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S U M M A R Y
We present a novel numerical method to simulate global seismic wave propagation in realistic
aspherical 3-D earth models across the observable frequency band of global seismic data. Our
method, named AxiSEM3D, is a hybrid of spectral element method (SEM) and pseudospectral
method. It describes the azimuthal dimension of global wavefields with a substantially reduced
number of degrees of freedom via a global Fourier series parametrization, of which the number
of terms can be locally adapted to the inherent azimuthal complexity of the wavefields.
AxiSEM3D allows for material heterogeneities, such as velocity, density, anisotropy and
attenuation, as well as for finite undulations on radial discontinuities, both solid–solid and
solid–fluid, and thereby a variety of aspherical Earth features such as ellipticity, surface
topography, variable crustal thickness, undulating transition zone and core–mantle boundary
topography. Undulating discontinuities are honoured by means of the ‘particle relabelling
transformation’, so that the spectral element mesh can be kept spherical. The implementation of
the particle relabelling transformation is verified by benchmark solutions against a discretized
3-D SEM, considering ellipticity, topography and bathymetry (with the ocean approximated
as a hydrodynamic load) and a tomographic mantle model with an undulating transition zone.
For the state-of-the-art global tomographic models with aspherical geometry but without a 3-D
crust, efficiency comparisons suggest that AxiSEM3D can be two to three orders of magnitude
faster than a discretized 3-D method for a seismic period at 5 s or below, with the speed-up
increasing with frequency and decreasing with model complexity. We also verify AxiSEM3D
for localized small-scale heterogeneities with strong perturbation strength. With reasonable
computing resources, we have achieved a corner frequency of up to 1 Hz for 3-D mantle
models.

Key words: Structure of the Earth; Numerical solutions; Computational seismology; Theo-
retical seismology; Wave propagation.

1 I N T RO D U C T I O N

For more than a century, seismology has served as the primary
tool for data-informed inference of Earth structure and dynam-
ics. Seismic tomography has revealed a consensual 3-D picture of
the Earth’s interior, dominated by long-wavelength thermal and
compositional heterogeneities (Su & Dziewonski 1991; Becker
& Boschi 2002; Romanowicz 2003). Most achievements in to-
mography have started from a radially symmetric Earth structure
(e.g. PREM, Dziewonski & Anderson 1981) and have utilized a
certain measurement extracted from full waveforms, such as the

ray theory (e.g. Auer et al. 2014), normal-mode summation (e.g.
Ishii & Tromp 2004), finite-frequency theory (e.g. Hosseini &
Sigloch 2015) as well as their combinations (e.g. Ritsema et al.
2011; Zaroli et al. 2015). Nevertheless, aimed at computing the
full elastodynamic response of a physically realistic 3-D earth
model to an earthquake source, global wave propagation has al-
ways remained as one of the most fundamental pursuits in seismol-
ogy, particularly encouraged by the ongoing prosperity of broad-
band waveform data (see e.g. IRIS annual report 2015, http://ww
w.iris.edu/hq/publications/annual reports) and high-performance
computing.

C© The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2125

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/2125/5333339 by U

niversity of C
am

bridge user on 06 Septem
ber 2019

mailto:kuangdai.leng@earth.ox.ac.uk
http://www.iris.edu/hq/publications/annual_reports


2126 K. Leng et al.

Numerical waveform modelling is the most comprehensive ap-
proach to study wave physics, inevitable for non-trivial wave phe-
nomena such as diffraction (Hosseini & Sigloch 2015) and triplica-
tion (Stähler et al. 2012). It fully captures structure-induced wave
anomalies in different regimes of wave scattering as a function of
wavelength, structural scale and strength, and propagation path (Aki
& Richards 1980; Igel 2017). Such wave scattering effects are fun-
damental to all seismological probings of the Earth’s interior that
rely on understanding how waveforms encode information from
heterogeneous multiscale structures. For instances, waveform mod-
elling has been applied to explain the seismic insensitivity of mantle
plumes (Hwang et al. 2011; Maguire et al. 2016), to investigate the
polarity of phase conversions at subducted slabs (Haugland et al.
2017), and to verify complex seismic probes of the ultralow velocity
zones (ULVZs; Thorne et al. 2013).

Seismic tomography has delivered plentiful 3-D earth models
using different inverse approaches and data sets [see e.g. the col-
lections of IRIS-EMC (http://ds.iris.edu/ds/products/emc/, Trabant
et al. 2012) and SubMachine (http://submachine.earth.ox.ac.uk/,
Hosseini et al. 2018)]. As these tomographic models diverge at
shorter wavelengths, a central question arises as to what extent
our knowledge about the Earth’s 3-D structure has approached to
the underneath truth since the early-established long-wavelength
pictures such as M84 (Woodhouse & Dziewonski 1984). This ques-
tion seems to remain poorly answered because comparisons among
tomographic models have been limited within the model space,
mainly by visual inspection or power spectra analysis (e.g. Becker
& Boschi 2002; Auer et al. 2014). More objective and quantitative
model assessment can be achieved in the data space, that is, by prop-
agating waves in those 3-D tomographic models and comparing the
synthetics to seismic data.

Wave propagation also bears the next-generation full-waveform-
based inverse techniques, such as adjoint tomography (e.g. Tape
et al. 2009; Zhu et al. 2015; Bozdağ et al. 2016a), which iteratively
refines a 3-D earth model based on 3-D sensitivity kernels, and for-
ward modelling of data (e.g. Cottaar & Romanowicz 2012; Thorne
et al. 2013), which searches over vast possibilities for optimized
model parameters. Compared to a conventional linearized tomog-
raphy, both iterative gradient (Tromp et al. 2008) and non-gradient
(chapter 2, Tarantola 2005) approaches can access the regime of
strong wave scattering, desirable or even necessary for strong and
sharp heterogeneities, for instance, crustal tomography using noise
correlation (Basini et al. 2013) or earthquake waves (Tape et al.
2009) as well as imaging localized small-scale structures such as
the ULVZs (Cottaar & Romanowicz 2012; Thorne et al. 2013) and
mantle scatterers (Korenaga 2015; Haugland et al. 2017). In both
these nonlinear approaches, however, one may need to propagate
waves in different 3-D earth models hundreds to thousands of times
for each event.

Many numerical methods have been developed for seismic wave
propagation in 3-D earth media (Moczo et al. 2011; Igel 2017),
such as finite difference (Igel et al. 2002; Kristek & Moczo 2003),
spectral element (Komatitsch & Tromp 2002a; Capdeville et al.
2003; Chaljub et al. 2003) and discontinuous Galerkin (Dumb-
ser & Käser 2006; Etienne et al. 2010). Global seismology has
benefited from a couple of community software packages, in-
cluding SPECFEM3D GLOBE (SPECFEM, Komatitsch & Tromp
2002a,b), the most mature and comprehensive spectral element
method (SEM) hardcoded for the Earth, encompassing 3-D mantle
and crust, topography and ocean, ellipticity, rotation and gravity
and Salvus (Afanasiev et al. 2017), a recently released 2-D/3-D
SEM-based toolkit for waveform modelling and inversion from

laboratory to global scales, with particular emphasis on usability
and extensibility, and CSEM (Capdeville et al. 2003) and SES3D
(Gokhberg & Fichtner 2016) that tackle 3-D media in spherical ge-
ometry, aimed mainly at mantle studies. Discretized 3-D methods
such as SPECFEM and Salvus are capable of handling complex 3-D
structures in arbitrary geometry and may thus be considered ‘full’
and ‘exact’, as long as the earth model can be properly discretized.

However, despite the surge in both hardware and software de-
velopments, global wave propagation has remained as one of the
most challenging problems in scientific computing. Discretized 3-D
methods come at a persistently high computational cost (Carring-
ton et al. 2008; Rietmann et al. 2012; Tsuboi et al. 2016) that still
obliterates any possibility to cover the observable frequency band of
global seismic data (up to 1 Hz) with realistic computing resources.
The multiscale nature of the Earth’s 3-D interior requires high-
frequency simulations. For example, to resolve a mantle plume a
few hundred kilometres in width, a seismic period down to 5 s
should be desirable, at which one 3-D simulation may consume
104 ∼ 105 CPU-hr for a 1 hr record length. At a 1 Hz frequency,
it may consume a formidable amount of 107 ∼ 108 CPU-hr per
1 hr record length. Concerning seismic inverse problems that in-
volve a large number of forward simulations, these 3-D methods
can hardly serve as the underlying wave propagator for realistic
problems with a high-frequency resolution and a good amount of
data. Computational cost may be reduced by hardware accelerators
such as GPU (Komatitsch et al. 2010; Rietmann et al. 2012), algo-
rithmic advances such as local time stepping (Rietmann et al. 2015)
and coarse-grained attenuation (van Driel & Nissen-Meyer 2014),
or a truncated computational domain such as RegSEM (Cupillard
et al. 2012). Practically, most of these efforts may lead to a compu-
tational speed-up of 2 to 5, desirable but insufficient to substantially
ease the computability.

As justified by the fact that a large part of traveltime data can
be predicted by an averaged 1-D Earth structure within a small
margin of error (Astiz et al. 1996), spherically symmetric earth
models come as a pragmatic compromise for modelling between
broad frequency ranges and reasonably realistic waveforms. Based
on this presumption, many dimension-reduction methods have been
developed. Capable of decreasing the computational cost by a few
orders of magnitude, the dimension-reduction methods have taken a
predominant role in global seismology, maximizing data utilization
in terms of both data volume and broad-band waveform contents
(e.g. Colombi et al. 2012; Hosseini & Sigloch 2015). Depending
on how their computational cost scales with the number of out-
put sampling points, these dimension-reduction methods can be
divided into two categories: waveform methods that produce wave-
forms at given receiver locations, such as DSM (Kawai et al. 2006),
GEMINI (Friederich & Dalkolmo 1995), Yspec (Al-Attar & Wood-
house 2008), Instaseis (van Driel et al. 2015) and Syngine (Krischer
et al. 2017), and wavefield methods that deliver the whole wave-
field throughout the interior, such as AxiSEM (Nissen-Meyer et al.
2007b, 2008, 2014), an axisymmetric SEM that carries Instaseis
and Syngine, and axisymmetric finite difference methods (e.g. Igel
& Weber 1995; Chaljub & Tarantola 1997; Toyokuni & Takenaka
2006). In addition, a dimension-reduction method can be coupled
with a full 3-D method to efficiently solve multiscale problems with
a 3-D subdomain inside a 1-D background model (e.g. Capdeville
et al. 2003; Masson et al. 2014; Monteiller et al. 2015).

Motivated to bridge the huge gap between expensive methods
for 3-D media and fast methods for spherically symmetric media,
Leng et al. (2016) brought forward a novel hybrid method combin-
ing SEM and pseudospectral method. It parametrizes the azimuthal
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dimension of global wavefields in terms of Fourier series, so as
to exploit their inherent azimuthal smoothness resulting from the
point-source singularity and the smoothness of global tomographic
models. This method features a model-adapted computational cost:
for spherically symmetric earth models, the method naturally de-
generates to the axisymmetric SEM, AxiSEM (Nissen-Meyer et al.
2007b); while, for typical tomographic mantle models, it proves
significantly more efficient than conventional 3-D methods, for ex-
ample, with a speed-up of two orders of magnitude near a 10 s
period. More attractively, such a speed-up is observed to scale with
seismic frequency, attractive to high-frequency applications (e.g.
below 5 s) that harbour numerous open geophysical questions.

This paper strives to extend the prototype of Leng et al. (2016)
to become as comprehensive as discretized 3-D methods to include
all known types of 3-D Earth features, while being considerably
more efficient than the 3-D methods across a large model parameter
space and a broad frequency range. From a model perspective,
we will generalize the method to aspherical geometry and verify its
robustness to localized small-scale structures. From a computational
perspective, we will introduce a couple of techniques that enhance
its usability and efficiency. We will also carry out comprehensive
verification in reference to a discretized 3-D method.

