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Auto-generated database of 
semiconductor band gaps using 
ChemDataExtractor
Qingyang Dong   1 & Jacqueline M. Cole   1,2,3 ✉

Large-scale databases of band gap information about semiconductors that are curated from the 
scientific literature have significant usefulness for computational databases and general semiconductor 
materials research. This work presents an auto-generated database of 100,236 semiconductor band gap 
records, extracted from 128,776 journal articles with their associated temperature information. The 
database was produced using ChemDataExtractor version 2.0, a ‘chemistry-aware’ software toolkit that 
uses Natural Language Processing (NLP) and machine-learning methods to extract chemical data from 
scientific documents. The modified Snowball algorithm of ChemDataExtractor has been extended to 
incorporate nested models, optimized by hyperparameter analysis, and used together with the default 
NLP parsers to achieve optimal quality of the database. Evaluation of the database shows a weighted 
precision of 84% and a weighted recall of 65%. To the best of our knowledge, this is the largest open-
source non-computational band gap database to date. Database records are available in CSV, JSON, 
and MongoDB formats, which are machine readable and can assist data mining and semiconductor 
materials discovery.

Background & Summary
Semiconductors have been at the heart of materials science and the electronics industry. There are increasing 
demands for semiconductors to be used in solar panels, transistors, light-emitting diodes, and so forth, given 
their function depends upon the energy difference between the conduction band minimum and valence band 
maximum of a material, i.e., the band gap. Data on these band gaps have therefore gained significant importance 
and interest. If assembled in structured and organized forms, these data not only allow researchers to per-
form background research with little effort, saving valuable time in literature reading and avoiding unnecessary 
experiments; they also enable the possibility of data visualization and mining applications to predict unknown 
materials and their properties, hence accelerating materials discovery1,2.

Not unlike other fields in physics, such as high-energy physics and astronomy3,4, there are several large-scale 
big-data projects in the domain of materials physics. For example, the Materials Genome Initiative5, the 
Materials Project6, and the Automatic FLOW for Materials Discovery (AFLOW)7–9 all aim to generate databases 
of materials properties using electronic-structure calculations and build a software framework for accelerated 
materials discovery. However, nearly all current large-scale semiconductor databases use high-throughput com-
putational techniques to cover a wide grid of parameter space for semiconductors. The involved computational 
methods vary significantly in theories and software execution, making it impractical to compare numbers across 
different databases. Also, the calculated properties, although large in quantity (i.e. tens of thousands of data 
records), are rarely confirmed by experiments, which makes it difficult to examine their data quality. In con-
trast, databases of experimental band gaps are comparably smaller in size, typically only several thousand data 
records; see for example, the BandgapDB10.

These drawbacks of computationally-generated semiconductor databases have led to interest in the cura-
tion of experimental data from the scientific literature using Natural Language Processing (NLP) techniques11. 
In combination with computationally-generated databases, NLP-based databases provide several additional 
benefits. First is the quality control of databases, by comparing pairwise experimental and computational data 
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of a given material; highly discrepant values would indicate questionable data quality in at least one of these 
databases, while high consistency likely suggests good data accuracy. Second is that a good match between 
experimental and computational data can verify the correctness of the approximations and wave functions used 
in the source ab-initio calculations, making the computational databases more reliable. Third is the possibility 
of exploring new materials and predict future research trends by applying machine-learning techniques to the 
databases12,13.

Unfortunately, generating materials databases using NLP techniques presents many challenges. The infor-
mation about material properties is highly fragmented and unstructured owing to the diversity, variation, and 
ambiguity in natural language. Authors may present their findings in different sections of a document such as 
body texts, tables, and figures. The same information can also be written in different ways due to inconsistent 
terminologies that are used across various material categories, making it difficult for generic NLP toolkits to 
balance accuracy and generalizability. Moreover, the exponentially growing number of publications14 makes 
it impossible to extract data and annotate data manually. Therefore, it is crucial that the data-extraction pro-
cess is fully automated and requires little human intervention. Several NLP toolkits that can parse and extract 
chemical information from scientific documents have been made openly available, such as ChemicalTagger15, 
Chem Spot16,17, LeadMine18, and OSCAR419; although, many of them have been designed to handle only specific 
sections of a scientific paper.

