LINEAR INDEPENDENCE IN LINEAR SYSTEMS ON ELLIPTIC CURVES

BRADLEY W. BROCK, BRUCE W. JORDAN, BJORN POONEN, ANTHONY J. SCHOLL, AND JOSEPH L. WETHERELL

Abstract

Let E be an elliptic curve, with identity O, and let C be a cyclic subgroup of odd order N, over an algebraically closed field k with char $k \nmid N$. For $P \in C$, let s_{P} be a rational function with divisor $N \cdot P-N \cdot O$. We ask whether the N functions s_{P} are linearly independent. For generic (E, C), we prove that the answer is yes. We bound the number of exceptional (E, C) when N is a prime by using the geometry of the universal generalized elliptic curve over $X_{1}(N)$. The problem can be recast in terms of sections of an arbitrary degree N line bundle on E.

1. Introduction

Fix $N \geq 1$ and an algebraically closed field k such that char $k \nmid N$. Let E be an elliptic curve over k. Let $C \subset E$ be a cyclic subgroup of order N.

Let \mathscr{L} be a degree N line bundle on E. Since $\operatorname{Pic}^{0}(E)$ is divisible, there exist points $P \in E$ such that $\mathscr{O}(N \cdot P) \simeq \mathscr{L}$, or equivalently, such that there exists a global section s_{P} of \mathscr{L} whose divisor of zeros is $N \cdot P$. The set of such P is a coset $E[N]^{\prime}$ of $E[N]$. Let $C^{\prime} \subset E[N]^{\prime}$ be a coset of C. Then $\# C^{\prime}=N$. On the other hand, $\operatorname{dim} \Gamma(E, \mathscr{L})=N$ by the Riemann-Roch theorem.

Question 1.1. Are the sections s_{P} for $P \in C^{\prime}$ linearly independent in $\Gamma(E, \mathscr{L})$?
The answer is sometimes yes, sometimes no.
Example 1.2. Let $O \in E(k)$ be the identity. Let $\mathscr{L}=\mathscr{O}(N \cdot O)$ and $C^{\prime}=C$. Then s_{P} is a rational function on E with divisor $\left(s_{P}\right)=N \cdot P-N \cdot O$. Question 1.1 asks whether the s_{P} for $P \in C$ are linearly independent, i.e., whether they form a basis of $\Gamma(E, \mathscr{O}(N \cdot O))$.

Proposition 1.3. The answer to Question 1.1 depends only on (E, C), not on the choice of degree N line bundle \mathscr{L} or coset C^{\prime} or s_{P} for $P \in C^{\prime}$. More precisely, the codimension of $\operatorname{Span}\left\{s_{P}: P \in C^{\prime}\right\}$ in $\Gamma(E, \mathscr{L})$ depends only on (E, C).

We will prove Proposition 1.3 in Section 3.
The pair (E, C) corresponds to a k-point on the classical modular curve $Y_{0}(N)$.
Theorem 1.4. Let N be an odd positive integer such that char $k \nmid N$. Then for all but finitely many $(E, C) \in Y_{0}(N)(k)$, Question 1.1 has an affirmative answer.

[^0]We next work towards a quantitative version of Theorem 1.4, at least for prime N. Let $c_{(E, C)}$ be the codimension in Proposition 1.3 , and let $D=\sum_{(E, C)} c_{E, C}(E, C) \in \operatorname{Div} Y_{0}(N)$.
Theorem 1.5. Let $N>3$ be a prime with char $k \nmid N$. There exist effective divisors D_{1} and D_{2} on $Y_{0}(N)$ such that $D=D_{1}+2 D_{2}$ with

$$
\begin{aligned}
& \operatorname{deg} D_{1} \leq\left(N^{2}-1\right) / 24 \\
& \operatorname{deg} D_{2} \leq(N-3)\left(N^{2}-1\right) / 48
\end{aligned}
$$

Conjecture 1.6. If char $k=0$, then D_{1} and D_{2} are reduced and disjoint, and the inequalities in Theorem 1.5 are equalities.

Remark 1.7. Conjecture 1.6 is equivalent to the claim that for prime $N>3$ and char $k=0$, there are exactly $\left(N^{2}-1\right) / 24$ points $(E, C) \in Y_{0}(N)(k)$ with $c_{E, C}=1$, exactly $(N-3)\left(N^{2}-\right.$ 1)/48 points with $c_{E, C}=2$, and no points with $c_{E, C}>2$.

The primes $N>3$ for which the genus of $X_{0}(N)$ is 0 are 5,7 , and 13 ; for these we checked that Conjecture 1.6 is true, using methods to be described in Section 10. There we will also show that Conjecture 1.6 sometimes fails when char $k>0$.

2. Notation

Let μ be the group of roots of unity in k. Fix a primitive N th root of unity $\zeta \in k$.
If C is a finite abelian group with char $k \nmid \# C$, and V is a k-representation of C, and $\chi: C \rightarrow k^{\times}$is a character, define the χ-isotypic subspace

$$
V^{\chi}:=\{v \in V: c v=\chi(c) v \text { for all } c \in C\} .
$$

Let X be a regular finite-type k-scheme. Let $\operatorname{Div} X$ be its divisor group. Now suppose in addition that X is integral. Let $k(X)$ be its function field. If $f \in k(X)^{\times}$, let $(f)=(f)_{X} \in \operatorname{Div} X$ be its divisor. For each irreducible divisor Z on X, let v_{Z} be the associated valuation. A finite morphism of regular integral curves $\phi: X \rightarrow Y$ induces a homomorphism $\phi_{*}: \operatorname{Div} X \rightarrow \operatorname{Div} Y$ (sending each point to its image) compatible with the norm homomorphism $\phi_{*}: k(X)^{\times} \rightarrow k(Y)^{\times}$, and a homomorphism $\phi^{*}: \operatorname{Div} Y \rightarrow \operatorname{Div} X$ compatible with the homomorphism $\phi^{*}: k(Y)^{\times} \rightarrow k(X)^{\times}$sending f to $f \circ \phi$.

