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Abstract

In this paper we analyse broadcasting in d-regular networks with good expansion
properties. For the underlying communication, we consider modifications of the so
called random phone call model. In the standard version of this model, each node
is allowed in every step to open a channel to a randomly chosen neighbour, and the
channels can be used for bi-directional communication. Then, broadcasting on the
graphs mentioned above can be performed in time O(log n), where n is the size of the
network. However, every broadcast algorithm with runtime O(log n) needs on average
Ω(log n/ log d) message transmissions per node.

In this paper we show that it is possible to save significantly on communications if
the standard model is modified such that nodes can avoid opening channels to exactly
the same neighbours in two consecutive steps. We consider the so called Rr model
where we assume that every node has a cyclic list of all of its neighbours, ordered
in a random way. Then, in step i the node communicates with the i-th neighbour
from that list. We provide an O(log n) time algorithm which produces in average
O(
√

log n) transmissions per node in networks with suitably defined expansion prop-
erties. Furthermore, we present a related lower bound of Ω(

p
log n/ log log n) for the

average number of message transmissions. These results show that by using memory
it is possible to reduce the number of transmissions per node by almost a quadratic
factor.

1 Introduction

We consider randomised broadcasting in (almost) regular graphs with good expansion prop-
erties. In the broadcasting problem, the goal is to spread a message from one vertex to all
vertices of a network. Our interest in these graphs is motivated by overlay topologies in
peer to peer (P2P) systems. Important topological properties of these networks include good
connectivity, high expansion, and small diameter; all these properties are perfectly fulfilled

∗An extended abstract of this paper has appeared in the Proceedings of LATIN 2010 [4]
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by the graphs considered here. Our aim is to develop time-efficient broadcasting algorithms
which produce a minimal number of message transmissions in the graphs described above.
Since P2P systems are significant decentralised platforms for sharing data and computing
resources, it is very important to provide efficient, simple, and robust broadcasting algo-
rithms for these overlay networks. Minimising the number of transmissions is important
in applications such as the maintenance of replicated databases in which broadcasts are
necessary to deal with frequent updates in the system [18, 22].

In this paper we assume the so called phone call model (see [22]). In this model, each
node v may perform the following actions in every step:

1) create a new message to be broadcast

2) establish a communication channel between v itself and one of its neighbours

3) transmit messages over incident channels opened by itself or by some of its d neighbours

At the end of each step, the nodes close all open channels. Note that open channels can be
used for bi-directional (push&pull) communications. In the case of push transmissions, call-
ing nodes (i.e., the nodes that opened the channels) send their messages to their neighbours.
In the case of pull transmissions, messages are transmitted from called nodes to the calling
ones (we also say that the called nodes perform pull transmissions). Note that nodes do
not have to send messages over open channels, they can choose to do so. For example, if
node v opens a channel to w, w does not have to send a message to v. If many distinct
messages are to be spread in the network, then the nodes can combine several broadcast
messages to larger ones which can be sent over a channel in one time step.

In the standard phone call model it is assumed that nodes open a channel to a randomly
chosen neighbour, and the nodes have to decide whether to transmit a specific message over a
channel, without knowing if they opened a channel to the corresponding node in earlier steps
[22]. In this paper we assume that every node has a cyclic list of all of its neighbours, ordered
in a random way. In step i the node opens a channel to the i (modulo d)-th neighbour from
that list. This model is called Rr model (Rr its standing for round robin) in the following.
The Rr rule prevents a node to open a channel to a neighbour for a second time before it
opened a channel to all of its neighbours. Hence, the rule helps nodes to communicate with
more of their neighbours.

The question we address in this paper is whether remembering the communication part-
ners from earlier rounds helps or not. We give a positive answer to this question and provide
further evidence for the power of memory in randomised broadcasting (see [15]). More pre-
cisely, we present an algorithm, and show that w.r.t. the average number of transmissions
per node this algorithm performs significantly better than any algorithm in the so called
Random[c]-model introduced in [15] (i.e. we achieve an almost quadratic improvement).
Random[c] is similar to the standard random phone call model, however, every node may
open channels to c different randomly chosen neighbours simultaneously in each step. Our
algorithm is address oblivious, i.e., the send decisions of the nodes do not depend on the
IDs of the nodes to which they open channels in the actual step. However, the nodes are
allowed to remember with which nodes they communicated in the steps before [22].

1.1 Related Work

There is a huge amount of work considering epidemic type (broadcasting) algorithms on
graph models for P2P overlays. Most of these papers deal with the empirical analysis of

2



these algorithms e.g. [23, 26]. Due to space constraints, we can only describe here the results
which focus on the analytical study of push&pull algorithms.

Runtime. Most randomised broadcasting results analyse the runtime of the push algo-
rithm. For complete graphs of size n, Frieze and Grimmett [19] present an algorithm that
broadcasts a message in time log2(n)+ ln(n)+o(log n) with a probability of 1−o(1). Later,
Pittel [27] shows that (with probability 1 − o(1)) it is possible to broadcast a message in
time log2(n)+ln(n)+f(n) [27], where f(n) can be any slow growing function. In [18], Feige
et al. determine asymptotically optimal upper bounds for the runtime of the push algorithm
on G(n, p) graphs (i.e., traditional Erdös-Rényi random graphs [16, 17]), bounded degree
graphs, and Hypercubes. In [14] Elsässer and Sauerwald analyze certain Cayley graphs
on which the push algorithm performs (asymptotically) optimal. Boyd et al. consider the
combined push&pull model in arbitrary graphs of size n, and show that the running time
is asymptotically bounded by the mixing time of a corresponding Markov chain plus an
O(log n) value [5]. In [10] Doerr et al. analyse the so called quasi-random rumor spreading
in an adversarial version of the Rr model where the order of the lists is assumed to be given
by an adversary. However, the nodes choose a random position in their lists to start with
communication. They show for hypercubes and G(n, p) graphs that O(log n) push steps
suffice to inform every node, w.h.p.1. These bounds are similar to the ones in traditional
randomised broadcasting (push model). These results have been extended to further graph
classes with good expansion properties [11]. Recently, Doerr et al. showed in [9] that by
using the Random[2]-model, one can improve the running time of broadcasting on the so
called preferential attachment graph [1] of size n by a factor of log log n.

Number of transmissions. Karp et al. [22] show that in complete graphs the pull ap-
proach is inferior to the push approach, until roughly n/2 nodes receive the message, and
then the pull approach becomes superior. They present a push and pull algorithm, to-
gether with a termination mechanism, which reduces the number of total transmissions to
O(n log log n) (w.h.p.), and show that this result is asymptotically optimal. They also con-
sider communication failures and analyse the performance of their method in cases where
the connections are established using arbitrary probability distributions.

For sparser graphs it is not possible to get O(n log log n) message transmissions to-
gether with a broadcast time of O(log n) in the standard phone call model. In [12] Elsässer
considers random G(n, p) graphs, and shows a lower bound of Ω(n log n/ log(pn)) mes-
sage transmissions for broadcast algorithms with a runtime of O(log n). On the positive
side, for p > log2 n/n he develops an algorithm that broadcasts in time O(log n) using
O(n · (log log n + log n/ log(pn))) transmissions, w.h.p.

In [15] the authors consider a simple modification of the standard phone call model
called Random[c] defined above. For G(n, p) graphs with p > log2 n/n, they show that
this modification results in a reduction of the number of message transmissions down to
O(n log log n). In [2] the authors show similar results for random d-regular graphs with
d = O(log n). A further extension to random power law graphs has been obtained in [13].
Recently, the authors also considered quasi-random rumor spreading in random graphs and
hypercubes, and obtained asymptotically optimal results w.r.t. the running time and number
of message transmissions [3]. However, by using the techniques of [3], it is not possible to
obtain similar results for the more general case of Edge-Node expanders considered in this
paper.