ChemDataExtractor20,21 is a Python-based software toolkit that uses NLP and machine-learning methods 
to extract chemical information from all sections of a scientific document. This work presents an automati-
cally generated database of 100,236 semiconductor band gap records using ChemDataExtractor version 2.0. 
Temperature information, nested to corresponding band gap records, were also extracted and included in 
the database. All data records were extracted from a corpus of 128,776 journal articles using both the NLP 
pipeline within ChemDataExtractor, and the modified Snowball algorithm22, which is a semi-supervised 
machine-learning method, incorporated into ChemDataExtractor version 2.0. This modified Snowball algo-
rithm has been extended in this study to incorporate nested property models, where the parent property is 
dependent on the nested properties. Its hyperparameters have also been optimized so that it complies with the 
NLP pipeline to afford data extraction with optimal performance.

Methods
Text acquisition.  The first stage in the automatic curation of data from literature is to acquire a corpus of 
relevant articles that contain semiconductor band gap information. For this database, the journal articles were 
sourced from three publishers, namely Elsevier, the Royal Society of Chemistry (RSC), and Springer. These jour-
nal papers are best suited for an NLP workflow for several reasons. They could be downloaded and stored locally; 
they are digital rather than scanned, at least while they are sufficiently recent, so they can be processed without 
introducing errors by having to convert images into characters; and they are traceable by DOIs so that data 
extracted from them can be referenced.

RSC papers were downloaded using the web-scraping tools built into ChemDataExtractor 2.0. These func-
tions allow a query text “band gap” to be submitted to the search field of the RSC homepage in a repeatable 
way. The response in each page was recorded, and the article metadata, which contain information such as title, 
author names, URL link, and DOI, were extracted from the responses. The contents of the relevant papers were 
accessed by their DOIs or URLs, if provided, where they were written in hypertext markup language (HTML). 
A total of 63,358 papers were downloaded.

Elsevier papers were downloaded via the ScienceDirect Search API V2, which is the Application 
Programming Interface (API) provided by Elsevier for text and data mining purposes. Article metadata were 
first extracted from the response of the Elsevier server and contents were then accessed where written as exten-
sible markup language (XML). A restriction on the publication year (2005–2020) was imposed when requesting 
metadata from Elsevier. This is because an increasing portion of earlier published papers were found to be 
scanned from images, and then converted into UTF-8 characters; thus, they contain a large number of errors 
on the text level, which lower the accuracy of the data significantly. A total of 24,057 papers were downloaded.

Similarly, Springer papers were downloaded via the Text and Data Mining API, which allows access to papers 
that are not openly available. Responses from the Springer server contain the full content of papers in Journal 
Archiving and Interchange Tag Set (JATS) format, and the contents were then retrieved in this format. A total of 
41,361 papers were downloaded.

It is worth mentioning that during this text acquisition stage, no articles in portable document format (PDF) 
were downloaded, which is one of the most common formats in scientific publications. This is primarily because 
many relatively old PDFs may be preserved as images or contain sections that are scanned from printed papers, 
as seen in some of the early papers from Elsevier. Converting PDF to plain text is still an active area of research, 
and inevitably introduces an uncontrollable amount of error into the NLP pipeline.

Document processing.  The second stage is to standardize and normalize articles. This is to eliminate any 
inconsistencies amongst different file formats and simplify the parsing rules in the phrase parsing stage. First, the 
HTML/XML files were converted into plain text using the “reader” package in ChemDataExtractor. The JATS files 
from Springer were processed by first stripping them of their tag pairs which represent the hierarchical informa-
tion and metadata of an article. The remaining contents were then split into individual paragraphs of plain text.

The plain text of all articles was then processed using the NLP pipeline of ChemDataExtractor 2.0, as 
described in20. ChemDataExtractor provides comprehensive NLP functions such as sentence splitting, tokeni-
zation, word clustering, part-of-speech (POS) tagging, and chemical named entity recognition (CNER). 
Previous studies based on ChemDataExtractor have successfully produced databases of magnetic properties22, 
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battery materials23, and UV absorption spectra24. The output of a processed article file is a document object, 
which is an ensemble of structured sentence objects, each represented by a list of text tokens that are tagged by 
their syntactic functions to further facilitate phrase parsing.