First, we will extend our method to aspherical earth models with
undulating interfaces. The Earth is not of a precisely spherical na-
ture, but undulates, in some cases significantly, along the surface,
some of the solid–solid discontinuities such as Moho (e.g. Basini
et al. 2013; Laske et al. 2013) and the transition zone boundaries
(e.g. Deuss et al. 2006; Kustowski et al. 2008) and some of the
solid–fluid discontinuities such as the ocean floor (e.g. Gualtieri
et al. 2014) and CMB (e.g. Soldati et al. 2013; Colombi et al.
2014). These undulating discontinuities must be physically hon-
oured in certain applications because of their striking impact on the
synthetic waveforms, for instance, surface topography and crustal
thickness variation that entirely reshape surface waves (Zhou et al.
2005; Tape et al. 2009). Imaging interface perturbations can also
deliver important complementary constraints on Earth structure and
dynamics (Deuss et al. 2006; Colombi et al. 2014). From a method-
ological aspect, global wave propagation with undulating interfaces
has not been cross-validated so far, especially for the 3-D crust that
poses significant challenges to model discretization.

Even for a discretized 3-D method, handling geometric com-
plexity is not a straightforward task. To overcome the outstanding
difficulties around discretization, two main strategies have been
employed. First, advanced meshing techniques can be used to mesh
the geometry directly, such as unstructured hexahedra (Peter et al.
2011) and tetrahedra (Pelties et al. 2012). These meshing tech-
niques are capable of tackling arbitrary 3-D geometry, but are not
available to pseudospectral schemes without a 3-D mesh, such as
normal-mode summation (chapter 13, Dahlen & Tromp 1998), fi-
nite difference approaches with staggered grids (chapter 4, Igel
2017) and our hybrid method. For these approaches, certain types
of geometric complexities can still be considered exactly via several
medium transformations, such as the non-periodic homogenization
technique (Capdeville et al. 2010, 2013), curvilinear coordinate
transformations (Hestholm & Ruud 1994; Komatitsch et al. 1996;
Zhang & Chen 2006; Tarrass et al. 2011; Zhang et al. 2012) and
the particle relabelling transformation (Takeuchi 2005; Al-Attar &
Crawford 2016) used in this paper. Starting from different physi-
cal or mathematical considerations, such medium transformations
convert the geometric complexities into volumetric complexities
of the contiguous media while preserving the resultant wavefields.
At a continental to global scale, it is reasonable to assume that

the radial discontinuities (except the ocean floor) are topologically
equivalent to a sphere. Under this assumption, we base our aspher-
ical extension on the particle relabelling transformation (Al-Attar
& Crawford 2016). It establishes a new 3-D wave equation on an
imaginary spherically symmetric earth model; this wave equation
is formally identical to the original one for the physically undulat-
ing earth model and yields an equivalent wavefield solution. Such
a transformation is frequency-independent and easy to be imple-
mented.

Apart from long-wavelength mantle heterogeneities and undulat-
ing interfaces, localized small-scale heterogeneities represent an-
other type of known 3-D Earth structure, such as the ULVZs (Cottaar
& Romanowicz 2012; Thorne et al. 2013) and mid-mantle scatterers
(Korenaga 2015; Jenkins et al. 2017). Depending on the structure–
wavelength ratio and the perturbation strength, such small-scale
heterogeneities may enter the regime of backscattering, reflecting
energy to all directions like a secondary source. Such scattering
effects can be simulated by discretized 3-D methods, almost with
an indifferent computational cost. However, they are generally be-
lieved to be a bottleneck of pseudospectral schemes due to their
white power spectra (chapter 9, Boyd 2001). Being convergent in
theory, our method is capable of incorporating such small-scale
heterogeneities, but their cost impact has to be carefully examined.
For this purpose, we impose a strong mantle scatterer onto PREM,
considering a wide range of structure–wavelength combinations.

Besides the above two model-driven extensions, three method-
ological improvements will be introduced. The first is called ‘wave-
field scanning’, which maximizes the computational efficiency of
our method by locally optimizing the Fourier expansion order of so-
lution. It also provides a natural way to study azimuthal wave scat-
tering and healing. Second, we will introduce an improved Fourier-
mode coupling approach that greatly promotes the performance
for non-smooth models. Finally, the parallel scalability of our mes-
sage passing interface (MPI)-based implementation up to more than
12 000 cores will be presented, based on a heterogeneous domain
decomposition scheme for load-balancing. Efficiency comparisons
will be carried out between our method and a discretized 3-D SEM,
SPECFEM, considering a large parameter space for both realistic
Earth structures and seismic frequencies.

2 T H E O RY

For spherically shaped earth models with 3-D material hetero-
geneities, the theory and the SEM implementation of our hybrid
method have been elaborated in Leng et al. (2016). In this section,
we focus on the ‘particle relabelling transformation’ (Al-Attar &
Crawford 2016) for aspherical Earth geometry. A new approach for
Fourier-mode coupling will also be introduced.

2.1 3-D earth with spherical geometry

We first briefly review the theory for 3-D earth models with spherical
geometry, established in Leng et al. (2016). Consider an anisotropic
elastic earth model with spherical volume � and surface ∂�. A point
within � is referred to by its position r, and the unit outward normal
to ∂� by n̂. Let u (r; t) and f (r; t), respectively, denote the time-
dependent displacement and body force, ρ (r) the density, and C (r)
the fourth-order elastic stiffness tensor.

We select a coordinate system in which the source lies on or
beneath the north pole. Such a source-centred coordinate sys-

tem is framed by a unit cylindrical basis denoted by
(

ŝ, φ̂, ẑ
)

or
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Figure 1. Sketch of an earth model with axisymmetric geometry. The right-
hand side shows the 2-D meridian domain D with physical boundaries ∂D∪Si

(thick curves) and axial boundary A (dashed thick line). Rotating D about A
by 2π will generate the 3-D domain �, with boundaries ∂�∪�i, as shown
on the left-hand side. Here we denote the 3-D solid–fluid discontinuities and
their 2-D meridians by �i and Si, respectively, which are not included in
this section but later referred to in Appendix A.

(ĝ1, ĝ2, ĝ3). Because of its spherically symmetric geometry, includ-
ing the surface and all the internal discontinuities, the 3-D domain �

can be generated by rotating a 2-D meridian domain D (‘D’-shaped)
about the axis A by an angle of 2π , as shown in Fig. 1.

We start from the following weak form of the 3-D equations of
motion,∫

�

ρ∂2
t u · w d3r +

∫
�

∇u : C : ∇w d3r =
∫

�

f · w d3r, (1)

where w = w (r) denotes an arbitrary test function in �.
As observed by Leng et al. (2016), global wavefields in a typical

tomographic mantle model take on different variabilities along dif-
ferent directions, that is, in the source-centred coordinate system,
they vary much more smoothly along the azimuthal direction than
within the meridian plane. This results from the fact that the lateral
wave scattering effects of a smooth Earth structure are too weak
to substantially change the source-dominant radiation patterns. To
take advantage of such inherent azimuthal smoothness, Leng et al.
(2016) introduced a global Fourier series parametrization of func-
tions over the φ-direction. For example, the displacement field u
will be approximated by the following truncated Fourier series,1

u = ĝi (φ) ui (s, φ, z; t) � ĝi (φ)
∑

|α|≤nu

uα
i (s, z; t) eiαφ, (2)

where i = √−1 and uα
i (s, z; t), a 2-D field defined in D, denotes

the α-th order Fourier coefficient of ui(s, φ, z; t). Doing the same for

1In this paper, subscripts of field variables denote spatial indices, such as ijkl,
and superscripts Fourier series indices (not powers), such as αβγ . Einstein
summation convention only applies to spatial indices.

the test function w, the source term f and the material properties ρ

and C, we may reduce the 3-D weak form in �, eq. (1), to a coupled
algebraic system of 2-D weak forms in D, with the φ-dimension
reduced (see Leng et al. (2016) for derivations),

∑
|α|≤nu

(∫
D

ρ−(α+β)∂2
t uα

i w
β

i s dsdz +
∫

D
uα

i ; j C
−(α+β)
i jkl w

β

k;l s dsdz

)

=
∫

D
f −β

i w
β

i s dsdz, ∀β ∈ {−nu, . . . , nu},
(3)

where uα
i ; j denote the Fourier coefficients of the deformation gradi-

ent ∇u computed by

uα
j ;i = ∂xi u

α
j + 1

s
�α

i jkuα
k , �α

i jk = δi2

(
iαδ jk − ε3 jk

)
, (4)

with δij being the Kronecker delta and εijk the Levi-Civita symbol.
For an earthquake source represented by a point moment tensor,
the right-hand side of eq. (3) has a closed form (see Appendix B),
which vanishes when |β| > 2; for a point force vector such as a
meteorite impact or an adjoint source for waveform inversion, it
vanishes when |β| > 1.

Since the unknowns (uα
i ) and the parameters (ργ , Cγ

i jkl and f β

i ) of
eq. (3) are all defined in the 2-D meridian domain D, it can be solved
with a 2-D numerical method. Leng et al. (2016) implemented a
2-D SEM to solve this problem, named AxiSEM3D, as it is a natural
extension of AxiSEM (Nissen-Meyer et al. 2007b).

2.2 Particle relabelling transformation

The Fourier series parametrization, eq. (2), relies on spherical sym-
metry of the 3-D domain �. To honour aspherical Earth features
such as ellipticity and an undulating Moho, we apply the particle
relabelling transformation (Al-Attar & Crawford 2016).

The basic idea is easily understood. Continuum mechanics typ-
ically describes deformation processes starting from a static equi-
librium state. However, one can always associate a deformation
process to any compatible reference state to reach the same objec-
tive description. In our case, we transform the undulating physical
model (static equilibrium state) into a spherically symmetric refer-
ence model (a selected compatible reference state), whose density
and elasticity properties are determined such that the two models
are identical for wave propagation. In other words, we handle inter-
face undulations in terms of volumetric perturbations, so as to retain
the form of eq. (3) as well as its SEM implementation. The idea
behind such transformations comes from the work of Woodhouse
(1976) on boundary perturbation theory for seismic free oscilla-
tions. This approach was then extended to exact wavefield calcula-
tions by Takeuchi (2005) in a Cartesian geometry and by Al-Attar &
Crawford (2016) who established a general theoretical framework
for the transformations.

Frequency-independence is a notable advantage of the particle
relabelling transformation: it does not interact with wave propaga-
tion effects but only depends on the given physical model and the
selected geometric configuration of the reference model, allowing
for an easy implementation at the pre-processing stage. However,
because the transformation requires compatibility or homeomor-
phism between the physical and the reference configuration, we
cannot utilize it to handle discontinuities non-homeomorphic to
a sphere, such as the patched (multiply connected) ocean floor.
In AxiSEM3D, we model the ocean as a hydrodynamic load
(Komatitsch & Tromp 2002b), with the formulations given in
Appendix C.
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Figure 2. An illustration of geometric mapping from a selected reference
spherical configuration to the physically undulating configuration. With the
geometric mapping constrained in the radial direction, a particle P at po-
sition r in the reference configuration is stretched to position r + τ (r) r̂ to
construct the physical configuration. For an undulating internal interface,
one needs to decide an upper and a lower boundary (not necessarily model
discontinuities) at which the undulation vanishes. Linear interpolation may
be applied in between. The choice of the undulated range is not unique: a
narrower one tends to involve fewer stretched elements and thus less addi-
tional computational cost for the particle relabelling transformation, but at
the cost of more squeezed elements that may diminish the global time step.

Consider an earth model subject to finite undulations on a few
interfaces, which can be the surface or any internal solid–solid or
solid–fluid discontinuities, such as Moho or CMB. We denote the
volume of this physically undulating earth model by �. The 3-D
weak form for this physical model is given by eq. (1). We map all
the particles in this physical model, in one-to-one correspondence,
onto an imaginary reference model with spherically symmetric ge-
ometry, denoted �̃. Apparently, the choice of the reference spherical
geometry is not unique. To minimize the computational cost related
to the transformation, we constrain the geometric mapping in the
radial direction r̂, quantified by the following relation,

ξ (r) = r + τ (r) r̂, (5)

where τ (r) gives the radial shift at position r in �̃. Literally, eq. (5)
means, through the geometric mapping ξ : �̃ → �, the undulating
configuration � can be constructed by radially stretching all the
particles in the reference configuration �̃ from position r to position
r + τ (r) r̂, as illustrated in Fig. 2.

