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ABSTRACT 

It is well established that the neurodegenerative process of Alzheimer's disease (AD) begins many 

years before symptom onset. This preclinical phase provides a crucial time-window for therapeutic 

intervention, though this requires biomarkers that could evaluate the efficacy of future disease-

modification treatments in asymptomatic individuals. The last decade has witnessed a proliferation 

of studies characterizing the temporal sequence of the earliest functional and structural brain 

imaging changes in AD. These efforts have focused on studying individuals who are highly 

vulnerable to develop AD, such as those with familial genetic mutations, susceptibility genes (i.e. 

apolipoprotein epsilon-4 allele), and/or a positive family history of AD. In this paper, we review the 

rapidly growing literature of functional imaging changes in cognitively intact individuals who are 

middle-aged: positron emission tomography (PET) studies of amyloid deposition, glucose 

metabolism, as well as arterial spin labeling (ASL), task-dependent, resting-state functional 

magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) studies.  The 

prevailing evidence points to early brain functional changes in the relative absence of cognitive 

impairment and structural atrophy, although there is marked variability in the directionality of the 

changes, which could, in turn, be related to antagonistic pleiotropy early in life. A common theme 

across studies relates to the spatial extent of these changes, most of which overlap with brain 

regions that are implicated in established AD. Notwithstanding several methodological caveats, 

functional imaging techniques could be preferentially sensitive to the earliest events of AD pathology 

prior to macroscopic grey matter loss and clinical manifestations of AD. We conclude that while 

these techniques have great potential to serve as biomarkers to identify at-risk individuals, more 

longitudinal studies with greater sample size and robust correction for multiple comparisons are still 

warranted to establish their utility.  

Search terms: Alzheimer's disease, neurodegeneration, preclinical dementia, functional, magnetic 

resonance imaging, positron emission tomography, neuroimaging, cognitive impairment. 
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INTRODUCTION 

There are now 46 million people living with dementia, and the number is expected to rise to 115 

million in 2050 (World Alzheimer Report 2015). Dementia is a relatively late feature in the 

pathophysiology of Alzheimer's disease (AD), with pathological changes beginning decades before 

symptom onset (Jack et al., 2013). Therefore, the identification of individuals prior to the onset of 

significant clinical symptoms is an important prerequisite for the initiation of earlier treatments, 

particularly as they are likely to have the greatest potential for delaying symptom onset and slowing 

down cognitive decline at the earliest disease stages.  

 

Biomarkers in clinical medicine are used to predict or detect specific illnesses, monitor disease 

progression, and predict response to treatment. The search for biomarkers to detect early 

neurodegenerative changes preclinically includes the exploration of structural neuroimaging (Mak 

et al., 2016a), functional neuroimaging (Wierenga & Bondi, 2007), genomics, proteomics, 

neurophysiology, cerebrospinal fluid (CSF), and blood analysis (Van Steenoven et al., 2016). Over 

the past decade, a variety of imaging techniques which probe brain function have been used to 

investigate early pathological changes in individuals at risk of developing AD. Research participants 

included those with a family history of AD, carriers of apolipoprotein epsilon-4 allele (ApoE4) and 

autosomal-dominant or familial AD (FAD) mutations in the genes of presenilin 1 (PSEN1), PSEN2 

and amyloid precursor protein (APP).  Given the close relationships between the presence of these 

risk factors and AD, studying these individuals provide an invaluable opportunity to chart the natural 

trajectory of disease progression in AD (Ritchie & Ritchie, 2012). 

 

As a two-part systematic review, we have recently surveyed the structural imaging changes in 

preclinical dementia (Mak et al., 2016a). As change in brain morphology is often a late event in the 

neurodegenerative cascade, changes detectable with functional imaging may precede grey matter 



 4 

atrophy and white matter degeneration. The term functional MRI (fMRI) has become associated 

specifically with blood oxygen level dependent BOLD imaging; for the purposes of this review, 

however, we will consider a broader definition of functional imaging to include techniques which 

yield information on physiology and specific pathological processes as well as function. We will 

review the literature concerning functional imaging studies in middle-aged asymptomatic subjects 

under the age of 60 to survey subtle changes that arise years and even decades prior to the 

manifestations of cognitive decline. Findings will be drawn from (a) positron emission tomography 

(PET) studies of amyloid burden (11C-PIB or 18F compounds), cerebral glucose metabolism (b) 

perfusion MRI and task-based and resting-state functional magnetic resonance (fMRI) and (c) 

magnetic resonance spectroscopy (1H MRS). These techniques could have prognostic utility for 

identifying those at risk, predicting and monitoring disease progression and potentially the 

evaluation of a broad range of therapeutic interventions encompassing life-style changes, dietary 

improvements, and disease modifying therapies. 

 

METHOD 

The literature search used to obtain articles for the purpose of this review was done by searching 

Medline and PubMed, using key words, “preclinical” and “dementia” and “functional” and 

“neuroimaging” and “Florebetapir”, “Flumetamol”, “Florbetapen”, “Magnetic Resonance 

Spectroscopy”, “functional MRI”, “FDG-PET” and “PIB”. Other terms included “brain”, “imaging”, 

“resting-state”, “healthy”, “young” and “middle-aged”. Articles included were from the year 1990 till 

April 2016. We only considered human studies in English language. Articles had to describe the 

association between a known risk factor for dementia and neuroimaging changes or had to follow 

up a cohort originating in midlife or earlier with imaging undertaken at a later stage. Only studies 

involving functional neuroimaging modalities (PET and MRI) were included in this review. Relevant 

citations from the reference lists of identified articles were also reviewed.  
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POSITRON EMISSION TOMOGRAPHY 

Amyloid deposition 

The advent of PET amyloid ligands has enabled the in vivo investigation of fibrillar amyloid 

deposition, heralding a rapidly growing literature in both AD and its preclinical stages (see 

Rabinovici & Jagust, 2009 for a review). The first ligand with high specificity for amyloid was the 

11C-Pittsburgh Compound B (11C-PIB) (Klunk et al., 2004). Subsequently, three other 18F based 

amyloid ligands have been developed and licensed for clinical use (18F-florbetapir, 18F-florbetaben 

and 18F-flutemetamol) (O’Brien & Herholz, 2015). Several studies have reported strong agreement 

in uptake measures among the different PET amyloid ligands (Villemagne et al., 2012). 