3. Codimension is independent of choices

Proof of Proposition 1.3. Fix (E, C). Once \mathscr{L} and C^{\prime} are also fixed, each s_{P} is determined up to scaling by an element of k^{\times}, which does not change the span.

For each $Q \in E(k)$, let $\tau_{Q}: E \rightarrow E$ be the morphism sending x to $x+Q$. Pulling back by τ_{Q} shows that the codimension for $\left(\mathscr{L}, C^{\prime}\right)$ is the same as for $\left(\tau_{Q}^{*} \mathscr{L}, \tau_{Q}^{-1}\left(C^{\prime}\right)\right)$. If $Q \in E[N]$, then $\tau_{Q}^{*} \mathscr{L} \simeq \mathscr{L}$ but $\tau_{Q}^{-1}\left(C^{\prime}\right)$ can be any other coset of C^{\prime} in $E[N]^{\prime}$; thus the codimension is independent of C^{\prime}. As Q ranges over $E(k)$, the line bundle $\tau_{Q}^{*} \mathscr{L}$ ranges over all degree N line bundles; thus the codimension is independent of \mathscr{L} too.

4. Normalized functions

If $f \in k(E)^{\times}$has divisor supported on $E[N]$, then $[N]_{*}(f)=0$, so $[N]_{*} f \in k^{\times}$. Multiplying f by a constant $a \in k^{\times}$multiplies $[N]_{*} f$ by $a^{\operatorname{deg}[N]}=a^{N^{2}}$. Call $f \in k(E)^{\times}$normalized if there exists $N \geq 1$ such that $[N]_{*} f \in \mu$. In that case, $\left[N^{\prime}\right]_{*} f \in \mu$ for all multiples N^{\prime} of
N. Therefore the normalized functions form a subgroup of $k(E)^{\times}$. Given a principal divisor supported on torsion points, there exists a normalized function with that divisor, uniquely determined up to multiplication by a root of unity. In particular, a normalized constant rational function is an element of μ. If f is normalized and P is a torsion point on E, then $\tau_{P}^{*} f$ is normalized too.

5. Character-weighted combinations

From now on, we assume that N is odd. View C as a degree N divisor on E. Choose $\mathscr{L}:=\mathscr{O}(C)$. The group C acts on $\mathscr{L}:$ each P acts as τ_{P}^{*} on sections of \mathscr{L}. Since N is odd, $\mathscr{L} \simeq \mathscr{O}(N \cdot O)$. Choose $C^{\prime}=C$. Choose sections s_{P} as in Section 1.

If we view s_{O} as a rational function on E, then $\left(s_{O}\right)=N \cdot O-C$. Assume that s_{O} is normalized. For $P \in C^{\prime}=C$, we may assume that $s_{P}:=\tau_{-P}^{*} s_{O}$. Then $\operatorname{Span}\left\{s_{P}: P \in C\right\}$ is the image of a $k C$-module homomorphism $k C \rightarrow \Gamma(E, \mathscr{L})$, so it decomposes as a direct sum of distinct characters. For each character $\chi: C \rightarrow k^{\times}$, the projection of $\operatorname{Span}\left\{s_{P}: P \in C\right\}$ onto $\Gamma(E, \mathscr{L})^{\chi}$ is spanned by

$$
g_{\chi}:=\left(\sum_{P \in C} \chi(P) \tau_{-P}^{*}\right) s_{O}=\sum_{P \in C} \chi(P) s_{P} .
$$

Then $c_{E, C}=\#\left\{\chi: g_{\chi}=0\right\}$.
Lemma 5.1. We have $[-1]^{*} s_{O}=s_{O}$.
Proof. The divisor $\left(s_{O}\right)$ is fixed by $[-1]^{*}$, so s_{O} is an eigenvector of $[-1]^{*}$, with eigenvalue ± 1. Since $v_{O}\left(s_{O}\right)$ is even, the eigenvalue is 1 .
Lemma 5.2. For each χ, we have $[-1]^{*} g_{\chi}=g_{\chi^{-1}}$.
Proof. Apply

$$
[-1]^{*}\left(\sum_{P \in C} \chi(P) \tau_{-P}^{*}\right)=\left(\sum_{P \in C} \chi(P) \tau_{P}^{*}\right)[-1]^{*}=\left(\sum_{Q \in C} \chi(-Q) \tau_{-Q}^{*}\right)[-1]^{*}
$$

to s_{O} and use Lemma 5.1.
Lemma 5.3. We have $\prod_{P \in C} s_{P} \in \mu$.
Proof. It is a normalized rational function whose divisor is 0 .

6. An almost canonical basis

Fix (E, C). Let $\phi: E \rightarrow E^{\prime}$ be an isogeny with kernel C. Let $\hat{\phi}: E^{\prime} \rightarrow E$ be the dual isogeny. The Weil pairing

$$
e_{\phi}: \operatorname{ker} \phi \times \operatorname{ker} \hat{\phi} \rightarrow k^{\times}
$$

is nondegenerate, so choosing $Q \in \operatorname{ker} \hat{\phi}$ is equivalent to choosing a character $\chi: C \rightarrow k^{\times}$, related via $\chi(P)=e_{\phi}(P, Q)$ for all $P \in C$. Let $C_{\chi}=\phi^{*} Q \in \operatorname{Div} E$. Let h_{χ} be a normalized function with $\left(h_{\chi}\right)=C_{\chi}-C$.

