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Abstract: 

Quantitative applications of surface enhanced Raman spectroscopy (SERS) often rely on 

surface partition layers grafted to SERS substrates to collect and trap solvated analytes that 

would not otherwise adsorb onto metals. Such binding layers drastically broaden the scope 

of analytes that can be probed. However, excess binding sites introduced by this partition 

layer also trap analytes outside the plasmonic ‘hot-spots’. We show that by eliminating 

these binding sites, limits of detection (LODs) can effectively be lowered by more than an 

order of magnitude. We highlight the effectiveness of this approach by demonstrating 

quantitative detection of controlled drugs down to sub-nanomolar concentrations in 

aqueous media. Such LODs are low enough to screen, for example, urine at clinically 

relevant levels. These findings provide unique insights into the binding behavior of analytes, 

which are essential when designing high performance SERS substrates. 
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Tremendous efforts have been made in the development of SERS substrates, often 

utilizing colloidal self-assembly or complex patterning of metal surfaces, with many 

variants that showcase million-fold SERS enhancements factors (EFs).1–5 However, since 

EFs scale as |𝐸|4, spatial inhomogeneities in field enhancement |𝐸(𝑥, 𝑦)| result in highly 

varying Raman intensities across such high performance substrates.6 As a consequence 

the majority of measured SERS spectra are generated by only a small fraction of the 

molecules, situated in highly localized optically-active sites (hot-spots)1,7–9 (Figure S1). This 

means that the adsorption location of molecules on SERS substrates greatly affects the 

strength of their SERS signals. However since SERS is capable of single molecule sensing7 

then, as proposed by Le Ru et al., a highly optimized SERS substrate should be able to 
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detect every single molecule at low analyte concentrations.9 Local variations can be 

effectively mitigated by collecting signals over a large number of hot-spots, thus 

averaging SERS intensities for a given analyte concentration.10–12 Averaging however, 

results in a large fraction of analyte molecules not contributing significantly to the 

collected SERS spectra. This effect becomes increasingly important at low analyte 

concentrations when the total number of analyte molecules approaches the (large) 

number of binding sites available outside the hot-spot, resulting in fewer analyte 

molecules reaching the high-performance hot-spots.13,14 This is here termed ‘analyte 

theft’. 

 

These issues are often ignored when testing novel SERS substrates. Typically an 

‘optimized’ sample is created by coating the substrates with a dense layer of molecules 

with strong (typically thiol) binding groups with the sole purpose of determining an 

idealized enhancement factor (EF). However, in practice, analytes do not have such strong 

metal-binding groups, for instance biomarkers,15 controlled substances16 or other 

polycyclic aromatic hydrocarbons of interest.17,18 Therefore, in addition to reproducible 

high field enhancements, an ideal SERS substrate should have at least two more features. 

Firstly, the SERS substrate should have either a specific or ubiquitous affinity to the 

analyte. A number of SERS substrates have already been presented that employ supra-

molecular chemistry to capture conventionally non-binding analytes. Such substrates 

typically employ biofunctionalization,19,20 amphiphilic15 or hydrophobic21 partition layers 

or amphiphilic cage constructions such as cyclodextrins22–24 or cucurbit[n]urils 

(CB[n]s).12,25–27 Secondly, a SERS substrate should preferably only bind analytes near the 

hot-spot to minimize analyte theft. The majority of proposed substrates however are fully 

coated by these receptive partition layers resulting in the number of binding sites 

approaching or exceeding the total number of analyte molecules available in the system 

when sensing at sub-micromolar concentrations (see SI section 2 for example calculation). 

While several techniques have been introduced to achieve hot-spot selective 

adsorption,9,28–30 no study has looked at how this affects the quantitative sensing of real 

analytes. 

 

Here, we present a highly reproducible self-assembled SERS substrate consisting of gold 

nanoparticles and cucurbit[n]uril (CB[n]) as rigid molecular linkers, with a general 

amphiphilic affinity to analytes. We study quantitatively the effect of eliminating 

indiscriminant binding on the detection of analytes at sub-micromolar concentrations. 