 

In AD, the topography of amyloid follows a diffuse pattern with the prefrontal cortices, precuneus 

and posterior cingulate cortex being the earliest sites of vulnerability (Rabinovici & Jagust, 2009; 

Thal et al., 2002). In preclinical dementia, there is some evidence to suggest a distinct topographical 

pattern of amyloid (Figure 1A). In the first in vivo investigation of amyloid deposition in asymptomatic 

PSEN1 mutation carriers (~10 years before expected onset of cognitive symptoms), Klunk and 

colleagues reported preferential PIB binding to the striatal regions (Klunk et al., 2007). The in vivo 

findings were corroborated by histological evidence showing that the density of plaques in the 

striatum exceeded that of the cortex and subsequently confirmed by another study involving 7 

PSEN1 mutation carriers and 1 APP mutation carrier (Villemagne et al., 2009). These in vivo 

findings have prompted the hypothesis that the striatum is one of the earliest sites of amyloid 

deposition (Klunk et al., 2007), thereby challenging the notion that striatal plaques only occur at 

later histopathological stages (i.e. second phase of amyloid deposition) in AD (Braak & Braak, 1990; 

Thal et al., 2002). Others have reported increased amyloid burden in the adjacent thalamus and the 

cerebellum in asymptomatic FAD mutation carriers (Knight et al., 2011; Villemagne et al., 2009). 
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However, doubts remain over the universality of striatal amyloid across in FAD (Fleisher et al., 2012; 

Knight et al., 2011). The clinical relevance of PIB retention in FAD is still ambiguous. In Villemagne 

et al (2009), the patterns of PIB retention in both striatal and neocortical regions were not associated 

with disease severity or cognitive function. Neither were there significant differences in amyloid 

burden between dichotomized subgroups of Mini Mental State Examination (MMSE) scores (> 20 

or <= 20) and Clinical Dementia Rating (CDR) (>2 or <= 2). 

 

More recent studies from the Dominantly Inherited Alzheimer's Network study (DIAN) – a large-

scale investigation of MRI and PET data in FAD mutation carriers – have implicated the precuneus 

as an early site of amyloid burden, approximately up to 15 years before expected symptom onset 

(Bateman et al., 2012). These findings are in accordance with those from the Colombian Alzheimer’s 

Prevention Initiative Registry (API), which includes more than 1500 living members from the largest 

known autosomal-dominant AD kindred, 30% of whom are carriers of the PSEN1 E280A mutation 

(Lopera et al., 1997). A unique trait of the Columbian kindred is that it represents the most 

genetically and ethnically homogenous sample from the same geographical location. Fleisher and 

colleagues (2012) characterized the pattern of fibrillar amyloid deposition and estimated its temporal 

relation with clinical onset among 30 PSEN1 mutation carriers (20 – 56 years of age) and 20 

asymptomatic non-carriers. Using a voxel-wise approach, asymptomatic mutation carriers (n=19) 

demonstrated increased 18F florbetapir binding in widespread regions encompassing the 

precuneus, cingulate regions, temporoparietal regions, frontal grey matter and the basal ganglia 

(Fleisher et al., 2012). Notably, these findings remained significant after controlling for atrophy and 

partial volume adjustments. Consistent with data from the DIAN study (Bateman et al., 2012), the 

trajectory of amyloid deposition was estimated to follow a steep acceleration (16 and 21 years 

before mild cognitive impairment (MCI) and AD respectively) before slowing to a plateau before the 

estimated age of onset. 
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The Australian Imaging Biomarkers and Lifestyle (AIBL) study reported that 49% of ApoE4 carriers 

were found to be 11C-PIB positive in contrast to 21% among non-carriers (Rowe et al., 2010). In 

cognitively normal older subjects, the presence of ApoE4 has been associated with both increased 

and earlier amyloid deposition (Fleisher et al., 2013; Morris et al., 2010) as well as 3-fold increased 

odds of amyloid positivity (Mielke et al., 2012). Data from the Adult Children Study (ACS) cohort 

involving middle-older age individuals (stratified by family history for AD) have shown an age-related 

increase in mean cortical binding potential of PIB-PET that was associated with ApoE4 but not 

family history. Furthermore, the younger group (age < 55) did not show any significant associations 

between mean cortical binding potential (MCBP) with other CSF biomarkers and brain volumes 

(Xiong et al., 2011).  

 

Cerebral glucose metabolism  

The 18F 2-fluorodeoxy-D-glucose (FDG) PET tracer has been used to quantify aberrant cerebral 

metabolic rate of glucose in AD (Minoshima et al., 1997, 1995; see Schubert, 2005 for a review) In 

general, preclinical AD appears to be characterized by a hypometabolic profile in temporo-parietal 

cortices including the precuneus. In a study of 235 volunteers aged 50 – 65 years old with a positive 

family history of AD, 11 ApoE4 homozygotes were compared against 22 non-ApoE4 carriers. 

Despite being cognitively intact, the ApoE4 carriers had significantly decreased glucose metabolism 

in regions that are often affected in AD, including the posterior cingulate, temporo-parietal and 

prefrontal regions (Reiman et al., 1996). Of note, the posterior cingulate and precuneus were the 

most hypometabolic regions (Figure 1B), in line with AD studies where it is regarded as a site of 

confluence for various pathologies including amyloid deposition, cortical atrophy and 

hypometabolism (Buckner et al., 2005). These findings in middle-aged ApoE4 carriers were 

subsequently extended to a younger sample of ApoE4 heterozygotes well before midlife (n = 12; 
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20 – 39 years of age) (Reiman et al., 2004). Furthermore, the pathological relevance of these 

regional metabolic deficits was supported by a dose-dependent correlation between ApoE4 (none, 

one, or two copies) in the posterior cingulate cortex among middle-aged persons. The authors also 

demonstrated that the relationship was significantly stronger compared to that of hippocampal 

glucose metabolism or volume (Fisher’s R to Z test). These collective findings suggest that posterior 

cingulate hypometabolism appear to anticipate MTL atrophy and provide further evidence that 

functional imaging techniques might be more sensitive to subtle alterations in the early stages of 

the disease. 

 

In one of the few longitudinal studies, Reiman and colleagues investigated the progression of 

hypometabolism in 10 cognitively normal ApoE4 carriers (50 – 63 years of age) over 2 years. 

Compared to non-carriers, ApoE4 carriers showed significantly more severe metabolic deficits over 

time in the posterior cingulate, fronto-temporal cortices as well as basal forebrain and the thalamus 

(Reiman et al., 2001).  

 

Several studies have also demonstrated focal temporo-parietal metabolic deficits in FAD mutation 

carriers (Fleisher et al., 2015; Kennedy et al., 1995). Kennedy and colleagues showed an 

intermediate level of cerebral glucose metabolism in presymptomatic individuals between controls 

and symptomatic FAD carriers, whereas decreased metabolism in the precuneus was  found in 

presymptomatic PSEN1 carriers from the Columbian kindred (Fleisher et al., 2015). However, 

despite the consistent literature indicating hypometabolism in preclinical AD, the associations or 

differential contributions of FDG-PET and structural brain atrophy remains poorly understood. To 

address this question, Mosconi and colleagues conducted a multi-modal study of FDG-PET and 

MRI in a sample of 7 asymptomatic PSEN1 carriers (age: 35 – 49) (Mosconi et al., 2006). From a 

methodological perspective, this is one of the few studies in the literature that has corrected the 
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PET scans for partial volume effects (2 segment model of brain tissue and CSF). This is critical in 

FDG-PET studies because the extent of atrophy will artificially dilute of PET measurements, thus 

inflating the degree of hypometabolism in vulnerable regions and accentuating the group-

differences between carriers and non-carriers. Using the ROI approach to enable direct 

comparisons of atrophy and hypometabolism, the authors reported convincing evidence of 

hypometabolism in the MTL in the relative absence of atrophy. In addition, FDG-PET measurements 

were less variable than the MRI-based volume measurements, in turn resulting in stronger 

discriminatory sensitivity in the preclinical AD stage. Given that hypometabolism is thought to reflect 

synaptic dysfunction, these findings indicate that FDG-PET imaging could be more sensitive to such 

alterations that typically precede macroscopic grey matter atrophy.  

