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Abstract

From the alignment of magnets to the melting of ice, the transition between different phases
of matter underpins our exploitation of materials. Both a quantum and a classical phase can
undergo an instability into another state. In this thesis, we study the stability of matter in
both contexts: topological states and crystalline solids.

We start with the stability of fractional quantum Hall states on a lattice, known as
fractional Chern insulators. We investigate, using exact diagonalization, fractional Chern
insulators in higher Chern bands of the Harper-Hofstadter model, and examine the robustness
of their many-body energy gap in the effective continuum limit. We report evidence of stable
states in this regime; comment on two cases associated with a bosonic integer quantum Hall
effect; and find a modulation of the correlation function in higher Chern bands.

We next examine the stability of molecules using variational and diffusion Monte Carlo.
By incorporating the matrix of force constants directly into the algorithms, we find that we
are able to improve the efficiency and accuracy of atomic relaxation and eigenfrequency
calculation. We test the performance on a diverse selection of case studies, with varying
symmetries and mass distributions, and show that the proposed formalism outperforms
existing restricted Hartree-Fock and density functional theory methods.

Finally, we analyze the stability of three-dimensional crystals. We note that for repulsive
Coulomb crystals of point nuclei, cubic systems have a zero matrix of force constants at
second order. We investigate this by constructing an analytical model in the tight-binding
approximation, and present a phase diagram of the most stable crystal structures, as we tune
core and valence orbital radii. We reconcile our results with calculations in the nearly free
electron regime, as well as current research in condensed matter and plasma physics.
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Chapter 1

Introduction

The study of collective behavior in many-body systems, or condensed matter physics, stands
out in recent years, both in terms of academic and industrial impact. In academia, the field is
responsible for the most Nobel prizes in physics, with four awarded in the last decade [3], as
well as some of the most highly-cited papers, particularly in density functional theory [4].
In industry, condensed matter research has enabled ground-breaking advancements for
existing products, such as energy-efficient LEDs [5], as well as completely new commercial
technology, such as quantum dot displays [6] and superconducting quantum computers [7].
The energies and length scales at which typical condensed matter problems operate are in
part the reason for its success. Fortunately, this clear applicability to real world has in many
cases motivated increased investment and interest in the field [8].

Topological phases of matter is a prime example of a branch of condensed matter physics
that has exploded in the last thirty years: from the three Nobel prizes for the integer quantum
Hall effect [9], fractional quantum Hall effect [10], and the theory of topological phases [11],
through to current research, with the experimental discovery of three-dimensional topological
insulators [12], Weyl fermions [13], and Majorana zero-modes [14]. This progress has
not gone unnoticed, as topological matter is having an increasing influence in academia
and industry alike. Just over a decade ago, Microsoft founded the Station Q project, led
by Michael Freedman, to accelerate the progress in topological quantum computing [15].
More recently, in 2016, the company made multi-million dollar investments in this area to
found new international laboratories, such as Station Q Copenhagen [16]. Although the
first topological qubit has not yet been experimentally constructed, researchers at Station
Q Delft have recently published the first experimental evidence of quantized Majorana
conductance [17, 18]. Furthermore, the discovery of topological phases has spawned several
sub-fields of its own. For example, topomechanics, pioneered by Sebastian Huber [19], has
highlighted the ubiquity of topological phases in the classical world, from acoustic [20] to



2 Introduction

equatorial waves [21]. And skyrmionics - the study of non-volatile data storage devices
using magnetic skyrmions - offers blueprints for the next generation of hard disk drives [22].
Overall, the possibilities for the field are far reaching, and the heavy involvement of industry
and external investors is testament to its promise. We study the stability of topological phases
on a lattice in Chapter 4.

In addition to accelerating computational performance through new types of architecture,
many condensed matter theorists work simultaneously to exploit these advancements in their
research. Building on the success of a large variety of density functional theory programs,
e.g. CASTEP [23], an effort is now being made to solve quantum many-body problems with
higher levels of precision, using classes of methods which were previously undesirable, or
even inaccessible, due to computational expense. One example of such a class of methods
is quantum Monte Carlo, which aims to provide state-of-the-art accuracy for the solutions
to the quantum many-body problem, based on the optimization of an initial quantum state
using stochastic sampling [24]. The past two decades have seen surge of activity on this
topic, due to the rise of petascale computing, improvements to the algorithms [25], and
particular interest in quantum spin liquids [26] and high-temperature superconductivity [27].
Notably, 2016 saw the publication of the seminal paper by Zen et al. on “Boosting the
accuracy and speed of quantum Monte Carlo" [25], which has now become widely adopted
as the cutting-edge implementation by the community [28]. Furthermore, progress in the
development of initial variational states has led to the accurate modeling of more complicated
systems, with multiple electron orbitals, disorder, and electron-phonon interactions1 [24].
In contrast to the progress in applications to other branches of condensed matter physics,
Frederico Becca and Sandro Sorella bemoan in the preface of their 2017 book that “very
few [quantum Monte Carlo] investigations have been performed in the lattice versions of the
quantum Hall effect" e.g. in the Hofstadter model [24]. This thesis introduces both of these
topics and so sets the scene to pursue this line of research. We enhance the efficiency and
precision of quantum Monte Carlo algorithms in Chapter 5.

Not all discoveries in condensed matter physics are due to new technological advances
or state-of-the-art algorithms, however. Some breakthroughs arise from re-interpretations
or paradigm shifts in existing theory. Consider, for example, crystal structure and atomic
packing, which has been an area of research in the field since its inception. Despite the
topic’s long history, there are still major discoveries being made to this decade, such as
the 2010 Nobel prize for the discovery of Graphene [30] - a two-dimensional hexagonal

1Quantum Monte Carlo is not without its competitors, with density matrix renormalization group and
tensor network approaches making equally impressive progress in recent years [29]. However, since these
alternate approaches are unbiased in the sense that no initial wave function is required, the methods may be
considered complementary [24].
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lattice of Carbon atoms with zero band gap - or the 2011 Nobel prize for the discovery of
quasicrystals [31] - crystals which are ordered but lack translational symmetry2. These cases
emphasize the importance of revisiting even well-established theories with new insight and
tools. We contribute to the theory of crystal stability in Chapter 6.

Every advancement in the field of condensed matter physics emphasizes how much we
have left to learn about the world around us, with theory providing a glimpse into what
the future may hold. In this thesis, we present work spanning topological phases of matter,
quantum Monte Carlo, and crystal structure, focusing on system stability in each case. We
hope to instill a greater appreciation of the subtleties in these topics, as well as the scope for
their potential unification in the future.

2Contrary to initial skepticism, the existence of these structures has now been experimentally verified
multiple times [32] and is now paving the way to new areas of research, such as the first observation of
quasicrystalline superconductivity in 2018 [33].





Chapter 2

Atoms, Molecules, and Crystalline Solids

Even plasma, the most abundant and
disordered phase of matter in the
universe, can form a crystal.

paraphrased from Thomas et al. [34]

Despite recent advances in experimental methods and materials science, electronic
structure calculations remain, in many cases, the leading technique in which to accurately
probe properties of a material. In fact, numerical implementations are often reliable enough
to replace expensive experiments in industry, which is part of the reason for their commercial
success [23, 35, 36]. In this chapter, we discuss the formalism of electronic structure
calculations for atoms, molecules, and crystalline solids. We start by discussing how best to
model atomic configurations from a theoretical perspective, motivated by numerical methods.
We then proceed to detail two of the most powerful quantum Monte Carlo algorithms in the
field: variational Monte Carlo and diffusion Monte Carlo. Finally, we outline the challenges
of implementing forces and force constants in a quantum Monte Carlo scheme, and analyze
the stability criteria for these systems. The formalism presented is general, and as alluded by
the epigraph, has a larger scope than may first appear.

2.1 Orbitals and Plane Waves

This section is based on the lecture notes by Towler [37], Sherill [38], and Skylaris [39]. The
molecular orbitals described are used to construct the trial wave function in Chapter 5.

When studying a material structure problem, either theoretically or computationally,
one of the first quantities to formalize is the wave function. After all, the wave function
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provides a complete quantum mechanical description of the system, from which it is possible
to model the behavior of interest. In a numerical calculation, however, there is almost always
a trade-off between accuracy and efficiency. The aim is to use approximations to construct
accurate representations of the wave function, with minimal computational cost.

In the early years of computational electronic structure calculations, scientists used
their intuition from calculations based on ‘Hydrogen-like’ atoms as the basis for orbital
construction. This is in part due to the fact that the radial functions in these systems are
analytic. Consider a Hydrogen-like atom with one electron and a point nucleus of charge
+Z at the origin. From an analysis of the radial function of this system, R(r), we can see the
wave function has a cusp at the origin, such that

dR
dr

∣∣∣∣
r=0

=−Z,

and the wave function decays exponentially outwards. For this reason, theorists sought to
capture this exponential decay and cusp, and so they started constructing their orbitals using
primitive Slater-type orbitals (STOs) of the form:

gSTO(r,ζ ,n) = A(n,ζ )Yl,m(θ ,φ)rn−1e−ζ r,

where A is a normalization constant, Yl,m are the spherical harmonics, ζ is the exponent, and
{n,m, l} are the quantum numbers [40]. The initial problem with using such orbitals is the
computational cost for multi-center integrals. Historically, the community started to switch
to using primitive Gaussian-type orbitals (GTOs) in response to this issue [41]. The GTOs
take a similar form:

gGTO(r) = B(l,ζ )Yl,m(θ ,φ)rle−ζ r2
,

where B is a normalization factor. The important differences being that Gaussians do not
have a cusp at the origin and they decay faster. Since they give an incorrect short-distance
and long-distance behavior, people believed that this was at best an approximation employed
simply to speed up the computations. However, Gaussian orbitals worked surprisingly well,
and this is due to several reasons:

1. In a Cartesian basis, GTOs are completely separable, which drastically simplifies the
numerical integration.

2. It is true that point nuclei would have a cusp in theory, but for real nuclei with a finite
radius, a Gaussian may be a more realistic model.



2.1 Orbitals and Plane Waves 7

3. The cusp is often not necessary to accurately predict properties of the wave function in
the vicinity of the nucleus.

4. Even though in principle an STO would be able to model the correct large-separation
exponential decay, this only occurs for a specific value of the exponent, which is too
restrictive for practical molecular or crystalline solid calculations.

For these reasons, GTOs are now a common starting point to construct accurate orbitals for
electronic structure calculations.

At this stage, we note that a GTO on its own does not resemble an atomic orbital i.e. a
solution to the electronic Schrödinger equation for the atom. For this, it is often necessary to
take a linear combination of GTOs to create contracted Gaussian basis functions (CGFs) of
the form:

Gα(r) =
Nα

∑
ν=1

cνgGTO
ν (r),

where α is the atomic index, Nα is the number of GTOs in the contraction, cν are the
contraction coefficients, and ζν are the contraction exponents in the GTO1. One may now in
principle select the contraction coefficients and exponents to obtain the desired properties of
the CGFs. In practice, however, the contraction coefficients and exponents for a particular
atom are calculated using a self-consistent field (SCF) calculation and stored in a database [42,
43]. One of the main advantages of this formalism is that even though many GTOs may
be required to accurately model an atomic orbital, the relative weights of these GTOs are
virtually unchanged when the atoms form larger structures. Therefore when extending an
atomic calculation to molecules or crystals, one only needs to change the scale factors of the
CGFs.

Now that we have formed CGFs to start to model atomic orbitals, we have a couple of
options. If we are interested in modeling molecules, we may now take a linear combination
of these CGFs in order obtain a final model for our molecular orbital2:

ψi(r) =
NBF

∑
α=1

Cα,iGα(r), (2.1)

where i is the molecular index, NBF is the number of basis functions, and Cα,i is the coefficient,
tuned using a SCF calculation (discussed in Sec. 2.1.1). On the other hand, if we are interested

1Note that CGFs are often incorrectly referred to as "atomic orbitals" in the literature. Even if the CGFs are
atom-centric, they are not precise solutions to the electronic Schrödinger equation for the atom and so this is a
misnomer.

2Historically, this was referred to as the "linear combination of atomic orbitals" (LCAO) method, however
this is again a misnomer for the same reason as in the previous footnote.



8 Atoms, Molecules, and Crystalline Solids

in modeling a crystalline solid, we may assign p CGFs to each of the atoms in the unit cell.
These CGFs are associated with all N atoms in the crystal, separated from the unit cell by
multiples of the translation vector t. From these CGFs we may construct Gaussian-type
Bloch functions (GTBFs) of the form

G̃0,k(r) = ∑
t

G0(r− r0 − t)eik·t,

where G0 is the CGF, r0 is the coordinate of the basis atom, both associated to the zeroth
unit cell; and k is the momentum vector. Note that the contraction coefficients and exponents
may differ from corresponding values for molecular calculations.

A popular alternative to using Gaussians for crystalline solid calculations is the use of
plane waves. For this thesis, we tested both types of calculation and ultimately decided to use
all-electron Gaussians. This decision was taken for several reasons, including the following
advantages of the Gaussian method:

1. We are able to model both core and valence electronic orbitals accurately and simulate
finite systems in an arbitrary number of dimensions.

2. The integrals are exactly solvable and so the method yields extremely precise total
energies.

3. We can compute exact non-local exchange, which is required for DFT exchange-
correlation functionals.

It is also known that Gaussians are more efficient than plane waves for quantum Monte Carlo,
where accuracy is paramount.

There is freedom in how orbitals are constructed, determined by whether speed or
accuracy is a priority. Usually the atomic orbitals are represented by several CGFs with a
range of contraction exponents [44]. The CGFs with large contraction exponents are referred
to as core basis functions, whereas the CGFs with small contraction exponents are more
diffuse and are referred to as the valence basis functions3. The number of CGFs used to
represent an atomic orbital (which historically was a Slater orbital, with exponent ‘zeta’)
naturally dictates the accuracy of the representation. For example, a single zeta representation
would not be as faithful to the real atomic orbital as a triple zeta representation; however,
it would be faster to compute4. Furthermore, since valence electrons usually play the most
important role in atomic bonding, it is common to use a larger number of CGFs to represent

3This is once again a reference to the incorrect notion of CGFs as ‘atomic orbitals’.
4The single-zeta representation uses only one CGF to represent an atomic orbital and hence is the minimal

representation.
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the valance orbitals than the core orbitals in an atom. For example, one would typically take
one CGF to represent the core orbital and several for the valence orbital. This is known as a
split-valence basis.

There are a couple more features commonly employed to improve the accuracy of
basis set expansions. The first of these are polarization functions, which are functions
of higher angular momentum quantum number than the highest occupied orbital in the
configuration. The motivation behind these functions, stems from the fact that when an atom
is in a background electric field its charge distribution becomes asymmetric i.e. the atom is
polarized. This can occur for atoms in a molecule, for example, where they can experience a
non-uniform electric field due to the other atoms present. Polarization functions added to the
basis set expansion can accommodate for the increased angular momentum of the orbitals
in this situation. This consequently gives the atomic orbital representation more flexibility,
particularly when applied to molecules and crystalline solids.

The second feature commonly used to bolster the accuracy of atomic orbital representa-
tions are diffuse functions. These functions are typically employed in molecules, where the
charge distribution of the atoms is expected to be much more diffuse than normal. Alterna-
tively, they may be employed simply when a more accurate representation of the outer orbital
distribution is desired. As the name suggests, they are functions with smaller contraction
exponents than the usual valence basis functions. Note that diffuse functions are generally
avoided when modeling crystalline solids.

Now that we have constructed the most realistic representation possible for our system,
we are ultimately left with a wave function of the form of Eq. 2.1 for molecules. At this
point we have selected the basis functions, which are now fixed, however the coefficients for
our configuration are yet to be determined. To this end, we tune the coefficients in Eq. 2.1
using an SCF calculation. Traditionally, this is performed by deriving the Hartree equation
as an approximate solution to the Schrödinger equation and then ensuring that the final
field derived from the charge distribution is self-consistent with the initial field. However,
nowadays, a popular alternative to Hartree-Fock calculations is to use density functional
theory (DFT), which attempts to incorporate both exchange and correlation energies in the
calculation. In this thesis, we will use a hybrid functional method which adopts aspects from
both the traditional Hartree-Fock method and also DFT.

2.1.1 Hybrid functional method

The underlying concept of Kohn-Sham DFT comes from mapping an intractable interacting
N-electron problem onto a set of tractable non-interacting one-electron problems. The initial
problem may be a system of nuclei and electrons represented by the N-body Schrödinger
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equation:(
−1

2
∇

2 +
1
2 ∑

i ̸= j

1
|ri − r j|

−∑
i,I

ZI

|ri −RI|
+

1
2 ∑

I ̸=J

ZIZJ

|RI −RJ|

)
Ψ(r1,r2, . . .) = EΨ(r1,r2, . . .),

where ri are the coordinates of electron i, RI are the coordinates of nucleus I, Z is the nuclear
charge, and Ψ is the many-body wave function with corresponding eigenenergy5 E. From
this, we know that the exact electronic density of the system is given as

nexact(r) =
ˆ

. . .

ˆ
Ψ

∗(r,r2, . . .)Ψ(r,r2, . . .)dr2 dr3 . . . .

Alternatively, we can represent these interacting electrons as a set of non-interacting Kohn-
Sham quasi-particles, whose behavior is modeled by the Kohn-Sham equations:(

−1
2

∇
2
i +

1
2

ˆ
n(r′)
|r− r′|

dr′−∑
I

ˆ
ZIn(r′)
|r′−RI|

dr′+
1
2 ∑

I ̸=J

ZIZJ

|RI −RJ|
+µXC[n(r)]

)
ψi(r)

= εiψi(r),

where we have replaced the electron sums with density integrals and introduced an exchange-
correlation (XC) potential functional µXC [45, 46]. ψi is the Kohn-Sham eigenstate for
electron i with corresponding eigenenergy εi. Here the electronic density is given simply as

nDFT(r) = ∑
i

ψ
∗
i (r)ψi(r).

Note that the electronic density is exactly preserved in this mapping.
The problem with the Kohn-Sham representation of the problem is that the exchange-

correlation energy is unknown. Within DFT, we may write the exchange-correlation energy
exactly as

EXC =
1
2

¨
n(r)

nXC(r,r′)
|r− r′|

drdr′.

This is nothing more than the Coulomb interaction between an electron at position r and
an exchange-correlation hole at position r′. However, the precise form of the exchange-
correlation density hole, nXC, is still unknown. The art of Kohn-Sham DFT is, therefore,
accurately approximating the exchange-correlation energy.

5Here we set h̄ = m ≡ 1.
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From Hartree-Fock theory, with the most basic assumptions of the antisymmetry of the
many-body wave function, we may write the exact non-local exchange energy as

EHF
X =−1

2 ∑
i j,kq

¨
ψ∗

ik(r)ψik(r′)ψ∗
jq(r′)ψ jq(r)

|r− r′|
drdr′.

Taken on its own, the Hartree-Fock exchange energy is an overly simplified approximation
and generally underestimates the binding energy [47].

Several attempts have been made, therefore, to model the exchange-correlation energy.
The first and simplest of these models is the local density approximation (LDA), which takes
the exchange-correlation energy to be of the form

ELDA
XC [n(r)] =

ˆ
n(r)εLDA

XC [n(r)]dr,

where εLDA
XC is taken to be from the homogeneous electron gas [45]. However, this has

several limitations including an overestimate of the binding energy. Subsequently, proposals
have been introduced to construct a more accurate energy, including the next higher-order
approximation known as the generalized gradient approximation (GGA) [48],

EGGA
XC [n(r)] =

ˆ
n(r)εGGA

XC [n(r),∇n(r)]dr,

or even higher-order approximations which follow in a similar fashion i.e. εXC[n(r),∇n(r),
∇2n(r), . . . ] [49]. To a certain extent, all of these approximations suffer from similar prob-
lems to the LDA. However, these problems are the opposite to those that we encountered
when taking the Hartree-Fock exchange functional alone [50]. Hence, it was subsequently
realised that by taking a hybrid of the exact non-local Hartree-Fock exchange energy with
the local energy approximations, it is possible to compensate for the limitations of the ap-
proximations [51, 52]. The underlying idea of the hybrid functional method is to build an
exchange-correlation energy of the form

EXC = αEHF
X +∑

i
βiE

locali
X +∑

i
γiE

locali
C ,

where α ∈ [0,1] is a tuning parameter, ∑i βi = 1−α and ∑i γi = 1. The index ‘locali’ could
be any of the local energy approximations mentioned above, e.g. LDA, GGA, or higher-order
variants. For the simulations in this thesis, we tested a variety of approximations for the
local exchange-correlation energy and we found that a mixture of LDA and GGA, known
as the Becke, three-parameter, Lee-Yang-Parr (B3LYP) energy [53], worked best for our
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systems. This functional uses a LDA exchange-correlation energy from Vosko-Wilk-Nusair
(VWN) [54], a GGA exchange energy due to Becke [55], and a GGA correlation functional
from Lee-Yang-Parr [56]. The complete expression for the functional is given as

EB3LYP
XC = ELDA

X +α0(EHF
X −ELDA

X )+αX(EGGA
X −ELDA

X )+ELDA
C +αC(EGGA

C −ELDA
C ),

where α0 = 0.20, αX = 0.72, and αC = 0.81 are the three parameters [57].
In summary, the coefficients in Eq. 2.1 are tuned using an SCF calculation, which in our

case equates to minimizing the energies from the restricted Hartree-Fock6 and B3LYP hybrid
functional method in the CRYSTAL program [58].

2.2 Quantum Monte Carlo

This section is based on the reviews by Toulouse et al. [59], Towler [60], Austin et al. [61],
Foulkes et al. [62], Needs et al. [35], Kolorence & Mitas [63], the book chapter by Pederiva
et al. [64], and the thesis chapters by Badinski [65] and Kent [66]. The original papers are
by McMillan [67] and Ceperley & Alder [68]. The algorithms described in this section are
used in conjunction for the simulations in Chapter 5.

Equipped with an accurate description of the underlying orbitals in our system, we may
now construct the many-body wave function and use this to simulate the system’s behavior.
For this, we employ two leading quantum Monte Carlo (QMC) algorithms: variational Monte
Carlo (VMC) and diffusion Monte Carlo (DMC).

2.2.1 Variational Monte Carlo

We start by constructing a trial fermionic many-body wave function for our system of
Slater-Jastrow form:

ΨT = eJD↑D↓, (2.2)

where eJ is the Jastrow factor and D↑/↓ is a Slater determinant of up/down-spin single-particle
orbitals. The Jastrow factor incorporates a customizable function, J, which depends on inter-
particle distance and thus encodes the electron correlation. The Hartree-Fock part of the trial
wave function, D↑D↓, encodes Pauli exclusion.

6The restricted closed-shell Hartree-Fock method is applied to an atom or molecule where all orbitals
are doubly occupied. The restricted open-shell Hartree-Fock method uses doubly-occupied orbitals as far as
possible, and singly-occupied orbitals for the remaining electrons.
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The most important quantity of interest is the energy of the system. From the Ritz
variational principle, we know that the variational energy, Ev, is greater than or equal to the
ground-state energy, E0, such that

Ev =
⟨ΨT|Ĥ|ΨT⟩
⟨ΨT|ΨT⟩

≥ ⟨Ψ0|Ĥ|Ψ0⟩
⟨Ψ0|Ψ0⟩

= E0,

where Ĥ denotes the Hamiltonian of the system, and Ψ0 the true ground-state wave function.
Hence, we know that by varying the energy of our trial system, we expect to approach the
ground-state energy from above.

In an electron-position basis, we may write the variational energy as

Ev =

´
dr|ΨT|2EL´

dr|ΨT|2
=

ˆ
drρEL,

where EL ≡ ĤΨ/Ψ is the local energy and ρ is a normalized probability density function
(PDF). The Hamiltonian and wave function are both functions of electron coordinates r. The
variational energy can then be approximated as the average of the local energy, such that

Ev ≈ ĒL =
1
M

M

∑
k=1

EL(rk), (2.3)

where the selection of M points, rk, have been sampled from the PDF, ρ(r), using the
Metropolis-Hastings algorithm [69, 70] (discussed later in the Sampling section).

When using a stochastic scheme, such as VMC, a careful analysis of the uncertainty
is of paramount importance. In this case we have a systematic uncertainty in the way we
have constructed our trial wave function (which may even be at the orbital level), and so this
ultimately places a restriction on the accuracy of our result. More easy to quantify, however,
is the statistical uncertainty of our Monte Carlo run. It is this statistical uncertainty that is
generally quoted together with Monte Carlo results in the literature.

According to the central limit theorem, if the sample of local energies in Eq. 2.3 are
random variables that are independent and identically distributed, with finite expectation
value E[EL], and variance Var[EL], then in the limit as M → ∞ the mean local energy ĒL

converges to a Gaussian with expectation value E[El], and variance7 Var[EL]/M. Hence, in a
statistical sense, the mean of the local energy is an estimator of the variational energy.

7The law of large numbers guarantees the convergence of ĒL to E[EL] in the limit as M → ∞ when the
expectation value is finite but the variance is infinite, however the variance then converges more slowly.



14 Atoms, Molecules, and Crystalline Solids

Blocking

However, since the PDF is sampled in a non-independent way, using the Metropolis-Hastings
algorithm, we cannot apply the central limit theorem to the whole sample M. Instead,
we use the blocking technique to split the sample up into Mb independent blocks of size
Ms. The Metropolis-Hastings algorithm is based on a Markov chain process, where the
probability of the sampling the next point is conditional on the previous point. Within this
framework, we may define a timescale over which the points decorrelate, which is known as
the autocorrelation time. For the blocking technique to work, we need to use a block size
which is greater than or equal to the autocorrelation time.

Here we may define a block average for the local energy as

ĒL,b =
1
M

Ms

∑
k=1

EL,k,

which is the average within a block, and the global average

ĒL =
1

Mb

Mb

∑
b=1

ĒL,b

which is the average of the blocks themselves. If the blocks are independent, we may then
write the variance of the global average in the large M limit as

Var[ĒL] =
Var[ĒL,b]

Mb
.

Note that the samples within a block are not independent, and so the inter-block variance
Var[ĒL,b] involves covariances between the variables. Upon simplification we find that

Var[ĒL,b] = Tc
Var[EL]

Ms
,

where the autocorrelation time is defined as

Tc = 1+
2

Var[EL]Ms
∑
k<l

Cov[EL,k,EL,l].

Hence the final form of the statistical uncertainty for our VMC run takes the form

σ [ĒL] =

√
Var[EL]

Meff
,
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where Meff = M/Tc is the number of effectively independent sample points. This formula
implies that the statistical error has an inverse square root relationship with the number of
iteration steps8.

Sampling

As mentioned in the previous section, the Metropolis-Hastings algorithm is used to sample the
PDF, ρ(r). This sampling algorithm uses a Markov chain, which is a memoryless stochastic
process, whereby the probability of sampling the next point only depends on the previous
point sampled. In this framework, we denote the transition probability of going from an
initial point ri to a final point rf as P(rf|ri). For the discrete Markov chain, this transition
probability is a matrix, called a Markov matrix.

The Markov matrix has several important properties:

1. Stochasticity – The Markov matrix is non-negative and has normalized columns, which
implies that it is possible to select the initial point again on the next step.

2. Ergodicity – Since it is possible to move between any initial point ri and final point rf

in a finite number of steps, all states can be selected during a Markov process, and so
the chain converges to a unique PDF, ρ(r).

3. Reversibility – The Markov matrix is constructed subject to the detailed balance
condition P(rf|ri)ρ(ri) = P(ri|rf)ρ(rf) which implies that the probability flux is the
same in both directions.

After a few equilibration steps of the random walk of the Markov chain (which are usually
discarded), the walk samples from the unique stationary distribution ρ(r) and the observables
of interest can be calculated.

In the Metropolis-Hastings algorithm [69, 70], a random walk from ri to rf is constructed
based on the two events: proposal and acceptance. If a candidate point r′f is proposed and
accepted, it becomes rf, whereas if it proposed and rejected it remains ri. The Markov matrix
in this case may be written as

P(rf|ri) = Pacc(rf|ri)Pprop(rf|ri)+

1−∑
r′f

Pacc(r′f|ri)Pprop(r′f|ri)

δ (ri − rf), (2.4)

8Various tricks have been applied to manipulate the probability distribution so as to minimize the error.
One of the most well known is to add a quantity to the PDF with a smaller variance but zero expectation
value [71–73].
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where Pprop denotes the proposal, and Pacc the acceptance, probabilities. The key question is
then to determine the optimal choices for these proposal and acceptance probabilities.

Determining the optimal acceptance probability is the easier of the two problems and has
already been solved by Metropolis et al. [69]. They derive an optimal acceptance probability
of the form:

Pacc(rf|ri) = min
{

1,
Pacc(rf|ri)

Pacc(ri|rf)

}
= min

{
1,

Pprop(ri|rf)ρ(rf)

Pprop(rf|ri)ρ(ri)

}
,

where the second equality is due to detailed balance9.
An optimal proposal probability, however, is not as clear-cut. The aim is to use a proposal

probability that minimizes the autocorrelation time, whilst giving reasonable acceptance
ratios and satisfying all of the conditions for the Markov matrix stated before. In this thesis,
we use the CASINO program [35], where the proposal is the original configuration plus a
Gaussian-distributed random displacement of variance, τ , and a wave function drift term, vτ ,
where v = ∇Ψ/Ψ. Hence, the proposal probability takes the form

Pprop(rf|ri) =
1

(2πτ)3N/2 exp
(
−(rf − ri −v(ri)τ)

2

2τ

)
.

This an isotropic Gaussian diffusion process, known as a Wiener process, with the addition
of a drift term which biases the random walk towards higher probability amplitudes.

2.2.2 Diffusion Monte Carlo

Once we have optimized our trial wave function from Eq. 2.2 using VMC, we make further
improvements using the more expensive, and accurate [74], DMC algorithm. Using VMC
and DMC in combination in this way is a standard technique in the QMC electronic structure
community [65].

One of the greatest limitations of the VMC algorithm is the form of the trial wave function.
No matter how well the statistical uncertainty is minimized, the method will always be limited
by the systematic uncertainty of the initial wave function ansatz. DMC, on the other hand,
manages to overcome this issue. It does so by sampling from a mixed distribution, f = Ψ0Ψ,
which takes both the VMC-optimized wave function, Ψ, and the exact ground-state wave

9Note that the acceptance probability does not need to be an ergodic matrix [59].
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function, Ψ0, into account10. In DMC, the ground-state energy is written as

E0 =
⟨Ψ0|Ĥ|Ψ⟩
⟨Ψ0|Ψ⟩

,

which in an electron position basis may be written in similar way:

E0 =

´
drΨ0ΨEL´

drΨ0Ψ
=

ˆ
drρEL.

By implementing the exact ground-state wave function, we can overcome the inaccuracies
of the optimized trial wave function. The question then shifts to how to obtain the exact
ground-state wave function11. For this, we evolve the trial wave function (or, in principle,
any arbitrary wave function not orthogonal to the ground state) using the t →−it imaginary
time Schrödinger equation to filter out the ground state. In real space, the evolution of the
mixed distribution may be written as

f (rf, t) =
ˆ

driG̃(rf|ri; t)Ψ(ri)
2, (2.5)

where we define the importance-sampled Green’s function as

G̃(rf|ri; t) = Ψ(rf)G(rf|ri; t)
1

Ψ(ri)
.

In this context, ‘importance sampling’ means we are sampling according to the mixed PDF.
At large imaginary times this will tend to the aforementioned stationary distribution f = Ψ0Ψ.

However, since an analytical expression for the Green’s function of the form of Eq. 2.5
is only known in the limit of short times, we iterate the process over many short times to
obtain the stationary distribution. This introduces what is known as a time-step error into the
calculation, which may be eliminated by extrapolating to τ → 0 [75–77].

Fixed Node Approximation

The problem with using this mixed distribution as our PDF however, is that for fermions it
can take positive and negative values. As a consequence, this means that although the DMC
algorithm can achieve arbitrary accuracy for the ground-state energy of bosonic systems, it

10For simplicity, both wave functions in this section are assumed to be real.
11Calculating the action of the Hamiltonian directly on Ψ0 is in most cases too expensive to be computation-

ally feasible.
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suffers from the sign problem for fermions12. In order to circumvent this issue, we fix the
nodes of the "exact" ground-state wave function to be the same as those for the trial wave
function. This ensures that the mixed PDF is non-negative and is known as the fixed node
approximation [79–81].

Formally speaking, this is achieved by adding infinite potential delta functions to the
true Hamiltonian to form the fixed node Hamiltonian, ĤFN. This extra potential does not
contribute to the energy, EFN, of course because the wave function, ΨFN, is zero at the nodes.
Position space is now divided into nodal pockets where the wave function has a fixed sign.

The analogous importance-sampled Green’s function is of the form

G̃FN(rf|ri; t) = Ψ(rf)GFN(rf|ri; t)
1

Ψ(ri)
,

which confines moves to a nodal pocket. As before, a short-time approximation needs to be
taken. The tiling theorem states that for ground-state calculations it is sufficient to sample
only one nodal pocket. In short, the accuracy of a DMC result depends on the quality of the
nodal surface of the trial wave function13.

Sampling

Unfortunately, it is not possible to use the importance-sampled Green’s function to construct
a Markov chain directly since it is not a stochastic matrix (i.e. it is not normalized). Instead
we use it to form a weighted random walk by writing

G̃(rf|ri;τ) = P(rf|ri)W (rf|ri),

where τ is a small time increment, P is a stochastic matrix, and W is a weight matrix. The
process starts with a distribution (or walker) with a position r1 and weight w1 = 1, and then we
sample subsequent positions ri with probability P(ri|ri-1) and weight wi =W (ri|ri-1)wi−1. As
before, the weighted random walk samples the stationary distribution after the equilibration
phase.

At this point, we run into another obstacle, which is that the weights are expensive to
compute, and the observable averages are only dominated by the points with largest weight
anyway. The answer is use a branching process for the walkers in the system. This process
works by assigning, at each iteration k, a population of walkers with positions rk,α and

12This sign problem originates from topological properties of the configuration [78].
13Accurately approximating the nodal surface is notoriously difficult for solid-state systems, and hence

alternative approaches have been developed, such as full configuration interaction quantum Monte Carlo, in
order to reliably benchmark quantum chemistry results in these cases [82].
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weights wk,α with α = 1,2, . . . ,Mk, which each perform a random walk. This results in
drastically smaller change in the weights from their initial value. Various algorithms exist for
this purpose, including the split-join [83] and stochastic reconfiguration algorithms14 [84, 85].

In order to sustain a finite walker population, the trial energy, ET, in the Green’s function,
G(rf|ri; t) = ⟨rf|e−(Ĥ−ET)t |ri⟩, is set as a function of the weight of the walkers. In turn, this
implies that ET fluctuates with respect to the ground-state energy on each iteration, which
introduces what is known as population control error. The net effect is an overestimate of
the energy15.

The Metropolis-Hastings algorithm is used, similarly to VMC, for the weighted random
walk in DMC. The transition probability matrix may be written in an analogous form to
Eq. 2.4, where we use a Metropolis acceptance probability and a drifting Wiener proposal
probability. Consequently, the finite time-step error is eliminated in the transition probability
matrix (but remains for the weight matrix). The DMC algorithm now takes the form of
a diffusion process with a time-scale16, τ . A small time step must be used for DMC to
minimize time-step error, with a large number of walkers to minimize population control
error.

As before, the ground-state energy is estimated by an average of the local energy with
respect to the normalized mixed PDF. Post equilibration phase this may be written as

E0 ≈ ĒL =
∑

M
k=1 ∑

Mk
α=1 wk,αEL(rk,α)

∑
M
k=1 ∑

Mk
α=1 wk,α

.

This estimator has the same or analogous statistical properties as those discussed for VMC.
In cases where the observable of interest, Ô, does not commute with the Hamiltonian, we

may use the extrapolation formula to reduce the error by one order in ||Ψ−Ψ0|| [87]. The
extrapolation formula is given as

⟨Ô⟩= 2⟨Ô⟩DMC −⟨Ô⟩VMC +O(||Ψ−Ψ0||2),

where ⟨⟩DMC denotes the average over the mixed DMC distribution and ⟨⟩VMC denotes the
average within VMC. There are also many other techniques used to generate pure distributions
from local operators [88], such as the future walking method [89].

14Bias may be eliminated by tuning the population of walkers between each iteration, and controlling the
weight distribution among the walkers.

15The population control error scales inversely with the number of walkers and can be effectively eliminated
by not controlling the population on the last few iterations of the DMC algorithm [83, 86].