The rigid CB molecular spacer provides precise control over the inter-particle spacing in 

AuNPs aggregates,26 and their hydrophobic nature combined with surface-bound 

charged citrate molecules provides an environment rich in both hydrophilic and 

hydrophobic sites. In addition, locally replacing the bounding aqueous phase with a 

neighboring metal nanoparticle surface renders the local chemical environment 
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significantly different from that of a ligand-coated nanoparticle surface. We show that 

these properties combine to allow for interstitial incorporation of analytes (i.e. outside the 

CB molecular cavity but within the plasmonic hot-spot). We quantitatively demonstrate 

that by eliminating the indiscriminant binding (analyte theft) this localized interstitial 

incorporation allows detection of analytes down to sub-nanomolar concentrations in 

water. Our results show that this interstitial binding principle can be employed to detect 

a wide range of analytes as the binding does not depend on the analyte’s affinity to metal, 

but rather on its preference for the amphiphilic interactions presented within the hot-

spot.  

 

Results and Discussion 

SERS substrate formation. To demonstrate interstitial incorporation of analytes and show 

the benefits of preventing indiscriminate binding, plasmonic substrates consisting of self-

assembled AuNPs with a range of molecular spacers of cucurbit[n]uril (CB[n]), were 

compared, where n is 5, 6, 7 or 8.25 Adding CB[n] to a dispersion of citrate-stabilized AuNPs 

induces self-assembly, forming aggregates as the particles stick together via the CB[n] 

which act as rigid 0.9.nm molecular spacers (Figure 1a).26,31 This aggregation takes about 

10.minutes during which a gradual colour change from red to blue-grey is observed (inset 

Figures 1a,b). The resulting aggregates consist of a collection of plasmonic hot-spots with 

reproducible localized field enhancements as a result of the rigid sub-nm separations.26,32  

 
Figure 1: Surface enhanced Raman spectroscopy (SERS) substrate formation and properties. a) Adding CB[n] 

to a solution of AuNPs (diameter 60.nm) induces aggregation observed as a colour change from red to grey, 

with inter-particle spacing of 0.9.nm (the height of the spacer). b) Extinction spectra of the self-assembly 

process showing the formation of chain modes in solution over time. Dashed line: Finite difference time 

domain (FDTD) simulated far field scattering spectrum for a six membered AuNP chain. c) Scanning electron 

microscopy (SEM) image of AuNP aggregates formed by CB[n] self-assembly showing fractal-like structures. 

Inset: Modelled AuNP chain showing localised hot-spots between the nanoparticles with field 

enhancements |E/E0| up to 250. d) SERS spectra from AuNP aggregates under illumination at 532.nm (top), 

633.nm (middle) and 785.nm (bottom) in counts per second per milliWatt (cts·s-1·mW-1). 
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SERS substrate characterization. Absorbance spectra during aggregation (Figure 1b) 

show a drop in the single nanoparticle mode (at 534.nm) combined with a rise of the 

dimer mode (at 690.nm) and chain modes (up to 1000 nm). The red-shifted chain modes 

visible at the culmination of aggregation result from the coupling together of the 

individual hotspot modes, feasible only due to the exact reproducibility of the gap 

spacing. After 10 minutes the aggregation is seen to terminate with a predominant 

scattering mode around 900.nm.26,31,33 Scanning electron micrographs (SEM) of the 

aggregates (Figure 1c) show a fractal-like structure, with chain lengths between two and 

seven nanoparticles characteristic for this self-assembly process.26,32 Modelling a chain of 

six 60.nm AuNPs with 0.9.nm spacings using finite difference time domain (FDTD) 

simulations matches the dominant scattering mode at 900.nm observed in the 

absorbance experiments (black dashed line, Figure 1b). Plotting the field enhancements 

of the modelled structure clearly shows that the highest enhancements are localized 

within the gaps between the nanoparticles.34,35 This simplified linear chain is expected to 

have comparable field enhancements to our aggregates since bends in the chains are 

found to have limited effects on the resonant localization properties.32 The simulated 

structure shows field enhancements up to |E/E0|=250 at 900.nm, which implies 

enhancement factors around 109 when exciting and collecting at resonance.6 The broad 

absorbance spectra in Figure 1b suggest relatively high enhancement factors are 

expected over a wide range of wavelengths, from 700.nm to 1000.nm, though a local 

maximum is also observed at 534 nm for transverse modes of the chains. 