 

FUNCTIONAL MAGNETIC RESONANCE IMAGING  

Arterial spin labeling  

Arterial spin labeling (ASL) is a non-invasive MRI technique for the measurement of cerebral 

perfusion and it is emerging as another promising biomarker in the early stages of AD (see Hays et 

al., 2016 for a review). While cerebral glucose metabolism has been traditionally measured using 

radionuclide imaging as previously described (FDG-PET), its widespread utility has largely been 

mitigated by limited availability, radiation exposure and costs associated with nuclear imaging. In 

contrast, ASL provides a measure of cerebral blood flow (CBF) by using magnetically labeled 

arterial blood water as an endogenous tracer. Its increasing use has been supported by showing a 

high degree of agreement with FDG-PET (Musiek et al., 2012). Other advantages include (a) greater 

accessibility, (b) cheaper cost of MRI compared to PET, (c) safety benefits (i.e. free of exposure to 

ionizing radiation and intravenous contrast agent and (d) simultaneous acquisition within a structural 

MRI session (~ 6 – 10 minutes). 
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At present, there are relatively fewer ASL studies in preclinical AD, particularly in the young to 

middle-age groups. A previous study reported that resting CBF – particularly in the MTL –  was 

markedly increased (24%) in middle-aged individuals with ApoE4 and family history of AD. 

Interestingly, the at-risk group showed the opposite effect of reduced CBF in the MTL when 

challenged with an associative encoding task. The phenomena of increased baseline CBF was 

interpreted by the authors to represent a global compensatory mechanism to sustain activity in 

functionally impaired regions (Fleisher et al., 2009). These findings are in agreement with another 

study of individuals stratified according to maternal or paternal family history. Echoing previous 

findings where maternal history was associated with a more severe neurodegenerative profile 

(Okonkwo et al., 2012), the authors found that individuals with a maternal history of AD showed 

greater hypoperfusion in the hippocampal and fronto-parietal regions compared to both controls as 

well as individuals with a paternal family history of AD. The significance of these group differences 

also persisted after voxel-wise correction for grey matter atrophy. These findings are also consistent 

with a previously described FDG-PET study (Mosconi et al., 2009), and together add to a growing 

body of evidence implicating maternal family history of AD in greater cognitive decline (Debette et 

al., 2009).  

 

Others have demonstrated differential impact of ApoE4 on resting CBF across the lifespan 

(Wierenga et al., 2013). While older ApoE4 (age = 75) adults showed decreased CBF in widespread 

regions, younger ApoE4 (age = 24) had increased perfusion particularly in the anterior cingulate 

cortex, which was, in turn, correlated with executive function (Figure 1C). However, other studies 

have not found any difference between young ApoE4 carriers (age = 28) and non-carriers (age = 

29) (Filippini et al., 2009). These inconsistencies could be attributed to the different methodological 

approaches. In contrast to the whole brain voxel-wise approach (Wierenga et al., 2013), an ROI-

based analysis was used in Filippini et al to restrict CBF comparisons to the hippocampus, midbrain 
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and cerebellum. As such, any focal or subtle ApoE4 signal at the voxel-level may have been masked 

out by the averaging of voxels across the ROIs. 

 

Task-based fMRI 

fMRI offers considerable promise as a non-invasive technique that is sensitive to early functional 

changes in asymptomatic individuals. It provides an indirect measure of neuronal activity through 

the inference of changes in blood oxygen level dependent (BOLD) fMRI signal (Logothetis, 2008). 

Task-based fMRI studies typically compare BOLD signals that are evoked during one condition (i.e. 

remembering a word stimuli) to BOLD signals associated with a baseline condition or control task.  

 

ApoE4 carriers have shown reduced hippocampal and MTL activations during task performance 

involving episodic encoding, visual naming and letter fluency (Nichols et al., 2012; Smith et al., 

1999; Trivedi et al., 2006). However, decreases in functional activation have not been universally 

reported in ApoE4 carriers (Dennis et al., 2010; Filippini et al., 2009; Quiroz et al., 2010). For 

instance, hippocampal hyperactivity has been evoked during encoding in younger ApoE4 carriers 

(age = 28), independent of grey matter atrophy and perfusion changes (Figure 1D). These findings 

are in parallel with those of Dennis et al (2010), where young ApoE4 carriers (age = 23.2) also 

exhibited MTL hyperactivation during encoding despite comparable memory performance and grey 

matter volumes relative to non-carriers (Dennis et al., 2010). These reports, taken together with 

previous ASL studies in younger ApoE4 carriers, add further support to the notion that the role of 

ApoE4 is not uniform across the life-span. Based on the young age of the sample and the lack of 

behavioral differences between groups, MTL hyperactivity in ApoE4 carriers could be interpreted 

as inefficient processing associated with dysfunction in the medial temporal lobe or compensatory 

processing necessary to achieve similar cognitive output to that in non-carriers (Dennis et al., 2010). 

Interestingly, the interactions between ApoE4 allele and functional changes in young adults may 
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also be modulated by the difficulty of the task in question (Chen et al., 2013). Notwithsanding the 

caveats of a small sample size (n = 9 in each group) and lenient statistical thresholding (p < 0.01 

uncorrected), Chen and colleagues showed that low-load working memory tasks (N-Back) evoked 

hyperactivation in ApoE4 carriers, although this effect was diminished with increasing working 

memory load. In contrast, non-carriers continued to show increasing levels of functional activity 

during the moderate and higher working memory levels of the task. 

 

Task-based functional changes have also been investigated in FAD mutation carriers (Braskie et 

al., 2013; Mondadori et al., 2006; Quiroz et al., 2010; Ringman et al., 2011). In a previous study of 

an FAD family (n = 5, estimated age of clinical manifesation = 48 years), a young PSEN1 mutation 

carrer (age = 20) also showed hyperactivation in memory-related networks during episodic learning 

and retrieval tasks compared to controls (Mondadori et al., 2006). Conversely, weaker activations 

were observed in the middle-aged mutation carrier, who has an amnestic MCI profile (age = 45). 