Lemma 6.1. For $P \in C$, we have $\tau_{P}^{*} h_{\chi}=\chi(P) h_{\chi}$.
Proof. This is the definition of $e_{\phi}(P, Q)$, which equals $\chi(P)$; see [Sil09, Exercise 3.15(a)].

Thus $0 \neq h_{\chi} \in \Gamma(E, \mathscr{L})^{\chi}$ for all χ, but $\bigoplus_{\chi} \Gamma(E, \mathscr{L})^{\chi}$ is N-dimensional, so $\Gamma(E, \mathscr{L})^{\chi}=k h_{\chi}$. In particular, $g_{\chi} / h_{\chi} \in k$. Now

$$
\begin{equation*}
c_{E, C}=\#\left\{\chi: g_{\chi}=0\right\}=\#\left\{\chi: g_{\chi} / h_{\chi}=0\right\} \tag{1}
\end{equation*}
$$

Lemma 6.2. For each χ, we have $[-1]^{*} h_{\chi} \equiv h_{\chi^{-1}}(\bmod \mu)$.
Proof. Compare divisors, and observe that both sides are normalized.
Lemma 6.3. For any χ, we have $g_{\chi} / h_{\chi} \equiv g_{\chi^{-1}} / h_{\chi^{-1}}(\bmod \mu)$.
Proof. By Lemmas 5.2 and $6.2,[-1]^{*}\left(g_{\chi} / h_{\chi}\right) \equiv g_{\chi^{-1}} / h_{\chi^{-1}}(\bmod \mu)$. On the other hand, g_{χ} / h_{χ} is constant on E, so $[-1]^{*}\left(g_{\chi} / h_{\chi}\right)=g_{\chi} / h_{\chi}$.

7. The universal elliptic curve

Given an elliptic curve E over k and a point $P \in E(k)$ of exact order N, we define C as the subgroup generated by P. For $m \in \mathbb{Z} / N \mathbb{Z}$, let $\chi: C \rightarrow k^{\times}$be the character such that $\chi(P)=\zeta^{m}$, and set $g_{m}:=g_{\chi}$ and $h_{m}:=h_{\chi}$. We may assume that $h_{0}=1$.

Suppose that $N>3$ and char $k \nmid N$. Then the moduli space $Y_{1}(N)$ parametrizing pairs (E, P) is a fine moduli space (it can be viewed as an étale quotient of the affine curve $Y(N)$ constructed by Igusa Igu59, because a pair (E, P) consisting of an elliptic curve and a point of exact order $N>3$ has no nontrivial automorphisms). Thus there is a universal elliptic curve $\mathscr{E} \rightarrow Y_{1}(N)$. The construction of s_{O} makes sense on \mathscr{E}, except that normalizing it may require taking an N^{2} th root of an invertible function on $Y_{1}(N)$. Thus s_{O} is a rational function not on the elliptic surface $\mathscr{E} \rightarrow Y_{1}(N)$, but on a pullback $\mathscr{E}^{\prime} \rightarrow Y_{1}(N)^{\prime}$ by some finite étale cover $Y_{1}(N)^{\prime} \rightarrow Y_{1}(N)$. Then s_{O}^{n} for some $n \geq 1$ lies in $k(\mathscr{E})^{\times}$, and s_{O} itself may be identified with $\frac{1}{n} \otimes s_{O}^{n} \in \mathbb{Q} \otimes_{\mathbb{Z}} k(\mathscr{E})^{\times}$. Its divisor $\left(s_{O}\right)$ is then an element of $\mathbb{Q} \otimes \operatorname{Div} \mathscr{E}$. Given $m \in \mathbb{Z} / N Z$, we may also define $g_{m}, h_{m} \in k\left(\mathscr{E}^{\prime}\right)^{\times}$and consider them as elements of $\mathbb{Q} \otimes k(\mathscr{E})^{\times}$. Then g_{m} / h_{m} is a regular function on $Y_{1}(N)^{\prime}$ and we may consider it an as element of $\mathbb{Q} \otimes k\left(Y_{1}(N)\right)^{\times}$. Its divisor on $Y_{1}(N)$ lies in $\operatorname{Div} Y_{1}(N)$, not just $\mathbb{Q} \otimes \operatorname{Div} Y_{1}(N)$, since $Y_{1}(N)^{\prime} \rightarrow Y_{1}(N)$ is finite étale.

8. The universal generalized elliptic curve

We continue to assume $N>3$. Complete $Y_{1}(N)$ to a smooth projective curve $X_{1}(N)$ over k. One can recover from [DR73, IV.4.14 and VI.2.7] that $\mathscr{E} \rightarrow Y_{1}(N)$ can be completed to a "universal generalized elliptic curve" $\pi: \overline{\mathscr{E}} \rightarrow X_{1}(N)$. The following description of the cusps of $X_{1}(N)$ and the associated Tate curves is well-known; see [DR73, VII.2] and [FJ95, §3.1].

