {cuspidal cubic} {cuspidal quartic}
III {cuspidal cubic, conic+tangent} {cubic+tangent}∪

{cuspidal quartic, tangent conics}
IV T2 T5 \ {four concurrent lines}

I∗m,m ≥ 0 T2∪{line+double line} T5 ∪ T6

IV∗ T2 ∪ T3 T6∪ {triple line+line}∪
T5\ {four concurrent lines}

III∗ T3∪ T6 ∪ T7∪{cuspidal quartic}∪
{cuspidal cubic, conic+tangent} {tangent conics, cubic+tangent}

II∗ T3∪{cuspidal cubic} {cuspidal quartic}∪T7∪
T6\{two lines+double line}

Proof: The case n = 1 is already known, see ([27], Chapter III, Proposition 1.4).

In order to classify which of these forms of the special fibers occur when E has

multiplicative reduction and which occur when E has additive reduction, we need to

compute the valuations of the invariants c4, c6, and ∆ corresponding to φ. For explicit

formulae for c4, c6, and ∆ see ([11], Lemma 2.9).

For n = 2, if Ck is either a nodal quartic or two intersecting lines, then ν(c4) = 0,

and ν(∆) ≥ 1, hence E has multiplicative reduction. Similarly, for n = 3, 4, if Ck lies

in T1, T4 respectively, then E has multiplicative reduction. The remaining forms of Ck

force ν(c4) ≥ 1, ν(∆) ≥ 1, therefore E has additive reduction.

Now since φ is minimal, it follows that Emin ∼= C̃, where C̃ → C is the minimal

desingularisation of C, see Theorem 4.0.1. The strict transforms of the irreducible com-

ponents of Ck are irreducible components in Emin
k with the same multiplicities. We

consider the multiplicities of the irreducible components of Ck, and the number lm of

irreducible components with multiplicity-m in Ck. If the graph associated to Emin
k has

components with the same multiplicities as those of Ck, and Emin
k contains at least lm

components with multiplicity-m, then the strict transform of Ck can lie in Emin
k , hence

we obtain the classification given above. For a reference for the graphs associated to

Emin
k see ([28], Chapter IV, Table 9.4.1). 2
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Chapter 5

Isomorphisms of degree-n-models

For this chapter we assume that K is a Henselian discrete valuation field with ring of

integers OK . The residue field k is algebraically closed, t is a uniformiser, and S =

SpecOK .

In the first section of this chapter we see the conditions under which two minimal

degree-n-models are isomorphic. In fact, we show that two minimal degree-n-models

are isomorphic if and only if they have the same special fiber, see Theorem 5.1.4 below.

In the second section we assume that Γ is an irreducible component of multiplicity-

1 in Emin
k , then we count the number of minimal degree-n-models with special fibers

containing a multiplicity-1 irreducible component whose strict transform in Emin
k is Γ.

The results obtained in the second section will not be used elsewhere in this thesis.

5.1 Isomorphic degree-n-models

Let (C, α) be a minimal degree-n-model for a smooth genus one curve C over K. Assume

that C(K) 6= ∅. Let E be the Jacobian elliptic curve of C, and Emin be the minimal

proper regular model of E. Let P ∈ C(K). Fix an isomorphism β : C → E such that

β(P ) = 0E. The isomorphism β identifies the group structure on the elliptic curve (C,P )

with the group structure on (E, 0E), hence β extends to an isomorphism between the

minimal proper regular model of C and Emin.

Let C be a degree-n-model for a smooth genus one curve over K. Let Γ be an

irreducible component of Ck. We will write degk(Γ) for the degree of Γ. By the type

of Γ we mean the ordered pair (multk(Γ), degk(Γ)), where multk(Γ) is the multiplicity

of Γ defined in §3.2.

45



Remark 5.1.1. Let (C1, α1) and (C2, α2) be two isomorphic minimal degree-n-models

for a smooth genus one curve C over K. Assume that C(K) 6= ∅. Let E be the Jacobian

of C with minimal proper regular model Emin. Let α := α−1
2 α1 : (C1)K → (C2)K . By

the definition of isomorphic degree-n-models, the map α extends to an S-isomorphism

α̃ : C1 → C2 which is defined by an element in Gn(OK). Therefore, if Γ is an irreducible

component of (C2)k, then α̃∗Γ is an irreducible component of (C1)k with the same type as

Γ. Moreover, after identifying the minimal proper regular model of C with Emin, (C1)k

and (C2)k have the same strict transform in Emin
k .

In this section we show that the converse of Remark 5.1.1 holds. More precisely, if

the strict transforms of the special fibers of two minimal degree-n-models coincide in

the sense given in Theorem 5.1.4, then these degree-n-models are isomorphic.

Let x be a generator of K(P1
K) over K. We define the S-scheme P1

x to be

P1
x := SpecOK [x] ∪ SpecOK [1/x].

We have P1
x
∼= P1

S as S-schemes and P1
x is an S-model for P1

K . Furthermore, every

smooth S-model for P1
K is obtained that way, see ([18], §4). Two S-models P1

x,P1
u for

P1
K are isomorphic if and only if there exists a matrix


 a c

b d


 ∈ GL2(OK)

such that x = (au + b)/(cu + d).

Now we use models of projective lines to describe isomorphic degree-2-models for

smooth genus one curves over K.

Theorem 5.1.2. Let (C1, α1) and (C2, α2) be two minimal degree-n-models, n = 1, 2, for

a smooth genus one curve C over K. Assume that C(K) 6= ∅. Set α : α−1
2 α1. Then the

following statements are equivalent.

(i) The map α extends to an isomorphism α̃ : C1 → C2 of S-schemes.

(ii) The curves (C1)k and (C2)k have the same strict transform in Emin
k .

(iii) (C1, α1) and (C2, α2) are isomorphic as degree-n-models for C.

Proof: This is clear for the case n = 1 as there is a unique minimal degree-1-model

for C. So we will assume that n = 2.

(i) ⇔ (ii) : It is known that a birational map induces an S-isomorphism if and only if

it establishes a bijection between the generic points of the special fibers, see for example
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([20], Remark 8.3.25). Hence (i) is equivalent to the statement that any irreducible

component of (C2)k is carried to an irreducible component of (C1)k under α̃∗. The latter

occurs if and only if the strict transforms of (C1)k and (C2)k coincide in Emin
k because α̃

extends to the identity on Emin.

(i) ⇔ (iii) : The degree-2-model Ci, i = 1, 2, is obtained from Emin by a contraction

morphism, see Theorem 4.0.1. Let Di be a Cartier divisor on Emin such that

Ci := Proj(
⊕
m≥0

H0(Emin,OEmin(mDi))).

Let {1, xi} be a basis for the free module H0(Emin,OEmin(Di)). Now consider the mor-

phism Ci
xi−→ P1

xi
, we have the commutative diagram

C1
x1 //

α̃

²²

P1
x1

α̃
²²

C2
x2 // P1

x2

Therefore, C1 and C2 are S-isomorphic if and only if P1
x1

and P1
x2

are S-isomorphic.

The latter occurs if and only if α̃ : P1
x1
→ P1

x2
is defined by an element in GL2(OK)

which means that C1 and C2 are isomorphic degree-2-models for C. 2

The following example, shown to me by T. Fisher, illustrates that Theorem 5.1.2

does not hold for n = 4.

Example 5.1.3. Consider the following forms

F1 = tx2
1 − x2x4 + x2

3, F2 = tx2
4 − x1x3 + x2

2,

F ′
1 = x2

1 − x2x4 + tx2
3, F ′

2 = x2
4 − x1x3 + tx2

2.

The genus one equations φ : F1 = F2 = 0 and φ′ : F ′
1 = F ′

2 = 0 are minimal of degree

4. The genus one equation φ defines a smooth genus one curve C. Let (C, id4) and

(C ′, α′) be two minimal degree-4-models for C, where C is given by φ, C ′ is given by

φ′, and α′ is multiplying x2 and x3 by t and dividing through by t. Now Ck consists

of the line Γ1 : {x2 = x3 = 0} and the twisted cubic Γ2 parameterised by [u : v] 7→
[u3 : u2v : uv2 : v3]. Similarly, C ′k consists of Γ′1 : {x1 = x4 = 0} and the twisted cubic

Γ′2 : [u : v] 7→ [u2v : u3 : v3 : uv2]. The morphism α′ carries the generic point of Γ1 to the

generic point of Γ′2 and the generic point of Γ2 to the generic point of Γ′1. But (C, id4)

and (C ′, α′) are not isomorphic degree-4-models.
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The above example shows that we need to modify Theorem 5.1.2 when n = 3, 4.

Let (Ci, αi), i = 1, 2, be a minimal degree-n-model for a smooth genus one curve

C → Pn−1
K , n = 3, 4. Let Di be a divisor on Emin which defines Ci, more precisely Ci

is obtained from Emin by contraction using Di. What we are going to do next is to

compare the divisors D1|Emin
k

and D2|Emin
k

.

Recall that the degree map degk : Pic(P1
k) → Z is an isomorphism. Moreover,

Pic0(P1
k) = 1, see for example ([20], Proposition 9.3.16). Therefore, two effective divisors

D1, D2 on P1
k are linearly equivalent if and only if they have the same degree.

Let X be a projective curve over k. Let X1, . . . , Xm be its irreducible components

with respective multiplicities d1, . . . , dm. We give each Xi the reduced subscheme struc-

ture. If L is an invertible sheaf on X, then we define the partial degree of L on Xi to be

deg(L|Xi
). Then we have

degL =
m∑

i=1

di deg(L|Xi
),

see for example ([20], Proposition 7.5.7) or ([5], §9.1, Proposition 5).

We consider the families of invertible sheaves of degree 0 on X, Pic0(X). Since k

is algebraically closed, Corollary 13 of ([5], §9.3) shows that Pic0(X) consists of all

elements of Pic(X) whose partial degree on each irreducible component Xi is zero.

Now we are in a place to generalise Theorem 5.1.2. Recall that the type of an

irreducible component Γ is the pair (multk(Γ), degk(Γ)).

Theorem 5.1.4. Let (C1, α1) and (C2, α2) be two minimal degree-n-models, n = 1, 2, 3, 4,

for a smooth genus one curve C over K. Assume that C(K) 6= ∅. Set α = α−1
2 α1 and

denote its extension C1 99K C2 by α̃. Then the following statements are equivalent.

(i) (C1, α1) and (C2, α2) are isomorphic as degree-n-models for C.

(ii) For every irreducible component Γ of (C2)k, α̃∗Γ is an irreducible component of

(C1)k with the same type as Γ.

Proof: The cases n = 1, 2 have been done in Theorem 5.1.2.

Let n = 3, 4. That (i) implies (ii) follows from Remark 5.1.1.

(ii) ⇒ (i): We want to show that α̃ is defined by an element in Gn(OK).

Let Emin be the minimal proper regular model of the Jacobian E of C. Statement

(ii) implies that both (C1)k and (C2)k have the same strict transform in Emin
k .

Let Di be a defining divisor of Ci as a contraction in Emin, i.e.,

Ci = Proj(
⊕
m≥0

H0(Emin,OEmin(mDi))).
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Set Li = OEmin(Di), Di,k = Di|Emin
k

and Li,k = Li|Emin
k

.

Let Γ be an irreducible component of (C2)k. Consider the strict transform Γ̃ of the

irreducible components Γ and α̃∗Γ in Emin
k . Since Γ and α̃∗Γ have the same type, it

follows that degk L1,k|Γ̃ = degk L2,k|Γ̃. For any irreducible component Λ which is not a

strict transform of a component of (Ci)k, we have degk Li,k|Λ = 0. Since each irreducible

component of Emin
k is isomorphic to P1

k and D1,k, D2,k have the same degree on each

irreducible component of Emin
k , we have D1,k ∼ D2,k and L1,k

∼= L2,k.

Now we know that C(K) 6= ∅, L1|(C1)K
∼= L2|(C2)K

, and we have established the

isomorphism L1,k
∼= L2,k, these imply that L1

∼= L2, see ([20], Exercise 9.1.13 (b)).

Therefore, H0(Emin,L1) and H0(Emin,L2) are isomorphic as OK-modules, and α̃ is a

change of basis of a free OK-module of rank n, hence α̃ is defined by an element in

Gn(OK). 2

In the following corollary we assume that char k 6= 2 when n = 2.

Corollary 5.1.5. Let C a smooth genus one curve. Assume that C(K) 6= ∅. Assume

moreover that the Jacobian E of C has either reduction types I0 or I1. Then there is a

unique minimal degree-n-model for C.

Proof: There is always a unique minimal degree-1-model for C. So assume n ≥ 2.

Let Emin be the minimal proper regular model of E. According to Theorem 4.0.1, any

minimal degree-n-model for C is obtained from Emin via contraction. Therefore, the

special fiber of a minimal degree-n-model for C consists of one irreducible component of

multiplicity-1 because Emin
k consists of a unique irreducible component of multiplicity-1.

By virtue of Theorem 5.1.4, if there are two minimal degree-n-models for C, then they

are isomorphic as they have the same strict transform in Emin
k . 2

5.2 Degree-n- and degree-(n− 1)-models, n ≥ 3

In this section we will count minimal degree-n-models with a specific property.

Let C be an S-model for a curve C/K. Let x be a closed point of Ck. Set

C+(x) := {P ∈ C : {P} ∩ Ck = {x}},

where {P} is the Zariski closure of {P} in C. C+(x) depends on the choice of the

model C. By K(P ) we mean the field of definition of P . We state the following lemma

which plays an essential rule in the way we construct divisors on minimal proper regular

models.
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Proposition 5.2.1. Let C/K be a curve of genus g ≥ 1 with minimal proper regular

model Cmin. Fix a closed point x ∈ Cmin
k such that x lies on one and only one irreducible

component Γ of Cmin
k , of multiplicity r ≥ 1. Then there exists a point P ∈ C+(x) such

that [K(P ) : K] = r.

Proof: See ([20], Exercise 9.2.11 (c)) or ([19], Lemma 5.1 (b)). 2

Now we investigate finite field extensions of K.

Proposition 5.2.2. If [L : K] = m, where m ∈ {2, 3, 4}, then L = K( m
√

t), and L/K

is a Galois tamely ramified extension.

Proof: If a ∈ L, we will denote its image in k by ã.

Since k = k, it follows that L is a totally ramified extension of K. The fact that

2, 3 - char(k) implies that this extension is tame. Let tL be a uniformiser for the ring of

integers OL of L. Then t = utmL for some u ∈ O∗
L. Hensel’s Lemma implies that there is

a v ∈ O∗
L such that vm = u.

Therefore, L = K[x]/(xm − t), which is clearly Galois for m = 2. For m = 3, 4, k

has a full set µm of m-th roots of unity, and we lift them to OK using Hensel’s Lemma.

Thus L is Galois. 2

Let C be a smooth genus one curve given by a minimal genus one equation of degree

n = 2, 3, 4 over K. Assume moreover that C(K) 6= ∅. Let E be the Jacobian elliptic

curve of C.

Let P ∈ C(K). Again we fix an isomorphism β : C → E such that β(P ) = 0E. So

we can dispense with C and write E instead. If D is an effective K-rational divisor of

degree n on E, then Riemann-Roch theorem implies that there exists a point Q ∈ E(K)

such that D ∼ (n − 1).0E + Q. Therefore, the equation defining C is an equation for

the double cover of the projective line E → P1
K given by the divisor class [0E +Q] when

n = 2, or the image of E when it is embedded in Pn−1
K by the divisor class [(n−1).0E +Q]

when n = 3, 4.

Consider the smooth genus one curve E
[(n−1).0E+Q]−−−−−−−−→ Pn−1

K , n ≥ 2. Let Γ be an

irreducible component of Emin
k . We set

SΓ :=





minimal degree-n-models (C, α) for E
[(n−1).0E+Q]−−−−−−−−→ Pn−1

K such that Γ is

the strict transform of an irreducible component of Ck



 .

The following lemma shows that SΓ is not empty if the multiplicity of Γ is less than n.

Lemma 5.2.3. Let n ≥ 2. Let Γ be a multiplicity-m irreducible component of Emin
k . If

1 ≤ m < n, then SΓ 6= ∅.
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Proof: Let x ∈ Emin
k be a closed point on Γ. Let P ∈ E+(x) be a closed point, i.e., P

is identified with its Galois orbit {P1, . . . , Pm}, where K(P ) = K(t1/m). Now set

Q2 = Q− (n− 1).P, D = (n− 1).{P}+ {Q2} if m = 1,

Q2 = Q−∑n−1
i=1 Pi, D = {P}+ {Q2} if m = n− 1, n ≥ 3,

Q2 = Q− (P1 + P2), D = {P}+ {Q2}+ {0E} if m = 2, n = 4.

Now consider the following minimal degree-n-model for E
[(n−1).0E+Q]−−−−−−−−→ Pn−1

K

C ′ = Proj(
⊕
m≥0

H0(Emin,OEmin(mD))),

see Theorem 4.0.1 and Theorem 4.2.3. We have x ∈ D∩Γ, and hence Γ is an irreducible

component of C ′k. Since D|E ∼ (n−1).0E +Q, it follows that there exists an isomorphism

α : C ′K ∼= E defined by an element in Gn(K). Thus (C ′, α) ∈ SΓ. 2

In what follows we compute the cardinality of SΓ when the multiplicity of Γ is 1.

Theorem 5.2.4. Consider the smooth genus one curve E
[(n−1).0E+Q]−−−−−−−−→ Pn−1

K , n ≥ 3,

with a rational point on it. Let Γ be a multiplicity-1 irreducible component of Emin
k .

Let x ∈ Γ and P ∈ E+(x). Then there is a bijection between the set SΓ and the set of

minimal degree-(n− 1)-models for E
[(n−2).0E+(Q−P )]−−−−−−−−−−−→ Pn−2

K .

To prove Theorem 5.2.4 we have to establish a bijection between the two sets in

the statement. Let (C, α) ∈ SΓ. Let D be a defining divisor of C as a contraction in

Emin. The restriction D|E satisfies D|E ∼ (n − 1).0E + Q. Let P1 ∈ Supp D|E be such

that {P1} ∩Emin
k ∈ Γ. After applying a transformation in Gn(OK), we can assume that

P1 = P.

Now the bijection map is

λΓ : SΓ → {degree-(n− 1)-models for E
[(n−2).0E+(Q−P )]−−−−−−−−−−−→ Pn−2

K }

(C, α) 7→
(

Proj(
⊕
m≥0

H0(Emin,OEmin(mD′))), β

)
,

where D′ = D − {P}, and β is obtained from the linear equivalence D|E − (P ) ∼
(n − 2).0E + (Q − P ). The model on the right is a minimal degree-(n − 1)-model for

E
[(n−2).0E+(Q−P )]−−−−−−−−−−−→ Pn−2

K , see Theorem 4.0.1 and Theorem 4.2.3.

Proof of Theorem 5.2.4: The map λΓ is well defined: Assume that (Ci, αi), i =

1, 2, are two isomorphic minimal degree-n-models in SΓ. Remark 5.1.1 shows that the
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special fibers of both models have the same irreducible components with the same types,

therefore the irreducible components of the special fibers of λΓ((Ci, αi)), i = 1, 2, coincide

and have the same types. Thus λΓ((C1, α1)) and λΓ((C2, α2)) are isomorphic as degree-

(n− 1)-models for E
[(n−2).0E+(Q−P )]−−−−−−−−−−−→ Pn−2

K , see Theorem 5.1.4.

