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ABSTRACT 26 
Background: Genome-wide polygenic scores (GPS) integrate information from many common 27 
DNA variants into a single number. Because rates of coronary artery disease (CAD) are 28 
substantially higher among South Asians, a GPS to identify high-risk individuals may be 29 
particularly useful in this population. 30 
Objectives: We used summary statistics from a prior genome-wide association study to derive a 31 
new GPSCAD for South Asians.  32 
Methods: We validated this GPSCAD in 7,244 South Asian UK Biobank participants and tested it 33 
in 491 individuals from a case-control study in Bangladesh. Next, we built a static ancestry and 34 
GPSCAD reference distribution using whole genome sequencing from 1,522 Indian individuals, 35 
and tested a framework for projecting individuals onto this static ancestry and GPSCAD reference 36 
distribution using 1,800 CAD cases and 1,163 controls newly recruited in India. 37 
Results: The GPSCAD, containing 6,630,150 common DNA variants, had odds ratio per standard 38 
deviation (OR/SD) of 1.58 in South Asian UK Biobank participants and 1.60 in the Bangladeshi 39 
study (p < 0.001 for each). We next projected individuals of the Indian case-control study onto 40 
static reference distributions, observing an OR/SD of 1.66 (p < 0.001). Compared to the middle 41 
quintile, risk for CAD was most pronounced for those in the top 5% of the GPSCAD distribution –42 
ORs of 4.16, 2.46, and 3.22 in the South Asian UK Biobank, Bangladeshi, and Indian studies, 43 
respectively (p < 0.05 for each).  44 
Conclusions: We developed and tested a new GPSCAD using three distinct South Asian studies, 45 
and provide a generalizable framework for ancestry-specific GPS assessment.  46 
 47 
Condensed abstract  48 
Genome-wide polygenic scores are a new approach to quantify inherited risk for a given disease 49 
using information from many common sites of DNA variation. The predictive capacity of a 50 
polygenic score for coronary artery disease in South Asians – a population that suffers from 51 
coronary artery disease at significantly higher rates – is largely unknown. Here, we build a 52 
polygenic score consisting of over 6.6 million common DNA variants and a workflow for 53 
ancestry-corrected risk quantification. Results confirm striking and consistent relationships with 54 
coronary artery disease in South Asian populations from the United Kingdom, Bangladesh, and 55 
India.  56 
 57 
Keywords: 58 
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GPS: Genome-wide polygenic score 62 
CAD: coronary artery disease 63 
AUC: area under the receiver-operator curve 64 
CI: Confidence interval 65 
OR/SD: Odds ratios per standard deviation 66 
PCs: principal components 67 
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Introduction 69 

Individuals of South Asian ancestry represent 23% of the global population — 70 

corresponding to 1.8 billion people — and suffer from substantially increased risk of coronary 71 

artery disease (CAD) compared to most other ethnicities (1). Practice guidelines in the U.S. now 72 

recognize South Asian ancestry as an important ‘risk-enhancing’ factor for CAD (2, 3). Because 73 

CAD has a significant inherited component (4, 5), genetic analyses to understand and predict 74 

CAD among South Asian populations are of particular interest. 75 

The inherited risk for CAD can — for about 0.4% of the population — be driven by rare 76 

monogenic variants such as those related to familial hypercholesterolemia (6–10). However, the 77 

vast majority of individuals afflicted by CAD do not harbor any known monogenic mutation (7, 78 

8, 10). A second mechanism of increased genetic risk for CAD is via a ‘polygenic’ model (11–79 

13). Here, the risk is driven not by any one variant, but rather the cumulative effect of many 80 

common DNA variants scattered across the genome (11–13). We recently developed a genome-81 

wide polygenic score for CAD (GPSCAD) that integrates information from over 6 million sites in 82 

the genome (11). Using this approach, we demonstrated that up to 8% of individuals of European 83 

ancestry are at more than triple the normal risk for CAD on the basis of a high GPS — a 84 

prevalence 20 times greater than familial hypercholesterolemia variants that confer similar risk 85 