The cusps on $X_{1}(N)$ are in bijection with

$$
\coprod_{d \mid N} \frac{(\mathbb{Z} / d \mathbb{Z})^{\times} \times(\mathbb{Z} / e \mathbb{Z})^{\times}}{\{ \pm 1\}}
$$

where $e=N / d$ in each term. The integer e equals the ramification index of $X_{1}(N) \rightarrow X(1)$ at the cusp, and is called the width of the cusp. The cusp represented by (d, a, b), where $0 \leq a<d$ and $0 \leq b<e$ and $\operatorname{gcd}(a, d)=\operatorname{gcd}(b, e)=1$, has a uniformizer q and a punctured formal neighborhood Spec $k((q))$ above which is the Tate curve analytically isomorphic to $\left(\mathbb{G}_{m} / q^{e \mathbb{Z}}, \zeta^{a} q^{b}\right) \in Y_{1}(N)(k((q)))$. This Tate curve specializes above the cusp itself to an e-gon consisting of irreducible components $Z_{i} \simeq \mathbb{P}^{1}$ indexed by $i \in \mathbb{Z} / e \mathbb{Z}$ such that $0 \in Z_{i}$ is
attached to $\infty \in Z_{i+1}$ for all i. We choose the coordinate $t_{i}: Z_{i} \xrightarrow{\sim} \mathbb{P}^{1}$ for each i such that a point $a_{i} q^{i}+\sum_{j>i} a_{j} q^{j} \in \mathbb{G}_{m} / q^{e \mathbb{Z}}$ with $a_{i} \in k^{\times}$specializes to $a_{i} \in \mathbb{G}_{m} \subseteq \mathbb{P}^{1} \simeq Z_{i} \subset \pi^{-1}(y)$. Let $t=t_{0}$. For each cusp y, define $F_{y}:=\pi^{*} y=\sum_{i} Z_{i} \in \operatorname{Div} \overline{\mathscr{E}}$.

9. Divisors

Given a rational function f on \mathscr{E} whose divisor on \mathscr{E} is known, the divisor of f on $\overline{\mathscr{E}}$ is determined up to addition of a linear combination of the F_{y}. We now explain how to compute it, modulo the ambiguity, following [SS91, §2]. Fix a cusp y of $X_{1}(N)$, and let q be a uniformizer at y, and let Z_{0}, \ldots, Z_{e-1} be the components of $\pi^{-1}(y)$. The valuations $n_{i}:=v_{Z_{i}}(f)$ can be simultaneously computed, modulo addition of a constant independent of i, by the relations $\left(f / q^{n_{i}}\right) \cdot Z_{i}=0$ for all i, which amount to linear equations in the n_{i}. Let us make these equations explicit. In the case where the zeros and poles of f specialize to smooth points of $\pi^{-1}(y)$, let r_{i} be the number of them specializing to a point of Z_{i}, counted with multiplicity, with poles counted as negative. In the equation $\left(f / q^{n_{i}}\right) \cdot Z_{i}=0$, only Z_{i+1}, Z_{i-1}, and the horizontal divisors in (f) meet Z_{i}, so the equation says

$$
\left(n_{i+1}-n_{i}\right)+\left(n_{i-1}-n_{i}\right)+r_{i}=0 .
$$

There is one such equation for each i. Solving this system of e equations yields all the n_{i} up to a common additive constant, since the solutions to the corresponding homogeneous system are the arithmetic progressions that are periodic modulo N, i.e., constant sequences. If in addition, f is normalized, then $\sum n_{i}=0$; now the n_{i} are uniquely determined.

The above procedure can be applied also to any $f \in \mathbb{Q} \otimes k(\mathscr{E})^{\times}$, and in particular to the functions s_{P}, g_{m}, and h_{m}.
Lemma 9.1. For $f=s_{O}$,
(a) At a cusp of $X_{1}(N)$ above $\infty \in X_{0}(N)$, we have $e=1, n_{0}=0$, and $\left.s_{O}\right|_{Z_{0}}=(1-t)^{N} /(1-$ $\left.t^{N}\right)$ in $\mathbb{Q} \otimes k\left(Z_{0}\right)^{\times}$.
(b) At a cusp of $X_{1}(N)$ above $0 \in X_{0}(N)$, we have $e=N$, $n_{i}=\left(N^{2}-1\right) / 12-i(N-$ i)/2 for $0 \leq i<N$, and $\left.\left(q^{\left(N^{2}-1\right) / 24} s_{O}\right)\right|_{Z_{(N-1) / 2}}$ has a zero at ∞ and not at 0 , while $\left.\left(q^{\left(N^{2}-1\right) / 24} s_{O}\right)\right|_{Z_{(N+1) / 2}}$ has a zero at 0 and not at ∞.
Proof.
(a) A cusp above ∞ has a punctured neighborhood above which is the Tate curve $\mathbb{G}_{m} / q^{\mathbb{Z}}$ with cyclic subgroup μ_{N}, specializing to a 1-gon. In fact, the relation $\prod_{R \in C} \tau_{R}^{*} s_{O}=1$ in $\mathbb{Q} \otimes k(\mathscr{E})^{\times}$from Lemma 5.3 implies $N n_{0}=0$, so $n_{0}=0$.

The order N zero of s_{O} specializes to 1 , and the N poles of s_{O} specialize to the N th roots of unity, so $\left.s_{O}\right|_{Z_{0}}$ is a nonzero scalar times $(1-t)^{N} /\left(1-t^{N}\right)$.