To prove that the map λΓ is injective: Assume that the images of (Ci, αi) ∈ SΓ, i =

1, 2, under λΓ are isomorphic degree-(n−1)-models, hence the special fibers of λΓ((Ci, αi))

consist of the same irreducible components with the same types. It follows that the

special fibers of both C1 and C2 have the same irreducible components with the same

types, because they both have the same irreducible components as the special fiber of

λΓ((Ci, αi)) with the degree of Γ being increased by 1. Therefore, Theorem 5.1.4 implies

that (C1, α1) and (C2, α2) are isomorphic.

Now we prove that λΓ is surjective. Let (C, α) be a degree-(n − 1)-model for

E
[(n−2).0E+(Q−P )]−−−−−−−−−−−→ Pn−2

K with D being a divisor defining C as a contraction in Emin.

Consider the model (C ′, α′) ∈ SΓ defined by

Proj(
⊕
m≥0

H0(Emin,OEmin(m(D + {P})))),

and α′ is obtained from the linear equivalence D|E +(P ) ∼ (n−1).0E +(Q). The model

C ′ is defined by a minimal genus one equation of degree n, see Theorem 4.2.3. The

surjectivity follows by noting that λΓ((C ′, α′)) = (C, α). 2
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Chapter 6

Computing in Emin

In this chapter K will be a perfect Henselian discrete valuation field with algebraic

closure K, ring of integers OK , normalised valuation ν, and a uniformiser t. We assume

that the residue field k is algebraically closed with char k 6= 2, 3.

Let E be an elliptic curve over K, with minimal proper regular model Emin. Let

E0(K) be the group of rational points of E with non-singular reduction. In this chapter

we define a map δm : Φm
K(E) → ΦK(E), where Φm

K(E) is the set of multiplicity-m

irreducible components of Emin
k , and ΦK(E) := Φ1

K(E) is the group of components

E(K)/E0(K).

Since k is algebraically closed, it follows that the reduction of E is always split.

6.1 The components group

In this section we will study the components group ΦK(E) = E(K)/E0(K). We start

by describing this group.

Proposition 6.1.1 ([28], Chapter IV, Corollary 9.2). Let E be an elliptic curve over K.

Let j(E) be the j-invariant of E. Then the group E(K)/E0(K) is finite. More precisely,

if E has multiplicative reduction, then E(K)/E0(K) is a cyclic group of order −ν(j(E));

otherwise, E(K)/E0(K) has order 1, 2, 3, or 4.

Assume E has reduction of type In, n ≥ 0. Then Emin
k is a non-singular smooth

curve of genus one when n = 0. Emin
k is a rational curve with a node when n = 1. Emin

k

consists of n multiplicity-1 irreducible components arranged in the shape of an n-gon

when n ≥ 2.

We will denote the extension of the normalised valuation ν on K to K by νK : K →
Q∪{∞}. Let p = char k. Denote by | ∗ | = 1/pνK(∗) an associated absolute value. Tate’s
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uniformisation of E, see ([28], Chapter V, §3), implies that there exists a q ∈ K∗ with

ν(q) = ν(∆) = n such that

K
∗
/qZ ∼= E(K).

For z ∈ K
∗
, we denote by z̃ the image of z in E(K). For z ∈ K

∗
, there exists an integer

i such that |t|i+1 < |z| ≤ |t|i.
Consider the reduction map r : E(K) → E(k). Any isomorphism Z/nZ ∼−→ ΦK(E)

enables us to number the irreducible components Γi’s of Emin
k , with ī ∈ Z/nZ where ī

denotes the class of the integer i in Z/nZ. There exists such a numbering such that if

|z| = |t|i, then r(z̃) belongs to the i-th component Γi, and if |t|i+1 < |z| < |t|i, then

r(z̃) is an intersection point of the irreducible components Γi and Γi+1. This intersection

point is unique when n ≥ 3. For the above discussion see ([21], p. 503).

Assume that E has additive reduction. We fix an isomorphism α : ΦK(E) ∼=
Z/nZ, n = 1, 2, 3, 4, or Z/2Z × Z/2Z when E has reduction of type I∗2m, m ≥ 0. Let Λ

be a multiplicity-1 irreducible component of Emin
k . By Hensel’s Lemma we can lift any

closed point x of Λ which lies on no other component to a rational point P ∈ E(K).

Now consider the image ī of P under α. We give the component Λ the number i, and

denote it by Γi.

The map δ1 : Φ1
K(E) → ΦK(E) will be viewed as the identification of multiplicity-1

components with their images in Z/nZ when the reduction is of type In, and with their

images under the isomorphism α defined above when the reduction is additive. In other

words, δ1(Γi) = ī.

We note that if E has one of the reduction types In, n ≥ 0, II, III, or IV, then Emin
k

consists only of multiplicity-1 components, hence Φm
K(E) = ∅ when m ≥ 2 and we do

not need to define δm for m ≥ 2.

6.2 The set Φm
K(E), m ≥ 2

In this section we assume that E has one of the reduction types I∗m,m ≥ 0, IV∗, III∗, or

II∗. Then the special fiber of the minimal proper regular model Emin contains irreducible

components of multiplicities greater than one. In other words, there exists an integer

m ≥ 2 such that Φm
K(E) 6= ∅.

We define the map δm : Φm
K(E) → ΦK(E), m ≥ 2, as follows: Let x be a k-point

of Θ ∈ Φm
K(E). Recall that k is algebraically closed and hence x is a closed point.

Assume moreover that x lies on no other component. Let P ∈ E(K) be a point which

reduces to x such that [K(P ) : K] = m, see Proposition 5.2.1. Let σ be a generator of

Gal(K(P )/K). The sum of the Galois orbit sum P := P + . . . + P σm−1
of P is a point
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in E(K). The image δm(Θ) is the image of sum P in ΦK(E) = E(K)/E0(K). It will be

clear from the description of the map δm that δm(Θ) does not depend on x nor on P.

Since K(P )/K is a totally tamely ramified extension, see Proposition 5.2.2, the Ga-

lois group Gal(K(P )/K) is the inertia group of K(P )/K. In other words, Gal(K(P )/K)

fixes every irreducible component of Emin
k .

In what follows we are going to follow two strategies to determine the image of

each Θ ∈ Φm
K(E) under δm. When the reduction type is I∗n, we use Tate’s algorithm

to write down explicit equations for the components in Φ2
K(E). For reduction types

IV∗, III∗ and II∗, the defining equations of the components in Φm
K(E), m ≥ 2, are

complicated. Therefore, we use the projection formula to exploit the symmetry of the

graphs associated to Emin
k .

6.2.1 Reduction type I∗n, n ≥ 0

Assume that E/K has reduction of type I∗n, n ≥ 0. The special fiber Emin
k contains

a sequence of multiplicity-2 components and no components of higher multiplicities.

Therefore, Φm
K(E) = ∅ when m ≥ 3. The strategy we will follow to compute δ2 in this

case is as follows: We desingularise a minimal Weierstrass model for E using a sequence

of blow-ups, then we determine conditions for points in E defined over K(
√

t) to lie on

one of the produced multiplicity-2 irreducible components, and use that to compute the

sums of the Galois orbits of these points.

We will use the data given by the proof of Tate’s algorithm to write the defining

equations of Θ ∈ Φ2
K(E), see ([28], Chapter IV, §9). We start with a homogenised

minimal genus one equation of degree 1, i.e., a minimal Weierstrass equation of the

form

E : y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3, ai ∈ OK ,

for E/K. We will write ai,r for t−rai, and xr, yr for t−rx, t−ry respectively.

The proof of Tate’s algorithm shows that if E has additive reduction of one of the

types I∗n, n ≥ 0, IV∗, III∗ or II∗, then we can assume t | a1, a2, t
2 | a3, a4, and t3 | a6.

Now blowing-up the singularity t = x = y = 0, by making the substitutions x = tx1 and

y = ty1 we will have

V : y2
1z + ta1,1x1y1z + ta3,2y1z

2 = tx3
1 + ta2,1x

2
1z + ta4,2x1z

2 + ta6,3z
3,

and its special fiber y2
1z = 0 consists of the double line y2

1 = 0 and the multiplicity-1 line

z = 0. We next blow-up the line t = y1 = 0. Putting z = 1 and recalling the definitions

of xi and yi above, we obtain

V0 : ty2
2 + ta1,1x1y2 + ta3,2y2 = x3

1 + a2,1x
2
1 + a4,2x1 + a6,3,
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and the special fiber of the total blow-up consists of

Ṽ : y2
1z = 0, Ṽ0 : x3

1 + ã2,1x
2
1 + ã4,2x1 + ã6,3 = 0.

For type I∗0, the special fiber Ṽ0 consists of three distinct lines. Hence Emin
k consists of

the double line y2
1 = 0 together with four distinct lines of multiplicity 1 intersecting it.

Now we assume that h(x) = x3 + ã2,1x
2 + ã4,2x + ã6,3 has one double root. We may

assume that this root is x = 0, which implies that t2 - a2, t
3 | a4, and t4 | a6. Now we

have

Ṽ0 : x2
1(x1 + ã2,1) = 0,

so we blow up the double line t = x1 = 0. Therefore, we make the substitution x1 = tx2

and divide by t to get

V1 : y2
2 + ta1,1x2y2 + a3,2y2 = t2x3

2 + ta2,1x
2
2 + ta4,3x2 + a6,4.

The total special fiber consists now of the simple lines z = 0 and x1 + ã2,1 = 0, the

double lines y2
1 = 0 and x2

1 = 0, and the special fiber of V1 which is given by

Ṽ1 : y2
2 + ã3,2y2 − ã6,4 = 0.

If this quadratic equation has distinct roots in k, then Ṽ1 consists of two distinct simple

lines, and the reduction of E is of type I∗1. Otherwise, it has a double root and after a

translation on y2 we can take this double root to y2 = 0, i.e., t3 | a3 and t5 | a6, and the

special fiber Ṽ1 of V1 is the double line y2
2 = 0. We blow-up V1 along this double line via

the substitution y2 = ty3 and divide by t to get

V2 : ty2
3 + ta1,1x2y3 + ta3,3y3 = tx3

2 + a2,1x
2
2 + a4,3x2 + a6,5.

The special fiber is

Ṽ2 = ã2,1x
2
2 + ã4,3x2 + ã6,5 = 0.

If this quadratic equation has distinct roots, then E has reduction type I∗2. Otherwise,

we continue the blowing-up process which will terminate eventually.

We note that at each step we have a new scheme Vl of the form

y2
u + ta1,1xuyu + a3,uyu = tux3

u + ta2,1x
2
u + ta4,u+1xu + a6,2u if l = 2u− 3 is odd,

ty2
u+1 + ta1,1xuyu+1 + ta3,u+1yu+1 = tu−1x3

u + a2,1x
2
u + a4,u+1xu + a6,2u+1 if l = 2u− 2 is even.

The special fiber of Vl is given by

Ṽl :





y2
u + ã3,uyu − ã6,2u = 0 if l = 2u− 3 is odd,

ã2,1x
2
u + ã4,u+1xu + ã6,2u+1 = 0 if l = 2u− 2 is even.
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After each two blowing-ups the coefficients a3 and a4 are forced to be divisible by an

additional power of t. The special fiber Ṽl consists of two distinct lines precisely when

l = n = ν(∆)− 6. Thus if E has reduction of type I∗n, n ≥ 0, we can assume that E has

coefficients with valuations as in the following table.

Table 6.1:

a1 a2 a3 a4 a6

n = 0 ≥ 1 ≥ 1 ≥ 2 ≥ 2 ≥ 3

n ≥ 2 even ≥ 1 = 1 ≥ n
2

+ 2 = n
2

+ 2 ≥ n + 3

n odd ≥ 1 = 1 = n−1
2

+ 2 ≥ n−1
2

+ 2 ≥ n + 3

The inequalities in the second, third, and fourth line relate to the valuation of the

coefficient in the first line.

The special fiber Emin
k is as in the following figure. The numbers on the components

refer to the multiplicities.

2
1 1

2

−−−−−
2

11
2

The number of multiplicity-2 components in Emin
k is n + 1. Let L = K(

√
t) be

the unique quadratic tame Galois extension of K. A point lying above a k-point on Ṽl,

where l = 2u − 2 is even, and on no other component is a point in E(L) of the form

(αtu+1 + βtu+1/2, y), where y ∈ L, tu+1 | y and α, β ∈ OK with ν(α) ≥ ν(β) = 0. We

have β ∈ O∗
K , since otherwise this point would reduce to a point on Ṽl+1.

A point lying above a k-point on Ṽl, where l = 2u − 3 is odd, and on no other

component is a point in E(L) of the form (x, αtu+1 + βtu+1/2), where x ∈ L, tu | x and

α, β ∈ OK with ν(α) ≥ ν(β) = 0. We have β ∈ O∗
K , since otherwise this point would

reduce to a point on Ṽl+1.

We recall the addition formula on elliptic curves. Let P1, P2 ∈ E(K). If P1 6= ±P2,

then

x(P1+P2) = λ2+a1λ−a2−x(P1)−x(P2), and, y(P1+P2) = −(λ+a1)x(P1+P2)−µ−a3,
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where

λ =
y(P2)− y(P1)

x(P2)− x(P1)
, µ =

y(P1)x(P2)− y(P2)x(P1)

x(P2)− x(P1)
.

Lemma 6.2.1. Assume E has one of the reduction types I∗n, n ≥ 0, IV∗, III∗ or II∗.
Let L = K(

√
t) with Gal(L/K) = 〈σ〉. Let P ∈ E(L) be a point which lies above the the

multiplicity-2 component Θ0 : y2
1 = 0. Then P +P σ ∈ E0(K). In particular, δ2(Θ0) = 0̄.

Proof: We can assume that P = (x, αt2 + βt3/2), where x ∈ L, t | x and α, β ∈ OK ,

with ν(α) ≥ ν(β) = 0. If P σ = −P, then P + P σ = 0 ∈ E0(K) and we are done. Since

t | x(P ), we assume x(P ) = α′t + β′t3/2, where α′, β′ ∈ OK . Therefore, we have in the

addition formula given above that

λ :=
y(P )− y(P σ)

x(P )− x(P σ)
=

β

β′
∈ K.

If ν(β′) = 0, then ν(x(P + P σ)) = 0 because t | a1, a2, see Table 6.1. Hence P + P σ is

not a singular point, i.e., P +P σ ∈ E0(K). If ν(β′) > 0, then we have ν(x(P +P σ)) < 0,

in particular P + P σ ∈ E0(K), and we are done. 2

Now we state our main result of this subsection in the following proposition.

Proposition 6.2.2. Assume that E/K has reduction type I∗n, n ≥ 0. Let L = K(
√

t)

with Gal(L/K) = 〈σ〉.
(i) The multiplicity-1 component Γ given by x1 + ã2,1 = 0 is of order 2 in ΦK(E).

(ii) Let P ∈ E(L) be a point lying above the double line y2
1 = 0. Then P +P σ ∈ E0(K).

(iii) Let P ∈ E(L) be a point lying above Ṽl where l = 2u − 2 is even. Then P + P σ

reduces to a point on Γ.

(iv) Let P ∈ E(L) be a point lying above Ṽl where l = 2u− 3 is odd. Then P + P σ ∈
E0(K).

Proof: We note first that the identity component, i.e., points in E0(K), is given by

the linear equation z = 0.

(i) If P ∈ E(K), then x(−P ) = x(P ). If moreover P lies above Γ : x1 + ã2,1 = 0,

then −P lies above Γ as well. It follows that the inverse of Γ when considered as an

element of ΦK(E) is itself, i.e., Γ has order 2 as an element in ΦK(E).

(ii) This is Lemma 6.2.1.

(iii) We can assume that P = (αtu+1 + βtu+1/2, y), where y ∈ L, tu+1 | y and

α, β ∈ OK with ν(α) ≥ ν(β) = 0. Therefore, we have ν(λ) > 0 where λ := y(P )−y(P σ)
x(P )−x(P σ)

.
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Following the addition formula we have x(P + P σ) = λ2 + a1λ − a2 − x(P ) − x(P σ),

dividing by t and using that t | a1, a2, see Table 6.1, we get that x1(P + P σ) = −ã2,1

mod t, and we are done.

(iv) We can assume that P = (x, αtu+1+βtu+1/2), where x ∈ L, tu | x and α, β ∈ OK ,

with ν(α) ≥ ν(β) = 0. If P σ = −P, then P + P σ = 0 ∈ E0(K) and we are done. Thus

we assume x(P ) = α′tu + β′tu+1/2, where α′, β′ ∈ K with ν(α′) ≥ ν(β′) ≥ 0. Therefore,

we have in the addition formula given above that λ = β
β′ ∈ K. If ν(β′) = 0, then

ν(x(P + P σ)) = 0, hence P + P σ is not a singular point, i.e., P + P σ ∈ E0(K). If

ν(β′) > 0, then we have ν(x(P + P σ)) < 0, in particular P + P σ ∈ E0(K). 2

In Proposition 6.2.2 we note that since Γ : x1 + ã2,1 = 0 has order 2, we have

that δ1(Γ) = 2̄ ∈ ΦK(E) ∼= Z/4Z, when n is odd. When n is even, we know that

α : ΦK(E) ∼= Z/2Z × Z/2Z, therefore every non-identity irreducible component has

order 2. From now on, we will fix α such that δ1(Γ) = (1̄, 1̄). We obtain the following

direct consequence.

Corollary 6.2.3. Assume that E/K has reduction type I∗n, n ≥ 0. Let

Φ2
K(E) = {Ṽ−1 : y2

1 = 0, Ṽ0, . . . , Ṽn−1}
be as above. Then δ2 : Φ2

K(E) → ΦK(E) is determined according to the following.

δ2(Θ) =





0̄ if Θ = Ṽl, where l is odd and n is odd,

2̄ if Θ = Ṽl, where l is even and n is odd,

(0̄, 0̄) if Θ = Ṽl, where l is odd and n is even,

(1̄, 1̄) if Θ = Ṽl, where l is even and n is even.

While treating elliptic curves with reduction type III∗, see below, we will need more

information on the reduction type I∗0. If E/K is an elliptic curve given by a minimal

Weierstrass equation with reduction type I∗0, then the special fiber of the minimal proper

regular model of E consists of the single line z = 0, a double line y2
1 = 0, and the three

distinct lines of

Ṽ0 : x3
1 + ã2,1x

2
1 + ã4,2x1 + ã6,3 = 0.

Using Hensel’s Lemma we can lift the simple zeros of this cubic polynomial to α1, α2,

and α3 in OK such that

x3 + a2x
2 + a4x + a6 = (x− tα1)(x− tα2)(x− tα3).

Let Pi = (tαi, 0). We conclude that the reduction map {0, P1, P2, P3} → ΦK(E) is

surjective as each of these points lies on a different multiplicity-1 component. Note that

these points are the elements of E(K)[2].
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6.2.2 Reduction types IV∗, III∗ and II∗

Let E/K be an elliptic curve with either reduction types IV∗ or III∗. We start by

investigating the new reduction type of E over Galois tame extensions.

Lemma 6.2.4. Let E/K be an elliptic curve. Let Lm = K(tm), where tm = t1/m, m ∈
{2, 3, 4}. The following statements are true.