The undulating configuration can be considered as a kinemati-
cally permissible deformation state from the reference configura-
tion, of which the corresponding deformation gradient, denoted F
transpose, can be written in the spherical coordinate system (r, θ ,

φ) in Fig. 1 as

F (τ, r) = [∇ (τ r̂)
]T = (

r̂ θ̂ φ̂
)
⎛
⎜⎜⎜⎜⎝

∂rτ
∂θ τ

r

∂φτ

r sin θ

0
τ

r
0

0 0
τ

r

⎞
⎟⎟⎟⎟⎠

⎛
⎝ r̂

θ̂

φ̂

⎞
⎠.

(6)

According to eq. (152) of Al-Attar & Crawford (2016), the 3-D
weak form for the physical model, eq. (1), proves equivalent to the
following weak form established on the reference configuration �̃,∫

�̃

ρ̃∂2
t ũ · w̃ d3r +

∫
�̃

∇ũ : C̃ : ∇w̃ d3r =
∫

�̃

f̃ · w̃ d3r, (7)

in the sense that the solution of eq. (7), denoted ũ, is identical to
that of eq. (1):

ũ (r; t) = u (ξ (r) ; t) . (8)

The parameters in eq. (7) are, respectively, determined by

ρ̃ (r) = ρ (ξ (r)) det J (τ, r) (9)

for density, and

C̃ (r) = J−1 (τ, r) · C (ξ (r)) · J−T (τ, r) det J (τ, r) (10)

for elastic stiffness tensor, and

f̃ (r) = f (ξ (r)) det J (τ, r) (11)

for the source term, with J denoting the Jacobian of the mapping,

J (τ, r) = I + F (τ, r) , (12)

and I the second-order identity tensor. Note that ρ (ξ (r)) is the
density of the physical model at position r + τ r̂, similar for C (ξ (r))
and f (ξ (r)).

The inverse of J can be explicitly written as

J−1 (τ, r) = 1

h

(
r̂ θ̂ φ̂

)
⎛
⎜⎜⎝

1 + τ

r
−∂θ τ

r
− ∂φτ

r sin θ

0 1 + ∂rτ 0

0 0 1 + ∂rτ

⎞
⎟⎟⎠

⎛
⎝ r̂

θ̂

φ̂

⎞
⎠,

(13)

where h = (r + τ )(1 + ∂ rτ )/r. Note that J−1 shares the same sparsity
with F, which can speed-up the computation of the stiffness term.
This is the reason why we constrain the geometric mapping, eq. (5),
in the radial direction.

The generalized weak form, eq. (7), is formally identical to the
original one, eq. (1), except for the parameters. Thus, we may re-
duce it to an algebraic system of 2-D weak forms following the same
approach in Section 2.1, and the result should be formally identical
to eq. (3), but with the Fourier coefficients replaced by those of the
transformed parameters (ρ̃, C̃ and f̃). However, additional attention
must be paid to the solid–fluid discontinuities, as addressed in Ap-
pendix A. The general theory of Al-Attar & Crawford (2016) has
been extended to solid–fluid bodies by Al-Attar et al. (2018). Also,
the closed form of the source terms must be modified, as given in
Appendix B.

The price for the particle relabelling transformation is that the
elastic stiffness tensor of the reference model will lose its minor
symmetry, that is, C̃i jkl �= C̃ jikl �= C̃i jlk , as can be inferred from
eq. (10). Because the major symmetry (C̃i jkl = C̃kli j ) still holds,
C̃i jkl contains 45 ostensibly independent elements, in contrast to
five for transverse isotropy and two for isotropy, the two most
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frequently used types in seismology. Therefore, the double con-
tractions in eq. (3), ∇ũ : C̃ : ∇w̃, will become very expensive if
implemented as is. In practice, we do not compute C̃ by eq. (10).
Instead, we first decompose the deformation gradient ∇ũ in the
spherical coordinate system under which both J−1 and C are sparse,
and perform the double contractions ∇ũ : C̃ : ∇w̃ by means of(
J−T · ∇ũ

)
: C :

(
J−T · ∇w̃

)
det J. The implementation will be elab-

orated at the end of the following subsection.
The particle relabelling transformation can also be understood

in analogy to the piecewise transformation used in finite-element-
based approaches (including SEM), that is, the irregular physical
domain of an element is mapped onto a regular reference domain,
such as a square in 2-D (e.g. Leng et al. 2016) and a cube in 3-D
(e.g. Komatitsch & Tromp 2002a). The mathematics underlying the
two transformations are similar both applying a change of variables
and the chain rule for the calculation of derivatives and quadratures.
Whether one wishes to see these two transformations as being equiv-
alent comes, in part, down to a point of view on ‘discretize-then-
transform’ versus ‘transform-then-discretize’. In finite element, the
equations of motion are established in the physical configuration,
while the transformation, which comes after discretization, serves
just as a tool for calculating derivatives and quadratures. In the par-
ticle relabelling transformation, however, the equations of motion
have been transformed onto the reference configuration before dis-
cretization, with their functional forms kept unchanged; a numerical
method is then developed to solve these new equations of motion.
This point of view is particularly sensible here because AxiSEM3D
can only have a spherical computational domain due the Fourier
parametrization of solution, which necessitates transformation be-
fore discretization.

2.3 FFT-based mode coupling

This subsection aims at accelerating the procedure of Fourier-mode
coupling, the most time-consuming part in a 3-D simulation with
AxiSEM3D.

As shown by Leng et al. (2016), the 2-D weak forms, eq. (3), can
be recast into the following strong forms,∑

|α|≤nu|β−α|≤nc

Lβ−α

ik uα
k = f β

i , ∀β ∈ {−nu, . . . , nu}, (14)

where Lβ−α

ik denotes the reduced wave operator in D, determined
by the (β − α)-th order Fourier coefficients of ρ and C,

Lβ−α

ik uα
k = ρβ−αδik∂

2
t uα

k −
(

Cβ−α

i jkl uα
k;l

)
; j

, (15)

and nc the number of terms required in the Fourier series of either
ρ or C for an accurate model description. For a given 3-D model,
nc is constant and equals to the maximum degree (lmax) of the
spherical harmonics expansion of the model, for example, nc = 40
for the global mantle model S40RTS (Ritsema et al. 2011). Eq. (14)
indicates how lateral heterogeneities couple the Fourier modes of
wavefields: a 3-D ρ or C will give rise to a non-diagonal operator
matrix Lβ−α

ik with a bandwidth of 2nc + 1.
Leng et al. (2016) implemented eq. (14) straightforwardly by a

summation over α, which proved efficient for the state-of-the-art
tomographic mantle models such as S40RTS (nc = 40), S20RTS
(nc = 20, Ritsema & Van Heijst 1999) and S362ANI (nc = 22,
Kustowski et al. 2008), based on the fact that the non-diagonal
operator matrix is narrowly banded by a small nc. However, this
direct summation approach will cease to work efficiently if more

Figure 3. Workflow of one time step in AxiSEM3D. Two additional field
variables are introduced: the stress tensor σ and the stiffness force k (the
body force corresponding to σ ). FFT indicates the transform from physical
to Fourier space and IFFT from Fourier to physical space. All 3-D operations
are conducted in the physical space (double-lined) on the cardinal gridpoints
anchored at φJ = 2πJ/(2nu + 1), J = 0, 1, . . . , 2nu. For aspherical earth
models, the parameters ρ, C and f will be replaced by ρ̃, C̃ and f̃, and the
stress tensor σ will become asymmetric, σ ij �= σ ji.

complicated structures are involved, such as the global crustal model
Crust 1.0 (nc ≤ 180, Laske et al. 2013).

Alternatively, we may implement the summation by means of fast
Fourier transform (FFT), commonplace in pseudospectral methods
for partial differential equations with spatially varying parameters
(chapter 9, Boyd 2001). The basic idea is to compute the spatial
derivatives (such as ∇u) in the Fourier space, but the multiplications
with material properties (such as C : ∇u) in the physical space or,
to be exact, on the 2nu + 1 cardinal gridpoints evenly distributed
along the φ-direction. FFT is responsible for efficient transitions
between the Fourier space and the physical space. A typical time
step is illustrated in Fig. 3.

Compared to the direct summation approach that has an algorith-
mic complexity of O(nunc) for nc ≤ nu, and O

(
n2

u

)
for nc > nu, the

FFT-based approach has a complexity of O(nulog nu).2 Therefore,
the performance will be greatly promoted for complex models with
a large nc. In addition, because the cost no longer depends explicitly
on the model, we may optimize the azimuthal resolution of solution
by inspecting the Fourier power spectra of wavefields, as explained
later in Section 4.2.

In the remainder of this subsection, we elaborate the implementa-
tion of the particle relabelling transformation in the FFT-based mode
coupling scheme. In short, all operations related to 3-D model pa-
rameters, including the particle relabelling transformation, are con-
ducted in the physical space (double-lined in Fig. 3) on a collection
of 3-D gridpoints. These 3-D gridpoints, as termed the cardinal
gridpoints (chapter 9, Boyd 2001), are generated by rotating the
Gauss–Lobatto–Legendre (GLL) points in the 2-D spectral element

2In modern FFT libraries such as FFTW3 (Frigo & Johnson 2005),
O(Nlog N) is the slowest case when the logical size N is a large prime
number. In AxiSEM3D, we boost the performance by rounding up the
values of nu such that N always has small prime factors.
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mesh along the azimuthal direction, anchored at φJ = 2πJ/(2nu +
1), J = 0, 1, . . . , 2nu.

Before time marching, given the geometric mapping ξ : �̃ →
� in eq. (5), we pre-compute the Jacobian J and its inverse J−1,
respectively, by eqs (12) and (13) on the 3-D cardinal gridpoints
(sGLL, φJ, zGLL). The in-plane derivatives, ∂ rτ and ∂θ τ , are computed
on the 2-D spectral elements (eqs 66–67, Leng et al. 2016) at each
φJ. Note that J will become singular if ∂ rτ =−1, which corresponds
to the case where the thickness of a layer becomes zero after the
radial stretching, for example, a point on the Moho stretched to
the surface. The azimuthal derivative, ∂φτ , is computed by FFT
with the following steps: given the series τ (φJ), J = 0, 1, . . . , 2nu

at each GLL-point (sGLL, zGLL), we compute its discrete Fourier
transform τα , α = 0, 1, . . . , nu and then the series iατα, α =
0, 1, . . . , nu , whose inverse discrete Fourier transform yields the
azimuthal derivative ∂φτ (φJ), J = 0, 1, . . . , 2nu.

During time marching, we consider the left-hand branch of Fig. 3
within an undulated range. The process is reciprocal for the right-
hand branch. Starting from the displacement Fourier coefficients
ũα (sGLL, zGLL) defined on the 2-D GLL points in the reference
spherical configuration, we first compute the deformation gradi-
ent in the Fourier space ∇ũα (sGLL, zGLL) by eq. (4), which is
then transformed onto the 3-D cardinal points by IFFT, that is,
∇ũ (sGLL, φJ , zGLL). Then we are able to perform the contraction
C :

(
J−T · ∇ũ

)
on each cardinal gridpoint (sGLL, φJ, zGLL), which

yields the Cauchy stress tensor in the physically undulating con-
figuration. In summary, the particle relabelling transformation does
not interact with the Fourier series parametrization of solution, as it
is conducted point-wise on the 3-D cardinal gridpoints.

3 V E R I F I C AT I O N

In this section, we verify our approach for handling undulat-
ing interfaces by comparing AxiSEM3D to an independent 3-D
SEM, SPECFEM3D GLOBE (SPECFEM, Komatitsch & Tromp
2002a,b). SPECFEM and AxiSEM3D have been cross-verified for
spherically shaped earth models with 3-D material perturbations
(Leng et al. 2016).

We consider three representative aspherical Earth features in our
3-D earth model:

(i) the Earth’s ellipticity, which undulates the surface and all the
internal interfaces (including solid–fluid ones such as CMB);

(ii) surface topography and bathymetry, which introduce a larger
undulation on the surface as well as a 3-D ocean;

(iii) the tomographic mantle model S362ANI, which incorpo-
rates topography on the transition zone discontinuities at ∼410 and
∼650 km.