16Note that the variance in the drifting Wiener proposal probability for the VMC algorithm is often also
referred to as a time-scale by analogy, even though it has no relation to physical time.
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2.3 Forces in Quantum Monte Carlo

This section is based on the thesis by Badinski [65], as well as the papers by Assaraf &
Caffarel [90], Moroni et al. [91], and Badinski et al. [92]. Finite-difference derivatives of
forces are used as a benchmark for the force constant calculations in Chapter 5.

The advantages of incorporating forces (i.e. derivatives of the energy with respect to
nuclear displacements) into solid-state simulations are undisputed for both atomic relaxation
and molecular dynamics, however, in many cases, they are notoriously difficult to compute.
Even at the level of basis functions, scientists were, for many years, reluctant to use Gaussian
basis sets over plane waves due to the difficulty of computing forces. CRYSTAL, for example,
only included forces for the first time in its fifth release: CRYSTAL03. For QMC, the inability
to compute forces was listed as the number one reason on Ceperley’s "Top Ten List of reasons
why quantum Monte Carlo is not used in chemistry" published in 1996 [93]. Of course, times
have moved on since then, and progress has been made in this area. However, the topic of
forces is just as influential today and still remains a subject of active research.

At present, atomic relaxation is generally performed using DFT, where the QMC simula-
tions are then used to accurately calculate the energy in the Born-Oppenheimer approximation,
i.e. with stationary nuclei. However, methods have been proposed to incorporate the force
directly. These may be split into two types:

1. analytic derivatives [94, 95]

2. finite differences [96]

In this thesis, we shall focus on the analytical derivatives approach, since this is the method
pursued in most modern literature.

As discussed in the previous section, the energy of a system may be written in an electron
position basis as

E =

´
Ψ∗ĤΨdr´
|Ψ|2 dr

, (2.6)

where the many-body wave function, Ψ, and Hamiltonian, Ĥ, are functions of all particle
positions. From this, we may take the derivative of the energy with respect to the displacement
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of the Ith nucleus, RI , to yield17

dE
dRI

=

´
Ψ∗ dĤ

dRI
Ψdr´

|Ψ|2 dr
+

´ dΨ∗

dRI
ĤΨ+ΨĤ dΨ

dRI
dr´

|Ψ|2 dr
−
´

Ψ∗ĤΨdr´
|Ψ|2 dr

´ dΨ∗

dRI
Ψ+Ψ∗ dΨ

dRI
dr´

|Ψ|2 dr
.

Identifying the energy (Eq. 2.6) in the above expression, and rearranging, leads to an
expression for the force composed of two parts:

F = FHF +FPulay, (2.7)

where the Hellmann-Feynman term is given as

FHF =

´
Ψ∗ dĤ

dRI
Ψdr´

|Ψ|2 dr
, (2.8)

and the Pulay term takes the form

FPulay =

´ dΨ∗

dRI
(Ĥ −E)Ψdr´
|Ψ|2 dr

+ c.c..

The problem with evaluating the force in QMC naively, just as we did with the energy in the
previous section, is that the force does not satisfy the zero-variance property.

In Sec. 2.2.1, we showed that, for VMC, the variational energy could be estimated by
the statistical mean of the local energy, where the mean is sampled from the PDF |ΨT|2.
Similarly, for DMC, we showed that the exact energy could be estimated from a statistical
mean of the local energy sampled over the (fixed-node) mixed distribution, ΨΨT. In both
cases, we see that the uncertainty in the energy result is related to the fluctuations in the local
energy. When the variance in the local energy goes to zero, then so too will the uncertainty
in our result. The issue with applying the same technique to forces is that the bare force has
infinite variance. Since F ∼ r−2 at short distances, then we can clearly see that ⟨F2⟩ → ∞.

In the last two decades, several attempts have been suggested to overcome the obstacle
of infinite variance. Of particular focus for this thesis are the studies of the heavy tails of
the force distribution. The term "heavy tails" is given to a power-law decay, rather than an
exponential decay, at large distances, giving rise to infinite variance. For the local Hellmann-
Feynman force, these heavy tails were found to decay with the fourth power, such that

17The input wave functions are generally unnormalized, with normalization factors that depend on the
ion displacements R, and so we include all normalization factors in these derivations. This also shows the
derivatives exactly as they are implemented in the CASINO code.
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∼ |F −F0|−4, where F0 is a constant. It has also been shown that singularities in the energy
landscape (at the nodal surface of ΨT ) would lead to heavy tails of the same form.

Nowadays, many of the technical difficulties arising from force calculations have been
circumvented for both VMC and DMC, which puts QMC in the limelight as a competitive
electronic structure technique.

2.4 Force Constants in Quantum Monte Carlo

In this thesis, we propose further improving the accuracy and efficiency of QMC calculations
by incorporating the matrix of force constants.

2.4.1 Derivation omitting Pulay term

When the wave function is an exact eigenstate of the Hamiltonian (ĤΨ = EΨ), the Pulay
term in Eq. 2.7 vanishes. Hence, the total force is given simply as the Hellmann-Feynman
force in Eq. 2.8.

In order to simplify the following algebra, we take Ψ to be real and we drop the ion
subscripts. Furthermore, we write the force in terms of local quantities and probability
densities, so as to mimic the quantities computed in CASINO. Our initial expression for the
force is therefore written as

FHF =

´
Ψ2
(

Ĥ ′Ψ
Ψ

)
dr´

Ψ2 dr
, (2.9)

where the dash indicates a derivative with respect to nuclear configuration. Taking the
derivative of Eq. 2.9 with respect to nuclear configuration then yields

F ′
HF =

´ [
2Ψ2 Ψ′

Ψ

](
Ĥ ′Ψ

Ψ

)
dr´

Ψ2 dr
+

´
Ψ2
[(

Ĥ ′′Ψ
Ψ

)
+
(

Ĥ ′Ψ′

Ψ

)
− Ψ′

Ψ

(
Ĥ ′Ψ

Ψ

)]
dr´

Ψ2 dr

−2

´
Ψ2
(

Ĥ ′Ψ
Ψ

)
dr´

Ψ2 dr

´
Ψ2 Ψ′

Ψ
dr´

Ψ2 dr
.

(2.10)
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Identifying the Hellmann-Feynman force (Eq. 2.9) in the above expression and simplifying
gives

F ′
HF =

´
Ψ2
(

Ĥ ′′Ψ
Ψ

)
dr´

Ψ2 dr
+

2´
Ψ2 dr

[
1
2

ˆ
Ψ

2 Ψ′

Ψ

(
Ĥ ′Ψ

Ψ

)
dr+

1
2

ˆ
Ψ

2
(

Ĥ ′Ψ′

Ψ

)
dr
]

−2FHF

´
Ψ2 Ψ′

Ψ
dr´

Ψ2 dr
.

(2.11)

At this point, we note that although the Hamiltonian does not commute with the wave function,
the derivative of the Hamiltonian with respect to nuclear configuration does commute. The
only non-commuting part of the Hamiltonian is the kinetic energy, which is the total kinetic
energy of the electrons. Once the derivative is taken with respect to nuclear configuration, the
kinetic energy term goes and we are left with a commuting Ĥ ′. We use this fact to combine
the terms in the square brackets of Eq. 2.11, such that

F ′
HF =

´
Ψ2
(

Ĥ ′′Ψ
Ψ

)
dr´

Ψ2 dr
+2

´
Ψ2 Ψ′

Ψ

(
Ĥ ′Ψ

Ψ
−FHF

)
dr´

Ψ2 dr
.

Extending this derivation to complex Ψ and general ion elements is trivial, and the final
result for the matrix of force constants is given as

d2E
dRIdRJ

=

´
Ψ∗ d2Ĥ

dRIdRJ
Ψdr´

|Ψ|2 dr
+

´
Ψ∗
[

dΨ

dRI

(
Ψ−1 dĤ

dRJ
Ψ− dE

dRJ

)
+(I ↔ J)

]
dr

2
´
|Ψ|2 dr

+ c.c..

We approximate the pure expectation value of the matrix of force constants in DMC using
the extrapolation formula. We compute this expression directly in QMC and have submitted
a patch so that this capability is incorporated in the latest version of CASINO.

2.4.2 Derivation including Pulay term

In practice, however, the wave functions are not exact in VMC or DMC and so the initial
assumption in Sec. 2.4.1 does not precisely hold. In this case, the total force is given by
Eq. 2.8 and in simplified form may be written as

F =

´
Ψ2
(

Ĥ ′Ψ
Ψ

)
dr´

Ψ2 dr︸ ︷︷ ︸
FHF

+2

´
Ψ2 Ψ′

Ψ

[(
ĤΨ

Ψ

)
−E

]
dr´

Ψ2 dr︸ ︷︷ ︸
FPulay

. (2.12)
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Taking the derivative of the Hellmann-Feynman force with respect to nuclear configura-
tion yields Eq. 2.10, however now identifying the total force (Eq. 2.12) in this expression
gives

F ′
HF =

´
Ψ2
(

Ĥ ′′Ψ
Ψ

)
dr´

Ψ2 dr
+2

´
Ψ2 Ψ′

Ψ

(
Ĥ ′Ψ

Ψ
−F

)
dr´

Ψ2 dr
+4

´
Ψ2 Ψ′

Ψ

[(
ĤΨ

Ψ

)
−E

]
dr´

Ψ2 dr

´
Ψ2 Ψ′

Ψ
dr´

Ψ2 dr
.

(2.13)
Taking the derivative of the Pulay term with respect to nuclear configuration yields

F ′
Pulay = 2

´ [
2Ψ2

(
Ψ′

Ψ

)2
+Ψ2 Ψ′′

Ψ
−Ψ2

(
Ψ′

Ψ

)2
][(

ĤΨ

Ψ

)
−E

]
dr

´
Ψ2 dr

+2

´
Ψ2 Ψ′

Ψ

[(
Ĥ ′Ψ

Ψ

)
+
(

ĤΨ′

Ψ

)
− Ψ′

Ψ

(
ĤΨ

Ψ

)
−F

]
dr´

Ψ2 dr

−4

´
Ψ2 Ψ′

Ψ

[(
ĤΨ

Ψ

)
−E

]
dr´

Ψ2 dr

´
Ψ2 Ψ′

Ψ
dr´

Ψ2 dr
,

which after simplification, and using the commutation relation [Ĥ ′,Ψ] = 0, becomes

F ′
Pulay =

2´
Ψ2 dr

ˆ
Ψ

2
[

Ψ′

Ψ

(
Ĥ ′Ψ

Ψ

)
+

Ψ′′

Ψ

(
ĤΨ

Ψ
−E

)
+

Ψ′

Ψ

(
ĤΨ′

Ψ

)
−E

(
Ψ′

Ψ

)2

−F
Ψ′

Ψ

]
dr

−4

´
Ψ2 Ψ′

Ψ

[(
ĤΨ

Ψ

)
−E

]
dr´

Ψ2 dr

´
Ψ2 Ψ′

Ψ
dr´

Ψ2 dr
.

(2.14)

Note that the term in square brackets in Eq. 2.14 may of course be expressed as a total deriva-
tive (

[
Ψ′(Ĥ −E)Ψ

]′), since the second term in Eq. 2.14 is the derivative of the denominator
of the Pulay term.

Finally, adding the Hellmann-Feynman (Eq. 2.13) and Pulay (Eq. 2.14) contributions
together we obtain the final expression for the matrix of force constants:

F ′ =

´
Ψ2
(

Ĥ ′′Ψ
Ψ

)
dr´

Ψ2 dr
+2

´
Ψ2 Ψ′

Ψ

(
Ĥ ′Ψ

Ψ
−F

)
dr´

Ψ2 dr

+
2´

Ψ2 dr

ˆ
Ψ

2

[
Ψ′

Ψ

(
Ĥ ′Ψ

Ψ

)
+

Ψ′′

Ψ

(
ĤΨ

Ψ
−E

)
+

Ψ′

Ψ

(
ĤΨ′

Ψ

)
−E

(
Ψ′

Ψ

)2

−F
Ψ′

Ψ

]
dr.
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The matrix of force constants including Pulay term has not been implemented in this thesis
due to: results showing that the Pulay contribution is minimal close to equilibrium (see
Chapter 5), the difficulty in evaluating the second derivative of the wave function in CASINO,
and the time required for a careful analysis of the Hellmann-Feynman contribution. However,
computing and analyzing the effect of the Pulay contribution to the matrix of force constants
is a promising avenue for future research.

2.5 Stability Criteria

The implications of directly implementing the matrix of force constants within a QMC
framework are numerous. Having access to this harmonic term would allow direct compu-
tations of atomic vibrations in molecules or phonons in crystals. Moreover, the matrix of
force constants would improve the accuracy of higher-order anharmonic corrections to these
vibrations, such as the Morse correction. However, the benefits of studying the matrix of
force constants transcends the QMC framework, as this term plays a fundamental role in
physics.

When studying the energy of a system at equilibrium, we find that

E(R) = E(R0)+
dE
dRI

R0,I +
1
2

d2E
dRIdRJ

R0,IR0,J + . . . ,

where R0 denotes the equilibrium displacement. Hence, at equilibrium, the force is zero,
and the sign of the matrix of force constants determines whether the equilibrium is stable or
unstable, by the multi-variate derivative test18. A positive-definite matrix of force constants
is a sufficient condition for system stability. Therefore, not only would a computation of the
force constants bring with it the expected accuracy benefits of calculating a higher-order term,
it would also allow us to directly study properties of fundamental interest to the community,
and specifically comment on stability.

18If the 2nd-order term is also zero, then higher-order terms may be used to determine the nature of the
turning point (see Appendix D.1).





Chapter 3

Topological States of Matter

The Earth is a Chern insulator of Chern
number two.

paraphrased from Delplace et al. [97]

Consider electrons confined to a two-dimensional sample in a perpendicular magnetic
field. When a longitudinal current is driven through the sample, a transverse voltage is
produced [98]. This is the classical Hall effect1. In strong magnetic fields and at low
temperatures, the transverse conductivity of the system is quantized, which is the quantum
Hall effect (QHE). If the sample is sufficiently impure2 and the Landau levels are fully
filled, then its transverse conductivity is quantized in integer steps [99]. This is the integer
quantum Hall effect (IQHE). If the sample is sufficiently pure and the Landau levels are only
partially filled, then its transverse conductivity is quantized in rational steps [100]. This is
the fractional quantum Hall effect (FQHE).

In this chapter, we provide an overview of the key concepts and derivations in the field of
topological matter. We begin, in Secs. 3.1 and 3.2, by explaining Landau quantization and the
connection between geometry and topology, through the use of simple examples. In Sec. 3.3,
we discuss the mechanism of the IQHE, as well as its applications on tori, culminating in
an exposition of the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula [101]. In
Sec. 3.4, we transition to the FQHE and touch on fractional statistics, topological order, and
composite fermion theory. Finally, in Sec. 3.5, we bring these ideas together to motivate the
study of fractional Chern insulators, and set the scene for modern research.

1See Appendix A.1 for a derivation.
2In this context, impurity refers to the impurity of the conducting material; for example, due to lattice

dislocations and imperfections.
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3.1 Landau Quantization

This section is based on the notes by Huber [102], Tong [103], and Goerbig [104]; and the
books by Jain [105], Janßen et al. [106], Wen [107], and Phillips [108]. The original theory
is by Landau [109].

Consider an electron, of mass me and charge −e, confined to a two-dimensional sample
in a perpendicular magnetic field B = ∇×A, where A is the gauge potential. The quantum
Hamiltonian3 for an electron4 with canonical momentum p is

H =
1

2me
(p+ eA)2, (3.1)

with canonical commutation relations

[xi, p j] = ih̄δi j,

[xi,x j] = [pi, p j] = 0.

Using a suitable choice of ladder operators, a,a†, the Hamiltonian takes the form of the
harmonic oscillator. Hence, the Hilbert space may be defined as

a† |n⟩=
√

n+1 |n+1⟩ ,
a |n⟩=

√
n |n−1⟩ , a |0⟩= 0,

with eigenenergies En = h̄ωB(n+1/2), where ωB is the cyclotron frequency and n ∈ Z is the
principal quantum number. The energy levels of an electron in a magnetic field are called
Landau levels. They are equally spaced with an energy gap proportional to the field strength.
Unlike the harmonic oscillator, Landau levels are degenerate.

Let us now, more specifically, consider an electron in the xy-plane with a perpendicular
magnetic field B = Bêz. The gauge potential associated with this magnetic field is not unique.
Although the magnetic field has a translational and rotational symmetry in the xy-plane, the
gauge potential is necessarily in a subgroup of the physical symmetry [103], and hence we
have a gauge choice.

3In this chapter, the hats on quantum operators are implicit.
4In a magnetic field, there is a Zeeman splitting of energy levels for the up- and down-spin electrons. At

low temperatures, the electrons do not have enough energy to jump the Zeeman gaps, and hence may be treated
as spinless [103].
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3.1.1 Landau gauge

Let us choose Landau gauge:

A =

 0
xB
0

 .

This choice of gauge breaks translational symmetry in the x-direction. The Hamiltonian in
Eq. 3.1 becomes

H =
1

2me

(
p2

x +(py + eBx)2) .
Translational invariance in the y-direction motivates a plane-wave ansatz of the form

ψk(x,y) = eiky fk(x),

where fk(x) is a function of x for a state with momentum k ∈ R. Inserting this ansatz into the
Schrödinger equation yields

Hkψn,k = Enψn,k,

with Hamiltonian

Hk =
p2

x
2me

+
meω2

B
2

(
x+ kl2

B
)2

and eigenenergies

En = h̄ωB

(
n+

1
2

)
. (3.2)

This corresponds to a harmonic oscillator, centered on ⟨x⟩ = −kl2
B, with characteristic

magnetic length

lB ≡
√

h̄
eB

.

Consequently, the wave functions take the form

ψn,k(x,y) ∝ eikyHn(x+ kl2
B)exp

[
− 1

2l2
B
(x+ kl2

B)
2
]
,

where Hn denotes the nth Hermite polynomial. The degeneracy of the wave functions is now
manifest.

Consider a finite rectangular sample of dimensions Lx, Ly, and area Asample = LxLy.
The finite extent in the y-direction implies that momentum is quantized such that

kN =
2πN

Ly
, N ∈ Z. (3.3)



30 Topological States of Matter

The finite extent in the x-direction restricts the wave functions to be centered inside the
sample, and hence imposes a further condition on the momenta:

− Lx

l2
B

≤ kN ≤ 0. (3.4)

Combining Eqs. 3.3 & 3.4, we find that the total number of states in the sample

N =
Ly

2π

ˆ 0

−Lx/l2
B

dk =
LxLy

2πl2
B

=
BAsample

h/e
≡ Φ

Φ0
,

where Φ = BAsample is the total flux through the sample and Φ0 ≡ h/e is the flux quantum.
Hence, the flux quantum is interpreted as the flux through an area of 2πl2

B, which is the area
that a state must occupy in each Landau level5. The total number of filled Landau levels, or
filling factor, is therefore

ν ≡ ne

nB
,

where ne is the electron density and nB = 1/2πl2
B is the state density.

3.1.2 Symmetric gauge

Let us choose symmetric gauge:

A =
1
2

−yB
xB
0

 .

This choice of gauge breaks translational symmetry in the x- and y-directions. However,
rotational symmetry about the origin is preserved.

In symmetric gauge, we can define two types of momenta, to track the Landau level n,
and the degeneracy m, respectively:

π ≡ p+ eA ⇒ a ≡ 1√
2eh̄B

(πx − iπy),

π̃ ≡ p− eA ⇒ b ≡ 1√
2eh̄B

(π̃x + iπ̃y).

With this choice of ladder operators, the eigenstates are

|n,m⟩ ∝ a†n
b†m |0,0⟩ ,

5More precisely, 2πl2
B is the minimum uncertainty product for the x- and y-coordinates of the electron.
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with the usual eigenenergies, given in Eq. 3.2.
Consider the lowest Landau level (LLL). The states in the LLL satisfy

a |0,m⟩= 0. (3.5)

Defining

z ≡ x− iy, (3.6)

∂ ≡ (∂x + i∂y)/2,

yields

a =−i
√

2
(

lB∂̄ +
z

4lB

)
,

b =−i
√

2
(

lB∂ +
z̄

4lB

)
.

Equation 3.5 is therefore a differential equation which may be solved to yield

ψLLL,m(z) = fm(z)e−|z|2/4l2
B,

for any holomorphic6 function fm(z). The lowest state in the LLL is annihilated by both a
and b. Hence, it is directly proportional to e−|z|2/4l2

B . All higher LLL states are constructed
by acting with b† on the lowest state, which implies

ψLLL,m(z) ∝

(
z
lB

)m

e−|z|2/4l2
B.

Similarly, all higher Landau-level wave functions are constructed by acting with a† on the
LLL. Due to the rotational symmetry of the gauge, the wave functions are all eigenfunctions
of the angular momentum operator.

6The unconventional definition of z in Eq. 3.6 was chosen to ensure holomorphic, rather than antiholomor-
phic, wave functions [103, 106].
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3.2 Geometry and Topology

This section is based on the notes by Tong [103], Huber [102], and Witten [110]; and the
books by Bernevig [111], and Jain [105]. The original paper is by Berry [112].

Consider the Hamiltonian H(xa;λ i), which depends on degrees of freedom xa and
parameters λ i. Initially, the system is in the unique7 ground state |ψ⟩. As we vary the
parameters slowly, the ground state becomes |ψ(λ (t))⟩.

The adiabatic theorem states that if a system is in an energy eigenstate and the parameters
of the system are varied sufficiently slowly, then the system will remain in that energy
eigenstate. The rate at which you need to vary the parameters is dependent on the energy gap
to the nearest neighboring eigenstate [113].

3.2.1 Berry phase

For our first example, let us slowly vary the parameters, such that we form a closed path in
parameter space, Γ. For each parameter choice, let us define a reference ground state with a
fixed choice of phase |n(λ )⟩. The adiabatic theorem allows us to write the ground state as

|ψ(t)⟩=U(t) |n(λ (t))⟩ ,

where U(t) is a time-dependent phase which satisfies U(0) = 1. Every energy eigenstate
has a dynamical phase e−i

´
dtE0(t)/h̄, regardless of whether the parameters are varied. We set

E0 = 0, ∀t, to focus on the effect of the parameter evolution. Substituting our ground state
into the time-dependent Schrödinger equation and taking the overlap with ⟨ψ|, yields

U̇ =−iAiλ̇
iU, (3.7)

where the Berry connection is defined as

Ai(λ )≡−i
〈

n
∣∣∣∣ ∂

∂λ i

∣∣∣∣n〉 .

Equation 3.7 can be integrated to find

U(t) = exp
(
−i
˛

Γ

Ai(λ )dλ
i
)
,

7A unique ground state results in the Abelian case, which is sufficient to introduce the key concepts of
Berry phase and Chern number. However, a degenerate ground state needs to be considered in order to analyze
non-Abelian systems.
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which is known as the Berry phase. Note that the Berry phase depends on the integral of the
closed path taken through parameter space and hence, is gauge-invariant and physical.

Due to the arbitrary choice of fixed phase in |n(λ )⟩, there is a redundancy in our definition
of the Berry connection. All physics remains invariant if we use a different fixed phase,
or even a different phase for every choice of parameters. In analogy to electromagnetism,
we can extract the physical information from this vector potential (over the space of all
parameters), by considering the gauge-invariant quantity

Bi j =
∂Ai

∂λ j −
∂A j

∂λ i ,

which is known as the Berry curvature. Finally, using Stokes’ theorem, we may write the
Berry phase as

U(t) = exp
(
−i
¨

S
Bi j dSi j

)
,

where S is a two-dimensional surface in parameter space bounded by the curve Γ. Note that
there is freedom in choosing the surface S.

3.2.2 Chern number

For our second example, let us consider an electron in a magnetic field B and focus only on
its spin. The Hilbert space of this system has two states: |↑⟩ and |↓⟩. The Hamiltonian is

H =−B ·σP +B,

where σP is the triplet of Pauli matrices, and satisfies

H |↑⟩= 2B |↑⟩ ,
H |↓⟩= 0.

The magnetic field is a tunable external parameter, and hence we will work over the space of
magnetic fields λ i ≡ Bi. The Berry curvature in this scenario is

Bi j =−εi jk
Bk

2|B|3
,

which is a monopole, with charge gm = −1/2, in the space of magnetic fields (see [114]
for the original monopole quantization argument by Dirac, and [103] for a derivation of the
Berry curvature). Note that the Berry curvature is singular when B = 0, and therefore when
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the ground state |↓⟩ is degenerate with |↑⟩. The Abelian theory breaks down under these
conditions.

As in the previous section, we now take a closed path Γ in parameter space. Let the
surface S, bounded by Γ, make a solid angle Ω. Since

˜
S2 Bi j dSi j = 4πgm, the Berry phase

may be written as

U(t) = exp
(
−i
¨

S
Bi j dSi j

)
= exp(−iΩgm) . (3.8)

However, if we chose a surface S′ which went around the other side of the monopole (i.e.
opposite orientation), then it would make a solid angle Ω′ = 4π −Ω. In that case, the Berry
phase would be

U ′(t) = exp
(
−i
¨

S′
Bi j dSi j

)
= exp

(
iΩ′gm

)
,

which agrees with Eq. 3.8, as it should, since the Berry phase is gauge-invariant and phys-
ical. However, note that these two expressions for the Berry phase are only equal if the
monopole charge satisfies 2gm ∈ Z. This simple example illustrates an important general
result. Quantization of the monopole charge implies that

‹
Bi j dSi j = 2πC,

where C ∈ Z is known as the Chern number.

3.3 Integer Quantum Hall Effect

This section is based on the books by Janßen et al. [106], Phillips [108], Jain [105],
Wen [107], and Bernevig [111]; the notes by Tong [103], Huber [102], Goerbig [104]
and Nayak [115]; and the review by Girvin [116]. The original paper is by Klitzing et
al. [99], for which Klitzing was awarded the Nobel Prize in Physics in 1985 [9].

For the theory of the IQHE, we do not need to take interactions between electrons into
account and hence, for the purposes of this discussion, we may assume that the results derived
for single particles generalize to many particles. The Pauli exclusion principle is the only
many-body effect that comes into play8 [103].

8Historically, this is how the theory of the quantum Hall effect developed, however, as we shall discuss in
Sec. 3.4, this is now known not to be the case.
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3.3.1 Mechanism

In the classical Hall effect, it was shown that for electrons confined to a two-dimensional
sample in a perpendicular magnetic field, a longitudinal current produces a transverse
voltage [98]. This phenomenon can be explained treating electron dynamics classically (see
Appendix A.1). Almost a century later, it was observed that at fully-filled Landau levels,
low temperatures, high magnetic fields, and with a sufficiently impure sample, the transverse
Hall conductivity plateaus in integer steps. This phenomenon can be explained using the
quantum mechanics of non-interacting electrons.

Two main questions are addressed in this section:

1. Why is the Hall conductivity quantized in integer steps?

2. Why does this quantization manifest itself as extended plateaus?

1. To answer the first question, consider an electron confined to the xy-plane in the presence
of a longitudinal electric field E=E êx and a perpendicular magnetic field B=Bêz. In Landau
gauge, the Hamiltonian is

H =
1

2me

(
p2

x +(py + eBx)2)− eEx. (3.9)

Following the same derivation as in Sec. 3.1.1, we find that the wave functions corresponding
to Eq. 3.9 are of the form

ψn,k(x,y) ∝ eikyHn

(
x− meE

eB2 + kl2
B

)
exp

[
− 1

2l2
B

(
x− meE

eB2 + kl2
B

)2
]
,

which implies that the oscillator states are centered on

⟨x⟩= meE
eB2 − kl2

B. (3.10)

In terms of the canonical momentum and vector potential, we may write the mechanical
velocity of the electron as v = (p+ eA)/me. Hence, the total current is

I =−ev =− e
me

ν

∑
n=0

∑
k
⟨−ih̄∇+ eA⟩ ,

where we are summing over all filled states. Using Landau gauge, together with the result in
Eq. 3.10, we find that the current density J =−(eνE/Φ0)êy. Finally, applying Ohm’s law,
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we find that the transverse conductivity is quantized in integer steps:

σ =
eν

Φ0

(
0 1
−1 0

)
, ν ∈ Z.

2. To answer the second question, we need to study the potential landscape of the sample
and how the current flows within it. Consider an electron in a pure rectangular sample which
is finite in the x-direction, with Hamiltonian

H =
1

2me

(
p2

x +(py + eBx)2)+V (x),

where V (x) rises steeply at the edges of the sample. Taylor expanding the potential in the
vicinity of the electron’s location X , we find that

V (x)≈ ∂V
∂x

(X − x),

which implies that the group velocity of the electron is given by

vy =− 1
eB

∂V
∂x

.

In general, it can be shown that the electrons drift along equipotentials in a direction per-
pendicular to ∇V [102]. The edge modes are chiral and modes on opposite edges travel in
opposite directions. If we just have a magnetic field, then only the edge modes contribute to
the current, since the potential is flat in the bulk. If we add a background electric field, then
the Landau levels are tilted slightly and so all modes contribute to the current.

Let us now introduce disorder in the sample, which is small relative to the splitting of the
Landau levels9. The potential still rises steeply at the edges of the sample, but is now random
in the bulk. From perturbation theory, we know that since these perturbations do not preserve
a symmetry, they necessarily break degeneracies [103]. Second, since electrons drift along
equipotentials, we expect certain quantum states to become localized.

In terms of conductivity, only extended states can transport charge from one side of the
sample to the other. As we decrease the magnetic field, each Landau level can accommodate
fewer electrons and so the Fermi energy will increase. However, if all the extended states are
already filled in a given Landau level, then before jumping to the next Landau level, all the
localized states in that Landau level need to populated. These localized states have a slightly

9Disorder in the sample is a necessary feature of the IQHE. Increased disorder increases the precision of
the integer quantum Hall effect, but only up to the splitting of the Landau levels [102].
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higher energy than the extended states, and so are populated last. Naturally, localized states
do not contribute to the conductivity, and so until all of the localized states are filled, the
conductivity remains constant. The more disordered the sample (up to the splitting of the
Landau levels), the more prominent the plateaus of conductivity.

There is now a discrepancy. The way that we derived the quantization of conductivity,
in answer to question 1, assumed that all modes contribute to the current. However, in a
disordered sample many modes are localized and so do not contribute to the current. In fact,
Laughlin showed precisely in 1981, by considering a Corbino ring geometry in a charge
pumping thought experiment, that the current carried by the extended states increases to
compensate for the lack of current carried by the localized states [117]. Halperin later refined
these ideas and published the theory of extended states in 1982 [118].

3.3.2 IQHE on a torus

This section is based on the book by Fradkin [119] and the notes by Tong [103]. The original
papers are by Laughlin [117] and Thouless et al. [101], for which Thouless was awarded
the Nobel Prize in Physics in 2016 [11].

To illustrate the connection between the IQHE and topology, it is instructive to examine
the IQHE on a torus. This is also faithful to the theory’s historical development [101]. In this
section, we examine tori in both real and momentum space.

Torus: T2 in real space

In the first scenario, we consider a rectangular quantum Hall system in a uniform magnetic
field B with sides of length Lx, Ly, and periodic boundary conditions.

Let us introduce operators which translate the wave function by some position vector d.
We define these magnetic translation operators as

T (d)≡ e−id·(mẋ)/h̄+iφ ′
= e−id·(i∇+eA/h̄)+iφ ′

,

with auxiliary phase10 φ ′ and boundary conditions

Txψ(x,y)≡ T (d = (Lx,0))ψ = ψ(x,y),

Tyψ(x,y)≡ T (d = (0,Ly))ψ = ψ(x,y).

10Mathematically, an auxiliary phase is necessary to ensure the magnetic translation operators form a group;
however, this does not effect the physics. The precise form of this auxiliary phase is given in the original paper
by Zak [120].
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Note that the magnetic translation operators are not gauge-invariant, and so the final wave
functions will only agree up to a gauge transformation. In Landau gauge, we find that

TyTx = e−ieBLxLy/h̄TxTy.

Hence, for periodic boundaries we demand the Dirac quantization condition

Φ

Φ0
∈ Z.

This is an example of how the quantization condition manifests itself from the topology of
the system.

Consider the fluxes Φx and Φy threaded through the x- and y-cycles of the torus, respec-
tively. In Landau gauge, the vector potential becomes

A =


Φx
Lx

Φy
Ly

+Bx

0

 ,

which perturbs the Hamiltonian by

∆H =−J ·A =− ∑
i=x,y

JiΦi

Li
.

Using 1st-order perturbation theory, under an infinitesimal change of Φi, the ground state
|ψ0⟩ changes by ∣∣∣∣∂ψ0

∂Φ0

〉
=− 1

Li
∑

n̸=ψ0

⟨n|Ji|ψ0⟩
En −E0

|n⟩ . (3.11)

In linear response theory, it can be shown that the Kubo formula [119] for the Hall conductivity
is

σxy = ih̄ ∑
n̸=0

⟨0|Jy|n⟩⟨n|Jx|0⟩−⟨0|Jx|n⟩⟨n|Jy|0⟩
(En −E0)2 .

Hence, using Eq. 3.11,

σxy = ih̄
[

∂

∂Φy

〈
ψ0

∣∣∣∣ ∂ψ0

∂Φx

〉
− ∂

∂Φx

〈
ψ0

∣∣∣∣ ∂ψ0

∂Φy

〉]
. (3.12)

Note that Φi appear as parameters in the Hamiltonian, yet the energy spectrum only depends
on Φi mod Φ0. Hence, the space of flux parameters is also a torus T2

Φ
.
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For clarity, let us define dimensionless angular variables

θi = 2π(Φi mod Φ) : θi ∈ [0,2π).

The Berry connection over T2
Φ

is then

Ai(Φ) =−i
〈

ψ0

∣∣∣∣ ∂

∂θi

∣∣∣∣ψ0

〉
,

with transverse Berry curvature

Bxy =−i
[

∂

∂θy

〈
ψ0

∣∣∣∣ ∂ψ0

∂θx

〉
− ∂

∂θx

〈
ψ0

∣∣∣∣ ∂ψ0

∂θy

〉]
.

This is directly proportional to the Hall conductivity in Eq. 3.12:

σxy =−e2

h̄
Bxy.

If we now average over all fluxes,

σxy =−e2

h̄

‹
T2

Φ

d2θ

(2π)2 Bxy

and recall that the (first) Chern number is identified as

C =
1

2π

‹
T2

Φ

d2
θBxy,

we obtain the TKNN invariant [101, 121]

σxy =−e2

h
C, C ∈ Z.

We have derived the familiar expression for the Hall conductivity in the IQHE; except, in
this case, we have identified the quantum number as the Chern number. The remarkable
fact is that a directly measurable physical quantity, such as the Hall conductivity, is directly
proportional to a topological quantum number. This is the first indication that topology plays
a key role in understanding the theory of quantum Hall systems.
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Lattice: T2 in momentum space

In the second scenario, we consider a quantum Hall system confined to a rectangular lattice,
with lattice spacings a, b, and primitive lattice vectors ex = (a,0), ey = (0,b). Assume a
simple lattice in an insulating state, such that the single-particle energy spectra form gapped
band structures. The multi-particle spectrum is then obtained by filling up the single-particle
spectra subject to the Pauli exclusion principle.

Bloch’s theorem states that wave functions in a given band are periodic on the unit cell:

ψk(x) = eik·xuk(x),

where uk(x+ e) = uk(x), and the momentum is confined to the Brillouin zone:

−π

a
<kx ≤

π

a
,

−π

b
<ky ≤

π

b
,

which is a torus T2 in momentum space. In analogy to Sec. 3.3.2, we may analyze the
topology over this torus. However, on this occasion the torus is over the space of states rather
than the space of parameters. Nevertheless, the basic topological properties still hold. The
Chern number is now given by an integral over the Brillouin zone (BZ),

C =
1

2π

‹
T2

BZ

d2kBxy,

where the Berry curvature, Bxy, is defined in terms of the periodic functions uk. This means
that we can assign a Chern number Cn to each band n. Hence, it may be shown that the Hall
conductivity is given by the TKNN formula [101]

σxy =−e2

h ∑
n

Cn.

This is essentially the TKNN invariant for a non-interacting band insulator, where the Chern
number is now replaced by the sum of the Chern numbers over all of the bands. Note that
there also exist band insulators with non-trivial Chern numbers, even in the absence of a
magnetic field [103]. Band insulators which have a single-particle spectrum that yields a
finite Chern number are known as Chern insulators.