(i) If E/K has reduction type IV∗, then E/L3 has good reduction.

(ii) Assume that E/K has reduction type III∗. Then E/L2 has reduction type I∗0, E/L3

has reduction type III, and E/L4 has good reduction.

Proof: Let νLm denote the normalised discrete valuation on Lm.

(i) We recall from ([28], Chapter IV, §9) that if E has reduction type IV∗, then

ν(c4) ≥ 3, ν(c6) = 4, and ν(∆) = 8. Therefore, νL3(c4) ≥ 9, νL3(c6) = 12, and

νL3(∆) = 24. Since char K 6= 2, 3, a Weierstrass equation for E/L3 with good reduction

is now given by

y2 = x3 − 27t−8
3 c4x− 54t−12

3 c6.

(ii) Recall from [28] that if E has reduction type III∗, then ν(c4) = 3, ν(c6) ≥ 5, and

ν(∆) = 9. Therefore, νLm(c4) = 3m, νLm(c6) ≥ 5m, and νLm(∆) = 9m. The following

Weierstrass equation for E/Lm has reduction type I∗0 when m = 2, reduction type III

when m = 3, and good reduction when m = 4

y2 = x3 − 27t−4(m−1)
m c4x− 54t−6(m−1)

m c6.

2

Now we assume that E/K has additive reduction of type IV∗. The minimal proper

regular model Emin has special fiber as in the following figure. Again the numbers on

the components refer to the multiplicities.

3

Λ

2 Θ0

1

Γ0

2 Θ1

1

Γ1

2 Θ2

1

Γ2
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According to the proof of Tate’s algorithm, the blowing-up process will yield that the

multiplicity-1 identity component Γ0 is given by the equation z = 0, and the multiplicity-

2 component Θ0 is given by the equation y2
1 = 0. The multiplicity-3 component Λ has

equation x3
1 = 0, see ([28], Chapter IV, §9). The multiplicity-1 component Γi will

correspond as usual to ī ∈ ΦK(E).

Proposition 6.2.5. Assume that E/K has reduction type IV∗. Let Lm = K(tm), where

tm = t1/m, m ∈ {2, 3}. Let Gal(Lm/K) = 〈σm〉.

(i) Let P ∈ E(L2) lie above a multiplicity-2 component Θi, i ∈ {0, 1, 2}. The following

table relates the component Θi to the multiplicity-1 component above which P +P σ2

lies, and the image δ2(Θi).

P̃ ∈ Θ0 Θ1 Θ2

(P + P σ2)∼ ∈ Γ0 Γ2 Γ1

δ2 0̄ 2̄ 1̄

(ii) Let P ∈ E(L3) be a point lying above Λ. Then we have
∑2

i=0 P σi
3 ∈ E0(K). In

particular, δ3(Λ) = 0̄.

Proof: (i) If P ∈ E(L2) lies above Θ0 : y2
1 = 0, then P + P σ2 ∈ E0(K), see Lemma

6.2.1.

Let P ∈ E(L2) be a point lying above Θ1 and above no other component. Now

let Q ∈ E(K) be a point lying above Γ2. Consider the translation-by-Q automorphism

τQ : E → E. This K-automorphism extends to give an OK-automorphism τ ′Q : Emin →
Emin, see e.g. ([28], Chapter IV, Proposition 4.6). Moreover, τ ′∗Q (Γ1) = Γ0, and the

projection formula implies that τ ′∗Q (Γ1).τ
′∗
Q (Θ1) = Γ1.Θ1, see ([20], Theorem 9.2.12),

therefore τ ′∗Q (Θ1) = Θ0. Therefore, τQ(P ) lies above Θ0, hence the first part of the proof

shows that τQ(P )+ τQ(P )σ2 ∈ E0(K), but τQ(P )σ2 = P σ2 +Q. Whence P +P σ2 +2Q ∈
E0(K), in other words P + P σ2 ∈ Q + E0(K), i.e., P + P σ2 lies above Γ2.

If P ∈ E(L2) lies above Θ2 and above no other component, then we choose Q ∈ E(K)

to lie above Γ1 and we follow the same argument to get P + P σ2 ∈ Q + E0(K), i.e.,

P + P σ2 lies above Γ1.

(ii) Since E/L3 has good reduction, see Lemma 6.2.4, it follows that E(L3) = E0(L3).

Moreover, since k = k, and char k 6= 3, the theory of formal groups implies that

E0(L3)/3E0(L3) = 0, see ([27], Chapter VII, Exercise 7.8). This means that the

multiplication-by-3 map is surjective on E(L3). Therefore, P = 3Q, for some Q ∈ E(L3),
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and hence
∑2

i=0 P σi
3 = 3

∑2
i=0 Qσi

3 ∈ 3E(K). Hence
∑2

i=0 P σi
3 ∈ E0(K) because

ΦK(E) ∼= Z/3Z. 2

Now assume that E/K has reduction type III∗. The special fiber of the minimal

proper regular model is as follows.

4

Ψ

Λ0 3

2

Θ0

Γ01

2 Θ2
3 Λ1

2

Θ1

Γ1 1

The multiplicity-1 identity component Γ0 is given by z = 0, the multiplicity-2 com-

ponent Θ0 is given by y2
1 = 0, and the multiplicity-3 component Λ0 is given by x3

1 = 0,

see ([28], Chapter IV, §9).

Proposition 6.2.6. Assume that E/K has reduction type III∗. Let Lm = K(tm), where

tm = t1/m, m ∈ {2, 3, 4}. Let Gal(Lm/K) = 〈σm〉.

(i) Let P ∈ E(L2) lie above a multiplicity-2 component Θi, i ∈ {0, 1, 2}. Then P +

P σ2 ∈ E0(K) when i = 0, 1, and P + P σ2 6∈ E0(K) when i = 2.

(ii) Let P ∈ E(L3) be a point lying above Λi, i ∈ {0, 1}. Then we have
∑2

l=0 P σl
3 ∈

E0(K) when i = 0, and
∑2

l=0 P σl
3 6∈ E0(K) when i = 1.

(iii) Let P ∈ E(L4) be a point lying above Ψ. Then we have
∑3

l=0 P σl
4 ∈ E0(K).

Proof: Let Q ∈ E(K) be a point lying above Γ1. Let τ ′Q : Emin → Emin be the

extension of the translation-by-Q automorphism τQ.

(i) Let P ∈ E(L2). If P lies above Θ0 : y2
1 = 0, then P + P σ2 ∈ E0(K), see Lemma

6.2.1.

So let P ∈ E(L2) lie above Θ1. We have τ ′∗Q (Γ1) = Γ0, and τ ′∗Q (Γ1).τ
′∗
Q (Θ1) = Γ1.Θ1,

so τ ′∗Q (Θ1) = Θ0. Therefore, τQ(P ) + τQ(P )σ2 ∈ E0(K), i.e., P + P σ2 + 2Q ∈ E0(K). In

other words, P + P σ2 ∈ E0(K).

Now let P ∈ E(L2) lie above Θ2. By virtue of Lemma 6.2.4, the reduction type of

E/L2 is I∗0. We showed in the last paragraph of the previous subsection that E/L2 has
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a minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ OL2 ,

where x3 + a2x
2 + a4x + a6 = (x− tα1)(x− tα2)(x− tα3), αi ∈ OL2 . Now σ2 fixes one

of the αi’s and swaps the other two because E[2] 6⊂ E(K), see ([28], p. 390), so we can

assume without loss of generality that α1 ∈ OK and α2, α3 ∈ OL2 \ OK , moreover we

know P1 = (tα1, 0) 6∈ E0(K).

Since the reduction map

{0, Pi = (tαi, 0)|i = 1, 2, 3} → ΦL2(E)

is surjective, it follows that P1 lies above a non-identity multiplicity-1 component Γ′ of Ek,

where E is the minimal proper regular model of E/L2. Moreover, σ2 fixes the components

Γ(0,0) and Γ′ of E and swaps the other two multiplicity-1 irreducible components Γ∗, Γσ2∗ .

Note that Γ(0,0) and Γ′ lie above Γ0 and Γ1 respectively.

Since [L2 : K] divides the multiplicities of Θ2 and Ψ, it is a known fact that Γ∗ and

Γσ2∗ are lying above Θ2 under the following morphism

Ñ → N := Norm(Emin ×OK
OL2) → Emin,

where N is the normalisation of Emin×OK
OL2 , and Ñ is the minimal desingularisation

of N , see for example ([20], §10.4) and ([22], pp. 10-11). The model E is obtained from

Ñ by contracting the exceptional divisors, see Definition 2.2.12.

Therefore, if P lies above Θ2 in Emin, then it lies on either Γ∗ or Γσ2∗ in E . Since

ΦL2(E) ∼= Z/2Z × Z/2Z, we have P + P σ2 lies above Γ′ in Ek, and hence it lies above

Γ1 in Emin
k .

(ii) If P ∈ E(L3) lies above the multiplicity-3 component Λ0 : x3
1 = 0, then

∑2
l=0 P σl

3

is a non-singular point. This follows from Proposition 6.2.5 (ii).

Let P ∈ E(L3) be a point lying above Λ1. Since τ ′∗Q (Θ1) = Θ0, see (i), and τ ′∗Q (Θ1).τ
′∗
Q (Λ1) =

Θ1.Λ1, therefore τ ′∗Q (Λ1) = Λ0. Thus
∑2

l=0 τQ(P )σl
3 ∈ E0(K). In other words,

∑2
l=0 P σl

3 +

3Q ∈ E0(K), which means
∑2

l=0 P σl
3 6∈ E0(K).

(iii) Lemma 6.2.4 shows that E/L4 has good reduction. It follows that E(L4) =

E0(L4). Moreover, since k = k, and char k 6= 2, the theory of formal groups implies

that E0(L4)/4E0(L4) = 0, see ([27], Chapter VII, Exercise 7.8). Therefore, P = 4Q, for

some Q ∈ E(L4) and hence
∑3

l=0 P σl
4 = 4

∑3
l=0 Qσl

4 ∈ 4E(K), and we are done because

ΦK(E) ∼= Z/2Z. 2

Remark 6.2.7. When E/K has reduction type III∗, the above Proposition implies

that δ2(Θi) = 0̄ when i ∈ {0, 1}, and δ2(Θ2) = 1̄. Moreover, δ3(Λi) = ī, i ∈ {0, 1}, and

δ4(Ψ) = 0̄.
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Now assume that E/K has reduction type II∗. The special fiber of the minimal

proper regular model is as follows.

6

Λ1 3
2

Θ0

Γ0 1

Λ0 3
4

Ψ0

5 Ψ1 4
2

Θ1

4

Ψ0

Proposition 6.2.8. Assume that E/K has reduction type II∗. Let Lm = K(tm), where

tm = t1/m. Let Gal(Lm/K) = 〈σm〉. Let P ∈ E(Lm) lie above a component of multi-

plicity m. Then
∑m−1

i=0 P σi
m ∈ E0(K). In particular, δm(Γ) = 0̄, for every multiplicity-m

irreducible component Γ of Emin
k , m ∈ {1, 2, 3, 4}.

Proof: That is straightforward because
∑m−1

i=0 P σi
m ∈ E(K), and E(K) = E0(K) for

reduction type II∗. 2

We conclude this chapter by stating the following direct corollary.

Corollary 6.2.9. Let E/K be an elliptic curve with minimal proper regular model Emin.

Let Lm, σm and δm, where m ∈ {1, 2, 3, 4}, be as above. Let Q ∈ E(K). Assume that

there exists a multiplicity-m irreducible component Θ in Emin
k such that δm(Θ) = ψE(Q).

Then there exists a point P ∈ E(Lm) lying above Θ such that Q =
∑m−1

i=0 P σi
m .

Proof: The statement is clear for m = 1 by taking P = Q.

So assume m ≥ 2. Let P ′ ∈ E(Lm) be a point above Θ, see Proposition 5.2.1.

Then
∑m−1

i=0 P ′σi
m reduces to the same multiplicity-1 irreducible component as Q because

δm(Θ) = ψE(Q). Therefore, R := Q − ∑m−1
i=0 P ′σi

m ∈ E0(K). Since char k 6= 2, 3 and

k = k, we have E0(K) = mE0(K), see ([27], Chapter VII, Exercise 7.8). Thus R = mT

for some T ∈ E0(K).

Now consider the extension τ ′T : Emin → Emin of the translation-by-T automor-

phism τT . The multiplicity-1 irreducible components of Emin
k are fixed under τ ′T , the

projection formula then implies that τ ′T fixes every irreducible component of Emin
k . Set

P := τT (P ′) = T + P ′. Then
∑m−1

i=0 P σi
m = mT +

∑m−1
i=0 P ′σi

m = Q. 2
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Chapter 7

Counting minimal degree-n-models

Let K be a Henselian discrete valuation field with ring of integers OK . We fix a uni-

formiser t. We denote the normalised valuation on K by ν. We assume that the residue

field k is algebraically closed and that char k 6= 2, 3.

Let C be a smooth genus one curve over K defined by a genus one equation φ of

degree n. We assume that C(K) 6= ∅. In this chapter we count the number of minimal

degree-n-models for C → Pn−1
K up to isomorphism, where n ∈ {2, 3, 4}.

7.1 Counting results

Let E be the Jacobian of C. Since E ∼=K C, we can assume that φ is the defining

equation of a morphism E → Pn−1
K determined by a divisor class [H], where H is a

hyperplane section divisor on E. The divisor H is linearly equivalent to (n− 1).0E + P

for some P ∈ E(K).

The homomorphism ψE is the surjective homomorphism in the following short exact

sequence

0 → E0(K) → E(K)
ψE−→ ΦE(K) → 0.

We recall that Φm
K(E), m ≥ 1, is the set of multiplicity-m components in the special

fiber of the minimal proper regular model Emin of E. The main result of this chapter is

the following theorem.

Theorem 7.1.1. Let E/K be an elliptic curve and let P ∈ E(K). Let E → Pn−1
K

be the morphism determined by the divisor class [(n − 1).0E + P ], n ∈ {2, 3, 4}. Let

δm : Φm
K(E) → ΦK(E) be the function defined in Chapter 6. Then there is a bijection

between the set of minimal degree-n-models for E → Pn−1
K up to isomorphism and the

disjoint union of the following sets.
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(i) The set of unordered n-tuples

S1(n) = {(a1, . . . , an) : ai ∈ ΦK(E) | a1 + . . . + an = ψE(P )},

(ii) the set Sn = {a ∈ Φn
K(E) | δn(a) = ψE(P )},

and

if n ≥ 3

(iii) the set S(n−1,1) = {(a, b) ∈ Φn−1
K (E)× ΦK(E) | δn−1(a) + b = ψE(P )},

and

if n = 4

(iv) the set S(2,1,1) = {(a, b, c) ∈ Φ2
K(E)× ΦK(E)× ΦK(E) | δ2(a) + b + c = ψE(P )},

where the order of b and c is immaterial,

(v) the set of unordered pairs

S(2,2) = {(a, b) ∈ Φ2
K(E)× Φ2

K(E) | δ2(a) + δ2(b) = ψE(P )}.

The proof will follow directly from Theorem 7.2.3 stated below.

The sets defined in the theorem above depend on the point P ∈ E(K). Now we get

the following corollaries as direct consequences of Theorem 7.1.1

Corollary 7.1.2. Let E/K be an elliptic curve and let P ∈ E(K). Let E → Pn−1
K be

the morphism determined by the divisor class [(n − 1).0E + P ], n ∈ {2, 3, 4}. Assume

that E has one of the reduction types Im,m ≥ 0, II, III, or IV. Let m = #ΦK(E). The

number of minimal degree-n-models for E → Pn−1
K is Nn where

(i) if n = 2

N2 =





(m + 1)/2 if 2 - m

m/2 + 1 if 2 | m and ψE(P ) ∈ 2ΦK(E)

m/2 if 2 | m and ψE(P ) 6∈ 2ΦK(E)

(ii) if n = 3

N3 =





(m + 1)(m + 2)/6 if 3 - m

m(m + 3)/6 + 1 if 3 | m and ψE(P ) ∈ 3ΦK(E)

m(m + 3)/6 if 3 | m and ψE(P ) 6∈ 3ΦK(E)
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(iii) if n = 4

N4 =





(m + 1)(m + 2)(m + 3)/24 if 2 - m

3 if m = 2 and ψE(P ) = 0̄

m(m + 2)(m + 4)/24 + 2 if 2 | m, m 6= 2 and ψE(P ) ∈ 4ΦK(E)

m(m + 2)(m + 4)/24 + 1 if 2 | m and ψE(P ) ∈ 2ΦK(E) \ 4ΦK(E)

m(m + 2)(m + 4)/24 if 2 | m and ψE(P ) 6∈ 2ΦK(E).

Proof: Since for the given reduction types we have Φm
K(E) = ∅ when m ≥ 2, the sets

Sn, S(n−1,1), S(2,1,1) and S(2,2) of Theorem 7.1.1 are empty. In other words, Nn = #S1(n).

The numbers stated above are the possible cardinalities of S1(n). 2

For a ∈ Φ2
K(E) we set

S(2,1,1)(a) = {(b, c) : b, c ∈ ΦK(E) | b + c = ψE(P )− δ2(a)}.

Lemma 7.1.3. The following equalities hold

(i) #S(n−1,1) = #Φn−1
K (E) when n ≥ 3.

(ii) #S(2,1,1) =
∑

a∈Φ2
K(E) S(2,1,1)(a).

Proof: (i) We consider the projection map S(n−1,1) → Φn−1
K (E) which sends an element

(a, b) ∈ Φn−1
K (E)×ΦK(E) to a. It is surjective and we want to show the injectivity. Let

(a1, b1), (a2, b2) be two elements in S(n−1,1) with the same image, i.e., a1 = a2. From the

definition of S(n−1,1) we have δn−1(a1) + b1 = δn−1(a2) + b2 = ψE(P ). Therefore, b1 = b2,

and the two sets are in bijection.

(ii) Direct calculation by computing the number of triples in which each a ∈ Φ2
K(E)

lies. 2

Corollary 7.1.4. Let E/K be an elliptic curve and let P ∈ E(K). Assume that E

has reduction type T ∈ {I∗m, m ≥ 0, IV∗, III∗, II∗}. Let E → Pn−1
K be the morphism

determined by the divisor class [(n − 1).0E + P ], n ∈ {2, 3, 4}. Let Nn denote the

number of minimal degree-n-models for E → Pn−1
K . Then Nn is determined according to

the following tables

(i) if E has reduction type I∗2m,m ≥ 0, then
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ψE(P ) (0̄, 0̄) (1̄, 1̄) (0̄, 1̄) (1̄, 0̄)

N2 m + 5 m + 2 2 2

N3 2m + 6

N4 (m + 4)2 (m + 2)(m + 5) 4m + 10

(ii) if E has reduction type I∗2m+1,m ≥ 0, then

ψE(P ) 0̄ 2̄ 1̄ 3̄

N2 m + 4 2

N3 2m + 7

N4 (m + 3)(m + 6) (m + 4)2 4m + 12

(iii) if E has reduction type IV∗, then

ψE(P ) 0̄ 1̄ 2̄

N2 3

N3 8 6 6

N4 14

(iv) if E has reduction type III∗, then

ψE(P ) 0̄ 1̄

N2 4 2

N3 6 6

N4 15 10

(v) if E has reduction type II∗, then

N2 3

N3 5

N4 10
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Proof: We recall that the number of minimal degree-2-models for E → P1
K is the

cardinality of the disjoint union of the sets S1(2) and S2. The number of minimal degree-

3-models for E → P2
K is the cardinality of the disjoint union of S1(3), S(2,1), and S3. The

number of minimal degree-4-models for E → P3
K is the cardinality of the disjoint union

of S1(4), S(3,1), S(2,2), S(2,1,1), and S4. So we have to find the cardinality of each set when

E has one of the reduction types I∗m, IV∗, III∗, or II∗.
(i) When E has reduction type I∗2m,m ≥ 0, the components group ΦK(E) is iso-

morphic to Z/2Z × Z/2Z. We have #S1(2) = 4 when ψE(P ) = (0̄, 0̄) and #S1(2) = 2

otherwise. We have #S1(3) = 5, moreover #S1(4) = 11 when ψE(P ) = (0̄, 0̄), and

#S1(4) = 8 otherwise. Moreover, #S(2,1) = #Φ2
K(E) = 2m + 1, see Lemma 7.1.3. The

sets Si, i = 3, 4, and S(3,1) are empty.

