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ABSTRACT
The vertical temperature structure of a protoplanetary disc bears on several processes relevant
to planet formation, such as gas and dust grain chemistry, ice lines, and convection. The
temperature profile is controlled by irradiation from the central star and by any internal
source of heat such as might arise from gas accretion. We investigate the heat and angular
momentum transport generated by the resistive dissipation of magnetic fields in laminar discs.
We use local 1D simulations to obtain vertical temperature profiles for typical conditions in
the inner disc (0.5–4 au). Using simple assumptions for the gas ionization and opacity, the
heating and cooling rates are computed self-consistently in the framework of radiative non-
ideal magnetohydrodynamics. We characterize steady solutions that are symmetric about the
mid-plane and which may be associated with saturated Hall-shear unstable modes. We also
examine the dissipation of electric currents driven by global accretion-ejection structures. In
both cases we obtain significant heating for a sufficiently high opacity. Strong magnetic fields
can induce an order-unity temperature increase in the disc mid-plane, a convectively unstable
entropy profile, and a surface emissivity equivalent to a viscous heating of α ∼ 10−2. These
results show how magnetic fields may drive efficient accretion and heating in weakly ionized
discs where turbulence might be inefficient, at least for a range of radii and ages of the disc.
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1 IN T RO D U C T I O N

The imaging of dust substructures (ALMA Partnership et al. 2015;
Andrews et al. 2018) and measurements of gas kinematics (Flaherty
et al. 2015, 2017; Louvet et al. 2018) have provided valuable clues
to the long-standing issues of gas accretion and planet formation in
circumstellar discs. Of particular relevance for planet formation is
the thermal structure of the disc, which is tightly connected to the
accretion process.

The temperature distribution determines the radial location of ice
lines, with consequences on grain growth (Lorek, Lacerda & Blum
2018), the preferential sites of planet formation (Ida & Lin 2008;
Cridland, Pudritz & Birnstiel 2017; Hyodo, Ida & Charnoz 2019)
and their composition (Dodson-Robinson et al. 2009; Cridland,
Pudritz & Alessi 2016; Bitsch, Raymond & Izidoro 2019). The
temperature of the disc controls its chemistry (Walsh, Nomura
& van Dishoeck 2015; Kamp et al. 2017), which goes into our
interpretation of molecular emission lines (e.g. Flaherty et al. 2015;
Oya et al. 2019). Finally, by affecting the ionization state of the gas
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(Weingartner & Draine 2001; Ilgner 2012), the temperature may
also influence how magnetic fields impact on the disc dynamics.

The temperature of the disc results from a balance between stellar
irradiation, internal heating mechanisms, and radiative cooling. In
the inner regions of protoplanetary discs, heating is dominated
by the liberation of gravitational energy through gas accretion
(D’Alessio et al. 1998). Magnetic fields are believed to play a
major role in the transport of angular momentum responsible
for accretion, whether they power magnetized outflows (Pudritz
& Norman 1983; Pelletier & Pudritz 1992) or seed turbulence
via the magnetorotational instability (MRI, Balbus & Hawley
1991; Hawley & Balbus 1992). However, the details of angular
momentum transport and energy dissipation are often concealed in
an effective viscosity parameter α (Shakura & Sunyaev 1973). The
bulk accretion rates are consistent with α ∼ 10−4–10−2 in young
stellar objects (Bell & Lin 1994), but the accretion process might
be vertically inhomogeneous (Gammie 1996), and linking α to a
vertical temperature profile pre-supposes that the accretion energy
is dissipated locally (Balbus & Papaloizou 1999).

When accounting for the low ionization fraction, magnetohydro-
dynamic (MHD) simulations support a picture of laminar accretion
in the inner regions of protoplanetary discs. Angular momentum
is transported by a non-turbulent magnetic stress through the disc
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(Lesur, Kunz & Fromang 2014; Bai 2015) and by magnetothermal
winds out of the disc (Béthune, Lesur & Ferreira 2017; Bai 2017).
Given the complex nature of global MHD simulations, only a few
studies have incorporated radiative effects (Wang, Bai & Goodman
2019; Rodenkirch et al. 2020) with a focus on the disc–wind
interaction. Electric dissipation is predicted to efficiently heat the
wind (Safier 1993), but its contribution inside the disc was only
recently examined by Mori, Bai & Okuzumi (2019) who concluded
that it should be negligible when compared to stellar irradiation.
However, the isothermal model of Mori et al. (2019) did not self-
consistently solve for the thermal structure of the disc.

We compute the 1D vertical structure of the inner 0.5−4 au in
radiative MHD models of protoplanetary discs. Our model improves
on previous studies by self-consistently describing the energy
exchanges due to Ohmic resistivity, the Hall effect, ambipolar
diffusion, and radiative transport for plausible ionization fractions
and opacities. A high-order spatial method helps us resolve the
sharp current sheets developing in ambipolar MHD (Brandenburg
& Zweibel 1994) and our method is free from the constraints of
explicit time-integration schemes, allowing us to probe resistivity
regimes inaccessible to common simulation codes.

We link the resistive electric heating to the accretion power and
characterize them in terms of a gas temperature and an effective
‘viscosity’ coefficient α. We consider two different drivers of mass
accretion/electric currents inside the disc. In the first case, electric
currents are amplified by the Hall-shear instability (HSI, Kunz
2008) and we examine the 1D saturated phase of this instability.
Because the instability extracts orbital energy from inside the disc,
we designate these solutions as internally driven. In the second
case, we impose the total electric current passing through the disc
and let the current density find the path of least resistance. This
situation mimics magnetized accretion-ejection for which a proper
energy budget would involve the entire disc-wind system. Since we
focus on the internal structure of the disc only, the accretion power
appears to be externally driven.

In both cases, the resistive dissipation of electric currents can
generate as much heat as viscous discs models with α ∼ 10−4–
10−2, and correspondingly large-mass accretion rates. If the disc is
opaque at thermal wavelengths, this heat can build-up in the mid-
plane and dominate over stellar irradiation in the thermal balance
of the disc.

We present our disc model and the system of radiative MHD
equations describing it in Section 2. We also detail the theoretical
framework in which our results can be interpreted. The results are
split into two sections depending on the origin of the accretion
power: we present internally driven solutions in Section 3 and
externally driven solutions in Section 4. We interpret these results
and discuss the limitations of our model in Section 5 before
concluding.

2 ME T H O D

The thermal structure of a passive disc is solely governed by
the stellar irradiation, its reprocessing and re-emission at thermal
wavelengths. The dissipation of electric currents introduces an
additional source of heat in magnetized discs. We aim to compute
the vertical structure of axisymmetric protoplanetary discs threaded
by a net poloidal magnetic field, irradiated by the central star, and
subject to such non-ideal MHD processes.

We consider quasi-equilibrium structures whose relaxation times
are short compared to the long-time and large-scale evolution of the
disc via mass losses, magnetic flux transport, and the disc’s changing

radiative environment. We also assume that at any given disc
radius, the main physics determining these states is independent of
neighbouring radial annuli. Given these restrictions, the most natural
framework is the stratified shearing box whose input parameters
(irradiation flux, surface density, etc.) depend on radius according
to a pre-defined global disc model.

2.1 Model and governing equations

2.1.1 Global disc model

At a distance r from a Sun-like star of radius R� = 6.957 × 1010 cm
and effective temperature T� = 5777 K, the equilibrium blackbody
temperature of a disc is:

Tbb = T�

(
R�
r

)1/2 (
h

r

)1/4

, (1)

depending on the passive opening angle of the disc

h

r
=

(
kB T�

√
R�r

μmHGM�

)4/7

, (2)

see, for example Dullemond (2000). In these equations, kB is
Boltzmann’s constant, μ = 2.353 is the mean molecular weight
of the gas for a prescribed solar composition, mH the hydrogen
mass, and M� = 1.989 × 1033 g the mass of the Sun. We take
solar parameters for simplicity, noting that representative protostars
might have larger radii and lower effective temperatures.

We prescribe the mass surface density of the disc � = 1.7 ×
103(r/1au)−3/2 g cm2 consistently with the Minimum Mass Solar
Nebula (Hayashi 1981) to facilitate comparisons with previous
works. Although recent surveys point toward shallower density
profiles � ∼ r−1/2 (Andrews & Williams 2007; Tazzari et al. 2017),
using a steeper density profile allows us to sample a broader range
of disc conditions and thus cover the uncertainties in disc masses
and ages (Bergin & Williams 2017).

2.1.2 Stratified shearing sheet

At a chosen radius r around the star, we move into a reference
frame orbiting at the local orbital frequency � and expand the
potential of the star to second order following the ‘shearing sheet’
approximation (Hill 1878; Goldreich & Lynden-Bell 1965; Latter
& Papaloizou 2017). We obtain the vertical structure of the disc
at this radius by integrating the equations of radiative MHD in the
shearing sheet.