Full crustal structure (such as Crust 1.0, Laske et al. 2013) has
been implemented in both SPECFEM and AxiSEM3D, but a dis-
crepancy persists because AxiSEM3D cannot follow the approxi-
mation SPECFEM has made to handle the undulating Moho. The
main reason is that the undulation on the Moho exhibits sharp gra-
dients beneath the ocean–continent plate boundaries, which causes
great difficulty to model discretization while having a strong impact
on computational cost and numerical stability. The details will be
discussed in Section 6.1.

The simulation parameters used in this section are summa-
rized in Table 1. The nominal simulation period is 5 s, follow-
ing the SPECFEM convention of simulation periods. This conven-
tion corresponds to a one-element-per-wavelength resolution with

Table 1. Simulation parameters for cross-verification between SPECFEM
and AxiSEM3D.

Parameter Value Notes

1-D reference PREM Anisotropic; viscoelastic
ellipticity WGS 84 Both geographic–geocentric and

full correction
Topography Smoothed

ETOPO1
Elevation varies between −7.7 and
5.5 km

Ocean Smoothed
ETOPO1

Approximated as load

Mantle S362ANI Anisotropic; lmax = 22; undulation
on 410 km varies between −13.4
and 13.2 km and that on 650 km
between −14.3 and 19.1 km

Period 5 s The average grid size on the surface
is ∼2.8 km in SPECFEM and
AxiSEM3D meshes

Record length 1 hr Covering most teleseismic phases
of interest

Earthquake Virginia Depth 12 km; 37.91◦ N, 77.93◦ W
stations Fig. 4 17 × 18 imaginary stations

Figure 4. Source and stations for cross-verification between SPECFEM
and AxiSEM3D. We compare synthetic seismograms recorded by 17 ×
18 imaginary stations evenly distributed on the surface, spaced by 10◦ in
epicentral distance (θ ) and by 20◦ in azimuth (φ). The seismograms recorded
by the stations at φ = 200◦ (blue) will be shown later in Figs 5 and 7, and
those at θ = 70◦ (orange) in Fig. 6.

a polynomial order of 4. Therefore, the nominal simulation periods
should be the minimum corner periods. In an attempt to bench-
mark SPECFEM and AxiSEM3D for spherical earth models, Leng
et al. (2016) noted that such a convention could be insufficient
for surface wave modelling. Hence, when comparing the synthetic
seismograms, we adopt a bandpass filter with its minimum cut-off
period fixed at 1.5 times of the nominal simulation period. We use
an error function as the source–time function, with its half-duration
equal to the simulation period.

We compare synthetic seismograms, respectively, computed by
SPECFEM and AxiSEM3D on an imaginary network of stations, as
shown in Fig. 4. Such global coverage on the surface should be able
to reflect the goodness-of-fit of wavefields in the interior. Follow-
ing Chaljub et al. (2015), we quantify the difference between two
waveforms by the scores of goodness-of-fit, that is, for amplitude
and phase, respectively,

Ge = 10 exp(−|me|) and Gp = 10 exp(−|mp|), (16)

where me and mp are the globally normalized time–frequency mis-
fits (TF-misfits, Kristeková et al. 2009) for amplitude and phase,
respectively. The scores of goodness-of-fit range from 0 to 10, with
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10 indicating a perfect match. When the scores are above 9 (TF-
misfits smaller than 0.105) for all the stations, we regard the match
to be ‘excellent’.

3.1 Ellipticity

The Earth’s ellipticity represents an integrated test of the particle
relabelling transformation, as the entire earth model has to be flat-
tened from core to surface, undulating all the external and internal
discontinuities. In practice, there are two levels of ellipticity correc-
tion, the geographic–geocentric (colatitude-θ ) correction and the
full ellipticity correction. In the former, the Earth geometry is kept
spherical, but the locations of source and stations are corrected.
In the latter, the entire model has to be flattened to satisfy the hy-
drostatic equilibrium condition governed by the Clairaut’s equation
(chapter 13, Nolet 2008), so the particle relabelling transformation
will be activated throughout the entire computational domain.

Excellent agreement has been achieved between SPECFEM and
AxiSEM3D. The global averages of Ge and Gp turn out to be 9.69
and 9.89, respectively, and the minimum local values 9.41 and 9.69,
respectively, computed on the 1-hr full-length window. To visualize
how small the misfits are, we compare the waveforms in Fig. 5,
recorded by a meridional section where the maximum phase misfit
occurs (blue in Fig. 4). From the zoomed-in windows in Fig. 5, one
can observe the effects of the two levels of ellipticity correction.
In brief, ellipticity mainly causes phase shifts to body waves, but
alters surface wave waveforms to some degree. The geographic–
geocentric correction can correctly predict the directions of the
induced phase shifts but not their magnitudes.

3.2 Topography and bathymetry

The 3-D geometric perturbation introduced by ellipticity varies very
smoothly in space, as reflected by the small phase shifts in Fig. 5.
Therefore, we conduct a benchmark solution for topography and
bathymetry. Sampled at a 5 s period, the undulation on the surface
varies from about −7.7 km (Mariana Trench) to 5.5 km (Tibet), ca-
pable of generating obvious waveform anomalies on surface waves.
The bottom of the low-velocity zone (depth = 220 km in PREM)
is selected to be the ‘lower zero boundary’ in Fig. 2, at which the
undulation vanishes. Between the surface and 220 km, the undula-
tion decreases linearly with depth. In AxiSEM3D, any depth below
−7.7 km (not just the radial discontinuities) can be chosen as the
‘lower zero boundary’. Without observational constraints, the selec-
tion comes down to a performance issue, that is, a trade-off between
a larger time step and a smaller number of stretched elements for
the particle relabelling transformation. Here we use 220 km because
this parameter is hardcoded in SPECFEM.

Now we discuss the spatial sampling of the surface. At a pe-
riod of 5 s, the average grid size for surface sampling is ∼2.8 km
in SPECFEM, that is, 3584 3-D elements (NEX = 896) on a
great circle, each containing four gridpoints in one dimension. In
AxiSEM3D, we create the 2-D mesh such that the surface sampling
is equivalent in the meridian domain, that is, 1792 2-D elements on
∂D in Fig. 1. The azimuthal sampling becomes more complicated.
The Fourier expansion order, nu in eq. (2), should be sufficiently
large to sample both the model and the resultant wavefield. Here
we first consider model sampling, leaving wavefield sampling to
Section 4.2. Among the three aspherical features we are consider-
ing, surface topography has the largest spatial variability, for which
we use the 1-min gridded global relief data ETOPO1 (Amante &

Eakins 2009). If expanded in spherical harmonics, this model has
a lmax of 5400 in theory. In this section, we use nu = 1200, which
means we downsample ETOPO1 in terms of truncated spherical
harmonics. Note that the spectral power of ETOPO1 normalized to
degree zero has decreased to ∼3 × 10−8 at l = 1200. In SPECFEM,
we use one of its built-in topography models, which also originates
from ETOPO1 but smoothed in some way. The two methods slightly
differ in surface sampling, but, as we will show it later, such dif-
ference is insufficient to generate significant waveform differences
at 5 s. The lmax’s of ellipticity and S362ANI are, respectively, 2 and
22, so they are accurately sampled in the computational models.

Ocean is another fundamental issue. Physical realization of a fluid
ocean is essential to surface wave modelling, especially at the high
frequencies where the load approximation becomes inaccurate (Ko-
matitsch & Tromp 2002b). It also provides a means to study waves
propagating within the ocean, such as the T-phases (Stevens et al.
2001), tsunami (Kowalik et al. 2005) and seismic noise excitation
(Tanimoto 2010). The ocean floor is a multiply connected solid–
fluid discontinuity, for which we can no longer rely on the particle
relabelling transformation. Therefore, a 3-D fluid ocean is currently
not available in AxiSEM3D. In this paper, we approximate the ocean
as a hydrodynamic load on the ocean floor, following Komatitsch
& Tromp (2002b). The formulations are given in Appendix C. The
load approximation is accurate when the wavelengths of interest
are larger than the ocean depth. It is suggested by Komatitsch &
Tromp (2002b) that such an approximation should be acceptable
when the period is above ∼5 s. This assumption, however, needs to
be examined by numerically comparing a load-approximated ocean
to a fluid ocean, considering the regional variation of ocean depth.

Similar to ellipticity, the agreement between SPECFEM and
AxiSEM3D turns out excellent for topography and bathymetry.
Here we compute the scores of goodness-of-fit on a surface wave
window between the arrival times of ‘4.1 kmps’ and ‘2.5 kmps’,
as shown in Fig. 6, because the body waves are barely affected.
The global averages of Ge and Gp are 9.53 and 9.70, respectively,
and the minimum local values 9.26 and 9.46, respectively. Such
goodness-of-fit is lower than that for ellipticity because of surface
sampling. Fig. 6 shows the seismograms recorded by the stations
located 70◦ in epicentral distance. Because topography irregularly
alters the surface waves, we emphasize the impact of ocean in Fig. 6:
the ocean greatly strengthens surface wave dispersion and causes
remarkable phase delays over the oceanic paths, for example, nearly
a 10 min delay to the high-frequency surface waves at the azimuth
of 80◦.

3.3 Undulating transition zone

Here we consider the global tomographic mantle model S362ANI,
which incorporates topography on the transition zone discontinu-
ities at 410 and 650 km. The undulation ranges between −13.4 and
13.2 km on 410 km and between −14.3 and 19.1 km on 650 km.
As constrained by the SPECFEM implementation, we choose the
PREM discontinuities 220 and 771 km as the upper and lower zero
boundaries on which the undulation vanishes. The undulation varies
linearly between two adjacent controlling depths. Besides a compar-
ison to SPECFEM, we intend to verify the uniqueness of solution
upon different selections of the spherical reference configuration for
the particle relabelling transformation. For this purpose, we create
two different 2-D meshes in AxiSEM3D both based on PREM. The
only difference between the two meshes is the depth of the two tran-
sition zone discontinuities: in the first one, we use 400 and 670 km
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Figure 5. Comparisons of synthetic seismograms (vertical component) for ellipticity. The simulation parameters are summarized in Table 1. The stations are
located on the meridian φ = 200◦ (blue in Fig. 4). The amplitudes have been scaled with epicentral distance to identify most teleseismic phases. To make the
body waves more visible, we also reduce the amplitude of the surface waves by a factor of 5. The SPECFEM traces (black) are mostly invisible because of
small waveform differences. To show the effects of ellipticity corrections, we zoom in a few windows from the 80◦ trace, adding two other traces computed on
a spherical geometry, one with geographic–geocentric correction (solid orange) and the other without (dashed orange). The traveltime curves are computed for
PREM using OBSPY.TAUP (Krischer et al. 2015).

based on PREM and, in the second one, 410 and 650 km based
on STW105 (Kustowski et al. 2008), the original 1-D reference
model of S362ANI. The undulations on these two discontinuities
(τ in eq. 5) are determined such that their physical positions re-
main the same in the two computational models. In other words,
the two models created from the two different meshes present the
same physical earth model, so the solutions should also be iden-
tical. Based on the scaling used in the inversion (Kustowski et al.
2008), we use 55 per cent of dvsh and dvsv, respectively, for dvph

and dvpv.

Between SPECFEM and AxiSEM3D, the global averages of Ge

and Gp are 9.64 and 9.80, respectively, and the minimum local
values 9.36 and 9.65, respectively, computed on a half-hour window
after the S-arrival where the impact of the undulating transition
zone is most outstanding. Fig. 7 shows the seismograms for SH
waves, emphasizing the time delays over the multiple S arrivals
caused by the undulating transition zone. Compared to ellipticity
and topography, the goodness-of-fit for S362ANI lies in between.
The goodness-of-fit for the two equivalent AxiSEM3D models is
almost perfect, with the minimum Ge and Gp being 9.97 and 9.99.
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Figure 6. Comparisons of synthetic seismograms (radial component) for
topography and bathymetry. The simulation parameters are summarized in
Table 1. The stations are located at the distance θ = 70◦ (orange in Fig. 4).
Here we focus on the surface wave window because the body waves are
much less affected by topography. The traces labelled ‘SPECFEM’ (black)
and ‘AxiSEM3D’ (blue) are computed with both topography and ocean
incorporated, between which the appended Ge and Gp are calculated. The
SPECFEM traces (black) are mostly invisible because of small waveform
differences. The traces labelled ‘no ocean’ (orange) exclude the ocean,
computed by SPECFEM (similar by AxiSEM3D).