Phrase parsing and relationship extraction.  The third stage, phrase parsing, is the most challenging 
problem in the NLP pipeline due to high level of ambiguity and implicit knowledge carried within natural lan-
guage. One example NLP toolkit, ChemicalTagger15, uses a universal rule-based grammar for parsing certain 
sections of papers in the chemistry domain. The default parser of ChemDataExtractor 2.0, AutoSentenceParser, 
employs a similar approach, using multiple specialized grammar rules that have been designed to extract more 
specific types of chemical information. A grammar rule is composed of a series of nested rules, written as regular 
expressions, that translate a list of tagged text tokens into a tree model, which describes the syntactic structure 
of a sentence. A relationship can thus be extracted based on the tree structure of a sentence. This work uses 
AutoSentenceParser to parse and extract band gap information from articles with few modifications, except for 
defining a nested property model, which is partly inherited from pre-defined unit models in ChemDataExtractor.

However, when generalized from chemistry to the wider materials science, these grammar-based parsing 
rules used in AutoSentenceParser become less efficient. As more writing styles and complexity are introduced 
into the article corpus, the number of grammar rules grows rapidly in order to maintain the same level of accu-
racy, not to mention that a large amount of testing is required to generate successful and efficient rules. This is a 
major barrier that limits the performance of rule-based phrase parsing in terms of accuracy. Moreover, the diffi-
culty of writing new grammar rules also increases when expanding their use cases. Data extraction on sentences 
that contain only slight deviations from the grammar rules will fail. Therefore, the grammar rules need to be 
both specific enough to maintain accuracy, and general enough not to miss too much information.

These limitations of completely deterministic phrase parsing motivated the use of a probabilistic method. 
The modified Snowball algorithm22,25, also built into ChemDataExtractor 2.0, is such a method that allows var-
iations between text and parsing rules, and generates a confidence score based on the degree of variation or 
similarity. The extracted data record can then have a parameter, the minimum confidence threshold τc, that 
measures the likelihood of it being correct. This is a feature that is not available in AutoSentenceParser or any 
other deterministic phrase parsing method.

The modified Snowball algorithm.  As with other semi-supervised machine learning algorithms, the first 
stage of the Snowball pipeline is to acquire a set of labeled data. These data are used to train a Snowball model by 
manually analyzing and curating a set of extraction patterns from training sentences. 850 training articles, which 
were randomly chosen from the entire article corpus, were split into sentences, and then tokenized into lists of 
word tokens. A sentence is considered to be a candidate if all entities of a complete relationship tuple, namely a 
chemical name, a property specifier, a property value, and a property unit, can be found in the token list. Each 
list is then divided into three elements: prefix, middle, and suffix, which are defined by their positions relative 
to the relationship entities. These three elements, together with relationship entities, form the basis of a phrase 
object; they are then vectorized and each are assigned a normalized weight. Further details about the objects of 
the Snowball model with examples are given in Table 1.

To improve model efficiency, all phrase objects found in training sentences were clustered according to a 
two-level hierarchy. The first level separates phrases based on the number and ordering of relationship entities, 
where phrases with the same number and sequence of relationship entities are assigned to the same main cluster. 
The second level is based on the similarity between two phrases, defined by
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Object name
Description
Example

Sentence Sentence split from body text.  
“The bulk TiO2 has a direct band gap of 3.2 eV at tau point.”

