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Abstract6

Errata to the article by Al Ismaili et al. [1], on the optimal scheduling of cleaning actions for Heat Exchanger

Networks under fouling, are presented. Errors present in the equations of the Pontryagin Minimum Principle

analysis of the original article are indicated and recti�ed. It is noted that despite these errors, there is no

change to the conclusions of the analysis given in Al Ismaili et al. [1],.
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In the article by Al Ismaili et al. [1], a Pontryagin Minimum Principle analysis is presented to show that the9

underlying optimal control problems of their formulation are bang-bang. The analysis has some algebraic10

errors and the following corrections are to be made. Despite these errors, it is noted that the conclusion of11

the analysis is correct as shown in the present note.12

13

Equation (4) of Al Ismaili et al. [1] is to be written as:14

u = ((u(1)), (u(2)), . . . , (u(NP )))T (4)

Proof that the control in the relaxed multistage MIOCP for cleaning scheduling is linearly related to the15

process variables is rewritten as follows:16

17

The performance index in equation (3a) is modi�ed such that the Euler Lagrange multipliers are introduced:18
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Ō =

NP∑
p=2

{

φ(p)(x(p)(tp), y(p)(tp), u(p), t(p))

+
(
ν(p)

)T (
I(p)(x(p−1)(tp−1), y(p−1)(tp−1), u(p))− x(p)(tp−1)

)
+

∫ tp

tp−1

L(p)(x(p)(t), y(p)(tp), u(p), t) dt

+

∫ tp

tp−1

(
λ(p)(t)

)T (
f (p)(x(p)(t), y(p)(tp), u(p), t)− ẋ(p)(t)

)
dt

+

∫ tp

tp−1

(
µ(p)(t)

)T (
g(p)(x(p)(t), y(p)(t), u(p), t)

)
dt}

+ φ(1)(x(1)(t1), y(1)(t1), u(1), t(1))

+
(
ν(1)

)T (
I(1)(u(1))− x(1)(t0)

)
+

∫ t1

t0

L(1)(x(1)(t), y(1)(t), u(1), t) dt

+

∫ t1

t0

(
λ(1)(t)

)T (
f (1)(x(1)(t), y(1)(t), u(1), t)− ẋ(1)(t)

)
dt

+

∫ t1

t0

(
µ(1)(t)

)T (
g(1)(x(1)(t), y(1)(t), u(1), t)

)
dt

(6)

Variations on the parameter set of stage p′, of the form δu(p
′), which will result in variations in the state19

values at all times. This is shown in the equation below. Clearly, the state vector of stage p such that p < p′20

will not be in�uenced, resulting in δx(p)(t) , 0 and δy(p)(t) , 0.21
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δŌ =

NP∑
p=2

{
[

∂φ(p)

∂x(p)(tp)
δx(p)(tp) +

∂φ(p)

∂y(p)(tp)
δy(p)(tp) +

∂φ(p)

∂u(p)
δu(p)

]
+
(
ν(p)

)T ( ∂I(p)

∂x(p−1)(tp−1)
δx(p−1)(tp−1) +

∂I(p)

∂y(p−1)(tp−1)
δy(p−1)(tp−1)

+
∂I(p)

∂u(p)
δu(p) − δx(p)(tp−1)

)

+

∫ tp

tp−1

(
∂L(p)

∂x(p)
(t)δx(p)(t) +

∂L(p)

∂y(p)
(t)δy(p)(t) +

∂L(p)

∂u(p)
δu(p)

)
dt

+

∫ tp

tp−1

(
λ(p)(t)

)T (∂f (p)
∂x(p)

(t)δx(p)(t) +
∂f (p)

∂y(p)
(t)δy(p)(t) +

∂f (p)

∂u(p)
δu(p) − δẋ(p)(t)

)
dt

+

∫ tp

tp−1

(
µ(p)(t)

)T (∂g(p)
∂x(p)

(t)δx(p)(t) +
∂g(p)

∂y(p)
(t)δy(p)(t) +

∂g(p)

∂u(p)
δu(p)

)
dt}

+

[
∂φ(1)

∂x(1)(t1)
δx(1)(t1) +

∂φ(1)

∂y(1)(t1)
δy(1)(t1) +

∂φ(1)

∂u(1)
δu(1)

]
+
(
ν(1)

)T (∂I(1)
∂u(1)

δu(1) − δx(1)(t0)

)
+

∫ t1

t0

(
∂L(1)

∂x(1)
(t)δx(1)(t) +

∂L(1)

∂y(1)
(t)δy(1)(t) +

∂L(1)

∂u(1)
δu(1)

)
dt

+

∫ t1

t0

(
λ(1)(t)

)T (∂f (1)
∂x(1)

(t)δx(1)(t) +
∂f (1)

∂y(1)
(t)δy(1)(t) +

∂f (1)

∂u(1)
δu(1) − δẋ(1)(t)

)
dt

+

∫ t1

t0

(
µ(1)(t)

)T (∂g(1)
∂x(1)

(t)δx(1)(t) +
∂g(1)