Since s_{O} is normalized, $[N]_{*} s_{0} \in \mu$. On the other hand, the morphism [N] specializes to the N th power map on $Z_{0} \simeq \mathbb{P}^{1}$, which pushes $(1-t)^{N} /\left(1-t^{N}\right)$ forward to the norm $\prod_{\omega \in \mu_{N}}(1-\omega t)^{N} /\left(1-(\omega t)^{N}\right)=\left(1-t^{N}\right)^{N} /\left(1-t^{N}\right)^{N}=1$. By the previous two sentences, the scalar of the previous paragraph is in μ.
(b) A cusp above 0 has a punctured neighborhood above which is the Tate curve $\mathbb{G}_{m} / q^{N \mathbb{Z}}$ with cyclic subgroup generated by q. The N zeros specialize to Z_{0}, but the N poles specialize to different Z_{i}, one pole per Z_{i}. Thus $r_{0}=N-1$ and $r_{i}=-1$ for $i \neq 0$. On the other hand, $\prod_{R \in C} \tau_{R}^{*} s_{O}=1$ implies $\sum n_{i}=0$. Together these imply that
$n_{i}=\left(N^{2}-1\right) / 12-i(N-i) / 2$ for $0 \leq i<N$. The most negative of these are $n_{(N-1) / 2}$ and $n_{(N+1) / 2}$, which are both $-\left(N^{2}-1\right) / 24$.

The divisor of $\left.\left(q^{\left(N^{2}-1\right) / 24} s_{O}\right)\right|_{Z_{(N-1) / 2}}$ on $Z_{(N-1) / 2} \simeq \mathbb{P}^{1}$ is

$$
\left(n_{(N+1) / 2}-n_{(N-1) / 2}\right)(0)+\left(n_{(N-3) / 2}-n_{(N-1) / 2}\right)(\infty)-(1)=(\infty)-(1)
$$

Similarly, the divisor of $\left.\left(q^{\left(N^{2}-1\right) / 24} s_{O}\right)\right|_{Z_{(N+1) / 2}}$ on $Z_{(N+1) / 2}$ is

$$
\left(n_{(N+3) / 2}-n_{(N+1) / 2}\right)(0)+\left(n_{(N-1) / 2}-n_{(N+1) / 2}\right)(\infty)-(1)=(0)-(1)
$$

Corollary 9.2 .

(a) At the cusp above $\infty \in X_{0}(N)$ given by $\left(\mathbb{G}_{m} / q^{\mathbb{Z}}, \zeta\right)$, we have $\left.g_{0}\right|_{z_{0}}=N$, and for $m \neq 0$ we have $\left.g_{m}\right|_{Z_{0}}=(-1)^{m} N\binom{N}{m} t^{m} /\left(1-t^{N}\right)$, in $\mathbb{Q} \otimes k\left(\mathbb{Z}_{0}\right)^{\times}$.
(b) At a cusp above 0 , for any $m, i \in \mathbb{Z} / N \mathbb{Z}$, we have $v_{Z_{i}}\left(g_{m}\right)=-\left(N^{2}-1\right) / 24$.

Proof.
(a) Up to a root of unity which may be ignored, $\left.s_{O}\right|_{Z_{0}}=(1-t)^{N} /\left(1-t^{N}\right)$ by Lemma 9.1(a). Translation by P restricts to multiplication by ζ on Z_{0}, so

$$
\begin{aligned}
\left.s_{j P}\right|_{Z_{0}} & =\left.\tau_{-j P}^{*} s_{O}\right|_{Z_{0}} \\
& =\left(1-\zeta^{-j} t\right)^{N} /\left(1-\left(\zeta^{-j} t\right)^{N}\right) \\
& =\frac{1}{1-t^{N}} \sum_{i=0}^{N}\binom{N}{i}(-1)^{i} \zeta^{-i j} t^{i} \\
\left.g_{m}\right|_{Z_{0}} & =\sum_{j=0}^{N-1} \zeta^{m j} \frac{1}{1-t^{N}} \sum_{i=0}^{N}\binom{N}{i}(-1)^{i} \zeta^{-i j} t^{i} \\
& =\frac{1}{1-t^{N}} \sum_{i=0}^{N}(-1)^{i}\binom{N}{i} t^{i} \sum_{j=0}^{N-1} \zeta^{(m-i) j} \\
& =\frac{1}{1-t^{N}} \sum_{i=0}^{N}(-1)^{i}\binom{N}{i} t^{i}\left\{\begin{array}{lll}
N, & \text { if } m-i \equiv 0 \quad(\bmod N) \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

If $m=0$, then only the terms with $i=0$ or $i=N$ are nonzero, and the sum becomes $\left(1-t^{N}\right) N$. If $m \neq 0$, then only the term with $i=m$ is nonzero, and the sum becomes $(-1)^{m}\binom{N}{m} t^{m} N$.
(b) The translation action of C acts simply transitively on the set of components Z_{i} above the cusp. Thus the numbers $v_{Z_{i}}\left(s_{j P}\right)$ for $j=0, \ldots, N-1$ equal the numbers $v_{Z_{i^{\prime}}}\left(s_{O}\right)$ for $i^{\prime}=0, \ldots, N-1$ in some order, which are described by Lemma 9.1(b). Hence in the sum $g_{m}=\sum_{j=0}^{N-1} \zeta^{m j} s_{j P}$ there are exactly two terms with the most negative valuation along Z_{i}, so $v_{Z_{i}}\left(\zeta^{m j} s_{j P}\right)=-\left(N^{2}-1\right) / 24$ for $j=j_{1}$ and $j=j_{2}$, say. The last two claims in Lemma 9.1(b) imply that one of the functions $\left.\left(q^{\left(N^{2}-1\right) / 24} \zeta^{m j} s_{j P}\right)\right|_{Z_{i}}$ for $j=j_{1}$ and $j=j_{2}$ has a zero at ∞ and not at 0 , while the other has a zero at 0 and not at ∞, so their sum is nonzero on Z_{i}. Thus $v_{Z_{i}}\left(g_{m}\right)=-\left(N^{2}-1\right) / 24$ too.
Proof of Theorem 1.4. We may work on the finite cover $Y_{1}(N)^{\prime}$ of $Y_{0}(N)$ defined in Section 7 . By Corollary 9.2(b), no g_{m} is identically zero. Hence each function g_{m} / h_{m} on $Y_{1}(N)^{\prime}$ has
only finitely many zeros. Equation (1) shows that outside the union of these zeros, $c_{E, C}=0$; i.e., the f_{P} are linearly independent.