To compute the size of S2, S(2,1,1), and S(2,2) we need to recall some results from

Chapter 6. The multiplicity-2 components of Emin
k consists of a sequence V−1 : {y2

1 =

0}, V0, V1, . . . , V2m−1, where δ2(Vi) = (0̄, 0̄) if i is odd and it is equal to (1̄, 1̄) otherwise,

see Corollary 6.2.3. Therefore, S2 = ∅ if ψE(P ) = (0̄, 1̄) or (1̄, 0̄), and #S2 = m + 1 if

ψE(P ) = (0̄, 0̄), and #S2 = m if ψE(P ) = (1̄, 1̄).

Now if ψE(P ) = δ2(Vi), then #S(2,1,1)(Vi) = 4, otherwise #S(2,1,1)(Vi) = 2, see

Lemma 7.1.3. Therefore, if ψE(P ) = (0̄, 1̄) or (0̄, 1̄), then #S(2,1,1)(Vi) = 2 for each i and

#S(2,1,1) = 2(2m + 1), see Lemma 7.1.3. If ψE(P ) = (0̄, 0̄)(= (1̄, 1̄) respectively), then

(#S(2,1,1)(V2i−1), #S(2,1,1)(V2i)) = (4, 2), ((2, 4) respectively), i = 0, . . . , m. Therefore, we

have #S(2,1,1) = 4(m + 1) + 2m, (2(m + 1) + 4m respectively), see Lemma 7.1.3.

Again if ψE(P ) = (0̄, 1̄) or (1̄, 0̄), then S(2,2) = ∅. If ψE(P ) = (0̄, 0̄), then #S(2,2) =∑m+1
i=1 i +

∑m
i=1 i = (m + 1)2. If ψE(P ) = (1̄, 1̄), then #S(2,2) = m(m + 1).

(ii) When E has reduction type I∗2m+1,m ≥ 0, the components group ΦK(E) = Z/4Z.

We have #S1(3) = 5. Lemma 7.1.3 implies that #S(2,1) = #Φ2
K(E) = 2m+2. Moreover,

Si, i = 3, 4, and S3,1 are empty sets.

Now S1(2) = 3 when ψE(P ) = 0̄ or 2̄, and #S1(2) = 2 otherwise. We have #S1(4) =

10 when ψE(P ) = 0̄, #S1(4) = 9 when ψE(P ) = 2̄, and #S1(4) = 8 otherwise.

We recall that the multiplicity-2 components of Emin
k consists of a sequence V−1 :

{y2
1 = 0}, V0, V1, . . . , V2m, where δ2(Vi) = 0̄ if i is odd and it is equal to 2̄ otherwise,

see Corollary 6.2.3. Therefore, if ψE(P ) = 1̄ or 3̄, then S2 and S(2,2) are empty sets. If

ψE(P ) = 0̄ or 2̄, then #S2 = m + 1.

If ψE(P ) − δ2(Vi) ∈ 2ΦK(E), then #S(2,1,1)(Vi) = 3. Otherwise, #S(2,1,1)(Vi) = 2.

Therefore, if ψE(P ) = 1̄ or 3̄, then #S(2,1,1)(Vi) = 2 for each i, hence #S(2,1,1) =

2(2m + 2), see Lemma 7.1.3. If ψE(P ) = 0̄ or 2̄, then #S(2,1,1)(Vi) = 3 for each i.

Therefore, #S(2,1,1) = 3(2m + 2).

If ψE(P ) = 1̄ or 3̄, then S(2,2) = ∅. If ψE(P ) = 0̄, then #S(2,2) = (m + 1)(m + 2). If
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ψE(P ) = 2̄, then #S(2,2) = (m + 1)2.

(iii) When E has reduction type IV∗, we have ΦK(E) = Z/3Z. Therefore, #S1(2) = 2

and #S1(4) = 5, moreover #S1(3) = 4 when ψE(P ) = 0̄ and #S1(3) = 3 otherwise.

We recall that #S3 = 1 if ψE(P ) = 0̄, and S3 = ∅ otherwise, see Proposition

6.2.5 (ii). Moreover, Φ4
K(E) = ∅ and Φ2

K(E) = {Θi, i = 0, 1, 2}, where δ2(Θ0) = 0̄,

δ2(Θ1) = 2̄, and δ2(Θ2) = 1̄, see Proposition 6.2.5. Therefore, Lemma 7.1.3 implies that

#S(2,1) = #Φ2
K(E) = 3, and #S(3,1) = #Φ3

K(E) = 1. We have S4 = ∅, #S2 = 1, and

#S(2,2) = 2. Furthermore, S(2,1,1)(a) = 2 for every a ∈ Φ2
K(E), therefore #S(2,1,1) = 6.

(iv) When E has reduction type III∗, we have ΦK(E) = Z/2Z. Therefore, #S1(2) = 2

if ψE(P ) = 0̄, and #S1(2) = 1 otherwise. #S1(3) = 2, moreover we have #S1(4) = 3

when ψE(P ) = 0̄, and #S1(4) = 2 otherwise.

Recall that Φ2
K(E) = {Θi, i = 0, 1, 2}, where δ2(Θi) = 0̄ when i = 0, 1, and δ2(Θ2) =

1̄. Moreover, Φ3
K(E) = {Λ1, Λ2}, where δ3(Λi) = ī, and Φ4

K(E) = {Ψ}, where δ4(Ψ) = 0̄,

see Proposition 6.2.6. By virtue of Lemma 7.1.3, we have #S(2,1) = #Φ2
K(E) = 3, and

#S(3,1) = #Φ3
K(E) = 2. If ψE(P ) = 0̄, then #S2 = 2, #S2,2 = 4, #S(2,1,1) = 5, and

#S4 = 1. Otherwise, we have #S2 = 1, #S2,2 = 2, #S(2,1,1) = 4, and S4 = ∅. We always

have #S3 = 1.

(v) When E has reduction type II∗, we have ΦK(E) = (0). Therefore, #S1(n) =

1, n ∈ {2, 3, 4}, see Corollary 7.1.2.

We have that #S(n−1,1) = #Φn−1
K (E) = 2, n = 3, 4, see Lemma 7.1.3. Moreover,

#Sn = 2, n = 2, 3, 4. Finally, S(2,2) = 3 and S(2,1,1) = 2, see Proposition 6.2.8. 2

7.2 Constructing divisors and models

The aim of this section is to prove Theorem 7.1.1. Again we start with a smooth genus

one curve C/K where n ∈ {2, 3, 4}. We assume that the equation of C is obtained as

an equation for the morphism E → Pn−1
K determined by [(n − 1).0E + P ], where E is

the Jacobian of C and P ∈ E(K). We set

S2 = S1(2) ∪ S2, S3 = S1(3) ∪ S3 ∪ S(2,1) and S4 = S1(4) ∪ S4 ∪ S(3,1) ∪ S(2,1,1) ∪ S(2,2).

Then we define the map

λn : {minimal degree-n-models for C up to isomorphism} → Sn; (C, α) 7→ (Γ1, . . . , Γm),

where

(i) (Γ1, . . . , Γm) consists of the irreducible components of the strict transform of Ck in

Emin
k .
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(ii) If m ≥ 2, then multk(Γ1) ≥ . . . ≥ multk(Γm).

(iii) If Γ is the strict transform of a component Γ′ in Ck, then Γ appears in (Γ1, . . . , Γm)

as many times as degk Γ′. In particular, we have
∑m

i=1 multk(Γi) = n.

We will prove that the map λn is a bijection and hence Theorem 7.1.1 follows. Recall

that the type of an irreducible component Γ of the special fiber of a degree-n-model is

the pair (multk Γ, degk Γ).

Lemma 7.2.1. The map λn described above is well-defined.

Proof: We need to show that (i) if C and C ′ are minimal isomorphic degree-n-models for

C, then λn(C) = λn(C ′), and (ii) λ(C) ∈ Sn. To prove (i) we know that the special fibers

of any two isomorphic degree-n-models for C have the same irreducible components

with the same types, therefore the corresponding tuples of both models are the same,

see Theorem 5.1.4.

Now we want to prove (ii), in other words we want to show that if (Γ1, . . . , Γm) is

the tuple associated to C, then
∑m

i=1 δmi
(Γi) = ψE(P ) where mi = multk(Γi). Let D

be a divisor on Emin such that C is obtained from Emin by contraction using D, see

Theorem 4.0.1. The divisor D intersects the Γi’s and no other components. We have

D.Γj = mj degk Γ′j, where Γ′j is an irreducible component of Ck whose strict transform

in Emin
k is Γj, in particular if degk Γ′j = dj, then D intersects Γj in dj points which

might not be distinct. Let (x1, . . . , xm) be a tuple of all intersection points of D with

the irreducible components (Γ1, . . . , Γm), where xi ∈ Γi. Note that xi may be repeated

in (x1, . . . , xm) if Γi is the strict transform of a component whose degree is greater than

1. Moreover, we have D|E ∼ (n− 1).0 + P.

Let mr = max{mj := multk Γj : 1 ≤ j ≤ m}. It is clear that for Γj, j = 1, . . . , m,

the multiplicity mj ∈ {1,mr}, since otherwise we will have 1 < mj < mr which implies

that mr ≥ 3, hence mr + mj ≥ 5 which contradicts that
∑m

i=1 mi = n ≤ 4. Let

Lj = K(t1/mj) and Gal(Lj/K) = 〈σj〉. By virtue of Proposition 5.2.1, there exists a

closed point Pj ∈ E(Lj) such that [K(Pj) : K] = mj, and {Pj} ∩ Γj = {xj}. Let E be

the minimal proper regular model of E/Lr. Since xj lies on one and only one component

of Emin
k , then there are exactly mj points {y1, . . . , ymj

} of E lying above xj, and each

of these points lies on a multiplicity-1 component of Ek, see ([20], Remark 10.4.8). Now

we view D as a divisor on E . We have

P̃ = (sum D|E)∼ = sum D|Ek
=

m∑
j=1

mj∑

l=1

yl =
m∑

j=1

mj∑

l=1

P̃
σl

j

j .
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The second equality holds because D intersects Ek only in multiplicity-1 components.

Therefore, we have P −∑m
j=1

∑mj

l=1 P
σl

j

j ∈ E0(K). Applying the surjective group homo-

morphism ψE : E(K) → ΦK(E), we get ψE(P ) =
∑m

j=1 ψE(
∑mj

l=1 P
σl

j

j ) =
∑m

j=1 δmj
(Γj).

2

Lemma 7.2.2. Let (Γ1, . . . , Γm) ∈ Sn. Then there exists a divisor D on Emin such that:

(i) D|E is K-rational.

(ii) D.Γi = di. multk Γi, where di is the number of times Γi appears in (Γ1, . . . , Γm).

(iii) D|E ∼ (n− 1).0 + P.

Proof: Assume that (Γ1, . . . , Γn) ∈ S1(n). Let xi ∈ Γi, i = 1, . . . , n − 1, be a point

defined over k. Hensel’s Lemma allows us to lift xi to a point Pi ∈ E(K), i = 1, . . . , n−1.

Set Pn = P −∑n−1
i=1 Pi ∈ E(K). Note that Pn lies above Γn because ψE(Pn) = ψE(P )−∑n−1

j=1 ψE(Pi) = ψE(P )−∑n−1
i=1 δ1(Γi) = δ1(Γn), where the last equality follows from the

definition of S1(n). Set the divisor D to be
∑n

i=1 {Pi} on Emin, where {Pi} is the Zariski

closure of Pi in Emin.

Now let Km = K(t1/m) and Gal(Km/K) = 〈σm〉.
Assume that (Γn) ∈ Sn. Since δn(Γn) = ψE(P ), Corollary 6.2.9 shows that there

exists a point Q ∈ E with [K(Q) : K] = n, Q̃ ∈ Γn and
∑n

i=1 Qσi
n = P. Set D = {Q}.

Assume that (Γn−1, Γ) ∈ S(n−1,1), n ≥ 3. Let Q′ be a point which reduces on Γ. We

have δn−1(Γn−1) = ψE(P )− δ1(Γ) = ψE(P −Q′). Again Corollary 6.2.9 shows that there

exists a point Q ∈ E with [K(Q) : K] = n − 1, Q̃ ∈ Γn−1, and
∑n−1

i=1 Qσi
n−1 = P − Q′.

Set D = {Q′}+ {Q}.
Assume that (Θ, Γ1, Γ2) ∈ S(2,1,1). Let Pi ∈ E(K) be such that P̃i ∈ Γi. We have

δ2(Θ) = ψE(P − P1 − P2). Again there exists a point Q ∈ E with [K(Q) : K] = 2,

Q̃ ∈ Θ, and Q + Qσ2 = P − P1 − P2. Set D = {P1}+ {P2}+ {Q}.
Assume that (Θ1, Θ2) ∈ S(2,2). Let P ′ ∈ E(K) be such that δ2(Θ1) = ψE(P ′).

According to Corollary 6.2.9, there exists Qi ∈ E with [K(Qi) : K] = 2, Q̃i ∈ Θi,

Q1 + Qσ2
1 = P ′, and Q2 + Qσ2

2 = P − P ′ . Set D = {Q1}+ {Q2}. 2

Theorem 7.2.3. The map λn is a bijection.

Proof: We proved that λn is well defined in Lemma 7.2.1. To prove that λn is injective,

let (C1, α1) and (C2, α2) be two minimal degree-n-models for C. Assume that λn(C1) =

λn(C2). We want to show that (C1, α1) and (C2, α2) are isomorphic. The fact that they

have the same corresponding tuples implies that for an irreducible component Γ of (C2)k,
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we have (α−1
2 α1)

∗Γ is an irreducible component of (C1)k with the same type, therefore

(C1, α1) and (C2, α2) are isomorphic, see Theorem 5.1.4.

Now we will prove that λn is surjective. So assume that (Γ1, . . . , Γm) ∈ Sn and we

want to construct a minimal degree-n-model (C, α) whose image under λn is (Γ1, . . . , Γm).

If Γi appears di times in (Γ1, . . . , Γm), then Ck should contain an irreducible component

Γ′i, whose strict transform in Emin
k is Γi, such that degk Γ′i = di. By virtue of Lemma

7.2.2, there exists a divisor D on Emin such that D|E is K-rational, D.Γi = di. multk Γi,

and D|E ∼ (n− 1).0 + P. Consider the following S-model for C

C := Proj(
∞⊕

m=0

H0(Emin,OEmin(mD))).

The model C is given by a genus one equation of degree n, moreover it is minimal

because it is obtained by contracting components in Emin, see Theorem 4.2.3. The

special fiber Ck consists of the components in (Γ1, . . . , Γm) because D intersects these

components in Emin
k and intersects no other components. Moreover, each component of

Ck has degree equal to the number of iterations of its strict transform in (Γ1, . . . , Γm)

because D.Γi = di. multk Γi. We obtain α from the linear equivalence of D|E and

(n− 1).0E + P. 2
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Chapter 8

Counting models over Q

Let p ≥ 5 be a prime number, and n ∈ {2, 3, 4}. Let Qun
p be the maximal unramified

extension of the p-adic field Qp. Let Zp be the ring of p-adic integers and Zun
p the ring

of integers of Qun
p .

In this chapter we will be interested in attacking the global question. More precisely,

let C be a smooth genus one curve over Q defined by an integral genus one equation

of degree n, we define a minimal global degree-n-model (C, α) for C → Pn−1
Q to be a

degree-n-model C → SpecZ for C → Pn−1
Q such that C → SpecZp is minimal for every

prime p, see §3.1.

It is known that a minimal global degree-1-model for C/Q, i.e., a Weierstrass model,

exists and is unique up to isomorphism. A proof of the existence of a minimal global

degree-n-model for C/Q when n ∈ {2, 3} can be found in ([14], Theorem 2.6). An algo-

rithm which proves the existence of minimal global degree-n-models when n ∈ {1, 2, 3, 4}
can be found in [11].

The problem stated above can be tackled locally by considering C as a curve over Qp

and looking at minimal degree-n-models for C → Pn−1
Qp

up to SpecZp-isomorphism at

each prime p. It turns out that we need only to investigate a finite set of primes. We need

to overcome two obstacles: (i) the residue fields Fp are not algebraically closed which

means that we can not use the results we obtained in the previous chapters directly (ii)

collecting the local data we obtain at each prime to count minimal global models up to

SpecZ-isomorphism.

We will show that the split reduction types are no different from the geometric

case, i.e., when the residue field is algebraically closed. Then we move to the non-split

reduction types and use the fact that after a finite unramified base change the reduction

becomes split. In fact, we make use of the action of the Galois group Gal(Fp/Fp) on the

irreducible components of the minimal proper regular model.
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The last remark to make is that considering C as a curve over Qun
p rather than over

Qp, the number of degree-n-models for C → Pn−1
Qun

p
up to SpecZun

p -isomorphism is deter-

mined according to Theorem 7.1.1 because the residue field Fp is algebraically closed.

Thus we only need to figure out how many of these models are SpecZun
p -isomorphic to

ones defined over Zp.

8.1 Fp-rational divisors

We write Gp for Gal(Fp/Fp). Let C be a smooth genus one curve over Qp, such that

C(Qp) 6= ∅, with Jacobian elliptic curve E and minimal proper regular model Emin.

Let C → SpecZun
p be a minimal degree-n-model for C → Pn−1

Qp
. Set IrrC to be the tuple

consisting of the irreducible components of the strict transform of CFp
in Emin

Fp
such

that if Γ is an irreducible component of CFp
, then the strict transform of Γ appears in

IrrC as many times as degFp
Γ. It is understood that only multiplicity-m components,

where m = 1, 2, can have degrees greater than 1 in CFp
. The order of the tuple IrrC

is immaterial. The group Gp acts on IrrC in the obvious way, namely (Γ1, . . . , Γl)
σ =

(Γσ
1 , . . . , Γ

σ
l ) for σ ∈ Gp.

We recall that C is obtained from Emin → SpecZun
p by contraction via a divisor D,

see Theorem 4.0.1. The divisor D intersects each irreducible component of IrrC and

meets no other components in Emin
Fp

, i.e., for an irreducible component Γ of Emin
Fp

, we

have D ∩ Γ 6= ∅ if and only if Γ ∈ IrrC. The defining genus one equation φ of C is

obtained as a dependence relation in a finitely generated free Zun
p -module of the form

H0(Emin,OEmin(mD)), for some m ≥ 1, see Theorem 4.2.3.