∂y(1)
(t)δy(1)(t) +

∂g(1)

∂u(1)
δu(1)

)
dt

(7)

Integration by parts for the last term in the integrals involving δẋ(p) is used to obtain equation (8):22
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δŌ =

NP∑
p=2

{
[

∂φ(p)

∂x(p)(tp)
δx(p)(tp) +

∂φ(p)

∂y(p)(tp)
δy(p)(tp) +

∂φ(p)

∂u(p)
δu(p)

]
+
(
ν(p)

)T ( ∂I(p)

∂x(p−1)(tp−1)
δx(p−1)(tp−1) +

∂I(p)

∂y(p−1)(tp−1)
δy(p−1)(tp−1)

+
∂I(p)

∂u(p)
δu(p) − δx(p)(tp−1)

)

+

∫ tp

tp−1

(
∂L(p)

∂x(p)
(t)δx(p)(t) +

∂L(p)

∂y(p)
(t)δy(p)(t) +

∂L(p)

∂u(p)
δu(p)

)
dt

+

∫ tp

tp−1

(
λ(p)(t)

)T (∂f (p)
∂x(p)

(t)δx(p)(t) +
∂f (p)

∂y(p)
(t)δy(p)(t) +

∂f (p)

∂u(p)
δu(p)

)
dt

+

∫ tp

tp−1

(
λ̇(p)(t)

)T
δx(p)(t) dt

+
(
λ(p)(tp−1)

)T
δx(p)(tp−1)−

(
λ(p)(tp)

)T
δx(p)(tp)

+

∫ tp

tp−1

(
µ(p)(t)

)T (∂g(p)
∂x(p)

(t)δx(p)(t) +
∂g(p)

∂y(p)
(t)δy(p)(t) +

∂g(p)

∂u(p)
δu(p)

)
dt}

+

[
∂φ(1)

∂x(1)(t1)
δx(1)(t1) +

∂φ(1)

∂y(1)(t1)
δy(1)(t1) +

∂φ(1)

∂u(1)
δu(1)

]
+
(
ν(1)

)T (∂I(1)
∂u(1)

δu(1) − δx(1)(t0)

)
+

∫ t1

t0

(
∂L(1)

∂x(1)
(t)δx(1)(t) +

∂L(1)

∂y(1)
(t)δy(1)(t) +

∂L(1)

∂u(1)
δu(1)

)
dt

+

∫ t1

t0

(
λ(1)(t)

)T (∂f (1)
∂x(1)

(t)δx(1)(t) +
∂f (1)

∂y(1)
(t)δy(1)(t) +

∂f (1)

∂u(1)
δu(1)

)
dt

+

∫ t1

t0

(
λ̇(1)(t)

)T
δx(1)(t) dt

+
(
λ(1)(t0)

)T
δx(1)(t0)−

(
λ(1)(t1)

)T
δx(1)(t1)

+

∫ t1

t0

(
µ(1)(t)

)T (∂g(1)
∂x(1)

(t)δx(1)(t) +
∂g(1)

∂y(1)
(t)δy(1)(t) +

∂g(1)

∂u(1)
δu(1)

)
dt

(8)

For a stationary point, in�nitesimal variations in the RHS should yield no change to the performance in-23

dex, i.e. δŌ = 0 and hence related terms must be chosen so that they always guarantee this. This leads24

to the following set of Euler-Lagrange equations and the Pontryagin et al. [2] Maximum (Minimum) Principle.25

26

To cancel δx(1)(t) and δx(1)(t1) terms, the di�erential equations and �nal time stage conditions as shown in27
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equations (9a) to (10) must hold, respectively:28

λ̇(1)(t) = −
[
∂f (1)

∂x(1)
(t)

]T
λ(1)(t)−

[
∂g(1)

∂x(1)
(t)

]T
µ(1)(t)−

[
∂L(1)

∂x(1)
(t)

]T
(9a)

t0 ≤ t ≤ t1 (9b)

λ(1)(t1) =

[
∂φ(1)

∂x(1)(t1)

]T
+

[
∂I(2)

∂x(1)(t1)

]T
ν(2) (10)

It is noted that equation (10) is an edited form of equation (10) in Al Ismaili et al. [1]. The term
[

∂I(2)

∂x(1)(t1)

]T
ν(2)29

is not present in equation (10) of the original manuscript of Al Ismaili et al. [1].30

31

Algebraic equations and �nal stage conditions (11a) to (12) must hold in order to cancel δy(1)(t) and δy(1)(t1)32

terms;33

[
∂f (1)

∂y(1)
(t)

]T
λ(1)(t) +

[
∂g(1)

∂y(1)
(t)

]T
µ(1)(t) +

[
∂L(1)

∂y(1)
(t)

]T
= 0 (11a)

t0 ≤ t ≤ t1 (11b)

[
∂φ(1)

∂y(1)(t1)

]T
+

[
∂I(2)

∂y(1)(t1)

]T
ν(2) = 0 (12)