We describe the gas as a mixture of neutrals, ions, and electrons,
with the neutrals dominating the gas mass and the free electrons
being the mobile charge carriers. Denoting by ρ the neutral gas
density, u its velocity, and B = BeB the magnetic (induction) field,
their evolution in time is governed by:

Dtρ = −ρ∇ · u, (3)

Dt u = − 1

ρ
∇P − 2�ez × u + 2q�2xex − �2

zzez − J × B
ρ

, (4)

Dt B = B · ∇u + ∇ × E, (5)

where we introduced the operator Dt = ∂t + v · ∇, the shear rate
q = −dlog �/dlog r and the vertical epicyclic frequency �z. In
equation (5), E is the electric field in a frame comoving with
the neutral fluid (detailed in Section 2.1.4) and J = ∇ × B is the
electric current neglecting relativistic effects.
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For the gas pressure P we consider an ideal diatomic gas with
a single adiabatic index γ = 7/5. Denoting ER the frequency-
integrated radiation energy density, the gas pressure and radiation
energy are coupled via

DtP = −γP∇ · u − (γ − 1)
c

λ

(
aT 4

g − ER

) + (γ − 1)Q, (6)

∂tER = −∇ · FR + c

λ

(
aT 4

g − ER

)
, (7)

where c is the speed of light, λ is the photon mean-free path, a ≡
4σ SB/c with σ SB the Stefan–Boldzmann constant, Tg = P/ρ is the gas
temperature, Q is the heating power density of dissipative effects,
and FR is the flux of radiative energy (detailed in Section 2.1.5).

We consider axisymmetric equilibria that vary on global scales
radially. In the shearing sheet these radial variations are neglected
and thus our local solutions depend only on the vertical coordinate
– pointing along the axis of rotation and denoted by z. Although
the radial coordinate (usually denoted by x) disappears in the final
form of the equations, the radial shear of the flow still affects the
momentum and magnetic induction equations.

Furthermore, we neglect the radial pressure gradient in the disc
by considering that it orbits the star at the Keplerian frequency1

for every z. In this case, the shear rate q = 3/2 and �z = �.
The shearing-sheet equations (3) and (4) then support the steady
isothermal solution of a Keplerian shear flow ∂xuy = −(3/2)�.

Despite these simplifications, the problem retains complexity in
the details of the electromotive field E and radiative energy flux FR.
We describe these terms in the following paragraphs and give the
final form of the radiative MHD equations in Section 2.1.6.

2.1.3 Ionization fraction

Solving for the detailed chemical composition of the gas in a
dusty environment is expensive in computational time and subject
to strong assumptions. We use the same simplifications as Lesur
et al. (2014) to evolve the ionization fraction xe in time as a
balance between the local ionization versus recombination rates.
In particular, we consider a metal and dust-free environment of
primordial chemical composition (75 per cent hydrogen).

The ionization rate includes contributions from stellar X-rays
(Igea & Glassgold 1999) using the fit of Gressel et al. (2015,
first term of equation 4), cosmic rays with a penetration depth
of 96 g cm−2 (Umebayashi & Nakano 1981), and radioactive decay
at a constant ionization rate of 10−19 s−1 (Umebayashi & Nakano
2009). The X- and cosmic ray fluxes are assumed to penetrate the
disc vertically from both sides. We neglect collisional ionization at
the temperatures < 103 K considered.

Including dust grains and/or metals can alter the ionization frac-
tion by several orders of magnitude depending on their abundance
and distribution in the disc (e.g. Sano et al. 2000; Fromang, Terquem
& Balbus 2002; Wardle 2007). A simple way to account for the dust-
enhanced recombination rate is to artificially reduce the ionization
fraction. We therefore include models with an ionization fraction xe

reduced by a factor 10−2 in Section 3.4 and 10−3 in Section 4.
Far-ultraviolet (FUV) stellar radiations can ionize carbon and

sulfur in the uppermost layers of the disc, providing a floor value

1The deviations from Keplerian velocity scale as h/r relative to the sound
speed, that is at most 3.7 × 10−2 in the model considered here, see Table 1.
We also neglect the vertical shear ∂zuy induced by the radial temperature
profile (1) of the passive disc (e.g. Urpin 1984).

Figure 1. Vertical profiles of ionization fraction xe for an isothermal disc
of temperature Tbb given by (1) at different disc radii (see the legend).

xe ≥ 10−5 down to column densities �10−2 g cm−2 (z/h ≈ 4, Perez-
Becker & Chiang 2011). We do not include this source of ionization
because it favours variability in the uppermost layers of the disc
and hinders convergence to steady states (Riols et al. 2016). The
ionization profiles corresponding to the reference model described
above are drawn on Fig. 1.

2.1.4 Electric conductivity

At such low ionization fractions xe � 10−10, the plasma imperfectly
conducts electric currents. In the frame comoving with the neutral
gas, the electric field can be related to the electric current by a
generalized Ohm’s law:

E = − u × B︸ ︷︷ ︸
ideal

+ ηO J︸︷︷︸
Ohm

+ ηH J × eB︸ ︷︷ ︸
Hall

− ηA ( J × eB) × eB︸ ︷︷ ︸
ambipolar

, (8)

The ‘non-ideal’ diffusivities ηO, H, A are evolved as in Lesur et al.
(2014) assuming that the plasma is composed of neutrals, electrons,
and ions; we do not include dust grains as charge carriers.

The relative importance of the three non-ideal MHD effects can be
characterized by appropriately normalizing the diffusivities ηO, H, A.
Let vA ≡ B/

√
ρ denote the Alfvén velocity. The vertical profiles of

ηO/�h2, ηH/hvA, and �ηA/v2
A are drawn on Fig. 2 at a distance of

0.5 and 4 au from the star in the passive and vertically isothermal
disc described in Section 2.1.1. These dimensionless numbers are
independent of the strength of the magnetic field and can be used to
determine the linear stability of the disc to the MRI (see Section 3.1,
and references therein).

2.1.5 Radiative energy flux

We solve for the frequency-integrated radiation energy density ER

in the flux-limited-diffusion (FLD) approximation. We compute
the frequency-integrated opacity κ as a function of the local gas
temperature Tg and neutral gas density ρ using the tables of Bell &
Lin (1994). The photon mean-free path is λ ≡ 1/κρ and the optical
depth τ (z) ≡ − ∫ z

∞ κρ dz′ is integrated toward the disc mid-plane.
In the FLD approximation, the radiative energy flux is

FR = −fMcλ
∂ER

∂z
. (9)
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6106 W. Béthune and H. Latter

Figure 2. Vertical profiles of dimensionless numbers characterizing the
strength of Ohmic (solid blue), Hall (dotted red), and ambipolar (dashed
green) diffusivities for a vertically isothermal disc at 0.5 au (thick lines) and
4.0 au (thin lines) with the ionization fractions shown on Fig. 1.

where the flux limiter fM of Minerbo (1978) allows a smooth
transition from the optically thick regime FR � −(λc/3)∂zER to
the optically thin regime FR � −cER(∂zER/|∂zER|). The radiation
pressure ER/3 is typically 10−6 times smaller than the gas pressure
in the regime considered, so we neglect momentum exchanges
between the gas and radiation field.

The stellar irradiation is incorporated in the problem by imposing
the radiation temperature TR ≡ 4

√
ER/a at low optical depth above

the disc. This approach provides the correct blackbody temperature
in the optically thick parts of a passive disc while ignoring the
details of heat deposition in its surface layers.

2.1.6 Governing equations

Solving for the deviations from the background Keplerian shear
v = u − (3/2)�xey , we look for steady states of the following
system of equations:

∂ρ

∂t
= − ∂

∂z
(ρvz), (10)

∂vx

∂t
= 2�vy − vz

∂vx

∂z
+ JyBz

ρ
, (11)

∂vy

∂t
= −1

2
�vx − vz

∂vy

∂z
− JxBz

ρ
, (12)

∂vz

∂t
= − ∂

∂z

(
1

2
v2

z + 1

2
�2z2

)
− 1

ρ

∂

∂z

[
P + 1

2

(
B2

x + B2
y

)]

+�h2∂2
z vz, (13)

∂Bx

∂t
= ∂Ey

∂z
, (14)

∂By

∂t
= −∂Ex

∂z
− 3

2
�Bx, (15)

∂P

∂t
= −vz

∂P

∂z
− γP

∂vz

∂z
− (γ − 1)

c

λ

(
aT 4

g − ER

)
+ (γ − 1)

[
ηO

(
J 2

x + J 2
y

) + ηA

(
J 2

⊥x + J 2
⊥y + J 2

⊥z

)]
, (16)

Table 1. Characteristics of the chosen disc model at different radii: gas
surface density �, passive opening angle h/r, blackbody disc temperature
Tbb, altitude zτ of the τ = 1 surface, and vertically averaged opacity κ .

r (au) � (g cm−2) h/r Tbb (K) zτ /h κ (cm2 g−1)

0.5 4.81 × 103 2.04 × 10−2 211 3.58 1.47
1.0 1.70 × 103 2.49 × 10−2 156 3.58 4.27
2.0 6.01 × 102 3.03 × 10−2 116 3.22 2.70
4.0 2.13 × 102 3.70 × 10−2 86 2.73 1.49

∂ER

∂t
= −∂FR

∂z
+ c

λ

(
aT 4

g − ER

)
. (17)

The last term in equation (13) acts as a viscosity to damp vertical
motions, allowing the disc to relax to an equilibrium. In equation
(16), ambipolar heating appears as a function of the electric current
projected perpendicularly to the local magnetic field: J⊥ = −( J ×
eB ) × eB = J − ( J · eB)eB .

2.1.7 Units and conventions

We can identify a set of natural scales in this problem. The orbital
frequency � is taken as inverse time unit. The passive scale height
h of the disc – without internal heating – is taken as distance unit.
The velocity unit is therefore the passive sound speed cs = �h.
Note that the actual density stratification scale varies and becomes
larger than h when the temperature increases inside the disc. The
gas temperature Tg ≡ P/ρ is normalized by the surface blackbody
value Tbb. Finally, the gas surface density � defines a mass unit.