(11). 86 

Whether a GPSCAD can predict disease in a South Asian population is uncertain for three 87 

key reasons. First, prior genome-wide association studies — needed as input to GPS derivation 88 

to weight a given variant's contribution to the risk of CAD — have been performed primarily in 89 

individuals of European ancestry (14). Second, a GPS derived in individuals of European 90 

ancestry may have attenuated effect when applied to other ethnicities (15, 16), given that variant 91 



frequency and correlation patterns vary across ancestral groups (15, 17). A recent study for a 92 

range of traits suggested that GPS derived from Europeans displayed somewhat lower predictive 93 

power when applied to South Asians (16). Third, cultural and environmental factors unique to 94 

South Asian populations may modulate the importance of genetic variation on the risk of CAD 95 

(1). A GPS specifically tuned to a South Asian population may thus have enhanced predictive 96 

capacity as compared to previously described scored validated in individuals of European 97 

ancestry, but this has not been adequately explored to date. 98 

Beyond confirmation that a GPS is associated with disease, accurate and consistent GPS 99 

calculation in a clinical workflow poses unique challenges when compared to other risk 100 

biomarkers (18). First, statistical imputation is needed to ensure that – beyond the variants 101 

included on a genotyping array – an identical set of genetic variants is captured in each 102 

individual. Second, an individuals’ raw GPS scores needs to be interpreted within the context of 103 

their genetic ancestry, typically performed by projecting them into static ‘principal components 104 

of ancestry’ space. Third, a reference distribution is needed to determine whether a given 105 

individual’s GPS is high or low versus others with a similar ancestral background. Overcoming 106 

these issues is critically important prior to clinical deployment of GPS disclosure.  107 

Here, we aim to address these areas of uncertainty by developing a new GPSCAD tuned to 108 

individuals of South Asian ancestry, confirming robust associations of the new GPSCAD with 109 

CAD in 7,244 South Asian participants of the UK Biobank and 491 participants of an 110 

independent case-control study in Bangladesh, Figure 1. Next, we build a new framework to 111 

support GPSCAD calculation by developing an ancestry-specific reference distribution from 1,522 112 

individuals recruited in India and validate this in 2,963 newly recruited participants of a CAD 113 

case-control study in India, Central illustration. 114 



Methods 115 

Study populations and quality control 116 

UK Biobank.  117 

The UK Biobank recruited over 500,000 participants aged 40-69 years between 2006 and 118 

2010 (19, 20). In the present analysis, we focused on 8,025 South Asian participants based on 119 

self-report of being Pakistani, Indian, or Bangladeshi (19, 20). Self-reported race designations 120 

were highly concordant with quantitative estimates of genetic ancestry, as quantified by principal 121 

components (Online Figure 1A, 1B and 2A). UK Biobank participants underwent genotyping 122 

using an array and subsequent imputation as previously reported (20). After application of 123 

genotyping and relatedness quality control parameters (Online Methods), 7,244 individuals 124 

remained for analysis. These South Asian individuals were not included in our prior report based 125 

on UK Biobank individuals, which was restricted to those of European ancestry (11). CAD 126 

ascertainment was based on a composite of myocardial infarction or coronary revascularization 127 

present at time of enrolment based on self-report, hospital admission diagnosis codes, or 128 

procedure codes coronary revascularization as described previously (Online Methods) (11).  129 

Bangladesh Risk of Acute Vascular Events study.  130 

We next performed whole-genome sequencing in 500 individuals recruited in Dhaka, 131 

Bangladesh, as part of the Bangladesh Risk of Acute Vascular Events (BRAVE) study, a case-132 

control study of first-onset acute myocardial infarction (21). This analysis of newly-generated 133 

whole-genome sequencing data has not been included in any prior studies. After application of 134 

the participant, variant, and ancestry quality control filters (Online Methods), 247 CAD cases 135 

and 244 controls were available for analysis (Online Figure 1A, 1C and 2B). 136 

Polygenic score derivation, calculation, and testing 137 



To derive a new GPSCAD, we started with summary association statistics from a prior 138 