Let $G:=g_{1} g_{2} \cdots g_{N-1}$ and $H:=h_{1} h_{2} \cdots h_{N-1}$ in $\mathbb{Q} \otimes k(\mathscr{E})^{\times}$. The divisor of H on \mathscr{E} is $\mathscr{E}[N]-N C$.
Lemma 9.3. For $f=H$,
(a) At a cusp of $X_{1}(N)$ above $\infty \in X_{0}(N)$, we have $e=1$ and $n_{0}=-\left(N^{2}-1\right) / 12$.
(b) At a cusp of $X_{1}(N)$ above $0 \in X_{0}(N)$, we have $n_{i}=0$ for all i.

Proof. We work on the universal generalized elliptic curve over $X(N)$, whose degenerate fibers are all N-gons, so that the zeros and poles of H do not specialize to the singular points of fibers. As usual, let Z_{0}, \ldots, Z_{N-1} be the components above a cusp; let $n_{i}^{\prime}=v_{Z_{i}}(H)$. The normalization implies that the product of all translates of H by N-torsion points is in μ, so $\sum n_{i}=0$.
(a) We have $r_{0}=-N(N-1)$ and $r_{i}=N$ for $i \neq 0$. The r_{i} here are $-N$ times the r_{i} in the proof of Lemma 9.1 (b), so the resulting n_{i}^{\prime} are also multiplied by $-N$; that is, $n_{i}^{\prime}=-N\left(N^{2}-1\right) / 12+N i(N-i) / 2$ for $0 \leq i<N$. Finally, $X(N) \rightarrow X_{1}(N)$ has ramification index N at cusps above ∞, so $n_{0}=n_{0}^{\prime} / N$.
(b) Each h_{m} has one zero and one pole specializing to each Z_{i}, so $r_{i}=0$ for all i. Thus $n_{i}^{\prime}=0$ for all i, so $n_{i}=0$ for all i.

Lemma 9.4. Let $N>3$ be prime.
(a) The element $g_{0}=g_{0} / h_{0} \in \mathbb{Q} \otimes k(\mathscr{E})^{\times}$lies in $\mathbb{Q} \otimes k\left(X_{0}(N)\right)^{\times}$, its valuations at the cusps of $X_{0}(N)$ are $v_{\infty}\left(g_{0}\right)=0$ and $v_{0}\left(g_{0}\right)=-\left(N^{2}-1\right) / 24$, and its divisor on $Y_{0}(N)$ is effective and of degree $\left(N^{2}-1\right) / 24$.
(b) The $G / H=\prod_{m=1}^{N-1}\left(g_{m} / h_{m}\right) \in \mathbb{Q} \otimes k(\mathscr{E})^{\times}$lies in $\mathbb{Q} \otimes k\left(X_{0}(N)\right)^{\times}$, with $v_{\infty}(G / H) \geq$ $\left(N^{2}-1\right) / 12$ and $v_{0}(G / H)=-(N-1)\left(N^{2}-1\right) / 24$. The divisor of G / H on $Y_{0}(N)$ is of degree $\leq(N-3)\left(N^{2}-1\right) / 24$, and it is twice an effective divisor on $Y_{0}(N)$.

Proof. Each g_{m} / h_{m} is constant on each elliptic curve fiber, so g_{m} / h_{m} lies in $\mathbb{Q} \otimes k\left(X_{1}(N)\right)^{\times}$. The Galois group of $X_{1}(N) \rightarrow X_{0}(N)$ fixes g_{0} / h_{0} and permutes the g_{m} / h_{m}, so g_{0} / h_{0} and G / H are in $\mathbb{Q} \otimes k\left(X_{0}(N)\right)^{\times}$.
(a) The valuations $v_{\infty}\left(g_{0}\right)$ and $v_{0}\left(g_{0}\right)$ are determined by Corollary 9.2. On the other hand, (a power of) $g_{0}=g_{0} / h_{0}$ is regular on $Y_{0}(N)$, and its divisor on the projective curve $X_{0}(N)$ has degree 0 .
(b) The valuation of G / H along the component Z_{0} above a cusp of $X_{1}(N)$ above ∞ is $\geq\left(\sum_{m=1}^{N-1} 0\right)-\left(-\left(N^{2}-1\right) / 12\right)=\left(N^{2}-1\right) / 12$, by Corollary 9.2 (a) and Lemma 9.3 (a); thus $v_{\infty}(G / H) \geq\left(N^{2}-1\right) / 12$. The valuation of G / H along any component Z_{i} above a cusp above 0 is $\left(\sum_{m=1}^{N-1}-\left(N^{2}-1\right) / 24\right)-0=-(N-1)\left(N^{2}-1\right) / 24$ by Corollary 9.2 (b) and Lemma 9.3(b); thus $v_{0}(G / H)=-(N-1)\left(N^{2}-1\right) / 24$.

Since the divisor of G / H on $X_{0}(N)$ has degree 0 , its divisor on $Y_{0}(N)$ has degree at most $-\left(N^{2}-1\right) / 12+(N-1)\left(N^{2}-1\right) / 24=(N-3)\left(N^{2}-1\right) / 24$.