 

Comparing three different excitation wavelengths (Figure 1d) shows that at 532.nm 

(transverse mode) no clear SERS signals are observed. For both 633.nm and 785.nm 

excitations, the clear peaks seen around 830.cm-1 are characteristic for CB[n]. The highest 

emission (in counts per second per milliWatt: cts·s-1·mW-1) is observed for 785.nm 

excitation, as expected from the absorbance spectra in Figure 1b. Using a 5x microscope 

objective ensures a large volume of ~107 hot-spots are simultaneously probed in solution, 

providing the averaging as noted above, which is required for reproducible and 

quantitative SERS spectra.  
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Figure 2: Analyte incorporation mechanisms in plasmonic hot-spots. a) Methyl viologen (MV2+) has a strong 

binding affinity towards CB[7], binding also outside the plasmonic hot-spots, effectively lowering the 

probed MV2+ concentration. b) CB[5] is too small to bind MV2+ inside, but the constricted hotspot volume 

(orange shaded) binds analytes interstitially. c) (top) SERS spectra for MV2+ using CB[5] for different MV2+ 

concentrations down to picomolar. (bottom) Principal component analysis (PCA) components from 

CB[5]:MV2+ concentration series, matching CB[5] (comp I) and MV2+ bulk Raman (comp II). d) Integrated 

spectral changes vs MV2+ concentration for AuNP aggregates formed with CB[5] and CB[7]. e) SERS spectra 

showing the effect of adding (i) CB[5], then (ii) MV2+ resulting in a clear new peak at 1650 cm-1 and 

subsequently (iii) CB[7], lowering the intensity of the peak at 1650 cm-1 as CB[7] scavenges analytes away 

from the hot-spot. 

Analyte binding mechanisms. The amphiphilic nature of CB[n] allows the larger variants 

(𝑛=7 and 8) to sequester a range of molecules in their hydrophobic cavity, binding them 

to the substrate.11,12,25 However we show here that at very small analyte concentrations, 

binding sites outside the hot-spots, arising from excess CB[7,8] molecules in solution and 

attached to the substrate, scavenge analytes away from the plasmonic hot-spots, thus 

effectively lowering the Raman scattering intensity for a given concentration (Figure 2a, 

box).  

 

The AuNP metal surfaces are coated with a layer of hydrophobic CB[n] molecules 

(Figure 3), and water, as well as a mixed coating of trisodium citrate (hydrophilic) and citric 

acid (hydrophilic) used for colloidal charge stabilization. Bringing two such Au surfaces 

close together around the hot-spot creates a local environment particularly dense in local 

molecular interactions that no longer resemble a continuous solid-liquid interface. This 

change in environment seems to enhance binding of amphiphilic analytes from the 

aqueous phase due to the close proximity of both hydrophilic and hydrophobic sites 
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(Figure 2b). Such host-guest type of association is similar to that of the CB[7] system 

(Figure 2a) but instead occurs through interstitial incorporation. When using the smaller 

CB[5] molecule, size selection prevents the binding of anything larger than methane or 

methanol inside the small CB volume.25,36 This prevents analytes from adsorbing at sites 

outside the hot-spot leaving only the interstitial incorporation mechanism to capture 

analytes (Figure 2b). 

 
Figure 3: Calculated molecular electrostatic potential maps in implicit water for both CB[5] and citrate 

showing a strong negative potential for citrate and neutral/positive potential for CB[5].  