Relationship tuple An entity list made of chemical name, property specifier, property value, and property unit. 
[TiO2, band gap, 3.2, eV]

Prefix Word tokens before the first entity.  
[“The”, “bulk”]

Middle Word tokens between each relationship entity.  
[“has”, “a”, “direct”, “of ”]

Suffix Word tokens after the last entity.  
[“at”, “tau”, “point”]

Weight Normalized importance factor for prefix, middles, and suffix.  
(0.1, 0.8, 0.1)

Phrase object A normalized vector of entities.  
[“The bulk”, chemical name, “has”, “a”, “direct”, specifier, “of ”, value, unit, “at tau point”]

Table 1.  Descriptions and examples of Snowball objects.
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where p and q are two phrase objects, ⋅p q( )i i
 is a dot product of two vector elements, vi is a normalized impor-

tance weight vector, and m is the number of relationship entities. The similarity value ranges from 0% to 100%, 
with 100% representing identical phrases. Within a main cluster of phrase objects, several sub-clusters are cre-
ated. The first phrase is assigned to its own sub-cluster; a proceeding phrase is also assigned to this sub-cluster if 
its similarity to a combination of the common elements of the existing sub-cluster (its centroid extraction pat-
tern) is equal to or above that of a predefined minimum similarity threshold, τsim; if not, the phrase is assigned to 
a new sub-cluster. During training, τsim was set to the relatively high value of 90%. The motivation behind this 
setting is not to achieve best performance of the Snowball model, but is to generate as many sub-clusters as pos-
sible, which is the primary factor that affects data extraction.

Other than phrases, two more attributes are used to characterize a sub-cluster: the centroid extraction pat-
tern, and a confidence value C(P), which describes the likelihood that the centroid pattern P produces correct 
relationships. By comparing the centroid extraction pattern with all training sentences, the confidence value is 
the fraction of correct relationship tuples amongst all extracted tuples:

C P( )
Number of positive matches

Total number of matches (2)
= .

In this work, about 500 band gap relationship tuples were manually extracted from 850 randomly selected 
training articles, and 400 sub-clusters were created. Table 2 shows an example of a sub-cluster.

Once a Snowball model has been trained sufficiently, it acts as a phrase parser that can extract band gap rela-
tionships from new sentences. Each candidate relationship, rc, derived from a candidate phrase, pc

, is also 
assigned a confidence score to reflect its likelihood of correctness. The confidence score C r( )c  is defined as
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where Pi are centroid extraction patterns, and i sums over all sub-clusters within a main cluster of phrase objects. 
This scoring scheme ensures that a candidate phrase which matches to more extraction patterns with high sim-
ilarity has higher confidence score than those with fewer matches. Finally, if the confidence score is equal to or 
above that of a minimum confidence threshold τc, the candidate relationship is accepted, and added to the best 
matching sub-cluster. It is worth noting that a bootstrapping loop, or positive feedback loop, is in effect, such 
that, during data extraction, unseen phrases are added into sub-clusters, and this new information can be 
reflected in the updated centroid extraction pattern. Thus the Snowball model can be understood as an active 
learning model, since it learns from previously unseen sentences and it is more likely to accept frequently occur-
ring phrases, and improve in performance over time.

In this work, the Snowball algorithm has been extended in order to handle nested models, where the parent 
property is dependent on the nested properties, but the nested properties are not necessarily intrinsic charac-
teristics of a material. For the band gap of semiconductors, we chose temperature as the nested property for two 
reasons: temperature heavily affects interionic spacings and electron-phonon coupling constants, and can thus 
have measurable impact on band gap values; and temperature information is easily representable by a value and 
a unit. In version 2.0 of ChemDataExtractor, a nested model is defined as a pair of property models that share 
the same chemical compound. A complete relationship can thus be either quaternary: chemical name, band 
gap specifier, energy value, energy unit; or septenary, where it can contain three optional entities: a temper-
ature specifier, a temperature value, and a temperature unit. The same clustering method, confidence scoring 
mechanism, and relationship extraction process of the default modified Snowball algorithm still hold for nested 
models.

Unlike the standard workflow of ChemDataExtractor version 2.0, where documents are processed by either 
AutoSentenceParser or the Snowball parser, sentences were fed into both parsers simultaneously in this work, as 
shown in Fig. 1. Identical records extracted by both parsers were combined during post processing, so that dou-
ble counting could be avoided. We chose this approach because the relative importance of the Snowball parser 
amongst other parsers in ChemDataExtractor has changed due to the increase in performance realized through 
this work. By fine tuning the hyperparameters of the Snowball model, it shows much higher precision and 

Components Description

Phrase 1 This insulating Al2O3 has a wide band gap Eg of 7–9 eV and acts purely as a 
mesoporous scaffold for the perovskite (CH3NH3PbI2Cl) to be deposited.