GWAS from the CARDIoGRAMplusC4D Consortium, consisting of 60,801 cases and 123,504 139 

controls (22). Importantly, the majority of the participants in this study were of European 140 

ancestry (77%) with a subset of individuals from South Asian ancestry (13%) (22). There was no 141 

overlap of participants in this previous GWAS with individuals assessed in the subsequent 142 

derivation and testing of the polygenic score involved in the present analysis. 143 

To integrate information from the summary association statistics into a GPSCAD, we 144 

applied the LDpred computational algorithm, a Bayesian method that calculates the posterior 145 

mean independent effect size of each variant based on the variant's prior joint effect size 146 

estimated from GWAS and the correlation pattern between variants (23). A linkage 147 

disequilibrium (LD) reference panel – used to compute the correlations between genetic variants 148 

– included 503 European individuals from the 1000 Genomes Project Phase 3 (24). Previous 149 

analyses have suggested that this LD reference panel mimic the primary ancestral background of 150 

the original GWAS, rather than the target population (23). Consistent with this recommendation, 151 

we observed slightly decreased performance when we instead used 489 South Asian samples 152 

from the 1000 Genomes Project as the LD reference panel (Online Tables 1, 2 and 3). 153 

The LDpred computational algorithm includes a tuning parameter 𝜌, which represents the 154 

fraction of variants with non-zero effect size (23), with an optimal value determined by the 155 

disease genetic architecture and the sample size used in the GWAS study. Because the parameter 156 

𝜌 is unknown, we tested a range of values for 𝜌 as previously recommended (23).  157 

Polygenic scores were calculated in each individual using the plink2 software package, 158 

multiplying the effective allele dosage with its LDpred algorithm adjusted effect size and then 159 

summing across all of the variants in each individual (25).  160 



To account for variations in allele frequency according to genetic ancestry, the polygenic 161 

score was adjusted according to the first 5 principal components of ancestry using a linear 162 

regression model (12), the residuals from the regression model were used as the ancestry-163 

adjusted GPSCAD and normalized to have a mean of 0 and a standard deviation of 1 to facilitate 164 

interpretation as performed previously (11), Central illustration. The best 𝜌 parameter was 165 

chosen based on maximal area-under-the-curve (AUC) of the GPSCAD evaluated in a logistic 166 

regression model with age, sex, top 5 principal components of ancestry and ancestry adjusted 167 

GPS as covariates as performed previously (Online Tables 1 and 2)(11). 168 

Development and testing of an ancestry-specific framework to polygenic score assessment 169 

To build a static and ancestry-specific reference distribution for the GPSCAD, we analyzed 170 

high-coverage whole genome sequencing on 1733 individuals from a population-based study in 171 

India, recruited without consideration of CAD status as part of phase 2 of the GenomeAsia 100K 172 

project (26 and A.S.P., unpublished), Central illustration. 1,522 individuals remaining 173 

following application of quality control criteria. 174 

To provide a set of individuals to test the framework for GPSCAD assessment, a second set 175 

of individuals –1,826 CAD cases and 1,209 controls – were recruited from outpatient clinics and 176 

hospitals at 5 cities in India -- Kochi, Jaipur, Coimbatore, Chennai and Bangalore. Participants 177 

underwent genotyping using the Illumina Global Screening Array Platform, of whom 1,800 CAD 178 

cases and 1,163 controls remained after quality control (Online Methods).  179 

Clinical-grade GPSCAD assessment requires that an identical set of variants are assessed 180 

in individuals in both the reference distribution and newly-recruited individuals. We identified 181 

575,778 genetic variants reliably ascertained in both the reference distribution whole-genome 182 

sequencing data and the test dataset genotyping array data, and jointly imputed them using the 183 



GenomeAsia Pilot (GAsP) project reference panel from the GenomeAsia 100K project (26, 27). 184 

This joint imputation with the reference distribution is important in preventing batch effects or 185 

artifacts from mixing samples genotyped with sequencing or genotyping array technology.  186 

A static genetic ancestry reference distribution was produced using principal components 187 

analysis of the 1,522 individuals using FlashPCA software (28) based on independent genetic 188 

markers identified using the plink2 software package with parameters: --indep-pairwise 1000 50 189 