Methyl viologen (MV2+) is an amphiphilic analyte too large to fit in CB[5] but with a large 

affinity to CB[7]. When added to AuNPs aggregated using CB[5] spacers, a set of distinct 

MV2+ peaks appears between 1200-1300.cm-1 and at 1650.cm-1, evident from nanomolar 

concentrations upwards, demonstrating interstitial incorporation (Figure 2b, top). This is 

in line with earlier observations for ethanol/methanol sensing using CB[5].36 Principal 

component analysis (PCA) is used to isolate the spectral changes and identify their 

corresponding chemical moieties (Figure 2c, bottom). PCA allows correlated variables (in 

this case spectral features) to be identified and through orthogonal transformations 

combined into uncorrelated linear combinations of spectra. These transformed 

combinations are called principal components (here referred to as ‘comp’). The PCA 

loading plot for comp I closely matches the characteristic CB[5] spectrum in Figure 1d, 

and comp II can be closely matched to the powder Raman spectrum of MV2+ (bottom 

trace in Figure 2c). The obtained comp II for CB[5] (green trace) and CB[7] (red trace) are 

nearly identical, eliminating possible additional differences between the binding 

mechanisms that could contribute to the enhancement factor but which would change 

the spectral shape or intensity ratios such as analyte orientation or binding into the metal 

surface (bottom Figure 2c comp II).37 

Multiplying the obtained PCA score for comp II with the absolute counts integrated over 

the full spectral range of the loading plot for comp II provides a measure of the change 

in the SERS spectra upon MV2+ addition in cts·s-1·mW-1 (Figure 2d). Comparing the SERS 

changes between aggregates formed with CB[5] and CB[7] clearly shows stronger spectral 

peaks for CB[5]. At sub-micromolar concentrations changes are visible only for the CB[5] 

aggregates, showing an improvement in the LOD by more than an order of magnitude in 

spite of the smaller spacer’s inability to directly bind MV2+. To demonstrate this 

scavenging effect more clearly, MV2+ was added to CB[5]-AuNP aggregates, giving a clear 

set of SERS peaks (Figure 2e, lower trace), and subsequently CB[7] was added resulting in 
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a reduction of the MV2+ peaks (Figure 2e, upper trace). Both experiments confirm that the 

excess binding sites introduced by CB[7] scavenge analytes away from the hot-spots. 

 
Figure 4: Molecular dynamics simulations of Δ9-tetrahydrocannabinol (THC) interacting with different-sized 

CB[n] spacers. a) Scheme depicting the biasing coordinate used for the umbrella sampling free energy 

calculations for a THC molecule entering the CB[n] cavity, with explicit water. b) Free energy profiles 

calculated for each THC-CB[n] complex as a function of centre-of-mass distance showing a free energy dip 

of -9 and -11 kcal·mol-1 for THC-CB[7] and THC-CB[8] complexes respectively, decreased binding affinity for 

CB[6], and no favourable binding free energy for CB[5]. 

Drug detection. We studied this system in more detail by varying both the CB[n] spacer 

size and the chemical nature of the analyte molecule. To demonstrate that this 

improvement of LOD is not unique to MV2+ and to showcase the robustness of this 

technique, a set of controlled substances were explored. The chosen substances were 

selected for their interest in healthcare and substance control, and would typically require 

at least nanomolar sensitivities to accurately determine their concentrations in urine after 

consumption.38 Here we use Δ9-tetrahydrocannabinol (THC) the principal psychoactive 

constituent in cannabis (chemical structure shown in Figure 5a) and several synthetic 

analogues with different chemical structures designed to induce similar psychotropic 

effects. Molecular dynamics simulations were performed using umbrella sampling to 

model the THC molecule binding into the cavity of the CB[n] spacers (Figure 4a). Free 

energy profiles along the association coordinate were generated as a function of the 

center-of-mass distance for each THC-CB[n] complex (Figure 4b). This shows that both 