The degree of magnetization of the disc is measured by the
dimensionless parameter

β ≡ ��2h

B2
z

. (18)

For an isothermal hydrostatic equilibrium, β is approximately 20
per cent larger than the mid-plane ratio of thermal versus magnetic
pressures β0 ≡ 2ρc2

s /B
2
z .

Table 1 gathers typical values of our disc model at different radii.
The choice of disc radius strongly affects the surface density of the
gas and only weakly its blackbody temperature. In turn, the surface
density controls the MHD diffusivities and the gas opacity.

2.2 Numerics

We obtain the steady-state vertical structure of the disc by an initial
value approach. We integrate the equations (10)–(17) in time until
a steady-state criterion is satisfied. This method does not require a
good guess of the solution to start with, and it guarantees that the
steady-state solutions are stable to disturbances of the flow variables
that only depend on the vertical direction.

2.2.1 Computational domain

We only solve the equations on the upper half of the disc (z ≥
0), and assume that our solutions exhibit an equatorial symmetry
about the mid-plane. This choice helps reduce computational costs
while allowing control of the mid-plane conditions to machine
accuracy.

The vertical domain is fixed to z/h ∈ [0, 4] throughout this paper.
As long as the effective scale height of the disc is approximately
h, most of the gas mass and electric current are located inside the
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Electric heating in laminar protoplanetary discs 6107

computational domain. This domain also encloses the τ = 1 altitude,
so it captures the transition from the optically thin upper regions
(λ/h � 1) to the optically thick mid-plane (λ/h � 1). Convergence
with domain size is discussed in Appendix C.

The domain is meshed with 64 Gauss–Lobatto points to perform
Chebyshev differentiation and integration by simple matrix-vector
products. This spectral decomposition provides the maximal accu-
racy for smooth solutions at the cost of numerical resilience when
the flow variables exhibit sharp gradients.

2.2.2 Integration scheme

The scale separation between the radiative, MHD diffusive, and
sound-crossing time makes the problem computationally inacces-
sible to purely explicit integration schemes. We therefore integrate
the equations via a fully implicit scheme for all the flow variables.
Because our interest is in steady states we can adopt first-order
integration without concerns over time-accuracy. We demonstrate
in Appendix B that this numerical scheme does capture the growth
of MRI modes both in space and time.

We rescale the flow variables to have similar amplitudes and cast
the system of equations (10)–(17) in the form ∂ tf − S(f) = 0. We
stop the integration when a solution satisfies the simple steady-state
criterion ‖(∂ tf)/�f‖∞ < 10−4. The residual error generally keeps
converging to zero when this criterion is satisfied.

2.2.3 Initial and boundary conditions

We start the time integration close to the ‘current-free’ equilibrium⎛
⎜⎜⎜⎜⎜⎜⎝

ρ

vx, vy, vz

Bx, By, Bz

P

ER

⎞
⎟⎟⎟⎟⎟⎟⎠(z, t = 0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ0 exp(−z2/2h2)

0, 0, 0

0, 0, β−1/2

ρ0c
2
s exp(−z2/2h2)

aT 4
bb

⎞
⎟⎟⎟⎟⎟⎟⎠, (19)

consisting of the isothermal Keplerian flow with a vertical magnetic
field Bz �= 0 in it. The density is normalized so that

∫ 4h

0 ρ dz = �/2.
On top of this equilibrium, the horizontal velocity and magnetic

field components are initialized with random noise (ṽx , ṽy, B̃x, B̃y)
of amplitude 10−4. To speed-up parametric explorations, a previ-
ously computed solution is re-used as the initial condition if only
one control parameter has changed since.

We enforce an equatorial symmetry at the mid-plane via

(∂zρ, ∂zvx, ∂zvy, vz, Bx, By, ∂zP , ∂zER)(z = 0, t) = 0. (20)

These conditions will pick out equilibria that exhibit ‘hourglass’
magnetic configurations through the mid-plane. We consider two
possible sets of boundary conditions at the top of the domain. The
first set is(

vz, ∂zBx, ∂zBy,

ER

)
(z = 4h, t) =

(
0, 0, 0

aT 4
bb

)
(21)

while we let the other flow variables relax to stationary values.
Note that equation (21) does not impose the orientation nor strength
of the magnetic field, which the system select itself. This set of
conditions will be associated with ‘internally driven’ equilibria
in Section 3. The second set of boundary conditions differs from
equation (21) only by imposing the value B top

y ≡ By(4h) �= 0, and
will be associated with ‘externally driven’ states in Section 4.

2.3 Diagnostics

We measure the gas temperatures T0 at the mid-plane and Tτ at the
τ = 1 altitude. We define the temperature contrast as (T0 − Tτ )/Tτ .
We define the specific entropy s ≡ P/ργ and deduce the squared
Brünt–Väisälä frequency:

N 2 ≡ �2z

γ s

∂s

∂z
. (22)

Negative values of N 2 < 0 imply convective instability in a purely
hydrodynamic disc with no viscosity or thermal diffusion (Ruden,
Papaloizou & Lin 1988; Held & Latter 2018), and assuming
that non-ideal MHD effects erase any stabilization from magnetic
tension. We define the Brünt–Väisälä growth rate ω ≡ √−N 2 when
N 2 < 0 and zero otherwise.

The surface value of the azimuthal magnetic field B top
y can be

related to the net electric current passing through the disc via

B top
y =

∫ 4h

0
−Jx dz, (23)

and to the mass accretion rate Ṁ = 2
∫ 4h

0 ρvx dz after multiplying
equation (12) by ρ and integrating:

B top
y = �Ṁ

4Bz

. (24)

This last equation connects the net mass accretion rate to the angular
momentum extracted vertically by the magnetic stress −B top

y Bz.
In steady state, the condition vz = 0 at the boundaries enforce vz =

0 everywhere, that is no advective flux of kinetic or thermal energy
through the domain. The pressure equation (16) then becomes a
competition between Ohmic and ambipolar heating versus radiative
cooling. To measure their influence on the gas temperature, we
introduce the respective heating/cooling rates per unit mass:

∂tP = ρ(qO + qA + qR) = 0, (25)

where qO denotes Ohmic heating, qA ambipolar heating, and qR

radiative cooling. We also define the total energy density

E ≡ 1

2
ρv · v + 1

2
B · B + 1

γ − 1
P + ER. (26)

If L ≡ J × B is the Lorentz force and vz = 0 because of boundary
conditions, then the evolution of the total energy density (26) obeys

∂tE = +3

2
�(ρvxvy − BxBy) sources

− ∂z[(vxBx + vyBy)Bz] ideal

− ∂z[(JxBy − JyBx)ηO] Ohmic

− ∂z[(LxBy − LyBx)ηH] Hall

− ∂z[(J⊥xBy − J⊥yBx)ηA] ambipolar

− ∂zFR radiation.

(27)

It comprises a single source term, arising from the extraction of
orbital energy by the combined action of Reynolds and Maxwell
stresses. The subsequent terms represent the ideal MHD Poynting
flux, three energy fluxes due to non-ideal MHD effects and the
radiative energy flux. As emphasized throughout this paper, the
four fluxes of magnetic energy are thermodynamically crucial
because they can redistribute orbital energy away from the height
at which it was originally extracted, and before this energy is be
thermalized.

The heat generated by electron-neutral (Ohmic) and ion-neutral
(ambipolar) collisions is integrated vertically to define the electric
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6108 W. Béthune and H. Latter

heat fluxes per unit surface of the disc:

QO ≡
∫ 4h

0
ηO

(
J 2

x + J 2
y

)
dz =

∫ 4h

0

ρqO

γ − 1
dz, (28)

QA ≡
∫ 4h

0
ηA

(
J 2

⊥x + J 2
⊥y + J 2

⊥z

)
dz =

∫ 4h

0

ρqA

γ − 1
dz. (29)

Integrating equation (27) vertically and substituting equations
(16) and (17) in steady state, we can connect the heat fluxes with
the radial flux of angular momentum through the disc:

3

2
�

∫ 4h

0
(ρvxvy − BxBy) dz = QO + QA + F top

z , (30)

where F top
z is the magnetic energy flux (ideal, Ohmic, Hall, and

ambipolar) through the upper boundary z = 4h.
Normalizing the heat fluxes into a dissipation coefficient

α ≡ 8

9

QO + QA

�h2�3
, (31)

we can relate stress and dissipation in the standard framework of α

discs (Balbus & Papaloizou 1999). When no magnetic energy flows
through the upper boundary, F top

z = 0 and we have∫ 4h

0
(ρvxvy − BxBy) dz = 3

4
α�h2�2. (32)

On the other hand, it the energy extracted by the internal xy stress
is negligible compared to the energy flux F top

z at the surface of the
disc, we obtain the balance:

F top
z = −9

8
α�h2�3. (33)

3 IN TER NA LLY DRIVEN STATES

3.1 Instability of the current-free equilibrium

Integrating the system (10)–(17) in time subject to the boundary
conditions (21), the flow can follow two different routes depending
on the stability of the current-free equilibrium (19). Although a
linear stability analysis is outside the scope of this paper, we can
identify the cause of the instability in our simulations.