In this section we give a necessary and sufficient condition for C to be SpecZun
p -

isomorphic to a degree-n-model which is defined over Zp, in other words the condition

under which it is possible to construct a divisor D′ on Emin → SpecZun
p such that

OEmin(D) ∼= OEmin(D′) and D′|C is Qp-rational. In fact, this condition will turn out to

be that IrrC is Gp-invariant. The main result for counting degree-n-models over Zp is

the following theorem.

Theorem 8.1.1. Let C be a smooth curve over Qp defined by an integral genus one

equation of degree n with C(Qp) 6= ∅. Let Emin → SpecZun
p be the minimal proper

regular model of the Jacobian elliptic curve E. Let (C → SpecZun
p , α) be a minimal

degree-n-model for C → Pn−1
Qp

. Then (C, α) is SpecZun
p -isomorphic to a minimal degree-

n-model defined over Zp if and only if IrrC is Gp-invariant.

The next section is devoted to the proof of Theorem 8.1.1. Now we get some ap-

plications of Theorem 8.1.1. We will count minimal degree-n-models for C which are
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defined over Zp. That is the number of all the combinatorial possibilities for IrrC to be

Gp-invariant. Recall that the genus one equation defining C can be considered as an equa-

tion for a morphism E → Pn−1
Qp

determined by a divisor class of the form [(n−1).0E +P ]

for some P ∈ E(Qp). This point P reduces to a point on a multiplicity-1 irreducible

component in Emin
Fp

defined over Fp.

Corollary 8.1.2. Let E/Qp be an elliptic curve and let P ∈ E(Qp). Assume that E

has split reduction. Let E → Pn−1
Qp

be the morphism determined by the divisor class

[(n − 1).0E + P ], n ∈ {2, 3, 4}. Let δm : Φm
Qun

p
(E) → ΦQun

p
(E) be the function defined

in Chapter 6. Then there is a bijection between the set of minimal degree-n-models for

E → Pn−1
Qp

up to isomorphism and the union of the sets given in Theorem 7.1.1.

Proof: If we consider E as a curve over Qun
p , then the number of minimal degree-n-

models up to SpecZun
p -isomorphism is the cardinality of the disjoint union of the sets

stated in Theorem 7.1.1. But Theorem 8.1.1 shows that each of these models is isomor-

phic to a minimal degree-n-model with coefficients in Zp because all the components of

Emin
Fp

are defined over Fp. 2

Remark 8.1.3. If E has one of the reduction types

Im,m ∈ {0, 1, 2}, II, III, III∗, II∗,

then the reduction is always split, in particular all irreducible components of Emin
Fp

are

defined over Fp. Therefore, the number of minimal degree-n-models for these reduction

types is determined according to Corollary 8.1.2.

For the rest of this section we will be concerned with non-split reduction types.

We will count the set of minimal degree-n-models C → SpecZun
p for which IrrC is Gp-

invariant. We will denote the number of multiplicity-1 irreducible components of Emin
Fp

which are defined over Fp by cp, this is the Tamagawa number of the Jacobian E/Qp.

Corollary 8.1.4. Let E/Qp be an elliptic curve and let P ∈ E(Qp). Let E → Pn−1
Qp

be the morphism determined by the divisor class [(n − 1).0E + P ]. Assume that E has

non-split reduction. Then the number of minimal degree-n-models for E → Pn−1
Qp

up to

isomorphism is determined according to the following table.
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cp n = 2 n = 3 n = 4

I2m+1 1 m + 1 m + 1 (m + 1)(m + 2)/2

I2m, P ∈ E0(Qp) 2 m + 1 m + 1 (m + 1)(m + 2)/2

I2m, P 6∈ E0(Qp) 2 1 m + 1 m + 1

IV 1 2 2 3

I∗0 1 2 3 4

I∗2m+1, m ≥ 0, P ∈ E0(Qp) 2 m + 4 2m + 5 (m + 3)(m + 4)

I∗2m+1, m ≥ 0, P 6∈ E0(Qp) 2 m + 2 2m + 5 (m + 2)(m + 4)

I∗2m, m ≥ 0, P ∈ E0(Qp) 2 m + 3 2m + 4 (m + 2)(m + 4)

I∗2m, m ≥ 0, P 6∈ E0(Qp) 2 m + 2 2m + 4 (m + 2)(m + 3)

IV∗ 1 3 4 8

Recall that ψE is the surjective group homomorphism in the short exact sequence

0 → E0(Qp) → E(Qp)
ψE−→ ΦQp(E)(Fp) → 0,

and that we fix an isomorphism ΦQun
p

(E)(Fp) ∼= Z/2Z × Z/2Z when E has reduction

I∗2m, and ΦQun
p

(E)(Fp) ∼= Z/lZ for other reduction types.

Proof of Corollary 8.1.4:

Multiplicative reduction: It is known that if E/Qp has non-split multiplicative

reduction Im, m ≥ 3, over Qp, then there exists an unramified quadratic extension K/Qp

such that E/K has split multiplicative reduction Im.

For reduction type I2m+1 we have cp = 1. Therefore, the identity component Γ0

is the only multiplicity-1 component defined over Fp. We have ψE(P ) = 0̄. The two

intersection points of Γ0 with the other irreducible components of Emin
Fp

are switched

under the action of some σ ∈ Gp. It follows that σ carries the ith component of Emin
Fp

to

the (2m + 1− i)th component.

For reduction type I2m we have cp = 2. One of the two irreducible components

defined over Fp is the identity component. Again Gp carries the ith component to the

(2m− i)th component, therefore the other irreducible component defined over Fp is the

mth component. We have ψE(P ) is either 0̄ or m.

Now the tuple IrrC corresponding to a minimal degree-n-model C for C is Gp-invariant

if and only if it consists of components of the form determined by the following table.
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n = 2 n = 3 n = 4

Im, ψE(P ) = 0̄ (̄i,m− ī) (0̄, ī, m− ī) (̄i,m− ī, j̄, m− j̄)

Im, m : even, ψE(P ) = m/2 (0̄,m/2) (m/2, ī, m− ī). (0̄,m/2, ī, m− ī)

The numbers given in the statement of the corollary are the cardinalities of the sets

consisting of the tuples given in the table above.

Additive reduction: Now we consider non-split additive reduction types. Let C
be a minimal degree-n-model for E → Pn−1

Qp
determined by [(n − 1).0E + P ]. Let Nn

be the number of minimal degree-n-models which are defined over Zp, up to SpecZp-

isomorphism, i.e., Nn is the number of minimal degree-n-models, up to SpecZp-isomorphism,

whose corresponding tuples are Gp-invariant.

Reduction IV: If E has non-split reduction of type IV, then cp = 1. We have

ψE(P ) = 0̄. The group Gp switches the two non-identity components. When n = 2, the

tuple IrrC is Gp-invariant if and only if it is either (0̄, 0̄) or (1̄, 2̄). Therefore, N2 = 2.

When n = 3, IrrC is Gp-invariant if and only if it is either (0̄, 0̄, 0̄) or (0̄, 1̄, 2̄). Hence

N3 = 2. When n = 4, IrrC is Gp-invariant if and only if IrrC ∈ {(0̄, 0̄, 0̄, 0̄), (0̄, 0̄, 1̄, 2̄),

(1̄, 2̄, 1̄, 2̄)}. Hence N4 = 3.

Reduction I∗0: If E has reduction type I∗0, then

cp = 1 + #{α ∈ Fp : f(α) = 0}
where f is a polynomial of degree 3 in the coefficients of the defining polynomial of E,

see ([28], p. 367). Moreover, f has distinct roots in Fp. Thus if the reduction is non-split,

then either cp = 1 or cp = 2. Moreover, the multiplicity-2 component Θ is defined over

Fp, i.e., it is isomorphic to P1
Fp

. In addition, δ2(Θ) = (0̄, 0̄), see Corollary 6.2.3.

When cp = 1, we have ψE(P ) = (0̄, 0̄) and Gp swaps the 3 non-identity components.

When cp = 2, we fix an isomorphism ΦQun
p

(E)(Fp) ∼= Z/2Z× Z/2Z such that (1̄, 1̄) cor-

responds to the non-identity component which is defined over Fp. Then we have ψE(P )

is either (0̄, 0̄) or (1̄, 1̄), and Gp switches the two other components. The multiplicity-2

component Θ is always fixed under the action of Gp.

Assume that cp = 1. For the case n = 2, IrrC is Gp-invariant if and only if it

is either ((0̄, 0̄), (0̄, 0̄)) or the multiplicity-2 component Θ. When n = 3, IrrC is Gp-

invariant if and only if it is either ((0̄, 0̄), (0̄, 0̄), (0̄, 0̄)), ((0̄, 1̄), (1̄, 0̄), (1̄, 1̄)) or ((0̄, 0̄), Θ).

When n = 4, IrrC is Gp-invariant if and only if it is either ((0̄, 0̄), (0̄, 0̄), (0̄, 0̄), (0̄, 0̄)),

((0̄, 0̄), (0̄, 1̄), (1̄, 0̄), (1̄, 1̄)), ((0̄, 0̄), (0̄, 0̄), Θ) or (Θ, Θ). Hence N2 = 2, N3 = 3 and

N4 = 4.

Now assume that cp = 2. Assume moreover that ψE(P ) = (0̄, 0̄). When n =

2, IrrC is Gp-invariant if and only if it is either ((0̄, 0̄), (0̄, 0̄)), ((1̄, 1̄), (1̄, 1̄)) or the
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multiplicity-2 component Θ. When n = 3, IrrC is Gp-invariant if and only if it is either

((0̄, 0̄), (0̄, 0̄), (0̄, 0̄)), ((0̄, 0̄), (1̄, 1̄), (1̄, 1̄)), ((0̄, 1̄), (1̄, 0̄), (1̄, 1̄)) or ((0̄, 0̄), Θ). When n = 4,

IrrC is Gp-invariant if and only if it is either ((0̄, 0̄), (0̄, 0̄), (0̄, 0̄), (0̄, 0̄)), ((0̄, 0̄), (0̄, 0̄), (1̄, 1̄), (1̄, 1̄)),

((0̄, 0̄), (0̄, 1̄), (1̄, 0̄), (1̄, 1̄)), ((0̄, 1̄), (1̄, 0̄), (0̄, 1̄), (1̄, 0̄)), ((1̄, 1̄), (1̄, 1̄), (1̄, 1̄), (1̄, 1̄)), ((1̄, 1̄), (1̄, 1̄), Θ),

((0̄, 0̄), (0̄, 0̄), Θ) or (Θ, Θ). Hence N2 = 3, N3 = 4 and N4 = 8.

Assume ψE(P ) = (1̄, 1̄). When n = 2, IrrC is Gp-invariant if and only if it is ei-

ther ((0̄, 0̄), (1̄, 1̄)) or ((0̄, 1̄), (1̄, 0̄)). When n = 3, IrrC is Gp-invariant if and only if

it is either ((0̄, 0̄), (0̄, 0̄), (1̄, 1̄)), ((0̄, 0̄), (0̄, 1̄), (1̄, 0̄)), ((1̄, 1̄), (1̄, 1̄), (1̄, 1̄)) or ((1̄, 1̄), Θ).

When n = 4, IrrC is Gp-invariant if and only if it is either ((0̄, 0̄), (0̄, 0̄), (0̄, 0̄), (1̄, 1̄)),

((0̄, 0̄), (0̄, 0̄), (0̄, 1̄), (1̄, 0̄)), ((1̄, 1̄), (1̄, 1̄), (0̄, 1̄), (1̄, 0̄)), ((0̄, 0̄), (1̄, 1̄), (1̄, 1̄), (1̄, 1̄)), ((0̄, 0̄), (1̄, 1̄), Θ)

or ((0̄, 1̄), (1̄, 0̄), Θ). Hence N2 = 2, N3 = 4 and N4 = 6.

Reduction I∗m, m ≥ 1: If E has non-split reduction of type I∗m, m ≥ 1, then cp = 2.

The multiplicity-1 non-identity component Γ which is defined over Fp is the one attached

to the same multiplicity-2 component to which the identity component is attached. From

the description of the irreducible component Γ, it follows that it corresponds to an

element of order 2 in the components group, see Proposition 6.2.2, so it corresponds to

2̄ when m is odd. When m is even, we fix an isomorphism ΦQun
p

(E)(Fp) ∼= Z/2Z×Z/2Z
such that Γ corresponds to (1̄, 1̄). The group Gp switches the two other multiplicity-1

irreducible components. All the multiplicity-2 components are defined over Fp, i.e., each

of them is isomorphic to P1
Fp

, and hence they are fixed under the action of Gp.

(i) Reduction I∗2m+1: We start with non-split reduction of type I∗2m+1, m ≥ 0.

We recall that the multiplicity-2 components of Emin
Fp

are V−1, V0, V1, . . . , V2m where

δ2(Vi) = 0̄ if i is odd and it is equal to 2̄ otherwise, see Corollary 6.2.3.

Assume that ψE(P ) = 0̄. When n = 2, IrrC is Gp-invariant if and only if it is either

(0̄, 0̄), (2̄, 2̄), (1̄, 3̄), or Vi where i is odd. When n = 3, IrrC is Gp-invariant if and only

if it is either (0̄, 0̄, 0̄), (0̄, 2̄, 2̄), (0̄, 1̄, 3̄), (0̄, Vi) where i is odd, or (2̄, Vi) where i is even.

When n = 4, IrrC is Gp-invariant if and only if it is either (0̄, 0̄, 0̄, 0̄), (0̄, 0̄, 2̄, 2̄), (0̄, 0̄, 1̄, 3̄),

(2̄, 2̄, 1̄, 3̄), (2̄, 2̄, 2̄, 2̄), (1̄, 3̄, 1̄, 3̄) or if IrrC lies in

S(2,1,1)(Vi) =




{(Vi, 0̄, 0̄), (Vi, 2̄, 2̄), (Vi, 1̄, 3̄)} if i is odd

{(Vi, 0̄, 2̄)} if i is even

or if IrrC is (Vi, Vj) where i + j is even. Therefore, N2 = m + 4, N3 = 2m + 5 and

N4 = 6 + 4(m + 1) + (m + 1)(m + 2) = (m + 3)(m + 4).

Now assume that ψE(P ) = 2̄. When n = 2, IrrC is Gp-invariant if and only if it is

either (0̄, 2̄) or Vi where i is even. When n = 3, IrrC is Gp-invariant if and only if it is

either (0̄, 0̄, 2̄), (2̄, 2̄, 2̄), (2̄, 1̄, 3̄), or if it is of the form (0̄, Vi) where i is even, or (2̄, Vi)
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where i is odd. When n = 4, IrrC is Gp-invariant if and only if it is either (0̄, 0̄, 0̄, 2̄),

(2̄, 2̄, 0̄, 2̄), (1̄, 3̄, 0̄, 2̄) or if it lies in

S(2,1,1)(Vi) =




{(Vi, 0̄, 2̄) if i is odd

{(Vi, 0̄, 0̄), (Vi, 2̄, 2̄), (Vi, 1̄, 3̄)} if i is even

or if IrrC is of the form (Vi, Vj) where i + j is odd. Therefore, N2 = m + 2, N3 = 2m + 5

and N4 = 3 + 4(m + 1) + (m + 1)2 = (m + 2)(m + 4).

(ii) Reduction I∗2m: Now we assume that E has non-split reduction of type I∗2m, m ≥
1. The multiplicity-2 components of Emin

k are V−1, V0, V1, . . . , V2m−1 where δ2(Vi) = (0̄, 0̄)

if i is odd and it is equal to (1̄, 1̄) otherwise, see Corollary 6.2.3.

Assume that ψE(P ) = (0̄, 0̄). When n = 2, IrrC is Gp-invariant if and only if it is

either ((0̄, 0̄), (0̄, 0̄)), ((1̄, 1̄), (1̄, 1̄)), or Vi where i is odd. When n = 3, IrrC is Gp-invariant

if and only if it is either ((0̄, 0̄), (0̄, 0̄), (0̄, 0̄)), ((0̄, 0̄), (1̄, 1̄), (1̄, 1̄)), ((0̄, 1̄), (1̄, 0̄), (1̄, 1̄)),

((0̄, 0̄), Vi) where i is odd, or ((1̄, 1̄), Vi) where i is even.

When n = 4, IrrC is Gp-invariant if and only if it is either ((0̄, 0̄), (0̄, 0̄), (0̄, 0̄), (0̄, 0̄)),

((0̄, 0̄), (0̄, 0̄), (1̄, 1̄), (1̄, 1̄)), ((0̄, 0̄), (0̄, 1̄), (1̄, 0̄), (1̄, 1̄)), ((0̄, 1̄), (1̄, 0̄), (0̄, 1̄), (1̄, 0̄)),

((1̄, 1̄), (1̄, 1̄), (1̄, 1̄), (1̄, 1̄)), or if it lies in

S(2,1,1)(Vi) =




{(Vi, (0̄, 0̄), (0̄, 0̄)), (Vi, (1̄, 1̄), (1̄, 1̄)) if i is odd

{(Vi, (0̄, 0̄), (1̄, 1̄)), (Vi, (0̄, 1̄), (1̄, 0̄))} if i is even

or if IrrC is of the form (Vi, Vj) where i+ j is even. Therefore, N2 = m+3, N3 = 2m+4

and N4 = 5 + 2(2m + 1) + (m + 1)2 = (m + 2)(m + 4).

Now assume that ψE(P ) = (1̄, 1̄). When n = 2, IrrC is Gp-invariant if and only if it is

either ((0̄, 0̄), (1̄, 1̄)), ((0̄, 1̄), (1̄, 0̄)), or Vi where i is even. When n = 3, IrrC is Gp-invariant

if and only if it is either ((0̄, 0̄), (0̄, 0̄), (1̄, 1̄)), ((1̄, 1̄), (1̄, 1̄), (1̄, 1̄)), ((0̄, 0̄), (0̄, 1̄), (1̄, 0̄)),

((0̄, 0̄), Vi) where i is even, or ((1̄, 1̄), Vi) where i is odd. When n = 4, IrrC is Gp-

invariant if and only if it is either ((0̄, 0̄), (0̄, 0̄), (0̄, 0̄), (1̄, 1̄)), ((0̄, 0̄), (0̄, 0̄), (0̄, 1̄), (1̄, 0̄)),

((1̄, 1̄), (1̄, 1̄), (0̄, 0̄), (1̄, 1̄)), ((1̄, 1̄), (1̄, 1̄), (0̄, 1̄), (1̄, 0̄)), or if it lies in

S(2,1,1)(Vi) =




{(Vi, (0̄, 0̄), (1̄, 1̄)), (Vi, (0̄, 1̄), (1̄, 0̄)) if i is odd

{(Vi, (0̄, 0̄), (0̄, 0̄)), (Vi, (1̄, 1̄), (1̄, 1̄))} if i is even

or if IrrC is of the form (Vi, Vj) where i + j is odd. Therefore, N2 = m + 2, N3 = 2m + 4

and N4 = 4 + 2(2m + 1) + m(m + 1) = (m + 2)(m + 3).