CB[7] and CB[8] have a highly favorable binding to THC, whereas the binding free energy 

gain is nearly halved for CB[6] and almost non-existent for CB[5], showing clearly the effect 

of reducing the spacer cavity size on analyte binding. We calculate the binding energy for 

each system from more accurate DFT calculations (see methods) to model the interacting 

complexes, showing that weaker binding affinities are indeed predicted as the size of the 

spacer is reduced (Figure 5a).  
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Figure 5: Influence of analyte binding mechanism on analyte detection. a) THC binding affinities to each of 

the CB[n] spacers, modelled using DFT calculations, see methods for details. b) Experimental PCA loading 

plots from concentration series of each THC-CB[n] complex showing (top) comp II: THC, and (bottom) comp 

III: unassigned molecular interactions. c) PCA scores for each of the four complexes show an increase in 

scores (proportional to signal strength) with decrease in CB[n] spacer size (arrow). 

To experimentally probe how these differences in binding affect analyte detection a 

concentration series of THC, diluted in methanol, was measured using SERS substrates 

prepared with each of the different CB[n] spacers (Figure 5a,b). A significantly higher 

analyte component II coefficient for the loading plots was found when using the smaller 

CB[5] and CB[6] compared to their larger homologues CB[7] and CB[8] with a more rapid 

increase and higher maximum counts with the same concentration for the smaller spacers. 

In component III a range of peaks appear around 1600.cm-1, which we tentatively assign 

to hydrogen-bonding related interactions (from tri-sodium citrate, methanol, water, or 

THC), indicative of analyte binding within the complex environment.36 When comparing 

the spectral changes for each of the spacers, CB[7] and CB[8] show analyte detection at 

sub-micromolar concentrations, but a clear enhancement of spectral changes and lower 

LOD is observed for CB[5] and CB[6] (Figure 5c), in line with the earlier observations (Figure 

2c). This again shows that the analyte is selectively incorporated within the substrate 

hotspots independent of direct binding within the spacer, and that eliminating excess 

binding improves the detectivity of the THC molecule.  
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Figure 6: Non-specific binding of plasmonic hot-spots. a) Four different analytes: THC: (2), and three 

synthetic analogues (3), (4) and (5). b) PCA loading plots showing distinct spectra for each compound, with 

little difference whether CB[5] or CB[6] is used. c) PCA scores and Langmuir isotherm fits for each of the 

components shows LODs clearly in the nanomolar regime with compounds (2-4) showing LODs near or 

below 1 nanomolar concentrations. 

Since the observed interstitial binding is independent of the CB[n] spacer cavity at low 

concentrations, these SERS substrates allow for more ubiquitous analyte incorporation. 

This makes such substrates a powerful new tool when probing for a range of different 

analytes such as the many synthetic analogues of THC that have appeared on consumer 

markets in recent years.39–42 To demonstrate that these substrates can indeed incorporate 

different compounds, a concentration series of three synthetic analogues of THC are also 

measured (Figure 6a). When comparing the loading plots for each of the compounds, 

other than the characteristic CB[n] peak at 830.cm-1 and varying peaks between 1550-

1700.cm-1, each compound provides a clearly distinct spectrum acting as a unique 

fingerprint identifier (Figure 6b). The demonstrated non-specificity to analytes makes this 

method of sensing highly suitable for routine screening of such compounds. The 

technique readily copes with rapid changes in chemical structures, required when probing 

for such compounds.42 Comparing the PCA results, it is clear that all compounds can be 

readily detected at nanomolar concentrations, which is well below typical clinical levels 

(see Figure 6c).38,42,43 To obtain an estimate of the LOD for each compound a Hill-Langmuir 

isotherm was fitted to the PCA scores (see ESI section 4-6 for details) using:  

PCA score = 𝐴
1

1 + (
𝐾d

[analyte]
)

𝑁 

where 𝐴 is the saturation value, 𝐾d the dissociation coefficient, [analyte] the analyte 

concentration and 𝑁 the Hill coefficient. The residuals on these fits from the noise in the 

SERS spectra allow estimation of the concentration at which the highest peak would be 

discernable from the noise (ESI section 6). This provides an insight into the LOD for each 
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analyte. Although in practice LODs are expected at slightly higher concentrations since 

several peaks need to clear the noise threshold (>0.03 cts·mW-1·s-1) for a spectrum to be 

distinct and recognizable (Table 1). 