1W.h.p. or “with high probability” means with probability 1− o(n−1)
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1.2 Models and Results

In this paper, we consider the running time and number of message transmissions produced
by randomised broadcasting in more general expander graphs. We assume that every node
has an estimation of n which is accurate to within a constant factor. We also assume that
all nodes have access to a global clock, and that they work synchronously. In each step
every node can create an arbitrary amount of messages to be broadcasted. The number of
message transmissions for a certain message is defined as the the number of open channels
traversed by the message during the execution of the algorithm. As in [22], we assume
here that new pieces of information are generated frequently in the network, and then
the cost of establishing communication channels amortises over all message transmissions.
However, we only concentrate on the distribution and lifetime of a single message, and
consider broadcasting in the following graphs.

Edge-Node Expanders. Let G = (V,E) be a d-regular graph of size n. For A ⊂ V , let
E(A,A) denote the set of edges between A and A = V \A, and let N(A) = {v ∈ A | (u, v) ∈
E and u ∈ A}. For a constant α, G is called α-Edge-Node expander (or simply Edge-Node
expander) if the following holds:

1. For any set A ⊂ V with |A| ≤ n/2 we have |E(A,A)| ≥ αd · |A|.
2. For any set A ⊂ V with |A| ≤ φn/d it holds that |N(A)| ≥ αd · |A|, where φ is a

(large) constant.

In this paper we show three results.

• We show that there exists a family of Edge-Node Expanders for which every broadcast-
ing algorithm with runtime O(log n) in the Random[r] communication model (with
constant r) needs Ω(n log n/ log log n) message transmissions, w.h.p. (see Theorem 1).

• We present an algorithm in the Rr model that broadcasts a message in a regular Edge-
Node Expander in time O(log n) by using O(n

√
log n) transmissions, w.h.p. (Theorem

2). The result holds for graphs with degree d ∈ {f(n)·(log3/2 n), 2o(
√

log n)}. f : N → R
is a function such that limn→∞ f(n) = ∞.

• We show that there exists a family of Edge-Node Expanders for which every broadcast
algorithm in the oblivious model with runtime O(log n) in the Rr communication
model needs

Ω(n
√

(log n)/ log log n)

message transmissions, w.h.p. (Theorem 3).

Note that it might be very well possible to relax the bounds on d. The lower bound on
d comes from Equation 1 in Claim 4 together with Claim 3. The algorithm in Section 2.1
requires that d = 2o(

√
log n), since otherwise the message complexity would be larger than

O(n
√

log n) (cf. Phase 3).
We believe that d ∈ {f(n) · (log3/2 n), 2o(

√
log n)} covers all interesting cases. For small

rvalues of d it is clear that in the Rr model the nodes communicate with each of their
neighbours, which makes the analysis simple. On the other hand, for very large values of d
the difference between the standard phone call model and the Rr model become negligible
since it is very unlikely that nodes communicate several times with the same neighbours.

In [15, 2] we showed that in random graphs one can save on the number of message
transmissions if the nodes avoid communication with the neighbours chosen already in some
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recent steps. In the analysis we used the randomised construction of these graphs, and
integrated the dynamical behaviour of the Random[c] model (i.e., the parallelised version of
the model described above) into the random structure of the underlying topology. However,
the methods derived in [15, 2] cannot be generalised to non-random graphs with similar
expansion and connectivity properties, not even to pseudo-random graphs [24]. Therefore,
the main question is whether the same result also holds in graphs with random graph like
properties. To answer this question, we show that there exists Edge-Node expanders that
require Ω(n log n/ log log n) message transmissions for constant c (Theorem 1).

To show Theorem 2 we introduce a new combinatorial technique which only uses the
structural properties of Edge-Node expanders to show that our algorithm algorithm com-
pletes broadcasting in time O(log n) and generates O(n

√
log n) message transmissions (see

Sections 2.1-2.2). Our lower bound of Theorem 3 on the number of message transmissions
shows that our analysis is tight up to a

√
log log n factor.

Note that the upper bound on the number of message transmissions in the Rr model
is significantly smaller than the lower bound in the Random[c] model, which substantiates
the importance of memory in randomised broadcasting. Notice that all (regular) graphs
G for which λ2 = d − O(

√
d) (λ2 is the second smallest eigenvalue of the Laplacian of G)

obey the properties described above (cf. [7, 21, 28]). Examples for such graphs are so called
Ramanujan graphs which include the class of random regular graphs (cf. [10, Section 4.1.4]).

2 Broadcasting on Edge-Node Expanders

In this section we first consider the following lower bound w.r.t. the performance of the
Random[c] model in Edge-Node Expanders.

Theorem 1 Assume A is a (Monte-Carlo) broadcasting algorithm with runtime O(log n)
in the Random[r] communication model, where r is a constant. There exists a family of
Edge-Node Expanders for which A needs Ω(n log n/ log log n) message transmissions, w.h.p.

Proof: We assume that c log n is the runtime of the algorithm in the Random[r] model,
where r is a constant. We also assume that the structure of the graph is not known to the
nodes and can not be learned during the execution of the algorithm (i.e., no information
about the structure is sent from a node to another one). The theorem can be shown by
extending the proof of Theorem 2 of [12] to the Cartesian product of an Erdős-Rényi random
graph with a Kr+1. Here we present a somewhat different approach. The graph G = (V,E)
consists of a (random) α-Edge-Node Expander G′ = (V ′, E′) (with some parameter φ > r+1,
cf. definition of Edge-Node Expanders) of size n and degree log2 n − r − 1, together with
` = n/(log2 n − r) cliques K1, . . . K` of size r + 1. For 1 ≤ i ≤ `, all nodes of Ki are
connected to the same set of log2 n− r nodes in V ′. However, two nodes u ∈ Ki and v ∈ Kj

are connected to different sets of nodes in V ′, for any i 6= j. Hence, every node in G has
degree d = log2 n. In the following G′ is called the original graph, with original nodes and
original edges. The clique nodes are called clique nodes, and edges between two node of
the same clique will be called inner edges. Edges connecting a clique node to G′ are called
external edges.

In order to show that G is still an α/(2(r + 2))-Edge-Node Expander, consider some
subset Q ⊂ V of size at most φn/(d − r − 1) ≥ φ/2 · (n + `(r + 1))/d. Assume that
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|Q ∩ V ′| > |Q|/2. Then, since G′ is an α-Edge-Node Expander with parameter φ, we have

|N(Q)| ≥ αd|Q ∩ V ′| ≥ αd|Q|
2

.

If |Q ∩ V ′| ≤ |Q|/2, then we have at least |Q|/2 clique nodes in Q. Since each of these
nodes has at least d− r neighbours in V ′, and at most r + 1 nodes may have the same set
of neighbours in V ′, we obtain

|N(Q)| ≥ (d− r)
|Q|

2(r + 1)
− |Q|

2
≥ αd|Q|

2(r + 2)
.

The edge property from the definition of Edge-Node Expanders is shown in a similar way.
Thus, G is an α/(2(r + 2))-Edge-Node Expander (with parameter φ/2).

We assume that there is an algorithm A which has running time c log n and that gen-
erates at most ε · n log n/ log log n message transmissions, where ε is a small constant. To
prove this theorem we show in the following that, with a good probability, A will not
be able to inform all the nodes from every clique of the graph. Since A sends at most
ε · n log n/ log log n messages, a simple pigeonhole argument shows that there exists at least
l/2 cliques Ki1 , . . . ,Kil/2 with the following property. Every node in Ki1 , . . . ,Kil/2 has at
least γ · (log2 n− r) neighbours in G′ that send at most 2ε · log n/((1−γ) log log n) messages
each (push or pull), where γ < 1 is a constant close to 1.