Although these findings were not corrected for atrophy, the authors noted that manually-segmented 

MTL volumes were comparable between the FAD family members and the controls. These findings, 

albeit restricted to 2 PSEN1 carriers, were later supported by a larger study of the Columbian 

kindred (n = 20 carriers, age = 33) (Quiroz et al., 2010). Despite exhibiting similar cognitive profiles 

and preserved hippocampal volumes compared to controls, the young PSEN1 carriers showed 

hippocampal hyperactivation during encoding tasks of novel associations. These findings are in 

agreement with observations of decreased parietal inhibition during a memory encoding task in the 

youngest group of PSEN1 carriers studied to date (n = 19, age = 14) (Quiroz et al., 2015). Overall, 

the findings of hyperactivation – indicative of functional dysregulation – in young at-risk individuals 

bear resemblance to previous reports in MCI and AD (Dickerson et al., 2005), and collectively fit 

with the model that postulates a transient phase of functional hyperactivation followed by a steep 
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decrease in functional activation as neuronal populations gradually lose their ability to engage in 

compensatory mechanisms  (Dickerson et al., 2005). 

 

Resting-state fMRI studies 

Resting-state fMRI (RS-fMRI) is a relatively recent technique to investigate spontaneous low-

frequency fluctuations in BOLD signals. In rsfMRI studies, subjects are asked to rest with their eyes 

closed or fixated on a cross-hair. The spontaneous temporal correlations are thought to be 

manifestations of intrinsic functional connectivity across brain networks (RSNs) (Biswal et al .,1995), 

which could be interrogated with seed-based or data-driven independent component analyses 

(Beckmann, 2005). 

 

The effects of ApoE4 on brain networks have been increasingly studied in preclinical AD, revealing 

functional alterations in overlapping brain regions that are disrupted in AD (Sheline & Raichle, 2013). 

Of particular interest is the default mode network (DMN), which was first described by Raichle and 

colleagues using PET data (Gusnard & Raichle, 2001; Raichle et al., 2001). The DMN encompasses 

the midline, frontal, MTL and parietal regions as well as the posterior cingulate cortex (Buckner et 

al., 2005). A growing body of evidence has implicated the DMN across the spectrum from normal 

aging to MCI and AD (Buckner et al., 2005; Lustig et al., 2003). The relevance of the DMN in the 

pathophysiology of dementia is also supported by the observations that its constituent regions are 

often the sites of early and focal atrophy, reduced perfusion/metabolism as well as fibrillary amyloid 

deposition (Buckner et al., 2005; Jack et al., 2013; Klunk et al., 2004). Therefore, the failure to 

suppress the DMN during task engagement may prove to be a promising biomarker for earlier 

identification of AD pathology. 
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Abnormal DMN connectivity has been described among ApoE4 (Fleisher et al., 2009; Goveas et 

al., 2013; Patel et al., 2013) and FAD mutations carriers (Chhatwal et al., 2013). A previous study 

of presymptomatic ApoE4 carriers also reported decreased DMN connectivity in the absence of 

amyloid burden (Sheline et al., 2010) (Figure 1D). Indeed, a key strength of this study was the use 

of in vivo amyloid PET imaging to (a) identify PIB-positive or negative individuals before (b) sub-

stratification into those with and without an ApoE4 allele, thereby allowing the authors to determine 

whether the functional effects of ApoE4 is independent of the cardinal initiating event in AD (Bloom, 

2014). 

 

Consistent with earlier suggestions of an antagonistic pleiotropic effect of the ApoE4 allele 

(Wierenga et al., 2013), younger ApoE4 carriers have shown hippocampal hyperconnectivity within 

the DMN in the absence of cognitive deficits, structural atrophy and hypoperfusion (age range: 20 

– 35 years) (Filippini et al., 2015). Another study has investigated a potential gender-ApoE4 

interaction, revealing decreased functional connectivity between the hippocampus and the DMN in 

female carriers (Heise et al., 2014). There is also emerging evidence that resting-state analyses 

may be more sensitive than task-based fMRI to early perturbations in preclinical AD, as evidenced 

by a larger effect size (3.35 vs 1.39) in distinguishing asymptomatic at-risk individuals (ApoE4 and 

positive family history) from controls (Fleisher et al., 2009). There are several advantages of resting-

state fMRI: (a) independence from task performance, which could be influenced by multiple factors 

unrelated to the underlying disease (i.e. interpretation of task demands, motivation and cognitive 

fluctuations); (b) ease of standardization across multi-site studies, (c) data collection from patients 

with substantial cognitive impairment (i.e. avoidance of floor effects); (d) ability to investigate 

multiple RSNs from the same datasets as opposed to unique experimental paradigms that are 

catered to specific cognitive domains. 
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MAGNETIC RESONANCE SPECTROSCOPY 

In vivo 1H MRS allows non-invasive biochemical quantification in defined regions of the brain, and 

characteristic metabolite changes have been  recognized  in  AD and other dementias since the 

early 1990’s (Graff-Radford et al., 2014). Multiple metabolites, each thought to reflect different 

cellular and molecular aspects of the neurodegenerative process, can be measured during a single 

acquisition: (a) N-acetylaspartate (NAA) is a marker of neuronal integrity; (b) myoinositol (mI) levels 

are thought to predominantly reflect glial activation; (c) Choline containing compounds (Cho) are 

associated with membrane turnover and inflammatory processes; and metabolite levels are 

frequently expressed as ratios to creatine/phosphocreatine (Cr) . Although a substantial literature 

exists in dementia and MCI, there are currently relatively few studies in the asymptomatic stages of 

AD. In the Columbian kindred described previously, variations of 1H MRS measurements in the 

posterior cingulate and precuneus have been shown to separate asymptomatic PSEN1 mutation 

carriers from non-carriers with high accuracy (Londono et al., 2014). Another study demonstrated 

decreases in the posterior cingulate NAA/Cr and NAA/mI among presymptomatic PSEN1/APP 

mutation carriers (n = 7). In addition, the magnitude of these deficits were correlated with the 

proximity of expected age of onset (Godbolt et al., 2006). Despite the scarcity of 1H-MRS studies in 

FAD mutation carriers, there is convergent evidence that lower NAA/Cr in the posterior cingulate 

increases the risk of dementia in MCI (Kantarci et al., 2009). Taken together, these studies provide 

important evidence that metabolic changes, particularly within the posterior cingulate and 

precuneus (Figure 1E), can be detected in presymptomatic mutation carriers before the emergence 

of cognitive impairment. 

 

CAVEATS AND METHODOLOGICAL CONSIDERATIONS 

Studying younger subjects at risk of familial AD has the advantage of eliminating or reducing the 

effects of other age-related comorbidities (e.g. hypertension) that may play a confounding role in 
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cerebral pathology (e.g. ischemic changes). However, there are limitations to the degrees in which 

the findings in FAD are both (a) consistent and (b) generalizable to sporadic late onset AD, which 

could in turn hamper efforts to detect treatment effects due to a suboptimal choice of biomarker. 