Initially, let us examine a particle hopping on a lattice in the absence of a magnetic field.
For simplicity, we restrict ourselves to the special case of a square lattice with a = b. In the
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tight-binding model, the positions of the eigenstates |x⟩ are restricted to the lattice sites, and
hence the Hamiltonian is

H =−t ∑
x

∑
j=1,2

|x⟩⟨x+ e j|+H.c.,

where the lattice momenta lie in the Brillouin zone and t is the hopping parameter. If we
consider a finite sample with x and y-dimensions given by L1 and L2, respectively, then ki is
quantized into units of 1/2πLi. This implies that the total number of states in the Brillouin
zone is given by Asample/a2, where Asample = L1L2 is the area of the sample11.

Now, let us introduce a gauge field A j(x) on the links between lattice sites, where A1(x)
is to the right of point x and A2(x) is above. This additional field may be incorporated into
the Hamiltonian12 such that

H =−t ∑
x

∑
j=1,2

|x⟩e−ieaA j(x)/h̄ ⟨x+ e j|+H.c.. (3.13)

So far, our topological arguments have relied on the existence of a Brillouin zone. However,
in the presence of a magnetic field, the gauge choice breaks the translational invariance which
allowed us to construct the Brillouin zone. We can remedy this by defining an analogous
Brillouin zone in the presence of magnetic fields.

Define gauge-invariant magnetic translation operators

Tj ≡ ∑
x
|x⟩e−ieaA j(x)/h̄ ⟨x+ e j| ,

such that the Hamiltonian in Eq. 3.13 becomes

H =−t

(
∑

j=1,2
Tj +T †

j

)
,

where Tj and T †
j move states vertically and horizontally by one lattice site, respectively. As

a particle moves anticlockwise around a plaquette, to leading order in t, it can be shown
that it picks up an Aharonov-Bohm phase with flux Φ = Ba2 [103]. Hence, these magnetic
translation operators obey a discrete version of the magnetic translation algebra

T2T1 = eieΦ/h̄T1T2. (3.14)
11This ratio gives the number of sites in the lattice, which is manifestly the number of states in the Hilbert

space.
12The energy spectrum for this Hamiltonian is the Hofstadter butterfly [122, 123].



42 Topological States of Matter

However, it is possible to construct magnetic translation operators which commute with the
Hamiltonian:

T̃j ≡ ∑
x
|x⟩e−ieaÃ j(x)/h̄ ⟨x+ e j| ,

where we have defined a new gauge field Ã j : ∂kÃ j = ∂ jAk. Although these operators commute
with the Hamiltonian, among themselves they satisfy the discrete magnetic translation algebra
given in Eq. 3.14. Hence, we cannot yet simultaneously label an eigenstate by the eigenvalues
of both of the magnetic translation operators.

To remedy this, we consider fluxes at rational multiples of the flux quantum

Φ

Φ0
=

p
q
,

where p and q are co-prime integers. In this case, we can construct commuting operators

[T̃ n1
1 , T̃ n2

2 ] = 0, ∀ p
q

n1n2 ∈ Z.

Hence, it is now possible to simultaneously label each eigenstate with, for example, eigenval-
ues of T̃ q

1 and T̃2.
For example, defining states |k⟩ satisfying

T̃ q
1 |k⟩= eiqk1a |k⟩ ,

T̃2 |k⟩= eik2a |k⟩ ,

such that H |k⟩= E(k) |k⟩, we find that the momenta on the torus are:

− π

qa
<k1 ≤

π

qa
,

−π

a
<k2 ≤

π

a
,

which is known as the magnetic Brillouin zone. This magnetic Brillouin zone is q-times
smaller than the original Brillouin zone and hence contains Asample/qa2 states. Consequently,
the spectrum decomposes into q bands, each with a different range of energies. Furthermore,
any eigenenergy in a given band is q-fold degenerate. We have freedom in how the magnetic
Brillouin zone (or equivalently, magnetic unit cell) is defined.
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3.4 Fractional Quantum Hall Effect

This section is based on the books by Fradkin [119], Jain [105], Wen [107], and Phillips [108];
the notes by Tong [103], and Nayak [115]; and the review by Girvin [116]. The original
papers are by Tsui et al. [100] and Laughlin [124], for which Laughlin, Störmer and Tsui
were awarded the Nobel Prize in Physics in 1998 [10].

For the theory of the FQHE, we need to take interactions between electrons into account.
In fact, it is the plethora of electron-electron interactions that dominates the physics in this
phenomenon [105].

3.4.1 Mechanism

In the previous section, we saw how if we performed the Hall experiment with fully-filled
Landau levels, at sufficiently low temperatures and high magnetic fields (kBT ≪ h̄ωB), and
with a sufficiently impure sample (0 ≪Vdisorder ≪ h̄ωB), the Hall conductivity is quantized
in integer steps. However, all of the arguments in the previous section made at least one of
two assumptions:

1. The electrons do not interact with each-other, other than via Pauli exclusion.

2. The ground state is unique.

In this section, we discuss the regime where these approximations break down, resulting in a
rational quantization of the Hall conductivity13.

We consider a Hall experiment with partially-filled Landau levels, at even lower tempera-
tures and stronger magnetic fields than the IQHE, such that the interactions between electrons
become significant. In this chapter, we shall model the electron-electron interactions using
the Coulomb potential, VCoulomb. In order for the electron-electron interactions to play a
significant role, we require that

h̄ωB ≫VCoulomb ≫Vdisorder,

which is achieved by taking a relatively pure sample to these extreme conditions [100].
The analysis of the FQHE presents one major difficulty. For the IQHE, we assumed that

the ground state is unique. However, we know that in a partially-filled Landau level (ν < 1)
there are NCνN ways of filling the states, which is far from unique. In fact, the ground states

13Since the number of fractions increases as we make the sample purer, in the limit of a perfectly pure
sample, we would expect to recover the direct proportionality that we saw for the classical Hall effect.
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of these systems are so degenerate that using perturbation theory would be impossible by
hand. Numerically this can be solved, as demonstrated in Chapter 4, but still only for ∼10
particles. Hence, analysis of the FQHE cannot be performed exactly in an analytical way.
Instead, in this section, we focus on a variety of approximations and analogies to best capture
the physics.

3.4.2 Laughlin ground states

Laughlin explained the physics at fractional increments of

ν =
1
m
, where m is an odd integer (for fermions).

These are known as Laughlin states.
Instead of solving the problem exactly, Laughlin simply wrote down an ansatz for the

wave function based on angular momentum arguments in symmetric gauge [124]. Recall
that in the LLL, the wave functions take the form

ψLLL(z1, . . . ,zN) = ψ̃(z1, . . . ,zN)e−∑
N
i=1 |zi|2/4l2

B,

where the holomorphic function ψ̃ must be antisymmetric under the exchange of two particles,
so that the wave function obeys Fermi-Dirac statistics. Laughlin’s ansatz for the ground-state
wave function is

ψ̃(z1, . . . ,zN) = ∏
i< j

(zi − z j)
m,

where m is an odd integer, as before. There are two things to note about this ansatz. First,
this is indeed antisymmetric when m is an odd integer. Second, the magnitude of the wave
function vanishes when the electrons are too close together or far apart, and hence it is peaked
at a certain radius.

From analysis of the angular momentum eigenvalues, we find that m denotes the relative
angular momentum of the particles [103]. For example, if we consider the first particle z1,
we find that there are m(N − 1) powers of z1 in the pre-factor, which corresponds to the
maximum angular momentum of the particle. This implies that the particle is at a radius
R =

√
2m(N −1)lB, tracing out an area A = πR2. Hence, the number of states in the entire

Landau level is
N =

Φ

Φ0
=

A
2πl2

B
= m(N −1),

which correctly reproduces the required filling fraction ν ≈ 1/m.
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Another useful check we can perform on the Laughlin ansatz, is to verify that it agrees
with the expected wave function for a fully-filled Landau level. The many-body wave
function for N non-interacting electrons is given by the Slater determinant. Applying this to
the LLL wave functions of the electrons

ψLLL,m(z) ∝ zm−1e−|z|2/4l2
B, m = 1, . . . ,N,

yields the general form of the many-body LLL wave functions, with the function ψ̃ given by
the Vandermonde determinant

ψ̃(zi) =

∣∣∣∣∣∣∣∣∣∣
z0

1 z0
2 . . . z0

N

z1
1 z1

2 . . . z1
N

...
... . . . ...

zN−1
1 zN−1

2 . . . zN−1
N

∣∣∣∣∣∣∣∣∣∣
= ∏

i< j
(zi − z j),

which indeed corresponds to the Laughlin ansatz for ν = 1.
Numerically, the Laughlin wave function agrees well with the ground state for few

particles. For many particles, it is expected to diverge wildly [103]. However, the Laughlin
ansatz remains in the same universality class as the true ground state, which means it retains
the same topological properties. In fact, the Laughlin states have the properties of a new
phase of matter, with topological order and fractional statistics14. It is this feature of the
Laughlin wave function, rather than precise agreement with certain configurations, that
makes the ansatz so intriguing.

3.4.3 Laughlin excited states

Building on this, we now consider excitations of the LLL Laughlin wave function. The
excitations may be categorized into two forms: neutral excitations and charged excitations.

Neutral excitations come in form of collective density waves, where the density of the
electrons ripples through space; reminiscent of phonons in superfluids [125]. However, these
collective excitations do not vanish with the momentum, due to the incompressibility of the
states. In analogy with superfluids, the minimum of the dispersion relation of the collective
modes is known as the magneto-roton [125]. It is even possible to observe more than one
minimum, at more unusual filling fractions [105].

Charged excitations may be categorized into quasi-holes and quasi-particles. For exam-
ple, consider a quasi-hole at position η ∈ C. We require that the electron density vanishes

14In simple cases, Laughlin states may be thought of as a Fermi liquid, with a competing solid phase known
as the Wigner crystal. However, the solid phase is only observed at sparse filling ν ≤ 1/7 [103].
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at the point η . Hence the simplest way to introduce M quasi-holes into the system of N
electrons is to write

ψ̃holes(zi;η j) =
M

∏
j=1

N

∏
i=1

(zi −η j)∏
k<l

(zk − zl)
m. (3.15)

Alternatively, consider placing all M quasi-holes at the same point η such that

ψ̃holes(zi;η) =
N

∏
i=1

(zi −η)m
∏
k<l

(zk − zl)
m.

This wave function now describes the absence of an electron at η . Hence, m holes is the
equivalent to the deficit of a single electron and so holes are considered to have fractional
charge e⋆ = e/m. Conversely, the charged excitations described by quasi-particles carry
charge e⋆ =−e/m.

Naturally, the fractional charge carried by these excitations does not contradict any
physical laws because the total charge in a sample will always be an integer multiple of e.
However, within the sample, these fractionally charged objects act as independent particles.
This has been measured experimentally using shot-noise experiments [126].

We can apply the concept of fractionally charged excitations to re-derive the Hall con-
ductivity. The simplest method is to consider the Corbino ring geometry with central flux
Φ(t) = 0 → Φ0. As the flux is adiabatically increased, spectral flow is induced so that, by
the end of the process, the angular momentum of the electrons is increased by one quantum.
Therefore, the new wave function is obtained by multiplying through by ∏i zi. In the limit
of vanishing radii, this yields the quasi-hole wave function with a quasi-hole at the origin.
Hence, during this process a quasi-particle is transferred from the inner to outer ring. There-
fore, a whole electron is only transferred when the flux is increased to mΦ0, which implies
that

σxy =
e2

h
ν ,

where the filling factor is given by ν = 1/m, as expected.
As in the IQHE, it is natural now to perform Berry analysis on these charged excitations.

Considering a fractional quantum Hall system with N electrons and M quasi-holes, described
by the wave function in Eq. 3.15, the Berry connection [103] may be evaluated as

Aηi =− i
2m ∑

j ̸=i

1
ηi −η j

+
iη̄i

4ml2
B
. (3.16)
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Fractional charge

We are now in the position to compute the charge of these quasi-holes. Consider a quasi-hole
which is taken on a closed path Γ in position space, which does not enclose any other quasi-
holes. In this case, only the second term in Eq. 3.16 contributes to the Berry phase, and so
we find that

U(t) = exp
(
−i
˛

Γ

(Aη dη +Aη̄ dη̄)

)
= eie⋆Φ/h̄,

where e⋆ = e/m. Notice that this corresponds to the Aharonov-Bohm phase of a particle with
charge e⋆.

Fractional statistics

Consider now that the closed path Γ taken by the quasi-hole η1 encloses one other quasi-hole
η2. In this case, both terms in Eq. 3.16 contribute to the Berry phase. As we have already
seen, the second term yields the Aharonov-Bohm phase. However, the first term yields

U1(t) = exp
(
− 1

2m

˛
Γ

dη1

η1 −η2
+H.c.

)
= e2πi/m.

Hence, the phase picked up by exchanging two quasi-holes is e2πiαs with αs = 1/m. In
conclusion, quasi-charges obey Abelian anyonic15 statistics with statistical parameter αs =

1/m.

Topological order

Now, let us consider a quasi-particle–quasi-hole pair on a spatial torus. We apply the
translation operator T1 to the quasi-particle and T2 to the quasi-hole, so they both end up in
the same place. Since both quasi-charges are anyons, the translation operators must obey

T1T2 = e2πi/mT2T1,

yet this is incompatible with a unique ground state. Hence, the Laughlin ground state must
be m-fold degenerate, simply due to the topology.

Laughlin states, therefore, can be characterized as a new type of matter with topological
order. This paradigm is centered around characterizing states based on their ground-state
degeneracy and operator algebra.

15See Appendix A.2 for further details.
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3.4.4 Non-Laughlin states

This section is based on the notes by Tong [103] and the books by Jain [105] and Frad-
kin [119]. The original paper is by Haldane [127]. Haldane was awarded the Nobel Prize
in Physics 2016 for his contribution to the field [11].

In the Corbino ring example from Sec. 3.4.3, we saw how increasing the flux through the
flux tube creates a quasi-particle and reproduces the expected Hall conductivity at ν = 1/m
filling. Consider now a change in the external magnetic field, so that we move away from
ν = 1/m filling. We find that when the system is close to Laughlin filling, the quasi-particles
themselves are able to form quantum Hall systems. This in turn produces secondary quasi-
particles, which are also able to form quantum Hall systems, ad infinitum.

In the Laughlin wave function, the choice of m being odd was motivated by Fermi-Dirac
statistics. Quasi-particles, however, obey anyonic statistics with a statistical parameter αs. In
order the preserve these statistics, the Laughlin ansatz must therefore take the form

ψ̃ = ∏
i< j

(ηi −η j)
2p+αs, p ∈ Z+.

Around the Laughlin state, we have αs =±1/m for quasi-holes and quasi-particles, respec-
tively. The maximum momentum of a quasi-charge is N(2p+αs), which implies a radius of
R ≈

√
N(2p+αs)mlB. The area of the droplet is therefore A = πR2 = 2π(2p+αs)N(ml2

B).
Since electrons are composed of m quasi-charges, the total number of quasi-charges is

Nquasi = m
Φ

Φ0
=

(
2p± 1

m

)
m2N ⇒ νquasi =∓ 1

2pm2 ±m
,

where the top sign is for quasi-holes and the bottom sign for quasi-particles. Hence, the total
filling fraction is the sum of the filling fraction due to the electrons (ν = 1/m) and the filling
fraction due to the quasi-charges:

νtotal =
1

m± 1
2p

.
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Assuming that these quasi-charges themselves form quantum Hall states, and their secondary
quasi-charges do the same ad infinitum, the total filling fraction is

νtotal =
1

m±
1

2p1 ±
1

2p2 ± . . .

. (3.17)

This continued filling fraction reproduces the vast majority of observed fractional quantum
Hall states [127].

3.4.5 Composite fermion theory

In this section, we introduce an alternative interpretation of fractional quantum Hall physics,
inspired by the Laughlin ansatz, which allows us to reproduce the sequence in Eq. 3.17 and
also explain more exotic states [105, 128].

Let us introduce a vortex which represents the winding in the phase of a wave function.
For example, consider the factor ∏i(zi −η) in the quasi-hole wave function. Naturally, this
gives the wave function zero charge at η . However, there is also an angular dependence,
which means that the phase of the wave function changes by 2π as any particle wraps around
η . In this way, the quasi-hole may be interpreted as a vortex. In general, the quasi-charges
may be interpreted as vortices.

The Laughlin wave function for electrons comes with a pre-factor ∏i< j(zi − z j)
m, where

m is odd. We justified this choice in Sec. 3.4.2 by saying that the wave function goes to zero
when two electrons are close together or far apart. However, note that this choice does not
just give us one zero as the electrons are brought close together, it gives us m. One of the
zeros may be attributed to the Pauli exclusion principle, and so we can interpret this as each
electron carrying one vortex by default. The other m−1 zeros are open to interpretation, and
we denote them as k ≡ m−1 (not to be confused with momentum).

Let us define a composite fermion to be an electron-vortex pair bound to k further
vortices. The electrons therefore carry an extra emergent flux with them, due to the vortices.
This is known as flux attachment, and is completely separate to the background magnetic
flux [129, 130].

Jain states

Let us consider a quantum Hall system with a composite fermion density nCF. As before, we
may now perform our usual Berry analysis. We take the composite fermion on a closed path
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Γ, which encloses an area A. The Berry phase is

U(t) = exp
(

2πi
(
Φ/Φ0 − knCFA︸ ︷︷ ︸

vortices
contribution

))
,

where Φ/Φ0 corresponds to the usual Aharonov-Bohm contribution. In Sec. 3.4.3, when
we found an unusual Berry phase for the quasi-charges, we interpreted this as an Aharonov-
Bohm phase with an effective fractional charge for the quasi-charges. In composite fermion
theory, we interpret the unusual Berry phase as an Aharonov-Bohm phase with an effective
magnetic field B⋆ = B−knCFΦ0, for the composite fermions. The composite fermion density
is manifestly equivalent to the electron density, however they experience different magnetic
fields, and hence different filling fractions, r, in this interpretation. This yields the equality

rB⋆

Φ0
=

νB
Φ0

,

which may be rearranged into the form

ν =
r

kr+1
. (3.18)

Notice that a composite fermion filling fraction of one, corresponds to the Laughlin filling
fraction for electrons. Hence, the FQHE may be interpreted as an IQHE for composite
fermions. Indeed, the Laughlin ansatz may be factorized into fully-filled LLL and flux
attachment factors, such that ψ̃ = ∏k<l(zk − zl)∏i< j(zi − z j)

k.
Building on this, we now examine the higher IQHE states for composite fermions. In the

case of m = 3, this yields the same sequence of filling fractions as we observed in Eq. 3.17.
Motivated by this, we write down a new ansatz for the wave function in terms of composite
fermions:

ψ̃ν(z) = PLLL

[
∏
i< j

(zi − z j)
k
Ψν⋆(z)

]
PLLL,

where PLLL is the LLL projection operator and Ψν⋆ is the composite fermion wave function
for integer filling. These are known as Jain states.

One of the main successes of composite fermion theory is an explanation for why there
are no observed plateaus at half filling [131]. In this case m = 2 and n = B/2Φ0, which
implies that the composite fermions do not experience any effective magnetic field: B⋆ = 0.
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3.5 Fractional Chern Insulators

This section is based on the reviews by Parameswaran et al. [132], Neupert et al. [133], and
Bergholtz [134]; and the presentation by Neupert [135]. The prominent paper is by Regnault
& Bernevig [136].

As opposed to Chern insulators which have fully-filled Landau-levels, as we saw in
Sec. 3.3.2, fractional Chern insulators (FCIs) have fractionally-filled Landau levels. In
general, FCIs may be defined as two-dimensional lattice systems of interacting particles
whose gapped many-body ground states, in the Landau-limit, share the same universal
topological properties of the FQHE. These properties include:

• quantized fractional Hall conductivity,

• universal quasi-particle excitations,

• topological ground-state quasi-degeneracy given by ν−ggs , where ggs is the genus of
the ground-state manifold [132].

In this case, the Landau-level limit requires flat bands and unit Chern number16. However,
the main advantage of FCIs is that, away from the Landau-level limit, they generalize the
Hamiltonians of the FQHE to lattice-based systems [138].

3.5.1 Motivation

There are three main motivations for the study of FCIs:

1. In order to properly understand the mechanism of the FQHE, we need to uncover the
universal features specific to the topological phases. FCIs have much less symmetry
than Landau-level Hamiltonians or Laughlin wave functions, for example. Therefore,
they can be tuned to discern the true topological properties of the FQHE.

2. FQHE states are interesting because they allow for non-Abelian anyon braiding, which
may potentially be used to construct topological quantum computers [139]. From
an experimental perspective, it would be advantageous to be able to produce these
states in common operating conditions. Chern insulators already have the advantage
that they exhibit these phenomena without the need for a strong magnetic field [134].
Furthermore, the energy scales in FCIs are predicted to be large, and so we could also
potentially produce FQHE states at room temperature [135].

16This is independent of whether the FCI is in an external magnetic field (producing Hofstadter bands [101])
or in the absence of an external magnetic field (producing Haldane bands [137]).
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3. At full magnetization and half filling, FCIs spontaneously exhibit the anomalous quan-
tum Hall effect, which could be used to produce highly efficient room-temperature
conductors [133]. Naturally, the measured conductivity would be lower than that of
comparable superconductors. However, the relaxed operating conditions make FCIs an
attractive option.

3.5.2 Numerical techniques

The discovery of FCIs was predominantly due to numerical exact diagonalization [136]. As
mentioned in Sec. 3.4.1, the degeneracy of the ground states in FQHE systems is so high that
perturbation theory can only be performed numerically, and even then only for a relatively
small number of particles (see Chapter 4). These restrictions meant that observing FCI states,
and furthermore verifying the FCI states, was a formidable numerical challenge. As a result,
several numerical techniques developed, which are now widely used to study FCIs [140–142].
The general procedure is to exactly diagonalize the flat-band Hamiltonian for a small number
of particles, and carefully extrapolate the results to the case for large particle number: the
thermodynamic limit.

There are a wide variety of checks that can be performed to verify the existence of
fractional quantum Hall (FQH)-like states in FCIs, including the following facts [132]:

• FQH states are usually incompressible liquids, therefore the particle densities should
be uniform.

• The overlap of the FCI ground state with particular FQH wave functions should be
close to unity.

• Adiabatic continuity between FQH Hamiltonians, which are the ground states of model
pseudopotential Hamiltonians, and the numerical Hamiltonian is sufficient to determine
topological order.

• The fractional statistics of quasi-particle excitations in FQH systems follows a general-
ized Pauli exclusion principle, which influences the spectrum of low-lying eigenstates.

There are numerous further checks which can be performed, however, we shall focus on the
following two in more detail.

Spectral flow

Spectral flow was one of the first of the techniques employed to verify topological states
in FCIs [136, 143]. Consider a FQH system on a spatial torus in the thermodynamic
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limit17. This system has a quasi-degenerate ground-state manifold, with a many-body wave
function that converges to a constant value in the thermodynamic limit. From Sec. 3.3.2,
we know that if we insert a flux tube through the hole in the torus, the system exhibits
spectral flow. Numerically, this can be achieved by diagonalizing the Hamiltonian with
twisted-phase boundary conditions. Hence, we expect to see that if the ground states are
indeed topologically ordered, then they should flow into each other as we twist the boundary
conditions. Furthermore, this spectral flow should be periodic. Using this data, a Hall
conductance can also be computed, which should match that of the FQH system [132].

Entanglement

A more sophisticated technique that is now widely used is the analysis of the ground-state
particle entanglement. The resulting particle entanglement spectra reveal many aspects of
underlying topological phases [134].

Consider a wave function |ψ⟩ ∈ H . If we split the Hilbert space H = HA ⊗HB, such
that the particle number is divided into subspaces A and B, then the wave function has a
Schmidt decomposition

|ψ⟩= ∑
k,n

λk,n

∣∣∣ψA
k,n

〉
⊗
∣∣ψB

k,n
〉
,

where λk,n > 0 are the Schmidt coefficients. The (von Neumann) entropy may therefore be
written as

SvN =−∑
α

λ
2
α lnλ

2
α ≡ ∑

α

λ
2
αξα ,

where the entanglement energy is defined as ξ ≡− lnλ 2.
In most cases, the insight gained from the entanglement energy spectrum and the entan-

glement entropy are equivalent. However, the entanglement spectra may show additional
information provided that the splitting of the Hilbert space commutes with a fundamental
symmetry of the system [132]. As we shall see in Chapter 4, it also proves useful to compute
the entanglement spectra to check for topological order and verify how close a state lies to
the Landau level continuum.

3.5.3 Generalizing the FQHE

As mentioned before, the special property of FCIs is not simply that we can recover FQH
physics, but rather that we can generalize it. In this section, we discuss how the FQH states
persist even when the band structure deviates significantly from the Landau-level limit.

17A spatial torus is considered, since FQHE bands on a spatial torus are directly comparable to Chern bands
on a spatial lattice [132].
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To begin, we summarise the Landau limit as

Landau-level limit ⇒


gµν(k) = const.,

Aµν(k) = const.,

ε(k) = const.,

|C|= 1,

where gµν is the Fubini-Study metric18, and ε(k) is the energy dispersion of a Chern band.
It has been shown that any of these four properties can be significantly violated in FCIs and
the FQHE still holds [133].

1. gµν(k) ̸= const. and Aµν(k) ̸= const. Numerous theories which support stable FCI
phases have zero Fubini-Study metric or Berry connection for some momentum val-
ues [133]. This implies that there are strong fluctuations present in the curvature and
metric.

2. ε(k) ̸= const. The Chern band under consideration does not, in fact, need to be flat
or energetically isolated to exhibit fractional statistics. FCIs prevail simply if the
interactions are large in comparison to the bandwidth, regardless of the exact nature of
the band spectrum [144, 145].

3. |C|> 1 FCIs have been observed in bands with higher Chern number [138]. In these
cases, the states occur at filling factors

ν =
r

kr|C|+1
, r ∈ Z,

where k = 1,2 for fermions and bosons, respectively, and r corresponds to the number
of filled composite fermion bands19. These states are not analogous to Landau-level
states, which have |C|= 1. In fact, they are even distinct from multi-layer FQH states
due to their modified exclusion statistics. Furthermore, FCIs can also arise in bands
with zero Chern number [133].

18The quantum geometry of a Chern band is characterized by its Fubini-Study metric and Berry connection.
The precise form of the quantum geometry is derived by identifying the projected density algebra as the
Girvin-MacDonald-Platzman algebra. See the review by Parameswaran for a full derivation [132].

19This is the higher Chern band generalization of Eq. 3.18.



Chapter 4

Stability of Fractional Chern Insulators
in the Effective Continuum Limit of
Harper-Hofstadter Bands with Chern
Number |C|> 1

We study the stability of composite fermion fractional quantum Hall states in Harper-
Hofstadter bands with Chern number |C| > 1. From composite fermion theory, states
are predicted to be found at filling factors ν = r/(kr|C|+1), r ∈ Z, with k = 1 for bosons
and k = 2 for fermions. Here, we closely analyze these series in both cases, with contact
interactions for bosons and nearest-neighbor interactions for (spinless) fermions. In particular,
we analyze how the many-body gap scales as the bands are tuned to the effective continuum
limit of Chern number |C| bands, realized near flux density nφ = 1/|C|. Near these points,
the Hofstadter model requires large magnetic unit cells that yield bands with perfectly flat
dispersion and Berry curvature. We exploit the known scaling of energies in the effective
continuum limit in order to maintain a fixed square aspect ratio in finite-size calculations.
Based on exact diagonalization calculations of the band-projected Hamiltonian for these
lattice geometries, we show that for both bosons and fermions, the vast majority of finite-size
spectra yield the ground-state degeneracy predicted by composite fermion theory. For the
chosen interactions, we confirm that states with filling factor ν = 1/(k|C|+1) are the most
robust and yield a clear gap in the thermodynamic limit. For bosons with contact interactions
in |C|= 2 and |C|= 3 bands, our data for the composite fermion states are compatible with a
finite gap in the thermodynamic limit. We also report new evidence for gapped incompress-
ible states stabilized for fermions with nearest-neighbor interactions in |C|> 1 bands. For
cases with a clear gap, we confirm that the thermodynamic limit commutes with the effective
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continuum limit within finite-size error bounds. We analyze the nature of the correlation
functions for the Abelian composite fermion states and find that the correlation functions for
|C|> 1 states are smooth functions for positions separated by |C| sites along both axes, giving
rise to |C|2 sheets; some of which can be related by inversion symmetry. We also comment
on two cases which are associated with a bosonic integer quantum Hall effect (BIQHE):
For ν = 2 in |C| = 1 bands, we find a strong competing state with a higher ground-state
degeneracy, so no clear BIQHE is found in the band-projected Harper-Hofstadter model;
for ν = 1 in |C|= 2 bands, we present additional data confirming the existence of a BIQHE
state.

4.1 Introduction

New realizations of artificial gauge fields can be achieved by light-matter coupling in cold
atoms [146–153], by more general Floquet systems with periodically modulated Hamilto-
nians [154–156], or possibly by exploiting spin-orbit coupling in two-dimensional materi-
als [157, 158]. In conjunction with repulsive interactions, they provide exciting opportunities
to observe interesting flavors of fractional quantum Hall physics [159–164]. The recurring
motif in these systems, called “fractional Chern insulators” (FCIs) [165], is the existence of
topological flat bands with nonzero Chern numbers that mimic the topological properties
of the lowest Landau level (LLL) of particles in a magnetic field [158, 165–172]. Although,
for unit Chern number, the physics of FCIs is continuously connected to Landau level
physics [173–175], this connection is no longer possible for |C| > 1, resulting in a series
of lattice-specific fractional quantum Hall states [160–163]. Furthermore, FCIs in higher
Chern number bands have the potential for exotic physical phenomena, such as hosting lattice
defects carrying non-Abelian statistics [176–178].

The Harper-Hofstadter model [179–181] has played a special role in the study of quantum
Hall effects. It was the first model in which the Chern number was identified as the topological
invariant determining the quantization of the Hall conductance in integer quantum Hall
states [182]. The first theory of FCIs, or fractional quantum Hall states on lattices, was
formulated by Kol and Read in the context of the Hofstadter model [159], generalizing early
notions [183–185] and using the framework of composite fermion theory [186]. Furthermore,
the Hofstadter model has provided the basis for the first proposals for FCIs in optical lattice
realizations of cold atomic gases [160, 161, 187, 188]. More recently, the Hofstadter model
represents one of the first examples for experimental realizations of artificial gauge fields in
cold atomic gases [147, 148, 150, 189], although access to highly entangled low-temperature
phases will require further advances in cooling or adiabatic state preparation [190–192].
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The Harper-Hofstadter model provides bands of any Chern number C ∈ Z, with varying
magnitudes of the single-particle gap. In this model, it is well understood how to construct
isolated Chern bands of any Chern number that can support fractional quantum Hall liq-
uids [163]. However, numerical studies have been challenging, since finite-size systems have
to simultaneously satisfy several integer relations between the number of particles, the num-
ber of flux quanta and the number of sites – which are incommensurable in general. Hence,
having chosen a specific flux density and filling factor, one is led to study a series of systems
with varying aspect ratios. Here, we would instead like to take a proper two-dimensional
thermodynamic limit for the system while keeping the aspect ratio fixed and square, since it
is expected that square Hofstadter lattices are especially stable [193]. It is possible to identify
finite-size geometries which are exactly or almost square, by considering large magnetic unit
cells (MUCs) [163, 194]. Moreover, the limit of large MUCs is appealing, as it provides
Chern bands with a flat dispersion and additionally a perfectly flat band geometry [163, 194].
Hence, the Hofstadter model allows one to optimize the criteria of band flatness and flat
geometry, shown to be correlated with the stability of fractional Hall liquids for the |C|= 1
cases [194–200]. We refer to the limit of nφ → 1/|C| as the effective continuum limit, to
distinguish it from the continuum limit nφ ≡ p/q → 0. The continuum limit is expected to
exist, as nφ → 0 implies that the magnetic length ℓ0 ≫ a, where a is the lattice constant, so
the discreteness of the lattice should be irrelevant and the continuum physics is recovered.
For our numerical analyses, we further define the thermodynamic (effective) continuum limit
as the (effective) continuum limit subsequently taken to large particle number (N,q → ∞).1

In this chapter, we study the stability of quantum Hall states of the Abelian composite
fermion series ν = r/(|kC|r+1) [163], with k = 1(2) for bosons (fermions), in Chern bands
with |C| = 1,2,3 in the Hofstadter model, focusing on finite-size square systems. To find
such configurations, we vary the flux density while moving within a series of single-particle
bands with fixed Chern number, allowing us to find finite-size configurations with an aspect
ratio of (approximately) one, as well as matching a target filling factor. The results from
such different realizations of Chern bands can be combined into a single measure for the
stability of the phase, owing to the known scaling of the many-body gap with the number of
sublattices [194].

The ground-state degeneracy of these states agrees with the predictions of composite
fermion theory. As expected, we find that states with filling factor ν = 1/(k|C|+1) are the
most robust, with the effective continuum limit remaining approximately independent of
N and inversely proportional to |C|. Our results show considerable finite-size effects for

1The (effective) continuum limit at fixed aspect ratio is denoted as limN,q→∞(q∆) = limN→∞(limq→∞(q∆)),
and is distinguished from the limit at fixed flux density: limq,N→∞(q∆) = limq→∞(limN→∞(q∆)).
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most other filling fractions, leaving the behavior in the thermodynamic limit indeterminate.
While taking the thermodynamic effective continuum limit does not generally alleviate these
finite-size effects, we find some system sizes where competing states are eliminated when
square geometries are considered.

To further characterize the target composite fermion states or their competing phases, we
analyze their two-particle correlation functions, and for select examples also their particle
entanglement spectra (PES). In our microscopic model, we find that correlation functions are
modulated with a period of |C| sites along both the x- and y-axes of the square Hofstadter
model, yielding the visual appearance of |C|2 smooth correlation functions.

This chapter is organized as follows: In Sec. 4.2, we introduce the Harper-Hofstadter
Hamiltonian and explain how to obtain finite-size geometries with approximately square
aspect ratio for the desired filling factors. In Sec. 4.3, we present our numerical evidence for
FCI phases of bosons in |C|= 1,2,3 Hofstadter bands and fermions in |C|= 1,2 Hofstadter
bands, including many-body spectra, ground-state correlation functions, and particle entan-
glement spectra. In Sec. 4.4, we comment on the overall trends regarding the thermodynamic
effective continuum limits and analyze the role that the Chern number plays in the scaling.
Finally, in Sec. 4.5, we provide conclusions on the stability of FCI phases in the effective
continuum limit of |C|> 1 Harper-Hofstadter bands and suggest avenues for future research.

4.2 Model

4.2.1 Single-particle Harper-Hofstadter Hamiltonian

The single-particle Hamiltonian for the Harper-Hofstadter model [179] was obtained as the
tight-binding representation of a single-orbital lattice model subject to Peierls’ substitution
for a homogeneous magnetic field B = Bêz (with B = ∇×A), giving2

H0 =−∑
i, j

ti jeiφi jc†
jci +H.c., (4.1)

with complex hoppings of phase φi j relating to the vector potential A such that

φi j =
e
h̄

ˆ r j

ri

A ·dl+δφi j. (4.2)

In the Landau gauge A = Bxêy, and for rational flux density nφ = Ba2 = p/q (with p and
q coprime), the phases φi j naturally repeat under translations Tqaêx by qaêx, and also under

2The hopping parameters are given as ti j ≡ 1 for nearest-neighbor bonds, and zero otherwise.
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the translation Taêy . This corresponds to a MUC of q× 1 sites. (For simplicity, we set
a = 1, below.) However, other choices for MUC geometries lx × ly = q with the same area
can be made, and thus enclosing the same number of magnetic flux quanta. These choices
correspond to a gauge freedom in the problem, encoded in terms of additional phase factors
δφi j occurring in the tight-binding model. These phase factors can be thought of as an
additional phase generated by magnetic translations for hopping terms crossing the MUC
boundary, or alternatively the tight-binding parameters can be expressed in terms of a vector
potential in a periodic gauge, with A(r+ lµ êµ) = A(r) [201]. For an explicit construction of
the periodic gauge, see Appendix B.1. We further note that the choice of the MUC affects the
definition of the momenta for single-particle eigenstates, and in Appendix B.2, we provide
an additional note expanding on how the states are remapped throughout the Brillouin zone
under such gauge transformations.