Figure 7. Comparisons of synthetic seismograms (transverse component)
for S362ANI with undulating transition zone boundaries. The simulation pa-
rameters are summarized in Table 1. The traces labelled ‘SPECFEM’ (black)
and ‘AxiSEM3D’ (blue) are computed with topography on 410 and 650 km,
between which the appended Ge and Gp are calculated. The SPECFEM
traces (black) are mostly invisible because of small waveform differences.
The traces labelled ‘no internal topography’ (orange) exclude transition zone
topography but preserve the material heterogeneity of S362ANI. The sta-
tions and the amplitude scaling are the same as those used in Fig. 5, except
that we align the seismograms by the S arrivals.

4 C O M P U TAT I O NA L E F F I C I E N C Y

In this section, we discuss the computational efficiency of
AxiSEM3D. We first summarize its model-adapted cost character-
istic, as realized by the spatial variability of the Fourier expansion
order of solution, that is, nu = nu(s, z) in eq. (2). Next, we intro-
duce the technique of ‘wavefield scanning’, which can determine
an efficient nu(s, z) for an arbitrary 3-D earth model. Based on this
technique, we compare the computational efficiency of SPECFEM
and AxiSEM3D, considering a variety of 3-D Earth features and
the observable frequency band of global seismic data. Finally,
we investigate the scattering effects and cost impact of localized
small-scale heterogeneities and show a simulation at a 1 Hz corner
frequency.

4.1 Model-adapted computational cost

A model-dependent cost characteristic distinguishes AxiSEM3D
from discretized 3-D methods. Generally, the stronger the 3-D
structure is, the more expensive the simulation becomes. Such a
structure-adapted cost characteristic is embodied by the Fourier ex-
pansion order of solution, or nu in eq. (2), which can be adapted
locally to the azimuthal complexity of wavefields in space and time,
that is, nu = nu(s, z; t).

For the simplest case of PREM-like 1-D earth models, the wave-
field due to an earthquake takes on order two throughout space
and time, that is, nu(s, z; t) = 2 (Nissen-Meyer et al. 2007a; Leng
et al. 2016), for which AxiSEM3D performs as efficient as AxiSEM
(Nissen-Meyer et al. 2014). Let ω denote the dominant frequency.
At this 1-D limit, AxiSEM3D has a computational cost of O(ω3),
that is, the two in-plane dimensions (s, z) and one time dimension t,
whereas a discretized 3-D method has a computational cost of O(ω4)
(three spatial and one time dimension). Therefore, the speed-up of
AxiSEM3D scales with frequency for 1-D models.

For a 3-D earth model, nu(s, z; t) varies with both space and time.
Because changing nu with time is technically impractical and uneco-
nomic (as it requires redistribution of elements across processors),
we only consider the spatial dependence of nu, that is, nu = nu(s, z),
which should cover the maximum order required throughout time.
The theoretical upper limit of nu(s, z) occurs when the minimum
wavelength can be resolved over the azimuth dimension. In other
words, nu(s, z) is determined such that the azimuthal spacing be-
tween the cardinal gridpoints is equivalent to the in-plane spacing
between the GLL points in the 2-D mesh. Similar to a 3-D mesh,
such a nu(s, z) ignores the azimuthal wavefield complexity and re-
alizes a uniform wavefield sampling over all the three dimensions.
At this upper limit, the computational cost of AxiSEM3D will be
higher than that of a discretized 3-D method by a factor of O(log2ω),
because the FFT-based mode coupling on the azimuthal dimension
will cost O(ωlog2ω). This extreme case, however, seems irrelevant
because a global wavefield with comparable azimuthal and in-plane
complexity seems unimaginable; if such a wavefield could exist, it
should be solved by a discretized 3-D method such as SPECFEM.
For most applications at a global scale, nu(s, z) is much smaller
than this upper limit because of the azimuthal smoothness of global
wavefields.

For a given 3-D earth model, a reasonable choice of nu(s, z) is crit-
ical to both solution quality and computational efficiency. However,
this can be technically difficult from a user’s perspective, because
the wavefield complexity, which can be influenced by a variety of
factors such as model complexity, source location and depth, prop-
agation path and record length, is difficult to be estimated a priori.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/2125/5333339 by U

niversity of C
am

bridge user on 06 Septem
ber 2019



Waves in 3-D Earth 2135

To handle this difficulty, we provide two approaches for the deter-
mination of nu(s, z): an empirical equation mainly for tomographic
mantle models (Leng et al. 2016) and the technique of ‘wavefield
scanning’ for arbitrary 3-D earth models.

For typical tomographic mantle models such as S40RTS and
S362ANI, Leng et al. (2016) brought forward an efficient empirical
equation based on massive trial simulations, taking into account
some first-order propagation effects:

nu (s, z) = nref
u Fs (s) Fθ (θ (s, z)) Fd (d (s, z)) , (17)

where nref
u is a constant reference value and Fs, Fθ and Fd three

factors determining the pattern of nu(s, z). Fs(s) alters nu by s,
the distance to the axis, Fθ (θ ) by the epicentral distance θ , θ =
arctan(s/z) and Fd(d) locally enlarges nu near the surface to enhance
surface wave resolution, determined by the depth d, d = Rearth −√

s2 + z2. Using the direct summation approach for mode coupling
and ignoring parallel slowdown, Leng et al. (2016) showed that
such an empirical equation could lead to a speed-up of 1 to 2 orders
of magnitude at a 11 s period compared to a 3-D SEM. It was
also observed that such a speed-up basically scaled with frequency
across a period range from 68 down to 11 s (Leng et al. 2016), a
scaling behaviour attractive to high-frequency applications. Based
on a number of tomographic mantle models, however, this empirical
equation cannot be applied universally, so we bring forward the
technique of ‘wavefield scanning’.

4.2 Wavefield scanning

For an arbitrary 3-D earth model, ‘wavefield scanning’ can deter-
mine a near-optimal nu(s, z) that guarantees solution convergence.
The idea is straightforward. We run a trial simulation with a starting
nu field, denoted nstart

u (s, z), which is sufficiently large to compute
the wavefield accurately throughout space and time. For every point
in D, the solver monitors the energy of each Fourier mode to iden-
tify the unexcited higher-order modes at each time step. At the end
of the record length, the highest order ever excited at each point is
saved to a file, which can be used repeatedly afterwards for problems
with similar parameters, such as those with smoother earth mod-
els, nearby events and shorter record lengths. We call this process
‘wavefield scanning’ and denote the obtained nu field by nscan

u (s, z),
inasmuch as the wavefield automatically optimizes nstart

u (s, z) by
‘scanning’ the model over time.3 It must be emphasized that the
solution converges if nscan

u (s, z) turns out smaller than nstart
u (s, z)

point-wise, making AxiSEM3D a stand-alone method without a
reference solution from a full 3-D method.

The computational cost of a scanning simulation may vary a lot,
mainly depending on the choice of nstart

u (s, z) and the frequency
at which the scanning is performed. We will show it later in this
section that nscan

u (s, z) obtained at a lower frequency may still be
applicable to higher frequencies. Even at the same frequency, a
scanning simulation in AxiSEM3D can be less expensive than the
corresponding 3-D simulation unless nstart

u (s, z) is unwisely large.
Two points must be addressed for the usage of wavefield scanning.

First, in forward modelling, we usually use a Heaviside step function
or a δ function as the source–time function, so that we can convolve

3Essentially, this is a learning process for parameter optimization, adopted
by many modern numerical packages such as FFTW3 (Frigo & Johnson
2005) and EIGEN3 (Guennebaud et al. 2010). In our code, a nscan

u (s, z) is
called a ‘wisdom’, following the spirit of FFTW3.

the resultant seismograms (the Green’s functions) with any source–
time functions. However, for a scanning simulation, one should
use a source–time function without frequency contents beyond the
mesh resolution; otherwise, the scanning result will be dominated
by numerical noise. Second, the obtained nscan

u may turn out to be
smaller than nc at some places; in this case, one should increase
nscan

u to properly sample the model.

4.3 Global tomographic models

In this subsection, we compare the computational efficiency of
SPECFEM and AxiSEM3D for the state-of-the-art global tomo-
graphic models. The actual computational cost is measured for the
following three 3-D earth models: (i) S362ANI without internal to-
pography, (ii) S40RTS and (iii) S362ANI with internal topography
+ ellipticity + surface topography + ocean. The model parameters
are summarized in Table 1 except for S40RTS, a global tomo-
graphic mantle model with lmax = 40. A comparison between (i)
and (ii) can manifest the cost impact of long-wavelength volumetric
heterogeneities, and that between (i) and (iii) the cost impact of
geometric complexities. Take surface topography for example. It
increases the computation cost in three aspects: first, nu(s, z) will be
increased near the surface because surface waves will become more
complicated in the presence of topography; second, the global time
step will be decreased because the spherical elements in the oceanic
crust will become thinner after being stretched by topography; fi-
nally, the particle relabelling transformation within the undulated
range (between surface and 220 km) demands extra arithmetic op-
erations. These three models should be sufficient to constrain other
computational models with different constituents, except for a full
3-D crust, as will be discussed in Section 6.1. The simulation period
(Tsimu) ranges from 50 down to 1 s, reaching the highest observable
frequency of global seismic data, while utilizing hardware at all
scales from laptop to large-scale supercomputer.

We first show the results of wavefield scanning. The scanning
simulations start with a large constant nu field, that is, nstart

u (s, z) =
1200. The AxiSEM3D solution has converged with this nstart

u , as
can be verified by the benchmark solutions in Section 3. Fig. 8
shows the obtained nscan

u (s, z) for our three earth models. The sum
of nscan

u (s, z) over all the GLL points, as denoted by �nu in Fig. 8,
can be a estimation of the total computation cost. The average of
nscan

u (s, z), as denoted nu, ave in Fig. 8, represents the computational
cost consumed by the azimuthal dimension, as it further excludes the
in-plane contributions (the number of GLL points). The maximum
of nscan

u (s, z), as denoted nu, max in Fig. 8, indicates the strongest
azimuthal scattering strength, which is less significant if such large
values are distributed only locally. The following remarks can be
made based on Fig. 8:

(i) general pattern: nscan
u (s, z) takes on a general pattern for

the considered global tomographic models. The highest values are
found in the crust and the uppermost mantle (even without surface
topography), as the surface waves sample the 3-D structures more
extensively than the body waves do. For the majority of the mantle
regions far from the surface, nscan

u remains small (less than 200 in
our cases), which roughly increases with epicentral distance. Also,
nscan

u is very small in the outer core;
(ii) model-adaptivity: nscan

u (s, z) increases with model complex-
ity. A comparison between Figs 8(a) and (b) shows that, in the mid
and lower mantle, the azimuthal scattering effects of S40RTS (lmax

= 40) are stronger than that of S362ANI (lmax = 22), as reflected
by nu, ave; however, S362ANI results in a larger nu, max in the crust,
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2136 K. Leng et al.

Figure 8. Fields of nscan
u (s, z) obtained by wavefield scanning for differ-

ent global tomographic models. The model parameters are summarized
in Table 1. All the scanning simulations start from a constant nu field,
nstart

u (s, z) = 1200. In each plot, �nu, nu, ave and nu, max denote, respectively,
the sum, average and maximum of nscan

u (s, z) over all the GLL points. All
the plots use the same colour scale displayed in (a), with saturated colouring
for nscan

u (s, z) ≥ 200.

because it is more complicated than S40RTS in some parts of the
uppermost mantle (see e.g. fig. 3 in Leng et al. 2016). Comparing
Figs 8(a) with (c), we find that surface topography greatly increases
nscan

u near the surface, implying its strong scattering effects on the
surface waves. The undulating transition zone and ellipticity do not
substantially increase nscan

u in the mantle, as they vary smoothly in
space.

Figure 9. Total CPU-hr required by AxiSEM3D and SPECFEM to compute
1-hr length seismograms. For SPECFEM, we only show the CPU-hr required
for PREM (thick blue), which remains the same for S362ANI and S40RTS
and will slightly increase when topography is turned on. For AxiSEM3D,
we show the CPU-hr for PREM (thick orange) and the three 3-D earth mod-
els indicated in Fig. 8. We use nstart

u = 1200 for the scanning simulations
(dashed). Note that we do not show the scanning cost for S40RTS, as it
is identical to that for S362ANI. The numbers near the data points show
the speed-up of AxiSEM3D with respect to SPECFEM. The framed points
in the top-left corner are estimated by extrapolation because of unafford-
able solutions. The CPU-hr are measured on a Cray XC30 supercomputer
(Archer, UK), including parallelization overheads.