In ideal MHD, weakly magnetized Keplerian flows are subject to
the MRI (Balbus & Hawley 1991). In a 1D shearing box (vertical
structures only), the MRI can be stabilized by both Ohmic (Jin 1996)
and ambipolar diffusion (Desch 2004; Kunz & Balbus 2004). The
Hall effect can be either stabilizing or destabilizing depending on
the strength and orientation of the net magnetic field (Wardle 1999;
Balbus & Terquem 2001). For the Hall-dominated regime probed
in this paper, the HSI appears while the MRI is resistively damped
(Kunz 2008; Wardle & Salmeron 2012).

If the current-free equilibrium is linearly stable, then the MHD
diffusivities dissipate electric currents and let the flow relax to
the same equilibrium. Otherwise, the initial perturbations grow
exponentially in time and amplify the electric current and magnetic
stress through the disc. Since the 1D shearing box forbids the
development of ‘parasitic’ secondary instabilities (Goodman &
Xu 1994; Latter, Fromang & Gressel 2010; Kunz & Lesur 2013),
the exponential growth saturates in the non-linear regimes of Hall
and ambipolar diffusion. This saturation happens before magnetic
pressure significantly alters the disc structure.

The linear phase of the instability is illustrated in Appendix B.
The dissipative effects allow the system to reach a steady state
which only depends on the choice of (r, β) and not on the initial
noise. We qualify these states as ‘internally driven’ because they

Figure 3. Vertical profiles of the flow variables in an equilibrium with β =
107 at r = 2 au, normalized by their extremal value for visibility. Upper
panel: density (solid green), squared Brünt–Väisälä frequency (dashed red),
and gas temperature relative to Tbb (dotted blue). Lower panel: radial
velocity (solid blue), azimuthal velocity (dotted orange), radial magnetic
field (dashed green), and azimuthal magnetic field (dotted–dashed red).

are powered by the orbital shear and satisfy equation (32). For the
magnetizations β ∈ [103, 108] considered, the Bz < 0 cases are
always linearly stable; we therefore focus on the Bz > 0 cases in
this section.

3.2 Reference solution

We start by exhibiting the properties of a reference solution
computed at r = 2 au with β = 107. Since the relative importance
of non-ideal MHD effects varies with radius, we provide a second
example solution computed at r = 1 au in Appendix A.

3.2.1 Vertical structure

Fig. 3 shows the vertical profiles of the flow variables in a steady
state computed at r = 2 au with β = 107; the curves have been
rescaled to fit in [−1, 1] for visibility.

The thermodynamic variables are represented on the upper panel.
The density distribution is close to Gaussian; it is always decreasing
with height (∂zρ ≤ 0), as for every equilibria presented in this
paper. The gas temperature is maximal in the mid-plane where
it reaches Tg ≈ 1.61Tbb. It is equal to the radiation temperature
to 10−6 accuracy on the entire interval (not shown). The squared
Brünt–Väisälä frequency N 2 > 0 everywhere, so this equilibrium
is convectively stable. However,N 2 ≈ 0 for z/h � 2 implies that the
deep disc is close to marginal stability. Other solutions do exhibit
entropy profiles decreasing with height, see Section 3.3.3.
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Electric heating in laminar protoplanetary discs 6109

Figure 4. Energy budget in the same equilibrium as on Fig. 3. Upper
panel: total energy equation (27). Lower panel: associated energy fluxes,
equivalent to the vertical integral of equation (27) from the mid-plane. The
different curves correspond to the source term (‘S’, solid black), the ideal
induction (‘I’, dotted cyan), Ohmic resistivity (‘O’, dashed red), the Hall
drift (‘H’, dashed magenta), ambipolar diffusion (‘A’, dotted–dashed blue),
and radiation (‘R’, green dots).

The MHD variables are represented on the lower panel, where the
velocities correspond to deviations from the Keplerian background.
The azimuthal velocity vy is negative near the mid-plane and
positive in the surface layers, indicating that angular momentum
has been exchanged between the two layers. The radial velocity
vx has a constant sign, so there is a net mass accretion rate
Ṁ = ∫

ρvx dz �= 0 in the entire domain.2 The mid-plane radial
velocity is only −1 × 10−4cs so the accretion flow is very subsonic.
The horizontal magnetic field (Bx, By) grows from zero in the
mid-plane to its maximal amplitude over a scale ∼h. The product
−BxBy ≥ 0 generates a radial flux of angular momentum (Maxwell
stress) through the disc. The azimuthal component B top

y ≈ −375Bz

at the upper boundary, so the magnetic field is tightly coiled and the
magnetic pressure B2/2 � ρc2

s above 2h.
The relation (24) is satisfied by construction: the −B top

y Bz stress
removes angular momentum vertically and causes an accretion rate
Ṁ �= 0 even in the absence of an outflow (vz = 0). Unlike in global
disc models, the radial flux of angular momentum – measured by α

≈ 7 × 10−4 in equation (32) for this equilibrium – cannot cause a
net mass accretion rate in the shearing box.

3.2.2 Energy budget

To explain the buildup of heat in the mid-plane, we decompose the
evolution of the total energy density in the reference simulation

2The system (10)–(17) of the shearing-sheet equations is independent of x,
so

∫
ρvx dz �= 0 can be interpreted as mass accretion regardless of its sign.

Figure 5. Heating/cooling rates per unit mass as defined in equation (25)
for the same equilibrium as on Fig. 3. Ohmic (qO, dotted red) and ambipolar
heating (qA, dashed blue) are balanced by radiative cooling (qR, dotted–
dashed green).

and plot the result in Fig. 4. The individual terms of equation
(27) are represented on the upper panel. The associated fluxes are
drawn on the lower panel, where the source term (‘S’) is integrated
vertically from the mid-plane and multiplied with a minus sign to
allow comparison with the other fluxes.

On the upper panel, the source term (solid black) represents the
extraction of energy from the Keplerian shear into velocity and
magnetic fields by the xy Reynolds and Maxwell stresses. It is
maximal near z ≈ 2h and positive at every altitudes, increasing the
total energy relative to the current-free equilibrium.

The Ohmic (dashed red) and ambipolar (dotted–dashed blue)
terms both have two distinct effects on the energy content of the
plasma. On one side, they locally dissipate magnetic energy into
thermal energy, with no effect on the total energy density. On
the other side, they diffusively spread magnetic energy away from
its maximum, causing the downward energy fluxes drawn on the
lower panel of Fig. 4. These fluxes vanish at the boundaries of the
computational domain, so they induce no net energy gain nor loss in
the equilibrium. Ambipolar diffusion dominates in the upper layers
z/h � 2. Ohmic diffusion is predominant at low altitudes z/h � 1
and it is the only term bringing energy down to the mid-plane. The
Hall term (dashed magenta) can only transport energy via waves.
The associated energy flux is negligible in this equilibrium.

On the upper panel, the radiative term (green dots) is negative
everywhere so it removes energy from the equilibrium. This is
achieved by an upward radiative flux FR ≥ 0 on the lower panel,
transporting radiative energy from the mid-plane out of the disc. The
radiative flux increases with height and becomes roughly constant
above z/h � 2, so the conversion from thermal to radiative energy
happens mostly below this height. It is the only term balancing the
net energy input caused by the source term and allowing the system
to reach a thermodynamic equilibrium.

Examining the total energy budget does not reveal where the
conversion from kinetic and magnetic to internal energy happens. To
clarify which effect is responsible for heating the gas, we decompose
the internal energy (pressure) equation into specific heating/cooling
rates as in equation (25) on Fig. 5. The Ohmic and ambipolar
resistivities both dissipate magnetic energy (electric currents) into
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6110 W. Béthune and H. Latter

Figure 6. Dissipation coefficient α as a function of the plasma β at different
radii from the star (see the legend). We stopped the exploration when the
temperature contrast reached unity.

heat. Electric heating is localized near the mid-plane and is primarily
caused by Ohmic resistivity for this specific equilibrium. The
radiative cooling rate qR is the same as on the upper panel of Fig. 4
after dividing by ρ, as expected from equations (16) and (17) in
steady state.

A key feature of these equilibria is that the energy extracted
from the shear is redistributed vertically before being thermalized.
Heating can thus occur in the mid-plane although the stress
extracts orbital energy away from the mid-plane. This feature is
more prominent on the alternative example solution provided in
Appendix A.

3.3 Dependence on disc magnetization

We proceed to explore how our main diagnostics depend on the
plasma β ∈ [104, 108] at four different radii r (au) ∈ {0.5, 1, 2, 4}
from the star. We consistently find a one to one mapping between
(r, β) and the steady-state profiles. Hence, at a given radius
there seems to exist a single solution branch parametrized by β

and stable to z-dependent perturbations. The remaining parame-
ters are kept the same as in the reference equilibrium described
above.

As a precaution, we stopped the exploration when the temper-
ature contrast T0/Tτ − 1 reached unity. For larger temperature
contrasts the disc becomes geometrically thicker, so our numerical
domain may become insufficiently large to describe the solutions
adequately. The effective scale height of the disc, measured as
the standard deviation of a Gaussian profile fitting the density
distribution below 3h, is always less than 1.5h.

3.3.1 Angular momentum transport and associated heating

We start by quantifying the radial flux of angular momentum and
the associated resistive heating as expressed by equation (32).
For each equilibrium, we measure the coefficient α as defined by
equation (31) and place it on Fig. 6. Since we exclude solutions
with a temperature contrast larger than unity, there are solutions at
larger magnetizations (smaller β) than we show here: the breaks
in our solutions branches are just where we end our parameter
scan.

Figure 7. Temperature contrast between the mid-plane and the τ = 1
altitude as a function of the plasma β at different radii from the star (see the
legend).