Within the Hofstadter spectrum, band gaps of any cumulative Chern number can be found.
In order to facilitate our numerical work, we closely examine specific flux densities at which
the lowest band has Chern number |C| and remains well separated from higher excited bands
of the Harper-Hofstadter model. Following Möller and Cooper [163], such cases are realized
when the density of states ns(nφ = p/q) = 1/q, corresponding to flux densities

nφ =
p

|C|p− sgn(C)
≡ p

q
, p ∈ N. (4.3)

In this chapter, we will focus on the cases (Eq. 4.3) in the limit of large q and consider
flux densities in the close vicinity of points nφ = 1/|C|. At other nearby flux densities, we
would find a low-energy manifold made up of several bands with the same cumulative Chern
number C. However, we do not explore such cases here in order to maximize the number of
k points in the Brillouin zone in our numerics.

4.2.2 Hofstadter models and Chern insulators

Given some hesitations in the literature, let us discuss whether (partially) filled bands of the
Harper-Hofstadter Hamiltonian (Eq. 4.1) should be considered (fractional) Chern insulators.
One of the superficial reasons why Chern insulators might be dissociated from the Harper-
Hofstadter model is that the latter represents a homogeneous magnetic field, or constant
flux per plaquette, while the former is simply defined as having bands with finite Chern
numbers arising from complex hopping phases. It could further be argued that the Hofstadter
model is characterized by a finite flux per MUC, while the flux averages to zero in Chern
insulators like the Haldane model [166]. However, in existing cold-atom realizations of the
Hofstadter model, there is no physical magnetic field present – rather, these experiments
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realize the model directly as a tight-binding lattice with complex hopping terms induced by
laser-assisted hoppings or more general time-modulated Floquet-Hamiltonians [152, 202] in
order to mimic the Aharonov-Bohm effect of a magnetic field.

The overall flux threading the lattice is also not a good distinction of Hofstadter models
from generic cases, given that flux is defined only modulo the flux quantum Φ0 in a lattice
geometry and so any integer number of flux quanta can be inserted within a given plaquette
of the lattice without altering the physics. A finite-size realization of the Hofstadter model
requires an integer number of flux quanta per MUC; thus it can always be interpreted as
a model without net flux: Any excess flux can be neutralized by adding an opposite flux
through one of the plaquettes in a unit cell [203]. Indeed, one could argue that any finite-size
implementation of the complex hopping phases (Eq. 4.2) that is compatible with periodic
boundary conditions effectively corresponds to such an insertion of neutralizing flux, which
gives rise to the δφi j term in Eq. 4.2.

Comparing the translational symmetries of Hofstadter models with other general tight-
binding models with Chern bands [158, 165, 168, 169], we can finally find one formal
distinction between these cases. The translational symmetry group of the Harper-Hofstadter
Hamiltonian is smaller than the translation symmetry of the underlying lattice potential due
to the commensurability of the two length scales in the problem. By contrast, generic models
typically have a full translational symmetry group identical to that of the lattice potential.
Inversely, we could say that the translational symmetry group of the Hofstadter lattice can
be enhanced if we allow simultaneous translations and gauge transformations (effectively
translating the origin of the MUC), while no additional symmetries can be found in generic
models.

As the terminology of (fractional) Chern insulators focuses on the topological properties,
it seems natural to include those states realized in the Chern bands of the Hofstadter model.
Conversely, since the Hofstadter model is closely related to physical magnetic fields, the
terminology of lattice fractional quantum Hall states is also appropriate for these models.

4.2.3 Many-body Hamiltonian

We study the many-body physics of interacting particles in the Harper-Hofstadter model,
described by the Hamiltonian

H = H0 +PLB

[
∑
i< j

V (ri − r j) :ρiρ j:

]
PLB, (4.4)



4.2 Model 61

where PLB denotes the lowest band projection operator and :ρiρ j: indicates the normal
ordering of the density operators, with site labels i, j.

In this chapter, we extend the work of Möller and Cooper [163] on bosonic contact
interactions (Vi j =Uδi j) as well as considering the case of fermions with nearest-neighbor
(NN) interactions (Vi j = V δ⟨i, j⟩). In both cases, we target a number of known candidate
phases for incompressible quantum Hall states.

We explore the spectrum of the many-body Hamiltonian (Eq. 4.4) using exact diago-
nalization calculations and identify incompressible states by means of their ground-state
degeneracy, many-body gap ∆, as well as the correlations and entanglement properties of the
corresponding ground-state wave functions. The incompressible phases which we find show
a clear quasi-degenerate ground state, such that the gap ∆ to the excited states is much larger
than the splitting between states in the ground-state manifold or the typical level spacing
among higher lying excitations. We quote the gap in units of the interaction strength U (V ),
implicitly setting U =V = 1, below.

4.2.4 Target FCI phases in general Chern bands

Several families of incompressible quantum Hall states have been proposed to occur in Chern
bands with higher Chern numbers |C|> 1, most importantly including generalizations of the
Jain states [162, 204, 205], an Abelian series of states arising from the composite fermion
construction [159, 161] and generalizations of the non-Abelian Read-Rezayi states [206]
to higher Chern bands [162]. There were also reports of states that simultaneously break
translation symmetries while displaying a quantized Hall response [164].

The incompressible character of these phases is expressed by a preferred density of
particles, measured in terms of the number density per unit area of accessible single-particle
states. While this manifold of single-particle states is trivially given by the continuum
Landau levels in continuum fractional quantum Hall states, the relevant low-energy subspace
for Chern insulators is set by a single-particle gap of the single-particle dispersion in a
tight-binding model that is large compared to the dispersion of the low-lying band(s).

From composite fermion theory, one predicts a series of Abelian quantum liquids [159,
161] at filling factors

ν(k,r,C) =

∣∣∣∣ n
ns

∣∣∣∣= r
|kC|r+1

, (4.5)

where k is the number of flux quanta attached to the particles, |r| is the number of bands
filled in the composite fermion spectrum, and its sign indicates the relative sign of the
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Chern number C∗ for the composite fermion band relative to the Chern number C of the
low-energy manifold [163]. The states (Eq. 4.5) carry a ground-state degeneracy of d =

|kCr+1| [159, 163].
Where required, we consider a number of other competing phases. Prominently, this

includes the states of the bosonic Read-Rezayi series, found at filling factors ν = κ/2 in
C = 1 bands [206] (with κ ∈ Z+) which carry a ground-state degeneracy dRR = κ +1. The
generalizations of the Read-Rezayi states to higher Chern bands [162] do not generically
occur at the same filling factors as the composite fermion states in Eq. 4.5, so we do not
encounter them explicitly. At sufficiently weak interactions, generically one may find
competition with condensed phases [207–210]. These may survive up to large values of the
interaction at time-reversal symmetric points of the Hofstadter spectrum, but are likely less
competitive elsewhere. Further instabilities include density-wave or crystalline orders. These
were found to be stabilized in related time-reversal symmetric flat band models [211], and
are generically expected to be among the competing phases in Chern insulator models.

4.2.5 Scaling to the continuum limit at fixed aspect ratio

Finite-size geometries of the square Harper-Hofstadter model are determined by the number
of sites in the x- and y-directions Nx, Ny, and the total number of flux quanta Nφ piercing
the system. Each geometry may allow an additional gauge choice for the shape of the MUC
given by lx and ly sites, and the number of repetitions Lx and Ly of the MUC within the
simulation cell along these axes. In this chapter, we shall be looking at square systems in
terms of the total number of sites, hence systems with a unit aspect ratio:

R =
Nx

Ny
=

Lxlx
Lyly

= 1.

Note that the spectra are gauge-invariant and depend only on the total system size, but not
on the shape of the MUC. However, the definition of momentum depends on the choice of
MUC, as further discussed in Appendix B.2.

We examine the filling factors (Eq. 4.5) for Chern bands |C| = 1,2,3 with |r| = 1,2,3
and a finite particle number N set by the available Hilbert space sizes, typically ranging up to
about 10–20 particles. For each case, we generate a sample of finite-size systems including
all possible square geometries in a specified range of effective flux densities nφ = p/q subject
to Eq. 4.3. A restriction is placed on the numerator such that 2 ≲ p ≲ 1000, where low p
value configurations are excluded because they may correspond to band gaps with a lower
Chern number, and the upper bound is determined by the computational cost and numerical
accuracy of our calculations of the single-particle spectrum.
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For certain cases, the restriction on the numerator of the effective flux density does
not yield any square configurations. In these situations, we look for approximately square
configurations, with a fixed maximum error ε ≈ 1% such that

δR =

∣∣∣∣Nx

Ny
−1
∣∣∣∣≤ ε,

taking Nx > Ny by convention. In practice, the allowable deviation of the aspect ratio from
one is adjusted slightly so that we obtain a comparable sample size, or number of geometries,
for each filling factor ν .

In Ref.194, Bauer et al. undertook a similar study for models with short-range repulsive
interactions in the C = 1 bands of the Hofstadter model. Using geometric considerations
for the Laughlin and Moore-Read states for N = 8 particles, they found that the many-body
gap scales as ∆ ∼ 1/q for bosons and ∆ ∼ 1/q2 for fermions. They also found approximate
continuum limits for nφ → 0 for the three phases they considered.

As shown below, we find that the (effective) continuum limit is helpful for examining the
stability of candidate incompressible Hall states, as it improves the effectiveness of finite-size
scaling analyses. For comparison, we also undertake the conventional finite-size scaling at
fixed flux density nφ , as previously considered by Möller and Cooper [163]. An extract of
our additional data for this thermodynamic limit is shown in Appendix B.3.

4.3 Results

We present results on fractional quantum Hall states in Harper-Hofstadter bands with higher
Chern number. However, to establish our methodology, we first review the case of |C|= 1
bands. Our results reproduce the known continuum limit, i.e. the well-known quantum Hall
physics of the LLL of a homogeneous magnetic field. Our results go beyond previous studies
on the Hofstadter lattice in that we study fermionic quantum Hall states in addition to bosonic
ones, and we consider the thermodynamic limit in addition to the continuum limit.

4.3.1 FCIs in |C|= 1 Harper-Hofstadter bands

Bosonic states

We first review the case of bosons in Chern number |C|= 1 bands, which are well known to
support fractional quantum Hall states in the continuum LLL [167, 212, 213]. We consider
states of the Jain series (Eq. 4.5) with |C|= 1, |r|= 1,2,3 and we restrict ourselves to Hilbert
space dimensions dim{H }< 107, which typically allows us to consider particle numbers
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Fig. 4.1 Magnitude of the gap for the bosonic 12-particle ν = 3/4 state in the |C|= 1 band,
as a function of MUC size, q. (a) Log-log plot of ∆ vs q−1. (b) Scaling of q∆ to a constant
value in the continuum limit nφ → 0.

N ≲ 12.3 Furthermore, there are no states corresponding to r =−1, as Eq. 4.5 is undefined
for this value. Overall, we have considered 24 different combinations of particle size and
filling factor, with an average of ∼38 different geometries for each, giving a total of 921
different exact diagonalization calculations. Apart from exceptional cases that we discuss
in detail below, we found that all candidate states show a degenerate ground-state manifold
composed of |krC + 1| states, in line with the predictions of composite fermion theory.
For each system that we examine, we have plotted the energy gap above the ground-state
manifold, ∆, against the MUC size, q, to test whether the expected reciprocal scaling [194]
is realized. An example scaling for an r = 3 state with ν = 3/4 is shown in Fig. 4.1a.

Next, we test the scaling hypothesis and extract the coefficient for ∆ ∝ q−1 at large MUC
size, shown in Fig. 4.1b. For |C|= 1, this is the continuum limit. Theoretically, the large-q
limit of q∆ should be independent of q, while finite-size effects imply variations for small q.
When establishing the continuum limit, we thus neglect small-q outliers to take account of
this fact. Notice that, as a result, the line of best fit in Fig. 4.1a does not exactly correspond
to the q∆ limit in Fig. 4.1b. Using this procedure, we find agreement with the value of the
many-body gap for the bosonic Laughlin state calculated by Bauer et al. [194] and we now
go beyond their work by considering the thermodynamic limit, as well as the continuum
limit, for a large sample of systems.

We collect the continuum limit of q∆ for the various filling factors under consideration
at all available particle numbers (6 ≤ N ≲ 12). In Fig. 4.2, we plot how the limiting value
limq→∞ q∆(N,q) varies with particle number for each filling factor. We attempt to proceed

3Here we neglect trivially small particle numbers and cases where finite-size effects are clearly dominant.
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Fig. 4.2 Finite-size scaling of the gap to the thermodynamic continuum limit at fixed aspect
ratio, for bosonic states in the |C| = 1 band. The extrapolation to the y-axis is shown for
the robust ν = 1/2 states. The dashed line for the ν = 3/2 series corresponds to the scaling
behavior given a ground-state degeneracy of d = 4, as predicted by Read-Rezayi theory.
Squares, circles, and triangles denote states with |r|= 1,2,3, respectively, where the filled
(hollow) symbols correspond to positive (negative) r. All of the error bars are smaller than
the data points on the scale of the plot.
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with a scaling extrapolation to the thermodynamic continuum limit on the basis of an inverse
regression for limq→∞ q∆ against N−1. Using this approach, we examine, for each filling
factor, the limq→∞ q∆ limit as N−1 → 0.

Figure 4.2 shows the continuum limits for the five filling factors under consideration.
Note that the error bars due to the extrapolation in q → ∞ are negligible for these points on
the scale of the plot. We have also verified that these data agree with many-body gaps of the
corresponding states in the continuum LLL on the torus. We include data on a comparison of
the correlation functions, below.

The results are insightful in that they illustrate the caveats of interpreting data on finite-
size geometries. Composite fermion theory suggests that the stability of states in the Jain
series decreases with |r|. However, this is only partially borne out by the data.

First, we find that the Laughlin state corresponding to r = 1 has the largest gap and has
negligible finite-size corrections for the gap in the continuum limit. In this case, we also
see close agreement of the limiting value obtained from a finite-size scaling at fixed flux
density. The corresponding data are shown in Appendix B.3, Fig. B.1a. We extrapolate a
thermodynamic continuum limit of limN,q→∞(q∆) = 0.64±0.01 in this case, where the error
given is the asymptotic standard error in the linear regression1.

For the next states in the series, we find that the r = 2, ν = 2/3 state has a gap that reduces
approximately linearly with inverse system size, while the r = 3, ν = 3/4 state appears more
stable. By contrast, analyses of continuum quantum Hall states in the LLL (on the sphere)
show that both of these states are stable and the latter has the smaller gap [213]. Owing to the
higher symmetry, continuum calculations enable slightly larger system sizes to be calculated,
resulting in more accurate estimates for the gap by including larger system sizes. Note also
that we have not considered data beyond Hilbert space sizes of 107 for our comprehensive
sampling of different geometries, while larger Hilbert spaces can be considered for single
cases. Despite the fact that our data are not sufficient to ascertain the size of the gap in
the thermodynamic continuum limit for these states, reassuringly, all of our simulations at
these filling factors did identify the expected ground-state degeneracies (with d = 3 or d = 4,
respectively) and a clear separation of scales for the gap.

For the states at negative effective flux [214, 215], we see an interesting competition
with the Read-Rezayi series, in line with the results for the continuum LLL [167, 216]. The
r =−2 state is interesting in that it occurs at the integer filling factor ν = 2, so it is a potential
example of a bosonic integer quantum Hall effect (BIQHE) [161, 163, 191, 217, 218]. As
the BIQHE is not a fractionalized phase, it is associated with a singly degenerate ground
state. However, our exact diagonalization calculations show higher ground-state degeneracies
for our target Hamiltonian (Eq. 4.4), consisting of onsite repulsions projected to the lowest
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Fig. 4.3 Energy spectra for bosonic states in the |C|= 1 band. (a) The 14-particle ν = 2 state
with p = 848, resolved to n = 6 states per sector. (b) The 12-particle ν = 3/2 state with
p = 969, resolved to n = 3 points per sector.

Hofstadter band. In particular, we find ground-state degeneracies of dN=14 = 2 and dN=16 = 2
or 6 for the N = 14 and N = 16 particle systems, respectively, while other system sizes are
compatible with an interpretation as a singly degenerate ground state. The N = 14 spectrum
is shown in Fig. 4.3a. The realized degeneracies are inconsistent with the interpretation
as a BIQHE state. The k = 4 Read-Rezayi state could be an alternative candidate for this
filling, but it would have a d = 5-fold degeneracy for N divisible by 4 [206]. In this context,
we note that in order to stabilize the Read-Rezayi state in the continuum LLL, a small
amount of dipolar interaction is required [216]. At any rate, our findings suggest that unlike
the BIQHE in |C| = 2 bands (see Sec. 4.3.2), the ν = 2 state is not realized in the single
|C| = 1 band of the band-projected Harper-Hofstadter-Hubbard Hamiltonian (Eq. 4.4). It
therefore seems likely that the ν = 2 BIQHE state reported in a recent DMRG study for
hardcore bosons requires at least the two lowest bands to be stabilized, which would be quite
similar to the situation in two-flavor quantum Hall states [218] or Chern number |C| = 2
bands [161, 163, 219].

Finally, for the r =−3 series with ν = 3/2, we find a marked reduction of the gap above
the second-lowest state, so the degeneracy of d = 2 predicted by composite fermion theory
does not describe this phase well. As observed in the continuum LLL [220], the k = 3
Read-Rezayi state appears to be a good candidate for this filling, as a stable gap appears to
form above the lowest d = 4 states, in line with the expected ground-state degeneracy for
this Read-Rezayi state. A full spectrum for the N = 12 particle state is given in Fig. 4.3b,
and the finite-size scaling of the gap inferred for the Read-Rezayi states is shown as dotted
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lines in Fig. 4.2 – these data are consistent with a finite gap in the thermodynamic continuum
limit, even without the addition of long-range interactions [220].

In order to further characterize the different candidate states, we calculate the density-
density correlation functions g(r) = ⟨ρ(r)ρ(0)⟩ for the different ground states, as explained
in Appendix B.4. In order to establish the accuracy of our code, we have further verified that
correlations approach the exact continuum result for the corresponding state in the continuum
Landau level on a torus (see Appendix B.5). Our results show close agreement at short
distances, while there are slight deviations at larger separations. We interpret these findings
as being most likely a consequence of finite precision floating point arithmetic, as discussed
in Appendix B.5.

Correlation functions for all available filling factors are shown in Fig. 4.4, based on the
lowest-lying ground state at zero momentum. Note that the Laughlin state in Fig. 4.4a displays
a correlation function that has saturated to a nearly constant value at large distances, with a
zero correlation hole at zero separation. This is the expected form of the Laughlin correlation
function and may be solved analytically for the torus, as discussed in Appendix B.5. For
all other states, we find oscillations that are generally stronger for the states with higher |r|
values. The relatively small isotropic fluctuations of the correlation profile in Fig. 4.4a may
be an artifact of finite-size effects. However, the remaining oscillations in Figs. 4.4c, 4.4d,
& 4.4e are indicative of either states with longer correlation lengths, or potentially competing
density wave instabilities. For example, the most marked oscillations are seen for the N = 9,
ν = 3/4 state in Fig. 4.4e. These oscillations also break the rotational symmetry as they
occur predominantly along the x-axis for this geometry, which may be a signature of an
instability toward charge density wave formation. For the states at ν = 3/2 and ν = 2, the
correlations show a local maximum at zero separation, followed by a shallow correlation
hole, which could be consistent with the interpretation as clustered Read-Rezayi states.

To summarize, the |C|= 1 boson data yields well-defined continuum limits q → ∞, with
negligible errors due to the extrapolation to large MUCs. From the cases considered, we can
conclude that bosons in the |C|= 1 Chern number bands obey the expected scaling relations
for the gap, and we obtain a well-converged continuum limit with no exceptions. However,
extrapolation of these values to the thermodynamic limit remains difficult to achieve, and
is prone to finite-size effects. The predictions of composite fermion theory apply only to a
subset of possible composite fermion states, due to both finite-size effects and the apparent
competition with states of the Read-Rezayi series or other competing phases such as density
wave instabilities.
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Fig. 4.4 Density-density correlation functions for bosonic states in the |C| = 1 band. The
plots are shown for lowest-lying ground state in the (kx,ky) = (0,0) momentum sector, with
(a) r = 1: ν = 1/2, N = 8, p = 99; (b) r = 2: ν = 2/3, N = 10, p = 134; (c) r =−2: ν = 2,
N = 20, p = 91; (d) r = 3: ν = 3/4, N = 9, p = 107; and (e) r = −3: ν = 3/2, N = 9,
p = 97.
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Fermionic states

Building on our analysis for bosonic states, we carry out a corresponding study for fermions
in the |C| = 1 band. As before, we consider cases with |r| = 1,2,3 and typical values of
6 ≤ N ≲ 12 arising from the constraint on the Hilbert space dimension dim{H }< 107. Note
the Hilbert space of N bosons in a |C|= 1 band with Nφ flux maps to the Hilbert space of
fermions at N +Nφ −1 flux in the continuum, so the Hilbert space dimensions for the Jain
states are identical for bosons at fermionic states of a given r value. They are essentially
the same on the lattice also, up to different numbers of conserved momenta. Hence, we are
able to obtain a comparable sample of geometries as in the previous section. The r = −1
series is omitted because this corresponds to a band insulator, so composite fermion theory
is not relevant. Overall, we have considered 18 different combinations of particle number
and filling factor, with an average of ∼28 different geometries for each, and a total of 498
different exact diagonalization calculations underlying the data in this section.

For each filling factor, we plot the energy gap, ∆, against the MUC size, q, which
reproduces the inverse-square relation ∆ ∝ q−2 expected for fermions [194], as illustrated in
Fig. 4.5 for the 20-particle ν = 2/3 data point.

From composite fermion theory, the expected ground-state degeneracy is |krC+1| with
k = 2 for fermionic systems. This is indeed realized in all the observed energy spectra. As
before, we find agreement with the value of the many-body gap in the continuum limit for
the N = 8 fermionic Laughlin state considered by Bauer et al. [194].
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Fig. 4.6 Finite-size scaling of the gap to the thermodynamic continuum limit at fixed aspect
ratio, for fermionic states in the |C|= 1 band. The extrapolation to the y-axis is shown for
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|r|= 1,2,3, respectively, where the filled (hollow) symbols correspond to positive (negative)
r. All of the error bars are smaller than the data points on the scale of the plot.

For all fermionic candidate states, we examine the continuum limit of q2∆ at large MUC
size, as demonstrated in Fig. 4.5b. As seen previously, finite-size effects may result in
fluctuations at small q, so we neglect outliers at small q when determining the continuum
limit.

Figure 4.6 shows the thermodynamic continuum limiting behavior for the five filling
factors under consideration. The sample size shown is comparable to that in Fig. 4.2. Notice
that the r = 1 series (this time corresponding to ν = 1/3) displays very minor finite-size
effects. In Appendix B.3, we also compare this limit against the finite-size scaling at fixed
flux density, followed by extrapolation of the thermodynamic values to the continuum
limit. Both orders of limits agree well, as shown in Fig. B.1b. Compared to the data for
bosons in Fig. B.1a, we note that finite-size corrections are more noticeable for smaller
system sizes. The gap in the continuum limit oscillates for small particle number but
gradually settles to a well-defined thermodynamic continuum limit, which we extrapolate to
be limN,q→∞(q∆) = 2.56±0.021. This nicely illustrates the dissipation of finite-size effects
as system sizes exceed the correlation length.

The ν = 2/3 series also exhibits noteworthy behavior. We find that the many-body gaps
are closely related to the values for ν = 1/3 states by particle-hole symmetry, via ∆(N) =
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∆(Nφ −N), although lattice models typically break this symmetry [221]. Clearly, the particle-
hole symmetry re-emerges as an exact symmetry in the limit of continuum Landau levels, so
it is reassuring that it is also approximated closely for finite flux densities. In this case, we
also extrapolate the thermodynamic continuum limit to be limN,q→∞(q∆) = 2.56±0.02 to
two decimal places, perfectly matching the result for ν = 1/31.

For the ν = 2/5 state, we again find a particle-hole symmetric partner at ν = 3/5 with
similar gaps. In both cases, the finite-size gap appears strongly enhanced for small system
sizes, but settles to a relatively flat plateau for the last two system sizes that we have evaluated.
These data are indicative of a gap in the thermodynamic continuum limit, in accordance with
established numerical results for the LLL. Likewise, the ν = 3/7 state also yields finite gaps
that are consistent with a nonzero thermodynamic continuum limit.

Density-density correlation functions for the ground states of the considered range of
fillings are shown in Fig. 4.7. As expected for spinless fermions, the correlation at zero
separation is identically zero due to Pauli exclusion. We note that the Laughlin state in
Fig. 4.7a, as well as the particle-hole symmetry-related ν = 2/3 state in Fig. 4.7c, tend to
a constant correlation at large distances. However, the zero-separation correlation hole is
more distinct for the Laughlin state in Fig. 4.7a, analogous to that observed for the bosonic
Laughlin state in Fig. 4.4a. As for |C| = 1 bosons, the r = 2 fermion state shows minor
isotropic fluctuations at large distances, as shown in Fig. 4.7b, which may be due to finite-
size effects. The density-density correlation functions for the |r| = 3 states in Figs. 4.7d
& 4.7e, however, show large anisotropic oscillations in the y-direction. For the ν = 3/7
state in Fig. 4.7d, for example, we observe a global maximum of almost double the constant
value at large distance observed for the Laughlin state in Fig. 4.7a. Again, these directional
oscillations in the |r|= 3 states may be indicative of a charge density wave instability.

Overall, obtaining the fermion data is more computationally expensive than the corre-
sponding data for bosons due to the higher ground-state degeneracies. However, for |C|= 1,
the Hilbert space dimensions are nearly identical, allowing a large number of geometries
and system sizes. As before, we conclude that the scaling relations for the gap yield a
well-defined continuum limit for large q in all cases. As for bosons, the composite fermion
prediction for the stability hierarchy is not observed, as the ν = 3/7 state appears to have a
larger gap than the ν = 2/5 state, possibly signaling a different intervening phase. However,
to the extent that our data are conclusive, they indicate that all examined states can have a
finite gap in the thermodynamic continuum limit.
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Fig. 4.7 Density-density correlation functions for fermionic states in the |C|= 1 band. The
plots are shown for the lowest-lying ground state in the (kx,ky) = (0,0) momentum sector,
with (a) r = 1: ν = 1/3, N = 9, p = 76; (b) r = 2: ν = 2/5, N = 8, p = 124; (c) r = −2:
ν = 2/3, N = 18, p = 107; (d) r = 3: ν = 3/7, N = 9, p = 85; and (e) r = −3: ν = 3/5,
N = 9, p = 134.
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4.3.2 FCIs in |C|= 2 bands

The preceding study of |C|= 1 bands in the continuum limit provides a solid foundation from
which to explore higher Chern number bands. However, naively extending the analysis in
Sec. 4.3.1 presents two major challenges. First, the Hilbert space dimension for systems with
a higher Chern number is considerably larger, since the filling factor is reduced, and thus
calculations at the same particle numbers are exponentially more expensive. Additionally,
the systematic process of obtaining square configurations, outlined in Sec. 4.2.5, is often
too constricting to yield an adequate number of square configurations for higher Chern
numbers. This is a geometric problem, which can be overcome by finding approximately
square configurations for the problem cases.

Bosonic states

As before, we start with bosonic systems with onsite interactions, considering filling factors
of the series (Eq. 4.5) with |r| = 1,2,3. Again, we include particle numbers with Hilbert
space dimensions of dim{H }< 107. Overall, we have considered 23 different combinations
of particle number and filling factor, with an average of ∼22 different geometries for each,
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and a total of 510 different exact diagonalization calculations underlying the data in this
section. The final data for the effective continuum limiting behavior for the six filling factors
under consideration are shown in Fig. 4.8. Notice that the q∆ values are smaller than in the
corresponding cases for |C|= 1 bands in Fig. 4.2. The r = 1 series is again almost completely
unaffected by finite-size scaling, with an extrapolated thermodynamic effective continuum
limit of limN,q→∞(q∆) = 0.27± (4.4×10−3)1. Finite-size effects are noticeable for all other
series. We will first discuss the scaling to the effective continuum limit and then provide
further discussion of the finite-size scaling for the different states.

We find that the many-body gap scales inversely with q for the |C| = 2 bands, also.
However, we find stronger fluctuations of the scaled gap around the limiting value, which
is partly related to the absence of square geometries. We illustrate common behaviors by
examining three examples in detail.

In Figs. 4.9a & 4.9b, we display the 12-particle ν = 1 state. We choose this state as it
has a high particle number and behaves in the familiar and expected way; i.e. it produces an
adequate number of square configurations and its energy gap can be determined without any
ambiguity.

In Figs. 4.9c & 4.9d, we display the six-particle ν = 1 state. We choose this state as an
example of a case which does not produce an adequate number of (or, indeed, any) square
configurations, in accordance to our systematic method (see Sec. 4.2.5). Therefore, for this
case, we consider all configurations which are within an error ε ≤ 2% of being square, as
this gives an adequate and comparable sample size of ∼10 configurations. This is noticeable
by the deviations from a straight line in Fig. 4.9c and in the clear oscillations in Fig. 4.9d.
The various rectangular configurations obey slightly different scaling relations with MUC
size, which results in noticeable oscillations in the plots (note, however, the small scale on
the y-axes). In the cases where we use approximately square configurations, the error in the
effective continuum limit is no longer negligible on the scale of the thermodynamic limit
plot and so must be taken into account. The precise determination of errors for the effective
continuum limit of q → ∞ is discussed in Appendix B.6.

Finally, in Figs. 4.9e & 4.9f, we display the 12-particle ν = 2/3 state. We choose this
state as a case of interest because it is the largest system size for the ν = 2/3 state, shown
in Fig. 4.8. Yet, it retains a strong geometry dependency. Note that these data are based
on configurations which are within ε ≤ 1% of being square. Figure 4.9e shows the overall
reciprocal scaling of the many-body gap with MUC size. However, from Fig. 4.9f, we can
see that there seem to be two different rectangular configurations which have distinct scaling
behaviors. By closely examining the energy spectra, this is indeed the case. Figures 4.10a
& 4.10b show the spectra for the two distinct rectangular configuration geometries present in
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Fig. 4.9 Magnitude of the gap for bosonic states in the |C|= 2 band, as a function of MUC
size, q.
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Fig. 4.10 Energy spectra for the bosonic 12-particle ν = 2/3 state in the |C| = 2 band, at
(a) p = 384, and (b) p = 437. The plots are resolved to n = 2 points per sector.

the sample: the Lx ×Ly = 2×9 and Lx ×Ly = 1×18 cases (taking MUCs with the largest
possible Ly extension). In addition, the density-density correlation function corresponding
to the Lx ×Ly = 2×9 case is presented in Fig. 4.11d. From composite fermion theory, we
expect the degeneracy of the ground state to be d = 3, which is indeed what we observe; and
the degeneracy is even clearly visible in the spectra, since the ground states happen to be in
different momentum sectors. Yet, there is a discrepancy between the energy gaps for the two
rectangular configurations, which is larger than the fluctuations of the previously discussed
data at ν = 1 with ε ≤ 2% deviations from square geometries, in Fig. 4.9d. Nonetheless, any
errors from the extrapolation to the effective continuum limit remain small compared to the
finite-size fluctuations of the gap visible in Fig. 4.8.

Overall, the ν = 2/3 state has the strongest finite-size effects, with smaller gaps for
configurations with N divisible by four: In its finite-size scaling, we see clear oscillations of
the many-body gap under addition of pairs of particles. The next larger system size at N = 14
was found to have a larger gap in the previous study at fixed flux density [163]. Hence,
the low value at N = 12 should not be taken as an indication of the vanishing of the gap in
the thermodynamic effective continuum limit. The correlation function for the 12-particle
ν = 2/3 state corresponding to Fig. 4.10a is shown in Fig. 4.11d. Here we observe that
charge density wave instabilities may also play a role.

The |C| = 2, ν = 1 state is the second candidate for a BIQHE state within the series
(Eq. 4.5). Here, we consistently find a nondegenerate ground state in our numerical analysis,
as predicted by composite fermion theory. The many-body gap in Fig. 4.8 shows significant
finite-size effects, precluding us from taking a quantitative extrapolation to the thermody-
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namic effective continuum limit. However, its magnitude is consistently nonzero for all
available system sizes. We further note that the realizations of the BIQHE in |C|= 2 optical
flux lattices were likewise found to have a significant geometry dependency of the many-body
gaps [222]. Notwithstanding these finite-size effects, we stress that all geometries allow for a
clear identification of a singly degenerate ground state. This is unlike the case of the potential
ν = 2 BIQHE state in the lowest |C|= 1 Hofstadter bands, where competing phases appear
to dominate, as we have discussed in Sec. 4.3.1.

The ν = 2/5 state demonstrates a robust many-body gap for the states considered. The
Hilbert space dimension of |C|= 2 bosons is comparable to that of |C|= 1 fermions in Fig. 4.6
and so the data are limited due to computational expense. Nevertheless, the remaining filling
factor series show the potential for a robust thermodynamic effective continuum limit. We
note the lack of particle-hole symmetry for the ν = 2/5 and ν = 3/5 filling factor series,
visible in Fig. 4.8, unlike for the |C| = 1 fermions in Fig. 4.6. Additionally, we observe
approximately the predicted composite fermion hierarchy of gaps for r = −1,−2,−3, as
well as for r = 1,2,3. Unfortunately, finite-size effects dominate extrapolation errors from
q → ∞, and so preclude a clear extrapolation to the thermodynamic effective continuum limit.

The correlation functions for the six filling factors under consideration are shown in
Fig. 4.11. Notice the appearance of four distinct correlation sheets. We differentiate between
the sheets by labeling them corresponding to the |C|2 possible solutions for (x mod |C|,y mod
|C|), where x and y denote the x- and y-axis lattice positions. Hence, the modulation along
the x- and y-axes of period |C| leads to the appearance of |C|2 smooth correlation sheets.
However, in a finite-size system, some of these sheets may be related by inversion symmetries
of the type xi ↔ Li−xi whenever Li mod C ̸= 0. This observation seems to contradict models
of higher Chern number |C| bands as effective multilayer fractional quantum Hall systems
composed of |C| layers [160, 203, 223–225]. It is unclear at present how to reconcile this
view with our observations, as the conventional multilayer view allows for no more than |C|
distinct correlation functions. Although it is possible that a suitable basis could be found in
which the number of sheets decreases, this would likely require a nonlocal transformation
mixing several sites within the unit cell. On the other hand, it is plausible that a |C|-fold
periodicity should appear along each axis, given that the single-particle wave functions of
Harper’s equation show such behavior [179, 203, 223, 225]. For this single-particle problem
in the Landau gauge, one singles out one of the axes for momentum conservation, so that
|C|-fold oscillations in the eigenstates occur only in the perpendicular direction. However,
as the problem is gauge-invariant, either permutation of the two axes could be chosen to
exhibit these behaviors. Furthermore, the correlation function should be isotropic in space in
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Fig. 4.11 Density-density correlation functions for bosonic states in the |C| = 2 band.
The plots are shown for the lowest-lying ground state in the (kx,ky) = (0,0) momen-
tum sector. The legend differentiates between the correlation functions at lattice positions
(x mod 2,y mod 2), as explained in the main text. We show data for (a) r = 1: ν = 1/3,
N = 7, p = 94; (b) r = −1: ν = 1, N = 9, p = 112; (c) r = 2: ν = 2/5, N = 8, p = 123;
(d) r =−2: ν = 2/3, N = 12, p = 384; (e) r = 3: ν = 3/7, N = 9, p = 94; and (f) r =−3:
ν = 3/5, N = 9, p = 188.
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the infinite system. Hence, it appears natural that the correlation functions display |C|-fold
periodicity along both axes.

The state at ν = 1/3 in Fig. 4.11a shows features reminiscent of the Laughlin states
in the |C| = 1 band, since this state also has positive flux attachment with one filled band
in the composite fermion spectrum (r = 1). We refer to such states as primary composite
fermion states. The zero-separation correlation hole is most pronounced here and converges
to zero for all of the correlation sheets; this is observed for all of the states with positive r in
Fig. 4.11. Furthermore, the isotropic fluctuations at large distances show signs of settling,
although it is hard to discern the limiting value of the correlation function in this case. Note
that pairs of sheets are related by inversion symmetry for the specific geometry shown in
the figure. This is a recurring feature for higher Chern bands. In the present case, we
see that the {(0,0),(1,0)} and {(0,1),(1,1)} pairs are related along the x-axis; and the
{(0,0),(0,1)} and {(1,0),(1,1)} pairs are related along the y-axis. Due to the large number
of data points and intricacy of these figures, the data are available, along with this chapter, to
view interactively on-line as Supplementary Material4.