Phrase 2 In addition, ZnO has a wide band gap of 3.37 eV, which inevitably restricts its 
practical application in visible light or sunlight.

Phrase 3 However, TiO2 has a wide band gap of 3.2 eV which limits its application under 
visible light.

Phrase 4 Pure TiO2 has a band gap of 3.2 eV and on loading CoOx, the band gap shifted to 
the visible region, as shown in Table 1.

Centroid extraction 
pattern

(compound_names) has a wide (bandgap_specifier) of (bandgap_raw_value) 
<Blank> (bandgap_raw_units)

Confidence 1.0

Table 2.  An example of a sub-cluster containing four phrases, selected from a trained Snowball model.
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similar recall compared with AutoSentenceParser, whereas it was initially introduced into ChemDataExtractor 
as a high-precision low-recall add-on to its NLP pipeline. More details are discussed in later sections of this 
paper.

Post processing.  The final stage of the data extraction process is to combine, normalize, and clean up raw 
data records in order to improve the quality and readability of the database. For completeness, all 7,656 records 
in BandgapDB10, a manually-curated experimental database, were also integrated into this database. The energy 
units of all data records were normalized to eV; temperature units in Celsius were converted to Kelvin. Entries 
that are exactly identical from AutoSentenceParser and Snowball were merged to avoid double counting. Each 
data record was then tagged with the sentence from which it was extracted, article DOI, and publisher from which 

Fig. 1  The general workflow of the original ChemDataExtractor version 2.0 (top), and the workflow adopted in 
this work (bottom).
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the article was sourced. For more convenient querying, chemical names are also represented as compositions 
(elements and their corresponding numbers of atoms per molecule), by parsing the extracted chemical strings 
using MaterialParser26. A quick overview shows that 79% of all 21,053 unique chemical names can be parsed 
and represented by their compositions, which take up 87% of all data entries in the database. Chemical strings 
that cannot be parsed by MaterialParser are mostly classes of semiconductors or trade names, which do not have 
definitive chemical formulae. The correctness of these data records is unrelated to the missing composition space, 
and is evaluated in later sections.

For data cleaning, several additional rules were implemented to remove invalid records from the database. 
These rules were developed by manually examining the database and identifying common errors. For example, 
records with a temperature unit in Fahrenheit were removed since they incorrectly refer to specific capacitance 
in all examined cases; energy units expressed in Joule were removed for the same reason; energy units of keV 
and MeV were also removed since these values are several orders of magnitudes larger than the band gap of a 
typical inorganic compound and are most likely wrong; band gaps smaller than 0 eV or larger than 20 eV were 
removed since they are either invalid or out of the range of interest; certain chemical names or acronyms (i.e. 
“VB”, “VBM”, “VOC”, “oxygen”, “nitrogen”, etc.), chemicals that are purely elemental and are not amongst the 
seven elemental semiconductors (Ge, Sn, Si, Se, Te, S, and C), and those ending with “+” or “-” were removed as 
they are most likely dopants rather than semiconductors; and band gap values preceded by keyword “by” were 
removed since nearly all of these values refer to energy differences rather than the absolute band gap values. 
Evaluation on 200 of the raw data records shows that these data cleaning rules can improve the accuracy of the 
database by up to 10% for Snowball records and nearly 20% for AutoSentenceParser records.

To further improve the accuracy of the database, a custom Snowball model was trained using error-prone 
sentences that were identified when training the general Snowball model. These sentences typically contain 
phrases that yield invalid relationships which would be otherwise accepted by the general Snowball model. 
Relationships extracted by the special Snowball model were compared with all records in the database, and iden-
tical entries were deleted. A very high τsim of 95% was assigned to the custom Snowball to ensure a high level of 
accuracy. Otherwise, correct records in the database could be incorrectly deleted. Admittedly, setting 100%simτ =  
would guarantee 100% accuracy, but the custom Snowball model will only accept pretrained phrases, making it 
equivalent to manual data cleaning, so a setting to 100% would defy the purpose of the custom Snowball model.