The dissipation coefficient α is a decreasing functions of β at
the four radii considered. At 1 au we find that α scales roughly as
β−1/2, that is increases as Bz, and the scaling becomes shallower
at larger radii. The values of α range from 10−7 to 10−2 over this
parameter space. For a given β, the coefficient α increases by more
than one order of magnitude from 0.5 to 1 au and by another order
of magnitude from 1 to 2 au. We stopped the exploration when the
temperature contrast in the disc reached unity, but more solutions
presumably exist with α � 10−2 for lower β. These levels of laminar
magnetic stress are in agreement with the 3D stratified shearing box
simulations of Lesur et al. (2014) which included the Hall effect.
Ohmic heating dominates over ambipolar heating by less than a
factor 10 at 0.5 and 1 au, they become comparable at 2 au and
ambipolar heating dominates at 4 au (not shown).

3.3.2 Temperature contrast

Following on from the heating efficiency of these solutions, we
evaluate the temperature contrast achieved between the mid-plane
and the τ = 1 altitude. Fig. 7 represents this temperature contrast
measured for each pair of parameters (r, β).

The temperature contrast is a decreasing function of β at any
given radius, so the more magnetized the disc the hotter the mid-
plane compared to the surface. The temperature contrast reaches
unity for β ∈ [105, 3 × 106] at r ≥ 1 au. When going from small to
larger radii, the temperature contrast becomes flatter as a function
of β. At r = 1 au, the temperature contrast decreases from 1 to 10−2

over a single decade of β ∈ [1 × 105, 1 × 106]. At r = 2 au, the
temperature contrast is larger than 10−2 over β ∈ [3 × 106, 7 × 107].
At r = 4 au, the temperature contrast is already larger than 10−2 at
the largest β = 108 considered. Order unity differences between the
mid-plane and surface temperatures are therefore achievable at all
radii for sufficient disc magnetization.

3.3.3 Convective stability

For each equilibrium represented on Fig. 7, we compute the entropy
profile via equation (22) and deduce the profile of the squared Brünt–
Väisälä frequency N 2. If N 2 < 0 over a range of altitudes, then this
range could be convectively unstable if we permitted perturbations
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Electric heating in laminar protoplanetary discs 6111

Figure 8. Maximal Brünt–Väisälä growth rate ω/� as a function of the
plasma β, computed from the entropy profile of equilibria at different
radii from the star (see the legend). We stopped the exploration when the
temperature contrast reached unity.

with a radial dependence. The characteristic time-scale for the
growth of convective modes would then be ω ≡ √−N 2. Because
a full linear stability analysis is outside the scope of this paper, we
focus on this necessary condition for convection.

We show the maximal value of ω/� measured in each equilibria
over this parameter space on Fig. 8. In this disc model, only the
equilibria at r = 4 au have a reversed entropy gradient leading
to ω > 0 over a range of altitudes. At r = 4 au, the temperature
contrast reaches unity for β ≈ 3 × 105; more solutions with ω > 0
presumably exist at lower β, which we excluded by precaution.

The Brünt–Väisälä growth rates range from a few 10−2 to over
3 × 10−1� for the equilibria represented on Fig. 8. The range
of altitudes over which ω > 0 spans roughly z/h ∈] 0, 1] and it
expands to higher altitudes from the mid-plane as β decreases.
Given the absence of viscosity and the slow radiative time-scale
following from the assumed opacity, these equilibria could support
unstable convective motions.

None of the solutions computed at r ≤ 2 au have a reversed
entropy gradient despite reaching order-unity temperature contrasts.
Upon inspection of these solutions, the temperature profiles are
flatter near the mid-plane, see for example Fig. A1 in Appendix A.
When the gas temperature starts decreasing with z, the density
is decreasing faster so that the specific entropy s = Tg/ργ − 1

remains monotonically increasing. To understand what controls the
temperature gradient, we rewrite the radiative term in equation (25)
assuming a steady-state radiation field in equation (17):

ρqR = −(γ − 1)∇ · FR. (34)

In the optically thick regions FR � −(λc/3)∇ER with ER � aT 4
g to

first order. The steady-state gas temperature then satisfies

∇ · (λ∇T 4
g

) + 3

(γ − 1)ac
ρ(qO + qA) � 0, (35)

so the mid-plane behaves as a thermal conductor with Ohmic and
ambipolar heating acting as source terms. Flat temperature profiles
∂zTg � Tbb/λ therefore occur when electric heating is localized
away from the mid-plane. At r = 0.5 and 1 au, electric heating is
indeed less efficient below z � 2h (see Fig. A2).

Figure 9. Same as Fig. 6 with an ionization fraction xe reduced by a constant
factor 10−2 at every height z/h.

Figure 10. Same as Fig. 7 with an ionization fraction xe reduced by a
constant factor 10−2; the temperature contrast remains below 10−2 at r =
0.5 and 1 au.

3.4 Dependence on ionization fraction

To account for the possible influence of dust grains on molecular
recombination and charge capture, we reduce the ionization fraction
xe by a constant factor 10−2 at every height. This is equivalent to
increasing the MHD diffusivities η∝1/xe. We show on Fig. 9 how
the dissipation coefficient α varies with r and β in this more resistive
case compared to Section 3.3.1.

At r = 0.5 au, the disc is linearly stable over the entire range
of β considered: the disc converges to the current-free equilibrium
(19) and therefore supports no electric heating. At r = 1 au, the
disc is linearly unstable only for β � 105. The resulting α are
maximal near β ≈ 3 × 105 and remain weaker than α � 10−5. At
r = 2 au, the dissipation coefficient reaches α ≈ 2 × 10−4 for β =
2 × 104. At r = 4 au, the disc is linearly unstable for the whole
range of β considered and α reaches roughly 3 × 10−2 for β = 104.
In comparison with Fig. 6, the dissipation coefficients are 10−1 to
10−3 times lower for a given β.

Fig. 10 shows the temperature contrast T0/Tτ − 1 measured in
the same series of equilibria as on Fig. 9. At r = 0.5 and 1 au,
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6112 W. Béthune and H. Latter

Figure 11. Same as Fig. 7 with a reduced opacity κ/10.

the temperature contrast remains below 10−2 for this range of disc
magnetizations. At r = 2 and 4 au, the temperature contrast reaches
its maximal value 7 × 10−2 and 1, respectively for β ≈ 2 × 104.
The ionization fraction thus controls to a large degree the efficiency
of electric heating and angular momentum transport inside the disc.

3.5 Dependence on gas opacity

For the range of temperatures considered, the frequency-integrated
opacity is dominated by dust grains (Bell & Lin 1994; Ferguson
et al. 2005). In the absence of vertical mixing, the sedimentation of
dust grains toward the disc mid-plane and their coagulation would
lower the average opacity. To account for the possible sedimentation
and coagulation of dust grains, we reduce the opacity by a constant
factor 10−1 with respect to the values of Bell & Lin (1994).

At 1 au, the altitude of the τ = 1 surface in the current-free
equilibrium (19) becomes zτ /h ≈ 2.99, so most of the gas in the
computational domain is still confined to high optical depths. The
τ = 1 altitude decreases to zτ ≈ 2.50h at r = 2 au and to zτ ≈ 1.86h
at r = 4 au. In this last case, most of the computational domain is
transparent to radiation so the vertical FLD approximation becomes
inappropriate. We therefore exclude the r = 4 au case in this section.

Fig. 11 shows the temperature contrast obtained as a function
of r and β when the opacity is reduced by a factor 10−1 relative
to our reference case. This figure is qualitatively similar to Fig. 7,
but the temperature contrast at a given β is now reduced by a
factor ≈1/10. At r = 2 au, when β decreases from 106 to 2 × 104

the temperature contrast increases slowly from 50 per cent to unity,
although the heating rate α increases from 10−2 to 10−1 (not shown).
This suggests that an increasing fraction of the heating power
is injected in the optically thin layers and immediately radiated
away. A stronger magnetization is thus required to reach the same
temperature contrast in low-opacity discs.

3.6 Mid-plane symmetry in two-sided discs

In the shearing box simulations of Lesur et al. (2014), Bai (2015),
and Mori et al. (2019), the flow spontaneously adopts an ‘odd’
symmetry about the mid-plane. Instead of the equatorial symmetry
(20) which we imposed, the odd symmetry is such that

(vx, vy, Bx, By)(−z) = (−vx, −vy, +Bx, +By)(z). (36)

This symmetry allows no electric current in the mid-plane, so
electric heating is necessarily localized in the surface layers |z/h|
� 2 (Mori et al. 2019). Since the Maxwell stress −ByBz has a
constant sign, angular momentum is injected from one boundary
and extracted from the other, causing no net accretion through the
disc. This odd symmetry is not only an artefact of the shearing box
as it was also obtained in global disc simulations (Gressel et al.
2015; Béthune et al. 2017; Suriano et al. 2018; Rodenkirch et al.
2020).

We tested the stability of the reference solution of Section 3.2 in
the two-sided domain z/h ∈ [−4, +4]. We used the symmetrized
one-sided solution as initial condition, perturbed it and repeated the
time integration until reaching a steady state. The flow converged
to the solution with an equatorial symmetry (Bx, By)(− z) = (−
Bx, −By)(z) matching our standard mid-plane conditions (20). The
mid-plane symmetry considered in this paper is therefore 1D stable
for at least a range of radii and magnetizations.