Now let us fix a node v ∈ Kij . We divide the steps into dangerous and safe steps.
In a dangerous step, there are more than (1 − γ + (1 − γ)2) · d − r nodes in N(v, V ′)
which perform a pull transmission. The steps which are not dangerous are called safe.
Our goal is now to show that there is a large probability that in dangerous steps v always
communicates with its neighbours in Kij , whereas in safe steps v always communicates
with neighbours not performing pull in that step. First, we show an upper bound on the
number of dangerous steps. Since a fraction γ of the nodes from N(Kij

, V ′) perform at
most 2ε log n/((1 − γ) · log log n) message transmissions, the number of dangerous steps is
bounded by

γ(d− r) · 2ε log n/((1− γ) · log log n)
(1− γ)2d− r

<
2γ + 1

(1− γ)3
· ε log n

log log n
.

The probability that v uses internal edges in all dangerous steps is at least

p′ = d−r·(2γ+1)ε log n/((1−γ)3 log log n).

The probability that v chooses in all safe steps only nenighbours which decided not to answer
the pull request is at least

p′′ =
(

(γ − (1− γ)2)d− r

d

)r·c log n

.

Hence, the probability that all nodes of Kij do not receive the message via pull is at least

P1 = (p′ · p′′)r+1 = d−r·(2γ+1)ε log n/((1−γ)3γ log log n)

(
(γ − (1− γ)2)d− r

d

)r·c log n

which is larger than n−1/8 whenever ε is small enough and γ is large enough.
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Now we concentrate on push transmissions. As before, there are at most 2γ+1
(1−γ)3 ·ε

log n
log log n

dangerous steps. Node v does not get the message via push in one of the dangerous steps
with probability at least(

1− r

d

)d· 2γ+1
(1−γ)3

ε log n
log log n ≥ e

− 2γ+1
(1−γ)3

·εr log n
log log n .

Similarly, v does not get the message by push in one of the safe steps with a probability of
at least (

1− r

d

)((1−γ+(1−γ)2)d−r)c log n

.

The probability that none of the nodes of Kij receives the message via push is at least

P2 =
(

e
− 2γ+1

(1−γ)3
·εr log n

log log n

(
1− r

d

)((1−γ+(1−γ)2)d−r)c log n
)r+1

≥ n−1/8,

whenever ε is small enough and γ is large enough. Since l � n1/4 and P1 · P2 ≥ n−1/4, the
theorem follows. �

2.1 The Algorithm

The following procedure describes one step of the algorithm. At the beginning of each
step each node opens a channel, decides which messages to forward via push and pull (as
described by the algorithm below). Then all nodes close all open channels. Recall that push
sends from the calling node to the called node, and pull sends the message from the called
node to the calling one. Nodes do not have to send messages over a channel opened by
themselves (push) and they can also ignore nodes calling on them (pull).

To chose the neighbour to which the channel is directed we assume that every node v
stores a cyclic list `v with a random permutation of all its neighbours. Let `v(t) be the t-th
entry in the list. Then we assume that v opens a communication channel to `v(t) in step t (we
omit the division by d for t > d). For t′ > t we define Lv[t, t′] = {`v(t), `v(t + 1), . . . `v(t′)}
as the set of nodes to which v opened a channel in steps t, . . . t′.

The following algorithm describes the behavior of the nodes w.r.t. one specific message
m. We assume that every message that is forwarded contains the age of the message, which
is defined as the difference between the current time step and the time step in which the
message has been generated. The algorithm can also be applied in dynamic settings where
nodes can generate new messages in every step. In that case the algorithm will be run for
every message on every node, meaning that the algorithm has to decide which messages to
send and which ones not, depending on the age of the message.

The age of a message determines which of the following phases of the algorithm applies to
it. It also determines when the algorithm terminates for a message. If the age of a message
is so large that none of the phases applies for the message, the algorithm stops forwarding
the message. Note that, with a small probability, the message did notch reach all nodes
of the graph. Hence, the algorithms terminates for a message after a fixed number of time
steps but it does not deliver every message with probability one. Also note that we assume
that nodes can combine all the messages that they would like to forward over a fixed edge
to one large message. In our cost model, the cost of broadcasting a message is the total
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number of transmissions in which the message is contained. One can regard our cost model
as counting the total amount of data volume that is transmitted for every message.

We assume that ρ > 40/α2 is a (large) constant. A node is called informed if it got a
copy of that message. We also assume m is generated at time step 0 (i.e., at step t the age
of the message equals t), and that t is the actual time. Recall that α is the expansion value
of the graph.

Phase 0: [age ≤ dρ log ne] The node v which generates the message uses the channel
to `v(t) for a push transmission in each step t of this phase. No other node transmits the
message in this phase.

Phase 1: [dρ log ne+1 ≤ age ≤ 2 · dρ log ne+d80/α2e] Nodes v that received the message
in Phase 0 use the first d80/α2e steps of this phase to perform a push transmission to `v(t).
If a node receives a message for the first time at time step t′ ∈ {dρ log ne+1, . . . , 2·dρ log ne},
then the node will use the next d80/α2e steps to perform a push transmission to `v(t).

Phase 2: [2 · dρ log ne+ d80/α2e+1 ≤ age ≤ 2 · dρ log ne+ dρ log de] Every informed node
performs a push transmission to `v(t).

Phase 3: [2 · dρ log ne+ dρ log de+ 1 ≤ age ≤ 2 · dρ log ne+ 2 · dρ log de] Every informed
node performs a pull transmission to every calling node in each step of this phase.

Phase 4: [2 · dρ log ne + 2 · dρ log de + 1 ≤ age ≤ 2 · dρ log ne + 2 · dρ log de + dρ
√

log ne]
Every informed node performs a pull transmission to every calling node in each step of this
phase.

Phase 5: [2 · dρ log ne+2 · dρ log de+ dρ
√

log ne+1 ≤ age ≤ 3 · dρ log ne] Every node that
receives the message in Phase 4 or 5 performs a pull transmission to every calling node in
each step of this phase.

The other informed nodes flip a coin and performs a pull transmission to every calling
node with probability 1/

√
log n.

Phase 6: [3 ·dρ log ne+1 ≤ age ≤ 3 ·dρ log ne+dρ
√

log ne] Every informed node performs
a pull transmission to every calling node in each step of this phase.

In the first 3 phases the above algorithm performs push transmissions, in the remaining
4 phases it performs pull transmissions. Note that here is no algorithmic difference between
Phase 3 and Phase 4. We introduce these two phases since they will be analysed separately.
If a node decides to answer a pull request then it will answer all pull requests during that
step. We say a node is active in a phase if it performs transmissions in that phase. The idea
of the algorithm is as follows.

push Phases.

• In Phase 0 the node which generated the message performs a push transmission in
every step. At the end of the phase O(log n) nodes are informed, w.h.p.

• In Phase 1 every informed node performs a constant number of push transmissions.
After that we have w.h.p. n/d informed nodes. The restriction to a constant number
of transmissions per node helps to reduce the transmission number.
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• The purpose of the third phase is to inform n/2 nodes. In this phase every informed
node performs a push transmission in every step of the phase. Note that this phase
consists only of O(log d) many steps.

The first 3 Phases are analysed in Observation 1, Lemma 1, and Lemma 2.

pull Phases.

• In every step of Phase 3 every informed node uses all incoming channels for pull
transmission. At the end of the Phase 3 we have n − n/d3 informed nodes, w.h.p
(Lemma 3).

• In every step of Phase 4 every informed node uses all incoming channels for pull
transmission.