Data Records
The database can be downloaded from Figshare27, and it is available in CSV, JSON and MongoDB formats. 
Table 3 provides an overview of the data records. Name is the string corresponding to the chemical compound 
in the original text. A single compound can sometimes have multiple identifiers within one sentence (i.e. 
Titanium dioxide (TiO2) has a band gap of 3.2 eV.), and each identifier is assigned to a separate data record. 
Composition is the composition space of the chemical formula given in pairs of elements and numbers. Chemical 
strings that cannot be parsed by MaterialParser have this field set to null. Raw_value and Raw_unit are text 
strings that have been extracted from the source document that indicate band gap values and units. These energy 
values and units are normalized into eV during post processing and given as Value and Unit. In many instances, 
one chemical compound can have two band gap values that indicate a range. Therefore, the Value field can be a 
list of one floating point number or a list of two floating point numbers. The same applies for Temperature_raw_
value, Temperature_raw_unit, Temperature_value, and Temperature_unit, if a complete temperature record is 
found in a sentence and nested to a band gap record. If temperature information is not found, these four fields 
are set to null.

AutoSentenceParser, Snowball, and BandgapDB are Boolean tags that mark the source from which the data 
record is extracted. As the Snowball algorithm, AutoSentenceParser, and the BandgapDB have different level of 
precision and recall, these tags can provide a general estimate of correctness for data records. A record extracted 
by ChemDataExtractor can have both AutoSentenceParser and Snowball set to True, as identical records from 
both pipelines were combined during post processing. Similarly, a data record having BandgapDB set to True 
must have AutoSentenceParser and Snowball set to False. Additionally, a data record extracted by the Snowball 
pipeline has a Confidence, which is the confidence score assigned to this record using Eq. 3; otherwise, the 
Confidence field is set to null. All Snowball records were compiled into the database regardless of their confidence 
scores since the minimum confidence threshold is set to 0%, as described in previous sections. Information on 
the source articles are given in Publisher, DOI, and Notes field.

Technical Validation
Performance evaluation.  The performance of the parsers was evaluated on the basis of precision, recall and 
F-score. Precision is the fraction of correct (relevant) records among all extracted records; recall is the fraction 
of successfully extracted records among all correct (relevant) records in the articles; and F-score is the harmonic 
mean of precision and recall, defined as

‐

=
+

=
+

= ⋅ ⋅
+

Precision TP
TP FP

Recall TP
TP FN

F score Precision Recall
Precision Recall

2
(4)
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where TP is the true positive count (the number of records that are correctly extracted), FP is the false positive 
count (the number of records that are incorrectly extracted), and FN is the false negative count (the number of 
correct records that are not extracted).

Annotating data records by TP, FP, and FN requires knowing all of the correct data records out of a set 
of articles. Therefore, 150 articles were randomly selected (50 from each publisher) to form the evaluation 
set; a total of 209 records were manually extracted from them. These same articles were then processed by 
AutoSentenceParser and the Snowball model separately, and the automatically extracted data records were 
compared with the manually annotated data. A record was counted as a true positive only if all entities in the 
relationship were present and correct. For example, a record with a correct chemical identification and a band 
gap property value and a unit but with a missing or incorrect temperature value and unit was considered to 
be a false positive. The evaluation results of AutoSentenceParser and the Snowball model are given in Table 4 
and Fig. 2. Overall, AutoSentenceParser has a lower precision at 72%, which is below the typical 80% thresh-
old error rate that is regarded for manual data extraction. This result is consistent with previous work with 
ChemDataExtractor, where the overall precision of the NLP pipeline was estimated to be between 66% and 73% 
for a magnetic materials database22, and around 80% for a battery materials database23 which were assisted by 
custom parsing rules.