0.2 --maf 0.01 --hwe 1e-10 --geno 0.05 (25, 29). The static polygenic score reference distribution 190 

was produced by adjusting the raw polygenic score values for the first 5 principal components of 191 

ancestry using a linear regression model as described previously (12), Central illustration. 192 

Statistical analysis and study approval 193 

Statistical analysis and test were performed using R software, version 3.6.1 (R Project for 194 

Statistical Computing). AUC was calculated by the “pROC” R package(30). Category-free net 195 

reclassification improvement (31) was estimated by the “nricens” R package 196 

(https://cran.fiocruz.br/web/packages/nricens/index.html). 197 

This research has been conducted using the UK Biobank Resource under Application 198 

Number 7089. Analysis of the UK Biobank as analysis of UK Biobank and BRAVE data was 199 

approved by the Partners HealthCare institutional review board (protocol 2013P001840). 200 

Analysis of MedGenome case-control study was approved by institutional review boards at each 201 

of the recruitment sites. 202 

Results 203 

Derivation of a genome-wide polygenic score for South Asians 204 

We first generated 8 candidate GPSs for CAD for testing in a South Asian population, 205 

combining association statistics from a previously published genome-wide association study (22) 206 

https://cran.fiocruz.br/web/packages/nricens/index.html


and the LDpred computational algorithm (23) (Figure 1). The 8 scores varied in the tuning 207 

parameter (𝜌) for the reflection of the proportion of variants assumed to be causal (11, 23). 208 

In order to choose among the 8 candidate GPSs, the discriminative capacity of each GPS 209 

was tested in 7,244 South Asian participants of the UK Biobank (398 CAD cases and 6,846 210 

controls; Online Figure 1A, 1B, 2A and Online Table 4). Each of the scores was associated with 211 

CAD, with area under the receiver-operator curve (AUC) values for a logistic regression model 212 

including GPSCAD, age, sex and top 5 principal components of ancestry as covariates ranging 213 

from 0.796 to 0.805, and odds ratios per standard deviation (OR/SD) increment in the GPSCAD 214 

ranging from 1.38 to 1.58, Online Tables 1 and 2. The maximally performing score – with the 𝜌 215 

value of 0.003 – was taken forward into subsequent analyses. 216 

This newly developed GPSCAD had improved performance compared to a score our group 217 

previously published based on validation and testing in individuals of European ancestry (11), 218 

which had OR/SD 1.53 and AUC 0.802 when applied to the UK Biobank South Asian 219 

participants (Online Table 5).   220 

When using our new South Asian GPSCAD as a predictor of CAD in South Asian UK 221 

Biobank participants, the median GPSCAD was in the 66th percentile for CAD cases and in the 222 

49th percentile for controls, OR/SD was 1.58 (95% CI 1.42 – 1.76), and a 3.22-fold increase in 223 

disease risk was noted in comparing the top versus bottom GPS quintiles (95% CI 2.25 – 4.70), 224 

Figure 2A-B and Online Figure 3A. 225 

In order to assess the clinical importance of a high GPSCAD, we next compared the risk of 226 

progressively more extreme cut-points of the polygenic score distribution versus those with a 227 

polygenic score in the middle quintile. Those in the top quintile of the GPSCAD distribution had 228 

2.16 (95% CI 1.56 – 3.03) increased odds of CAD versus those in the middle quintile, with a risk 229 



estimate that continued to increase when modeled as the top 5% (OR 4.16, 95% CI 2.75 – 6.28) 230 

or the top 2.5% (OR 5.56, 95% CI 3.40 – 8.98), Figure 3. 231 

As in previous studies, the risk conferred by a high GPSCAD was largely independent of 232 

traditional risk factors(11, 32–34). Within the UK Biobank South Asian dataset, a modest 233 

decrement in OR/SD from 1.58 to 1.46 (95% CI 1.29 – 1.65) was noted after additional 234 

adjustment for diabetes, hypertension, hypercholesterolemia, family history of heart disease, 235 

current smoking, BMI and use of lipid-lowering therapy (Online Table 4). Similarly, odds ratio 236 

for the top 5% of the GPS distribution versus the middle quintile decreased from 4.16 to 3.68 (95% 237 