Reduction IV∗: If E has non-split reduction of type IV∗, then cp = 1. More pre-

cisely, Emin
Fp

consists of three irreducible components Γ, Θ, Λ of multiplicities 1, 2, 3 re-

spectively. The group Gp switches the two non-identity multiplicity-1 components, and
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it switches the two multiplicity-2 components Θ′, Θ′′ which are not defined over Fp.

Moreover, δ2(Θ) = 0̄, δ2(Θ
′) + δ2(Θ

′′) = 0̄, and δ3(Λ) = 0̄, see Proposition 6.2.5. When

n = 2, IrrC is Gp-invariant if and only if it consists of either (0̄, 0̄), (1̄, 2̄) or Θ. When

n = 3, IrrC is Gp-invariant if and only if it is either (0̄, 0̄, 0̄), (0̄, 1̄, 2̄), (0̄, Θ) or Λ. When

n = 4, IrrC is Gp-invariant if and only if it is either (0̄, 0̄, 0̄, 0̄), (0̄, 0̄, 1̄, 2̄), (1̄, 2̄, 1̄, 2̄),

(0̄, 0̄, Θ), (1̄, 2̄, Θ), (Θ, Θ), (Θ′, Θ′′) or (0̄, Λ). Hence N2 = 3, N3 = 4 and N4 = 8. 2

8.2 Proof of Theorem 8.1.1

Now we prove one of the implications of Theorem 8.1.1.

Proposition 8.2.1. Let C be a smooth curve over Qp defined by an integral genus one

equation of degree n with C(Qp) 6= ∅. Let Emin → SpecZun
p be the minimal proper regular

model of the Jacobian elliptic curve E. Let (C → SpecZun
p , α) be a minimal degree-n-

model for C → Pn−1
Qp

. If (C, α) is SpecZun
p -isomorphic to a minimal degree-n-model

defined over Zp, then IrrC is Gp-invariant.

Proof: Assume that (C, α) is isomorphic to a degree-n-model (C ′ → SpecZp, α
′). Set

β := α′−1α. It follows that if Γ is an irreducible component of C ′Fp
, then β∗(Γ) is an

irreducible component of CFp
with the same degree and multiplicity as Γ, see Theorem

5.1.4, hence IrrC′ coincides with IrrC . Now we will show that IrrC′ is Gp-invariant.

The model C ′ is obtained from Emin → SpecZun
p by contraction via a divisor D′.

Moreover, H0(Emin,OEmin(mD′)), m ≥ 1, is a free finitely generated Zp-module. Hence

the divisors D′|C′Qun
p

and D′|Emin
Fp

are Qp-rational and Fp-rational respectively. Since D′

intersects irreducible components of IrrC′ and no other components in Emin
Fp

, it follows

that if Γ ∈ IrrC′ , and hence there is an x ∈ (D′|Emin
Fp

) ∩ Γ 6= ∅, then Γσ ∈ IrrC′ for every

σ ∈ Gp, because xσ ∈ (D′|Emin
Fp

)σ ∩ Γσ = (D′|Emin
Fp

) ∩ Γσ. 2

The following Theorem is the main ingredient to proceed with the proof of the rest

of Theorem 8.1.1.

Theorem 8.2.2. Let E/Qp be an elliptic curve with minimal proper regular model

Emin → SpecZp. Let P ∈ E(Qp). Let n ∈ {1, 2, 3, 4}. Let (Γ1, . . . , Γm) be a tuple of

irreducible components of Emin
Fp

satisfying:

(i) The tuple (Γ1, . . . , Γm) is Gp-invariant.

(ii)
∑m

i=1 multFp
Γi = n.
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(iii)
∑m

i=1 δmi
(Γi) = ψE(P ) where mi = multFp

Γi.

Then there exists a divisor D on Emin → SpecZun
p such that:

(i) (D|E)σ = D|E for every σ ∈ Gal(Qun
p /Qp).

(ii) D.Γi = di. multFp
Γi, where di is the number of times Γi appears in (Γ1, . . . , Γm).

(iii) D|E ∼ (n− 1).0 + P.

Remark 8.2.3. Notice that the invariance of the tuple of components under Galois

action in Theorem 8.2.2, condition (i), was always satisfied when the residue field was

algebraically closed, see Lemma 7.2.2.

Now we need a few lemmas to prove Theorem 8.2.2.

Lemma 8.2.4. Let p be a prime and d an integer such that gcd(d, p) = 1. Let K be

a finite extension of Qp. Let E/K be an elliptic curve. Assume that E/K has additive

reduction. Then the group E0(K) is divisible by d.

Proof: Let k be the residue field of K. Recall that E1(K) = {P ∈ E(K) : P̃ = 0̃E}.
The group E0(K)/E1(K) is isomorphic to k+ because E has additive reduction. In

particular, E0(K)/E1(K) is divisible by d because (d, p) = 1. But the group E1(K)

is uniquely divisible by d, see ([17], Chapter 14, Corollary 1.3). Therefore, E0(K) is

divisible by d. 2

We know that E0(Qun
p )/dE0(Qun

p ) = 0, where (d, p) = 1, whatever the reduction

type of E is, see ([27], Chapter VII, Exercise 7.8).

If E/Qp has non-split reduction type, then there exists a finite unramified extension

K over which E has split reduction. This field extension is quadratic except possibly

when E has non-split reduction of type I∗0, then it is either quadratic or cubic.

Let d = [K : Qp] ∈ {2, 3}. We define the norm map NormK/Qp to be NormK/Qp :

E(K) → E(Qp); Q 7→ ∑d
i=1 Qσi

, where Gal(K/Qp) = 〈σ〉.

Lemma 8.2.5. Let p ≥ 5 be a prime. Assume that E/Qp has non-split reduction.

Let K be the smallest unramified extension over which E has split reduction. Then

NormK/Qp : E0(K) → E0(Qp) is surjective.

Proof: We first treat the additive case. So assume that E has non-split additive

reduction. Let Q ∈ E0(Qp). Since E0(Qp) is divisible by d = [K : Qp], see Lemma 8.2.4,

there is a Q′ ∈ E0(Qp) with dQ′ = Q. Now we have NormK/Qp(Q
′) = dQ′ = Q.
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Now we treat the multiplicative case. So assume E has non-split multiplicative re-

duction. We have [K : Qp] = 2. The non-singular reduction of E will be denoted by

Ẽns. Let k be the residue field of K. We denote the image of σ under the isomorphism

Gal(K/Qp) ∼= Gal(k/Fp) by σ again. Let Normk/Fp : Ẽns(k) → Ẽns(Fp); Q 7→ Q + Qσ.

Consider the following diagram.

0 // E1(K)

NormK/Qp

²²

// E0(K)

NormK/Qp

²²

// Ẽns(k)

Normk/Fp
²²

// 0

0 // E1(Qp) // E0(Qp) // Ẽns(Fp) // 0

To prove that NormK/Qp : E0(K) → E0(Qp) is surjective, we only need to show the

surjectivity of both NormK/Qp : E1(K) → E1(Qp) and Normk/Fp : Ẽns(k) → Ẽns(Fp).

Let Q ∈ E1(Qp). Since E1(Qp) is divisible by 2, there is a Q′ ∈ E1(Qp) such that

2Q′ = Q. Now NormK/Qp(Q
′) = 2Q′ = Q.

Now we will show the surjectivity of Normk/Fp . The isomorphism f : Ẽns(k) ∼= k∗

induces an isomorphism Ẽns(Fp) ∼= U := {u ∈ k∗ : Normk/Fp(u) = 1}. Moreover, the

k-automorphism σ−1fσf−1 : k∗ → k∗ is u 7→ u−1, see ([20], Exercise 10.2.7). Therefore,

the map Normk/Fp induces the map k∗ → U ; v 7→ v/vσ. Now according to Hilbert’s

Theorem 90, for u ∈ k∗ we have Normk/Fp(u) = 1 if and only if u = v/vσ for some

v ∈ k∗. Therefore, we deduce the surjectivity of Normk/Fp . 2

We need the following lemma which describes totally ramified extensions of Qp.

Lemma 8.2.6. Let L be a totally ramified extension of Qp with [L : Qp] = m, m =

2, 3, 4. Then the maximal unramified extension Lun of L is a Galois extension of Qun
p

with [Lun : Qun
p ] = m.

Proof: According to Corollary 3.4 of [13], since Qp is complete, Lun is a totally ramified

extension of Qun
p with [Lun : Qun

p ] = [L : L0], where L0 = L ∩Qun
p . But since L/Qp is a

totally ramified extension, it follows that L0 = Qp. Now by virtue of Proposition 5.2.2,

since Qun
p is a Henselian discrete valuation field with algebraically closed residue field,

we have Lun = Qun
p ( m

√
p), and Lun/Qun

p is Galois. 2

If Q = (x, y) ∈ E(Qp), then K(Q) will denote its field of definition Qp(x, y).

Proof of Theorem 8.2.2: The field k will always denote the residue field of K. The

image of σ under Gal(K/Qp) ∼= Gal(k/Fp) will be denoted by σ again. We will divide

the proof into several subcases:

(i) Assume that Λ := (Γ1, . . . , Γm) consists of one Gp-orbit. Then we have the

following three subcases:
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(1) If Λ consists of one irreducible component of multiplicity-n, then this component

Γ is defined over Fp and δn(Γ) = ψE(P ). We have two subcases:

– If n = 1, then set D = {P}.
– If n ≥ 2, then the reduction is additive. There exists a point x ∈ Γ defined

over Fp. According to ([20], Exercise 9.2.11 (c)), there exists a point Q′ ∈ E

such that {Q′} ∩ Γ = {x} and [K(Q′) : Qp] = n. Since x is defined over Fp,

it follows that the residue field of K(Q′) is Fp itself. Therefore, K(Q′)/Qp

is a totally ramified extension. Let L = K(Q′). According to Lemma 8.2.6,

Lun = Qun
p ( n
√

p). Let Gal(Lun/Qun
p ) = 〈λ〉. By the definition of δn we have

P ′ :=
∑n

i=1 Q′λi − P ∈ E0(Qp). Since E0(Qp) is divisible by n, see Lemma

8.2.4, we have P ′ = nS for some S ∈ E0(Qp). Now our divisor is D = {Q}
where Q = Q′ − S.

(2) If Λ consists of two irreducible components of multiplicity-m, then E has non-split

reduction over Qp, and this reduction splits over an unramified quadratic extension

K. Let Gal(K/Qp) = 〈σ〉. We have 2m = n, Λ = (Γ, Γσ) and δm(Γ) + δm(Γσ) =

ψE(P ). We have two further subcases to consider:

– If Γ is of multiplicity-1, then we pick x ∈ Γ to be defined over k. According to

Hensel’s Lemma, we can lift x to a point Q′ ∈ E(K). Since δm(Γ)+ δm(Γσ) =

ψE(P ), we have P ′ := Q′ + Q′σ − P ∈ E0(Qp). Lemma 8.2.5 shows that

P = S + Sσ for some S ∈ E(K). Set D = {Q} where Q = Q′ − S.

– If Γ is of multiplicity-2, then E has non-split reduction of type IV∗ over Qp.

Let x be a point on Γ defined over k. By virtue of ([20], Exercise 9.2.11

(c)), there exists a point Q′ ∈ E such that {Q′} ∩ Γ = {x} and K(Q′) is

a totally ramified extension of K with [K(Q′) : K] = 2. Let L = K(Q′),
then [Lun : Kun] = [L : L ∩ Kun] = [L : K] = 2, see ([13], Corollary 3.4).

Since K is an unramified extension of Qp, it follows that Kun = Qun
p . Let

Gal(Lun/Qun
p ) = 〈λ〉. If we assume that δ2(Γ) = 1̄, then by the definition of δ2

the point Q′+Q′λ reduces on the multiplicity-1 component corresponding to 1̄.

Similarly, Q′σ+(Q′σ)λ reduces on the multiplicity-1 component corresponding

to 2̄. Therefore, we have P ′ := Q′ + Q′λ + Q′σ + (Q′σ)λ − P ∈ E0(Qp). Since

E0(Qp) is divisible by 4, see Lemma 8.2.4, we have P ′ = 4S, then we set

D = {Q} where Q = Q′ − S.
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(3) If Λ consists of three irreducible components of multiplicity-1, then E has non-

split reduction of type I∗0 and cp = 1. The reduction splits over an unramified cubic

extension K. Let Gal(K/Qp) = 〈σ〉. We have Λ = (Γ, Γσ, Γσ2
), where Γσi 6= Γσj

if i 6= j, and
∑2

i=0 δ1(Γ
σi

) = ψE(P ). Let x ∈ Γ be a point defined over k. Lift x

to a point Q′ ∈ E(K), then we have P ′ := Q′ + Q′σ + Q′σ2 − P ∈ E0(Qp). There

is a point S ∈ E(Qp) such that P ′ = 3S, see Lemma 8.2.4. Set D = {Q} where

Q = Q′ − S.

(ii) Assume that Λ := (Γ1, . . . , Γm) consists of n Gp-orbits. Then m = n, multFp(Γi) = 1,

for each i, and
∑n

i=1 δ1(Γi) = ψE(P ). On each Γi we pick a point xi defined over Fp,

then we lift it to a point Qi ∈ E(Qp). We have P ′ :=
∑

Qi − P ∈ E0(Qp). Set

D =
∑n−1

i=1 {Qi}+ {Q′
n} where Q′

n = Qn − P ′.

(iii) Assume that Λ := (Γ1, . . . , Γm) consists of two Gp-orbits and m 6= 2. Then we have

the following three subcases:

(1) Each Gp-orbit consists of one irreducible component. We have two further subcases:

– Λ = (Θ, Γ) where multFp(Θ) = n − 1 and multFp(Γ) = 1. Pick x ∈ Γ to be

defined over Fp, then we lift it to P ′ ∈ E(Qp). According to (i)-(1), there

is a divisor D′ on Emin → SpecZp such that D′|E is Qp-rational, D′|E ∼
(n− 2).0 + (P − P ′), and D′.Θ = n− 1. Set D = D′ + {P ′}.

– Λ = (Θ1, Θ2) where multFp(Θi) = 2. Let P1 ∈ E(Qp) be such that δ2(Θ1) =

ψE(P1). Let P2 = P−P1. According to (i)-(1), there are two divisors D1, D2 on

Emin → SpecZp such that Di|E is Qp-rational, Di|E ∼ 0+Pi, and Di.Θi = 2,

where i ∈ {1, 2}. Set D = D1 + D2.

(2) One of the Gp-orbits consists of two components exactly. Then the reduction of E

splits over K where Gal(K/Qp) = {1, σ}. We have further two subcases:

– Λ = (Γ1, Γ
σ
1 , Γ2, Γ

σ
2 ) where multFp

Γi = 1 and Γi 6= Γσ
i , where i ∈ {1, 2}.

Let P1 ∈ E(Qp) be such that δ1(Γ1) + δ1(Γ
σ
1 ) = ψE(P1). Let P2 = P − P1.

According to (i)-(2), there are two divisors D1, D2 on Emin → SpecZun
p such

that Di|E is Qp-rational, Di|E ∼ 0 + Pi, and Di.Γi = Di.Γ
σ
i = 1, where

i ∈ {1, 2}. Set D = D1 + D2.

– Λ = (Θ, Γ, Γσ) where m := multFp(Θ) ∈ {1, 2} and Γ is a multiplicity-1

component such that Γ 6= Γσ. Let P1 ∈ E(Qp) be such that δ2(Θ) = ψE(P1).

Let P2 = P−P1. According to (i)-(1) and (i)-(2), there are two divisors D1, D2

on Emin → SpecZun
p such that Di|E is Qp-rational, D1|E ∼ (m − 1).0 + P1,

D1.Θ = m, D2|E ∼ 0 + P2 and D2.Γ = D2.Γ
σ = 1. Set D = D1 + D2.
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(3) One of the Gp-orbits consists of three components exactly. Then E has non-split

reduction of type I∗0, and the reduction splits over K where Gal(K/Qp) = {1, σ, σ2}.
Moreover, we have Λ = (Γ, Γσ, Γσ2

, Γ′) where multFp Γ′ = 1 and Γσi 6= Γσj
if i 6= j.

Let P ′ ∈ E(Qp) be such that δ1(Γ
′) = ψE(P ′). According to (i)-(3), there is a

divisors D′ on Emin → SpecZun
p such that D′|E isQp-rational, D′|E ∼ 2.0+(P−P ′)

and D′.Γσi
= 1. Set D = D′ + {P ′}.

(iv) Assume that Λ consists of three Gp-orbits and m 6= 3. We have two further subcases:

(1) Each Gp-orbit consists of one component, and hence Λ = (Θ, Γ1, Γ2), where multFp(Θ) =

2 and multFp(Γi) = 1. Let Pi ∈ E(Qp) be such that δ1(Γi) = ψE(Pi), i ∈
{1, 2}. Let P ′ := P − P1 − P2. According to (i)-(1), there is a divisor D′ on

Emin → SpecZp such that D′|E is Qp-rational, D′|E ∼ 0 + P ′, and D′.Θ = 2. Set

D = D′ + {P1}+ {P2}.

(2) One of the Gp-orbits consists of two components. Then the reduction of E splits

over K, where Gal(K/Qp) = {1, σ}, and Λ = (Γ, Γσ, Γ1, Γ2), where Γ 6= Γσ and

multFp(Γi) = 1. Let Pi ∈ E(Qp) be such that δ1(Γi) = ψE(Pi), i ∈ {1, 2}. Let

P ′ := P −P1−P2. According to (i)-(2), there is a divisor D′ on Emin → SpecZun
p

such that D′|E is Qp-rational, D′|E ∼ 0 + P ′, and D′.Γ = D′.Γσ = 1. Set D =

D′ + {P1}+ {P2}.

2

Now Theorem 8.1.1 follows as a direct consequence of Theorem 8.2.2.

Proof of Theorem 8.1.1: Proposition 8.2.1 shows that if C is isomorphic to a

minimal degree-n-model defined over Zp, then IrrC is Gp-invariant. So we assume that

the tuple IrrC is Gp-invariant. The model C is obtained from Emin by contraction via a

divisor D, see Theorem 4.0.1. We want to construct a divisor D′ such that OEmin(D) ∼=
OEmin(D′) and H0(Emin,OEmin(mD′)), m ≥ 1, is a finitely generated free Zp-module.

Therefore, C ′ = Proj(
⊕∞

m=0 H0(Emin,OEmin(mD′))) → SpecZp is a minimal degree-n-

model isomorphic to C, see Theorem 4.2.3.

The tuple IrrC = (Γ1, . . . , Γm) satisfies the conditions of Theorem 8.2.2, for the

condition
∑m

i=1 δmi
(Γi) = ψE(P ) we follow the same argument as in the proof of Lemma

7.2.1. Therefore, there exists a divisor D′ on Emin → SpecZun
p such that (D′|E)σ = D′|E

for every σ ∈ Gal(Qun
p /QP ), D′.Γi = di. multFp

Γi, where di is the number of iterations

of Γi in the tuple (Γ1, . . . , Γm), and D′|E ∼ (n − 1).0 + P. It is clear that D|E ∼ D′|E
and D|Emin

Fp
∼ D′|Emin

Fp
, hence OEmin(D) ∼= OEmin(D′), see ([20], Exercise 9.1.13). 2
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8.3 Counting global models

Let n ∈ {2, 3, 4}. Now we are in a place to find the number N of minimal global degree-

n-models for a smooth curve C → Pn−1
Q defined by a genus one equation of degree n

such that C(Qp) 6= ∅ for every prime p. In the previous two sections we managed to

find the number Np of minimal degree-n-models for C → Pn−1
Qp

, at each prime p ≥ 5. In

this section, we relate N to the Np’s using Chinese Remainder Theorem.