There is also a scarcity of longitudinal functional studies, precluding definitive conclusions about the 

ability of the functional imaging techniques to track disease progression. To date, most cross-

sectional studies in FAD mutation carriers have calculated the “estimated age of onset” (EOY) in 

presymptomatic carriers, but it is essentially just a construct to determine biomarker changes as a 

function of an individual’s position along the trajectory of disease course. The validity of EOY is 

inherently limited by many factors including the assumption that the parental age of onset is an 

accurate approximation for the offspring carriers. Future prospective longitudinal studies are thus 

required to follow asymptomatic FAD carriers to the symptomatic stages to confirm the predictive 

validity of functional changes. In anticipation of future longitudinal studies, the present FAD findings 

could ideally be compared against cohorts of cognitively-normal at-risk individuals, such as those 

from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Australian Imaging Biomarkers and 

Lifestyle (AIBL), WRAP (7 – 10 years of multimodal imaging data). The PREVENT study (Ritchie & 

Ritchie, 2012), which is an on-going study from our group, is also collecting large amounts of 

imaging data (including MRI, DTI, MRS and fMRI) from people aged 40 to 59 at baseline, as well 

as detailed neuropsychological assessment using the COGNITIO test battery (Ritchie et al., 2014) 

designed for pre-clinical cognitive assessment as well as genetic analyses.  

 

In our review, most studies have not performed partial volume correction, opting instead to (a) 

include grey matter volume as a covariate and/or (b) establish the relative absence of grey matter 

atrophy.  While these statistical adjustments are improvements over the lack of PVC, grey matter 

volumes are usually collinear with other covariates of interest such as age. It is imperative that future 

functional studies account for grey matter atrophy which could exacerbate the spillover 
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contamination of PET/fMRI data. Due to the poor spatial resolution of PET and fMRI data, the 

intensity of a given voxel will be an aggregate of the local uptake/activity within the region of interest 

(i.e. hippocampus) and voxels from other tissue classes (i.e. white matter or surrounding CSF). This 

issue may be more problematic in cortical analyses because the cortical ribbon has a thickness 

(generally 2 to 3 mm) that is similar to the typical voxel diameters in PET and fMRI data. Since the 

partial volume effect (PVE) is proportionate to the amount of atrophy, group differences may be 

artificially attenuated (amyloid measurements) or inflated (FDG-PET, ASL and fMRI) if atrophy is 

not accounted for. 

 

CONCLUSIONS 

The selective investigation of individuals with increased risks of AD presents an invaluable 

opportunity to elucidate the presence, magnitude and spatial mapping of functional imaging markers 

associated with the insidious development of dementia from the presymptomatic state. The 

evidence reviewed herein strongly suggests that changes as seen on functional imaging are early 

features of AD. In line with the “amyloid cascade” hypothesis, PET studies have established the 

presence of amyloid accumulation in FAD and ApoE4 carriers as early as 15 years before ensuing 

cognitive decline. However, there are still unresolved questions concerning the specificity and the 

clinical implications of regional amyloid pathology (i.e. striatal regions) as there is insufficient 

evidence for a close relationship with cognitive impairment. Metabolite abnormalities detected by 

MRS have also been demonstrated many years before predicted onset of dementia in FAD. 

Downstream events of the neurodegenerative cascade, such as hypometabolism and decreased 

CBF, are temporally closer to cognitive decline and may serve as better markers of disease 

progression. FDG-PET and ASL studies have revealed hypo-metabolism and perfusion within 

characteristic AD regions, and that these changes may even precede structural atrophy. Other 

research groups have devised novel experimental paradigms that are designed to challenge 
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specific cognitive domains. Although there is clear evidence for physiological disruptions in 

preclinical AD, the directionality and interpretation of task-evoked fMRI changes are still being 

contested. That could be also age-dependent nuances in the associations between AD risk factors 

and functional imaging parameters. For instance, the MTL is associated with an upsurge of 

functional activity in younger ApoE4 carriers before demonstrating hypoactivation in older carriers 

as in patients with MCI and AD. Finally, although our previous review in preclinical AD has identified 

vulnerable foci of structural degeneration (Mak et al., 2016b), the independence and antecedence 

of functional deficits relative to grey matter atrophy suggests that these techniques may well be 

more sensitive to disease-related changes in preclinical AD. With more validation efforts in larger 

samples and longitudinal studies, we anticipate that functional modalities are well-poised to serve 

as outcome measures in future clinical trials. 

 

ACKNOWLEDGMENTS 

This study was supported by the National Institute for Health Research (NIHR, RG64473), 

Cambridge Biomedical Research Centre and Biomedical Research Unit in Dementia. Elijah Mak 

was in the receipt of the Gates Cambridge studentship. 

 

 

  



 19 

REFERENCES 

Bateman, R. J., Xiong, C., Benzinger, T. L. S., Fagan, A. M., Goate, A., Fox, N. C., … Morris, J. 

C. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. The 

New England Journal of Medicine, 367(9), 795–804. https://doi.org/10.1056/NEJMoa1202753 

Beckmann, C. (2005). Investigations into resting-state connectivity using independent component 

analysis. Philosophical Transactions of the Royal Society, 360(1457), 1001–1013. 

https://doi.org/10.1098/rstb.2005.1634 

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the 

motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in 

Medicine, 34(4), 537–41. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8524021 

Bloom, G. S. (2014). Amyloid-β and tau: the trigger and the bullet in Alzheimer’s disease 

pathogenesis. JAMA Neurology, 71(4), 505. https://doi.org/10.1001/jamaneurol.2013.5847 

Braak, H., & Braak, E. (1990). Alzheimer’s disease: striatal amyloid deposits and neurofibrillary 

changes. Journal of Neuropathology and Experimental Neurology, 49(3), 215–24. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/1692337 

Braskie, M. N., Medina, L. D., Rodriguez-Agudelo, Y., Geschwind, D. H., Macias-Islas, M. A., 

Thompson, P. M., … Ringman, J. M. (2013). Memory performance and fMRI signal in 

presymptomatic familial Alzheimer’s disease. Human Brain Mapping, 34(12), 3308–3319. 

https://doi.org/10.1002/hbm.22141 

Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., … Mintun, 

M. A. (2005). Molecular, Structural, and Functional Characterization of Alzheimer’s Disease: 

Evidence for a Relationship between Default Activity, Amyloid, and Memory. Journal of 

Neuroscience, 25(34). 

Chen, C., Chen, C., Wu, D., Chi, N., Chen, P., Liao, Y., … Hu, C. (2013). Effects of the 

apolipoprotein E ε4 allele on functional MRI during n-back working memory tasks in healthy 



 20 

middle-aged adults. AJNR. American Journal of Neuroradiology, 34(6), 1197–202. 

https://doi.org/10.3174/ajnr.A3369 

Chhatwal, J. P., Schultz, A. P., Johnson, K., Benzinger, T. L. S., Jack, C., Ances, B. M., … 

Sperling, R. A. (2013). Impaired default network functional connectivity in autosomal 

dominant Alzheimer disease. Neurology, 81(8), 736–744. 

https://doi.org/10.1212/WNL.0b013e3182a1aafe 

Debette, S., Wolf, P. A., Beiser, A., Au, R., Himali, J. J., Pikula, A., … Seshadri, S. (2009). 