It is noted that equation (12) is an edited form of equation (12) in Al Ismaili et al. [1]. The coe�cient of34

the term
[

∂I(2)

∂y(1)(t1)

]T
should be ν(2) and not λ(2) (t1) as given in equation (12) of the original manuscript of35

Al Ismaili et al. [1].36

37

The δx(p)(t) and δx(p)(tp) terms are cancelled through the condition that the following di�erential equations38

and �nal time stage conditions are held;39

λ̇(p)(t) = −
[
∂f (p)

∂x(p)
(t)

]T
λ(p)(t)−

[
∂g(p)

∂x(p)
(t)

]T
µ(p)(t)−

[
∂L(p)

∂x(p)
(t)

]T
(13a)

tp−1 ≤ t ≤ tp ∀p = 2, 3, . . . NP (13b)
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λ(p)(tp) =

[
∂φ(p)

∂x(p)(tp)

]T
+

[
∂I(p+1)

∂x(p)(tp)

]T
ν(p+1) ∀p = 2, 3, . . . NP − 1 (14a)

It is noted that equation (13a) is an edited form of equation (13a) in Al Ismaili et al. [1]. The term40

−
[
∂g(p)

∂x(p) (t)
]T
µ(p)(t) is missing in equation (13a) of Al Ismaili et al. [1]. It is also noted that (14a) has not41

been numbered in the manuscript. In addition, in the equation, the coe�cient of
[

∂I(p+1)

∂x(p)(tp)

]T
should be ν(p+1)

42

and not λ(p+1) (tp), as given in the original manuscript of Al Ismaili et al. [1].43

44

For p = NP, the following holds:45

λ(NP )(tNP ) =

[
∂φ(NP )

∂x(NP )(tNP )

]T
(14b)

To cancel δx(p)(tp−1) terms, the following conditions must hold:46

ν(p) = λ(p)(tp−1) ∀p = 2, 3, . . . NP (15)

It is noted that equations (14b) and (15) are not present in Al Ismaili et al. [1] and are to be added to the47

set of equations in the derivation.48

49

To cancel δy(p)(t) and δy(p)(tp) terms, the following algebraic equations must hold:50

[
∂f (p)

∂y(p)
(t)

]T
λ(p)(t) +

[
∂g(p)

∂y(p)
(t)

]T
µ(p)(t) +

[
∂L(p)

∂y(p)
(t)

]T
= 0 (16a)

tp−1 ≤ t ≤ tp ∀p = 2, 3, . . . NP (16b)

[
∂φ(p)

∂y(p)(tp)

]T
+

[
∂I(p+1)

∂y(p)(tp)

]T
ν(p+1) = 0 ∀p = 2, 3, . . . NP − 1 (17a)

And for p = NP, the following holds:51

[
∂φ(NP )

∂y(NP )(tNP )

]T
= 0 (17b)

It is noted that equation (17b) is not present in Al Ismaili et al. [1] and is to be added to the set of equations52

in the derivation.53

54
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The terms δu(1) and δu(p) are cancelled on the condition that equations (18a) to (19b) hold. These are55

equivalent to the Hamiltonian gradient condition:56

∂H(1)

∂u(1)
=

[
∂φ(1)

∂u(1)
(t1)

]T
+

[
∂I(1)

∂u(1)

]T
ν(1)

+

∫ t1

t0

{[
∂L(1)

∂u(1)
(t)

]T
+

[
∂f (1)

∂u(1)
(t)

]T
λ(1)(t) +

[
∂g(1)

∂u(1)
(t)

]T
µ(1)(t)

}
dt

= 0

(18a)

t0 ≤ t ≤ t1 (18b)

∂H(p)

∂u(p)
=

[
∂φ(p)

∂u(p)
(tp)

]T
+

[
∂I(p)

∂u(p)

]T
ν(p)

+

∫ tp

tp−1

{[
∂L(p)

∂u(p)
(t)

]T
+

[
∂f (p)

∂u(p)
(t)

]T
λ(p)(t) +

[
∂g(p)

∂u(p)
(t)

]T
µ(p)(t)

}
dt

= 0

(19a)

tp−1 ≤ t ≤ tp ∀p = 2, 3, . . . NP (19b)

It is noted that equations (18a), (18b), (19a) and (19b) are labelled as (15a), (15b), (16a) and (16b), in57

the original manuscript of Al Ismaili et al. [1] and have to be renumbered. In addition, the coe�cients of58 [
∂I(1)

∂u(1)

]T
and

[
∂I(p)

∂u(p)

]T
in equations (15a) and (16a) of Al Ismaili et al. [1] should be ν(1) and ν(p) and not59

λ(1) (t0) and λ(p) (tp−1) respectively, as given in the original manuscript.60

61

When the functions appearing in equations (18a) and (19b) are linearly related to the control, the optimal62

control for the relaxed MIOCP will exhibit bang-bang behaviour (with potential singular arcs).63

64

Further, the equations (17) to (30) in the original manuscript of Al Ismaili et al. [1] should be renumbered65

accordingly to take into account the changes in the numbering caused by the above corrections.66
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