That it is twice an effective divisor can be checked on the étale cover $Y_{1}(N)^{\prime}$ of Section 7 . There, each g_{m} / h_{m} is regular, and Lemma 6.3 shows that $g_{-m} / h_{-m}=g_{m} / h_{m}$, so G / H is a square.

Proof of Theorem 1.5. Let $D_{Y_{1}(N)}$ be the pullback of D under $Y_{1}(N) \rightarrow Y_{0}(N)$. Let $\left(g_{m} / h_{m}\right)_{\text {red }} \in$ Div $Y_{1}(N)$ be the reduced divisor whose support equals the divisor of g_{m} / h_{m} on $Y_{1}(N)$. Equation (11) says that $D_{Y_{1}(N)}=\sum_{m=0}^{N-1}\left(g_{m} / h_{m}\right)_{\text {red }}$. The divisors $D_{Y_{1}(N), 1}:=\left(g_{0} / h_{0}\right)_{\text {red }}$ and $D_{Y_{1}(N), 2}=\sum_{m=1}^{(N-1) / 2}\left(g_{m} / h_{m}\right)_{\text {red }}=\frac{1}{2} \sum_{m=1}^{N-1}\left(g_{m} / h_{m}\right)_{\text {red }}$ are invariant under the Galois group of $Y_{1}(N) \rightarrow Y_{0}(N)$, so they are pullbacks of divisors D_{1} and D_{2} on $Y_{0}(N)$. We have $D_{Y_{1}(N)}=D_{Y_{1}(N), 1}+2 D_{Y_{1}(N), 2}$, so $D=D_{1}+2 D_{2}$.

The degree of D_{1} is bounded by the degree of g_{0} / h_{0} on $Y_{0}(N)$, which is $\left(N^{2}-1\right) / 24$ by Lemma 9.4(a). Similarly, the degree of $2 D_{2}$ is bounded by the degree of G / H on $Y_{0}(N)$, which is at most $(N-3)\left(N^{2}-1\right) / 24$ by Lemma 9.4 (b).

10. Examples

Let $N>3$ be prime. On the Tate curve over $k((q))$ analytically isomorphic to $\mathbb{G}_{m} / q^{\mathbb{Z}}$ we can write down a function with prescribed divisor in terms of theta functions in u and q, where u is the coordinate on \mathbb{G}_{m}. In this way, we express the elements s_{P}, g_{m}, and h_{m} in terms of u and q and we compute the q-expansions of the rational functions g_{0} / h_{0} and G / H on $X_{0}(N)$.

Now suppose in addition that the genus of $X_{0}(N)$ is 0 ; that is, $N \in\{5,7,13\}$. Let $\eta(q)=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)$. Then the function $\left(N^{1 / 2} \eta\left(q^{N}\right) / \eta(q)\right)^{24 /(N-1)}$ is the q-expansion of a rational function x on $X_{0}(N)$ with $k(x)=k\left(X_{0}(N)\right)$ such that x has a zero at the cusp ∞ and a pole at the cusp 0. Because of Lemma 9.4 this lets us compute g_{0} / h_{0} and G / H as polynomials $f_{1}(x)$ and $x^{\left(N^{2}-1\right) / 12} f_{2}(x)$ whose zeros with $x \neq 0$ give the points $(E, C) \in Y_{0}(N)$ with $c_{E, C}>0$; call these points exceptional. Moreover, in these cases, using an expression for j in terms of x, we may take the $k(x) / k(j)$ norm and take numerators to obtain polynomials $F_{1}(j)$ and $F_{2}(j)$ (determined up to scalar multiple) whose zeros are the j-invariants of the E such that $c_{E, C}>0$ for some $C \subset E$.

For $N \in\{5,7,13\}$, we found that the polynomials $f_{1}(x)$ and $f_{2}(x)$ are of degrees $\left(N^{2}-1\right) / 24$ and $(N-3)\left(N^{2}-1\right) / 48$ and have disjoint distinct roots in $\overline{\mathbb{Q}}$ (in fact, they are irreducible over \mathbb{Q}); this verifies Conjecture 1.6 for these values of N. In fact, $F_{1}(j)$ and $F_{2}(j)$ had the same properties.

Example 10.1. Let $N=5$. Then

$$
\begin{aligned}
& f_{1}(x)=x+5 \\
& f_{2}(x)=x+10 \\
& F_{1}(j)=j-1600 \\
& F_{2}(j)=2 j+25 .
\end{aligned}
$$

Each of f_{1} and f_{2} has a unique zero, and these zeros are distinct, and they avoid the cusps (where $x=0$ and $x=\infty$), except in characteristic 2 (we always exclude characteristic 5). Thus in characteristics $\neq 2,5$, we have $c_{E, C}=0$ except for one (E, C) with $c_{E, C}=1$ and one (E, C) with $c_{E, C}=2$, so the conclusion of Conjecture 1.6 for $N=5$ holds in characteristics $\neq 2,5$. In characteristic 2 , we have $c_{E, C}=0$ except for one (E, C) with $c_{E, C}=1$, so the conclusion of Conjecture 1.6 fails.

Moreover, in characteristics $\neq 2,5$, the two exceptional (E, C) have j-invariants 1600 and $-25 / 2$, which are distinct except in characteristics 3 and 43. In characteristics 3 and 43, we
find that $c_{E, C}=0$ always except that the E with $j(E)=1600=-25 / 2$ has two exceptional subgroups C_{1} and C_{2}, with $c_{E, C_{1}}=1$ and $c_{E, C_{2}}=2$.