4 EXTERNA LLY DRI VEN STATES

4.1 Rationale

In Section 3.4, we reduced the ionization fraction xe by a factor
10−2 and the current-free equilibrium (19) became linearly stable at
r = 0.5 au regardless of β. When decreasing the ionization fraction
by a factor 10−3, the current-free equilibrium is in fact stable for all
β and radii up to r = 4 au in our disc model. Although the instability
is quenched in this regime, electric currents may still flow through
the disc if an external magnetic torque −B top

y Bz acts on the disc
surface. In this case, the energy dissipated inside the disc is not
extracted from the orbital shear but instead provided at the surface
by an energy flux F top

z as in equation (33).
A variety of situations can lead to such external torques if the

disc is threaded by a large-scale poloidal field. These include
magnetized winds (Pudritz & Norman 1983; Pelletier & Pudritz
1992) regardless of their launching mechanism – photoevaporative
or magnetocentrifugal. Since the key to mass accretion and energy
dissipation is the magnetic stress −B top

y Bz, as a first approximation
we can neglect the outflow velocity vz in the energetic balance (see
e.g. Lovelace et al. 2002; Lovelace, Rothstein & Bisnovatyi-Kogan
2009). Alternatively, the magnetic field threading the disc might be
anchored in a well-ionized medium with a different rotation rate
(e.g. the star, the infalling cloud, or a different radius of the disc).

In this section, we repeat the previous calculations with two major
changes. First, we decrease the ionization fraction by a factor 10−3

with respect to Section 2.1.3 so that the current-free equilibrium
(19) is linearly stable at every radius and magnetizations considered.
Second, we impose the value of B top

y ≡ By(4h) at the surface of the
disc, which sets the flux of angular momentum leaving the disc
−B top

y Bz and the resulting mass accretion rate via equation (24).
By fixing B top

y , we set the magnetic energy flux F top
z entering the

disc in equation (33). To keep the number of free parameters to
a minimum, we impose β = 105 and only vary the radius r and
surface azimuthal field B top

y .

4.2 Reference solution

4.2.1 Vertical structure

Fig. 12 shows the vertical profiles of the flow variables in an
externally driven equilibrium at r = 1 au with β = 105 and a surface
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Electric heating in laminar protoplanetary discs 6113

Figure 12. Vertical profiles of the flow variables in an externally driven
equilibrium at r = 1 au with a surface azimuthal field B

top
y = −2 × 10−2 G.

The curves are normalized by their extremal value for visibility. Upper panel:
density (solid green), squared Brünt–Väisälä frequency (dashed red), and gas
temperature relative to Tbb (dotted blue). Lower panel: radial velocity (solid
blue), azimuthal velocity (dotted orange), radial magnetic field (dashed
green), and azimuthal magnetic field (dotted–dashed red).

azimuthal field B top
y = −2 × 10−2 G ≈ −1.26Bz. The curves have

been rescaled to fit in [−1, 1] for visibility.
As in the internally driven case of Fig. 3, the upper panel shows

that the gas density is nearly Gaussian and the squared Brünt–
Väisälä frequency N 2 > 0 at every altitude. The gas and radiation
temperatures are equal to better than 10−6 accuracy everywhere (not
shown) and maximal in the mid-plane with T0 ≈ 1.30Tbb.

The lower panel shows that the velocity and magnetic pertur-
bations are localized above z/h � 2. The radial velocity vx < 0
in an accretion layer around z/h ≈ 3.5. Similarly the azimuthal
velocity vy < 0 in a narrow layer centred on z/h ≈ 3.4. By ≈
0 in the mid-plane and its growth toward B top

y happens rapidly
above z � 3h. The radial component Bx must only satisfy ∂zBx =
0 at the top boundary, so its amplitude B top

x ≈ 2.3Bz is not fixed
a priori. In this case, B2/2 � P at the surface of the disc, that is
the magnetic field is nearing equipartition as expected for general
accretion-ejection structures (Ferreira & Pelletier 1993). From the
surface toward the mid-plane, Bx decays over a characteristic length-
scale ∼h. Despite the electric currents being localized near the
disc surface, we still find a significant build up of heat in the
mid-plane.

4.2.2 Energy budget

On Fig. 13, we disentangle the energy exchanges in the previous
externally driven equilibrium. A key difference with the internally

Figure 13. Same as Fig. 4 in the externally driven equilibrium of Fig. 3.
The source term ‘S’ (solid black) is nearly zero everywhere, so energy is
mainly supplied at the upper boundary.

driven state shown on Fig. 4 is that the internal stress/source
term (solid black) is now negligible compared to every other
contributions by two orders of magnitude. Although the product
−BxBy is non-zero on Fig. 12, the resulting stress extracts a
negligible amount of energy from the Keplerian shear. In contrast to
the internally driven solution (4), the energy input in this equilibrium
is mainly supplied at the upper boundary and satisfies the balance
(33).

As previously, the Ohmic and ambipolar fluxes transport energy
downward from the disc surface. At the upper boundary, it is
ambipolar diffusion that brings the energy of the imposed B top

y

(and resulting B top
x ) from the surface z = 4h into the disc. The

Ohmic term becomes dominant near z/h ≈ 3 and extends down to
the mid-plane. The radiative flux is oriented upward in the entire
domain, evacuating heat through the upper boundary and allowing
the system to reach a thermodynamic equilibrium.

The vertically integrated Ohmic and ambipolar heat fluxes
amount to a dissipation coefficient α ≈ 7 × 10−5 in this equilibrium.
As shown above and in equation (33), this α is not related to
the vertically integrated stress but to the dissipation of the energy
supplied at the disc surface. We can use equation (35) to interpret
the build up of heat in the mid-plane despite electric heating being
localized near z/h ≈ 3. Since the photon mean-free path increases
with height (∂zλ > 0), radiative diffusion favours temperature
maxima in the mid-plane (∂2

z Tg < 0) as long as it is optically
thick.3

3During the evolution toward a steady state, the temperature initially rises
where heat is deposited (z/h ≈ 3), but this is only a transient stage.
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6114 W. Béthune and H. Latter

Figure 14. Dissipation coefficient α as a function of the surface azimuthal
field B

top
y at different radii from the star (see the legend) in externally driven

equilibria with β = 105. Each curve starts at B
top
y /Bz = 10−1.

Figure 15. Temperature contrast between the mid-plane and the τ = 1
altitude as a function of the surface azimuthal field B

top
y at different radii

from the star (see the legend) in externally driven equilibria with β = 105.

4.3 Dependence on surface magnetic field

We now sample different radii r and azimuthal magnetic fields
B top

y while keeping every other parameter fixed as in Section 4.2.
For each externally driven solution we compute the dimensionless
dissipation coefficient α via equation (31) and represent it on Fig. 14.
The magnetic field B top

y is arbitrarily measured in Gauss units.
The dissipation coefficient α increases with B top

y at the four radii
considered. Its values range from α = 10−7 to 10−1 for the interval of
B top

y / G ∈ [10−4, 10−1] considered. As mentioned in Section 4.2.1,
the surface magnetic field is near equipartition with the gas pressure
for B top

y / G = 2 × 10−2 at r = 1 au. All the solutions presented on
Fig. 14 are in this regime of moderate magnetization.

We find a roughly quadratic scaling of the dissipation coefficient
α with B top

y , most apparent at low B top
y or in the r = 4 au case.

We also note that the graphs of the dimensional heat flux QO +
QA as a function of B top

y (not shown) are nearly superimposed on
each other, so the separation between the four solution branches on
Fig. 14 mainly reflects variations of the normalization coefficient

Figure 16. Same as Fig. 14 with a reversed polarity for the net magnetic
field Bz < 0.

�h2�3 with radius. Since the energy dissipated in the disc is related
to the surface energy flux F top

z via equation (33), it does not have to
scale with the characteristic energy flux of the disc �h2�3.

On Fig. 15, we show the temperature contrast T0/Tτ − 1 measured
in the same series of equilibria as on Fig. 14. At r ≥ 1 au, the
temperature contrast increases from 10−2 to ∼1 over one decade in
B top

y . This range of B top
y is independent of the strength of the vertical

field Bz threading the disc as long as β � 1 because only (Bx, By)
can generate electric currents in this 1D model, and the net Bz only
weakly contributes to the ambipolar diffusivity.

When considering the opposite polarity Bz < 0 for the net
magnetic field, we found that the current-free equilibrium was
always linearly stable and therefore supported no energy dissipation
by itself. This polarity dependence is introduced by the Hall effect in
the induction equation. Since the externally driven states do not rely
on a linear instability as the energy source, we can freely impose
an energy flux F top

z on a disc with Bz < 0 and obtain different
dissipation properties than in the Bz > 0 case.