In Phase 5 the nodes that were informed during the last two phases become active.
All remaining nodes will become active with a probability of 1/

√
log n per step. (This

helps to keep the number of transmissions low.) Every active nodes use all incoming
channels for a pull transmission in every step.

Phase 4 and Phase 5 are responsible to inform w.h.p. all uninformed nodes that have,
in turn, many uninformed neighbours at the beginning of Phase 4. These two phases
are analysed in Lemma 4.

• The remaining nodes are informed in Phase 6 where every informed node uses every
incoming channel for a pull transmission in every step. This is shown in Lemma 5.

2.2 Analysis of the Algorithm

The analysis of the algorithm is more or less divided into the same phases as the algorithm.
First we show (Lemma 1 and Lemma 2) that the algorithm informs w.h.p. at least n/2 nodes
during the first O(log n) steps of Phase 1 to Phase 3 , using O(n) message transmissions.
More precisely, we show that (w.h.p.) in a constant number of steps the number of informed
nodes increases by a constant factor, as long as the number of informed nodes is less than
n/2.

As soon as the number of informed nodes is larger than n/2 the analysis becomes much
more complicated. If we were only interested in the running time of our algorithm, then
we could apply a backward analysis as in e.g. [15] to show that the algorithm completes
broadcasting in O(log n) steps, w.h.p. However, this would result in a bound of Θ(n log n)
on the number of message transmissions. Since our goal is to significantly reduce the number
of message transmission per node we need new analytical techniques for this case. Thus,
we first analyse the distribution of edges in the set of uninformed nodes as well as the
distribution of the so called cut edges separating informed and uninformed nodes from each
other. To obtain the desired result, we design a new combinatorial technique that combines
the information flow from informed to uninformed vertices with the distribution of the cut
edges.

In our proofs we assume for simplicity that ρ log n, ρ log d, and ρ
√

log n are all integers.
We assume that d ≥ f(n)·log3/2 n with f : N → R being a function such that limn→∞ f(n) =
∞. Note that whenever d = O(

√
log n), the bound on the number of message transmissions

can be trivially fulfilled, since each node can communicate with all its neighbors in O(
√

log n)
steps. However, the analysis cannot be extended to values between

√
log n and log3/2 n as
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already mentioned in Section 1.2. Whenever we analyse a phase of our algorithm we assume
that all earlier phases were successfull in the sense that they informed the right number
of nodes. To get the failure probability of Algorithm Rr one has to add up the failure
probability of all 6 phases. We will use the following definitions.

• I(t) is the set of informed nodes at the beginning of step t.

• Let I+(t) = I(t + 1) \ I(t), that is, the nodes that get informed in step t.

• Let τ = t, t + 1, . . . t′ be some consecutive steps of our algorithm. Then I+(τ) is the
set of nodes that get informed in steps t, t + 1, . . . t′ from one of the nodes of I(t).

• H(t) is the set of uninformed nodes V \ I(t) at time t.

• E(S, S) is the set of edges between S and S.

• N(S, S′) is the set of neighbours of S that are in S′. Accordingly, N(u, S′) is the set
of neighbours of u ∈ V in S′.

2.2.1 Phase 0

Since d ≥ f(n) · (log n)3/2 it is easy to see that in Phase 0 the node, on which the message is
generated, informs ρ log n different neighbours, which results in the following observation.

Observation 1 At the end of Phase 0 there are ρ log n informed nodes.

2.2.2 Phase 1

Claim 1 below is used to analyse Phase 1. We divide Phase 1 into k = (ρ log n)/` + 2 time
intervals τ1, . . . , τk of length ` = 40/α2 each. Note that due to the definition of Phase 1,
every node that is informed in time interval τi will perform push transmissions during the
whole time interval τi+1.

Claim 1 Let τ1, . . . , τi, . . . be the time intervals of Phase 1 and let ti be the beginning of
τi. Assume that there may be o(|I(ti)|) nodes in I+(τi−1) which do not send the message in
the whole time interval τi. Assume further that

|I(ti)| ≤
n

d
and |I(ti)| ≥

8
α
· |I(ti−1)|.

Then with a probability of 1− n−3 we have

|I+(τi)| ≥
8
α
· |I(ti)|.

Proof: To show this result we assume (as a worst case assumption) that the lists of
the nodes are ordered by an adversary. Each node chooses at the beginning a random list
position. To create the list, the adversary may have total knowledge about the topology of
the network, but she cannot foresee any node’s random choice w.r.t. the position selected
at the beginning.

For the proof we can assume that there are at most o(I(ti) = o(|I+(τi−1)|) nodes in
I+(τi−1) which do not transmit in time interval τi. We denote this subset of nodes by
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I−(τi−1). Using the expansion properties of the graph and H(ti) ⊂ H(ti−1) we obtain that
|N(I+(τi−1) \ I−(τi−1),H(ti))| is at least

|N(I(ti),H(ti))| − |N(I(ti−1),H(ti))| − |N(I−(τi−1),H(ti))|
≥ |N(I(ti),H(ti))| − |N(I(ti−1),H(ti−1))| − |N(I−(τi−1),H(ti))|
≥ α · d · |I(ti)| − d · |I(ti−1)| − d · o(|I(ti)|)

≥ α · d · |I(ti)| − d · α

8
· |I(ti)| − o(d|I(ti)|)

=
7
8
· α · d · |I(ti)|(1− o(1)).

The last inequality holds due to the second precondition of the claim. Every node v ∈
I+(τi−1)\I−(τi−1) performs ` = 40/α2 push transmissions in time interval τi. Now fix node
u ∈ N(I+(τi−1) \ I−(τi−1)) and assume the node has r neighbours in I+(τi−1) \ I−(τi−1).
Then

Pr
[
u ∈ I+(τi)

]
= 1−

(
1− 40

α2d

)r

≥ 1−
(

1− 40
α2d

)
=

40
α2d

.

By linearity of expectations we get

E
[
|I+(τi)|

]
≥
(

7
8
· α · d · |I(ti)|(1− o(1))

)
·
(

40
α2d

)
≥ 35

α
· |I(ti)|(1− o(1)).

For v ∈ I+(τi−1), let Sv = {s1
v, . . . s`

v} be the random variables determining the choices
of v, i.e. determining the nodes to which v opens a channel in the interval τi, and let

S =
⋃

v∈I+(τi−1)\I−(τi−1)

Sv.

Note that the choices in Sv and Sw are independent from each other for v 6= w. Since
every v ∈ I+(τi−1) can only inform at most 40/α2 in time interval τi, I+(τi) satisfies the
40/α2-Lipschitz condition and the method of independent bounded differences [25] gives

Pr
[
I+(τi) ≤ E

[
I+(τi)

]
− λ

]
≤ exp

(
− λ2

2|I+(τi)|(40/α2)2

)
.

With λ = 27|I(ti)|/α we can conclude that

Pr
[

I+(τi) ≤
8
α
· |I(ti)|

]
≤ exp (−O(log n)) ≤ n−3,

since |I(ti)| ≥ ρ · log n with a sufficiently large ρ. �

Lemma 1 With a probability of 1−n−2 at least n/d nodes are informed at the end of Phase
1.

Proof: Let t be the beginning of Phase 1. To show the result we will prove that
|I+(t + ρ log n))| ≥ n/d with a probability of at least 1− n−2.

11



Recall that we divided Phase 1 into k = (ρ log n)/`+2 time intervals τ1, . . . , τk of length
` = 40/α2 each. We assume that ti is the first step of time interval τi. Let I+(τi) be the
random variable that counts the number of nodes that get informed in time interval τi. Note
that all nodes in I+(τi) will perform push transmissions in every step of interval τi+1 (for
i < k − 1). Since ρ > 4 we can assume that we have already 4 log n informed nodes at the
beginning of Phase 1. None of these nodes has transmitted the message yet. The proof of
the lemma is based on Claim 1. The claim shows that, with probability at least 1− n−3,

|I(ti+1)| ≥ (8/α) · |I(ti)|.