The correlation functions for the ν = 1 and ν = 2/3 fillings in Figs. 4.11b & 4.11d
are similarly isotropic at large distances with comparable global maxima. However, the
correlation sheets for these separate cases do not converge to a unique value at the correlation
hole. In contrast, the correlation functions for the ν = 2/5, ν = 3/7, and ν = 3/5 filling factor
series, in Figs. 4.11c, 4.11e, & 4.11f, show signs of anisotropy with directional oscillations,
which may be indicative of competing charge density wave instabilities. Note that signs of
charge density waves were also observed for the corresponding r values (r =−3,2,3) for
fermions in |C|= 1 bands, shown above in Fig. 4.7.

Next, we examine the particle entanglement spectra of the examined quantum liquids. In
general, the PES for these series are gapped confirming the existence of a topological phase.
For instance, the PES for the selected states in Fig. 4.11 have principal entanglement gaps,
∆ξ , of (a) 14.25, (b) 1.37, (c) 4.09, (d) 1.12, and (e) 1.85, after tracing out ⌊N/2⌋ particles.
The count of eigenstates below the principal entanglement gaps for these states, in each of
the momentum sectors, are (a) 31, 30, 30 (repeated for 21 sectors), (b) 53 (repeated for 9
sectors), (c) 441, 430, 430, 430 (repeated for 20 sectors), (d) 5605, 5586, 5601, 5583, 5601,
5583 (repeated for 18 sectors), (e) 504 (repeated for 21 sectors), and (f) 198 (repeated for 15
sectors), respectively. The spectra corresponding to the correlation functions in Figs. 4.11a
& 4.11c are shown in Fig. 4.12. Here, the primary composite fermion ν = 1/3 state in
Fig. 4.12a shows the largest and clearest gap by a significant margin, as expected. All other

4Supplemental Material includes the original data for the correlation functions and instructions to view
these interactively [1].



4.3 Results 81

 5

 10

 15

 20

 25

 0  5  10  15  20

ξ

kx*Ly + ky

(a)

 5

 10

 15

 20

 25

 30

 0  5  10  15  20

ξ

kx*Ly + ky

(b)

Fig. 4.12 PES for bosonic states in the |C|= 2 band. We show data for: (a) r = 1: ν = 1/3,
N = 7, p = 94; and (b) r = 2: ν = 2/5, N = 8, p = 123. In both cases we take NA = ⌊N/2⌋.
The counts of eigenstates from the bottom of the spectra up to the principal entanglement
gaps, in each of the momentum sectors, is (a) 31, 30, 30 (repeated for 21 sectors), and (b)
441, 430, 430, 430 (repeated for 20 sectors), respectively.

states have a smaller principal entanglement gap higher in the spectrum, as in Fig. 4.12b.
Unlike the primary composite fermion states, other states of the composite fermion series
(Eq. 4.5) are not characterized by a generalized exclusion principle [226], so they obey no
simple counting rule for these numbers of quasi-particle states.

Overall, the bosonic series for the second Chern band presented some of the expected
difficulties owing to the commensurability of several constraints on the geometries; however,
these problems were largely overcome by allowing for a scaling in q. The only noticeable
drawbacks, compared to the |C|= 1 band, are the reduced number of data points, particularly
for higher particle numbers, and the correspondingly larger uncertainty in the extrapolation
as q → ∞. As emphasized in the previous discussion, although considering approximately
square configurations undoubtedly introduces error bars in the data, the deviation from square
systems is not directly proportional to the error observed in the effective continuum limit.
Rather, the subsequent error in the effective continuum limit is principally determined by the
specific variation in the spectra for a given state.

Fermionic states

We now extend our analysis to fermions with NN interactions. For |C|> 1, the Hilbert space
dimensions for fermionic states are higher than those of the corresponding bosonic states due



82 Stability of Fractional Chern Insulators

0
1
2
3
4
5
6
7
8
9

0 0.03 0.06 0.09 0.12 0.15 0.18

lim
q→

∞

( q2 ∆
) /10

−
1

N−1

ν = 1/5
ν = 2/9
ν = 3/13

ν = 1/3
ν = 2/7
ν = 3/11

Fig. 4.13 Finite-size scaling of the gap to the thermodynamic effective continuum limit at
fixed aspect ratio, for fermionic states in the |C|= 2 band. The extrapolation to the y-axis
is shown for the robust ν = 1/5 and ν = 1/3 states. The N = 9 data point for the ν = 1/3
series is circled to indicate that there is a competing topological phase present with d = 2.
Squares, circles, and triangles denote states with |r|= 1,2,3, respectively, where the filled
(hollow) symbols correspond to positive (negative) r. All error bars are smaller than the data
points on the scale of the plot.

to the smaller filling factors and we thus expect to be able to compute fewer fermion states
due to computational limitations.

Figure 4.13 shows the data for the gap in the effective continuum limit for the six filling
factors under consideration as a function of the inverse system size. Because of computational
limitations, substantial data were only obtained for the |r|= 1 series, while we have few data
points for the other filling factors. Again, the r = 1 primary composite fermion state shows
the smallest finite-size effects on the many-body gap, and we extrapolate the thermodynamic
effective continuum limit to be limN,q→∞(q2∆) = 0.46±0.021. Note also that the magnitude
of q2∆ values is lower than in the corresponding |C|= 1 fermion plot in Fig. 4.6. Finite-size
effects are noticeable for all series and the q → ∞ extrapolation errors are much larger
compared to the |C| = 2 boson data. All of the fermion data was obtained using systems
which were within δR ≤ 1% of square simulation cells. Some of these systems were exactly
square, but no filling fraction yields enough such geometries to use exact square systems
exclusively, throughout the scaling procedure. More specifically, we have considered 18
different combinations of particle number and filling factor, with an average of ∼24 different
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geometries for each. There are a total of 433 different exact diagonalization calculations
underlying the data in this section.

Figures 4.14a & 4.14b show the plots for the six-particle ν = 2/9 state. This is selected
as an example of a state which has a clean scaling limit. The plots of ∆ and q2∆ for the
eight-particle ν = 1/3 state in Figs. 4.14c & 4.14d show slight oscillations due to the
δR ≤ 1% approximation in square configurations, similar to the bosonic states in Figs. 4.9c
& 4.9d. However, these deviations are not as large as in the |C|= 2 bosonic problem case
in Fig. 4.9f. The effective continuum limit can be determined with a reasonable error. The
spectra in Figs. 4.15a & 4.15b show the origin of the oscillations in Fig. 4.14d. As with the
|C|= 2 bosons in Figs. 4.10a & 4.10b, we see a competition between two distinct rectangular
geometries. The higher lying bands are more densely packed for the Lx ×Ly = 3×8 system
in Fig. 4.15a than for the Lx ×Ly = 2×12 spectrum in Fig. 4.15b.

The ν = 1/3 series obtained for negative flux attachment (r =−1) has an exceptionally
large gap with moderate finite-size effects and allows for a clear scaling of the many-body gap
to the thermodynamic effective continuum limit. We extrapolate a limit of limN,q→∞(q∆) =

0.65±0.16 in this case1. Note that at this filling factor, for N = 9 we find that some lattice
geometries realize a competing phase with d = 2 instead of the degeneracy d = 3 predicted
by composite fermion theory. This competing phase appears to be topological, with a large
entanglement gap of ∆ξ = 6.40 for p = 73 (NA = 4), for example, and a corresponding
eigenstate count of 385 (repeated for 27 sectors). As we find only few lattice geometries at
this single system size showing this behavior, we do not attempt to further characterize this
competing state. For the purposes of the effective continuum limit shown in Fig. 4.13, only
the geometries with the predicted threefold degeneracy were taken into account.

The data series for the remaining filling factors in Fig. 4.13 show few points due to the
steep Hilbert space dimension scaling with particle number for |C|= 2 fermions. However,
these series produce the correct ground-state degeneracies and the initial data have the
potential for a robust gap in the thermodynamic effective continuum limit.

The correlation functions for the available filling factors are shown in Fig. 4.16. We
note a few repeating characteristics that resemble features of states for the |C|= 1 bands in
Figs. 4.4 & 4.7, as well as the |C|= 2 bosons in Fig. 4.11. The primary composite fermion
state in Fig. 4.16a shows a pronounced correlation hole at zero separation and isotropic
fluctuations at large distances. The fluctuations in this case are, however, larger than those
in the corresponding boson plot in Fig. 4.11a. The correlation plots for the flux densities at
r =−1 and r =−2 in Figs. 4.16b & 4.16d again show some degree of rotational symmetry
and isotropy at large distances, whereas the plots with r = −3,2,3 in Figs. 4.16f, 4.16c,
& 4.16e show directional oscillations, potentially indicative of an instability due to charge
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Fig. 4.15 Energy spectra for the fermionic eight-particle ν = 1/3 state in the |C|= 2 band, at
(a) p = 227, and (b) p = 858. The plots are resolved to n = 4 points per sector.

density wave order. Recall that this was also observed for the |C|= 2 bosons in Fig. 4.11 and
the |C|= 1 fermions in Fig. 4.7. The smooth correlation functions are again visibly split into
|C|2 sheets.

The PES for the fermionic series have notably large and clear gaps overall. For example,
the spectra for the states in Fig. 4.16 have ∆ξ values of (a) 13.76, (b) 7.58, (c) 0.82, (d)
6.06, (e) 9.46, and (f) 10.84, after tracing out ⌊N/2⌋ particles. The corresponding eigenstate
counts from the bottom of the spectra up to the principal entanglement gaps, in each of the
momentum sectors, are (a) 77 (repeated for 35 sectors), (b) 385 (repeated for 27 sectors), (c)
1117, 1110, 1118, 1110 (repeated for 36 sectors), (d) 445, 440, 446, 440 (repeated for 28
sectors), (e) 77 (repeated for 26 sectors), and (f) 51 (repeated for 22 sectors), respectively.
The PES corresponding to Figs. 4.16a & 4.16f are shown in Fig. 4.17. Each of the fermionic
states, with the exception of the PES corresponding to Fig. 4.16c, show PES with large
gaps and relatively uniform eigenstate counts across the momentum sectors. These are
features which we otherwise found to be realized only for the primary composite fermion
state within the bosonic series. For the fermionic series under examination, the primary
composite fermion ν = 1/5 state remains distinguished predominantly by the magnitude of
the gap.

Overall, the |C| = 2 fermion series produces robust results for the gaps of the states
(Eq. 4.5). While we have not generated enough data to ascertain a nonzero gap in the
thermodynamic limit for all members of the family, all observed finite-size gaps are nonzero,
and we find a clear thermodynamic effective continuum limit for the r =±1 states. Several
high-particle-number points are omitted but the error bars in the data obtained are reasonable.
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Fig. 4.16 Density-density correlation functions for fermionic states in the |C|= 2 band. The
plots are shown for the lowest-lying ground state in the (kx,ky) = (0,0) momentum sector,
with sheets colored as in Fig. 4.11. We show data for (a) r = 1: ν = 1/5, N = 7, p = 157;
(b) r = −1: ν = 1/3, N = 9, p = 121; (c) r = 2: ν = 2/9, N = 8, p = 160; (d) r = −2:
ν = 2/7, N = 8, p = 313; (e) r = 3: ν = 3/13, N = 6, p = 265; and (f) r =−3: ν = 3/11,
N = 6, p = 272.
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Fig. 4.17 PES for fermionic states in the |C|= 2 band. We show data for (a) r = 1: ν = 1/5,
N = 7, p = 157; and (b) r = −3: ν = 3/11, N = 6, p = 272. In both cases, we take
NA = ⌊N/2⌋ = 3. The counts of eigenstates from the bottom of the spectrum up to the
principal entanglement gap, in each of the momentum sectors, are (a) 77 and (b) 51.

The r = 1 series is again the most stable and the range of q2∆ limits is lower than in
Fig. 4.6. With the exception of one competing topological phase at ν = 1/3, the ground-state
degeneracy follows the predictions of composite fermion theory throughout.

4.3.3 FCIs in |C|= 3 bands

For |C| = 3, we find stronger finite-size effects than in |C| = 2 bands. The Hilbert space
dimension of the states is higher still for given N and thus, fewer high-particle-number
systems are computationally accessible. Coupled with this, the energy spectra are difficult to
analyze. Not only is the ground-state gap often ambiguous, but the spectra in general are
complex, showing a plethora of competing geometric and topological physical effects. For
these reasons, the analysis of the |C| = 3 fermionic states is omitted and we focus on the
bosonic systems with contact interactions. Note that, just as in Sec. 4.3.2, all the systems in
this section are within 1% of square geometries. Some of the systems were exactly square,
but all filling factors required the use of some approximately square geometries within the
scaling procedure.

Bosonic states

As in Secs. 4.3.1 and 4.3.2, we continue our analysis in a similar fashion and examine
the effective continuum limit, followed by finite-size scaling to the thermodynamic limit
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Fig. 4.18 Finite-size scaling of the gap to the thermodynamic effective continuum limit at
fixed aspect ratio, for bosonic states in the |C| = 3 band. The extrapolation to the y-axis
is shown for the robust ν = 1/4 and ν = 1/2 states. Squares, circles, and triangles denote
states with |r|= 1,2,3, respectively, where the filled (hollow) symbols correspond to positive
(negative) r.

where possible. Figure 4.18 shows the effective continuum limiting behavior for the six
filling factors under consideration. As expected, due to computational limitations, fewer
high-particle-number states are analyzed, compared to the |C| = 2 boson data in Fig. 4.8.
Nevertheless, a reasonable sample is obtained, comparable to that of the |C|= 2 fermion data
in Fig. 4.13. Overall, we have considered 18 different combinations of particle number and
filling factor, with an average of ∼25 different geometries for each. There are a total of 460
different exact diagonalization calculations underlying the data in this section.

We find smaller values for the q∆ limits, when compared to the lower Chern number
(|C|= 2) scaling shown in Fig. 4.11. This is a general trend with increasing Chern number,
which we discuss later.

A stable r = 1 series with ν = 1/4 is observed. In this case, the thermodynamic ef-
fective continuum limit is extrapolated to be limN,q→∞(q∆) = 0.13± 0.011. The corre-
sponding negative flux attached version of this series with ν = 1/2 at r = −1 is also
found to be exceptionally stable, with the gap exceeding that for ν = 1/4, extrapolated
as limN,q→∞(q∆) = 0.18± 0.071. The error bars due to the effective continuum limit are
significant yet adequate, and more noticeable than those in Fig. 4.8.
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The remaining data series are insufficient to make any comments on scaling to the
thermodynamic effective continuum limit; however, the predicted ground-state degeneracies
from composite fermion theory are observed at our finite N, and the finite many-body gaps
show the potential for a robust gap in the thermodynamic effective continuum limit.

Figure 4.19 shows the plots for the six-particle ν = 3/8 state. This system is selected
as a case of interest, since it has a large ground-state degeneracy, and we obtain significant
error bars for its effective continuum limit. The plot of the scaling of the gap in Fig. 4.19a
shows the expected reciprocal relation, with some slight deviations due to the 1% square
approximation of configurations. The plot of q∆ vs 1/q given in Fig. 4.19b shows these
deviations in more detail. As previously mentioned, the small-q deviations may be attributed
to finite-size effects and they stabilize as the MUC size is increased.

Four distinct energy spectra for different geometries realizing the six-particle ν = 3/8
state are shown in Figs. 4.19c, 4.19d, 4.19e, & 4.19f. These cases differ in the realized shape
of the MUC. Notice that the spectra shown in Figs. 4.19c & 4.19d correspond to the same
Lx ×Ly = 4× 4 square configuration, and yield similar spectra. The other two spectra in
Figs. 4.19c & 4.19d correspond to geometries with Lx ×Ly = 1×16 and Lx ×Ly = 2×8
MUCs, respectively, and yield qualitatively distinct features. (Again, these geometries are
chosen with the maximum possible value of Ly consistent with the lattice size.) As a result
of such distinct geometries, the fluctuations of the gap persist up to large values of q in the
scaling shown in Fig. 4.19b. Geometric effects such as this give rise to the significant error
bars in Fig. 4.18. The entanglement gaps for these systems are shown in Fig. 4.20. While the
numerical value of ∆ξ is relatively small, the opening of the gap confirms the topological
nature of this state.

Correlation functions for the discussed filling factors are shown in Fig. 4.21. As for the
bosons in the |C| = 1,2 bands (Figs. 4.4a & 4.11a), only the primary composite fermion
state with a flux attachment of r = 1 in Fig. 4.21a has a fully-formed correlation hole at
zero separation. The correlation functions are again modulated by the Chern number, giving
rise to |C|2 sheets, which now is visible even in the color plots of our figures, for example,
in Fig. 4.21f. In this Chern band, all of the correlation functions seem to show isotropy
in the large-distance limit. However, small scale features are hard to discern. As with
the |C| = 2 bosons in Fig. 4.11, for the cases with negative flux attachment (r < 0) the
correlation function sheets do not converge to the same value at zero separation. This is
shown in Figs. 4.21b, 4.21d, & 4.21f for this Chern band, mirroring the behaviors seen in
Figs. 4.11b, 4.11d, & 4.11f for |C|= 2.

The PES for the remaining bosonic series in the |C|= 3 band have small but distinct gaps.
Considering the spectra for the states in Fig. 4.21, we find ∆ξ values of (a) 12.84, (b) 1.02,
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Fig. 4.19 [(a), (b)] Magnitude of the gap for bosonic six-particle ν = 3/8 states in the |C|= 3
band, as a function of MUC size, q. [(c)–(f)] Energy spectra for the bosonic six-particle
ν = 3/8 state in the |C|= 3 band, at (c) p = 96, (d) p = 120, (e) p = 133, and (f) p = 161.
The plots are resolved to n = 4 points per sector.
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Fig. 4.20 PES for the bosonic six-particle ν = 3/8 state in the |C| = 3 band with NA =
⌊N/2⌋= 3, at (a) p = 120, and (b) p = 133. The count of eigenstates from the bottom of the
spectrum up to the principal entanglement gap is 46 per momentum sector.

(c) 1.49, (d) 1.71, (e) 1.41, and (f) 1.92, after tracing out ⌊N/2⌋ particles. The corresponding
eigenstate counts from the bottom of the spectra up to the principal entanglement gaps, in
each of the momentum sectors, are (a) 51 (repeated for 28 sectors), (b) 323, 323, 323, 318,
318, 318 (repeated for 18 sectors), (c) 1127, 1112, 1112, 1112 (repeated for 28 sectors),
(d) 438, 432, 437, 432 (repeated for 20 sectors), (e) 1364, 1364, 1364, 1356, 1356, 1356
(repeated for 30 sectors), and (f) 46 (repeated for 16 sectors), respectively. In addition,
these spectra typically show several smaller gaps higher in the spectrum. The primary
composite fermion ν = 1/4 state is again the largest and most distinct, with a uniform count
of eigenstates below the principal entanglement gap, across the momentum spectrum.

4.4 Thermodynamic Limits and Scaling of the Effective
Continuum Limit with Chern Number

In this section, we consolidate our analyses of the |C|= 1,2,3 bands in order to comment
on the behavior of the thermodynamic limits that we could extrapolate from the effective
continuum limits at finite system sizes.

Extrapolated thermodynamic limits for bosons are presented in Table 4.1a. One over-
arching characteristic of the plots in Figs. 4.2, 4.8, & 4.18 is the robust r = 1 series. The
corresponding gaps are extracted and shown in Fig. 4.22a. Up to the |C|= 3 system, we find
that limq→∞(q∆) for N = 6 scales approximately inversely with Chern number, as seen in
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Fig. 4.21 Density-density correlation functions for bosonic states in the |C| = 3 band.
The plots are shown for the lowest-lying ground state in the (kx,ky) = (0,0) momen-
tum sector. The legend differentiates between correlation functions at lattice positions
(x mod 3,y mod 3), as explained in the main text. We show data for (a) r = 1: ν = 1/4,
N = 7, p = 114; (b) r =−1: ν = 1/2, N = 9, p = 113; (c) r = 2: ν = 2/7, N = 8, p = 114;
(d) r =−2: ν = 2/5, N = 8, p = 107; (e) r = 3: ν = 3/10, N = 9, p = 447; and (f) r =−3:
ν = 3/8, N = 6, p = 96.
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Fig. 4.22 (a) Finite-size scaling of the gap to the thermodynamic (effective) continuum limit
at fixed aspect ratio, for robust r = 1 bosonic states. The filling factors are ν = 1/2,1/3,1/4 for
Chern numbers |C|= 1,2,3, respectively. (b) Finite-size scaling of the (effective) continuum
limit of the gap at fixed aspect ratio, against Chern number, for robust r = 1 bosonic states
with N = 6 particles. In both cases, all of the error bars are smaller than the data points on
the scale of the plots.

Fig. 4.22b. In addition, we show that this (approximate) reciprocal relation does not hold
precisely for the |C|= 4,5 bands. However, we caution that our data are very limited in those
cases.

We also highlight again the stable r =−1 series with filling ν = 1/2 in |C|= 3 bands for
which the gap is extrapolated to the thermodynamic effective continuum limit in Fig. 4.18.
Since the larger-N systems should intuitively be given more weight when taking the limit,
this value is perhaps an overestimate of the true thermodynamic effective continuum limit.
This is captured by the larger error bars.

The thermodynamic effective continuum limits for the gaps of fermionic states are
summarized in Table 4.1b. As for bosons, we find that the gap decreases with Chern number.
However, due to computational expense, we did not consider enough Chern numbers to
postulate a scaling relation. As seen before in Fig. 4.6, the ν = 1/3 and ν = 2/3 series yield
the same thermodynamic effective continuum limit due to particle-hole symmetry. For the
ν = 1/3 series in the |C|= 2 band, shown in Fig. 4.6, we note intuitively that the extrapolated
limit is perhaps an underestimate since larger-N systems should be given greater weight.
Again, this is accounted for in the uncertainty.

Our studies of the density-density correlation functions for the higher Chern bands
show some common features for the states with successful thermodynamic extrapola-
tions. Compared to the other states, the correlation functions corresponding to the suc-
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cessfully extrapolated series, shown in Figs. 4.4a, 4.11a, 4.21a, & 4.21b for bosons and in
Figs. 4.7a, 4.7c, 4.16a, & 4.16b for fermions are characterized by smaller oscillations in the
large distance limit and are more likely to be fully isotropic. This is consistent with small
correlation lengths for these cases, as plausibly expected for states with small composite
fermion filling factors |r|. In addition, the correlation functions of higher |r| values also show
some of the features expected for quantum Hall liquids such as a small-distance correlation
hole. Most series for which we could not find a satisfactory thermodynamic (effective)
continuum limit show visible oscillations throughout the simulation cell, which may be either
indications of finite-size effects, or competing charge density wave orders.

All of the correlation functions for higher Chern bands show a characteristic modulation
of the magnitude of correlations as a function of x- and y-positions modulo the Chern number
and so give the appearance of |C|2 correlation sheets. This modulation may also explain the
continued sensitivity of the states to the geometry of the system, as simulation cell sizes which
are multiples of the Chern number, i.e. geometries Nx mod |C|= 0 and Ny mod |C|= 0, are
special but are generally difficult to realize in conjunction with all other constraints.

4.5 Discussion & Conclusions

In this chapter, we have quantitatively analyzed the composite fermion series of states
for higher Chern number bands in the Harper-Hofstadter model [159, 161, 163]. Exact
diagonalization calculations of these fractional quantum Hall liquids in the Hofstadter model
are challenging, owing to numerous Diophantine constraints relating filling factor, flux
density, and lattice geometry. We exploit the scaling of the energy scales in the size of the
MUC, first observed by Bauer et al. [194], to resolve some of these commensuration issues.
We are thus able to extract finite-size data exclusively for nearly square systems, leading to
more reliable determination of the many-body gaps as compared to finite-size scaling at fixed
flux density.
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(a) bosons

|C| r ν limN,q→∞(q∆)

1 1 1/2 0.64±0.01
2 1 1/3 0.27±0.004
3 1 1/4 0.13±0.01

−1 1/2 0.18±0.07

(b) fermions

|C| r ν limN,q→∞(q2∆)

1 1 1/3 2.56±0.02
−2 2/3 2.56±0.02

2 1 1/5 0.46±0.02
−1 1/3 0.65±0.16

Table 4.1 Summary of states with (effective) continuum limits that could be extrapolated to
the thermodynamic limit, given to two decimal places, for (a) bosons and (b) fermions. The
uncertainty quoted for the limit is the asymptotic standard error from a linear regression of
q∆ against 1/N.

We confirm that the prediction of composite fermion theory for the ground-state degener-
acy is correct at all filling factors that we examined, with few exceptions due to competing
phases. Several states were shown to have stable gaps in the thermodynamic (effective)
continuum limit. Among these – as expected – the primary composite fermion states with
filling factor ν = 1/(k|C|+1) are the most robust, and we find that they have an (effective)
continuum limit that is largely independent of particle number. We found several other states
that allow for a reliable finite-size scaling of the gap, as summarized in Table 4.1. However,
for many candidate phases predicted by composite fermion theory, we have found that scaling
toward the (effective) continuum limit does not sufficiently alleviate finite-size effects to
draw firm conclusions about their stability in the thermodynamic (effective) continuum limit.
In part, this is due to the system-size limitations used in our study. The topological charac-
ter of the different target phases has been clearly shown through the use of entanglement
spectroscopy, which reveals the existence of entanglement gaps.

Our data also shed light on the fate of two potential BIQHE states in the Hofstadter
model. A first candidate arises in |C|= 1 bands at filling ν = 2, for r =−2 filled composite
fermion levels. However, this state is clearly not realized within the lowest-band-projected
Harper-Hofstadter model examined in this chapter, as we do not find the correct ground-state
degeneracy of one for all system sizes. We therefore conjecture that the recently reported
ν = 2 state of hardcore bosons [191] likely requires filling of (at least) the lowest two Landau
levels, which would bring it in line with other realizations of the BIQHE that require two
flavors of bosons. The second candidate is the ν = 1 state in C = 2 bands. Here, we find
conclusively a large gap above a nondegenerate ground state for all system sizes. While
the magnitude of the gap shows important variations with system size even after taking the
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effective continuum limit, our data are consistent with the existence of a gapped phase in the
thermodynamic effective continuum limit, subject to the known generic caveats [227].

In addition to spectral properties, we have studied the two-particle correlation functions
of the Hofstadter model, revealing their unexpected structure which resembles a total of
|C|2 continuous sheets. This result is in disagreement with suggestions that Chern number
C bands can be regarded as |C|-layer quantum Hall systems. In this multilayer picture, we
would only expect |C| distinct correlation functions, so we hope that our results will stimulate
further research that will clarify the origin of this discrepancy.

We have shown that approximately square geometries stabilize some of the expected
isotropic quantum liquid phases predicted by composite fermion theory. In general, we find
that variations of the gap due to a small change in aspect ratio are smaller than the finite-size
effects but still remain significant. Hence, the sensitivity of the problem to details of the
geometry seems to indicate that competing phases are likely to exist. Indeed, in addition to
the isotropic quantum Hall liquids discussed in our work, several candidates for symmetry
broken phases [208, 209] or phases combining a broken symmetry and topological response
[164] have recently been proposed. We hope that the rich interplay of these competing phases
will stimulate further active research in the physics of fractional topological insulators in
Hofstadter models. Future research should focus on experimental probes for these regimes,
as well as on specific realizations that can favor the various candidate phases, for example,
via the effect of longer-range interactions or anisotropy.



Chapter 5

Direct Evaluation of the Force Constant
Matrix in Quantum Monte Carlo

We develop a formalism to directly evaluate the matrix of force constants within a quantum
Monte Carlo calculation. We utilize the matrix of force constants to accurately relax the
positions of atoms in molecules and determine their vibrational modes, using a combination of
variational and diffusion Monte Carlo. The computed bond lengths differ by less than 0.007 Å
from the experimental results for all four tested molecules. For hydrogen and hydrogen
chloride, we obtain fundamental vibrational frequencies within 0.1% of experimental results
and ∼10 times more accurate than leading computational methods. For carbon dioxide and
methane, the vibrational frequency obtained is on average within 1.1% of the experimental
result, which is at least three times closer than results using restricted Hartree-Fock and
density functional theory with a PBE functional and comparable or better than density
functional theory with a semi-empirical functional.

5.1 Introduction

Quantum Monte Carlo (QMC) is a leading class of approaches used to establish and study the
electronic ground state of molecules and solids. Specifically, diffusion Monte Carlo (DMC)
is widely used to project out the exact electronic ground-state wave function of a system,
subject only to the fixed node approximation, fully accounting for correlation effects such
as van der Waals interactions [228, 229]. Although DMC is an ideal tool for studying the
electronic wave function of the system [230], the determination of the wave function of the
atoms – their expected positions and energy landscape – remains a challenge for the method.
Several approaches have been put forward to calculate the force acting on the atoms with
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DMC [65, 91, 92, 231–235], but a more comprehensive characterization of the atomic wave
function requires the second derivative of the energy – the matrix of force constants – to both
efficiently relax atomic positions and calculate vibrational modes.

We propose a method to directly calculate the matrix of force constants, d2E/dRIdRJ ,
where RI is the position of the Ith, and RJ the Jth, atom in the system. The energy,
E = ⟨Ĥ⟩, is calculated in the Born-Oppenheimer approximation of Hamiltonian Ĥ; that
is with the electrons always in their ground state for the respective atomic configuration.
The calculation is implemented in QMC through a new quantum mechanical expectation
value, d2⟨Ĥ⟩/dRIdRJ , meaning that it can be evaluated with one configuration of the atoms
to recover the entire matrix of force constants. The matrix of force constants allows us to
efficiently relax atomic positions and determine the vibrational modes.

We start by introducing the formalism and the QMC methods in Sec. 5.2. We subsequently
outline the applications and implementation of the matrix of force constants in Sec. 5.3,
followed by a series of case studies in Sec. 5.4. We begin with atomic and diatomic hydrogen,
and then move on to hydrogen chloride, carbon dioxide, and methane. For each molecule
we derive the matrix of force constants, relax the positions of the atoms, and determine the
vibrational modes. We critically evaluate the results with respect to existing computational
methods: restricted Hartree-Fock (RHF) [236–238] and density functional theory (DFT) [45,
239]. Finally, in Sec. 5.5 we summarize the results and discuss future opportunities for the
new formalism.

5.2 Formalism

In this section, we present the matrix of force constants. We then outline the numerics by
discussing how the electronic orbitals are generated and the details of the QMC algorithms.

5.2.1 Matrix of force constants

We consider many-body quantum systems comprised of Nn nuclei and Ne electrons. The
three-dimensional position vectors are denoted as RI for nuclei and ri for electrons, with I =
1, . . . ,Nn and i = 1, . . . ,Ne. These are used to construct the corresponding multi-dimensional
vectors in configuration phase space: R ≡ (R1, . . . ,RNn) and r ≡ (r1, . . .rNe).

We use the non-relativistic Hamiltonian [62]

Ĥ =−1
2

Ne

∑
i=1

∇
2
ri
+

Ne

∑
i< j

1
|ri − r j|

−
Ne

∑
i=1

Nn

∑
I=1

VI(RI − ri)+
Nn

∑
I<J

ZIZJ

|RI −RJ|
,
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which is comprised of the electron kinetic energy, as well as the electron-electron, electron-
ion, and ion-ion interactions1. VI and ZI represent the electron-ion pseudopotential and full
nuclear charge, of atom I, respectively. We use a Hartree-Fock average effective Trail-Needs
pseudopotential [240], which has been specifically optimized for DMC calculations, to screen
the effects of the core electrons and nucleus on the valence electrons.

In an electron position basis, the expectation value of the energy [92] may be written as

E =

´
Ψ∗ĤΨdr´
|Ψ|2 dr

,

where the many-body wave function, Ψ, and Hamiltonian, Ĥ, are both functions of nucleus
configuration, R, and electron configuration, r.

The force acting on ion I is defined as the negative total derivative of the energy with
respect to the nuclear coordinates. Taking the first derivative of the energy with respect to
atom position [92] yields

dE
dRI

=

´
Ψ∗ dĤ

dRI
Ψdr´

|Ψ|2 dr
+

[´ dΨ∗

dRI
(Ĥ −E)Ψdr´
|Ψ|2 dr

+ c.c.

]
,

which is decomposed into Hellmann-Feynman and Pulay terms, respectively. When the wave
functions are exact eigenstates of the Hamiltonian, such that (Ĥ −E)Ψ = 0, the Pulay term
vanishes. However in practice, the wave functions are not exact in variational Monte Carlo
(VMC) or DMC, so the Pulay term needs to be included to obtain the total force.

In this chapter, we derive the matrix of force constants from the second derivative of the
energy, which takes the form of

d2E
dRIdRJ

=

´
Ψ∗ d2Ĥ

dRIdRJ
Ψdr´

|Ψ|2 dr
+

´
Ψ∗
[

dΨ

dRI

(
Ψ−1 dĤ

dRJ
Ψ− dE

dRJ

)
+(I ↔ J)

]
dr

2
´
|Ψ|2 dr

+

´ [ d
dRJ

[
dΨ

dRI

(
Ĥ −E

)
Ψ

]
+(I ↔ J)

]
dr

2
´
|Ψ|2 dr

+ c.c..

This comprises one component of the matrix of force constants, so we must cycle over all
atom pairs {I,J} to determine the entire matrix. The second derivative of the Hamiltonian
with respect to atom position does not commute with the Hamiltonian, hence we approximate
the pure expectation value of the force constants in the DMC procedure, as discussed in

1We work with Hartree atomic units h̄ = me = e ≡ 1.
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Sec. 5.2.3. The first two terms of the matrix of force constants stem from the Hellmann-
Feynman force, whereas the third is due to the Pulay force.

To calculate the entire matrix of force constants using the Monte Carlo algorithm, we need
to compute the ion-ion and electron-ion components at a cost of at most O(N3

n Ne)+O(N2
n N2

e ).
This leads to an overall dominant scaling of O(N4

n ) assuming O(Nn) ∝ O(Ne).
Having evaluated the matrix of force constants and implemented the formalism we can

then use it to study atomic relaxation and vibrational modes.

5.2.2 Variational Monte Carlo

For the fermionic many-body trial wave function in the VMC method [67], we take a
Slater-Jastrow wave function of the form [62]:

ΨT = eJD↑D↓,

where D↑(D↓) denotes the Slater determinant of the molecular spin-up(down) orbitals. Here,
the usual Hartree-Fock ansatz, ΨHF = D↑D↓, which encodes Pauli exclusion through the
anti-symmetry of the Slater determinant, is multiplied by a Jastrow factor, eJ , which is an
optimizable function used to impose further constraints on ΨT.

Initially, we compute the VMC energy, which is the expectation value of the Hamiltonian
operator with respect to the trial wave function [92]:

EVMC =

´
|ΨT(r)|2EL(r)dr´

|ΨT(r)|2 dr
,

where EL = Ψ
−1
T (r)ĤΨT(r) is the local energy, dr is the infinitesimal hypervolume element

in electron configuration phase space, and the integrals are performed using Monte Carlo2 in
the CASINO program [35].

Single-particle orbitals for the different molecular structures were calculated using the
CRYSTAL program [58]. The RHF and DFT calculations with two exchange-correlation
functionals: the PBE [53] GGA containing no exact orbital exchange, and the B3LYP [241–
243] hybrid functional containing a fixed amount of exact exchange were performed with
triple-ζ -valence Gaussian basis sets, as well as polarization and diffuse basis functions [244].
The exact exchange-correlation functional is unknown and the choice of functional depends
heavily on the system and the property of interest. PBE as a general functional was chosen for
its greater predictive power across all simulations and properties [245], though it is less likely

2Specifically, the Metropolis algorithm is used to generate a set of configurations distributed according to
the square modulus of a trial wave function over which the local energy is averaged.
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to achieve the accuracy of a semi-empirical functional such as B3LYP, which was chosen
in addition for its good agreement with post-DFT methods within its range of applicability
on molecules [246, 247]. We use a Jastrow factor in its most general form comprising of an
electron-electron term, an electron-nucleus term, and an electron-electron-nucleus term. The
wave function parameters are optimized by using the variance minimization method [248]
first, followed by the energy minimization method [249–251].

5.2.3 Diffusion Monte Carlo

DMC evolves a wave function, Φ, according to the imaginary-time Schrödinger equation, in
order to project out the lowest energy eigenstate, Φ0, with the same nodal surface as the trial
wave function [62].

The efficiency of the DMC algorithm is improved by importance sampling [68]. By
multiplying the wave function, Φ, by a trial wave function, ΨT from VMC, we may solve the
Schrödinger equation for the mixed distribution f (r,τ) = Φ(r,τ)ΨT(r), where τ denotes
imaginary time. We found negligible error with time-steps of τ = 0.01 a.u., and so this is
used throughout [252]. The fixed-node approximation [79, 80] is introduced to overcome the
fermion sign problem by constraining the nodal surface of Φ0 to match that of ΨT.3

The expectation value of the energy in the DMC method [92] is given by

EDMC =

´
Φ(r)ΨT(r)EL(r)dr´

Φ(r)ΨT(r)dr
.