We show on Fig. 16 the dissipation coefficient α obtained when
repeating the same parameter sampling as for Fig. 14 but with the
opposite polarity for the net magnetic field: Bz < 0. As previously,
α is an increasing function of B top

y at every radii and spans the range
[10−7, 10−1] over the interval of B top

y considered.
The solution branches corresponding to r = 0.5 and 1 au are

qualitatively the same as on Fig. 14. At r = 1 au, the dissipation
coefficient α is greater than in the Bz > 0 case by at most a factor ≈4.
The difference becomes more significant at r = 2 au: the dissipation
coefficent reaches α = 10−2 for a surface B top

y ≈ 7 × 10−3 G, three
times smaller than in the Bz > 0 case. At r = 4 au, the solution
branch already deviates from the Bz > 0 case for B top

y � 4 × 10−4 G,
and α becomes over a thousand times larger than in the Bz > 0 case
for surface fields as weak as B top

y � 6 × 10−3 G.
Interestingly, the Bz < 0 orientation of the net magnetic field

leads to larger dissipation rates for a given magnetic field B top
y at the

surface of the disc. Since the energy dissipated in the disc is equal to
the energy input at the top boundary, it implies that the energy flux
F top

z is larger in norm when Bz < 0. Because only the Hall effect
induces such a polarity dependence, we can attribute the enhanced
F top

z to the contribution of the Hall energy flux at the surface of the
disc. Reciprocally, it takes a larger energy flux at the surface of the
disc to maintain a given B top

y when Bz < 0.
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5 D ISCUSSION

5.1 Caveats

5.1.1 Chemistry and radiation

We neglected the influence of dust grains and metals in the ionization
model used throughout this paper. The mid-plane abundance of free
electrons can decrease by several orders of magnitude depending
on the dust grain properties alone (Ivlev, Akimkin & Caselli 2016).
Moreover, dust grains can directly alter the electric resistivity when
considered as dominant charge carriers themselves (Salmeron &
Wardle 2008; Ilgner 2012; Xu & Bai 2016). Acknowledging these
uncertainties, we opted for a plausible ionization model and covered
the ‘dead-zone’ regime when artificially decreasing the ionization
fraction by a factor 10−2 in Section 3.4 and 10−3 in Section 4.

Inversely, the prescribed opacity relies on ∼ 20μm dust grains
at the temperatures considered ∼ 150 K. This prescription should
be valid in the inner few au, while the disc is optically thick to
its own thermal radiations (Chiang & Goldreich 1997; D’Alessio,
Calvet & Hartmann 2001). We obtained qualitatively similar results
when reducing the opacity by a factor 10 in Section 3.5, but larger
magnetizations were then required to heat the mid-plane to a given
temperature.

Our model does not capture the deposition of heat by stellar
photons at the disc surface and its reprocessing to thermal wave-
lengths. By solving for the reprocessed radiation only, we exclude
the temperature stratification separating the disc from the warm
stellar environment (Aresu et al. 2011; Pinte et al. 2018). Solving
for the deposition of heat as implemented by Flock et al. (2013)
and Kolb et al. (2013) should yield the same temperature in the
mid-plane as long as the disc is thick to both the incomming and
reprocessed radiations. As mentioned in Section 2.1.3, the disc
surface should also be better ionized above z/h � 4 by stellar FUV
photons (Perez-Becker & Chiang 2011) which we omitted.

5.1.2 Imposed symmetries

The assumption of axisymmetry is supported in good approximation
by both local and global disc simulations including Ohmic and
ambipolar diffusion in the regime relevant to protoplanetary discs
(Bai & Stone 2011; Gressel et al. 2015).

For simplicity we have imposed the symmetry (20) of the disc
about the mid-plane. The symmetry supported by global disc
simulations incorporating all three non-ideal MHD effects can differ
from equation (20) or keep evolving with radius and time (Béthune
et al. 2017). In Section 3.6, we relaxed the mid-plane conditions and
verified that the flow is attracted to the same equatorial symmetry for
a specific set of input parameters. However, we cannot exclude that
other solutions would rather bifurcate to an ‘odd’ mid-plane sym-
metry if permitted as in Lesur et al. (2014) and Mori et al. (2019).

Our most questionable assumption is that of radial locality, and
its implications are twofold. On one hand, we found that electric
heating and angular momentum transport strongly depend on the
conditions inside the disc. Placing our local simulations back in a
global disc picture, the measure of stress α could vary on au scales
and induce radially inhomogeneous accretion. The resulting gas
build-ups could in turn have implication on the migration of solids
(Weidenschilling 1977) or the generation of vortices (Lovelace et al.
1999; Meheut, Yu & Lai 2012). The non-ideal MHD effects also
affect the radial transport of magnetic flux (Guilet & Ogilvie 2013,
2014; Leung & Ogilvie 2019). Our model does not permit this
redistribution of mass and magnetic flux across neighbouring annuli.

On the other hand, this 1D model excludes radially depen-
dent waves and instabilities. The entropy profiles examined in
Section 3.3.3 suggest that some equilibria might be convectively
unstable in more than one dimension (Ruden et al. 1988; Kley,
Papaloizou & Lin 1993; Held & Latter 2018). The strong azimuthal
magnetic field could trigger the growth of oblique modes of the
ambipolar-shear instability (Kunz & Balbus 2004; Kunz 2008).
In principle, the azimuthal velocity profiles ∂zvy � � could also
trigger the vertical shear instability (Urpin & Brandenburg 1998),
albeit with small growth rates and saturation amplitudes in the
optically thick regions considered (Nelson, Gressel & Umurhan
2013; Lin & Youdin 2015). Our solutions might therefore be
unstable and evolve toward new, not necessarily stationary states
in more than one dimension.

Finally, our boundary conditions prevent the removal of energy
by advection (vz = 0) or by the ideal MHD Poynting flux associated
with torsional Alfvén waves. This Poynting flux could be used to
power outflows in jet-launching discs, so the heating rates obtained
in our model should be regarded as upper limits given the orbital
energy extracted by the magnetic field (Casse & Ferreira 2000).

5.2 Laminar versus turbulent discs

Assuming that mass accretion occurs via laminar magnetic torques
in the inner few au, our model produces a wide range of α ∈
[10−7, 10−1] depending on the ionization and magnetization of the
disc. Values as high as α � 10−2 would not necessarily induce
measurable accretion rates since they are restricted to narrow radial
ranges, favouring the formation of substructures in the disc instead.

Large values α > 10−4 are noteworthy for several reasons. First,
they support the possibility of magnetically driven accretion in
regions where the MRI should be resistively damped (Gammie
1996). The Hall effect plays a major role in destabilizing the
disc (Balbus & Terquem 2001; Wardle & Salmeron 2012), and in
producing a laminar magnetic stress as obtained in both local (Lesur
et al. 2014; Bai 2015) and global simulations (Béthune et al. 2017;
Bai 2017). On the other hand, should the resistivity be large enough
to stabilize the disc (e.g. at lower ionization fractions), electric
currents originating from large-scale accretion-ejection structures
may still permeate the disc (Ferreira 1997), inducing significant
heating and accretion inside z/h � 3.

Second, turbulent motions inferred from molecular line broad-
ening and dust lifting seem compatible with αSS ∼ 10−4 (Flaherty
et al. 2015, 2017; Pinte et al. 2016), where αSS is the Shakura &
Sunyaev (1973) measure of turbulent stress. If angular momentum
was only transported by turbulence, then this αSS should match
the one measured by turbulent heating and mass accretion (Balbus
& Papaloizou 1999). However, if the magnetic stress is primarily
laminar then the heating and mass accretion rates can be much
larger than those suggested by the gas kinematics alone. While the
magnetic field provides most of the stress in a laminar fashion,
hydrodynamic or dust-gas instabilities may be responsible for
turbulence at the observed amplitudes αSS ∼ 10−4 (e.g. Youdin
& Goodman 2005; Fromang & Lesur 2019).

5.3 Comparison with the work of Mori et al. (2019)

The closest study to ours is that of Mori et al. (2019), who
concluded that electric heating should have a negligible impact
on the temperature of the inner disc compared to stellar irradiation.
There are a number of differences between their model and ours
which hinder a direct quantitative comparisons. In particular:
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(i) They deduce the thermal structure of the disc from the MHD
heating rates computed in an isothermal disc. Although this method
is not self-consistent, we believe that it can be a good approximation
as long as the obtained temperature contrast is smaller than unity.

(ii) They consider gas opacities ranging from 5 × 10−1 to 5 ×
10−3 cm2 g−1, that is 10–1000 times lower than our reference case.
Their largest opacity is comparable to our reduced opacity case of
Section 3.5, where we obtained consequently lower temperature
contrasts. We believe that this is the main cause of discrepancy
between our results and those of Mori et al. (2019). Our results
support their conclusion of inefficient accretion heating in the limit
of low disc opacities.

(iii) They let the disc evolve in the two-sided domain z/h ∈ [−8,
+8] and only obtain the ‘odd’ mid-plane symmetry discussed in
Section 3.6. This symmetry supports no electric current in the disc
mid-plane, whence electric heating is localized away from the mid-
plane and does not favour heat accumulation inside the disc.

The method of Mori et al. (2019) might also introduce biases in
the energy budget which are difficult to quantify a priori. First, to
make the problem affordable in computational time they capped the
magnetic diffusivities to an arbitrary ceiling value and the density
to an arbitrary floor value. While these are standard and necessary
procedures for common time-integration schemes, they directly
alter the heating powers and indirectly affect the electric current
density inside the disc. Second, their vertical boundary conditions
allow the spontaneous launching of an outflow from the disc.
Although outflows are a natural outcome of global magnetized disc
models, they suffer from convergence issues in the local shearing
box model (Fromang et al. 2013; Lesur, Ferreira & Ogilvie 2013)
which might affect the energetic balance of the flow. For example,
the vertical acceleration of the flow determines the importance of
adiabatic cooling. Additionally, to reach a steady state the mass
lost through the outflow must be artificially re-injected inside the
domain, which supplies internal energy as well if the temperature
is left unaltered.