By repeatedly applying Claim 1 we conclude that if ρ is large enough, then after k many
time intervals at least n/d nodes are informed with a probability of at least 1− n−2. �

2.2.3 Phase 2

Next we consider Phase 2 where informed nodes perform push for roughly ρ log d many
steps. Note that the statement of this lemma holds conditioned on the event that Phase 1
was successful.

Lemma 2 With a probability of 1 − n−2 at least (n/2) nodes are informed at the end of
Phase 2.

Proof: Notice that the Rr-model is more powerful than the Random[1]-model, since an
edge used for communication once cannot be used again to inform a node. Thus, we assume
in this proof that the communication relies on the Random[1]-model. Let 0 < δ < 1 be a
suitably chosen constant and let

ΦI(t) :=
|E(I(t),H(t)|
|I(t)| · d

be the edge expansion of I(t). Due to our definition of Edge-Node Expanders we have
ΦI(t) ≥ α for |I(t)| ≤ n/2. In order to prove the lemma we will first show that w.h.p.

|I+(t)| ≥ |I(t)| · (1− δ) · ΦI(t) ·
1
2
.

Let {v1, . . . , vH(t)} be the set of uninformed nodes in step t. Then,

|H(t)|∑
i=1

|N(vi, I(t))| = |E(I(t),H(t))| = ΦI(t) · d · |I(t)|,

and for v ∈ H(t) it holds that

Pr
[
v ∈ I+(t)

]
= 1− ((d− 1)/d)|N(v,I(t))|.

By linearity of expectations we have

E
[
|I+(t)|

]
=

∑
v∈H(t)

Pr
[
v ∈ I+(t)

]
.
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It follows that

E
[
|I+(t)|

]
=

∑
v∈H(t)

1−
(d− 1

d

)|N(v,I(t))|
≥

∑
v∈H(t)

1− e(−
|N(v,I(t))|

d ).

Using the fact that exp(−x) ≤ 1− x
2 for −1.5 < x < 0 we obtain

E
[
|I+(t)|

]
≥

∑
v∈H(t)

|N(v, I(t))|
2d

=
ΦI(t) · |I(t)|

2
.

We can apply the method of independent bounded differences as in the proof of Claim 1,
and obtain that

Pr
[
|I+(t)| ≤ (1− δ) · ΦI(t) · |I(t)|·

(
1− 1

e

) ]
≤ exp(−Ω(ΦI(t) · |I(t)|)).

So far we have shown that in one step of Phase 2 we have w.h.p.

|I+(t)| ≥ (1− δ) · α · (1− e−1) · |I(t)|.

At the beginning of Phase 2 we have I(t) ≥ n/d. Hence, after ρ log d additional steps we
have |I(t)| ≥ n/2 for ρ large enough. �

2.2.4 Phase 3

Lemma 3 With a probability of 1−n−2 at least n−n/d3 nodes are informed at the end of
Phase 3.

Proof: To prove the lemma, we use similar techniques as in the proof of Lemma 2. Let t
be the beginning of Phase 3. We assume that |I(t)| > n/2. We know that

|E(H(t′), I(t′))| ≥ αd · |H(t′)|,

where t′ ∈ {t, . . . , t + ρ log d}. Let H ′(t′) be the set of nodes v ∈ H(t′) with

|N(v, I(t′))| ≥ αd

2
.

We can assume that there are no more than (1− α/2) · |H(t′)| nodes in H(t′) \H ′(t), since
otherwise

|E(H(t′), I(t′))| ≤
(
1− α

2

)
· αd

2
· |H(t′)|+ α

2
· |H(t′)|d < αd · |H(t′)|

which contradicts our assumption that the graph is an α-expander.
Fix t′ ∈ {t, . . . , t + ρ log d}. Since every node v ∈ H ′(t′) opens a channel in step t′, each

of these nodes receives the message with a probability of at least α/2, independently of the
other nodes in H ′(t′). Thus, applying simple Chernoff bounds [6], we can conclude that
with probability 1− o(n−2)

I+(t′) ≥ |H ′(t′)| · α · 1− o(1)
2

.

13



Since
|H ′(t′)| ≥ |H(t′)| · α

2
we have

|I+(t′)| ≥ |H(t′)| · α2 · 1− o(1)
4

.

Hence, |H(t + ρ log d)| ≤ n/d3 for some properly chosen constant ρ. �

2.2.5 Phase 4 and Phase 5

Now we focus on Phases 4 and 5. Assume that t is the beginning of Phase 4 and that there
are at least n− n/d3 informed nodes at that time. Recall that

• in Phase 4 (age t to t + ρ
√

log n) all informed nodes perform pull transmissions.

• In Phase 5 (age t + ρ
√

(log n) + 1 to 3ρ log n)

– every node that was informed in Phase 1-3 performs pull transmissions with
probability 1/

√
log n,

– and every node that was informed in Phase 4 or Phase 5 performs pull transmis-
sions with probability 1.

Lemma 4 Let t be the beginning of Phase 4. A node v ∈ H(t) with |N(v, I(t))| ≤ d/2
receives the message with probability 1− n−2 by the end of Phase 5.

Proof: To prove the lemma we use a so called backward analysis, for which we need
some new definitions. We consider a node v and the end of Phase 5, and in terms of
Claim 5, this node is assumed to be colored blue. The node `v(κ) is called the κ-active
neighbour of v, and the nodes Lv[κ1, κ2] are called (κ1, κ2)-active neighbours of v. A node
w is called κ-predecessor of v if there exists k ≤ κ, some nodes w1, . . . , wk and time steps
t0 < t1 < · · · < tk ≤ κ such that w is the t0-active neighbour of w1, node wi is the ti-active
neighbour of wi+1 (1 ≤ i < k), and wk the tk-active neighbour of v. This means that v is
connected to w by a path consisting of edges that were active in the time interval [t0, κ].

Note that, if w is a κ-predecessor of v and w is informed at step t0, then v becomes
informed at time κ. For different choices of k and t0, t1, . . . , tk one might regard v as being
a node of a tree consisting of κ-predecessors. If one of the nodes in the tree is informed in
the time step that corresponds to the node, v will get the message via the corresponding
path in the tree. Therefore, the analysis is performed backwards in time by considering the
predecessors, step by step. First we consider the predecessors to which v opens a channel
close to the end of Phase 5. Then we consider the nodes to which these neighbors of v open
channels in some steps earlier in time, etc... Finally we show that at some point in time
(which occurs after the end of Phase 3), the number of predecessors must exceed the total
number of uninformed nodes at the end of Phase 3. This would imply that the message
reaches node v by the end of Phase 5.

We define

T0 = t + ρ
√

log n, T1 = t + (ρ · log n)/4, T2 = t + (ρ · log n)/2, and T3 = t + ρ log n.

In the following we will consider time intervals [Ti, Ti+1] with i ∈ 0, 1, 2. We assume that
[Ti, Ti+1] down not contain step Ti.

First show the following claim stating that every uninformed node with many uninformed
neighbours has at least (ρ · log n)/8 many (T2, T3)-active neighbours in H(t).
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Claim 2 Let v be a node in H(t) with |N(v, I(t))| ≤ d/2. With probability 1− n−4

H(t) ∩ Lv[T2, T3] ≥
ρ log n

8
.

Proof: Fix κ ∈ [T2, T3]. Let p′ be the probability that `v(κ) ∈ H(t). By time step κ vertex
v used at most ρ log d + ρ log n ≤ 2ρ log n many edges for pull transmissions (ρ log d edges
in Phase 3 and at most ρ log n edges in Phase 4 and Phase 5. Note that the algorithm only
performs push transmissions in the first three phases). Since v has at least d/2 neighbors
in H(t) we have

p′ ≥ (d/2− 2ρ log n)/d.