Association of parental dementia with cognitive and brain MRI measures in middle-aged 

adults. Neurology, 73(24), 2071–2078. https://doi.org/10.1212/WNL.0b013e3181c67833 

Dennis, N. A., Browndyke, J. N., Stokes, J., Need, A., Burke, J. R., Welsh-Bohmer, K. A., & 

Cabeza, R. (2010). Temporal lobe functional activity and connectivity in young adult 

APOE ??4 carriers. Alzheimer’s and Dementia, 6(4), 303–311. 

https://doi.org/10.1016/j.jalz.2009.07.003 

Dickerson, B. C., Salat, D. H., Greve, D. N., Chua, E. F., Rand-Giovannetti, E., Rentz, D. M., … 

Sperling, R. A. (2005). Increased hippocampal activation in mild cognitive impairment 

compared to normal aging and AD. Neurology, 65(3), 404–11. 

https://doi.org/10.1212/01.wnl.0000171450.97464.49 

Filippini, N., Macintosh, B. J., Hough, M. G., Goodwin, G. M., & Frisoni, G. B. (2009). Distinct 

patterns of brain activity in young carriers of the APOE- ␧ 4 allele, 106(17), 7209–7214. 

Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., … 

Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-

epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of 

America, 106(17), 7209–14. https://doi.org/10.1073/pnas.0811879106 

Fleisher, A. S., Chen, K., Liu, X., Ayutyanont, N., Roontiva, A., Thiyyagura, P., … Reiman, E. M. 

(2013). Apolipoprotein E ??4 and age effects on florbetapir positron emission tomography in 



 21 

healthy aging and Alzheimer disease. Neurobiology of Aging, 34(1), 1–12. 

https://doi.org/10.1016/j.neurobiolaging.2012.04.017 

Fleisher, A. S., Chen, K., Quiroz, Y. T., Jakimovich, L. J., Gomez, M. G., Langois, C. M., … 

Reiman, E. M. (2012). Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 

E280A autosomal dominant Alzheimer’s disease kindred: A cross-sectional study. The Lancet 

Neurology, 11(12), 1057–1065. https://doi.org/10.1016/S1474-4422(12)70227-2 

Fleisher, A. S., Chen, K., Quiroz, Y. T., Jakimovich, L. J., Gutierrez Gomez, M., Langois, C. M., … 

Reiman, E. M. (2015). Associations between biomarkers and age in the presenilin 1 E280A 

autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurology, 

72(3), 316–24. https://doi.org/10.1001/jamaneurol.2014.3314 

Fleisher, A. S., Podraza, K. M., Bangen, K. J., Taylor, C., Sherzai, A., Sidhar, K., … Buxton, R. B. 

(2009). Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. 

Neurobiology of Aging, 30(11), 1737–1748. 

https://doi.org/10.1016/j.neurobiolaging.2008.01.012 

Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B. S., Chen, K., & Buxton, R. B. (2009). 

Resting-state BOLD networks versus task-associated functional MRI for distinguishing 

Alzheimer’s disease risk groups. NeuroImage, 47(4), 1678–1690. 

https://doi.org/10.1016/j.neuroimage.2009.06.021 

Godbolt, A. K., Waldman, A. D., MacManus, D. G., Schott, J. M., Frost, C., Cipolotti, L., … 

Rossor, M. N. (2006). MRS shows abnormalities before symptoms in familial Alzheimer 

disease. Neurology, 66(5), 718–722. https://doi.org/10.1212/01.wnl.0000201237.05869.df 

Goveas, J. S., Xie, C., Chen, G., Li, W., Ward, B. D., Franczak, M. B., … Li, S. J. (2013). 

Functional Network Endophenotypes Unravel the Effects of Apolipoprotein E Epsilon 4 in 

Middle-Aged Adults. PLoS ONE, 8(2), 1–10. https://doi.org/10.1371/journal.pone.0055902 

Graff-Radford, J., Boeve, B. F., Murray, M. E., Ferman, T. J., Tosakulwong, N., Lesnick, T. G., … 



 22 

Kantarci, K. (2014). Regional proton magnetic resonance spectroscopy patterns in dementia 

with Lewy bodies. Neurobiology of Aging, 35(6), 1483–90. 

https://doi.org/10.1016/j.neurobiolaging.2014.01.001 

Gusnard, D. a, & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the 

resting human brain. Nature Reviews. Neuroscience, 2(10), 685–694. 

https://doi.org/10.1038/35094500 

Hays, C. C., Zlatar, Z. Z., & Wierenga, C. E. (2016). The Utility of Cerebral Blood Flow as a 

Biomarker of Preclinical Alzheimer’s Disease. Cellular and Molecular Neurobiology, 36(2), 

167–179. https://doi.org/10.1007/s10571-015-0261-z 

Heise, V., Filippini, N., Trachtenberg, A. J., Suri, S., Ebmeier, K. P., & Mackay, C. E. (2014). 

Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in 

healthy adults. NeuroImage, 98, 23–30. https://doi.org/10.1016/j.neuroimage.2014.04.081 

Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., … 

Trojanowski, J. Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an 

updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207–216. 

https://doi.org/10.1016/S1474-4422(12)70291-0 

Kantarci, K. (2013). Proton MRS in mild cognitive impairment. Journal of Magnetic Resonance 

Imaging : JMRI, 37(4), 770–7. https://doi.org/10.1002/jmri.23800 

Kantarci, K., Weigand, S. D., Przybelski, S. A., Shiung, M. M., Whitwell, J. L., Negash, S., … Jr. 

(2009). Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, 

and 1H MRS. Neurology, 72(17), 1519–25. https://doi.org/10.1212/WNL.0b013e3181a2e864 

Kennedy, A. M., Frackowiak, R. S. J., Newman, S. K., Bloomfield, P. M., Seaward, J., Roques, P., 

… Rossor, M. N. (1995). Deficits in cerebral glucose metabolism demonstrated by positron 

emission tomography in individuals at risk of familial Alzheimer’s disease. Neuroscience 

Letters, 186(1), 17–20. https://doi.org/10.1016/0304-3940(95)11270-7 



 23 

Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., … Långstro, B. 

(2004). Imaging Brain Amyloid in Alzheimer ’ s Disease with Pittsburgh Compound-B, 306–

319. https://doi.org/10.1002/ana.20009 

Klunk, W. E., Price, J. C., Mathis, C. A., Tsopelas, N. D., Lopresti, B. J., Ziolko, S. K., … DeKosky, 

S. T. (2007). Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from 

two unrelated pedigrees. Journal of Neuroscience, 27(23), 6174–6184. 

https://doi.org/10.1523/JNEUROSCI.0730-07.2007 

Knight, W. D., Okello, A. A., Ryan, N. S., Turkheimer, F. E., Rodr??guez Martinez De Llano, S., 

Edison, P., … Rossor, M. N. (2011). Carbon-11-Pittsburgh compound B positron emission 

tomography imaging of amyloid deposition in presenilin 1 mutation carriers. Brain, 134(1), 

293–300. https://doi.org/10.1093/brain/awq310 

Logothetis, N. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 

869–78. https://doi.org/10.1038/nature06976 

Londono, A. C., Castellanos, F. X., Arbelaez, A., Ruiz, A., Aguirre-Acevedo, D. C., Richardson, A. 