Hyperparameter optimization.  Before discussing the performance of the Snowball parser, it is worth 
highlighting one implicit parameter that has not been discussed by Court and Cole22. The learning rate, defined 
as the rate at which the Snowball model updates itself, controls the extent by which bootstrapping is employed in 
a Snowball model. A learning rate of 1 represents the normal workflow, whereby the phrases within a sub-cluster, 
the centroid extraction pattern, and its confidence value are all updated every time a new phrase is accepted. A 
learning rate of 0 fixes the confidence values of all centroid extraction patterns at a constant, whereas the centroid 
extraction patterns themselves are allowed to be updated. By default, the learning rate is set to 1. However, we 
found that by keeping the learning rate at 1 throughout training and data extraction yields poor recall. This is a 
reflection of the choice of hyperparameters and the clustering mechanism. During training, each phrase is 
assigned a confidence of 100%. And at a very high 90%simτ = , most of the phrases are assigned to their own 
sub-clusters, making the confidences of sub-cluster centroid extraction patterns very close to 100%. After train-
ing, more and more new phrases with lower confidence scores are added to the sub-clusters. Since most of the 
phrases are unique due to the complexity of natural language, a centroid extraction pattern starts to match to 
fewer phrases within a sub-cluster, making its confidence gradually decrease as the number of phrases increases, 
according to Eq. 2. Using Eq. 3, a lower centroid pattern confidence C P( )i  means lower confidence scores for new 
candidate relationships. Hence, the Snowball model becomes increasingly unlikely to accept new phrases, even if 
the similarity between them and centroid patterns are high. This behaviour does not affect the precision of the 
Snowball model, but suppresses the recall significantly. Changing the learning rate to 0 after training completely 
solves this problem, which must be done manually. This ensures that the confidences of centroid extraction pat-
terns remain at nearly 100% throughout data-extraction process, so that all new phrases with a good match can 
be equally likely to be accepted. Moreover, these new phrases are also added to the sub-clusters and the Snowball 
model can learn from them by updating only the centroid extraction patterns but not their confidences, so that 
the positive feedback loop is still in effect.

Key Description Data type

Name Chemical compound names String

Composition Elements and their numbers of atoms per molecule Dictionary

Value Normalized band gap value List of floats

Unit Normalized band gap unit String

Raw_value Text string of band gap value String

Raw_unit Text string of band gap unit String

Temperature_value Normalized temperature value List of floats

Temperature_unit Normalized temperature unit String

Temperature_raw_value Text string of temperature value String

Temperature_raw_unit Text string of temperature unit String

AutoSentenceParser Source of the data record Boolean

Snowball Source of the data record Boolean

BandgapDB Source of the data record Boolean

Confidence Confidence score from Snowball model Float

Text Sentence from which data is extracted String

Publisher Name of the publisher of the paper String

DOI DOI of the paper String

Notes Additional reference for the data record String

Table 3.  Description of the band gap records and their attributes.
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One advantage of the Snowball parser over AutoSentenceParser is the tuneable nature of a Snowball model. 
The two hyperparameters, τsim and cτ , can be optimized for either high precision or high recall. Intuitively, one 
would optimize τc for best performance, since the confidence score of a candidate relationship describes the 
likelihood of it being correct. Records with low confidence scores can be rejected even if they match to only few, 
if not none, of the centroid extraction patterns. However, we found that the F-score monotonically increases as 
τc is lowered from 100% to 0%, as shown in Fig. 2, indicating that setting τc to above 0% provides no meaningful 
performance improvement. Figure 2 also shows that while setting cτ  to a high value (>65%) will remove some of 
the incorrect records with low confidence scores, which will improve precision slightly, it will reduce recall 
drastically.

Parser τsim

Total 
extracted Removed TP Precision Recall F-score

AutoSentenceParser N/A 212 53 115 72.3% 55.0% 62.5%

Snowball 95% 12 0 12 100.0% 5.7% 10.9%

Snowball 90% 25 0 25 100.0% 12.0% 21.4%

Snowball 85% 39 0 39 100.0% 18.7% 31.5%

Snowball 80% 67 5 59 95.2% 28.2% 43.5%

Snowball 75% 101 6 89 93.7% 42.6% 58.6%

Snowball 70% 123 12 102 91.9% 48.8% 63.8%

Snowball 65% 141 20 107 88.4% 51.2% 64.8%

Snowball 60% 157 27 106 81.5% 50.7% 62.5%

Snowball 55% 169 34 107 79.3% 51.2% 62.2%

Snowball dynamic 147 21 113 89.7% 54.1% 67.5%

Table 4.  Evaluation results of AutoSentenceParser and the Snowball model. The fourth column “Removed” is 
the number of records that is deleted during post processing.