  

Table 1. Estimated limits of detection based on Hill-Langmuir fit and spectral noise 

Analyte concentration @ signal>noise 

(2) Δ9-tetrahydrocannabinol (THC) 0.34(±0.02)·10-9 M 

(3) 5F-PB-22 0.05(±0.01)·10-9 M 

(4) MMB-CHMICA 0.40(±0.09)·10-9 M 

(5) 5F-AKB48 26.0(±0.03)·10-9 M 

 

To confirm these estimated LODs are truly realistic, spectral changes at analyte 

concentrations near the LOD are compared to the noise threshold (see ESI section 6 for 

details). The high reproducibility of the SERS spectra allows for the reference to be reliably 

subtracted from the raw data revealing spectral changes arising with the addition of the 

analyte and its carrier solvent, as shown for analyte (2:THC) in Figure 7.  

 
Figure 7: Validation of the LOD for analyte (2). a) SERS Spectra of CB[5]:AuNP aggregates with 4 different 

analyte concentrations (2.5 nM, 0.5 nM, 0.1 nM, 0.02 nM). Zoomed-in region of interest showing small 

spectral changes. c) SERS spectra with background subtracted, showing peaks for analyte (2) exceeding the 

noise threshold for 2.5 nM and 0.5 nM concentrations (arrows). 

At 2.5 nM and 0.5 nM the analyte peaks are still recognizable and exceed the noise 

threshold (Figure 7c), while at 0.1 nM the signal has dropped into the noise. This is in 

good agreement with the derived LOD of 0.34 nM, showing that using a Hill-Langmuir fit 

with PCA scores is a suitable technique to approximate LODs. Such low LODs are typically 

the preserve of immunoassay SERS substrates tailored to detect a specific-analyte.20 

Interestingly a higher LOD is observed for compound (5), and is paired with a higher Hill 

coefficient (see SI Table S2) indicating a stronger competitive binding occurs for this 

analyte. Exploring in detail what determines this difference in LOD will further push 

understanding of the complex interactions present in self-assembled plasmonic 

nanogaps, and is the subject of ongoing research. However it is clear is that the chemical 
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environment of plasmonic gaps can be exploited for interstitial analyte incorporation and 

that eliminating excess binding sites has a drastic effect on improving the LODs. On this 

basis, new strategies can be developed for existing substrates to remove or passivate 

excess binding. Such strategies can for example involve multiple washing steps to remove 

excess binding sites, or adding ions or large molecules to block these sites, leaving only 

hot-spots exposed. 

 

Conclusion 

 We have demonstrated an interstitial analyte incorporation mechanism in self-

assembled colloidal SERS substrates and used it to show the effects of analyte ‘theft’ by 

indiscriminate binding on the limits of detection. We have shown that for 

tetrahydrocannabinol (THC) and all three tested synthetic analogues, weaker binding of 

molecular spacers results in higher SERS signals and lower LODs, reaching sub-nanomolar 

concentrations. These findings highlight that for SERS-based detection of analytes at very 

low concentrations, indiscriminate binding of target molecules should be eliminated 

where possible, as this has a detrimental effect on signal strengths and when successful 

can increase the limits of detection by more than an order of magnitude.   

 

Methods 

Concentration series: Tetrahydrocannabinol (1.mg/mL in methanol) and methyl viologen 

dichloride were purchased from Sigma Aldrich, the synthetic analogues 3-5 were provided by Tic 

Tac Communications, and all chemicals were used as received. The different analyte 

concentrations were prepared by volumetric dilution of analytes using either water (for MV2+) or 

methanol (Laboratory reagent grade, Fisher Scientific) as solvent. Vials containing the diluted 

analyte concentrations were sealed and used within 1 hour of preparation to minimize effects of 

solvent evaporation. 