With d = f(n) ·(log n)3/2 we get p ≥ 3/8. The expected number of nodes in I(t)∩Lv[T2, T3]
is at most 5ρ log n/16 and we can apply Chernoff bounds [6, 20] to conclude that whenever
ρ is large enough

Pr [ I(t) ∩ Lv[T2, T3] ≥ (7ρ log n)/8 ] ≤ n−4.

This finishes the proof of Claim 2. �

Applying the claim, we can assume for the rest of the proof that v has at least (ρ log n)/8
many (T2, T3)-active neighbours in H(t). We say a node v ∈ H(t) is I(t)-good if it has at
least d/2 of its neighbours in I(t) (meaning |N(v, I(t))| ≥ d/2). Otherwise the node is called
I(t)-bad.

In the following we show that every node that is I(t)-bad (|N(v, I(t))| ≤ d/2) will receive
the message from a node in I(t) in Phase 4 either directly via one of its I(t)-good neighbours,
or via a longer path to a node in I(t) consisting of nodes which are in H(t). Note that this
shows Lemma 4 since it only states that nodes v ∈ H(t) with |N(v, I(t))| ≤ d/2 will be
informed by the end of Phase 5.

To show that every node that is I(t)-bad will receive the message in Phase 4. We consider
two cases.

Case 1: In Lv[T2, T3] ∩ H(t) are at least ρ ·
√

log n I(t)-good nodes. Let U be the
set of I(t)-good neighbours of Lv[T2, T3]. Note that v receives the message in [T2, T3] if
there exists a node u ∈ U that received the message in Phase 4. This holds since all nodes
which receive the message for the first time in Phase 4 or Phase 5 respond to every pull
request. The probability that a node w ∈ U is still uninformed at the end of Phase 4 (step
t + ρ

√
log n) is at most (3/8)−ρ

√
log n. This holds since for every κ ∈ [t, t + ρ

√
log n] the

probability that `w(κ) ∈ I(t) is at least

(d/2− ρ log d− ρ
√

log n)/d ≥ 5/8

(ρ log d edges in Phase 3 and at most ρ
√

log n edges in Phase 4 might have already been used
for pull requests, and d ≥ f(n) · (log n)3/2). For ρ > 4, all nodes of U are still uninformed
at time t + ρ

√
log n with a probability of at most (3/8)−ρ2(

√
log n)2 = n−4.

Case 2: In Lv[T2, T3] ∩H(t) are fewer than ρ ·
√

log n I(t)-good nodes. Due to our
assumption that v has at least ρ log n/8 many (T2, T3)-active neighbours in H(t), at least
(ρ/8) · log n− ρ

√
log n of v’s (T2, T3)-active neighbours (in H(t)) are I(t)-bad (see Claim 2).

Let U = w1, . . . wk be an arbitrary subset of size k =
√

f(n) log n of the I(t)-bad neighbours
of v. Now we step back in time and consider the time interval [T1, T2].
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Claim 3 Let
U ′ =

⋃
w∈U

Lw(T1, T2).

Then with a probability of 1− o(n−3)

|U ′ ∩H(t)| = Ω(
√

f(n)(log n)3/2).

Proof: To bound the size of U ′ ∩ H(t) we consider one node of U after the other. We
define U ′

0 = ∅ and for 1 ≤ i ≤ k

U ′
i =

{
U ′

i−1 if |U ′
i−1| ≥

√
f(n) · (log n)3/2⋃i

j=1 Lwj [T1, T2] ∩H(t) otherwise.

Finally, we define U ′ = Uk. We calculate the probability that the construction ends with
|U ′| <

√
f(n) · (log n)3/2.

Assume |U ′
i−1| <

√
f(n) · (log n)3/2 for some i. Then, for wi ∈ U and `j ∈ Lwi [T1, T2]

we have

Pr
[
`j ∈ U ′

i−1

]
≤

√
f(n) · (log n)3/2 + ·ρ · log n/2

d− ρ log n

≤
√

f(n) · (log n)3/2 + (ρ · log n)/2
f(n) · (log n)3/2 − ρ log n

≤ 2√
f(n)

.

Here, the term
√

f(n) · (log n)3/2 stands for the maximum size of U ′
i−1, and the additional

term ρ · log n/2 for |Lwi [T0, T2]|. The term ρ log n in the denominator represents an upper
bound on the number of neighbours chosen already in Phases 3, 4, and 5. Notice that if
d was O(log3/2 n), then we could not obtain a proper value for the probability above. The
value we obtained will be applied in Claim 4 below.

By time step κ ∈ [T1, T2] wi used at most

ρ log d + (ρ log n)/2 < ρ log n

many edges for pull transmissions. Since we assumed that d ≥ f(n) ·(log n)3/2, we can argue
that

Pr [ `j ∈ I(t) ] ≤ d/2
d− (ρ log n)

≤ 5
8
.

Hence,

Pr
[
`j ∈ I(t) ∪ U ′

i−1

]
≤ 2√

f(n)
+

5
8
≤ 3

4
,

regardless of the sets Ui−1 and I(t). The expected number of nodes in

Lwi [T1, T2] ∩ (I(t) ∪ U ′
i−1)

is at most
3 · (T2 − T1)/4 ≥ (3ρ log n)/16.

We can apply Chernoff bounds [6] to conclude that with probability 1−O(n−4/
√

f(n) log n)
we have

Lwi
[T1, T2] ∩ (I(t) ∪ U ′

i−1) ≤ 7ρ log n/32.
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Thus,
|U ′

i | ≥ |U ′
i−1|+ (ρ log n)/4− 7ρ log n/32 ≥ |U ′

i−1|+ (ρ log n)/32.

Since k =
√

f(n) · log n, with a probability of 1− o(n−3) we have

|U ′ ∩H(t)| ≥ k · (ρ log n)/32 ≥ (ρ
√

f(n) · (log n)3/2)/32.

This finishes the proof of Claim 3.
�

Now we are back to proving Case 2. Next we show that the set of predecessors of any
node w ∈ U ′ ∩H(t) grows the further we go backwards from T1 to T0. We define ` = 40/α
and divide the time interval [T0, T1] into (T1−T0)/` rounds of equal length. For 0 ≤ i ≤ k′−1
we define

T̃i = [T1 − i · `, T1 − (i + 1) · `] .
Let

UH
0 =

⋃
w∈U ′∩H(t)

Lw[T̃0] ∩H(t) and U I
0 =

⋃
w∈U ′∩H(t)

Lw[T̃0] ∩ I(t)

be the corresponding (T̃0-active) set of uninformed and informed neighbours of w ∈ U ′∩H(t),
respectively. For 1 ≤ i ≤ k′ − 1 we define

UH
i =

⋃
w∈UH

i−1

Lw[T̃i] ∩H(t) and U I
i =

⋃
w∈UH

i−1

Lw[T̃i] ∩ I(t).

For every node wi ∈ U I
i there is a path P = (wi, . . . , w0, w

′, w) to a node w ∈ U , where
wi−1, . . . , w0, w′, w ∈ H(t), and wj (i ≤ j ≤ 0) is an active neighbour of its predecessor in
T̃j+1. Hence, together UH

i and U I
i can be regarded as the i-th level of a tree routed in w

and, consequently (since w is an active neighbour of v), also in v. Nodes in H(t) are inner
nodes of the tree, and the leaves are nodes in I(t) or nodes in H(t) on level k′ − 1. Note
that nodes can occur several times on several different levels of the tree.