M., … Lopera, F. (2014). An 1H-MRS framework predicts the onset of Alzheimer’s disease 

symptoms in PSEN1 mutation carriers. Alzheimer’s & Dementia : The Journal of the 

Alzheimer’s Association, 10(5), 552–561. https://doi.org/10.1016/j.jalz.2013.08.282 

Lopera, F., Ardilla, A., Martínez, A., Madrigal, L., Arango-Viana, J. C., Lemere, C. A., … Kosik, K. 

S. (1997). Clinical features of early-onset Alzheimer disease in a large kindred with an E280A 

presenilin-1 mutation. JAMA, 277(10), 793–9. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/9052708 

Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., … Buckner, R. L. 

(2003). Functional deactivations: change with age and dementia of the Alzheimer type. Proc 

Natl Acad Sci U S A, 100(24), 14504–14509. 

https://doi.org/10.1073/pnas.2235925100\r2235925100 [pii] 



 24 

Mak, E., Gabel, S., Mirette, H., Su, L., Williams, G. B., Waldman, A., … O’Brien, J. (2016a). 

Structural neuroimaging in preclinical dementia: from microstructural deficits and grey matter 

atrophy to macroscale connectomic changes. Ageing Research Reviews, (October). 

https://doi.org/10.1016/j.arr.2016.10.001 

Mak, E., Gabel, S., Mirette, H., Su, L., Williams, G. B., Waldman, A., … O’Brien, J. (2016b). 

Structural neuroimaging in preclinical dementia: from microstructural deficits and grey matter 

atrophy to macroscale connectomic changes. Ageing Research Reviews, 1–15. 

https://doi.org/10.1016/j.arr.2016.10.001 

Mielke, M. M., Wiste, H. J., Weigand, S. D., Knopman, D. S., Lowe, V. J., Roberts, R. O., … Jr. 

(2012). Indicators of amyloid burden in a population-based study of cognitively normal elderly. 

Neurology, 79(15), 1570–7. https://doi.org/10.1212/WNL.0b013e31826e2696 

Minoshima, S., Frey, K. a, Koeppe, R. a, Foster, N. L., & Kuhl, D. E. (1995). A diagnostic 

approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of 

fluorine-18-FDG PET. Journal of Nuclear Medicine : Official Publication, Society of Nuclear 

Medicine, 36(7), 1238–1248. 

Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., & Kuhl, D. E. (1997). Metabolic 

reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Annals of 

Neurology, 42(1), 85–94. https://doi.org/10.1002/ana.410420114 

Mondadori, C. R. A., Buchmann, A., Mustovic, H., Schmidt, C. F., Boesiger, P., Nitsch, R. M., … 

Henke, K. (2006). Enhanced brain activity may precede the diagnosis of Alzheimer’s disease 

by 30 years. Brain, 129(11), 2908–2922. https://doi.org/10.1093/brain/awl266 

Morris, J. C., Roe, C. M., Xiong, C., Fagan, A. M., Goate, A. M., Holtzman, D. M., & Mintun, M. A. 

(2010). APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal 

aging. Annals of Neurology, 67(1), 122–131. https://doi.org/10.1002/ana.21843 

Mosconi, L., Mistur, R., Switalski, R., Brys, M., Glodzik, L., Rich, K., … de Leon, M. J. (2009). 



 25 

Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer 

disease. Neurology, 72(6), 513–20. https://doi.org/10.1212/01.wnl.0000333247.51383.43 

Mosconi, L., Sorbi, S., de Leon, M. J., Li, Y., Nacmias, B., Myoung, P. S., … Pupi, A. (2006). 

Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s 

disease. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine, 

47(11), 1778–1786. https://doi.org/47/11/1778 [pii] 

Musiek, E. S., Chen, Y., Korczykowski, M., Saboury, B., Martinez, P. M., Reddin, J. S., … Detre, 

J. A. (2012). Direct comparison of fluorodeoxyglucose positron emission tomography and 

arterial spin labeling magnetic resonance imaging in Alzheimer’s disease. Alzheimer’s & 

Dementia : The Journal of the Alzheimer’s Association, 8(1), 51–9. 

https://doi.org/10.1016/j.jalz.2011.06.003 

Nichols, L. M., Masdeu, J. C., Mattay, V. S., Kohn, P., Emery, M., Sambataro, F., … Berman, K. 

F. (2012). Interactive effect of apolipoprotein e genotype and age on hippocampal activation 

during memory processing in healthy adults. Archives of General Psychiatry, 69(8), 804–813. 

https://doi.org/10.1001/archgenpsychiatry.2011.1893 

O’Brien, J. T., & Herholz, K. (2015). Amyloid imaging for dementia in clinical practice. BMC 

Medicine, 13(1), 163. https://doi.org/10.1186/s12916-015-0404-6 

Okonkwo, O. C., Xu, G., Dowling, N. M., Bendlin, B. B., Larue,  a, Hermann, B. P., … Johnson, S. 

C. (2012). Family history of Alzheimer disease predicts hippocampal atrophy in healthy 

middle-aged adults. Neurology, 78(22), 1769–76. 

https://doi.org/10.1212/WNL.0b013e3182583047 

Patel, K. T., Stevens, M. C., Godfrey, D., Winkler, A. M., Hawkins, K. A., Skudlarski, P., & Bauer, 

L. O. (2013). Default mode network activity and white matter integrity in healthy middle-aged 

ApoE4 carriers, 60–67. https://doi.org/10.1007/s11682-012-9187-y 

Quiroz, Y. T., Budson, A. E., Celone, K., Ruiz, A., Newmark, R., Castrillõn, G., … Stern, C. E. 



 26 

(2010). Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Annals 

of Neurology, 68(6), 865–875. https://doi.org/10.1002/ana.22105 

Quiroz, Y. T., Schultz, A. P., Chen, K., Protas, H. D., Brickhouse, M., Fleisher, A. S., … Reiman, 

E. M. (2015). Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal 

Dominant Alzheimer Disease: A Cross-Sectional Study. JAMA Neurology, 2114(8), 1–8. 

https://doi.org/10.1001/jamaneurol.2015.1099 

Rabinovici, G. D., & Jagust, W. J. (2009). Amyloid imaging in aging and dementia: Testing the 

amyloid hypothesis in vivo. Behavioural Neurology, 21(1–2), 117–128. 

https://doi.org/10.3233/BEN-2009-0232 

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. 

(2001). A default mode of brain function. Proceedings of the National Academy of Sciences of 

the United States of America, 98(2), 676–82. https://doi.org/10.1073/pnas.98.2.676 

Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., & Frost, J. (2001). Declining 

brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for 

using positron emission tomography to efficiently test treatments to prevent Alzheimer’s 

disease. Proceedings of the National Academy of Sciences of the United States of America, 

98(6), 3334–9. https://doi.org/10.1073/pnas.061509598 

Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K. W., Bandy, D., Minoshima, S., … Osborne, D. 

(1996). Preclinical Evidence Of Alzheimers Disease In Persons Homozygous For the ε-4 

Allele For Apolipoprotein E. New England Journal of Medicine, 334(12), 752–758. 