This is an unbiased estimator, up to the approximations made, since EDMC does not depend
on the trial wave function used. However, the mixed expectation value of an operator that
does not commute with the Hamiltonian is biased. In these cases, we approximate the pure
expectation value of an operator Ô with the extrapolation formula [253]

O = 2ODMC −OVMC +O
[
(Φ−ΨT)

2] .
Alternatively, the future-walking method may be used, for example, to obtain an exact pure
estimator [89]. Although the extrapolation formula improves the results, this procedure
depends on an almost complete error cancellation and is strongly dependent on the quality of
the wave function employed. We run the simulations for longer to systematically reduce the
statistical error associated with variational techniques.

3The fixed-node approximation is the only uncontrolled approximation in a DMC simulation of all-electron
systems.
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Fig. 5.1 Interatomic force estimates for the molecules (a) H2 and (b) CH4. The red dots
correspond to the Hellmann-Feynman (HF) force, the blue triangles to the Pulay force, and
the magenta squares to the total force. Error bars for all of the data are given – some error
bars are smaller than the data points on the scale of the plot.

5.2.4 Contributions of the Hellmann-Feynman and Pulay terms

Both the Hellmann-Feynman and Pulay terms contribute to the force and matrix of force
constants, and both Pulay terms are zero at the exact electronic ground state. However, the
Pulay contribution to the matrix of force constants contains a second derivative of the wave
function with respect to atom position, and so is more susceptible to steep gradients due to
an incorrect trial wave function. Therefore, when using the electronic structure methods, it is
useful to determine the relative contributions of the Hellmann-Feynman and Pulay terms so
that we can gauge the importance of refining the electronic wave function.

The interatomic force in a hydrogen molecule and methane molecule is shown in Fig. 5.1.
Different bond lengths within the vicinity of the equilibrium were chosen and forces were
evaluated using the methods described in Secs. 5.2.2 and 5.2.3. The addition of the Pulay
force to the Hellmann-Feynman force shifts the equilibrium bond length by 2% in both
examples, therefore the Pulay force is crucial for finding the correct equilibrium geometry.

We now turn to consider the calculation of the matrix of force constants – the gradient
of the force. We first note from Fig. 5.1 that the Pulay force is remarkably constant with
respect to bond length across all molecules tested in this chapter, regardless of the molecular
geometry. This means that the gradient of the force is negligible, and therefore does not
significantly contribute to the matrix of force constants. We find that, when directly evaluated,
the value of the Pulay term in the matrix of force constants is smaller than its standard error, as
well as the standard error of the contribution from the Hellmann-Feynman term. Furthermore,
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based on the analysis of variance at the α = 0.05 level, the gradient of the Pulay force does
not significantly deviate from zero. This means that the change in vibrational frequency due
to the Pulay force gradient is just 1% of that from the Hellmann-Feynman gradient for both
hydrogen and methane. This conclusion is also backed up by independent studies: taking a
numerical derivative of the results for H2 and LiH reported by Casalegno et al. [254], CO2

reported by Lee et al. [255], as well as adenine-thymine reported by Ruiz-Serrano et al. [256],
confirms the small contribution of the Pulay term to the matrix of force constants.

The effect of the Pulay term in the force is significant for force analysis and, when
suitably formulated, can reduce the statistical noise in the expectation value and improve
the convergence of the optimization algorithm [256]. However, as the Pulay force is almost
constant with interatomic bond length, its contribution to the matrix of force constants is
negligible. Therefore, we expect the Pulay contribution to the matrix of force constants
to be insensitive to the quality of the trail wave function. Another corollary is that for our
zero-variance scheme [71, 257], the expected −5/2 power-law tail associated with infinite
variance that could arise from Pulay terms [92, 258] will only make a limited contribution to
the tail of the total probability distribution.4

5.3 Applications of Force Constants

5.3.1 Atomic relaxation

The primary requirement for a versatile geometry model, is the ability to minimize the energy
of an arbitrary configuration of atoms [259]. For quantum mechanical simulations, this is
often performed using VMC, due to the algorithm’s efficiency. In this chapter, we relax
the positions of the atoms first with VMC using the additional information provided by the
matrix of force constants. The wave function from VMC is then optimized in DMC and we
perform the same iteration steps using DMC to confirm convergence and further reduce the
error [260–263].

Requiring that the energy of the system is constant up to quadratic order in atomic
displacement, and explicitly correcting for global translation and rotation, we find that the
atomic displacement, ∆R, is given by

∆R =−2M−1 ·∇RE − ∑I mIRI

∑I mI
−R×θ , (5.1)

4As shown in Fig. 5.4, we have not been hindered by this problem in our practical application.
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where M ≡ d2E/dRIdRJ is the matrix of force constants; ∇RE ≡ dE/dRI is the multi-
particle gradient of the energy with respect to atom position; and θ is the three-dimensional
global angular displacement vector for the configuration R. On each step, we displace the
atoms by ∆R in order to compare with other methods in determining the minimum energy of
the system. This yields the interatomic bond length at the minimum of the total potential.
The details of the calculation are outlined in Appendix C.1.

Though ⟨R̂⟩ minimizes the total potential after the atomic relaxation procedure, if the
potential is not symmetric then the expected separation of the atoms does not coincide with
the minimum. We capture the lowest-order difference with the addition of an anharmonic
correction term, outlined in Appendix C.1.4.

5.3.2 Vibrational modes

One main motivation for incorporating the matrix of force constants into the QMC procedure
is the ability to calculate vibrational modes and frequencies directly. In this chapter, we use a
variety of methods to calculate the vibrational frequency for a cross comparison.

Up to a simple mapping, the eigenvectors of the matrix of force constants correspond
to the vibrational modes of the system, and the eigenvalues correspond to the vibrational
frequencies. We can, therefore, use a complete diagonalization of the matrix of force
constants to estimate the eigenmodes and frequencies. To benchmark the results, we also
calculate the frequencies from a numerical second derivative of the energy with respect
to bond length – referred to as the energy curvature (EC) method – and from a numerical
derivative of the force – force gradient (FG) method.

A discussion of all of these methods, including the analysis of statistical uncertainty and
the anharmonic correction, is detailed in Appendix C.2.

5.4 Case Studies

In this section, we evaluate the effectiveness of the matrix of force constants formalism for
a selection of molecules. We first confirm the theory with the simplest possible molecules,
before testing the generalizability of the formalism on molecules containing more atoms.

5.4.1 Hydrogen atom and molecule

We begin by analyzing the simplest physical system: the hydrogen atom. By performing
a DMC calculation, we verify that the hydrogen atom obeys Newton’s laws since it has a
net force of (3.68± 5.17)× 10−3 EhÅ

−1
acting on it, which is zero within standard error.
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Fig. 5.2 (a) Energy, force, and (b) diagonal force constant against bond length, for the
hydrogen molecule. For the energy and force plots, the parabolic and linear curves of best fit
for the visible data, are overlaid. For the force constant plots, we show the diagonal force
constant derived using the finite-difference method from the energy curvature, the force
gradient, and the direct analytical evaluation of the matrix of force constants. The line of
best fit for the visible MFC data is overlaid. The dashed line indicates the experimental
equilibrium bond length. Error bars for all of the data are given – some error bars are smaller
than the data points on the scale of the plot.

Furthermore, the hydrogen atom has a computed eigenfrequency of 0 cm−1. This system
behaves as expected and confirms the translational invariance.

From this, it is natural to increment the complexity by adding another hydrogen atom
to form an H2 molecule. This is the simplest physical example that allows us to verify
the eigenfrequencies from our DMC method, which has no nodes and gives an exact wave
function, by comparing them against both experimental results in the literature, and RHF/DFT
predictions from the CRYSTAL program.

The energy, force, and diagonal elements of the matrix of force constants for the hydrogen
atom are shown as a function of bond length in Fig. 5.2. We verify that the energy is at a min-
imum and the force is zero at the correct equilibrium bond length of 74.13 pm [264], within
standard error. Furthermore, in Fig. 5.2b, we show that in the vicinity of the equilibrium bond
length for the hydrogen molecule, the energy curvature, the force gradient, and the direct
computation, all agree within error bounds. The entire matrix of force constants is sparse. If
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we are only interested in the vibrational mode, it can be reduced to be a 2×2 matrix, with
the off-diagonal force constants to be minus the diagonal elements within error, as required
by symmetry5. Note that here the diagonal elements of the matrix of force constants are not
constant across the range of bond lengths shown, as can also be seen in the slight curvature
of the force in Fig. 5.2a. This is due to the anharmonicity of the potential in a diatomic
molecule. We may use the gradient of the force constant to calculate the anharmonic constant,
and correct for the anharmonicity, as discussed in Appendix C.1.4.

For the hydrogen molecule, it is possible to extract the matrix of force constants effi-
ciently from the force, or energy, because the computational cost of obtaining the numerical
derivatives is low. However, for more complicated molecules, where structural optimization
is influential, using the matrix of force constants would be beneficial, as it provides both
the movement direction and amplitude towards the minimum energy configuration. In these
cases, the equivalent information would take considerably longer to extrapolate from either
energy or force, if possible.

Equipped with reliable results for the matrix of force constants directly from DMC at
each bond length, we may now exploit this information to efficiently relax the bond length
of the molecule. The force tells us the direction to move the atoms, and the matrix of
force constants additionally tells us how far to move them, on each step (Eq. 5.1). Owing
to the anharmonicity of the potential, we must relax to the equilibrium bond length of
74.13 pm over several steps. The predicted bond length on the next atomic relaxation step as
a function of initial bond length is shown in Fig. 5.3. We see that the PBE curve intersects
the equilibrium line at 0.753 Å and the B3LYP curve intersects at 0.745 Å ; whereas our
DMC calculation intersects at 0.7420±0.0007 Å, in close agreement with the experimental
value of 0.74130 Å [264].6 Furthermore, we note that PBE and B3LYP curves have a similar
shape as a result of sharing the same optimization algorithm. However, both are steeper than
the DMC curve in the vicinity of equilibrium and therefore converge more slowly, due to the
fact that the DFT algorithm uses an inaccurate estimate for the force constant. The number of
iteration steps reduced are particularly apparent when there are multiple atoms in a molecule,
however the lower number of steps does not necessarily indicate a more efficient algorithm,
as the complexity of each step needs to be taken into consideration. In some cases where
complex molecules cannot be relaxed sufficiently for a long time using DFT, our approach
may be more efficient in determining the ground-state geometry. In general, due to DFT’s

5The diagonal elements of the matrix of force constants are the same for the hydrogen molecule, and hence
no particular atom is specified when referring to d2E/dR2 in Figs. 5.2 & 5.4.

6Note that the turning points of the PBE, B3LYP and DMC curves in Fig. 5.3 do not correspond to fixed
points, but rather the fixed points are given by the intersections of the curves with the equilibrium line.
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Fig. 5.4 Distribution of probability densities for the observed values of an element of the
matrix of force constants from DMC, offset by the mean M0. Data are shown for the hydrogen
molecule at the equilibrium bond length.

mode ωRHF ωPBE ωB3LYP ωEC ωFG ωDMC ωexp[265]

stretch 4379 4116 4384 4170±10 4180±8 4166±4 4161.1663±0.0002

Table 5.1 Vibrational frequencies, evaluated at the computed equilibrium bond length, for the
hydrogen molecule in units of cm−1, where ωRHF denotes the vibrational frequency obtained
from a RHF calculation, ωPBE and ωB3LYP from DFT calculations with a PBE/B3LYP
functional, ωEC from the curvature of the DMC energy, ωFG from the gradient of the DMC
force, ωDMC from the DMC matrix of force constants, and ωexp from experiment. All values
are presented at zero temperature and post anharmonic corrections. These quantities, as well
as their associated errors, are discussed in Appendix C.2.

inaccurate estimate of the force constant, we observe at least a slight improvement for all
molecules.

An additional important check, before we proceed, is an analysis of the probability
distribution of the matrix of force constants generated by DMC. Fig. 5.4 shows the histogram
of a force constant value for the DMC run at the computed equilibrium bond length. From
this we can see that the force constant heavy tails decay with the same ∼ |M−M0|−4 power
law as the energy and Hellmann-Feynman force [92, 258]. This is as expected, since the
effective remaining term is the Hellmann-Feynman term due to the quasi-constant Pulay
contribution in proximity to the ground state, as seen in Sec. 5.2.4. Reassuringly, the expected
value of the distribution is also the modal value.
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Now that the configuration is relaxed, we may analyze the fundamental vibrational
modes. For the hydrogen molecule, we obtain six eigenmodes, as expected for a diatomic
molecule. Three modes correspond to global translation, two correspond to global ro-
tation, and one corresponds to a symmetric stretch. The symmetric stretch mode has
the largest eigenfrequency. We extract the frequency using a selection of methods, out-
lined in Appendix C.2, for a cross-comparison. In this case, we obtain a fundamental
vibrational frequency of ωDMC = 4166± 4 cm−1, compared to the experimental value of
ωexp = 4161.1663±0.0002 cm−1, which is 4.83 cm−1 away. This is a firm statistical con-
firmation of the accuracy of DMC compared to RHF, PBE and B3LYP results, which have
deviations of 218 cm−1, 45 cm−1 and 223 cm−1 from experiment, respectively. All of our
computational values for the vibrational frequency from DMC – matrix of force constants,
force gradient, and energy curvature – agree with each other within standard error and show
close agreement to experiment. The DMC procedure yields no translational or rotational
modes, just as for the hydrogen atom. A summary of the results is shown in Table 5.1. Note
that the less computationally expensive calculation of the energy was run for four times
longer, compared to the force gradient and matrix of force constant methods, in order to give
the error bars of the energy curvature eigenfrequency to a comparable value.

5.4.2 Hydrogen chloride

Now that we have verified that the matrix of force constants agrees with numerical estimates,
and that by exploiting this information it is possible to relax the molecule more efficiently,
and outperform RHF and DFT estimates for the fundamental vibrational frequency for the
hydrogen case, we move onto a more complex molecule: hydrogen chloride. We increment
the complexity of our case study in order to verify that our formalism can cope with an
asymmetric system with unequal masses.

The hydrogen chloride molecule again relaxes quickly to equilibrium, with a computed
bond length of 128.0±0.6 pm, which agrees with the experimental value of 127.5 pm within
standard error. Both atoms have the appropriate displacement to ensure that the center of
mass is stationary. We obtain six eigenmodes for the system, including one symmetric stretch
mode with eigenfrequency ωDMC = 2995±8 cm−1. This result agrees with the experimental
value of ωexp = 2990.946±0.003 cm−1 within standard error, whereas RHF, PBE, B3LYP
methods are 107 cm−1, 112 cm−1, 50 cm−1 away, respectively. A summary of the results is
shown in Table 5.2a.
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(a) hydrogen chloride

mode ωRHF ωPBE ωB3LYP ωDMC ωexp[266]

stretch 3098 2879 2941 2995±8 2990.946±0.003

(b) carbon dioxide

mode ωRHF ωPBE ωB3LYP ωDMC ωexp[267]

sym. stretch 1468 1284 1325 1309±5 1333±6

antisym. stretch 2480 2297 2321 2312±6 2349±1

bending 766 634 664 662±2 667±1

(c) methane

mode ωRHF ωPBE ωB3LYP ωDMC ωexp[267]

sym. stretch 3101 3034 3074 2874±8 2917±1

scissor 1655 1496 1544 1534±9 1534±1

Table 5.2 Vibrational frequencies, evaluated at the computed equilibrium bond length,
for (a) the hydrogen chloride, (b) carbon dioxide, and (c) methane molecules in units of
cm−1, where ωRHF denotes the vibrational frequency obtained from a RHF calculation, ωPBE
and ωB3LYP from DFT calculations with a PBE/B3LYP functional, ωDMC from a DMC
calculation, and ωexp from experiment. All values are presented at zero temperature and post
anharmonic corrections. These quantities, as well as their associated errors, are discussed in
Appendix C.2.

molecule xRHF
0 xPBE

0 xB3LYP
0 xDMC

0 xexp
0 [264]

H2 0.736 0.753 0.745 0.7420±0.0007 0.74130

HCl 1.260 1.286 1.278 1.280±0.006 1.275

CO2 1.145 1.182 1.171 1.167±0.003 1.1598

CH4 1.089 1.104 1.098 1.097±0.002 1.093

Table 5.3 Computed equilibrium bond lengths for the hydrogen, hydrogen chloride, carbon
dioxide, and methane molecules, in units of Å, where xRHF

0 denotes the equilibrium bond
length obtained from a RHF calculation, xPBE

0 and xB3LYP
0 from DFT calculations with a

PBE/B3LYP functional, xDMC
0 from a DMC calculation, and xexp

0 from experiment. The
details of the atomic relaxation calculation in DMC are discussed in Appendix C.1.
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5.4.3 Carbon dioxide

In the previous two examples, we found that the matrix of force constants can correctly
calculate the modes of a diatomic molecule. Building on this, we increment the complexity
to carbon dioxide: a three-atom system with several non-trivial vibrational modes, some of
which are in orthogonal directions.

In this case, the O = C = O configuration is relaxed to an equilibrium C = O bond
length of 116.7 ± 0.3 pm along one axis, which is within three standard deviations of
the experimental value of 115.98 pm. For carbon dioxide, we obtain nine vibrational
modes: three of which correspond to global translations, two to global rotations, and four to
vibrational modes. Of the vibrational modes, we obtain one symmetric stretch mode, one
asymmetric stretch mode, and two bending modes along orthogonal axes.

The modes examined in this section show a consistent improvement over the RHF
and PBE calculations, with DMC eigenfrequency deviations from experiment of −1.80%
(symmetric), −1.58% (antisymmetric), and −0.75% (bending). The recovery of the non-
trivial antisymmetric mode is our first example to break the underlying symmetry of the
molecule, and the bending mode shows that our formalism can extend to atoms moving in
orthogonal directions. On average, our DMC result is 22 cm−1 away from the experimental
value, which is an improvement over the RHF results (on average 122 cm−1 away) and PBE
results (on average 45 cm−1 away). We note that in this particular case the B3LYP results are
on average 13 cm−1 away from the experimental results, which is why this semi-empirical
functional is a popular choice for non-metal-containing molecules [268].

It is worthwhile to mention that the experimental results come with a larger error for
carbon dioxide when compared to smaller molecules, as shown in Table 5.2b. The symmetric
stretch mode is Raman active and infrared inactive, whereas for the other modes, the oppo-
site is true [267]. The Raman measurement typically comes with a larger uncertainty than
infrared spectroscopy in this case, complicating the comparison to DMC. Additionally, for
these larger molecules, as the number of modes increases, the chances of eigenfrequency
interference is increased. Here we notice that the symmetric stretch mode eigenfrequency is
quasi-degenerate with twice the bending mode eigenfrequency in Table 5.2b, which could
also potentially contribute to the increased uncertainty of the symmetric stretch mode [269].
Finally, we note that the precise eigenfrequencies for arbitrarily large molecules have not
been studied as extensively. In contrast, the eigenfrequency calculation for hydrogen espe-
cially, as well as for other common diatomic molecules, is often used as an experimental
benchmark [265]. Together these factors motivate the need for improving the accuracy and
precision of electronic structure calculations, such as QMC.
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(a) (b)

Fig. 5.5 (a) The symmetric stretch, and (b) scissor, vibrational modes of methane.

5.4.4 Methane

For the last example, we extend our formalism to a three-dimensional molecule containing five
atoms: methane, to demonstrate that the formalism can be applied to diverse configurations
of atoms.

We find that the configuration relaxes to a C−H bond length of 109.7±0.2 pm, within
two standard deviations of the experimental value of 109.3 pm, in fewer iterations than
existing methods. The equilibrium bond lengths for all case studies are summarized in
Table 5.3. In this case, we obtain fifteen eigenmodes of the system: three corresponding
to global translation, three corresponding to global rotation, and nine corresponding to
non-trivial vibrational modes. Of the vibrational modes, we select two modes to examine in
detail: the symmetric stretch and scissor modes, as summarized in Table 5.2c and illustrated
in Fig. 5.5.

An analysis of these modes yields a DMC deviation from experiment of −1.47% for
the symmetric stretch mode and an expected agreement for the scissor mode, which is
generally comparable to the results for carbon dioxide i.e. still of the order of 1% from
the experimentally measured values. The successful recovery of these modes demonstrates
that the formalism holds in three dimensions, and the excellent agreement for the scissor
mode demonstrates that we are able to capture a non-trivial symmetry for this molecule. The
symmetric stretch DMC eigenfrequency is 43 cm−1 away from experiment, whereas the
RHF, PBE and B3LYP results are 184 cm−1, 117 cm−1 and 157 cm−1 away, respectively.

5.5 Conclusion

In this chapter, we have developed and implemented a formalism to evaluate the matrix of
force constants in QMC. We calculated vibrational frequencies and improved estimates for
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the atomic displacements on each relaxation step, as well as correcting for anharmonicity.
We report statistically significant improvements over RHF and DFT methods in the vast
majority of cases, both in terms of the vibrational frequency and the efficiency of the atomic
relaxation, for the hydrogen, hydrogen chloride, carbon dioxide, and methane molecules.

The ability to calculate the matrix of force constants within DMC, in particular, makes us
well-positioned to calculate vibrational modes where high accuracy is a necessity and relax
atomic positions in complex systems with many degrees of freedom where the extrapolation
from energy or force is difficult, if not impossible, to optimize the geometry. The approach
applies to both molecules and periodic configurations. This will be especially beneficial in
systems with heavy atoms that are challenging to analyze accurately with DFT, systems with
significant anharmonic corrections, and also those with strong van der Waals interactions,
such as layered materials and surfaces.





Chapter 6

Lattice Stability of Three-dimensional
Crystals

We perform a detailed study of the zero-temperature stability of the most common crystal
structures in the periodic table in three different regimes: transient Coulomb, tight-binding,
and nearly free electron. In the transient Coulomb model, we verify that cubic crystal
structures are unstable at fourth order, whereas all other crystal structures are unstable at
second order, in accordance with Gauss’ law. For the tight-binding regime, we construct an
analytical toy model and present a phase diagram as we tune the core and valence electron
radial parameters away from the tight-binding limit. We verify that the presence of electron
orbitals stabilizes the system, and show that, in the extreme tight-binding approximation,
there is competition between the body-centered cubic and face-centered cubic phases. This
result accords with analogous theoretical studies of the unconfined three-dimensional Yukawa
crystal. We report that the hexagonal close-packed structure is the secondary dominant phase
as we tune away from the tight-binding limit, which we reconcile with analytical calculations
of the matrices of force constants in the nearly free electron model.

6.1 Introduction

The classical theory of crystal stability was extensively studied by Born in the first half of the
20th Century [270]. This seminal work predominantly focused on deriving the Born stability
criteria based on the elasticity constants, as well determining the scope of the Cauchy-Born
rule of crystal deformation [271]. Since this time, the topic of crystal stability has been
revisited from numerous perspectives [272]: from the historic models of ionic matter by Born-
Landé [273], Born-Mayer [274], and Kapustinskii [275]; through to sophisticated quantum
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Monte Carlo simulations in current research [276, 277]. However, none of these works
have addressed the precise order of stability in prototypical models, which are currently of
increasing interest to the plasma physics [278] and astrophysics [279] communities.

In this chapter, we analyze the total potential energy for transient Coulomb, tight-binding,
and nearly free electron crystal models. In each case, we examine the matrix of force
constants, and higher-order equivalents. We comment on, and generalize, the criteria typically
used to define crystal stability. By looking at a variety of crystal lattices, motivated by the
periodic table, we draw comparisons between the stability of specific crystal structures. We
ultimately stabilize all crystal structures through the inclusion of electron clouds in our model,
and we study the stability transition.

We first introduce the underlying theory and stability criteria in Sec. 6.2. We then
proceed to examine the transient Coulomb, tight-binding, and nearly free electron regimes in
Secs. 6.3, 6.4, & 6.5, respectively. Finally, we summarize the conclusions and implications
of the results in Sec. 6.6.

6.2 Theory

We consider an infinite crystal of atoms in three-dimensions and at zero temperature. Each
unit cell of the crystal, I, has an atom at the origin of the cell with position RI . There may
also be additional atoms in the unit cell with displacement vectors rc.s.

i relative to RI , where
c.s. denotes the crystal structure under consideration. We consider instantaneously displacing
an atom in the crystal by a small and finite displacement R = (X ,Y,Z). The total potential
energy of the system is given by Ec.s. = ∑I Vc.s.(RI −R), where we sum over all distinct
pairs. The crystal unit cell potential, Vc.s., is a function of atomic potentials, V , such that
Vc.s.(R) = f [V (R)], corresponding to the number of atoms per unit cell. By analyzing the
resulting total potential function we are able to comment on the stability of the system.

Taylor expanding the potential of the system about its equilibrium, we can use the multi-
variate higher-order derivative test to determine the equilibrium’s nature i.e. whether the
equilibrium is stable: a minimum; the equilibrium is unstable: a maximum; or a mixture:
a saddle point (see Appendix D.1). Typically, the crystal stability is discriminated by the
second derivative of the potential, the matrix of force constants, however in this chapter we
generalize this definition to the symmetry-contracted higher-order derivative tensors, which
we refer to as higher-order matrices of force constants (see Appendix D.2)1.

1Note that higher-order (in)stabilities are, in all cases, weaker than at lower orders.
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6.3 Transient Coulomb Model

In the transient Coulomb model, we consider a one-component crystal of Coulomb point
charges of equal sign2. We define the Coulomb potential as V (R) =±|R|−1 corresponding
to repulsive and attractive interactions, respectively3. We test the effect of perturbing a single
point ion on the system, and hence discern the order and magnitude of the instability.

In order to perform the summation over lattice sites in this section, we use a rotationally-
symmetric summation scheme. We start by defining all unit cells with an atom at the origin
and then incrementally add atoms in concentric shells. We compute this summation until
convergence to the desired precision. The full details of the numerical model are discussed
in Appendix D.4.

In Sec. 6.3.1, we begin by analyzing the results, and then subsequently discuss their wider
context in Sec. 6.3.2.

6.3.1 Analysis

For simplicity, we start our analysis by examining the Bravais lattices with only one free
parameter: the lattice constant, a. These Bravais lattices are the: simple cubic (cub), body-
centered cubic (bcc), and face-centered cubic (fcc) structures. Additionally, we study the
diamond (dia) lattice structure, from the fcc family, separately, as it is of special interest due
to its extreme physical properties, such as hardness and thermal conductivity. We also include
the hexagonal close-packed (hcp) and double hexagonal close-packed (dhcp) structures in
our initial analysis, from the hexagonal Bravais lattice family, due their ubiquity in nature
(see Appendix D.3).

The matrices of force constants, minimizing directions, and minimal values for these
crystals are shown in Table 6.1. In this model, the cubic systems (cub, bcc, fcc, dia) have
no harmonic term in their potential energy expansion, which renders the derivative test
inconclusive to this order. The hexagonal systems (hcp, dhcp) have indefinite matrices of
force constants, which implies the system is at a saddle point. We see that the system is
stable to perturbations in the xy-plane, but unstable to perturbations in the z-direction. These
hexagonal systems are most unstable in the ±êz directions, as illustrated in Fig. 6.1a. The
dhcp system is more unstable than the hcp system in this model due to the higher density of
ions.

2Note that in the infinite case, this system is stable by symmetry.
3Throughout this chapter, we use Hartree atomic units (me = e = h̄ = ke = 1).
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crystal ad2Ei-i
dR2 i-im̂2 i-im̂

⊺
2 ·
(

ad2Ei-i
dR2

)
· i-im̂2

cub 0 − 0
bcc 0 − 0
fcc 0 − 0
dia 0 − 0

hcp 0.16

1 0 0
0 1 0
0 0 −2

 ±êz −0.33

dhcp 0.4

1 0 0
0 1 0
0 0 −2

 ±êz −0.8

Table 6.1 Matrices of force constants and minimizing directions for the ion-ion interaction
expansion about equilibrium, at second order, with lattice spacing a. d2E/dR2 is the Hessian;
m̂2 is the normalized eigenvector corresponding to the lowest eigenvalue of the Hessian;
and m̂⊺

2 · (d
2E/dR2) · m̂2 is the projection of the Hessian in the minimizing direction. All

values are given to the precision up to which they have converged, or three significant figures,
whichever is lower.
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Fig. 6.1 Angular variation in the magnitude of the matrices of force constants, at unit radius,
in units of a−1. Plots are shown for the (a) 2nd-order, and (b) 4th-order terms for the hcp
and dhcp crystal structures. Note that the magnitude of the higher-order matrices of force
constants is azimuthally symmetric for these systems. The minimizing directions are recorded
in Tables 6.1 & 6.2.
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ê x
±
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ê y
,±
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(a) (b)

(c) (d)

Fig. 6.2 Angular variation in the magnitude of the 4th-order matrices of force constants, at
unit radius, in units of a−1. Plots are shown for the (a) cub, (b) bcc, (c) fcc, and (d) dia crystal
structures. The minimizing directions are recorded in Table 6.2.
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An analogous table for the 4th-order generalized matrices of force constants is shown in
Table 6.2.4 At this order, the cubic systems do not have vanishing contributions, instead they
demonstrate a 4th-order instability. Note that the form of the higher-order matrices is the
same in each case, with a varying pre-factor. Plots of the angular variation of these 4th-order
matrices are shown in Fig. 6.2. As for the hexagonal systems at second order, the system
is again at a saddle point. In this case, the configuration is stable to perturbations in the
Cartesian basis directions for cub; and in the diagonal directions for bcc, fcc and dia crystals,
and visa versa. For completeness, we show that the 4th-order matrices for the hexagonal
systems are also indefinite. Plots of the angular variation for these systems are shown in
Fig. 6.1b. In the dhcp case, the minimizing directions are again ±êz, whereas for the hcp
system the minimizing directions have now shifted to θ = 0.857,π − 0.857. The angular
variation for the hexagonal systems is rotationally symmetric about the z-axis, since the x
and y eigenvalues are the same. Note that since higher-order (in)stabilities are always weaker
than lower orders, it is unnecessary to examine the higher-order terms for these hexagonal
systems. As seen for the 2nd-order case, the magnitude of the instabilities is determined by
the ion density.

Finally, we extend our analysis to all other Bravais lattice structures in the periodic table
(see Appendix D.3), in terms of the x-direction lattice constant a, and using examples to set
the additional free parameters (see Appendix D.4.3). Table 6.3 shows the eigenvalues of the
matrices of force constants for a selection of elements. We find that for the parameters of all
other elements in the periodic table, a selection of which are shown in Table 6.3, the matrices
of force constants are indefinite and the structures are at saddle points of stability. From
this, we rule out the possibility that the 2nd-order term vanishes simply due to orthogonal
basis vectors and conclude that this observation is unique to cubic systems. For example, the
face-centered orthorhombic (fco) lattice has a 2nd-order term, yet the fcc lattice does not.

The explanation for this phenomenon is due to the Poisson equation ∇2Vc.s. = 0 from
Gauss’ theorem. Cubic systems are the only systems for which the x-, y-, and z-directions
are identical and hence Gauss’ theorem dictates that each component of the matrix of force
constants must be identically zero. For the 4th-order terms, Poisson’s equation now takes
the form ∇2(∇2Vc.s.) = 0 which produces mixed terms on the left-hand side and so the same
argument does not hold.

Note that in this section we have considered a one-component ionic crystal without a
neutralizing background. If a constant neutralizing background were to be introduced, then
this would provide a quadratic restoring potential for the central ion, which would render
the system stable. This would be true even for non-cubic systems, since it can be shown

4Odd power terms in the potential trivially vanish due to symmetry.
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element crystal eigenvalues of a3 d2Ei-i
dR2

B rhom 5.95, −3.65, −2.29
Ga bsco −1.45, 0.809, 0.638
O bscm −21.7, 13.0, 8.70
In bct −0.721, 0.361, 0.361
Pu mono 6.07, −5.55, −0.521
H hex 6.57, −6.28, −0.28
P tri 33.2, −17.3, −15.9
S fco −4.50, 2.77, 1.73

Np orth −6.68, 4.16, 2.52

Table 6.3 Eigenvalues of the matrices of force constants, d2E/dR2, for a selection of elements
with multi-parameter crystal structures in the periodic table, with lattice spacing a. The
Bravais lattices, listed in order of ubiquity, are: simple rhombohedral (rhom), base-centered
orthorhombic (bsco), base-centered monoclinic (bscm), body-centered tetragonal (bct),
simple monoclinic (mono), hexagonal (hex), triclinic (tri), face-centered orthorhombic (fco),
and simple orthorhombic (orth). All values are given for systems summed up to one shell, as
described in Appendix D.4.

that the stabilizing contribution to the matrix of force constants from the constant uniform
background is greater than the destabilizing contribution from the purely repulsive ionic
crystal (see Sec. 6.5 for further analysis).

6.3.2 Discussion

Coulomb crystals are defined by the dominant role of the Coulomb interaction and simple
form of their constituents [280]. In this chapter, we consider a special type of transient
Coulomb crystal, categorized as an unconfined, one-component system with repulsive inter-
actions. However, the study of Coulomb crystals extends beyond this limiting case and has a
history spanning over a century [281]. In this section, we briefly summarize and comment
on the key developments in the field, in order to provide context for our results.

The earliest study of a one-component system was by Madelung in 1918, where he
showed that an infinite array of point charges can form an ordered state [281]. Two decades
later, Wigner predicted, in his seminal paper, that the electron jellium in metals can form a bcc
crystal at sufficiently low densities [282, 283]. The subsequent numerical and experimental
confirmation of Wigner crystals sparked interest in the condensed matter community, and a
plethora of papers on the general theory [284–290] and stability [291–294] of these systems
followed, including detailed quantum Monte Carlo simulations [68, 295–300]. From the
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plasma physics perspective on the other hand, interest in strongly coupled plasmas, i.e. plas-
mas where the average Coulomb energy of a particle is much greater than its average kinetic
energy [301], led to the prediction that three-dimensional, one-component Coulomb plasmas
can also form a bcc crystal at sufficiently high densities and/or low temperatures [302].
It was subsequently realized that these two conclusions could be reconciled as opposite
density limits of the same problem5. All of these models, however, include a homogeneous
positive background of charges to stabilize the system. Indeed, there are two main ways to
stabilize a repulsive Coulomb crystal: using a homogeneous oppositely-charged background,
or confining the system [280].

Work on confined plasmas has been performed in a variety of contexts [301]. Most no-
tably, the structure and Madelung energy [303], as well as the melting of ordered states [304]
in spherical Coulomb crystals has been studied in the last thirty years. These systems can
also be probed and manipulated experimentally using ions confined to Penning [305] or
Paul [306] traps, with motivation provided by the recent discovery of crystalline plasmas
of dust particles in astrophysics [279]; as well as the industrial success of quantum dot
technology [307]. For all of these confined systems, however, the resulting crystal structure
is strongly dependent on the shape of the trap [304]. Therefore, no general statements can be
made about the equilibrium structure.

In this section, we have examined a type of transient “Coulomb exploding" crystal to show
that the cubic structures have the weakest (4th-order) instability in this regime. This result
may accord with the analysis of stable systems in the literature [283, 289, 302], however
further work (in the following sections) is needed to analyze the system’s stability transition.

6.4 Tight-binding Model

In the tight-binding model, we assume a crystal of localized atoms at each site. The elec-
trons are tightly bound to each (point) nucleus with a spherical effective charge density
parameterized by core and valence orbital radii.

In this section, we use the same rotationally-symmetric summation scheme for the crystal
introduced in Sec. 6.3. The full details of the numerical model are discussed in Appendix D.4.

We start by analyzing the model and phase diagram in Sec. 6.3.1, and then discuss the
interpretation in Sec. 6.3.2.

5Additionally, the successful quest to determine the intermediate physics arguably inspired the first
application of importance-sampled diffusion Monte Carlo [68].
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6.4.1 Analysis

In the previous section, we considered crystal lattices composed purely of ions interacting
through a Coulomb potential. We now build on this foundation by introducing electrons. In
the tight-binding limit, the electrons are situated directly on top of the ions, which yields an
infinite crystal of neutral particles and hence zero potential energy. However, in the tight-
binding approximation, we perturb around this limit to investigate the resulting behavior.
For our toy model, we consider ions that have only spherically symmetric (s-type) orbitals,
where the electron density obeys the distribution:

ρE(r;c,ae) ∝
1

1+ exp
(

2(|r|−c)
ae

) .
Here r denotes the displacement of the electron relative to the origin of its associated ion. c
and ae characterize the core and valence orbital radii, respectively. The factor of two ensures
that the associated wave function, defined by ρ = |Ψ|2, reduces to the hydrogenic atom
solution exp(−|r|/ae) in the extreme tight-binding approximation: c ≪ ae ≪ a. We choose
this form of the electron orbital density, as opposed to simpler forms in the literature [299],
because it is analytically well behaved for the required derivation (see Appendix D.5).
Throughout our calculations, we work to leading order in the tight-binding approximation. In
practice, this implies results up to first order in the small parameter (c/ae) and second order
in (ae/a).