(iii) weak frequency-dependence: for all the three models,
nscan

u (s, z) basically remains unchanged as the period drops from
10 to 5 s, except for a small fraction of elements near the surface.
It is implied that, for global tomographic models with finite power
spectra, there exists a frequency above which the azimuthal com-
plexity of wavefields may cease to develop for body waves, so that
the computational cost of AxiSEM3D will start to scale with ω3 + ε ,
with ε accounting for surface waves, significantly smaller than 1.
Such an observation supports the weak frequency-dependence of
nu observed by Leng et al. (2016), which benefits high-frequency
applications.

To find a near-optimal nu(s, z) such as those shown in Fig. 8, one
needs expensive scanning simulations at the target period and for all
different models of interest. In practice, however, one does not al-
ways need nu(s, z) to be optimal, as long as it is correct and efficient.
For instance, if one aims at propagating waves in a series of mod-
els, wavefield scanning can be performed only on the one with the
highest complexity. Also, based on the weak frequency-dependence
of nscan

u , one may perform scanning at some lower frequency and
enlarge the obtained nscan

u near the surface before applying it to the
target frequency.

The CPU-hr required to compute a 1-hr record length are plotted
in Fig. 9 for both the scanning simulations using nstart

u (s, z) = 1200
and the repeated ones reusing nscan

u (s, z). For the considered 3-D
earth models and at a period ranging between 5 and 1 s, the speed-
up of AxiSEM3D with respect to a discretized 3-D method can
reach 2 to 3 orders of magnitude, using the optimized nscan

u . Such
a speed-up basically scales with frequency. Therefore, AxiSEM3D
cannot only promote the computational efficiency for the period
range already achieved by 3-D methods (practically above 5 s), but
also cut a path to the highest observable frequency range (up to
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1 Hz) in global seismology. This is true for body wave studies of the
deep interior, to say the least, because this section does not involve a
3-D crust. For the scanning simulations, AxiSEM3D remains faster
at 10 s and below. Fig. 9 again displays the model adaptivity of
AxiSEM3D: as the model evolves from PREM to a complex 3-D
model, it bridges the gap between fast dimension-reduction methods
and slow discretized 3-D methods by locally adapting the Fourier
expansion order.

In addition to model complexity, the computational cost of
AxiSEM3D can be influenced by many other factors, among which
the most significant two are source depth and record length. For
deep events without surface wave excitation, nu will not be locally
increased near the surface; for example, the CPU-hr can be reduced
by ∼15 per cent for (a) and (b) and ∼25 per cent for (c). An example
will be provided in the next subsection, using a deep earthquake and
S40RTS. The computational cost increases with record length in a
super-linear style, as the aggregated azimuthal complexity of wave-
fields always evolves with time, that is, a longer recorder length
leads to a higher nu(s, z); for instance, halving the record length to
30 min will nearly quarter the CPU-hr for those simulations using
nscan

u ; doubling the record length to 2 hr, however, will only multi-
ply the CPU-hr by a factor of ∼2.5, because the body waves have
well sampled the interior by 1 hr. Both the above two effects sug-
gest a phase-dependent cost characteristic, the essence of which is
the adaptivity of nu over the time dimension. Such a characteristic
greatly benefits studies based on early body wave phases.

4.4 Small-scale heterogeneities

Pseudospectral methods are generally believed to be less compet-
itive in handling localized features because of their white power
spectra. Therefore, we investigate in this subsection how a small-
scale heterogeneity affects the azimuthal complexity of wavefields
and thus the efficiency of AxiSEM3D.

For this purpose, we place a spherical slow blob in the mid-mantle
of PREM, as described in Fig. 10. The centre of the blob is located
30◦ in distance and 1200 km in depth. Within the blob, the S- and
P-wave velocities are, respectively, reduced by 50 and 30 per cent,
and the density by 20 per cent. Such impedance contrast should be
sufficiently strong to exceed by far the most extreme applications
in the deep Earth. Given the material perturbations, the scattering
effects of the blob depend on both its size and the propagated
wavelength. Here we consider three simulation periods (20, 10 and
5 s) and four blob radii (20, 40, 80 and 160 km), with 12 simulations
in total. We define the structure–wavelength ratio ζ as

ζ = 2Rblob

λs
= 2Rblob

vsTsimu
, (18)

where Rblob is the blob radius and λs the S wavelength of the back-
ground medium. In our parameter space, ζ increases from ∼0.3 to
∼10, shifting the scattering regime from point scattering to multiple
scattering within a heterogeneous medium.

We use wavefield scanning to investigate how the blob affects
the azimuth complexity of the wavefield. Again, we start from
nstart

u (s, z) = 1200. In addition to solution convergence, we have
to make sure that the blob is properly sampled along the azimuthal
direction by such a nu field. Let us first consider the in-plane sam-
pling by the 2-D GLL points. The shortest period of interest is 5 s,
so the shortest S wavelength is ∼32.5 km (with vs ≈ 6.5 km s−1

at the blob centre). Adopting the one-element-per-wavelength con-
vention with polynomial order of 4, the average spacing between
the GLL points (in both SPECFEM and AxiSEM3D meshes) will

Figure 10. Wave scattering by a spherical slow blob in the mid-mantle of
PREM. We show the source–structure plane on the left and the off-plane
view on the right. The blob is located 30◦ in distance and 1200 km in depth.
Within the blob, the S- and P-wave velocities are, respectively, reduced by 50
and 30 per cent, and the density by 20 per cent. The perturbation is constant
inside the blob and fade in a Gaussian style outside the blob, halved at
1.1Rblob away from the centre. The path labelled ‘P’ corresponds to the
direct P arrival and ‘P2P’ the P-to-P conversion at the blob. Not concerned
with surface waves, we use a deep earthquake at depth 647.1 km. The off-
plane stations are located at 40◦ in distance and distributed between 0◦ and
24◦ in azimuth; seismograms recorded by these stations will be shown in
Fig. 12.

be ∼8 km. Now we consider the azimuthal sampling. The distance
from the blob centre to the axis is 2585.5 km. Rotating the blob
centre around the axis by 2π generates a ring, whose circumference
is ∼16 245 km. There will be 2401 (=2nu + 1) cardinal gridpoints
evenly distributed on this ring. Hence, the spacing between any two
cardinal gridpoints will be about 16 245/2401 ≈ 6.8 km, indepen-
dent of Tsimu. Therefore, for Tsimu ≥ 5 s, the azimuthal sampling
is finer than the in-plane sampling. The smallest blob we consider
has a diameter of 40 km, which will be sampled by about six GLL
points at 5 s and might be totally missed at 20 s. Therefore, for a
better model sampling, we double the perturbation range by making
the material perturbations fade in a Gaussian style outside the blob.
Note that the above difficulty in sampling sub-wavelength struc-
tures exists not only in AxiSEM3D but also in any discretized 3-D
methods without local refinement.

Fig. 11 shows the results of wavefield scanning. Here we intro-
duce a cost factor to quantify the impact of the blob, as denoted by
fS40 in Fig. 11, which is given by �nu required by the blob relative
to that by S40RTS at the same period. In other words, instead of
using absolute computing time, we measure the cost impact of the
blob with respect to that of a typical tomographic model, so as to
exclude any factors other than structure-induced wavefield com-
plexity. In general, Fig. 11 confirms the competency of AxiSEM3D
in handling such localized small-scale heterogeneities, as the max-
imum fS40 is only 1.13, with Rblob = 160 km and Tsimu = 20 s.
Looking into the patterns of nscan

u (s, z), we reach the following
remarks:

(i) Reading Fig. 11 row-wise, we find that the cost impact of the
blob quickly increases with its size, as fS40 is enlarged by ∼20 times
as Rblob increases from 20 to 160 km. When the blob is small (Rblob

≤ 40 km), it has localized influence on the azimuthal wave com-
plexity, with nscan

u highly concentrated in a smeared neighbourhood
around it, taking on a comet-like pattern. When the blob becomes
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2138 K. Leng et al.

Figure 11. Fields of nscan
u (s, z) obtained by wavefield scanning for a spherical slow blob in the mid-mantle of PREM. The problem is described in Fig. 10. The

simulation period Tsimu varies column-wise and the blob radius Rblob varies row-wise. As a reference for cost assessment, nscan
u (s, z) obtained with S40RTS

is appended at the end of each row (note that they are different from those shown in Fig. 8(b) because of different event depths). The factor fS40 is the ratio
between �nu for the blob and that for S40RTS, which indicates the azimuthal scattering strength of the blob relative to S40RTS.

increasingly large (Rblob ≥ 80 km), its azimuthal scattering effects
extend to the entire domain, reaching a cost impact close to that of
a tomographic model when Rblob = 160 km.

(ii) The cost impact of the blob turns out insensitive to frequency,
as fS40 remains mostly unchanged column wise. For a fixed blob size,
nscan

u grows with frequency only in the near field, as can be verified
by all the four columns. Such weak frequency-dependence again
benefits high-frequency applications. Technically, we can perform
wavefield scanning at a lower frequency and apply the obtained

nscan
u (s, z) to a higher frequency after enhancing it in the near field

of a small-scale heterogeneity.
(iii) The maximum value of nscan

u (s, z), nu, max, always appears
inside the blob. It is shown that the maximum of nu, max does not
occur at the largest blob size or at the shortest wavelength; instead,
it occurs when the structure–wavelength ratio is close to 1. This
is because a smaller blob has a higher azimuthal expansion order
(nc) and is thus supposed to have stronger azimuthal scattering
effects; however, as explained at the beginning of this subsection,
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Figure 12. Comparisons of synthetic seismograms (vertical component) for a spherical slow blob in the mid-mantle of PREM. The problem is described in
Fig. 10, with Rblob = 160 km. For the high-frequency simulation in (b), we use four times of the nscan

u (s, z) scanned at 20 s, as shown in (a4) of Fig. 11. The
traces labelled ‘SPECFEM’ (black) and ‘AxiSEM3D’ (blue) show the full 3-D solutions, those labelled ‘no blob’ (orange) the 1-D solution for PREM without
the blob and those labelled ‘2-D’ (green) the 2-D axisymmetric solution for which the source–blob plane is rotated by 2π around the axis to generate the
computational model (so the blob becomes a torus). The SPECFEM traces (black) in (a) are mostly invisible because of small waveform differences. The 2-D
traces change with azimuth only because of the radiation pattern from the source. The traveltime curve labelled ‘P2P-RAY’ is computed by ray tracing, taking
the blob centre as its representative location, whereas the one labelled ‘P2P-3D’ (dashed) simply connects the peaks of P2P in the 3-D solution. In (a), Ge

and Gp are calculated using the ‘SPECFEM’ and ‘AxiSEM3D’ traces, computed for the same model but by the two different methods; in (b), Ge and Gp are
calculated for the two different models (PREM with and without the blob).

Figure 13. An example of domain decomposition in AxiSEM3D. The global mantle model S40RTS is considered at a 50 s period. (a) Shows the 2-D spectral
element mesh, which contains four element classes (in the legend, ISO means isotropic and TISO transversely isotropic). (b) Shows a nu(s, z) field computed by
the empirical equation, eq. (17). The computational cost of an element depends on both its class and the value of nu. (c) Shows the elemental cost measured by
the solver. Note that an element with a larger nu is not necessarily more expensive than those of the same class but with a smaller nu, mainly because the cost of
FFT does not monotonically increase with the logical size, and this is why we need to measure elemental cost at runtime. Finally, (d) shows the heterogeneous
domain decomposition produced by METIS, weighted by the measured elemental cost in (c). The varying numbers of elements on the different processors
clearly reflect the effect of cost weighting.
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a sub-wavelength blob may be smoothed by the mesh because of
an incomplete spatial sampling. Also, it is shown that nu, max can
be smaller than nc, implying that a structure seen by the wave
may be smoother than it actually is; this is consistent with the
homogenization theory (Capdeville et al. 2010).