If m ∈ Z, then we set

P (m) = {2, 3, p | p ≥ 5 is a prime , p2 | m}.

The main result of this chapter is the following Theorem.

Theorem 8.3.1. Let C → Pn−1
Q be a smooth curve defined by a genus one equation of

degree n. Assume that C(Qp) 6= ∅ for every prime p. Let E/Q be the Jacobian elliptic

curve of C and let ∆ be its minimal discriminant. Let N and Np denote the numbers of

minimal global degree-n-models for C → Pn−1
Q , up to isomorphism, and minimal degree-

n-models for C → Pn−1
Qp

, up to isomorphism, respectively. Then

N =
∏

p∈P (∆)

Np.

To prove Theorem 8.3.1 we will show that the map λ defined by

{minimal global degree-n-models for C/Q} −→
∏

p∈P (∆)

{minimal degree-n-models for C/Qp}

(C, α) 7→ ((C, α), . . . , (C, α))

is a bijection. Notice that the above two sets of degree-n-models are defined up to

isomorphism. Theorem 8.3.1 follows immediately from the bijectivity of λ.

Notice that our work enables us to compute Np for each prime p ≥ 5. Before pro-

ceeding with the proof of Theorem 8.3.1 we need two Lemmas on matrices.

Lemma 8.3.2. Let A ∈ GLn(Qp)∩Matn(Zp) have coprime entries. Then there exist ma-

trices U ∈ GLn(Z) and V ∈ GLn(Zp) such that A = V DU, where D = diag(pr1 , . . . , prn−1 , 1)

and r1 ≥ . . . ≥ rn−1.

Proof: We claim that there exists a matrix B ∈ GLn(Q) ∩Matn(Z) such that V ′ :=

BA−1 ∈ GLn(Zp). Granted this claim we write the Smith Normal Form for the matrix

B, so we have B = U ′D′DU where U,U ′ ∈ GLn(Z), D′ is a diagonal matrix whose
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entries are not divisible by p, and D = diag(pr1 , . . . , prn−1 , 1), r1 ≥ . . . ≥ rn−1. Then we

set V := V ′−1U ′D′ ∈ GLn(Zp), hence we are done.

To prove the claim, assume that A = (aij)i,j. Recall that every element in Zp can be

written uniquely as
∑

i≥0 aip
i, where ai ∈ Z satisfies 0 ≤ ai ≤ p − 1. Let m > 0 be an

integer large enough such that the matrix B = (aij mod pm)i,j ∈ GLn(Q) ∩Matn(Z).

Now we have BA−1 ≡ idn mod pm and hence BA−1 ∈ GLn(Zp). 2

Lemma 8.3.3. Let S = {p1, . . . , pm} be a finite set of primes. Let Ui ∈ SLn(Z) and

mi > 0 be an integer, 1 ≤ i ≤ m. Then there exists U ∈ SLn(Z) such that U ≡ Ui

mod pmi
i for every i, 1 ≤ i ≤ m.

Proof: That is Lemma 3.2 of [14]. 2

Recall that if R is a ring, then Gn(R) is the group of transformations of the form

[µn, An], where An ∈ GLn(R), µn ∈ R∗ when n = 2, 3, and µ4 ∈ GL2(R), see §2.1.

Lemma 8.3.4. Let φ and φ′ be two minimal Gn(Qp)-equivalent genus one equations of

degree n with coefficients in Z and Zp respectively. Then φ′ is Gn(Zp)-equivalent to a

minimal genus one equation of degree n whose coefficients lie in Z.

Proof: Assume that φ′ is obtained from φ via [µn, An] in Gn(Qp). For r ∈ Q∗p, the

following transformations are identical:

[µn, An] = [r−2µn, rAn] when n = 2, 4, and [µ3, A3] = [r−3µ3, rA3].

Therefore, we can assume that An has coprime entries in Zp. Lemma 8.3.2 allows us to

write An = VnDnUn where Vn ∈ GLn(Zp), Un ∈ GLn(Z), and Dn = diag(pr1 , . . . , prn−1 , 1).

Similarly, we can write µ4 = ν ′4τ4ν4 where ν ′4 ∈ GLn(Zp), ν4 ∈ GLn(Z), and τ4 =

diag(p−m, p−n).

Let ψ be the Z-integral genus one equation obtained from φ via the transformation

[1, Un] when n = 2, 3, and via [ν4, U4] when n = 4. Then ψ lies in the same Gn(Z)-

equivalence class as φ. Let φ′′ be the genus one equation obtained from ψ via the

transformation [µ′n, Dn], where µ′2 = (det D2)
−2, µ′3 = (det D3)

−1, and µ′4 = τ4. It is

clear that φ′′ is Gn(Zp)-equivalent to φ′. We claim that φ′′ has coefficients in Z. If it is

not the case, then some of the coefficients of the polynomials defining φ′′ would lie in
1
pkZ ⊂ 1

pkZp for some k > 0. But φ′′ is obtained from φ′ via [ωn, V −1
n ], where ωn ∈ Z∗p

when n = 2, 3, and ω4 ∈ GL2(Zp), and since φ′ is Zp-integral, it follows that φ′′ should

be Zp-integral, which is a contradiction. 2

The following lemma, ([28], Chapter IV, Lemma 9.5), will be used to justify our

choice of the set of prime numbers P (∆).
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Lemma 8.3.5. Let K be a discrete valuation field with normalised valuation ν. Let E

be an elliptic curve over K with discriminant ∆. If ν(∆) = 1, then E has reduction of

type I1.

Proof of Theorem 8.3.1: First we will show that the map λ is well defined. Let

(C1, α1) and (C2, α2) be two isomorphic minimal global degree-n-models for C → Pn−1
Q .

Then α := α−1
2 α1 : (C1)Qp → (C2)Qp is defined by an element in Gn(Z) ↪→ Gn(Zp) for

every prime p, i.e., (C1, α1) and (C2, α2) have the same image under λ.

To show that λ is injective, let (C1, α1) and (C2, α2) be two minimal global degree-

n-models for C → Pn−1
Q with the same image under λ. We need to show that (C1, α1)

and (C2, α2) are isomorphic. Let α := α−1
2 α1. The map α is defined by an element

[µ,A] ∈ Gn(Q). We can assume that A ∈ Matn(Z) has coprime entries. Since (C1, α1)

and (C2, α2) have the same image under λ, hence SpecZp-isomorphic for every p ∈ P (∆),

it follows that A ∈ GLn(Zp), and so p - det A. If p 6∈ P (∆), then E/Qp has either

reduction types I0 or I1, see Lemma 8.3.5. But according to Corollary 7.1.2, when E

has either reduction types I0 or I1, there is a unique degree-n-model for C → Pn−1
Qp

.

That means that for p 6∈ P (∆), (C1, α1) and (C2, α2) are isomorphic as degree-n-models

for C → Pn−1
Qp

. Hence A ∈ GLn(Zp) for every prime p, in particular p - det A. Thus

det A = ±1 and A ∈ GLn(Z).

Now we will prove the surjectivity of λ. We will assume without loss of generality

that the defining genus one equation φ of C has coefficients in Z and that the associated

discriminant is everywhere minimal.

Let P (∆) = {p1, . . . , pm} where m ≥ 2. Let (Ci → SpecZpi
, αi), where 1 ≤ i ≤ m,

be a minimal degree-n-model for C → Pn−1
Qpi

. We want to construct a minimal global

degree-n-model (C, α) for C → Pn−1
Q such that α−1αi : (Ci)Qpi

→ C is defined by an

element in Gn(Zpi
) for each i. Let φi be the defining genus one equation of Ci.

By virtue of Lemma 8.3.4, φi is GLn(Zpi
)-equivalent to a genus one equation φ′i with

coefficients in Z. In fact, according to the proof of Lemma 8.3.4, φ′i is obtained from φ via

[µi, DiUi] where Di = diag(p
ri,1

i , . . . , p
ri,n−1

i , 1), Ui ∈ GLn(Z), and µi is a scaling element.

In fact, we can assume that Ui ∈ SLn(Z) as if det Ui = −1, then we replace φ′i by the

Gn(Z)-equivalent genus one equation obtained by acting on φ′i by Vi = diag(−1, . . . , 1),

and we replace Ui by UiVi.

According to Lemma 8.3.3, given integers mi > 0, there exists a matrix U ∈ SLn(Z)

such that U ≡ Ui mod pmi
i for every i. We note that

∏m
i=1 DiUU−1

j D−1
j ≡ ∏

i 6=j Di

mod p
mj

j . Therefore, the genus one equation ψ obtained from φ via the transformation

[
∏m

i=1 µi,
∏m

i=1 DiU ] is Gn(Zpj
)-equivalent to φ′j, for every j.

Now we want to show that ψ is Z-integral. This will imply that ψ defines a mini-

mal global degree-n-model for C → Pn−1
Q which is SpecZpj

-isomorphic to (Cj, αj), for
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every j. Hence we will be done with the surjectivity. Assume on the contrary that

ψ is not Z-integral. Since ψ is obtained from the Z-integral genus one equation φ via

[
∏m

i=1 µi,
∏m

i=1 DiU ], it follows that some of the coefficients of the defining polynomials

of ψ lie in 1
b
Z, b = pl1

1 pl2
2 . . . plm

m , where li ≥ 0 and lj > 0 for some j ∈ {1, . . . , m}. We

have shown that ψ is Gn(Zpj
)-equivalent to the Z-integral genus one equation φ′j. It

follows that ψ is Zpj
-integral, which is a contradiction. 2

We give the following examples which show that the number of minimal global

degree-n-models, up to isomorphism, for a given smooth genus one curve agrees with

the result given by Theorem 8.3.1. Since our counting results work for minimal degree-

n-models for genus one curves defined over Qp when p ≥ 5, we choose our examples such

that the number of minimal degree-n-models defined over Zm, where m ∈ {2, 3}, is 1.

Therefore, there is no contribution of the primes 2, 3 towards the counting recipe given

in Theorem 8.3.1.

Moreover, the genus one equations of degree 2 and 3 given below are not reduced.

In fact, we moved the zeros of the defining polynomials to our favorite places to allow

applying diagonal matrices whose entries are powers of the bad primes of the Jacobian.

The calculations included in the examples below are performed using MAGMA, see [6].

Nn(T ) will denote the number of minimal degree-n-models when the reduction of the

Jacobian is of type T , see Corollary 8.1.4.

Example 8.3.6. The elliptic curve E : y2 + xy = x3 − x2 + 6603008 x − 1118312959

has bad primes 5, 7, and 11. E has reduction of types II∗, non-split I7, and III∗ at

these primes respectively. Consider the following minimal global genus one equation φ2

of degree 2.

y2 = f(x, z) = 820018280652573365 x4 + 405939973623867606 x3z +

75358348438862775 x2z2 + 6217537401171250 xz3 + 192369718165625z4.

The equation φ2 defines an everywhere locally soluble element C in the 2-Selmer group

of E. Let C be the minimal global degree-2-model defined by φ2.

We claim that C → SpecZ2 is the unique minimal degree-2-model for C. Assume on

the contrary that there is another minimal degree-2-model for C/Q2 defined by a genus

one equation φ′. The equation φ′ is obtained from φ via an element (α,A) ∈ G2(Q2).

Smith Normal Forms for matrices allow us to write A = V BU , where U, V ∈ GL2(Z2)

and B is a diagonal matrix whose entries are powers of 2. Therefore, f(x, z) mod 2 has

at least one zero, and the matrix U will move this zero to either (0, 1) or (1, 0). But

f(x, z) ≡ (x2 + xz + z2)2 mod 2, in particular f(x, z) has no zeros over F2 which is a

contradiction. We deduce that the number of minimal degree-2-models for C/Q2 is 1.
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The model C → SpecZ3 is smooth, and hence it is the unique degree-2-model for

C/Q3, see Corollary 5.1.5. Hence the number of minimal global degree-2-models for C

is N2(II
∗)×N2(I7)×N2(III

∗) = 3× 4× 2 = 24, see Theorem 8.3.1.

The defining genus one equations of the minimal global degree-2-models for C are

obtained from φ2 via the following transformations in G2(Q).

[1/(52i × 72j × 112k), diag(5i × 7j, 11k)], where 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, 0 ≤ k ≤ 1.

Example 8.3.7. Consider the elliptic curve E : y2 + xy = x3 − x2 − 617x + 5916. It

has reduction of types III∗ and I2 at its bad primes 5 and 19 respectively. The following

minimal global genus one equation φ3 of degree 3 defines an everywhere locally soluble

element C in the 3-Selmer group of E.

21686353648850 x3 + 234081254700017 x2y + 9338329782950 x2z + 842219868972245 xy2 +

67198263238095 xyz + 1340388284750 xz2 + 1010096983050575 y3 + 120889031707155 y2z +

4822691362750 yz2 + 64131409475 z3 = 0.

The minimal degree-3-model C → SpecZm, m = 2, 3, defined by φ3 is smooth. There-

fore, according to Corollary 5.1.5, this model C is the unique minimal degree-3-model for

C/Qm. Hence the number of minimal global degree-3-models for C is N3(III
∗)×N3(I2) =

6×2 = 12, see Theorem 8.3.1. These models have defining genus one equations obtained

from φ3 via the following transformations in G3(Q).

[1, id3], [1/5, diag(5, 1, 1)], [1/5, diag(1, 5, 1)],

[1/25, diag(5, 5, 1)], [1/25, diag(5, 1, 5)], [1/25, diag(1, 25, 1)],

[1/19, diag(1, 1, 19)], [1/95, diag(5, 1, 19)], [1/95, diag(1, 5, 19)],

[1/475, diag(5, 5, 19)], [1/475, diag(5, 1, 95)], [1/475, diag(1, 25, 19)].

Example 8.3.8. Let E : y2 +xy + y = x3− 4 x− 3. The curve C : y2 = −3 x4 +2 x3 +

7 x2− 2 x− 3 represents an element in the 2-Selmer group of E. A second 2-descent on

C gives the following minimal global genus one equation φ4 of degree 4.

x2
1 − x1x3 − x2

2 + x2x4 + x2
3 = 0,

x1x4 + x2
2 + x2x3 − x2x4 + x2

3 − x3x4 = 0.

The equation φ4 defines a smooth genus one curve C4/Q. The discriminant ∆ of E is

185. Therefore, we have P (∆) = {2, 3}. But the equation φ4 defines a smooth minimal

degree-4-model C → SpecZm, m = 2, 3. Therefore, according to Corollary 5.1.5, this

model C is the unique minimal degree-4-model for C4/Qm. Hence the minimal global

degree-4-model C → SpecZ defined by φ4 is unique, see Theorem 8.3.1.
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Appendix A

Insoluble degree-n-models

In this appendix K will denote a complete discrete valuation field with ring of integers

OK and normalised valuation ν. We will fix a uniformiser t and write k for OK/tOK .

We will assume that k is algebraically closed and that char k = p 6= 2, 3. We set S =

SpecOK .

We count the number of minimal degree-n-models for a curve C given by a genus

one equation of degree n when C(K) = ∅.

A.1 Special fibers

Let C be a smooth genus one curve over K given by a minimal genus one equation φ of

degree n = 2, 3, 4, with C(K) = ∅. Let C be a degree-n-model for C → Pn−1
K . We start

by classifying the possibilities of the special fiber Ck.

Proposition A.1.1. Let C be a smooth projective curve over K. Then C(K) 6= ∅ if

and only if C admits a model C over S whose special fiber Ck contains an irreducible

component of multiplicity 1.

Proof: See ([20], Exercise 10.1.5). 2

Corollary A.1.2. Let C be a smooth curve over K given by a genus one equation of

degree n ≥ 2. Assume that C(K) = ∅. Let C be a degree-n-model for C → Pn−1
K . Then

Ck is

(i) if n = 2, a double line

(ii) if n = 3, a triple line
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(iii) if n = 4, either a double conic, two double lines, or a quadruple line.

Proof: We consider the possibilities for Ck given in §3.2. Since C(K) = ∅, Ck must not

contain multiplicity-1 components, see Proposition A.1.1. The only such forms of the

special fiber are the ones given in the statement of the corollary. 2

Let E be an elliptic curve over K with reduction type T , where

T ∈ {Im, I∗m, m ≥ 0, II, II∗, III, III∗, IV, IV∗}.

If l ≥ 0 is an integer, then we denote by lT the new type obtained from T by multiplying

all the multiplicities of T by l.

We will state some facts which will help us determine the reduction type of C when

C(K) = ∅.

Theorem A.1.3. Let X be a smooth projective curve of genus 1 over K and let E be

its Jacobian. Let Xmin → S and Emin → S be the minimal proper regular models of X

and E respectively. Let m denote the order of the element of H1(K, E) corresponding

to the torsor X. If T denotes the type of E, then X is of type mT .

Proof: See ([21], Theorem 6.6). 2

The following proposition is Corollary 7.4 in [21].

Proposition A.1.4. Let X be a smooth projective curve of genus 1 over K with minimal

proper regular model Xmin. Assume that the Jacobian E of X has additive reduction.

Let Γ1, ..., Γn be the irreducible components of Xmin
k of respective multiplicities r1, ..., rn.

If r := gcd(r1, ..., rn) > 1, then r = ps for some s ≥ 1 where p = char k.

Theorem A.1.5. Let K be a complete discrete valuation field with ring of integers

OK and algebraically closed residue field k with char k = p 6= 2, 3. Let C be a smooth

genus one curve given by a minimal genus one equation φ of degree n = 2, 3, 4. Assume

moreover that C(K) = ∅. Then the Jacobian E of C has reduction type Im, m ≥ 0.

Moreover, the minimal proper regular model Cmin of C has special fiber of type

(i) 2Im if φ is of degree 2,

(ii) 3Im if φ is of degree 3,

(iii) either 2Im or 4Im if φ is of degree 4.
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Proof: Theorem A.1.3 implies that Cmin has reduction type lT where l is the order of

the element of H1(K, E) corresponding to the torsor C and T is the reduction type of

E. The order of an element of H1(K, E) is equal to the greatest common divisor of the

degrees of K-rational divisors on C. Since C(K) = ∅, the order l of C in H1(K, E) is n

when n = 2, 3, and it is either 2 or 4 when n = 4.

Now we want to find T. Assume on the contrary that E has additive reduction. Then

according to Proposition A.1.4, since l is the greatest common divisor of the irreducible

components of Cmin
k because Cmin

k is of the form lT, we have l = ps for some s > 1,

which is a contradiction as p 6= 2, 3. Therefore, the reduction type T of E is Im, m ≥ 0.

2

A.2 Insoluble degree-n-models, n = 2, 3

Recall that if f(x1, . . . , xm) ∈ OK [x1, . . . , xm], then we write fi(x1, . . . , xm) = f(x1, . . . , xm)/ti.

We start by describing the special fiber of a minimal degree-n-model for a smooth genus

one curve C → Pn−1
K , for n = 2, 3, where C(K) = ∅.