Formation of SERS substrates: 60.nm AuNP suspensions were purchased from BBI Solutions (citrate 

capped, optical density OD1) and stored at 7.°C. Prior to use the AuNP suspension was allowed to 

reach room temperature. CB[n] molecular spacers were synthesized and separated according to 

the procedure described in reference [25]. To induce self-assembly 7.µL of a 1.mM solution of 

CB[n] was added to the bottom of a black polystyrene 96-well plate (Thermo Fisher Scientific). 

300.µl of AuNP suspension was added and allowed to aggregate for 10.minutes. 

Analyte detection: The CB[5], CB[6], CB[7] and CB[8] concentration series were measured using 

the same stock solutions, freshly prepared from a 1 mg/ml solution in methanol using volumetric 

dilution with a suitable carrier solvent (methanol for the synthetic cannabinoids, water for methyl 

viologen). Specifically 1 mL of analyte (2) at 1 mg/ml in MeOH was added to an empty 5ml 

volumetric flask and filled to the appropriate volume using MeOH. The new concentration in the 

flask (now 0.2 mg/ml) was stored in a sealed container and 1.ml was drawn for the next dilution 

step. For SERS measurements 20.µL of analyte solution was added to the aggregated suspension, 

mixed, and allowed to homogenize for 2.more minutes. SERS spectra were taken on a commercial 

Renishaw Raman setup using either a 532 nm, a 633 nm or a 785.nm laser, with typical quantitative 

measurements taken using a 785 nm laser at 119.mW, by combining 3.iterations with 10.second 
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integration time. For focusing and collection a 5x 0.15.NA Olympus objective was used giving an 

estimated spot size of 0.4 mm3. To demonstrate reproducibility typical measurements were 

performed at least in threefold, meaning three unique samples were created by combining CB[n] 

and AuNPs and adding the desired analyte concentration from a stock solution. 

Principal component analysis: Prior to principal component analysis (PCA) a linear background was 

subtracted from each of the spectra using the lowest point in the spectra. The WaveMetrics Igor 

implementation of PCA was used to calculate the loading plots and scores for each of the 

components. The PCA results were rotated as described in reference [36]. 

Finite difference time domain simulations (FDTD): FDTD simulations were performed using 

Lumerical FDTD Solutions v8.12. The Au NP chains were modeled as linear assemblies of core-

shell spheres with a core diameter of 60 nm of Au and dielectric shell of 0.9 nm with refractive 

index 1.45. The dielectric function of gold was taken from Johnson and Christy. The structure was 

illuminated with a broadband plane wave (TFSF source) polarized along the chain length. The 

scattering and near field intensities were obtained from inbuilt cross-section and near-field 

monitors. The narrow gaps of the plasmonic chains were simulated by using multiple meshing of 

the narrow gaps and nanoparticles.  The calculations were converged at 0.3 nm meshing for the 

gaps along the dimer axis of the NPs and with 𝑑𝑥=𝑑𝑦=𝑑𝑧=1 nm meshing throughout the NP 

volume. Care was taken to ensure there were no staircasing artefacts in defining the curved surface 

of nanoparticles. We have previously shown the importance of meshing in the accurate 

determination of field volumes and their contribution to near-fields.44 

Density functional theory (DFT) calculations: Gas phase and subsequent continuum solvent 

geometry optimizations of the complexes (THC@CB[n], n=5-8), host (CB[n], n=5-8), and guest 

(THC) molecules were performed using the hybrid B3LYP exchange-correlation functional in 

combination with the split-valence double-zeta polarized basis set, 6-31G* and including 

Grimme’s D3 dispersion correction with Becke-Johnson damping.45 Continuum solvent geometry  

optimizations were performed using the SMD continuum models parametrized for water. The gas 

phase potential energies of the THC@CB[n], n=5-8 complexes were corrected for basis set 

superposition error, which is significant due to the incompleteness of the present basis set. For 

the accurate description of the low frequency modes an ultrafine DFT integration grid was used. 