We calculate the ion-ion, electron-ion, and electron-electron contributions to the potential
energy based on the electron orbital ansatz up to the approximations detailed above. We sub-
sequently add on the contribution to the energy due to the Pauli repulsion of the overlapping
electron orbitals, evaluated at the optimal effective radius of atoms in a spherical packing.
Finally, we relax the crystal structure to find the optimal lattice constant. We are left with a
total potential energy of the crystal as a function of ae and c. We perform this procedure for
each of the crystal structures in the set {cub,bcc,fcc,dia,hcp,dhcp}. The full details of this
calculation are shown in Appendix D.5.

In Fig. 6.3a, we show the phase diagram of the stable crystal structure with the lowest
energy out of the cub, bcc, fcc, dia, hcp, and dhcp lattices. As can be seen from the diagram,
the hcp, fcc, and bcc structures dominate the plot. Since we are working in the tight-binding
approximation, the region of validity is where c< ae (indicated by the dashed black line in the
diagram). However, we show results for c > ae to gain a broader understanding of the model.
Additionally, we present a higher-resolution close-up of the tricritical point in Fig. 6.3b to
analyze the features of interest. The tricritical point is at (logae, logc) = (−2.69,−2.67) with
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(a)

(b)

Fig. 6.3 (a) Phase diagram of the lowest energy crystal structure out of
{cub,bcc,fcc,dia,hcp,dhcp} at the optimum lattice constant, summed out to five shells. The
black dashed line separates the valid region for the tight-binding model: c < ae. The blue
points, {(4×10−4,10−3),(1.75×10−3,10−3),(8×10−3,10−3)}, are analyzed in Fig. 6.4,
and the red dashed lines, {c = 10−2,c = 10−3}, indicate the cross sections analyzed in
Fig. 6.5. (b) Higher-resolution plot of the region enclosed by the black square in (a), high-
lighting the tricritical point. The diagrams are plotted to a resolution of 1002 points.
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three transition lines: fcc-bcc at logc = logae +0.023; fcc-hcp at logc = 2.5logae +4.07;
and bcc-hcp at logc =−2.67−61.4exp(39.1logae +93.8) in the vicinity of the tricritical
point. Since all phase transitions between allotropes of crystal structures are first order, the
tricritcal point is valid with respect to the vertex rule. Note that other than the restriction
imposed by the tight-binding approximation, in this context c < ae, the phase diagram may
be extended in both directions.

Now that we have constructed the phase diagram, we verify the convergence of our
calculations. Figure 6.4 shows a detailed analysis of the blue points depicted in Fig. 6.3a.
Most importantly, we see from plots of the total energy against number of summed shells, in
Figs. 6.4a, 6.4c, & 6.4e, that convergence is reached at approximately five shells. Since the
energies fluctuate considerably with a small number of shells, summing to the appropriate
number is critical6. Moreover, these plots show that the hcp, bcc, and fcc crystal structures
are grouped with comparable yet noticeably lower total energy than the cub, dia, and dhcp
structures. On average, the {cub,dia,dhcp} energies are larger than the {bcc,fcc,hcp} energies
by factors of 2.37×103, 2.54×103, and 3.45×102, for Figs. 6.4a, 6.4c, & 6.4e, respectively.
For comparison, the corresponding average intra-group total energy differences are smaller
than this by factors of 2.16×105, 2.44×105, and 3.46×105, averaged over both groups. It is
also worth noting that the hcp crystal structure emerges as the lowest energy structure fastest,
after only two shells, compared to the bcc structure (after five shells), and the fcc structure
(after four shells). This is due to the statistical advantage of having a higher number of atoms
in the unit cell. For instance, the dia and dhcp crystal structures also reached convergence
after two shells, owing to the comparatively large number of atoms in their unit cells.

Figures 6.4b, 6.4d, & 6.4f show the breakdown of the contributions to the total energy
at each of these points. From these plots, we can see that the ion-ion and electron-electron
repulsive contributions to the potential are approximately of equal sign and magnitude. Fur-
thermore, these contributions are almost balanced by the electron-ion attractive contribution,
which is of negative sign and approximately twice the magnitude. As we increase the number
of shells, these contributions continue to increase linearly, as expected. The Pauli contribu-
tion to the energy and the total energy, however, reach convergence after about five shells.
Furthermore, we note that the differences between the various energy contributions decrease
as we approach the tight-binding limit and reduce the small parameter (c/ae).

Figure 6.5 shows a detailed analysis of the dashed red cross-sections depicted in Fig. 6.3a.
From these plots we learn how the energy behaves as we vary ae at constant c, while also
passing through the points discussed in the previous section. Most importantly, from the

6After a systematic analysis of data points, we conclude that evaluating the phase diagram at five shells is
the best compromise between accuracy and computational expense.
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Fig. 6.4 Detailed analysis of the blue points depicted in Fig. 6.3a. [(a), (c), (e)] Fractional devi-
ation of the energies from the lowest energy value at eight shells, [E−Ec.s.(n = 8)]/|Ec.s.(n =
8)|, against the number of shells, n. [(b), (d), (f)] Corresponding plots showing the breakdown
of the contributions to the total energy for the most stable crystal structure. The total energy
(‘Total’) is the sum of the ion-ion (‘Eii’), electron-ion (‘Eei’), electron-electron (‘Eee’), and
Pauli repulsion (‘Pauli’) contributions.
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Fig. 6.5 Detailed analysis of the red dashed cross-sections depicted in Fig. 6.3a. (a) Difference
in total energies between the fcc and hcp structures, ∆E = Efcc −Ehcp. (b) Difference in total
energies between the fcc and bcc structures (blue) and between the bcc and hcp structures
(orange). The cross sections are plotted to a resolution of 100 points.

plots of energy differences, in Figs. 6.5a & 6.5b we can identify the three transition lines. In
Fig. 6.5a we can see the fcc-hcp transition at ae = 3.8×10−3; and in Fig. 6.5b we can see
the fcc-bcc transition at ae = 9×10−2, and the bcc-hcp transition at ae = 2.8×10−3. Away
from the phase transition lines, the total energies remain free from fluctuations.

6.4.2 Discussion

In this section, we have progressed from the transient Coulomb model in Sec. 6.3 by adding
electrons to stabilize the system. We increase the effect of the electron orbital gradually using
a tight-binding toy model, so that we recover transient Coulomb physics in the appropriate
limit. Here, we consider an unconfined two-component system [280]: the ionic crystal. As
mentioned in Sec. 6.3.2, one-component repulsive crystals require either a charge neutralizing
background, or a trap, to be stabilized; and in the cases with a charge neutralizing background,
there are parallels between the condensed matter and plasma physics approaches. Here we
consider an unconfined system in the extreme tight-binding limit, and look into results from
the one-component plasma model, as well as the periodic table, to gain further insight.

It has been known for a long time that the ground state of a three-dimensional Coulomb
crystal has a bcc symmetry [302], where the term “Coulomb crystal" in plasma physics
refers to strongly-coupled charged particles with a neutralizing background [280]. In the
extreme tight-binding limit (c< ae, c≪ 1, ae ≪ 1), this is effectively equivalent to the system
presented in Fig. 6.3. The particle interactions are Coulomb-like, since the effect of the well
is still minimal, and the presence of the electrons provides the neutralizing background, albeit
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highly concentrated around the ions. Therefore, we see the same bcc ground state crystal
structure. As soon as we move into the region where c > ae we start to modify the effective
interactive through screening. In this region (c > ae, c ≪ 1, ae ≪ 1), our tight-binding model
breaks down and we effectively observe the behavior of screened Coulomb charges. Indeed,
it has been shown by Hamaguchi et al. [308] that three-dimensional Yukawa crystals have
a fcc and bcc phase. In their paper, they present a phase diagram of the Yukawa crystal
parameterized by the coupling constant, the ratio of the Coulomb potential energy to the
kinetic energy per particle, and the screening parameter, the ratio of the Wigner-Seitz radius
to the Debye length. For large coupling constant, they show that there exist two solid phases
for the Yukawa crystal: bcc at small screening parameter and a transition to fcc when the
screening parameter is increased; which corresponds to moving vertically upwards in our
phase diagram. This recovers the Coulomb results in the literature [302] and also accords
with our toy model.

In addition to these extreme limits, our model provides insight into the transition from
extreme matter to real materials. From Fig. 6.3, we can see that as ae is increased, the hcp
structure is the secondary dominate phase, for both c < ae and c > ae. This shows that
as the valence electron radius is increased and the tight-binding approximation is relaxed,
the crystal lattice begins to favor high symmetry and packing factor. Here the theory
becomes increasingly applicable to the solid state. Not only is the hcp crystal structure
the most common crystal structure in the periodic table (despite not being a Bravais lattice
– see Appendix D.3), it is also particularly common among elements further down in the
periodic table, where the tight-binding approximation holds7, e.g. period 7. Moreover,
the hcp structure has the maximal matrix of force constants out of the systems studied
({cub,bcc,fcc,dia,hcp,dhcp}) according to analytical calculations in the nearly free electron
model (see Sec. 6.5).

6.5 Nearly Free Electron Model

In contrast to the tight-binding model, where the Bohr radii of the atoms are much smaller
than the inter-atomic spacing, we now consider the opposite limit, where the Bohr radii
mostly overlap. In the weak binding, or nearly free electron model, we perform 1st-order
perturbation theory about the jellium model, where the electron density is uniform.

In this section we consider an ideal crystal, which is infinitely periodic in space. The
details of the electron cloud densities in this model are presented in Appendix D.6.

7Further evidence to support this claim is in preparation at the time of writing.
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Fig. 6.6 (a) Three-, (b) two-, and (c) one-dimensional plots of the oscillatory part of the
electron cloud density, ρosc

E (x,y,z) = (cos(kx)+cos(ky)+cos(kz))/3 with k = 2π/a, for the
cub lattice in the nearly free electron model. (a) Color and opacity both denote the magnitude
of ρosc

E (x,y,z). (b) Plot of the meshed cross-section depicted in (a), through the density
extrema. (c) Plot of the meshed cross-section depicted in (b), through the density extrema.
The red points illustrate the positions of the ions.
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crystal ad2Ei-i
dR2 ad2Econst

e-i
dR2 /

(4π

3

)
ad2Eosc

e-i
dR2 /(2(2π)3/2ũ)

cub 0 I I/3
bcc 0 2I I/3
fcc 0 4I I/3
dia 0 8I I/3

hcp 0.16

1 0 0
0 1 0
0 0 −2

 √
2I

1
41

16 0 0
0 16 0
0 0 9


dhcp 0.4

1 0 0
0 1 0
0 0 −2

 2
√

2I
1

697

218 0 0
0 218 0
0 0 261


Table 6.4 Ion-ion and electron-ion contributions to the matrix of force constants in the nearly
free electron model. I and ũ denote the identity matrix and dimensionless oscillation strength,
respectively. The oscillatory electron-electron contribution is zero for all structures, Eosc

e-e = 0.

The nearly free electron model, consists of a lattice of ions with a Coulomb repulsion, as
studied in Sec. 6.3, together with an oscillatory and near-uniform electron cloud density, ρE.
In accordance with 1st-order perturbation theory, this electron cloud density may be split into
two parts, ρE = ρconst

E +ρosc
E , with ρconst

E corresponding to the uniform jellium-like density,
and ρosc

E corresponding to the oscillatory density reflecting the geometry of the ionic lattice.
An example of the oscillatory electron cloud density for the cub lattice is shown in Fig. 6.6.
In each case, we ensure that the range is normalized such that max(ρosc

E ) = u, where u is the
oscillation strength, and that the integral of ρosc

E over a unit cell is equal to zero.
In order to calculate the total matrix of force constants in the nearly free electron model,

we proceed as before by summing the ion-ion, electron-ion, and electron-electron contribu-
tions. For the ion-ion contribution, we take results directly from Sec. 6.3. Note that when
performing the summation over shells for the ion-ion contribution, the 0th-order contribution
to the energy is divergent, whereas the matrix of constants converged to the results presented
in Table 6.1. In fact, there will be divergent 0th-order contributions for the electron-ion and
electron-electron contributions too, corresponding to the jellium-like term in the electron
density. These divergent terms cancel in this limit, similar to the observation in Sec. 6.4.

The constant electron-ion contribution to the matrix of force constants is given by
the Poisson equation for electrostatics: d2Econst

e-i
dR2 = 4π

3 ρconst
E I. The neutralizing background

stabilizes any crystal and its contribution is summarized in Table 6.4.
The oscillatory electron-ion contribution, Ee-i(R) =−2∑I

´
Vi(RI −R+ re)ρ

osc
E (re)dre,

may be simplified by choosing an ion at the origin and noting that all ions are indistinguish-
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able. Subsequently calculating the energy per atom allows us to drop the summation and
write

Eosc
e-i (R) =−2

ˆ
Vi(−R+ re)ρ

osc
E (re)dre, (6.1)

where Vi is given by the Coulomb potential and the oscillatory part of the electron density is
approximated by a cosine function (see Appendix D.6).

Finally, for the electron-electron contribution, Ee-e = ∑I
˜

Ve(RI − re − r)ρE(re)ρE(r)
dre dr, we may drop the summation by the same argument. Note also that in the nearly free
electron model the electron potential does not depend on the displacement of the central
atom. Hence, excluding the 0th-order term and working to 1st-order in u, we may write the
oscillatory contribution to the electron-electron energy as

Eosc
e-e = 2ρ

const
E

ˆ
re∈unit

cell

ˆ
r∈R3

Ve(re − r)ρosc
E (r)drdre, (6.2)

where the factor of two appears from the addition of both cross terms, and Ve is again given
by the Coulomb potential. The summation of the leading (non-zeroth) order terms from
Sec. 6.3, Eq. 6.1, and Eq. 6.2 yields the total matrix of force constants and hence, a stability
discriminant.

As an example, we consider the cub lattice with the oscillatory electron density shown in
Fig. 6.6. Summing over electron-ion interactions, we find that

Eosc
e-i
u

=−2
3

ˆ
coskx+ cosky+ coskz√

(x−X)2 +(y−Y )2 +(z−Z)2
dxdydz.

for an ion displaced from the origin to position (X ,Y,Z), where k = 2π/a. In Fourier space,
this expression reduces to

Eosc
e-i
u

=−2
ˆ

eiqxX+iqyY+iqzZ

q2
x +q2

y +q2
z

dqx dqy dqz ∑
α=x,y,z

√
π

2
(δ (q− kêα)+δ (q+ kêα))

by Parseval’s theorem, which ultimately yields

Eosc
e-i
u

=−4
√

2π3/2

3k2 (coskX + coskY + coskZ)

∼ 2
3

√
2π

3/2 (X2 +Y 2 +Z2) ,
where the approximation is up to a constant and second order in small displacement, R. Since
cub crystal lattices have no contribution at second order from the ion-ion term (see Table 6.1)
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and only have a constant contribution from the electron-electron term, we conclude that these
systems are stable at second order in the nearly free electron model.

This example calculation is similarly extended to other crystal structures, as shown in
Table 6.4. Since the oscillatory electron-electron contribution in Eq. 6.2 integrates to zero for
all crystal structures, this table gives the complete information for the total matrices of force
constants. We note that all of the electron-ion contributions are positive at this order. We
can see that the cubic structures have isotropic matrices, whereas the hexagonal structures
are only isotropic in the xy-plane, as expected by symmetry. Out of the crystals considered,
hcp has the largest eigenvalue which implies that it is the most stable in this regime, when
the oscillation strength is sufficiently large. This result accords with the secondary dominant
phase observed in Sec. 6.4, as the opposing models agree in the far limits.

In this section, we have shown that all ionic crystals are stabilized with the addition
of constant neutralizing background, and that a 1st-order oscillatory component to the
background does not destabilize the system.

6.6 Conclusion

In this chapter, we have analyzed the lattice stability for unconfined crystal structures at zero
temperature in the transient Coulomb, tight-binding, and nearly free electron models. We
focused on the {cub,bcc,fcc,dia,hcp,dhcp} structures due to their prevalence in nature and
distinctive properties.

In Sec. 6.3, we studied a transient one-component system of point Coulomb charges. We
found that in this regime, cubic crystal structures have an instability at fourth order, whereas
all other crystal structures have an instability at second order. We reviewed the history of the
field, and noted that the bcc structure is special for being the stable crystal structure for both
the low density Wigner crystal and the high density Coulomb crystal in the one-component
plasma model. These findings motivated us to examine the preferred structure as we stabilize
the system.

In Sec. 6.4, we stabilized the system through the addition of electron orbitals. For this,
we constructed a tight-binding toy model, and introduced the electron orbitals to leading
order around the tight-binding limit. We found that in the extreme tight-binding limit, the bcc
structure is the most stable, as suspected from the results and discussion in Sec. 6.3. We also
showed that if we tune the parameters to increase screening in our pseudopotential model
of the nucleus, the fcc structure shows signs of stabilization with a lower energy. This is in
agreement with theoretical studies of unconfined three-dimensional Yukawa crystals in the
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literature. Finally, we report the second dominant phase to be hcp as we tune away from
tight-binding, which accords to trends in the periodic table.

In Sec. 6.5, we briefly examined the stability of crystal structures in the opposite limit,
nearly free electrons, which is representative of most common metals. In this model, we found
that every crystal structure is stabilized with the addition of constant neutralized background,
and that a 1st-order oscillatory perturbation to the background does not destabilize the system.
The hcp structure showed the strongest stability, with respect to its matrix of force constants.
This result is in agreement with the secondary phase shown in Sec. 6.4.

The work presented in this chapter is, in all sections, based on simplified theoretical
models of matter. For real materials, there are a plethora of important effects which need to
be taken into consideration to determine the optimal lattice structure e.g. the shape of the
atomic orbitals, or the nature of the bonding. However, we have identified here the simplest
models to illustrate some of the interesting physical effects at play. We hope that this more
detailed look at the stability of three classes of toy model will instill a greater appreciation
and understanding of the requirements for crystal stability, as well as their connection with
lattice geometry.



Chapter 7

Conclusion

In this thesis, we have presented research in the fields of topological phases of matter,
quantum Monte Carlo, and crystal structure. In Chapters 2 and 3, we reviewed the literature
in these fields and set the scene for modern research. In Chapter 4, we studied the stability
of fractional Chern insulators in higher Chern bands of the Hofstadter model. We showed
that stable fractional Chern insulators exist in bands |C|> 1 for not only r = 1 composite
fermion states but also r =−1, we presented potential evidence for stability at |r| ≠ 1, and we
analyzed the unexpected features of these exotic states. In Chapter 5, we presented a method
for evaluating the matrix of force constants directly in quantum Monte Carlo and showed how
this could be used to outperform the accuracy of existing computational methods. We verified
the algorithm by stabilizing simple molecules to report their equilibrium bond lengths and
eigenfrequencies. Finally, in Chapter 6, we found that cubic crystal structures have a zero
2nd-order matrix of force constants for purely ionic crystals with Coulomb interactions, and
we commented on the implications of this result for the tight-binding and nearly free electron
models. This observation allowed us revisit the current understanding of solid-state structure
with new insight.

This thesis is the result of three years and three months of full-time postgraduate study un-
der the supervision of Dr Gunnar Möller and Dr Gareth Conduit. During this time, the results
and novel understanding of these topics has been disseminated at international conferences,
workshops and seminars. Chapter 4 has been published in Physical Review B, Chapter 5
has been published in The Journal of Chemical Physics, and Chapter 6 is in preparation
for submission. In this work, we have contributed to the field by computationally verifying
the latest theories, enhancing state-of-the-art algorithms, and providing new perspectives on
well-established knowledge.

The three areas of research presented in this thesis are vast, and usually distinct, and so
the full details of each are beyond the scope of this work. However, we have showcased some
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of the advancements in these fields, as well as the potential for unifying certain concepts.
Future work in these areas could include: revisiting the simulations in Chapter 4 using
the density matrix renormalization group; extending the algorithm in Chapter 5 to include
the Pulay contribution; and constructing more detailed models of the atom in Chapter 6 to
reach broader conclusions on the periodic table. In the long term, these techniques could
be combined in the form of quantum Monte Carlo studies of the Hofstadter model, or the
realization of three-dimensional fractional Chern insulators. The potential for future work
in these fields in general, however, is practically limitless, and it will be exciting to see the
developments that the next decade will bring.



Appendix A

Topological States of Matter

A.1 Classical Hall Effect

This section is based on the books by Mahan [125], Whelan & Hodgson [309], Janßen et
al. [106], Phillips [108], and the notes by Tong [103]. The original paper is by Hall [98].

The equation of motion for an electron of mass me, charge −e, and velocity v, in a
magnetic field B is

mev̇ =−ev×B. (A.1)

This equation may be solved to show that the electron moves in a circular trajectory with
characteristic cyclotron frequency

ωB ≡ eB
me

.

The equation of motion for the same electron in a two-dimensional sample with a
longitudinal electric field E is

mev̇ =−eE− mev
τ

, (A.2)

where the Drude model of charge transport assumes that electrons collide elastically with an
average scattering time τ . In this model, the current density is

J =−neev,

where ne is the electron density. Hence, in equilibrium, Eq. A.2 takes the form of Ohm’s law

J = σDCE with σDC ≡ nee2τ

me
.
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Combining models A.1 & A.2, the equation of motion for electrons confined to a two-
dimensional sample in a perpendicular magnetic field is

mev̇ =−eE− ev×B− mev
τ

. (A.3)

Considering an electron confined to the xy-plane, with a current flowing in the x-direction
and a perpendicular magnetic field in the z-direction, Eq. A.3 may be rearranged in the form
of Ohm’s law; with conductivity and resistivity tensors:

σ =
σDC

1+ω2
Bτ2

(
1 −ωBτ

ωBτ 1

)
and ρ =

1
σDC

(
1 ωBτ

−ωBτ 1

)
.

Note that:

1. ρxy ̸∝ τ ⇒ transverse resistivity is a fundamental material property.

2. Rxy ≡Vy/Ix =−ρxy ⇒ we can measure transverse resistivity directly.

From the resistivity tensor, we deduce that

ρxx =
me

nee2τ
= const.,

ρxy = RHB ∝ B,

where the Hall coefficient is defined as

RH ≡
ρxy

B
=

1
nee

.

RH is completely independent of the sample geometry. Hence, the transverse resistivity in the
classical Hall effect is directly proportional to the magnetic field strength. The longitudinal
resistivity is trivially constant.
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A.2 Anyons

This section is based on the review by Nayak [139] and the notes by Tong [103]. The original
papers are by Leinaas & Myrheim [310] and Wilczek [311].

Consider two indistinguishable particles with wave function ψ(r1,r2). Since the particles
are indistinguishable, we demand upon exchange

ψ(r1,r2) = eiπαsψ(r2,r1).

In three or more dimensions, exchanging the particles twice is equivalent to the identity and
so

e2πiαs = 1. (A.4)

This implies that

αs =

0 for bosons,

1 for fermions.

For this many dimensions, the particles’ space-time trajectories may be continuously con-
nected to their original world-lines. Hence, switching the particles twice corresponds to the
identity transformation. In two dimensions, this is not the case.

In two dimensions, the particles’ world-lines braid around each other as they are ex-
changed. Hence, their space-time trajectories cannot be continuously connected to their
original world-lines. Consequently, in two-dimensions, any value of αs is permitted in
Eq. A.4, and so we postulate the existence of anyons.

Mathematically, in d ≥ 3 dimensions, particle exchange is represented by the permutation
group, whereas in d = 2 dimensions, it is represented by the braid group. As particles are
exchanged in two dimensions, their world-lines make braids which are only distinguished
by their topological class. All elements of the braid group Bn may be generated by the set
of operations {R1, . . . ,Rn−1}, where Ri is the anticlockwise exchange of the ith and (i+1)th

particle. Hence, it may be shown that

RiR j = R jRi, |i− j| ≥ 3,

RiRi+1Ri = Ri+1RiRi+1, i = 1, . . . ,n−1.

In terms of the original problem of particle exchange, in two dimensions, the unitary exchange
operator in Hilbert space forms a one-dimensional representation of the braid group, with
Ri = eiπαs,i . The particles whose exchange may be represented using the one-dimensional
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braid group are known as Abelian anyons, whereas particles whose exchange is represented
by higher-dimensional braid groups are known as non-Abelian anyons.



Appendix B

Stability of Fractional Chern Insulators
in the Effective Continuum Limit of
Harper-Hofstadter Bands with Chern
Number |C|> 1

B.1 Periodic Landau Gauge Vector Potential for Rectan-
gular Lattices

Consider a general rectangular lattice with lx = lxêx and ly = lyêy. In this basis, the absolute
position vector may be written as

r =

(
x
y

)
= ξxlx +ξyly

with ξx = x/lx and ξy = y/ly. Following from Hasegawa & Kohmoto [201], we know that
the periodic Landau gauge phase is given as

χ(r) =−SB⌊ξx⌋ξy,

where S = |lx × ly|= lxly. Hence, the phase may be written as

χ(r) =−Blxy
⌊

x
lx

⌋
. (B.1)
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Ultimately, we would like to calculate the periodic Landau gauge vector potential for rectan-
gular lattices A(p,rect), which may be expressed in terms of the Landau gauge vector potential
A(L,rect) for rectangular lattices as

A(p,rect) = A(L,rect) +∇χ(r). (B.2)

From Eq. B.1, we may write

∇χ(r) =−B

y∑
n=∞
n=−∞ δ (x/lx −n+ ε)

⌊x/lx⌋
0

 , (B.3)

where ε is an infinitesimal, added to avoid an ambiguity of the phase factor at lattice site
positions. Now, given that the Landau gauge vector potential for rectangular lattices is

A(L,rect) =
SB
2π

ξxFy, (B.4)

where

Fy ≡ 2π

(
êz × lx

(lx × ly) · êz

)
=

2π

ly
ey,

we may substitute Eqs. B.4 & B.3 into Eq. B.2, which yields

A(p,rect) = B

−y∑
n=∞
n=−∞ δ (x/lx −n+ ε)

x−⌊x/lx⌋
0

 .

Note that this potential reproduces the same discrete implementation of the finite-size Harper-
Hofstadter Hamiltonian (Eq. 4.1), as would be obtained by applying the magnetic translation
algebra with a basis of {TM(lx),TM(ly)} (see, e.g., the supplementary material of Ref.163).

B.2 Periodic Landau Gauge Transform in Fourier Space

As a gauge transform of the electromagnetic vector potential A(r) → A(r)+∇χ(r) acts
multiplicatively on the wave function in position space via ψ(r)→ exp[iχ(r)]ψ(r), its action
in reciprocal space takes the form of a convolution with the gauge function. Let us therefore
consider the Fourier transform of the gauge transforms between a periodic Landau gauge
with respect to the standard Landau gauge to establish how momenta are transformed.



B.2 Periodic Landau Gauge Transform in Fourier Space 143

Consider a system with a total of NxNy sites, q = lxly sites in each MUC, and LxLy MUCs
in the system. Let the system be pierced with a perpendicular magnetic field B = 2πnφ êz,
where the lattice constant is set to one and sites in the MUC are labeled with a sublattice
index α = 0, . . . ,(q−1). In the Landau gauge, the MUC is naturally q×1. To realize this
gauge in a finite-size geometry, we require Nx mod q = 0, and hence we obtain momenta
k(L)x = 2πn(L)/Nx, with n(L) = 0, . . . ,Nx/q−1 and k(L)y = 2πm(L)/Ny, with m(L) = 0, . . . ,Ny.
By contrast, the set of allowed momentum vectors in the periodic gauge are

{k(p)}=
{(

2π

Nx
n,

2π

Ny
m
)}

,

with momentum indices n = 0, . . . ,Lx − 1 and m = 0, . . . ,Ly − 1. The resulting Brillouin
zones (BZ) have different shapes, with the BZ for the Landau gauge spanning a narrow tall
rectangle k ∈ [−π/q,π/q]× [−π,π], whereas the periodic gauge yields a wider and shorter
BZ geometry.

The absolute position vector rstα = Rst +ρα may be written as

rstα = slxêx + tlyêy +ρα ,

with spatial indices s = 0, . . . ,Lx − 1 and t = 0, . . . ,Ly − 1, and corresponding sublattice
vectors

ρα =

(
α mod lx
⌊α/lx⌋

)
.

The magnetic field may be written as B = ∇×A, with a vector potential in the Landau gauge

A(L) = Bxêy

that is independent of y. Other vector potentials may be obtained via a gauge transformation

A → A+∇χ(r).

To ensure gauge periodicity, we take

χ(r) =−B⌊x⌋y,

which, with an arbitrary rectangular lattice basis {lxêx, lyêy}, becomes

χ(r) =−Blx⌊x/lx⌋y,
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as discussed by Hasegawa & Kohmoto [201]. We are interested in transforming to some
arbitrary periodic Landau gauge, such that

ψ
(p) = Gαψ

(L),

where the gauge factor Gα ≡ eiχ . In Fourier space, this may be written as

ψ̂
(p) = Ĝα ∗ ψ̂

(L,p), (B.5)

where ∗ denotes the convolution, and ψ̂(L,p) indicates the wave function in the original
Landau gauge Fourier transformed with respect to the BZ of the periodic gauge. Specifically,
the Fourier transform with respect to the MUC in periodic gauge is defined as

f̂ (x,y) =
Lx−1

∑
s=0

Ly−1

∑
t=0

e−ik(p)·rstα f (x,y),

where f (x,y) is an arbitrary function of x- and y-positions. The corresponding Fourier
transform of the Landau gauge wave function in Eq. B.5 is of a general form, with functions
given by solutions to the Harper equation. However, the Fourier transform of the gauge factor
is analytically calculable, and we proceed by evaluating it here.

Noting that ⌊
slx +α mod lx

lx

⌋
= s,

and taking out constant factors, we find that

Ĝα = e−ik(p)·ρα ∑
s,t

(
e−iBq

)st
(

e−i(k(p)x lx+Blx⌊α/lx⌋)
)s(

e−ik(p)y ly
)t

.

Since B = 2πnφ = 2π p/q, ∀p ∈ Z, we make the simplification(
e−iBq

)st
= 1,

which allows us to separate the summation, such that

Ĝα = e−ik(p)·ρα

Lx−1

∑
s=0

(
e−i(k(p)x lx+Blx⌊α/lx⌋)

)s Ly−1

∑
t=0

(
e−ik(p)y ly

)t

.
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Since k(p)y = 2πm/lyLy for m = 0, . . . ,Ly −1, we deduce that

Ly−1

∑
t=0

(
e−ik(p)y ly

)t

= Lyδ
k(p)y ,0

.

Hence, our expression reduces to

Ĝα(k(p)) = Lye−ik(p)x (α mod lx)
Lx−1

∑
s=0

e−i 2π

ly (lyn+pLx⌊α/lx⌋) s
Lx δ

k(p)y ,0
.

Furthermore, since the total number sites in the x-direction is necessarily a multiple of q, it
follows that Lx ∝ ly in all cases. This allows us to make the simplification

Ĝα(k(p)) = LxLy exp
{
−ik(p)x (α mod lx)

}
δ

k(p)x Nx/2π+pκ⌊α/lx⌋,0
δ

k(p)y ,0
, (B.6)

where κ is the constant of proportionality such that Lx = κly. Hence, the gauge factor may
be explicitly expressed as a function of periodic gauge momentum in the x-direction. The
ky dependence in ψ̂(p) comes solely from ψ̂(L,p). Consequently, the ky momentum in the
periodic gauge equals the original ky momentum in the Landau gauge modulo 2π/ly, while
the transformation on the kx dependence is non-trivial as ensues from Eq. B.6.

B.3 Scaling to the Continuum Limit at Fixed Flux Density

To cross-validate our scaling to the effective continuum at fixed aspect ratio, we additionally
perform scaling for select cases at fixed flux density, nφ .

In this procedure, we select a set of q values approximately geometrically distributed
with common ratio 2, in the range 10 ≲ q ≲ 103. This provides a spread of q values which
reflects the distribution used in the scaling at fixed aspect ratio.1 q defines the number of sites
in each MUC, lxly, which we factorize into all distinct pairs of factors. For each q value, we
study N values in the range Nmin ≲ N ≲ Nmax, where Nmin and Nmax are the minimum and
maximum number of particles studied in the fixed aspect ratio scaling. Here N/ν defines the
total number of MUCs in the system, LxLy, which we also factorize into all distinct pairs of
factors. At this point, for each q,N configuration, we select the (lx, ly) and (Lx,Ly) pairs so
as to minimize the deviation from a square system, ε . This minimization is performed only

1Furthermore, q values with multiple factors are preferred during the selection process, and prime q
immediately rejected, so as to maximize the chances of approximately square configurations for comparison.
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as a subsidiary constraint to improve the comparison with the fixed aspect ratio scaling in the
bulk of the chapter. In practice, ε may be as high as 50% for this scaling procedure.

To illustrate the mutual consistency of the scaling at fixed flux density (limq,N→∞) and
the scaling at fixed aspect ratio (limN,q→∞), we provide data on the r = 1 Laughlin states,
for both bosons (Fig. B.1a) and fermions (Fig. B.1b) in a |C| = 1 band. Here, we find
extrapolated values of limq,N→∞(q∆) = 0.62±(7.0×10−4) for bosons and limq,N→∞(q2∆) =

2.56± (7.2× 10−3) for fermions, which is in close agreement with Sec. 4.3.1. We also
examine the scaling at finite flux density for more fragile states in higher Chern number
bands. Generally in these cases, we find that the effective continuum limit at constant aspect
ratio provides a much smoother extrapolation that minimizes finite-size effects. Examples
are shown in Fig. B.2.

B.4 Derivation of the Correlation Function

The two-particle correlation function may be written as the expectation value of the density
operator, ρ , of a particle at site i with the density operator of a particle at site j:

⟨ρiρ j⟩= ⟨c†
i cic

†
jc j⟩ ,

where c†, c are the creation and annihilation operators, respectively. We may normal order
the expression such that, for bosons or fermions,

⟨:ρiρ j:⟩= ⟨c†
i c†

jc jci + c†
i ciδi j⟩ .

From here, we substitute in the expression for the Fourier transform with respect to absolute
position

cr =
1√
Nc

∑
n,k

un,α(k)eik·rcn,k,

where Nc is the number of MUCs, n is the band index, α is the sublattice index corresponding
to position r, and k is the momentum. This substitution yields

⟨:ρiρ j:⟩=
1

N2
c

∑
{n},{k}

u∗n1,αi
(k1)u∗n2,α j

(k2)un3,α j(k3)un4,αi(k4)ei(−k1·ri−k2·r j+k3·r j+k4·ri)

⟨c†
n1,k1

c†
n2,k2

cn3,k3cn4,k4⟩+
1

Nc
∑

n1,n4
k1,k4

u∗n1,αi
(k1)un4,αi(k4)ei(−k1·ri+k4·ri) ⟨c†

n1,k1
cn4,k4⟩δi j.
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Fig. B.1 Finite-size scaling of the gap at fixed flux density. We show the finite-size gaps for
flux densities nφ = p/q with increasing values of denominator q given by the color scale as a
function of the inverse system size for (a) the bosonic ν = 1/2 states, and (b) the fermionic
ν = 1/3 states, in the |C|= 1 band. The extrapolations to the thermodynamic limit excludes
outliers at small system sizes, i.e. excluding N = 4 in panel (a) and N = 4,5,6 in panel (b).
The corresponding plots for the thermodynamic extrapolated gaps, for each finite q, are inset.
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Fig. B.2 Finite-size scaling of the gap in the C = 2 band for (a) bosonic states, where
squares, circles, and triangles denote states with {r =−3,N = 9;r = 2,N = 8;r = 3,N = 6},
respectively; and (b) fermionic states with {r = −1,N = 6}. The filled (hollow) symbols
correspond to scaling with fixed aspect ratio (flux density). The linear trend-lines are shown
for the scaling with fixed aspect ratio.