Fig. 11 also exhibits a healing effect of azimuthal wave complex-
ity: for a small-scale heterogeneity, nscan

u may have readily recovered
on the surface; in this sense, constraining the transverse dimension
of a small-scale heterogeneity may be more difficult than constrain-
ing the in-plane ones. Such a healing effect takes place over the
range of influence of the blob, which mainly depends on the blob
size. Note that the overall cost impact actually depends on the pro-
portion such a range of influence makes up of the entire compu-
tational domain, and that is how the propagation distance (Aki &
Richards 1980; Igel 2017) comes into play. In this study, we do
not change the propagation distance, but, for instance, if we switch
from the Earth to the Moon, the blob sizes should also be decrease
accordingly for the above remarks to hold.

In Fig. 12, we display the seismograms recorded by the off-plane
stations shown in Fig. 10, with Rblob = 160 km. We choose this
record section because the off-plane scattering effects can only be
modelled with a full 3-D simulation. The seismograms simulated at
5 s are shown in Fig. 12(a), from which the following remarks can
be made:

(i) An excellent agreement between SPECFEM (black) and
AxiSEM3D (blue) is achieved for this problem.

(ii) 3-D scattering effects can be clearly observed from the differ-
ence between the AxiSEM3D (blue) and the 1-D (orange) solution:
as the station moves away from the central azimuth, the backscat-
tered energy (amplitude of P2P) decays while the differential trav-
eltime between P and P2P enlarges.

(iii) The difference between the AxiSEM3D (blue) and the 2-
D (green) solution manifests the insufficiency of the axisymmetric
approximation: first, it overestimates the amplitudes of the scattered
phases at the central azimuth; second, it totally misses out the off-
plane scattering effects, which can be useful in constraining the
lateral scale of the scatterer.

(iv) The difference between the two traveltime curves, respec-
tively, labelled ‘P2P-3D’ and ‘P2P-RAY’ disqualifies the centre of
blob as a representative location to predict the arrival times of the
scattered phases by ray tracing, as the blob size has far exceeded
the regime of point scattering.

In addition, we perform a high-frequency simulation at 1 Hz and
display the seismograms in Fig. 12(b). All the above remarks hold
at 1 Hz except for the first one, because a 1 Hz simulation with
SPECFEM is unaffordable. The window around P2P (zoomed-in)
contains multiple wiggles at 0◦ and 3◦ (note that the blob radius
spans ∼3.5◦), which should originate from multiple encounters on
the boundary of the blob. Computationally, we use four times of the
nscan

u (s, z) scanned at 20 s, as shown in (a4) of Fig. 11. This choice
can be rather conservative, as we may only need to increase nscan

u

in the near field, based on the weak frequency-dependence of nscan
u

observed in Fig. 11. Nevertheless, even with such a conservative
choice, the computational cost is only ∼500 000 CPU-hr for a 1-hr
record length. This should be the first time that a 1 Hz frequency is
achieved with practical resources for global wave propagation in a
3-D earth model.

Finally, it is noted that we have only examined a single scatterer
with constant perturbation strength. Concerning the perturbation

Figure 14. Scaling behaviours of AxiSEM3D on a Cray XC30 supercom-
puter (Archer, UK). Two earth models are tested, the 1-D model PREM with
nu(s, z) = 2, and the 3-D model S40RTS with nu(s, z) determined by the
empirical equation, eq. (17). For strong scaling, the problem (total work-
load) is fixed, that is, a fixed period of 1 s for PREM and 2 s for S40RTS. For
weak scaling, we change the period such that the workload per core remains
nearly constant, where the workload is estimated by the summation of nu.
The times to solution (y axis) are normalized wall-clock times measured for
2000 time steps.

Figure 15. Moho discontinuity in Crust 1.0 and its implementation. (a)
shows the Moho topography in Crust 1.0 with respect to the PREM Moho
(24.4 km). It also includes an earthquake event and several seismic stations
for which the seismograms will be displayed in Fig. 16. (b) shows the
different strategies adopted in AxiSEM3D (left) and SPECFEM (right) for
Moho implementation. AxiSEM3D always stretches the spherical Moho in
the 1-D reference model (24.4 km in PREM) to match the undulating 3-
D Moho. In SPECFEM, the mid-crust discontinuity (15 km in PREM) is
stretched upward to match the oceanic part, while an artificial discontinuity
(35 km in PREM) is stretched downwards to match the continental part; for
the rest beneath the ocean–continent plate boundaries, the 3-D Moho cuts
through the spectral elements and is thus smoothed by means of material
interpolation.
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strength, we are on the safe side, but it is still interesting to inves-
tigate how the wavefield complexity evolves with it. In the case of
multiple scatterers, the field of nu(s, z) has to be large wherever
a scatterer presents. For the extreme case where the scatterers are
distributed throughout the mantle, a large constant nu(s, z) may be-
come necessary, which may not be readily reduced by wavefield
scanning. It then depends on the model complexity and the period
whether and to what extent AxiSEM3D can maintain its computa-
tional advantage over a discretized 3-D method, as will be discussed
in Section 6.1.

5 PA R A L L E L I Z AT I O N

AxiSEM3D is parallelized via the MPI using non-blocking asyn-
chronous communication. Load-balancing across processors is the
most important issue around parallelization. In ordinary SEMs such
as AxiSEM and SPECFEM, since the computational cost of an in-
dividual element is constant (not to consider the fluid core), load-
balancing can be easily achieved by equally distributing the ele-
ments across the processors. In AxiSEM3D, however, the compu-
tational cost varies from element to element due to the variability
of the Fourier expansion order nu(s, z). Therefore, a heterogeneous
domain decomposition is required. In brief, we use the package
METIS (Karypis & Kumar 1998) to partition the 2-D computa-
tional domain, with a weight assigned to each element. The weights
are determined by measuring the elemental cost during runtime.4 A
complete procedure of domain decomposition is described with an
example in Fig. 13.

The scaling behaviour of such a measure-and-decompose scheme
is tested on the supercomputer Archer (https://www.archer.ac.uk/).
Both strong (fixed total workload) and weak (fixed workload per
core) scalabilities are examined. We first consider a 1-D PREM
model, for which nu(s, z) = 2 across the domain, so the decomposi-
tion is unweighted. Perfect strong scaling is observed up to 12 288
cores for a 1 Hz simulation, as shown in Fig. 14(a). Weak scaling
turns out slightly suboptimal, with a 4 per cent parallelization over-
head at 12 288 cores, as shown in Fig. 14(b). For a 3-D earth model,
both strong and weak scaling properties are expected to decrease
for two reasons: first, the runtime measurement of elemental cost
(Fig. 13c) fluctuates; second, extra workload emerges on the pro-
cessor boundaries (Fig. 13d) after domain decomposition, which
cannot be balanced a priori. The 3-D scaling behaviours shown
in Fig. 14 are observed with S40RTS, using an empirical nu(s, z)
sufficiently large for solution convergence. For strong and weak
scaling, the overheads are, respectively, 6 and 10 per cent at 12 288
cores. Compared to the speed-ups shown in Fig. 9, these overheads
are ignorable. It is noted that the above scalabilities are evaluated
in reference to the simulations with 384 cores. Compared to se-
rial simulations, AxiSEM3D still suffers a parallelization overhead
around 30 per cent for 3-D earth models, mainly due to unstable cost
measurement. This is an issue left for future optimization.

The high-performance code is available open-source at https:
//github.com/kuangdai/AxiSEM3D. The code features an easy im-
plementation of user-defined models. The 2-D spectral element

4Most of the computing time in AxiSEM3D is consumed by FFT and ma-
trix arithmetics, for which we rely on the high performance packages
FFTW3 (Frigo & Johnson 2005) and EIGEN3 (Guennebaud et al. 2010),
respectively. The element cost becomes unpredictable due to the low-level
optimizations in these packages and can thus be obtained only through
runtime measurement.

meshes used in AxiSEM3D are generated by the Salvus mesher
(Afanasiev et al. 2017), which can mesh any 1-D spherically
symmetric models not limited to Earth (e.g. Mars, Bozdağ et al.
2016b). We provide two approaches to implement a user-defined 3-
D model. First, AxiSEM3D accepts discrete models defined on
a structured grid, supporting several formats such as the IRIS-
EMC database (http://ds.iris.edu/ds/products/emc/) and the SubMa-
chine database (http://submachine.earth.ox.ac.uk/). Second, written
in modern C++ with an object-oriented framework, AxiSEM3D
allows users to define their models via class inheritance, which
maximizes the flexibility for model description. In addition, we
attach great importance to wavefield visualization, which zooms
in wave scattering effects at all scales. Some animations of global
wave propagation can be found on the Youtube channel ‘Seismology
Oxford’.

6 D I S C U S S I O N S

Global wave propagation in 3-D earth models is fundamental to
seismological probings of the Earth’s interior. Though a number
of comprehensive 3-D numerical methods have been developed,
the insufficiency of computing power remains outstanding, as the
multiscale nature of Earth structure and the observable frequency
band of global seismic data both require high-frequency waveform
modelling.

To exploit the inherent azimuthal smoothness of a global wave-
field, Leng et al. (2016) parametrized its azimuthal dependence in
Fourier series, which substantially reduces the number of degrees of
freedom required by an accurate description of solution. Leng et al.
(2016) developed a pseudospectral/spectral-element hybrid method,
AxiSEM3D, to solve the dimension-reduced system. This paper is
an essential extension of Leng et al. (2016). First, we generalize
AxiSEM3D to aspherical earth models with undulating discontinu-
ities using the particle relabelling transformation, which preserves
the spherical geometry of the computational domain and thus the
functional form of the dimension-reduced system as well as its SEM
implementation. We also verify the robustness of AxiSEM3D to lo-
calized small-scale structures with strong perturbation strength. In
addition, we enhance the usability and performance of AxiSEM3D
by developing the technique of wavefield scanning, an FFT-based
mode coupling approach and a heterogeneous domain decomposi-
tion for load-balanced parallelization.

All these efforts make AxiSEM3D a stand-alone numerical
method for global wave propagation in 3-D earth models char-
acterized by the following properties:

(i) Comprehensive: AxiSEM3D allows for material hetero-
geneities, such as velocity, density, anisotropy and attenuation, as
well as finite undulations on vertical discontinuities, and thereby
a variety of aspherical Earth features such as ellipticity, topogra-
phy and bathymetry, variation of crustal thickness and core–mantle
boundary topography. Ocean is modelled as a hydrodynamic load.

(ii) Accurate: AxiSEM3D is cross-verified with an independent
discretized 3-D SEM, SPECFEM3D GLOBE, for both material
heterogeneity and interface undulation. 3-D crustal structures such
as Crust 1.0 have been implemented in AxiSEM3D; in the absence
of a reference solution, however, our implementation cannot be
verified at this point, as discussed in the following subsection.

(iii) Efficient: Model-adaptivity is the central keyword for
AxiSEM3D. By locally adapting the Fourier expansion order of
solution to the azimuthal complexity of a wavefield, AxiSEM3D
bridges the gap between the fast dimension-reduction methods (for
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Figure 16. Comparisons between synthetic seismograms (vertical component) computed by AxiSEM3D and real seismic data. To construct the 3-D earth
model, we use S40RTS for the mantle and Crust 1.0 for the crust, also incorporating ellipticity, topography and ocean. The AxiSEM3D traces (red) are computed
using this model. The simulation period is 10 s and we filter the seismograms by a bandpass between 20 and 100 s. The traces are shifted by cross-correlating
the direct P-wave window (pink) and plotted in their original amplitudes (no normalization or correction). The synthetic traces for PREM (green) are retrieved
from Syngine (Krischer et al. 2017). The real seismic data (black) are retrieved using obspyDMT (Hosseini & Sigloch 2017).

1-D earth models) and the slow discretized 3-D methods. Excluding
a 3-D crust, for the state-of-the-art global tomographic models with
undulating discontinuities, the speed-up of AxiSEM3D with respect
to a 3-D SEM may reach 2 to 3 orders of magnitude for a seismic
period ranging from 5 to 1 s. Given the earth model, such speed-up
basically scales with frequency. The observable frequency band (up
to 1 Hz) of global seismic data has been achieved for 3-D mantle
models with reasonable computing resources.