No symmetry restrictions were imposed during the geometry optimization procedure. Frequency 

calculations with SMDsolvent model46 were performed at the same level of theory to obtain the 

association Gibbs free energies, 𝐺0
RRHO/QH

(l) and enthalpies, 𝐻0
RRHO(l) in the rigid rotor/harmonic-

oscillator (RRHO) and quasi-harmonic (mixture of RRHO and free rotor vibrational entropies along 

with translational entropy correction based on the free space accessible to the solute) 47,48 (QH) 

approximation and including zero-point vibrational energy at 298 K and 1 atm. Final continuum 

solvent solution phase association Gibbs free energies (∆𝐺bind
RRHO/QH

), and enthalpies (∆𝐻bind
RRHO/QH

) 

were calculated by adding the counterpoise correction, δ𝐸CP(g): 

∆𝐺bind
RRHO/QH

=  ∆𝐺0
RRHO/QH

(l) + δ𝐸CP(g) 

∆𝐻bind
RRHO/QH

=  ∆𝐻0
RRHO/QH

(l) + δ𝐸CP(g) 

where ∆ represents that the supramolecular approach ∆𝑋 = 𝑋(complex) − 𝑋(host) − 𝑋(guest) has 

been used. The association free energies are summarized in Table S1. All standard DFT calculations 

were performed by the Gaussian 0949 ab initio program package. 
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Free energy profiles of association: Molecular dynamics (MD) simulations were performed with 

the NAMD 2.950 program using the CHARMM3651 force field. The THC@CB[n], n=5-8 complexes 

were solvated in a pre-equilibrated TIP3P cubic water box of edge 65 Å. The resulting systems 

contain 8689, 8685, 8669 and 8660 H2O molecules for the n=5, 6, 7 and 8, CB[n] analogues, 

respectively. Our MD protocol consisted of: (1) energy minimization over 15000 steps; (2) 

equilibration over 1 ns in the NPT ensemble (p = 1.01325 bar, T = 303.15 K) with the RMSD of 

heavy atoms in CB[n], n=5-8 and THC constrained to their initial position using a force constant 

of 1 kcal/(mol·Å2); (3) 2 ns run in the NPT ensemble; (4) umbrella sampling (US) production runs 

of 5 ns in the NPT ensemble for each umbrella window with a spring constant of 100 kcal/(mol·Å2). 

Temperature and pressure were held constant at 303.15 K and 1 atm, respectively. Constant 

temperature was set by a Langevin thermostat with a damping coefficient of 1 ps−1. All of the 

bonds and angles involving hydrogen atoms were constrained by the SHAKE52 algorithm. We used 

the particle mesh Ewald method53 for the long-range electrostatics in combination with a 12 Å 

cutoff for the evaluation of the non-bonded interactions. Trajectories were run with a time step of 

2 fs and the collective variable employed in US were printed out in each step and used for the 

analysis. The umbrella bias for the host-guest association process was defined as the distance 

between center of mass (COM) of CB[n], n=5-8 and the COM of the THC ligand. We used the 

dynamic histogram analysis method (DHAM)54 to compute the free energy profiles along the 

association coordinate. 

 

Supporting Information 

Supporting Information Available: The following files are available free of charge.  

ESI.pdf 

The supporting information contains the following items: (1) a high resolution FDTD 

modelling of the field enhancement and the resulting SERS intensity probability 

distribution. (2) An example calculation of analyte theft in a colloidal substrate. (3) DFT 

calculations for the binding energies between THC and CB[n]. (4) A step-by-step analysis 

of the performed PCA analysis. (5) A demonstration of analyte identification using a simple 

Pearson correlation and comparisons to bulk powder spectra. (6) Explanation about the 

reproducibility and noise estimation of the system and Langmuir-Hill fit parameters. 
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