6 SU M M A RY

We computed the steady-state vertical structure of a circumstellar
disc at radii relevant to planet formation – 0.5 to 4 au in the chosen
disc model. We considered weakly ionized and weakly magnetized
discs in which angular momentum transport and internal heating
are laminar processes, and we precluded outflows. Simplified
prescriptions for the gas opacity and ionization fraction allowed
us to self-consistently model the energy exchanges in a radiative,
non-ideal MHD framework. We considered two different origins
for the energy dissipated in the disc, either:

(i) the energy of the Keplerian shear is extracted by internal
stresses following the growth of the HSI inside the disc (labelled
‘internally driven’ states),

(ii) or energy is supplied at the surface of the disc through the
twisting of a large-scale poloidal field (‘externally driven’ states).

Our results support the following conclusions:

(i) Including all three non-ideal MHD effects and a weak poloidal
field β > 104, the isothermal and current-free equilibrium can
be linearly unstable for mid-plane ionization fractions as low as
10−15. The instability saturates in equilibria sustaining angular
momentum transport and energy dissipation. Neglecting energetic
losses through an outflow, the equivalent ‘viscosity’ coefficients can
be as high as α ∼ 10−3–10−2.

(ii) In the absence of linear instability, for example at lower
ionization fractions, similar levels of dissipation can occur inside
the disc if the poloidal field is twisted to equipartition strength with
the gas by the disc environment, as expected for global accretion-
ejection structures.

(iii) The Ohmic and ambipolar resistivities transport energy ver-
tically through the disc, allowing energy thermalization away from
its original source. For a sufficiently high opacity κ � 10−1 cm2 g−1,
the dissipation of electric currents driven from the disc surface can
induce order unity temperature variations in the disc interior, and
can in some cases lead to convective instability.

We have indications that the 1D equilibria studied in this paper
should induce radial inhomogeneities in discs, and that they might
be vulnerable to radially dependent perturbations. The steady state
spontaneously adopted by 3D flows and the achievable level of
dissipation should therefore be pursued with global MHD simula-
tions. Because these issues depend crucially on the gas opacity
and ionization fraction, realistic quantitative predictions require
a detailed treatment of chemistry and radiation as it becomes
computationally affordable (Xu et al. 2019; Wang et al. 2019; Thi
et al. 2019).
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APPENDI X A : A LTERNATI VE EXAMPLE
SOLUTI ON

We draw on Fig. A1 the vertical profiles of an equilibrium with
β = 106 at a radius of r = 1 au. It is twice closer to the star than

Figure A1. Vertical profiles of the flow variables in an equilibrium with
β = 106 at r = 1 au, normalized by their extremal value for visibility. Upper
panel: density (solid green), squared Brünt–Väisälä frequency (dashed red),
and gas temperature relative to Tbb (dotted blue). Lower panel: radial
velocity (solid blue), azimuthal velocity (dotted orange), radial magnetic
field (dashed green), and azimuthal magnetic field (dotted–dashed red).
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Figure A2. Energy budget in the same equilibrium as on Fig. A1. Upper
panel: total energy equation (27). Lower panel: associated energy fluxes,
equivalent to the vertical integral of equation (27) from the mid-plane. the
different curves correspond to the source term (‘S’, solid black), the ideal
induction (‘I’, dotted cyan), Ohmic resistivity (‘O’, dashed red), the Hall
drift (‘H’, dashed magenta), ambipolar diffusion (‘A’, dot-dashed blue), and
radiation (‘R’, green dots).

the reference equilibrium of Section 3.2, in a region where the
disc is denser and the ionization fraction is lower (see Fig. 1). It
is threaded by a stronger Bz to reach a comparable temperature
contrast.

The gas temperature is maximal in the mid-plane with T0 ≈
1.25Tbb, smaller than the reference case shown on Fig. 3. The
squared Brünt–Väisälä frequency is also positive everywhere but
overall greater than in the reference case, putting this equilibrium
further away from convective instability. The velocity and magnetic
fields have small amplitudes near the mid-plane and large ampli-
tudes above z/h � 2. The azimuthal component of the magnetic
field reaches B top

y ≈ −39Bz at the disc surface, about three times
weaker then in the reference case.

We decompose the energy equation (27) for this equilibrium on
Fig. A2. The source term, related to the extraction of orbital energy
via the xy stress, is maximal at z/h ≈ 2.8 ± 0.5 and essentially
zero below z � h. The absence of stress in the mid-plane indicates
that this region is linearly stable to vertical perturbations on a scale
∼h. The energy extracted from the shear is transported downward
by ambipolar diffusion and then by Ohmic diffusion. The orbital
energy can thus be thermalized away from the ‘active’ surface
layers which support most of the stress. Even if electric heating
predominantly happens above z/h � 1, this heat accumulates in the
mid-plane for optically thick discs as expressed by equation (35) in
Section 4.2.2.

APPENDI X B: TEST O F THE I MPLI CI T
I N T E G R ATO R

We verify that our numerical scheme properly captures the physics
of the problem by simulating the growth of the HSI in a stratified,
weakly ionized, and isothermal disc. For simplicity, we do not
include the pressure and radiation equations, and we compute the
MHD diffusivities ηO, H, A assuming a constant ionization fraction
xe = 10−12. We initialize the disc in a current-free equilibrium (19)
with β = 106 and P = ρc2

s at all times and altitudes. We add a
noise of small amplitude 10−6 on top of this equilibrium to seed the
instability. We keep the damping term �h2∂2

z vz in equation (13) for
consistency with the rest of the paper; this term does not affect the
linear phase of the instability for which vz = 0.

Figure B1. Square root of the vertically integrated energy perturbation
when starting from the current-free equilibrium with β = 106 and a constant
ionization fraction xe = 10−12. The solid blue curve corresponds to the first-
order implicit integration; and the dotted green line indicates the predicted
growth rate 1.40 × 10−1� of the fastest growing eigenmode.

Figure B2. Vertical structure of the unstable mode growing in the implicit
integration test. The thick solid curves represent the instantaneous profiles
at �t = 35; and the thin dashed curves represent the eigenmode with growth
rate 1.40 × 10−1� predicted by linear analysis. The curves have been
normalized to fit in the range [−1, 1].
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Separately, we linearize the system of equations (3)–(5) about
the current-free equilibrium (19) assuming an isothermal equation
of state P = ρc2

s . We obtain the set of tangent eigenvalues and
eigenmodes numerically. For the equilibrium considered, there are
two unstable eigenmodes with associated eigenvalues (growth rates)
2.76 × 10−2 and 1.40 × 10−1 �. Starting from the perturbed
equilibrium, the fastest growing mode should quickly dominate
the vertical structure of the flow.

Fig. B1 shows how the amplitude of the perturbations grows in
time. The exponential growth appears after �t � 8. The growth rate
obtained by first-order implicit integration matches the predicted
growth rate 1.40 × 10−1� to per cent accuracy during this phase.
The growth of the perturbations slows down after �t � 60, marking
the non-linear saturation of the instability.

Fig. B2 shows the vertical structure of the flow at �t =
35, that is during the exponential growth phase. The vertical
profiles of velocity and magnetic field match those of the fastest
growing eigenmode over the whole extent of the computational
domain, confirming that the instability is accurately resolved in
space.

A P P E N D I X C : C O N V E R G E N C E W I T H D O M A I N
SIZE

Throughout this paper, we fixed the vertical extent of the domain
to Lz = 4h so as to focus our resolution near the mid-plane while
including most of the mass and electric current passing through
the disc. The gas inside the computational domain is causally
connected to the boundaries, so the upper boundary conditions
necessarily affect the structure of the steady-state solutions. In
particular, imposing ∂zBy = 0 at a finite height might truncate the
electric current distribution and lead to underestimated heat fluxes
Q. We now examine the convergence rate of the heat flux with
domain size Lz.

We vary Lz from 3 to 4.5h in internally driven equilibria with β =
106 at r = 1 au. The case Lz = 4h corresponds to the equilibrium
shown on Fig. A1. Larger domain sizes Lz > 4.5 place severe
constraints on the numerical stability of the integration scheme when
including radiation transport, presumably due to the short radiative
time-scales of the uppermost layers. Since the energy source is
maximal away from the mid-plane for this choice of r and β (z/h
≈ 2.8 ± 1, cf. upper panel of Fig. A2), this equilibrium should be
a defavourable case regarding convergence rates.

Figure C1. Dissipation coefficient α as a function of the box size Lz for
internally driven equilibria with β = 106 at r = 1 au. The dotted lines
indicate our standard value for the box size Lz/h = 4 and the corresponding
α as marked on Fig. 6.

Fig. C1 shows that the dissipation coefficient α increases with
Lz, supporting the idea that the heat flux Q is underestimated when
truncating the domain at a finite height. The heat flux increases
mostly below Lz/h � 3.5, corresponding to the range of altitude
where energy is extracted from the Keplerian shear by the xy stress,
see Fig. A2. For Lz/h � 4, the heat flux keeps slowly increasing with
Lz, also in agreement with the non-vanishing stress above the disc.
Considering the slow convergence rate of α with Lz, the dissipation
coefficients presented throughout this paper should be placed within
10 per cent confidence intervals regarding the sensitivity to the
domain size Lz.

Our model does not account for the transition from the disc to
the stellar environment. A sharp thermochemical transition may
be induced by stellar X and FUV photons (Aresu et al. 2011;
Perez-Becker & Chiang 2011) at altitudes of roughly z/h � 4,
with implications on the ionization fraction and the launching of
outflows. Since this transition would affect the plasma conductivity
and its energetics, simply extending our 1D disc model to larger
domains Lz � 4h would not yield more realistic results.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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