Example 10.2. Let $N=7$. Then

$$
\begin{aligned}
& f_{1}(x)=x^{2}+7 x+7 \\
& f_{2}(x)=x^{4}+21 x^{3}+168 x^{2}+588 x+735 \\
& F_{1}(j)=j^{2}-1104 j-288000 \\
& F_{2}(j)=15 j^{4}-28857 j^{3}+20163177 j^{2}-5403404499 j-141176604743
\end{aligned}
$$

and the constant terms, discriminants, and resultants factor as follows:

$$
\begin{aligned}
f_{1}(0) & =7 \\
f_{2}(0) & =3 \cdot 5 \cdot 7^{2} \\
\operatorname{Disc}\left(f_{1}\right) & =3 \cdot 7 \\
\operatorname{Disc}\left(f_{2}\right) & =-3^{3} \cdot 7^{6} \\
\operatorname{Res}\left(f_{1}, f_{2}\right) & =7^{4} \\
\operatorname{Disc}\left(F_{1}\right) & =2^{8} \cdot 3^{3} \cdot 7^{3} \\
\operatorname{Disc}\left(F_{2}\right) & =-3 \cdot 7^{18} \cdot 43^{2} \cdot 139^{2} \cdot 421^{2} \cdot 591751^{2} \\
\operatorname{Res}\left(F_{1}, F_{2}\right) & =5 \cdot 7^{12} \cdot 47 \cdot 3491 \cdot 5939 \cdot 244603
\end{aligned}
$$

The values of $f_{1}(0), f_{2}(0), \operatorname{Disc}\left(f_{1}\right), \operatorname{Disc}\left(f_{2}\right)$ show that in all characteristics $\neq 3,5,7$, we have $c_{E, C}=0$ except for two (E, C) with $c_{E, C}=1$ and four with $c_{E, C}=2$, so the conclusion of Conjecture 1.6 for $N=7$ holds in characteristics $\neq 3,5,7$. In characteristic 3, we have $c_{E, C}=0$ except that $c_{E, C}=1$ for one (E, C) (corresponding to the double root $x=1$ of f_{1}, where $j(E)=0$). In characteristic 5 , we have $c_{E, C}=0$ except for two (E, C) with $c_{E, C}=1$ and only three (E, C) with $c_{E, C}=2$.

Moreover, excluding characteristic 7 as always, the exceptional (E, C) have distinct values of $j(E)$ except in characteristics $2,43,47,139,421,3491,5939,244603$, and 591751, for which there are exactly two exceptional (E, C) sharing the same $j(E)$. In characteristic 2 , these two have $c_{E, C}=1$ (since 2 divides $\operatorname{Disc}\left(F_{1}\right)$ but not $\left.\operatorname{Disc}\left(f_{1}\right)\right)$ In characteristics 43, 139, 421, and 591751, these two have $c_{E, C}=2$ (since these primes divide $\operatorname{Disc}\left(F_{2}\right)$ but not $\operatorname{Disc}\left(f_{2}\right)$). In characteristics 47,5939 , and 244603, these two have c-values 1 and 2 , respectively (since these primes divide $\operatorname{Res}\left(F_{1}, F_{2}\right)$ but not $\left.\operatorname{Res}\left(f_{1}, f_{2}\right)\right)$.

Example 10.3. Let $N=13$. Then $\operatorname{deg} f_{1}=\operatorname{deg} F_{1}=7$ and $\operatorname{deg} f_{2}=\operatorname{deg} F_{2}=35$, and each of the four polynomials has distinct zeros in $\overline{\mathbb{Q}}$. The analysis is similar to that for $N=5$ and $N=7$, except that we were unable to factor $\operatorname{Disc}\left(F_{2}\right)$ completely.

Acknowledgment

We thank Hyuk Jun Kweon for a comment on a draft of the article.

References

[DR73] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 143-316. Lecture Notes in Math., Vol. 349 (French). MR0337993
[FJ95] Gerd Faltings and Bruce W. Jordan, Crystalline cohomology and GL(2, ©), Israel J. Math. 90 (1995), no. 1-3, 1-66, DOI 10.1007/BF02783205. MR1336315
[Igu59] Jun-ichi Igusa, Fibre systems of Jacobian varieties. III. Fibre systems of elliptic curves, Amer. J. Math. 81 (1959), 453-476, DOI 10.2307/2372751. MR104669
[SS91] Norbert Schappacher and Anthony J. Scholl, The boundary of the Eisenstein symbol, Math. Ann. 290 (1991), no. 2, 303-321, DOI 10.1007/BF01459247. Erratum in: Math. Ann. 290 (1991), no. 4, 815, DOI 10.1007/BF01459273. MR1109636
[Sil09] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094 (2010i:11005)

Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540-1966, USA
E-mail address: bwbrock@idaccr.org
Department of Mathematics, Baruch College, The City University of New York, One Bernard Baruch Way, New York, NY 10010-5526, USA

E-mail address: bruce.jordan@baruch.cuny.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

E-mail address: poonen@math.mit.edu
URL: http://math.mit.edu/~poonen/
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK

E-mail address: a.j.scholl@dpmms.cam.ac.uk
Center for Communications Research, 4320 Westerra Court, San Diego, CA 92121-1969, USA

[^0]: Date: November 24, 2020.
 2020 Mathematics Subject Classification. Primary 14H52; Secondary 14G35.
 Key words and phrases. Elliptic curve, torsion point, linear system.
 B.P. was supported in part by National Science Foundation grant DMS-1601946 and Simons Foundation grants \#402472 (to Bjorn Poonen) and \#550033.