Ringman, J. M., Medina, L. D., Braskie, M., Rodriguez-Agudelo, Y., Geschwind, D. H., MacIas-

Islas, M. A., … Bookheimer, S. (2011). Effects of risk genes on BOLD activation in 

presymptomatic carriers of familial alzheimer’s disease mutations during a novelty encoding 

task. Cerebral Cortex, 21(4), 877–883. https://doi.org/10.1093/cercor/bhq158 

Ritchie, C. W., & Ritchie, K. (2012). The PREVENT study: a prospective cohort study to identify 



 27 

mid-life biomarkers of late-onset Alzheimer’s disease. BMJ Open, 2(6), 1–6. 

https://doi.org/10.1136/bmjopen-2012-001893 

Ritchie, K., Guilhem,  de R., Ritchie, C. W., Alain, B., Vanessa, P., Artero, S., & Marie-Laure, A. 

(2014). COGNITO: Computerized Assessment of Information Processing. Journal of 

Psychology & Psychotherapy, 4(2). https://doi.org/10.4172/2161-0487.1000136 

Rowe, C. C., Ellis, K. A., Rimajova, M., Bourgeat, P., Pike, K. E., Jones, G., … Villemagne, V. L. 

(2010). Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) 

study of aging. Neurobiology of Aging, 31Imaging(8), 1275–83. 

https://doi.org/10.1016/j.neurobiolaging.2010.04.007 

Schubert, D. (2005). Glucose metabolism and Alzheimer’s disease. Ageing Research Reviews, 

4(2), 240–257. https://doi.org/10.1016/j.arr.2005.02.003 

Sheline, Y. I., Morris, J. C., Snyder, A. Z., Price, J. L., Yan, Z., D’Angelo, G., … Mintun, M. A. 

(2010). APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid 

plaques or decreased CSF Aβ42. J Neurosci, 30(50), 17035–17040. 

https://doi.org/10.1523/JNEUROSCI.3987-10.2010 

Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in preclinical 

Alzheimer’s disease. Biological Psychiatry, 74(5), 340–347. 

https://doi.org/10.1016/j.biopsych.2012.11.028 

Smith, C. D., Andersen, A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., & Avison, 

M. J. (1999). Altered brain activation in cognitively intact individuals at high risk for 

Alzheimer’s disease. Neurology, 53(7), 1391–1391. https://doi.org/10.1212/WNL.53.7.1391 

Su, Y., Liang, X., Schoepf, U., Varga-Szemes, A., West, H., Qi, R., … Jiang MD, P. (2015). APOE 

Polymorphism Affects Brain Default Mode Network in Healthy Young Adults: A STROBE 

Article. Medicine (Baltimore), 94(52), e1734. https://doi.org/10.1097/MD.0000000000001734 

Thal, D. R., Rüb, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human 



 28 

brain and its relevance for the development of AD. Neurology, 58(12), 1791–800. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/12084879 

Trivedi, M. a, Schmitz, T. W., Ries, M. L., Torgerson, B. M., Sager, M. a, Hermann, B. P., … 

Johnson, S. C. (2006). Reduced hippocampal activation during episodic encoding in middle-

aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC 

Medicine, 4, 1. https://doi.org/10.1186/1741-7015-4-1 

Van Steenoven, I., Aarsland, D., Weintraub, D., Londos, E., Blanc, F., Van Der Flier, W. M., … 

Lemstra, A. W. (2016). Cerebrospinal fluid Alzheimer’s disease biomarkers across the 

spectrum of lewy body diseases: Results from a large multicenter cohort. Journal of 

Alzheimer’s Disease, 54(1), 287–295. https://doi.org/10.3233/JAD-160322 

Villemagne, V. L., Ataka, S., Mizuno, T., Brooks, W. S., Wada, Y., Kondo, M., … Rowe, C. C. 

(2009). High striatal amyloid beta-peptide deposition across different autosomal Alzheimer 

disease mutation types. Archives of Neurology, 66(12), 1537–44. 

https://doi.org/10.1001/archneurol.2009.285 

Villemagne, V. L., Mulligan, R. S., Pejoska, S., Ong, K., Jones, G., O’Keefe, G., … Rowe, C. C. 

(2012). Comparison of 11C-PiB and 18F-florbetaben for A?? imaging in ageing and 

Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 39(6), 

983–989. https://doi.org/10.1007/s00259-012-2088-x 

Wierenga, C. E., & Bondi, M. W. (2007). Use of functional magnetic resonance imaging in the 

early identification of Alzheimer’s disease. Neuropsychology Review, 17(2), 127–143. 

https://doi.org/10.1007/s11065-007-9025-y 

Wierenga, C. E., Clark, L. R., Dev, S. I., Shin, D. D., Jurick, S. M., Rissman, R. A., … Bondi, M. 

W. (2013). Interaction of age and APOE genotype on cerebral blood flow at rest. Journal of 

Alzheimer’s Disease, 34(4), 921–935. https://doi.org/10.3233/JAD-121897 

Xiong, C., Roe, C. M., Buckles, V., Fagan,  a., Holtzman, D., Balota, D., … Morris, J. C. (2011). 



 29 

Role of Family History for Alzheimer Biomarker Abnormalities in the Adult Children Study. 

Archives of Neurology, 68(10), 1313–1319. https://doi.org/10.1001/archneurol.2011.208 

 

 



 

 

30 

FIGURE AND TABLES 

 

Figure 1. Schematic figure of the principal imaging findings. (A) At-risk individuals exhibit an atypical pattern of amyloid accumulation 

within the striatal regions, thalamus and the cerebellum. Increased amyloid has also been reported in the precuneus and the posterior 

cingulate cortex, both of which are early sites of vulnerability in MCI and AD; (B) The MTL is frequently charcterized by 

hypometabolism, whereas others have reported stronger associations between ApoE4 and hypometabolism within the posterior 

cingulate and precuneus compared to MTL volumes or metabolism; (C) Individuals with ApoE4 and a family history of AD showed 

decreased perfusion in the MTL that is independent of grey matter atrophy. There is also evidence to imply compensatory hyperfusion 
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in the anterior cingulate cortex among younger ApoE4 carriers; (D) fMRI task-based studies have consistently demonstrated 

hypoactivation of the MTL during episodic memory tasks in older ApoE4 subjects (down-ward arrow). However, younger at-risk 

individuals tend to show hyperactivation (upward arrow). The DMN is frequently associated with functional abnormalities in ApoE4 

and FAD mutation carriers. The effect size of rsfMRI differences has been reportedly greater compared to task-based fMRI; (E) 1H-

MRS studies in FAD mutation carriers have reported variations of brain metabolite levels in the posterior cingulate cortex and 

precuneus. Abbreviations: MCI = Mild cognitive impairment; AD = Alzheimer’s disease, FAD = familial Alzheimer’s disease; ApoE4 = 

apolipoprotein epsilon-4 allele; MTL = medial temporal lobe, RS-fMRI = resting-state functional magnetic resonance imaging; DMN 

= default mode network; 1H-MRS = magnetic resonance spectroscopy. 

 