CI 2.28 – 5.94) after additional adjustment for these risk factors (Online Table 6). Additional of 238 

the GPSCAD to logistic regression models with or without clinical risk factors included was 239 

associated with improvements in category-free net reclassification of 38.0% and 33.5% 240 

respectively (P < 0.001 for each; Table 1). 241 

Testing the South Asian genome-wide polygenic score in a Bangladeshi study 242 

To test this score in an independent dataset, we studied the performance of the South 243 

Asian GPS in 247 cases and 244 controls of the BRAVE study of first-ever myocardial infarction 244 

in Bangladesh (Online Figure 1A, 1C and 2B). Cases had median age of 34 years, reflective of 245 

selection based on premature disease onset, and 91% were male. Controls similarly had median 246 

age of 33 years and 90% were male (Online Table 7). The GPS was associated with an OR/SD 247 

increment of 1.60 (95% CI 1.32 – 1.94), evaluated in a logistic regression model adjusted for age, 248 

sex, and top 5 PCs. Moreover, the median GPS was in the 58th percentile among CAD cases and 249 

in the 42nd percentile in controls, and a 3.90-fold increase in disease risk was noted in 250 

comparing the top versus bottom GPS quintiles (95% CI 2.14 – 7.26), Figure 2C-D and Online 251 

Figure 3B. As in prior studies, the risk was substantially increased for those in the extreme tails 252 



of the GPS distribution, OR 2.46 (95% CI 1.15 – 5.48; P = 0.02) for those in the top 5% 253 

compared to those in the middle quintile, Figure 3. Additional adjustment for diabetes, 254 

hypertension, hypercholesterolemia, family history of heart disease, current smoking, and family 255 

history of myocardial infarction led to a modest decrement in OR/SD from 1.60 to 1.51 (95% CI 256 

1.22 – 1.88). Consistent with our observations in the UK Biobank study, the GPSCAD led to an 257 

improvement in net reclassification of 35.5% and 32.7% for models with and without clinical 258 

risk factors respectively, Table 1. 259 

A scalable framework for GPS assessment in South Asian individuals 260 

Encouraged by the strength of association with CAD, we next developed a scalable 261 

framework to operationalize GPS assessment. We first analyzed whole-genome sequencing data 262 

of 1,522 India individuals from Phase 2 of the GenomeAsia 100K project (26). These data were 263 

used in two ways: first, to generate a static ancestry-specific genetic ancestry space; and second, 264 

to generate a fixed GPS reference distribution for subsequently recruited individuals seeking 265 

GPSCAD, Central illustration. 266 

To generate a static genetic ancestry panel, we quantified the PCs of ancestry in each of 267 

the 1,522 individuals and saved the variant loading coefficients. This allows subsequently 268 

recruited participants to be ‘projected’ onto this fixed ancestral space. To generate a fixed 269 

GPSCAD reference distribution, we computed the South Asian GPSCAD in each of the 1,522 270 

individuals and adjusted the raw GPSCAD values by the first five PCs of ancestry (Central 271 

illustration). 272 

Testing of the bioinformatics framework in newly-recruited participants in India 273 

Using the newly-developed GPSCAD and bioinformatics framework, we next studied 274 

1,800 CAD cases and 1,163 control individuals newly-recruited in India as part of a MedGenome 275 



study. Median age of cases and controls was 54 and 55 years, and 90% and 76% were male, 276 

respectively (Figure 4, Online Figure 1A, 1D and Online Table 8). By projecting each of the 277 

CAD cases and controls onto the principal components of ancestry derived from the reference 278 

population, we confirmed nearly superimposable distributions of the fixed reference population 279 

individuals and the newly-recruited CAD cases and controls, Figure 4. 280 

We next computed the GPSCAD in each of the participants of the MedGenome case-281 

control study. Consistent with our expectation, median GPS percentile in the controls – who 282 

remained free of CAD into middle age – was minimally reduced compared to the reference 283 

distribution, in the 48th percentile, Central illustration C. By contrast, the CAD cases had a 284 

median GPSCAD in the 64th percentile, Central illustration C and Online Figure 3C. 285 