Lemma A.2.1. Let φ be a minimal genus one equation of degree n = 2, 3. Assume that

φ defines a smooth curve C over K with C(K) = ∅. Let C be the minimal degree-n-

model for C → Pn−1
K defined by φ. Assume that Ck contains the multiplicity-n irreducible

component {y = 0}. Then

(i) if φ : y2 = f(x, z) where ν(f) = 1, then f1(x, z) = (α1x − α2z)4 mod t for some

αi ∈ k,

(ii) if φ : by3 + f(x, z)y2 + g(x, z)y + h(x, z) where ν(b) = 0, ν(f), ν(g) ≥ 1, ν(h) = 1,

then h1(x, z) = (α1x− α2z)3 mod t for some αi ∈ k.

Proof: (i) If f1(x, z) mod t contains a linear factor, i.e., we can assume f1(x, z) =

xf ′(x, z) mod t where x - f ′(x, z), then Hensel’s Lemma allows us to lift 0 to x0 ∈ OK

with f1(x0, 1) = 0. Therefore, (x0, 0, 1) ∈ C(K), a contradiction.

Assume f(x, 1) = ax4 + bx3 + cx2 + dx + e. If f1(x, z) mod t contains two quadratic

factors, i.e., we can assume f1(x, z) = x2z2 mod t, then t2 | a, b, d, e, t || c. Therefore,

ν(c4) = 2, ν(c6) = 3 where c4, c6 are the invariants associated to φ, see §2.1. That

contradicts the fact that the Jacobian elliptic curve y2 = x3−27c4x−54c6 has reduction

of type Im, m ≥ 0, see Theorem A.1.5.

(ii) If h1(x, z) mod t contains a linear factor, i.e., we can assume h1(x, z) = xh′(x, z)

mod t where x - h′(x, z), then Hensel’s Lemma allows us to lift 0 to x0 ∈ OK with

h1(x0, 1) = 0. Therefore, (x0 : 0 : 1) ∈ C(K), which is a contradiction. 2
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Remark A.2.2. If C is given by a minimal genus one equation y2 = f(x, z) = ax4 +

bx3z + cx2z2 +dxz3 + ez4 and C(K) = ∅, then we can assume that f1(x, z) = x4 mod t,

see Lemma A.2.1 (i). Therefore, ν(a) = 1 and min{ν(b), ν(c), ν(d), ν(e)} ≥ 2. Indeed,

ν(e) ≥ 3 since otherwise f2(tx, z) 6≡ 0 mod t which contradicts Corollary A.1.2 (i).

If ν(e) ≥ 4 then ν(d) = 2 otherwise f2(tx, z) is not minimal, but then f3(tx, z) has

a linear factor which contradicts Lemma A.2.1 (i). Therefore, ν(e) = 3. Moreover, if

ν(d) = 2 then again f3(tx, z) has a linear factor.

To summarise, we can assume that ν(a) = 1, min{ν(b), ν(c)} ≥ 2, ν(d) ≥ 3, and

ν(e) = 3.

Let C be given by a minimal genus one equation F (x, y, z) = by3 + f(x, z)y2 +

g(x, z)y + h(x, z) = 0 where g(x, z) = a2x
2 + mxz + c2z

2 and h(x, z) = ax3 + a3x
2z +

c1xz2+cz3. We will assume that C(K) = ∅, ν(b) = 0, ν(f), ν(g) ≥ 1 and ν(h) = 1. Then

according to Lemma A.2.1 (ii) we can assume that h1(x, z) = x3 mod t and therefore

ν(a) = 1, min{ν(a3), ν(c1), ν(c)} ≥ 2 and c 6= 0.

Indeed, we have ν(c) = 2 and ν(c2) ≥ 2, since otherwise the equation F2(tx, ty, 1) = 0

would define a minimal degree-3-model for C → P2
K whose special fiber is a double line

and a line which contradicts Corollary A.1.2 (ii).

A curve defined by a genus one equation with coefficients of the above valuations is

called a critical model in [11].

Theorem A.2.3. Assume that C is a smooth curve given by a minimal genus one

equation φ1 of degree n = 2, 3. Assume moreover that C(K) = ∅. Then the number of

minimal degree-n-models for C → Pn−1
K is n.

Proof: n = 2 : The equation φ1 : y2 = f(x, 1) = ax4 +bx3 +cx2 +dx+e where t || f(x)

defines a minimal degree-2-model C1 for C. According to Remark A.2.2 we are allowed

to assume that ν(a) = 1, min{ν(b), ν(c)} ≥ 2, ν(d) ≥ 3, and ν(e) = 3. We claim that

the models (C1, id) and (C2, α2), where C2 is given by φ2 : y2 = f2(tx, 1) and hence α2 is

defined by the matrix diag(t, 1), are the only minimal degree-2-models for C → P1
K . So

assume that (C3, α3) is another minimal degree-2-model for C → P1
K . We will show that

C3 is isomorphic to either C1 or C2. Assume that C3 is defined by the genus one equation

φ3 : y2 = 1
(det A)2

f(a1(x, z), a2(x, z)) where

A =


 a11 a12

a21 a22


 ,

and ai(x, z) = a1ix+a2iz, i = 1, 2, moreover we will assume that A has coprime entries.

If t | det A, then t2 | f(a1(x, z), a2(x, z)) because φ3 is integral, hence t | a1(x, z) because
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ν(a) = 1. If t2 | det A, then t4 | f(a1(x, z), a2(x, z)) and so t | a2(x, z) because ν(e) = 3.

Therefore, if det A is divisible by a power of t which is greater than 1, then t divides

each entry of A which contradicts our assumption. Thus we can assume that if t | det A,

then t || det A.

Now assume that C3 is not isomorphic to C1, hence t || det A. We will show that

C3 must be isomorphic to C2. Writing A in a Smith Normal Form we can assume that

A = B′TB, where

B′ ∈ GL2(OK), T =


 t 0

0 1


 , and B =


 b11 b12

b21 b22


 ∈ GL2(OK).

We apply the matrix B′−1 which does not change the isomorphism class of C3. So we

can assume without loss of generality that A = TB. The defining genus one equation

φ3 : y2 = f ′(x, z) of C3 satisfies f ′(x, z) = TBT−1.f2(tx, z). So we only need to show

that TBT−1 ∈ GL2(OK). Noting that

TBT−1 =


 b11 tb12

b21/t b22


 ,

we have to show that t | b21. Let e′ be the coefficient of the z4-term in

f ′(x, z) = f(t(b11x + b21z/t), tb12x + b22z)/t2.

Hence e′ = f ′(b21, b22)/t
2 ≡ ab4

21/t
2 mod OK . Since ν(a) = 1, we conclude that t | b21,

since otherwise φ3 is not integral.

n = 3 : Let φ1 be given by F (x, y, z) = by3 + f(x, z)y2 + g(x, z)y + h(x, z) = 0 where

g(x, z) = a2x
2+mxz+c2z

2, h(x, z) = ax3+a3x
2z+c1xz2+cz3, and ν(f), ν(g), ν(h) ≥ 1.

By virtue of Remark A.2.2, we can assume that ν(a) = 1, min{ν(a3), ν(c1), ν(c2)} ≥
2, ν(c) = 2, and c 6= 0. We claim that the models (C1, id), (C2, α2) and (C3, α3) given by

the genus one equations F (x, y, z) = 0, φ2 : F1(x, ty, z) = 0, and φ3 : F2(tx, ty, z) = 0

respectively are the only degree-3-models for C → P2
K . So assume that (C4, α4) is another

degree-3-model for C → P2
K and we want to prove that C4 is isomorphic to one of the

Ci’s, i = 1, 2, 3. Let C4 be given by φ4 : 1
det A

F (a1(x, y, z), a2(x, y, z), a3(x, y, z)) = 0

where

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ,
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and ai(x, y, z) = a1ix + a2iy + a3iz, i = 1, 2, 3, moreover we assume that A has coprime

entries. If t3 | det A, then t | a2(x, y, z) because φ4 is integral and ν(b) = 0, similarly

t | a1(x, y, z) because ν(a) = 1, and t | a3(x, y, z) because ν(c) = 2, i.e., if t3 | det A, then

that contradicts our assumption that A has coprime entries. Therefore, ν(det A) ≤ 2.

Now we assume that C4 is not isomorphic to C1, hence we can assume that A is written

as TB where

T =




tr1 0 0

0 tr2 0

0 0 1


 , B =




b11 b12 b13

b21 b22 b23

b31 b32 b33


 ∈ GL3(OK),

and r1 ≥ r2, r1 + r2 ≤ 2. We first eliminate the possibility of r1 = 2, r2 = 0. That is

because if we have a genus one equation of degree 3 which is K-equivalent to φ1 and

given by

F ′(x, y, z) = Ax3 + By3 + Cz3 + A2X
2Y + A3X

2Z + B1Y
2X

+ B3Y
2Z + C1Z

2X + C2Z
2Y + MXY Z

such that F ′
2(t

2x, y, z) ∈ OK [x, y, z], then we have t2 | B, C, B3, C2. But the model

corresponding to the integral genus one equation F ′
2(t

2x, y, z) = 0 has a triple line special

fiber, see Corollary A.1.2, and the reduction of F ′
2(t

2x, y, z) mod t contains no y3, z3-

terms, therefore t | A2, A3, B1, C1,M. Now the equation F ′(x, y, z) = 0 is not minimal

as we can minimise it using the transformation F ′
2(tx, y, z). So either r1 = 1, r2 = 0 or

r1 = r2 = 1.

We will show that if r1 = r2 = 1, then C4 is isomorphic to C3. The case when

r1 = 1, r2 = 0 is similar and we have C4 is isomorphic to C2. Let r1 = r2 = 1. We need

to show that TBT−1 ∈ GL3(OK). We notice that for r1 = r2 = 1 we have

TBT−1 =




b11 b12 tb13

b21 b22 tb23

b31/t b32/t b33


 ,

so we have to prove that t | b31, b32. C4 is defined by the equation

TBT−1.F2(tx, ty, z) = F (t(b11x+b21y+b31z/t), t(b12x+b22y+b32z/t), tb13x+tb23y+b33z)/t2 = 0.

In the above polynomial the coefficient of z3 is c′ = F (b31, b32, b33)/t
2. If ν(b32) = 0, then

since ν(b) = 0, we would have ν(c′) = −2, which contradicts the integrality of the genus

one equation above. Hence ν(b32) ≥ 1. Now if ν(b31) = 0, then since ν(a) = 1, we would

have ν(c′) = −1, which is again a contradiction. Therefore, t | b31, b32. 2
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A.3 Insoluble degree-4-models

Let φ be a genus one equation of degree 4 given by {F (x1, . . . , x4) = G(x1, . . . , x4) = 0}
where F and G are given by the following polynomials respectively

a1x
2
1 + a2x1x2 + a3x1x3 + a4x1x4 + a5x

2
2 + a6x2x3 + a7x2x4 + a8x

2
3 + a9x3x4 + a10x

2
4,

b1x
2
1 + b2x1x2 + b3x1x3 + b4x1x4 + b5x

2
2 + b6x2x3 + b7x2x4 + b8x

2
3 + b9x3x4 + b10x

2
4.

(A.1)

Assume that φ defines a smooth curve C with C(K) = ∅. Then Corollary A.1.2 (iii)

implies that the special fiber of any degree-4-model for C → P3
K is either a double conic,

two double lines, or a quadruple line.

In Chapter 3 we introduced conditions for a degree-4-model for C to be normal and

we determined its singular locus. We are going to investigate the singular locus of a

minimal degree-4-model for C → P3
K under the assumption that C(K) = ∅. Then we

show that unlike the case when n = 2, 3, the number of minimal degree-4-models for

C → P3
K can be arbitrarily large.

We start by stating the following version of Hensel’s Lemma.

Lemma A.3.1. Let f1, . . . , fr ∈ OK [x1, . . . , xn], r ≤ n. Let x ∈ On
K be such that fi(x) =

0 mod t for every i and

rank(
∂fi

∂xj

(x) mod t) ≥ r.

Then there exists a y ∈ On
K such that y ≡ x mod t and fi(y) = 0 for every i.

Again fi will denote f/ti.

Lemma A.3.2. Let C be a smooth genus one curve over K defined by an integral genus

one equation φ : F = G = 0 of degree 4 as in equation (A.1). Assume that C(K) = ∅.
Assume moreover that φ defines a minimal degree-4-model C for C → P3

K .

(i) Assume that Ck is a double conic with F̃ = x2
1 and G̃ = x2

2+x3x4. Then F̃1(0, x2x4,−x2
2, x

2
4) =

(α1x2 − α2x4)
4 where αi ∈ k.

(ii) Assume that Ck is two double lines given by {x1 = x2 = 0} and {x1 = x4 = 0}.
Then both F̃1(0, 0, x3, x4) and F̃1(0, x2, x3, 0) are squares.

(iii) Assume that Ck is a quadruple line given by F̃ = x2
1 and G̃ = x2

2 + x1x3. Then

F̃1(0, 0, x3, x4) is a square.
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(iv) Assume that Ck is a quadruple line given by F̃ = x2
1 and G̃ = x2

2. Then both

F̃1(0, 0, x3, x4) and G̃1(0, 0, x3, x4) are squares.

Proof: Set

f(x2, x3) = F1(0, x2, x3, 1) = a5,1x
2
2 + a6,1x2x3 + a7,1x2 + a8,1x

2
3 + a9,1x3 + a10,1,

f ′(x2, x3) = G(0, x2, x3, 1) = b5x
2
2 + b6x2x3 + b7x2 + b8x

2
3 + b9x3 + b10.

(i) Let h(x2, x4) = F (0, x2x4,−x2
2, x

2
4). Assume that h1(x2, x4) mod t has a simple

factor. Using a matrix in GL4(OK) we can assume that h1(x2, x4) = x2g(x2, x4), where

x2 - g(x2, x4), therefore ν(a7) = 1 and ν(a10) ≥ 2.

we have f(0, 0) = f ′(0, 0) = 0 mod t and

J(f,f ′) :=




∂f
∂x2

∂f
∂x3

∂f ′
∂x2

∂f ′
∂x3


 (0, 0) =


 a7,1 a9,1

b7 1


 ≡


 ã7,1 0

0 1


 mod t.

Lemma A.3.1 implies that there are x, y ∈ OK such that f(x, y) = f ′(x, y) = 0 which

means that (0 : x : y : 1) ∈ C(K), whence a contradiction.

When a5 6= a9, the polynomial h1(x2, x4) can have two double factors mod t, in

this case we can use a matrix in GL4(OK) to assume that h1(x2, x4) = x2
2x

2
4 mod t, in

particular we assume that min{ν(a6), ν(a7), ν(a8), ν(a10)} ≥ 2 and ν(a5 − a9) = 1. But

then the degree-4-model defined by the genus one equation

F1(tx1, x2, x3, x4) = G(tx1, x2, x3, x4) = 0

has special fiber with equations a5,1x
2
2 + a9,1x3x4 = l(x2, x4)

2 + x3l
′(x2, x4) = 0, where l

and l′ are linear factors. The latter special fiber contradicts either Corollary A.1.2 (iii)

or Theorem A.1.5 (iii).

(ii) We can assume that F̃ = x2
1 and G̃ = x2x4+µx1x3 where µ ∈ k. If F̃1(0, 0, x3, x4)

consists of two distinct linear factors, then we can assume that ν(a9) = 1 and ν(a8), ν(a10) ≥
2. Now we have

J(f,f ′) ≡

 ã7,1 ã9,1

1 0


 mod t.

That implies the existence of a rational point on C which is a contradiction. We follow

the same argument to prove that F̃1(0, x2, x3, 0) is a square.

(iii), (iv) Assume that F̃1(0, , 0, x3, x4) consists of two distinct linear factors. We can

use a matrix in GL4(OK) to assume that ν(a9) = 1 and ν(a8), ν(a10) ≥ 2. But then the

degree-4-model C ′ for C → P3
K given by

F1(tx1, tx2, x3, x4) = G1(tx1, tx2, x3, x4) = 0
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has a special fiber of the form a9,1x3x4 = µx1l(x3, x4) + G̃1(0, 0, x3, x4) where µ ∈ k and

l is a linear factor. Therefore, C ′k contains a multiplicity-1 component which contradicts

Corollary A.1.2 (iii). Similar argument works for the polynomial G̃1(0, 0, x3, x4) of (iv).

2

Remark A.3.3. Let C be as in Lemma A.3.2. Let Sing(C) be the singular locus of C.
If Ck is a double conic with defining equations x2

1 = x2
2 + x3x4 = 0, then after a

transformation in GL4(OK) we can assume that ν(a8) = 1 and

min{ν(a5), ν(a6), ν(a7), ν(a9), ν(a10)} ≥ 2,

see Lemma A.3.2. Moreover, Sing(C) = {(0 : 0 : 0 : 1)}, see Proposition 3.3.6 (iii).

Assume that Ck is two double lines with equations x2
1 = x2x4 + µx1x3 = 0. If we

assume that ν(a5) = ν(a10) = 1 and min{ν(a6), ν(a8), ν(a9)} ≥ 2, then the degree-4-

model defined by the genus one equation

F1(tx1, x2, x3, x4) = G(tx1, x2, x3, x4) = 0

has special fiber with equations a5,1x
2
2 + a7,1x2x4 + a10,1x

2
4 = x2x4 = 0, which is a

contradiction. Therefore, if Ck is two double lines given by the above equations, then

we can assume that

ν(a8) = 1, min{ν(a5), ν(a6), ν(a9), ν(a10)} ≥ 2,

and Sing(C) = {(0 : 1 : 0 : 0), (0 : 0 : 0 : 1)}, see Proposition 3.3.6 (iii).

If Ck is a quadruple line, then we have two possibilities according to Lemma A.3.2:

(i) the defining equations of Ck are x2
1 = x2

2 + x1x3 = 0 with ν(a8) = ν(b10) =

1, ν(a9), ν(a10) ≥ 2, Sing(C) = {(0 : 0 : 0 : 1)}, or ν(a10) = 1, ν(a8), ν(a9) ≥ 2,

Sing(C) = {(0 : 0 : 1 : 0)}. (ii) the defining equations of Ck are x2
1 = x2

2 = 0 with

ν(a8) = ν(b10) = 1 and min{ν(a9), ν(a10), ν(b8), ν(b9)} ≥ 2.

Now we give an example to show that the number of non-isomorphic minimal degree-

4-models for C → P3
K may become arbitrarily large when C(K) = ∅.

Example A.3.4. Let i > 0 be an integer. Let φ be a minimal genus one equation of

degree 4 as in Equation (A.1) with the following coefficients valuations
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x2
1 x1x2 x1x3 x1x4 = 0 ≥ i ≥ 1 ≥ i ≥ 1 ≥ 1 ≥ 1 ≥ 1

x2
2 x2x3 x2x4 ≥ 2i ≥ i ≥ 2i = 0 ≥ 1 ≥ 1

x2
3 x3x4 = 1 ≥ i ≥ 2 ≥ 2

x2
4 ≥ 2i = 1.

The equation φ defines a degree-4-model C for the curve C → P3
K defined by the

same equation. We have C(K) = ∅, see ([11], Lemma 5.2). In addition, this genus one

equation φ is minimal, see ([11], Lemma 5.3). The special fiber is a quadruple line. We

define non-isomorphic degree-4-models (Cm, αm), 1 ≤ m ≤ i, for C → P3
K , where Cm is

given by

F2m(tmx1, x2, t
mx3, x4) = G(tmx1, x2, t

mx3, x4) = 0.
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