6.1 3-D Crust

A realistic 3-D crustal structure is essential for surface wave mod-
elling. A global crustal model such as Crust 1.0 involves an undulat-
ing Moho discontinuity and material heterogeneity between the sur-
face and the Moho. Crust 1.0 has been implemented in AxiSEM3D,
including ice sheets and sediments. However, we cannot fully verify
our implementation with SPECFEM due to a persistent inconsis-
tency. In this subsection, we briefly discuss the complication around
crust implementation and verification, and compare some synthetic
seismograms computed by AxiSEM3D to real seismic data.

Compared to long-wavelength mantle structures, the Earth’s crust
varies much more drastically in both amplitude and wavelength.
The most outstanding challenge comes from a severely varying
crustal thickness, characterizing the Moho discontinuity with large
undulations and sharp slopes beneath the ocean–continent plate
boundaries. For instance, Fig. 15(a) shows the undulating Moho
in Crust 1.0 defined on a 1×1 degree grid in which the crustal
thickness varies from ∼8 to ∼75 km. Fig. 15(b) explains the differ-
ent implementations of the Moho discontinuity in AxiSEM3D and
SPECFEM. In AxiSEM3D, the 3-D Moho is completely honoured

by the mesh, since the particle relabelling transformation requires
homeomorphism of any radial discontinuity to a sphere. In contrast,
SPECFEM honours part of the Moho by stretching the radial inter-
faces and the rest by material interpolation through the interior of
spectral elements. The interpolated part takes up around one fourth
of the entire Moho area and mainly overlaps with the seismically ac-
tive regions along the plate boundaries (where the crustal thickness
varies dramatically).

Concerning verification, AxiSEM3D cannot follow the way the
undulating Moho has been approximated in SPECFEM due to the
requirement of homeomorphism. In principle, as a full 3-D method,
SPECFEM could be modified such that an integrated Moho is hon-
oured; however, modifying the crustal module in SPECFEM seems
technically immense due to its hardcoded nature. Besides, it would
be unjustified to substantially modify such a complex code with-
out validation, turning the exercise upside down in that we would
always need an independent reference solution.

Computationally, the SPECFEM implementation can benefit
from a smaller global time step, as controlled by the number of
element layers within the thin oceanic crust. For Crust 1.0, the
time step of AxiSEM3D is about half of that of SPECFEM. Be-
cause nu will also be increased near the surface, a 3-D crust could
decrease the speed-up of AxiSEM3D by one order of magnitude.
Still, AxiSEM3D could remain faster at high frequencies, as can be
estimated from Fig. 9.

Because of its non-standard, hardcoded treatment of the Moho
discontinuity, SPECFEM could no longer serve as a reference solu-
tion for surface wave propagation in the Earth’s 3-D crust. We leave
the verification to a future study using Salvus (Afanasiev et al.
2017), a recently developed 3-D SEM that can honour the Moho in
a continuous manner as AxiSEM3D does. In the remainder of this
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section, we briefly compare AxiSEM3D synthetics to real seismic
data to illustrate the strong scattering effects of a 3-D crust.

Our 3-D earth model is a combination of S40RTS and Crust 1.0.
The event is a shallow earthquake in Japan. We show six stations
located between 85◦ and 110◦ in distance, as shown in Fig. 15(a),
with the paths going through complex crustal structures such as
the sharp plate boundaries and the thickest part of the Eurasian
plate. The seismograms are shown in Fig. 16. The 3-D earth model
remarkably enhances the solution quality, compared to PREM, es-
pecially for the body waves and the low-frequency surface waves.
Some high-frequency surface waves are not captured by the synthet-
ics, for which we presume two possible reasons: first, the resolution
of Crust 1.0 might be insufficient to model those high-frequency
reverberations; second, as we do not use a 3-D attenuation model,
the globally averaged attenuation strength in PREM might be too
strong for the considered paths.

In addition to a global 3-D crust, an earth model may contain other
types of strong, short-wavelength heterogeneities, such as randomly
distributed scatterers and irregularly shaped interfaces. Such het-
erogeneities have wave scattering effects increasing with frequency
and decreasing with propagation distance (problem scale), and are
thus of higher interest at regional to local scales. As a convergent
method, AxiSEM3D can handle any non-smooth heterogeneities as
long as the 3-D model is topologically equivalent to some layered
reference model (which is spherical at a global scale). For solu-
tion convergence, a more complicated model generally demands a
higher Fourier expansion order and thus higher computational cost.
Because of the super-linearity of FFT, there exists in theory a limit
model complexity at which AxiSEM3D can lose its speed-up with
respect to a discretized 3-D method. Such a limit tends to occur at
a long period.

In this paper, as focused on a global scale without benchmark for
a 3-D crust, AxiSEM3D works in a desirable regime and exhibits
remarkable computational advantage. Nevertheless, its cost char-
acteristic in the complete scattering regime remains incompletely
revealed, particularly the limit model complexity as a function of
frequency and propagation distance (we know that such a limit
should increase with frequency and decrease with propagation dis-
tance). Extremely varying 3-D heterogeneities are more relevant at
a local or regional scale and will be tested in a future study.
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Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J.,
Podhorszki, N. & Pugmire, D., 2016a. Global adjoint tomography: first-
generation model, Mon. Not. R. astr. Soc., 207(3), 1739–1766.
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A P P E N D I X A : A S P H E R I C A L F LU I D
D O M A I N

An earth model may contain various solid–fluid discontinuities,
collectively denoted �, as shown in Fig. 1. Following Komatitsch
& Tromp (2002a) and Chaljub & Valette (2004), we use the scalar
potential formulation in the fluid domains. The 3-D weak form for
a solid–fluid earth model may be written as

∫
�s

ρ∂2
t u · w d3r +

∫
�s

∇u : C : ∇w d3r

=
∫

�s

f · w d3r −
∫

�

∂2
t χ n̂ · w d2r,

(A1)

in the solid domain �s, and

∫
�f

1

κ
∂2

t χw d3r +
∫

�f

1

ρ
∇χ · I · ∇w d3r =

∫
�

u · wn̂ d2r, (A2)

in the fluid domain �f, where χ denotes the scalar potential such
that u = ∇χ/ρ in �f, w the test function in �f and κ the bulk
modulus of the fluid media. Here we insert a redundant identity
tensor I in the second term of eq. (A2) to make its functional form
more general, so as to facilitate the comparison with its aspherical
counterpart given below.

When undulations occur on the solid–fluid discontinuities, the
above weak forms need to be modified in analogy to eq. (7). For the
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solid domain, eq. (A1) becomes∫
�̃s

ρ̃∂2
t ũ · w̃ d3r +

∫
�̃s

∇ũ : C̃ : ∇w̃ d3r

=
∫

�̃s

f̃ · w̃ d3r −
∫

�̃

∂2
t χ̃ ñ · w̃ d2r,

(A3)

where ρ̃, C̃ and f̃ are computed by eqs (9)–(11), and the vector ñ,
orthogonal to the undulating interface � in the physical model (but
not in unit length), can be shown to be

ñ (r) = J−T (τ, r) · n̂ (ξ (r)) det J (τ, r) . (A4)

Similarly, for the fluid domain, eq. (A2) becomes∫
�̃f

1

κ̃
∂2

t χ̃ w̃ d3r +
∫

�̃f

1

ρ̃
∇χ̃ · Ĩ · ∇w̃ d3r =

∫
�̃

ũ · w̃ñ d2r, (A5)

where

κ̃ (r) = κ (ξ (r)) det −1J (τ, r) , (A6)

ρ̃ (r) = ρ (ξ (r)) det −1J (τ, r) , (A7)

Ĩ (r) = J−1 (τ, r) · J−T (τ, r) . (A8)

Again, the 3-D weak forms for an aspherical solid–fluid Earth,
eqs (A3) and (A5), are formally identical to those for a spherical
solid–fluid Earth, eqs (A1) and (A2), respectively. Therefore, we
may consider an undulating solid–fluid discontinuity by modifying
both the normal vector of its spherical counterpart and the material
properties of the contiguous media in the reference model.

A P P E N D I X B : S O U RC E N E A R
U N D U L AT I N G I N T E R FA C E S

For a point source moment tensor, denoted M, the right-hand side of
the 3-D weak form, eq. (1), yields M : ∇w (rs), where rs denotes the
source location. Accordingly, the right-hand side of the dimension-
reduced weak forms, eq. (3), can be written as (Leng et al. 2016)

• Monopole term (β = 0):

2π
∫

D
f 0
i w0

i s dsdz = (
Mxx + Myy

)
w0

s,s + Mzzw
0
z,z, (B1)

• Dipole term (β = 1):

2π
∫

D
f −1
i w1

i s dsdz = Mxz − iMyz

2

(
w1

s,z + 2w1
z,s + iw1

φ,z

)
,

(B2)

• Quadrupole term (β = 2):

2π
∫

D
f −2
i w2

i s dsdz =
(

Myy − Mxx

2
+ iMxy

) (
w2

s,s + iw2
φ,s

)
,

(B3)

where Mxx, Myy, ... are the Cartesian components of M, and the
derivatives of the Fourier coefficients of w are evaluated at rs. Note
that the source term vanishes when |β| > 2.

If the source is located within an undulated range, for instance,
within a 3-D crust, the right-hand side of eq. (7) will become∫

�̃

f̃ · w̃ d3r = M :
(
J−T (τs, rs) · ∇w̃ (rs)

)
. (B4)

Accordingly, the above closed forms, eqs (B1)–(B3), should be,
respectively, generalized as

• Monopole term (β = 0):

2π
∫

D̃
f̃ 0
i w̃0

i s dsdz =
(

1 + τs

zs

) (
Mxx + Myy

)
w̃0

s,s + Mzzw̃
0
z,z

+ ∂τ

∂x
Mxzw̃

0
z,z + ∂τ

∂y
Myzw̃

0
z,z + ∂τ

∂z
Mzzw̃

0
z,z,

(B5)

• Dipole term (β = 1):

2π
∫

D̃
f̃ −1
i w̃1

i s dsdz =
(

1 + τs

zs

) (
Mxz − iMyz

)
w̃1

z,s

+ Mxz − iMyz

2

(
w̃1

s,z + iw̃1
φ,z

)

+ ∂τ

∂x

Mxx − iMxy

2

(
w̃1

s,z + iw̃1
φ,z

)

+ ∂τ

∂y

Mxy − iMyy

2

(
w̃1

s,z + iw̃1
φ,z

)

+ ∂τ

∂z

Mxz − iMyz

2

(
w̃1

s,z + iw̃1
φ,z

)

(B6)

• Quadrupole term (β = 2):

2π
∫

D̃
f̃ −2
i w̃2

i s dsdz =
(

1 + τs

zs

) (
Myy − Mxx

2
+ iMxy

)

× (
w̃2

s,s + iw̃2
φ,s

)
, (B7)

where the derivatives of τ are also evaluated at rs. The above closed
forms degenerate to eqs (B1)–(B3) when τ s = 0 and ∂xi τ

∣∣
rs

= 0,
that is, the geometric mapping vanishes in a finite neighbourhood
of the source point.

A P P E N D I X C : O C E A N L OA D

When approximated as load, the ocean introduces an additional term
(Komatitsch & Tromp 2002b) to the 3-D weak form, eq. (1),∫

�

ρ∂2
t u · w d3r +

∫
�

∇u : C : ∇w d3r

=
∫

�

f · w d3r −
∫

∂�

ρwhw

(
∂2

t u · n̂
)

(w · n̂) d2r,
(C1)

where ρw denotes the density of sea water and hw the ocean depth.
When surface topography is considered, the normal vector n̂ has to
be replaced by ñ in eq. (A4), in addition to ρ, C and f. In SEM,
the ocean load can be easily implemented as an anisotropic mass
matrix on the ocean floor.

Taking ρw as constant, hw is the only 3-D parameter involved in
the additional term. Applying the global Fourier series parametriza-
tion to hw, the above weak form reduces to the following algebraic
system of 2-D weak forms in D, as a generalization of eq. (3),

∑
|α|≤nu

(∫
D

ρ−(α+β)∂2
t uα

i w
β

i s dsdz +
∫

D
uα

i ; j C
−(α+β)
i jkl w

β

k;l s dsdz

)

=
∫

D
f −β

i w
β

i s dsdz − ρw

∑
|α|≤nu

∫
∂ D

h−(α+β)
w ∂2

t uα
i w

β

j n̂i n̂ j s dsdz.

(C2)
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