In the following we argue that the amount of different leaves (informed nodes) in the
tree is w.h.p. at least ρ · (log n)3/2. Then we will show that the informed leaves are sufficient
to inform node v. Let

UH
0→i =

 i⋃
j=0

UH
j

 and U I
0→i =

 i⋃
j=0

U I
j

 .

The following claim shows that w.h.p. there exists a time interval i with |U I
0→i| ≥ ρ ·

(log n)3/2.

Claim 4 With a probability of 1− n−3 there exists i ∈ 1, . . . , (T1 − T0)/`− 1 with U I
0→i >

ρ · (log n)3/2.

Proof: Define

∆UH
0→j = UH

0→j \ UH
0→j−1, and ∆U I

0→j = U I
0→j \ U I

0→j−1.

According to Claim 5 (see below), as long as

|U I
j | ≤ ρ(log n)3/2,
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and
|∆UH

j | = Ω(
√

f(n)(log n)3/2),

it holds with a probability of 1− n−3 that

∆U I
1→j+1 ∪∆UH

1→j+1 ≥
(

8
α

)
· |UH

j |.

Here, ∆U I
1→j+1∪∆UH

1→j+1 represents the set of newly colored blue nodes in terms of Claim
5. With a probability of 1− n−3 we have |H(t)| < n/d3. Due to the exponential growth of
the set ∆U I

1→j+1 ∪ ∆UH
1→j+1 there must be some i = O(log n) such that with probability

1− n−3

U I
0→i > ρ · (log n)3/2.

�

Now let i ≤ k′− 1 be the value with U I
0→i > ρ · (log n)3/2. Using the claim we can easily

argue that v will get the message over a path starting at one of the nodes in U I
0→i. Recall

that every node u ∈ U I
0→i answers pull requests with a probability of 1/

√
log n. Since for

such a u there is a path P = (u, ws, . . . , w0, w
′, w, v) consisting of nodes in H(t), all the

nodes on this path answer every pull request. Hence, if there exists a node u ∈ U I
0→i which

answers the pull request at the time u was the active neighbour of ws, v will be informed.
This happens with a probability of

1−
(

1− 1√
log n

)ρ·(log n)3/2

≥ 1− e−ρ log n ≥ 1− n−3, (1)

Note that in the above equation we need that U I
0→i > ρ · (log n)3/2.

�

In Claim 5 we follow the ”spread” of uninformed nodes back in time. We start with an
arbitrary but fixed node v and time step t. We assume that v is colored blue. If a node
w′ is blue at t′′ ≤ t, and w′ opens a communication channel to w′′ in step t′′ − 1, then w′′

becomes blue in step t′′ − 1.
Let τ ′1, τ

′
2, . . . , τ

′
k ≤ t be k consecutive time intervals of length 40/α2, which go back in

time and let ti be the end of τi. We assume that τ ′i starts directly after τ ′i+1 (on the real
time axis). Furthermore, we assume that at the end of τ ′1 there are at least

√
f(n) log3/2 n

blue nodes. Let I ′(t) be the set of blue nodes at time t, and let I ′+(t) and I ′+(τi) be defined
accordingly (note that |I ′(t)| < |I ′(t′)| for t > t′ since we consider the spreading process
backwards in time).

Claim 5 Assume that are o(|I ′(ti)|) nodes in I ′+(τi−1) which do not colour neighbours blue
in the whole time interval τ ′i . Assume further that

|I ′(ti)| ≤
n

d
and |I ′(ti)| ≥

8
α
· |I ′(ti−1)|.

Then with a probability of 1− n−3 we have

|I ′+(τi)| ≥
8
α
· |I ′(ti)|.

The proof of the claim is the same as the proof of Claim 1, we only have to replace I with
I ′ and τ with τ ′.
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2.2.6 Phase 6

Lemma 5 At the end of Phase 6 every node is informed with probability 1− n−2.

Proof: We have shown that every node which has fewer than d/2 neighbours in I(2(ρ log n+
ρ log d)) (beginning of Phase 4), is informed at the end of Phase 5. Thus, the only nodes
which are still uninformed have at least d/2 neighbours in I(3ρ log n).

We know that in time interval

[3ρ log n + ρ
√

log n/2 + 1, 3ρ log n + ρ
√

log n]

every uniformed node v contacts ρ
√

log n/2 nodes. If one of these nodes was informed at
time 3ρ log n, then v becomes informed as well.

If none of these nodes is informed at time 3ρ log n, then all of them have at least d/2
neighbours in I(3ρ log n). Consider now a fixed node w among these nodes. w remains
uninformed in time interval [3ρ log n + 1, 3ρ log n + ρ

√
log n/2] with probability at most

2−ρ
√

log n/2, independently of the others. Thus, the probability that all of these nodes are
still uninformed at time 3ρ log n + ρ

√
log n/2 is

2−ρ2 log n/4 ≤ n−4

for any ρ > 4. This implies that v becomes informed in Phase 6 with probability 1−o(n−3).
Then, the lemma follows by applying the union bound over all nodes which were uninformed
at the end of Phase 5. �

By summarizing the results of the lemmas of this section we obtain the following theorem.

Theorem 2 Assume that f : N → R is a function such that limn→∞ f(n) = ∞ and d ∈
{f(n) · (log n)3/2, 2o(

√
log n)}.

For every Edge-Node Expander G with degree d our algorithm broadcasts a message in
G in time O(log n) by using O(n

√
log n) transmissions, w.h.p.

2.3 Lower Bound

In this section we show that the result of Theorem 2 is tight up to a
√

log log n factor. For
the following bound we also assume the oblivious communication model. In this model, a
node’s decision whether to transmit in a fixed step can depend on the age of the message
and on any information the node might have aquired before the current step. However, the
node’s decision is not influenced by the ID’s of the nodes at the other end of a currently
open channel. We can assume that the nodes decide if they want to transmit in a fixed step
or not before the channels become opened. Furthermore, the algorithms is not allowed to
depend on the structure of the graph, i.e., we may assume that the graph is constructed by
some random process, and the algorithm is set before the graph is constructed.

Theorem 3 Assume A is a (Monte-Carlo) broadcast algorithm in the oblivious model with
runtime O(log n) in the Rr communication model. There exists a family of Edge-Node
Expanders for which A needs

Ω

(
n ·

√
log n

log log n

)
message transmissions, w.h.p.
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Proof: We assume that c log n is the runtime of the algorithm. Let G′ = (V ′, E′) be
an α-Edge-Node expander (i.e., a corresponding random graph) of size n and with degree
log2 n− 1. Define

r =

√
log n

log log n
.

For
` =

n

(r + 1) · (log2 n− r)

and i ∈ {1, . . . , l}, let Ki be a clique (complete graph) of size r. To construct G we
connect the nodes of the cliques to the nodes of G′ such that every Ki (1 ≤ i ≤ `) has
log2 n−r+1 different neighbours in G′, and that each node of G′ has exactly one neighbour
in K1, . . . K` chosen randomly. That is, each node in G′ has at any time step the same
probability to be connected to a node in a completely uninformed clique unless a (message)
communication between these nodes has been performed before. The edges between nodes
in G′ are independent of G′-clique edges. Due to our construction, the degree of every node
is d = log2 n, and the graph is still an Edge-Node Expander. In the following G′ and will be
called the original graph, with original nodes and original edges. The nodes in the cliques
are called clique nodes, and edges between two node of the same clique will be called inner
edges. Edges connecting a clique node to G′ are called external edges.