Introducing the single-particle wave function, φn,k(ri)= un,αi(k)eik·ri , this expression reduces
to

⟨:ρiρ j:⟩=
1

N2
c

∑
{n},{k}

φ
∗
n1,k1

(ri)φ
∗
n2,k2

(r j)φn3,k3(r j)φn4,k4(ri)⟨c†
n1,k1

c†
n2,k2

cn3,k3cn4,k4⟩

+
1

Nc
∑

n1,n4
k1,k4

φ
∗
n1,k1

(ri)φn4,k4(ri)⟨c†
n1,k1

cn4,k4⟩︸ ︷︷ ︸
∝δk1,k4

δi j.

Because of the proportionality relation of the density expectation value, the last sum reduces
to a sum over a single momentum.

B.5 Accuracy of Correlation Functions

In order to verify the accuracy of the density-density correlation functions used in this project,
we compare the correlation for the robust six-particle ν = 1/2 state with the exact continuum
result for a torus, shown in Fig. B.3. The derivation of the lattice correlation function in
terms of single-particle eigenstates is shown in Appendix B.4, and the exact form of the
correlation function on the continuum torus is discussed in many sources, for example, by
Yoshioka et al. [312]. Note the slight deviation of the lattice result from the exact solution.
Figures B.3a & B.3c show plots of the density-density correlation function with p = 71 and
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Fig. B.3 [(a), (c)] Two-particle correlation function for the bosonic six-particle ν = 1/2
(Laughlin) state in the |C|= 1 band and (kx,ky) = (0,0) momentum sector, with (a) p = 74,
and (c) p = 971. The lattice result is additionally projected to the base, and the exact
continuum solution is plotted for comparison. [(b), (d)] Variance between the continuum and
lattice results, with (b) p = 74, and (d) p = 971. The average is taken with respect to the
points enclosed in origin-centric annuli of width 1.5a, where a is the lattice spacing.
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Fig. B.4 (a) Absolute deviation from the exact continuum torus solution and (b) asymmetry
in the two-particle correlation function for the bosonic eight-particle ν = 1/2 (Laughlin)
state in the |C|= 1 band and (kx,ky) = (0,0) momentum sector, with Lx = Ly = 4. A y = 0
cross section is rescaled such that x̃ = x/Nx.

p = 971, respectively, whereas Figs. B.3b & B.3d show the corresponding variance between
the continuum and lattice results. We observe an agreement at the zero-separation correlation
hole which oscillates with distance (note the small scale of the variance in Figs. B.3b & B.3d).
Because of the lack of scaling with radius, this discrepancy is attributed to computational
imprecision of the single-particle eigenvectors, which we obtain with standard diagonalization
routines of the LAPACK library.

The same analysis is performed for the robust eight-particle state in the same Laughlin
series. The asymmetry of the lattice results as well as their deviation from the continuum
is shown in Fig. B.4. Since the continuum torus correlation function is symmetric by
construction, we confirm that the lattice results obey the fundamental symmetry also, up to
the scale of Fig. B.4a. In Fig. B.4b, we explicitly plot the asymmetry in the lattice results
(note the small scale of the plot). The fact that we do not find a monotonic behavior of the
asymmetry with p, supporting the view that the deviations are due to the numerical accuracy
of the single-particle eigenstates.

B.6 Error Analysis

In order to obtain the thermodynamic (effective) continuum limit, we linearly extrapolated
the data for the q(2)∆ vs 1/q and q(2)∆ vs 1/N plots. To determine this scaling, we rejected
low-q/-N outliers and focused only on high-q/-N data points, since they are closer to the mode
and also the limit of the distribution. As illustrated in the above discussion, occasionally data
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for the limit is not precise. We define error bars relative to the linear trend-line. For most
cases, this is the asymptotic standard error for the y-intercept fit parameter of a standard
linear regression in N−1. However, for |C|> 1 in the q → ∞ limit, the error bars were read
off on a case-by-case basis, by inspection, since they were often asymmetric and larger than
the asymptotic standard error estimate.





Appendix C

Direct Evaluation of the Force Constant
Matrix in Quantum Monte Carlo

C.1 Atomic Relaxation Calculation

In this section, we describe in detail how the configuration coordinates are adjusted on each
step during the atomic relaxation process.

Let us define the atomic displacement on each Monte Carlo step as

∆R = ∆Re +∆Rt +∆Rr,

where ∆Re is the energy-minimizing term, ∆Rt is the correction for global translations, and
∆Rr is the correction for global rotations. We adjust the atomic displacements from R to
R+∆R on each step, so as to minimize the total energy of the system. Once the equilibrium
is reached, the anharmonic correction is applied.

C.1.1 Minimizing the energy

Consider a system of Nn atoms in three dimensions. Taylor expanding the total energy of the
system as a function of atomic displacements, up to quadratic order, yields

E = E0 +
Nn

∑
I=1

dE
dRI

∆RI +
1
2 ∑

IJ

d2E
dRIdRJ

∆RI∆RJ,
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where E0 is a constant. Demanding that the sum of the 1st- and 2nd-order terms in the energy
are zero at the minimum, gives [

1
2

∆R⊺M+∇RE
]
·∆R = 0,

which, excluding the trivial solution, implies

∆Re =−2M−1
∇RE,

where M is the matrix of force constants, and ∇RE is the multi-atom energy gradient with
respect to the configuration atomic-displacement vector, R. This is the bare estimate for the
atomic-displacement correction, up to second order in the energy.

C.1.2 Correction for global translations

In order to ensure that the origin of our configuration is fixed and that we have no global
translational mode, we explicitly subtract the center of mass motion of the configuration.

Given Nn atoms, each with mass mI , this implies that the global translation correction
term is

∆Rt =−∑I mIRI

∑I mI
.

This term is particularly important for non-symmetric molecules, such as hydrogen chloride
in Sec. 5.4.2.

C.1.3 Correction for global rotations

Similarly, to ensure that the bond length corrections do not result in a rotation of the
configuration, or atomic pair rotations, we explicitly subtract global rotational modes.

The law of moments states that the total moment about the center of mass of any atomic
pair, as well as the total moment about the origin of the configuration, is zero, which gives

∑I mIbI = 0 and ∑I mIRI = 0, where b is the half-bond length between an atomic pair.
Together, these relations imply

∑
I

mIRI × (bI −RI ×θ) = 0, (C.1)

where br,I ≡ bI −RI ×θ is the corrected half-bond length to be found. Hence, an expression
for the angular displacement of the molecule θ I ≡ (θxI,θyI,θzI) is needed. Using the vector
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triple product identity, we find that Eq. C.1 reduces to

∑
I

mIRI ×bI = ∑
I
[mIRI(RI ·θ)−mIθ(RI ·RI)] ,

which after rearrangement becomes

∑
I

mI

RyIbzI −RzIbyI

RzIbxI −RxIbzI

RxIbyI −RyIbxI


︸ ︷︷ ︸

a

= ∑
I

mI

−R2
yI −R2

zI RyIRxI RzIRxI

RxIRyI −R2
xI −R2

zI RzIRyI

RxIRzI RyIRzI −R2
xI −R2

yI


︸ ︷︷ ︸

B

θx

θy

θz

 .

This implies that the atomic displacement correction for global rotations, is

∆Rr,I =−RI ×θ ,

where θ = B−1a.

C.1.4 Correction for anharmonicity

Up to this point in the analysis, we have assumed that the interaction between atomic pairs
is harmonic. Although this is a valid approximation at short distances, at larger distances
this approximation breaks down and so a correction term is necessary. One of the most
well-studied models used to capture anharmonicity in the interaction between diatomic
molecules is the Morse Hamiltonian, which we use as an approximation for our case studies.
The Morse Hamiltonian is given by

Ĥ =
p̂2

2µ
+V̂

with a Morse potential
V̂ =V (x) = D[1− e−αx]2, (C.2)

where D is the x = x0 energy-minimum depth relative to the dissociation limit at x → ∞, and
α determines the curvature of the potential [313].

The eigenvalues of the Morse Hamiltonian are

En = h̄ω0

[(
n+

1
2

)
− xe

(
n+

1
2

)2
]
,
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where ω0 ≡
√

2Dα2/µ is the fundamental frequency, xe ≡ h̄ω0/4D is the anharmonic
constant, and n ∈ Z+ is the principal quantum number.

Note that the minima of the harmonic and Morse potentials are the same. However, due
to the dissociative limit of the Morse potential, the expectation value of position is shifted in
the positive x-direction in the Morse case. One of the main advantages of this model is that
the majority of its properties can be expressed analytically.

By setting D ≡ h̄2
α2

2µ
(N +1/2)2, the Morse Hamiltonian may be written as

Ĥ =− h̄2

2µ

∂ 2

∂x2 +
h̄2

α2

2µ

(
N +

1
2

)2

(e−2x −2e−x)

up to a constant term. The expectation value of position with respect to the ground-state
Morse wave function is then

⟨0|x̂|0⟩= ln(2N +1)−ψ(2N)

α
,

where ψ is the digamma function [314]. Expanding the expectation value of position gives

⟨0|x̂|0⟩= 3
2

√
h̄xe

2µω0

up to leading order in xe. This is the shift in the equilibrium bond length due to the
anharmonicity of the Morse potential.

In order to evaluate this shift, an estimate for the anharmonic constant is needed. Expand-
ing the Morse potential (Eq. C.2) about the equilibrium displacement x = x0 in powers of x,
we find that

V (x) =
1
2

µω
2
0 x2 +

√
µ3xeω5

0
2h̄

x3 + . . .

up to a constant term. Comparing quadratic and cubic terms in x with the general form of the
Taylor expansion, and solving simultaneously, yields

xe =
h̄

18
√

µ

(
d3V
dx3

∣∣∣∣
x0

)2(
d2V
dx2

∣∣∣∣
x0

)−5/2

.

Conventionally, the third derivative of the energy is extracted from the curvature of the force,
however now utilizing the new information available, we extract the anharmonic constant
directly from the gradient of the force constant.
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C.2 Vibrational Modes Calculation

In this section, we describe in detail the methods used to determine the vibrational modes
and frequencies of atomic configurations, as well as their associated statistical uncertainties.

C.2.1 Exisiting computational approaches

In order to calculate an estimate for the frequency using the RHF and DFT methods, we use
the default scheme, PBE and B3LYP exchange-correlation functionals, respectively, within
the CRYSTAL program [58].

C.2.2 Matrix of force constants approach

The direct method to obtain the vibrational frequencies of a molecule is from an exact
diagonalization of the matrix of force constants. Consider, for example, a diatomic molecule
in one dimension, such as the hydrogen molecule discussed in Sec. 5.4.1. The matrix of force
constants for this system may be written as

M =

 d2E
dR2

1

d2E
dR1dR2

d2E
dR2dR1

d2E
dR2

2

 . (C.3)

By exactly diagonalizing the matrix, we obtain the eigenmodes, and eigenfrequencies of the
system given by

ω
2 =

1
2

(
d2E
dR2

1
+

d2E
dR2

2

)
±

√
1
4

(
d2E
dR2

1
− d2E

dR2
2

)
+

(
d2E

dR1dR2

)2

, (C.4)

where the positive frequencies are physical. The errors are calculated using Monte Carlo, as
discussed in Sec. C.2.5.

There are two possible disadvantages of this method for obtaining the vibrational fre-
quencies of a configuration. First, since it is a complete diagonalization method, it uses all of
the entries in the matrix of force constants. However, many of these entries are related by
symmetries, and so these calculations are potentially redundant. Second, due to numerical
inaccuracy, Eq. C.4 may result in an overestimate of the frequencies if the diagonal terms in
Eq. C.3 are not equal.
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Following from the previous example, by imposing the known modes of a diatomic
molecule in one dimension, we may write the matrix of force constants as

MKM =
1
2

(
d2E

d(R1+R2)
0

0 d2E
d(R1−R2)

)
,

which now yields the eigenfrequencies

ω
2
KM =

1
2

(
d2E
dR2

1
+

d2E
dR2

2

)
±
(

d2E
dR1dR2

)
.

Notice that |ωKM| ≤ |ω| due to the absence of the diagonal terms in the square root of
Eq. C.4.

For a general system, we may input a set of known modes {x}. These 3Nn-dimensional
row vectors act on the 3Nn ×3Nn dynamical matrix, D, to extract the corresponding eigenfre-
quency, such that

ωKM,i = x̂iDx̂⊺i ,

with corresponding error

σKM,i =
√

x̂i j(2Σ2
jk −Σ jkδ jk)x̂k

i ,

where the hats denote normalization, Σ is the standard error matrix corresponding to M, and
the dynamical matrix, D, is the matrix of force constants weighted by the atomic masses.

By imposing known modes on the system, we can reduce the potential for numerical error
and speed up the matrix diagonalization. However, these advantages only hold if the correct
eigenmodes are known a priori, and therefore we do not employ this scheme as standard for
our DMC calculations.

C.2.3 Approaches based on derivatives of the force and energy

Further to the methods based on the matrix of force constants, we also consider traditional
techniques, for comparison.

We obtain an estimate of the frequency (ωFG) from the gradient, κ , of the interatomic
force against bond length graph. The error in the gradient of the slope is the asymptotic
standard error from a linear regression, and this is propagated to the vibrational frequency in
the usual way:

σ
2
ω =

∣∣∣∣∂ω

∂κ

∣∣∣∣2 σ
2
κ .
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Similarly, an additional estimate of the vibrational frequency (ωEC) is obtained by
computing the second derivative of the energy at a series of displacements along the trajectory
of an eigenmode. For this, we use a numerical central difference scheme. Since this result is
based on a linear superposition of energy data points, the errors add in quadrature.

C.2.4 Correction for anharmonicity

All of the above methods for calculating the vibrational frequency rely on the harmonic
potential approximation. However, there are certain cases where anharmonic vibration is
dominant and a correction to these frequencies needs to be applied. As for atomic relaxation,
we apply an approximate correction, due to a Morse potential, which for the fundamental
vibrational frequency, is given as ∆ω =−xe/4, where xe is the anharmonic constant.

C.2.5 Monte Carlo uncertainty

The matrix of force constants M comes with an associated standard error matrix, Σ, from the
reblocking method in CASINO [315]. Calculating the errors in eigenvalues given the errors
in the matrix elements is a non-trivial task and one which has been studied extensively in
pure mathematics [316–321]. For the purposes of this project, we calculate the eigenvalue
errors using Monte Carlo.

For each Monte Carlo run we generate a dynamical matrix, whose matrix elements are
normally distributed, with a mean equal to the original matrix elements and a standard
deviation equal to the corresponding standard errors. We then perform many runs until the
average eigenvalues converge to the true eigenvalues, and we use the standard errors of these
Monte Carlo runs as the errors in the eigenvalues.





Appendix D

Lattice Stability of Three-dimensional
Crystals

D.1 Higher-order Derivative Test

For a single-variable, real-valued and sufficiently differentiable function, f , let the first
(n−1) derivatives vanish such that

f ′(c) = · · ·= f (n−1)(c) = 0 and f (n)(c) ̸= 0,

where c is a constant in the domain of the function, and n ∈Z+. In this case, the nth derivative
may be used as a discriminant to determine the nature of the turning points.

If n is even:

• f (n)(c)< 0 ⇒ c is a local maximum,

• f (n)(c)> 0 ⇒ c is a local minimum.

If n is odd:

• f (n)(c)< 0 ⇒ c is a strictly decreasing point of inflection,

• f (n)(c)> 0 ⇒ c is a strictly increasing point of inflection.

Hence, this test can classify the critical points of f in all cases, provided f (n)(c) ̸= 0 for some
value of n [322].

The higher-order derivative test may be generalized to multi-dimensional problems.
Denoting D(p) f as the pth-order multivariate derivative of f , it can be shown that under
corresponding conditions:
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• D(p) f (c) is negative definite ⇒ c is a strict local maximum,

• D(p) f (c) is positive definite ⇒ c is a strict local minimum,

• D(p) f (c) is indefinite ⇒ c is a saddle point,

• D(p) f (c) is zero or semidefinite ⇒ the test is inconclusive.

Note that, unlike the single-variable test, this test is not conclusive in all cases [323].

D.2 Higher-order Matrices of Force Constants

In this project we consider the effect of displacing an atom at the origin, on its nearest
neighbors, with a total interaction potential E and displacement R. We may expand the total
interaction potential about R = 0, such that:

E(R) =E(0)+
3

∑
i=1

∂E
∂Ri

∣∣∣∣
R=0

Ri +
1
2!

3

∑
i=1

3

∑
j=1

∂ 2E
∂Ri∂R j

∣∣∣∣
R=0

RiR j

+
1
3!

3

∑
i=1

3

∑
j=1

3

∑
k=1

∂ 3E
∂Ri∂R j∂Rk

∣∣∣∣
R=0

RiR jRk

+
1
4!

3

∑
i=1

3

∑
j=1

3

∑
k=1

3

∑
l=1

∂ 4E
∂Ri∂R j∂Rk∂Rl

∣∣∣∣
R=0

RiR jRkRl + . . . .

The Hessian may be written in matrix form,

d2E
dR2 =

Exx Exy Exz

Eyx Eyy Eyz

Ezx Ezy Ezz

 , (D.1)

where we use the shorthand notation ERiR j ≡ ∂ 2E/∂Ri∂R j. Exploiting the symmetry of the
system, we may additionally contract the 4th-order coefficient tensor, Ei jklδ

i
jδ

k
l = Eiikk

∼= Eik,
which in matrix form may be written as

d4E
dR4 =

Exxxx Exxyy Exxzz

Eyyxx Eyyyy Eyyzz

Ezzxx Ezzyy Ezzzz

 . (D.2)

Both matrices D.1 and D.2 are symmetric.
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D.3 Crystal Structures in the Periodic Table

Sufficiently stable elements in the periodic table may be grouped in accordance with their
crystal structure. A breakdown of the crystal structures (by Bravais lattice) in the periodic
table is presented in Fig. D.1. In the cases where an element exhibits multiple crystal
structures at standard temperature and pressure, the most thermodynamically stable allotrope
is given.

In three-dimensions, all crystal structures are derived from fourteen possible Bravais
lattices. However, some of the derived crystal structures are worth studying separately, either
due to their ubiquity (e.g. in the case of the hcp structure: the most common crystal structure
in nature) or interesting properties (e.g. in the case of diamond). The cub, bcc, fcc, dia, hcp,
and dhcp crystal structures are studied in particular in this thesis because they only have one
free parameter: the lattice constant. Furthermore, this group of crystal structures accounts
for approximately 73% of the known crystal structures in the periodic table.

D.4 Numerical Model

In this section, we outline the numerical details of how the crystal structure summations were
performed.

D.4.1 Cubic systems (cub, bcc, fcc, dia)

In this project, we consider unit cells with an atom situated at the origin in all cases. We
refer to these as origin-centric unit cells, and we choose these in order to minimize finite
system size error when summing radially outwards over many shells, as well as to simplify
the computations. The unit cell for the simple cubic crystal consists of one atom situated at
the origin. The unit cells for the bcc, fcc, and dia crystal lattices are shown in Fig. D.2.

In order to sum to n shells, we include all atoms in units cells whose origins are situated
within a radius of n lattice constants, as illustrated in Fig. D.3. We continue to sum in this
fashion until the properties of interest, such as the force constants, converge to the desired
precision.

The coordinates of the unit cell sites for these cubic systems is shown in Table D.1a and
the corresponding potentials are given in Table D.1b. Hence, the summation over n shells
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(a) (b) (c)

Fig. D.2 Origin-centric unit cells for the (a) bcc, (b) fcc, and (c) dia crystal structures. These
structures have two, four, and eight atoms per unit cell, respectively. All lengths are given in
units of the lattice constant, and the coloring distinguishes the position along the z-axis. The
displacement vectors for these plots are given in Table D.1a.

may be written explicitly as

EC = ∑
I

VC(RI −R) = ∑
i2x+i2y+i2z≤n2

VC

a

ix
iy
iz

−

X
Y
Z


−V


X

Y
Z


 ,

where C ∈ {cub,bcc, fcc,dia} denotes the cubic crystal structure under consideration, and
{ix, iy, iz} are integers. The summation yields the total potential energy of displacing the
atom at the origin to a position R. This expression can then be expanded to quadratic order
in R, for example, to extract the matrix of force constants.

D.4.2 Hexagonal systems (hcp, dhcp)

Hexagonal systems are treated in an analogous fashion to cubic systems, except now more
care is needed since the vectors to neighboring unit cells are not orthogonal. The origin-
centric unit cells for the hcp and dhcp crystal lattices are shown in Figs. D.4a & D.4b and
the corresponding displacement vectors and potentials are presented in Table D.2. Hence
for these systems, the (unnormalized) basis set, to go from one unit cell to another, may be
denoted as

{a,b,c}= a
2


 3
−
√

3
0

 ,

 3√
3

0

 ,

 0
0

4
√

6
3


 ,
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(a) (b)

(c) (d)

Fig. D.3 Illustration of the points included in a one-shell summation of the (a) cub, (b)
bcc, (c) fcc, and d) dia crystal structures. All points from the nearest-neighbor unit cells are
considered. The centers of neighboring unit cells lie within a unit sphere (light orange). All
lengths are given in units of the lattice constant, and the coloring of points distinguishes their
position along the z-axis.
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where a is the lattice constant in the xy-plane. In this case, the summation over n shells may
be explicitly written as

EH = ∑
I

VH(RI −R)

= ∑(√
3

2 (ix+iy)
)2

+
(

iy−ix
2

)2
+i2z≤n2

VH

a
2

 3(ix + iy)√
3(iy − ix)

4
√

6
3 iz

−

X
Y
Z


−V


X

Y
Z


 ,

where H ∈ {hcp,dhcp} denotes the hexagonal crystal structure under consideration, and
{ix, iy, iz} are integers. Figures D.4c & D.4d show the sites included in these summations
up to eight shells, which is typically number at which the desired precision converged in
Sec. 6.3. Note the approximate spherical symmetry of these systems.

D.4.3 Multi-parameter systems

Approximately one quarter of the periodic table is composed of elements which have crystal
structures with more than one free parameter. The displacement vectors between unit cells
for these structures is shown in Table D.3. Within our numerical model these systems are
modeled in an analogous way, on a case-by-case basis, for the example parameters given.

D.5 Details of the Tight-binding Model

In this section, we outline the details of the tight-binding configuration discussed in Sec. 6.4.
In our model, we have a crystal of ions with tightly-bound electrons at each site. We consider
each atom to be composed of a pseudopotential, which takes into account the potential of the
nucleus screened by the inner electrons, and one outermost electron.

D.5.1 Definitions

Wave function

We start by taking an simplified ansatz for the wave function of the valence electron orbital
under the potential of the ion:

Ψ(R;c,ae) = A

√√√√ 1

1+ exp
(

2(|R|−c)
ae

) ,
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(a) (b)

(c) (d)

Fig. D.4 [(a), (b)] Origin-centric unit cells for the (a) hcp, and (b) dhcp crystal structures.
These structures have six and twelve atoms per unit cell, respectively. [(c), (d)] Illustrations
of the (c) hcp, and (d) dhcp crystal structures plotted up to eight shells. All lengths are given
in units of the lattice constant, and the coloring of points distinguishes their position along
the z-axis. The displacement vectors for these plots are given in Table D.2.
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crystal
atoms per
unit cell

displacement vector
between unit cells example parameters

rhom 1 a

ix − cosα(iy + iz)
sinαiy + cosαiz

sinαiz

 Boron
α = β = γ = 1.0133

bsco 2 (aix,biy,ciz)
Gallium
(b,c) = (1.6955,1.0014)a

bscm 1 (aix − ccosβ iz,biy,csinβ iz)
Oxygen
(b,c) = (0.6346,0.9413)a
β = 2.3131

bct 2 (aix,aiy,ciz)
Indium
c = 1.5208a

mono 1 (aix − ccosβ iz,biy,csinβ iz)
Plutonium
(b,c) = (0.7799,1.7731)a
β = 1.7766

hex 1 (a(ix −
iy
2 ),a

√
3

2 iy,ciz)
Hydrogen
c = 0.7234a

tri 1

aix −bcosγiy − ccosβ iz
bsinγiy + ccosαiz

csinαiz

 Phosphorus
(b,c) = (0.4806,0.9835)a,
(α,β ,γ) = (1.2538,1.5773,1.2490)

fco 4 (aix,biy,ciz)
Sulphur
(b,c) = (1.2307,2.3349)a

orth 1 (aix,biy,ciz)
Neptunium
(b,c) = (0.7088,0.7335)a

Table D.3 Displacement vectors between unit cells for less common Bravais lattices in the
periodic table. We list example parameters in terms of the x-direction lattice constant, a.
Standard definitions of the lattice constants (a,b,c) and angles (α,β ,γ) are taken. Crystal
structures are listed in order of ubiquity, as presented in Fig. D.1. All crystal structure data is
obtained from Mathematica’s ElementData function [324].
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Fig. D.5 Plots of the normalized wave function of the valence electron under the pseudopo-
tential of the ion, Ψ. The behavior of the wave function is shown as we (a) vary c with ae = 1,
and (b) vary ae with c = 0.1.

where A is a normalization constant, ae ≪ RI is the width of the valence electron cloud,
and 0 ≤ c < ae is the width of the core electron cloud. We choose this ansatz so that the
electron density is analytically well behaved in subsequent calculations, and that in the limit
of vanishing radius and large distances we recover the wave function of a particle in a Dirac
delta potential well:

lim
c≪ae≪|R|

Ψ ∝ e−|R|/ae . (D.3)

This is the limit that we will expand around in the following sections. Plots of this wave
function are shown in Fig. D.5. Since it not possible to analytically derive an expression
for the normalized wave function, we expand the probability density, |Ψ|2 up to 1st-order in
the small parameter (c/ae) and then solve the normalization condition

´
∞

−∞
|Ψ|2dR = a0/ae,

where a0 is the Bohr radius. This yields a normalization constant

A(c,ae) =
2
√

a0
(
9aeζ (3)− cπ2)

9a3
e
√

3πζ (3)3/2 +O

[(
c
ae

)2
]
,

where ζ (3) is Apéry’s constant.

Electron cloud potential and density

The valence electron cloud (which we denote using a capital ‘E’) has a potential given by
the Coulomb potential of the single electron, Ve(R) = |R|−1, integrated over the density
distribution of the electron cloud:

VE(R;c,ae) =

ˆ
Ve(R+ re)ρE(re;c,ae)dre,
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θi ri

RI-R

(a)

θe re

RI-R

θi ri

RI-R--

(b)

θe re

RI-R

rθ

ϕe

ϕ

(c)

Fig. D.6 Diagrams corresponding to the (a) ion-ion, (b) electron-ion, and (c) electron-electron
contribution calculations. The displacement vector between ions, R−RI , is oriented along
the north pole, and the polar and azimuthal angles are defined in the range 0 ≤ θ < π and
0 ≤ φ < 2π , respectively.

where we calculate the density of the electron cloud using the normalized wave function
defined in Sec. D.5.1:

ρE(re;c,ae) = |Ψ(re;c,ae)|2.

Ion potential and density

The ion potential is obtained by solving the time-independent Schrödinger equation and
subtracting the energy constant, such that

Vi(R;c,ae) =−a0

(
1
Ψ

∇2

2
Ψ− lim

|R|→∞

(
1
Ψ

∇2

2
Ψ

))
.

The ion density is then subsequently obtained from Poisson’s equation:

ρi(ri;c,ae) =−∇2Vi(ri;c,ae)

4π
.

Note that due to the norm-conserving property of our wave function ansatz, the ion density
satisfies the normalization condition

´
∞

0 ρi(ri,c,ae)4πr2
i dri = a0/ae up to 1st-order in (c/ae).

D.5.2 Ion-ion contribution

First, we calculate the repulsive potential felt by an ion at position RI due to an ion being
displaced from the origin to a position R. An illustration of the set-up is shown in Fig. D.6a.
Note that we orient the displacement vector between the two ions along the north pole to
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simplify the calculations. In order to calculate the ion-ion potential for the whole system we
then sum over all distinct atoms, such that

Ei-i(R;c,ae) = ∑
I

ˆ
Vi(RI −R+ ri;c,ae)ρi(ri;c,ae)dri.

Rewriting the ion potential in terms of the scalar variables defined in Fig. D.6a, such that
Vi(|RI −R|,{ri,θi};c,ae), we may Taylor expand the ion potential up to leading order in
(ri/|RI −R|):

Ei-i(R;c,ae) =∑
I

Vi(|RI −R|;c,ae)

ˆ
ρi(ri;c,ae)dri︸ ︷︷ ︸

a0/a

+2π ∑
I

ˆ
∞

ri=0

ˆ
π

θi=0

(
∂ 2Vi

∂ r2
i

)
r4

i ρi(ri;c,ae)sin(θi)dθi dri +O

[(
ri

|RI −R|

)3
]
.

Note that the 1st-order term in the expansion vanishes by symmetry. Hence the final
expression for the ion-ion contribution is derived accurate to 1st-order in (c/ae) and 2nd-
order in (ri/|RI −R|). Taken together, this forms the leading-order analytical expansion
about the tight-binding limit introduced in Sec. D.5.1.

D.5.3 Electron-ion contribution

The next contribution is that due to the electron-ion interaction. There are attractive potentials
felt by the electron cloud due to the ions, as well as those felt by the ion due to the electron
clouds. A sketch of this scenario is shown in Fig. D.6b, where the minus signs indicate that
this is an attractive interaction. As in the previous section, we set up the general form of the
electron-ion contribution as

Ee-i(R;c,ae) =−∑
I

ˆ
Vi(RI −R+ re;c,ae)ρE(re;c,ae)dre

−∑
I

ˆ
VE(RI −R+ ri;c,ae)ρi(ri;c,ae)dri.

It can be shown, either by symmetry or integration by parts, that this expression reduces to

Ee-i(R;c,ae) =−2∑
I

ˆ
Vi(RI −R+ re;c,ae)ρE(re;c,ae)dre.
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Rewriting the ion potential in terms of scalar variables, as before, we may Taylor expand up
to leading order in (re/|RI −R|):

Ee-i(R;c,ae) =−2∑
I

Vi(|RI −R|;c,ae)

ˆ
ρE(re;c,ae)dre︸ ︷︷ ︸

a0/a

−4π ∑
I

ˆ
∞

re=0

ˆ
π

θe=0

(
∂ 2Vi

∂ r2
e

)
r4

eρE(re;c,ae)sin(θe)dθe dre

+O

[(
re

|RI −R|

)3
]
.

Analogously to before, the electron-ion contribution is derived to 1st-order in (c/ae) and 2nd-
order in (re/|RI −R|), which is the leading-order analytical expansion about the tight-binding
limit in this model.

D.5.4 Electron-electron contribution

Finally, we compute the repulsive electron-electron contribution to the potential. Again the
displacement vector between the ions is aligned along the north pole. The valence electrons
are parameterized in spherical polar coordinates around each atom, as depicted in Fig. D.6c.
The electron-electron contribution in this case may be written as

Ee-e(R;c,ae) = ∑
I

¨
Ve(RI −R+ re − r)ρE(re;c,ae)ρE(r;c,ae)dre dr.

Due to the spherical symmetry of each electron cloud, this contribution reduces exactly to
Coulomb repulsion, such that

Ee-e(R;ae) =
a2

0
a2

e
∑
I

1
|RI −R|

.

Note the total potential energy of the system at this stage, Ei-i +Ee-i +Ee-e, tends to zero as
(c/ae)→ 0 and |R| ≫ ae. In this limit, the electrons are effectively on top of the ions and
the whole system is neutral due to Gauss’ theorem.

D.5.5 Pauli repulsion

To complement our result for the energy, we estimate the Pauli repulsion felt by the overlap-
ping electron clouds. Since we only considering spherically symmetric (i.e. s-type) orbitals
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in the toy model, this reduces to a one-dimensional problem. We consider a Dirac delta
potential well, of depth g, inside an infinite square well, such that:

Vwell(x) =


−gδ (x), |x|= 0,

0, 0 < |x|< L,

∞, |x| ≥ L.

In this scenario, g determines how tightly bound the electrons are to their respective atoms,
and L represents the effective radius for the electron clouds. As L is reduced, the bound
state energy is increased – this represents the energy increase due to the Pauli repulsion of
overlapping orbitals.

The wave function takes the form Ψ ∝ sinh(k(L−|x|)) inside the infinite well, where
k is the wave number. Considering the derivative continuity of the wave function at the
origin, we derive the transcendental equation tanhy = χy, where we have defined y ≡ kL
and χ ≡ h̄2/mgL. We can derive an analytical form for the solution, and hence the scaling
behavior of the energy with L, by finding the lowest root with a Newton-Raphson scheme.
The iterative equation for the root is then

yn+1 = yn −
tanhyn − ynχ

sech2yn −χ
,

where n ∈ Z+. Since we are interested in the regime where the wave function is significantly
influenced by the boundary wall, we take yn to be small. Additionally, we are interested in
the limit when Pauli repulsion is dominant i.e. when L is small. Taking these limits together,
we find that y∞ =

√
3χ/2. Hence the energy of the bound state is

EPauli =
h̄2

2mL2 y2
∞ =

3h̄2

4m3/2
√

2EbL3
,

where we define the binding energy of an isolated Dirac delta potential well as Eb ≡
mg2/2h̄2. In the tight-binding approximation, the wave function takes the form Ψ ∝

exp(−m1/2√2EbL/h̄). Comparing this to the form of the wave function in Eq. D.3 al-
lows us to make the identification Eb ∼ a−2

e up to physical constants. Hence, in atomic units,
the energy gain due to Pauli repulsion becomes

EPauli =
3ae

4L3 .
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Note that due to the differences in unit cell geometry, the lattice constant cannot be directly
compared between the various crystal structures. For this, we may examine the optimal
effective radius of each atom in a spherical packing, defined as

reff =

(
3

4π

Vunit cell

Nunit cell

)1/3

,

where Vunit cell is the optimal volume of the unit cell, and Nunit cell is the number of atoms
enclosed. In place of L, we evaluate EPauli at the effective optimum radius. This rudimentary
approximation for the Pauli repulsion allows us to analytically capture the scaling behavior
as the lattice constant is reduced.

D.5.6 Crystal relaxation

Let us define the total energy of the system as

E(R;c,ae) = Ei-i(R;c,ae)+Ee-i(R;c,ae)+Ee-e(R;ae)+EPauli(a,ae).

Note that there is an implicit lattice constant dependence in the first three terms in the form
of the potentials, as well as in the lattice summations. Once we have calculated an analytical
form for the total energy of the system as a function of the displacement of the central atom,
R, and implicitly the lattice constant, a, we then compute the optimal lattice constant such
that:

amin = argmin
a∈(ae,∞)

(E) .

We subsequently relax the system to this lattice constant and re-evaluate the total energy at a
given R. This renders the total energy as a function of c and ae only.

D.6 Oscillatory Electron Density in the Nearly Free Elec-
tron Model

In order to approximate the oscillatory part of the electron cloud density in the nearly
free electron model, we consider Fourier transforms of the reciprocal lattices, as shown in
Table D.4. For crystals with a single-atom basis, the resulting function has a simple form.
However, for crystals with more than one atom in the basis, we consider a superposition of
multiple offset lattices1; with modulation along the z-axis, where appropriate. The functions,

1Note that the offsets given in Table D.4 are not unique.
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crystal ρosc
E (r)/u

cub/bcc/fcc
1

Ñc.s.

Ñc.s.

∑
i=1

cos(r · r̃c.s.
i )

dia
1
8

[
8

∑
i=1

cos(r · r̃dia
i )+

8

∑
i=1

cos
((

r− rdia
13

)
· r̃dia

i

)]

hcp

Ahcp

6

[
6

∑
i=1

cos(r · r̃hcp
i )cos

(
3π√
6a

z
)

+
6

∑
i=1

cos
((

r− rhcp
7

)
· r̃hcp

i

)
cos

(
3π√
6a

(
z−

√
6a
3

))]

dhcp

1
6

[
1
3

6

∑
i=1

cos(r · r̃dhcp
i )cos

(
3π√
6a

z
)

+
6

∑
i=1

cos
((

r− rdhcp
7

)
· r̃dhcp

i

)
cos

(√
6π

a

(
z− a√

6

))

+
1
3

6

∑
i=1

cos
((

r− rdhcp
14

)
· r̃dhcp

i

)
cos

(
3π√
6a

(
z−

√
6a
3

))]

Table D.4 Oscillatory part of the electron cloud density in the nearly free electron model,
ρosc

E , in units of the oscillation strength, u. Ñc.s. is the number of displacement vectors, and
{r̃c.s.

i } the set of displacements in a unit cell of the reciprocal lattice. The vectors rc.s.
i are

defined in Tables D.1 and D.2. The normalization constant, Ahcp = 2/3, is chosen such that
max{ρosc

E }= u for all crystal structures.

ρosc
E , are scaled such that max{ρosc

E }= u for all crystal structures. Over a unit cell, all of the
functions integrate to zero.
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