We studied the relationship of the GPSCAD with CAD in this cohort, noting an OR/SD 286 

increment of 1.66 (95% CI 1.53 – 1.81) and 3.91-fold (95% CI 3.04 to 5.04; P = 2.96-10) increase 287 

in disease risk comparing the top versus bottom GPS quintiles, Central illustration D. Using the 288 

top 5% threshold described above, we observe a 3.22-fold (95% CI 2.23 – 4.74) increased risk 289 

when compared to those in the middle quintile, Figure 5. Additional adjustment for diabetes, 290 

hypertension, hypercholesterolemia, smoking, and body mass index led to minimal effect 291 

attenuation, OR/SD decreased from 1.66 to 1.58 (95% CI 1.42 – 1.75) (Online Table 8). The 292 

GPSCAD led to an improvement in net reclassification of 35.4% and 32.2% for models with and 293 

without clinical risk factors respectively, Table 1. 294 

Discussion 295 

After deriving a GPSCAD tuned to individuals of South Asian ancestry, our series of 296 

analyses confirmed robust associations of this score with CAD in South Asian individuals 297 

involved in the UK Biobank and in a separate case-control study based in Bangladesh. 298 



Furthermore, we validated a generalizable framework to assess polygenic scores – including the 299 

use of an ancestry-specific imputation panel and a static reference distribution – and validated 300 

this framework by confirming robust associations of GPSCAD with CAD in an independent study 301 

of South Asians based in India. 302 

These results indicate that the cumulative impact of common DNA variants – now 303 

possible to quantify using a GPS – is an important driver of risk for CAD, even among 304 

individuals of South Asian ancestry. By optimizing a polygenic score for CAD in South Asians, 305 

we note a 3.22- to 3.91- fold increase in risk when comparing the highest to lowest quintiles 306 

across three independent study samples. Moreover, the pattern of disease associations was 307 

strikingly concordant across individuals of South Asian ancestry living in the United Kingdom, 308 

Bangladesh, and India, with OR/SD increment ranging from 1.58 to 1.66 across the three studies. 309 

These results suggest feasibility for the transfer of polygenic scores across varying 310 

environmental exposures. 311 

We note robust associations with CAD in South Asians, despite using summary statistics 312 

from a genome-wide association study conducted primarily in individuals of European ancestry – 313 

77% European ancestry and only 13% South Asian ancestry (22). This results observed in our 314 

South Asian datasets were broadly comparable but somewhat attenuated when compared to our 315 

previous analysis of  participants of European ancestry in the UK Biobank, where OR/SD 316 

increment was 1.72 as compared to 1.58 to 1.66 observed in the present analysis of South Asian 317 

datasets (11). Although we confirm that the newly-derived score outperformed – albeit modestly 318 

– our previously published score based on tuning in individuals of European ancestry 319 

individuals(11) in all three studies (Online Table 5), the performance of a GPSCAD is likely to 320 



improve further if summary statistics from a large genome-wide association study performed 321 

specifically in South Asians becomes available for use as input to future GPSs (15, 16, 35). 322 

Beyond validation that the GPSCAD associated with disease in South Asians, we describe 323 

a new and generalizable framework necessary for deployment of polygenic score assessment 324 

within a clinical workflow. We used high-coverage whole-genome sequencing of 1,522 Indian 325 

individuals from the Phase 2 of the GenomeAsia 100K project (26) to generate a fixed and 326 

ancestry-matched reference distribution for the GPSCAD. We next recruited an additional 1,800 327 

CAD cases and 1,163 controls and projected them onto the genetic ancestry and GPSCAD 328 

reference distribution, confirming expected associations with CAD. Ongoing efforts to generate 329 

whole genome sequencing data needed to enhance imputation and genotyping array data needed 330 

to develop and validate polygenic in diverse individuals are likely to enable use of this 331 

framework in additional ancestry groups in future studies(17, 36–38). 332 

The utility of GPSCAD assessment is likely to be most pronounced among those with 333 

extremely high GPSCAD, such as the ~5% of the Indian population cohort that inherited about 334 

triple the normal risk on the basis of polygenic variation. These individuals cannot be reliably 335 

identified from the remainder of the population without direct access to genotyping data (Online 336 