Now we assume that there is an algorithm A, which has running time c log n and produces
at most ε · nr message transmissions with ε < 1/17. We will show that, with a good
probability, A will not be able to inform all clique nodes of the graph. Since A sends at
most ε ·nr message, a simple pigeonhole argument shows that there exists at least l/2 cliques
where at least half of the nodes will have a neighbourhood in G′ which (altogether) sends
at most 4ε · dr messages. That is, there are l/2 complete graphs Ki1 , . . . ,Kil/2 such that in
any Kij

at least 1
2 · r nodes belong to a subset K ′

ij
with the following properties:

• |K ′
ij
| ≥ |Kij

|
2 = r

2 , and

• For each v ∈ K ′
ij

the nodes in N(v, V ′) produce altogether at most 4ε · dr message
transmissions (push or pull).

In the rest of the proof the nodes belonging to one of the K ′
ij

sets are called good, and
the nodes of Kij \K ′

ij
are called bad. Our goal is now to show that not all good nodes will

get the message with a good probability. Let us fix a good node v ∈ Kij . We divide the
steps into dangerous and safe steps now. In a dangerous step at least d − i − 2r nodes of
N(v, V ′) send a pull message, and in a safe step fewer than d − i − 2r nodes of N(v, V ′)
send a pull message. Our goal is now to show that there is a good probability that v will
communicate with good clique nodes in dangerous steps, and with non-sending nodes in
V ′ in safe steps. Since we assume the Rr communication model, nodes can not (in c log n
steps) communicate with the same node twice. Since v has only r/2 good clique neighbours,
we will try to ”save” these nodes for dangerous steps and prevent v from choosing inner
edges during safe steps. In the following xi will be the set of nodes that v should ”avoid”
in step i. For 0 ≤ i ≤ c log n− 1 we define xi as follows:

• Dangerous step i: xi is the number of nodes in N(v, V ′) that perform pull in step i,
together with the bad nodes of Kij , minus the nodes of these sets which have been
called by v before step i.
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• Safe step i: xi is the number of nodes in N(v, V ′) that perform pull in step i, together
with the nodes of Kij , minus the nodes of these sets which have been called by v before
step i.

In a safe step we have

xi ≤ (d− i− 2r) + r = d− i− r.

Of course, in dangerous steps

xi ≤ (d− 2r) + (|Kij | − |K ′
ij
|) ≤ d− 1.5r.

To get a better bound on xi in dangerous steps we calculate the number of dangerous steps
first. The total number of message transmissions performed by the nodes of N(v, V ′) is at
most 4ε · dr. With ε < 1/17, the total number of dangerous steps is at most

4ε · dr

d− 1− 2r
≤ 17

4
ε · r − 1 ≤ r

4
− 1.

Define xi(good) as the number of good neighbours to which v already opened a channel by
step i. Since v is only ”allowed” to open a channel to good neighbours in dangerous steps
xi(good) ≤ r/4− 1. Now we can get that

xi + i ≤ d− r + 1− (i− r/4 + 1) + r/2 + i = d− r/4.

Now we are ready to lower bound the probability that v is NOT informed after c log n
time steps. As a worst case assumption we assume in the following that |K ′

ij
| = |Kij |/2.

Let us consider pull transmissions first and define P1 as the probability that v does not get
the message via a pull transmission. To bound this probability we will use the probability
that, for 0 ≤ i ≤ c log n − 1, v does not get the message via a pull transmission in step i
from one of the nodes in the set xi. This means that v is not allowed to open a channel to
any node in xi in step i. Hence,

P1 ≥
(
1− x0

d

)
·
(

1− x1

d− 1

)
. . .

(
1− xc log n−1

d− c log n + 1

)
.

In order to derive a proper lower bound on P1, we consider the following case analysis.

Case 1: xi < d/4. Then i is a safe step. Since c log n � d/4 we have

1− xi

d− i
≥ 1− 2xi

d
≥
(

1− 1
d

)4xi

.

Case 2: xi ≥ d/4. In this case step i can be either dangerous or safe. Since xi+i ≤ d−r/4

1− xi

d− i
≥ 1− xi + i

d
≥ 1− d− r/4

d
=

r

4d
.

Next we calculate the number of steps in which Case 2 applies. The total number of
message transmissions performed by the nodes of N(v, V ′) is at most 4ε · dr. From the xi
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nodes there are at least xi − r nodes in N(v, V ′). For n large enough the number of steps
with xi ≥ d/4 is at most

4ε · dr

d/4− r
≤ 17ε · r.

Let I1 be the set of indices 0 ≤ i ≤ c log n− 1 with xi < d/4 and let I2 be the set of indices
i with xi ≥ d/4. Then we get with r =

√
log n/ log log n, d = log2 n, and

∑
i∈I1

xi ≤
c log n−1∑

i=0

xi ≤ 4ε · dr + c log n · r ≤ 5ε · dr,

P1 ≥
∏
i∈I1

(
1− 1

d

)4xi

·
∏
i∈I2

( r

4d

)

≥
(

1− 1
d

)4
P

i∈I1
xi

·

(√
log n/ log log n

4d

)17ε
q

log n
log log n

≥
(

1− 1
d

)20εd
q

log n
log log n

·
(

1
4d

)17ε
q

log n
log log n

≥
(

1
d

)20ε
q

log n
log log n

.

Now we bound the probability P2 that v gets the message via a push transmission. Let
x′0, . . . , x

′
c log n−1 denote the number of neighbours of v in N(v, V ′) ∪Kij \K ′

ij
which push

the message (to any of their neighbours) in steps 1, . . . , c log n − 1, respectively. We know
that

c log n−1∑
i=0

x′i ≤ 4ε · dr + r/2 · c log n = 5ε · dr.

The probability that v does not receive the message by push in step i is (1− 1/d)x′i . Hence,

P2 ≥
c log n−1∏

i=0

(
1− 1

d

)x′i

=
(

1− 1
d

)5ε·dr

≥
(

1
e

)−5ε
q

log n
log log n

.

Putting everything together, we obtain that all nodes of K ′
ij

remain uninformed with
probability

(P1 · P2)
1
2 ·

q
log n

log log n ≥
(

1
d

)10ε log n
log log n

·
(

1
e

)5ε log n
log log n

> d−11ε log n
log log n .

If we now choose ε small enough (i.e. ε < 1/45), then all nodes of K ′
ij

remain uninformed
with probability at least 1/

√
n. Since there are `/2 = n/((r + 1) · (log2 n− r)/2) complete

graphs containing
√

log n/ log log n/2 good nodes, the theorem follows. �
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3 Conclusion

In this paper we presented upper and lower bounds for broadcasting in Edge-Node Ex-
panders. The results of this paper (together with the results of [15]) show that choosing
different neighbours is very important to save on broadcast communication. In this sense,
model Rr can be regarded as more advantageous than Random[c], which provides further
evidence for the power of memory in randomised broadcasting.
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[4] P. Berenbrink, R. Elsässer, T. Sauerwald. Randomised Broadcasting: Memory vs. Random-
ness. In Proc. of LATIN’10, pages 306–319, 2010.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized Gossip Algorithms. IEEE
Transactions on Information Theory and IEEE/ACM Transactions on Networking, 52:2508–
2530, 2006.

[6] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, 23:493–507, 1952.

[7] F.R.K. Chung. Spectral Graph Theory. American Mathematical Society, 1985.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated database maintenance. In Proc. of PODC’87,
pages 1–12, 1987.

[9] B. Doerr, M. Fouz, T. Friedrich. Social networks spread rumors in sublogarithmic time, In
Proc. of STOC’11, pages 21–30, 2011.

[10] B. Doerr, T. Friedrich, T. Sauerwald. Quasirandom Rumor Spreading In Proc. of SODA’08,
pages 773–781, 2008. (full version available at: http://arxiv.org/abs/1012.5351)

[11] B. Doerr, T. Friedrich, T. Sauerwald. Quasirandom rumor spreading: expanders, push vs. pull,
and robustness Proc. of ICALP’09, track A, pages 366–377, 2009.
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