Table 6) (11, 32–34), and is associated with significant improvements in net reclassification 337 

indices across all three studies (Table 1). We and others have previously demonstrated that 338 

individuals with high polygenic scores derive the greatest benefit from both adherence to a 339 

healthy lifestyle as well as pharmacologic interventions – including both statins and PCSK9 340 

inhibitors (39–42). Previous work has suggested that knowledge of a high polygenic score may 341 

enhance motivation to initiate or adhere to risk-reducing interventions (43). Successful 342 

generalization of this result to South Asians may thus represent an important public health 343 



opportunity, particularly given the increased rates of a sedentary lifestyle and reluctance to take 344 

medicines frequently encountered in South Asian individuals(1). 345 

These results should be interpreted in the context of several limitations. First, the case-346 

control study design used in the Bangladeshi and Indian studies we analyzed enabled 347 

confirmation of relative risk associations but did not allow for calculation of absolute risk of 348 

future CAD events. Second, our current efforts focused on CAD. Although this specific disease 349 

has particular importance for South Asian individuals, future efforts may allow for an extension 350 

of these findings to additional important diseases for this population, including diabetes or 351 

central adiposity. Third, additional evidence is needed to confirm that polygenic score disclosure 352 

– when integrated into clinical practice in a South Asian population – can improve adherence to a 353 

healthy lifestyle or more efficient use of preventive medications. Fourth, our analysis was based 354 

on overall genetic ancestry as assessed by principal components. Although this is the current 355 

standard, future studies that account for local ancestry – which can vary across chromosomes 356 

even in individuals with similar overall genetic ancestry – using new local ancestry inference 357 

based approaches may prove useful, especially in populations with recent admixture such as 358 

African American or Hispanic individuals (44).    359 

In conclusion, we confirm that a newly-derived GPSCAD for South Asians – which can be 360 

calculated from the time of birth – enables striking stratification of disease risk in middle-age. 361 

Second, we validate a scalable polygenic score framework in India, laying the scientific and 362 

operational foundation for clinical implementation.  363 



Clinical Perspectives  364 

Competency in medical knowledge: A genome-wide polygenic score for coronary artery 365 

disease integrates information from millions of sites of common DNA variation into a single 366 

metric – available from birth – of inherited risk. 367 

Competency in medical knowledge: Because genetic variants vary substantially across racial 368 

and ethnic groups, rigorous ancestry-adjustment is needed when computing genome-wide 369 

polygenic scores that ideally implements data from ancestry-matched individuals. 370 

Translational outlook: Additional research is needed to further improve transferability of 371 

genome-wide polygenic scores across racial and ethnic groups, and understand how best to 372 

integrate such scores into routine clinical practice.  373 
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Figures 489 

Figure 1. Genome-wide polygenic score for individuals of South Asian ancestry – 490 

derivation, validation, and testing workflow.  491 

Candidate genome-wide polygenic scores for coronary artery disease (GPSCAD) were generated 492 

using summary association statistics from a large GWAS study – CARDIoGRAMplusC4D 493 

[Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) plus 494 

The Coronary Artery Disease (C4D) Genetics] – and a linkage disequilibrium reference panel of 495 

503 Europeans from the 1000 Genomes Project (22, 24). Eight candidate GPSs were generated 496 

using the LDpred computational algorithm, a Bayesian approach to calculate a posterior mean 497 

effect for all variants based on a prior (effect size in the previous GWAS) and subsequent 498 

shrinkage based on linkage disequilibrium (23). The scores varied with respect to the tuning 499 

parameter 𝜌 (that is, the proportion of variants assumed to be causal), as previously 500 

recommended. Of the 8 candidate GPSs, the best performing GPSCAD was chosen in a validation 501 

dataset of South Asian participants of the UK Biobank. Next, we tested this score in a newly 502 

recruited CAD case-control study – the Bangladesh Risk of Acute Vascular Events (BRAVE) 503 

Study (21). 504 

Figure 2. Genome-wide polygenic risk scores in coronary artery disease cases and controls.  505 

Polygenic risk score percentile distributions in each cohort stratified by CAD case and control 506 

status (A, C). Disease risk across GPSCAD quintiles, as assessed in a logistic regression model (B, 507 

D). The quintile bin boundary was estimated from the distribution of control samples within each 508 

cohort (B, D). BRAVE, the Bangladesh Risk of Acute Vascular Events study.  509 

Figure 3. Risk associated with high genome-wide polygenic risk scores for coronary artery 510 

disease according to various cutoffs in the UK Biobank and BRAVE studies 511 



The GPSCAD percentile cut-off was estimated from the score distribution of control samples 512 

within each cohort. The number of cases and controls in the top bin was compared to the number 513 

of the middle quintile bin. A logistic regression model was used to estimate the odds ratio 514 

between GPS subgroups, with age, sex, and genetic ancestry as covariates.  515 

Figure 4. Principal components of ancestry for individuals recruited as part of the 516 

MedGenome study 517 

Principal components of ancestry were estimated in 1,522 individuals from Phase 2 of the 518 

GenomeAsia project, unascertained for disease status, who underwent whole genome sequencing 519 

and served as a static genetic ancestry reference distribution. Subsequently, 1,800 CAD cases 520 

and 1,163 controls of the MedGenome cohort were projected onto these static principal 521 

components of ancestry space. The first two principal components of ancestry are plotted, with 522 

Panel A including all individuals, Panel B only participants of the MedGenome CAD case-523 

control study, and Panel C only the participants of the reference distribution. 524 

Figure 5. Evaluating the performance of the framework for calculating genome-wide 525 

polygenic scores. 526 

The risk associated with high genome-wide polygenic scores for coronary artery disease 527 

according to various cutoffs in the MedGenome evaluation data set, a comparison between 528 

samples in the top percentiles to the middle quantile.  529 

Central illustration. Development and implementation of a framework for calculating 530 

genome-wide polygenic scores in South Asian individuals. 531 

A) We performed whole-genome sequencing in 1,522 individuals from a population-based study 532 

in India, recruited without consideration of CAD status (26), to: first, compute quantitative 533 

genetic ancestry as assessed by principal components, and second, to derive an ancestry-adjusted 534 



genome-wide polygenic score (GPS) reference distribution. With these static reference resources 535 

available, subsequently recruited individuals can be projected on to the quantitative ancestry 536 

space and an ancestry-adjusted GPS calculated. The ancestry-adjusted GPS was the raw GPS 537 

adjusted by the first 5 principal components of ancestry in a linear regression model. This 538 

ancestry-adjusted GPS is converted into a percentile rank based on cutoffs derived from the 539 

reference distribution. B, C and D) The evaluation of the disease stratification performance of the 540 

proposed pipeline by 1,800 cases and 1,163 controls, C) polygenic risk score percentile 541 

distribution stratified by coronary artery disease case and control status. D) disease risk across 542 

genome-wide polygenic score quintiles, as assessed in a logistic regression model. 543 

  544 



Table 1. Net reclassification parameters based on the addition of the genome-wide 545 

polygenic score. 546 

 
Baseline Model 

Study 

Age, sex, principal components 
of ancestry 

Age, sex, principal components of 
ancestry, and clinical risk factors 

 

DATA NRI NRI+ NRI- Pvalue NRI NRI+ NRI- Pvalue 

GPS validation datasets 

UK Biobank South Asians 0.3804 0.1759 0.2045 4.59E-11 0.3345 0.1383 0.1962 2.76E-06 

GPS Testing datasets 

BRAVE 0.3546 0.1579 0.1967 5.75E-05 0.3271 0.1404 0.1867 3.93E-03 

MedGenome 0.3539 0.1862 0.1677 1.48E-22 0.3218 0.166 0.1558 7.42E-12 

The category-free net reclassification improvement was calculated by additionally adding 547 

genome-wide polygenic score to a baseline logistic regression model of age, sex and top 5 548 

principal components of ancestry as predictors or age, sex, top 5 principal components of 549 

ancestry and clinical risk factors as predictors. The risk factors adjusted were listed in Online 550 

Table 4, 7 and 8. 551 
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