Fig. 2  Performance of the Snowball parser and AutoSentenceParser against τc (a) and simτ  (b), evaluated at 
dotted points. In (a), τsim is set to 65%; in (b), cτ  is set to 0%. For comparison, results of AutoSentenceParser are 
represented in dashed lines.
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Another interesting observation is that when τc is lower than τsim, which is optimized to 65% during evalua-
tion, both precision and recall stay almost constant. Further inspection reveals that only 1% of all evaluation 
records have confidence scores below 65%, and τc fails to provide a meaningful performance difference in this 
region. This is, again, a result of the hyperparameter choices and the confidence scoring mechanism. During 
training, centroid extraction patterns have very high confidences at nearly 100%, and since the learning rate is set 
to 0 afterwards, the confidence values remain unchanged. If a candidate phrase matches to at least one of the cen-
troid extraction patterns, most of the similarity values are close to 0% except for the matches. In the cases where 
there is only one match to a centroid extraction pattern Pj, using approximation C P( ) 1i ≈ , Eq. 3 reduces to

∏≈ − − ≈ − − =
=

C r sim p P sim p P sim p P( ) 1 [1 ( , )] 1 [1 ( , )] ( , ) ,
(5)c

i

n

c i c j c j
1

since − ≈sim p P1 ( , ) 1c i  for ≠i j. In cases where a candidate phrase has multiple matches, the confidence 
score is theoretically higher than any of the similarities sim p P( , )c j . Thus, most of the data records are expected 
to have a confidence score that is equal to or higher than any of the similarity scores. Since records with similar-
ity scores below τsim do not match to any centroid extraction patterns and are directly rejected, all similarity 
scores sim p P( , )c j  are above simτ . Therefore, we expect most records to have confidence scores above that of τsim, 
which explains why there are few records falling into the category where the confidence score is less than τsim. We 
conclude that setting cτ  above 0% provides no practical improvement in precision and recall; therefore, cτ  was 
fixed at 0% for this study.

In contrast, the minimum similarity threshold is a more practically useful performance parameter. While simτ  
is set to 90% during training, it can be tuned during data extraction to balance precision and recall. We evaluated 
the performance of τsim systematically by applying nine different simτ  values to the articles of the evaluation set 
which were separated by 5% intervals; the results are shown in Fig. 2. As τsim is lowered from 95% to 55%, the 
precision decreases slightly while recall increases. The F-score has a peak value at τ = 65%sim , where the 
Snowball parser has high precision (89%) and acceptable recall (51%). The F-score at this point is higher than 
that of AutoSentenceParser, and the Snowball model is thus considered to be a better choice for band gap infor-
mation extraction. The reason why the minimum similarity threshold can noticeably affect performance is that 
simτ  not only controls the shape (number and size) of sub-clusters, but it also implicitly controls the number of 

effective matches between a candidate phrase and the centroid extraction patterns. Lowering τsim means that new 
phrases have more matches to the centroid extraction patterns and they are more likely to be accepted, hence the 
increasing recall; but at the same time, more deviations from the centroid extraction patterns are allowed, hence 
the decreasing precision.

One interesting thing that we noticed is that about 4% of all testing records were correctly extracted by the 
Snowball model at τ = 85%sim , but were missed out at 65%simτ = . This is, at first glance, counter-intuitive, since 
the recall at 65%simτ =  is nearly three times the recall at 85%simτ = , and one would expect a model with a lower 
threshold to cover all of the records found by the exact same model with a higher threshold. This is partially due 
to the bootstrapping feature of the Snowball model, that it updates itself when presented with new information. 
Whenever a new phrase is accepted, it is added to one of the sub-clusters, and the corresponding centroid pat-
tern is updated, even at learning rate of 0. The new centroid pattern is now no longer guaranteed to successfully 
extract data from other candidate phrases that would be otherwise successfully extracted by the non-updated 
centroid extraction pattern. However, a more important origin of this behaviour lies in the data-extraction pro-
cess. For a very high simτ  value, a new phrase only matches to very few, if not just one, of the centroid extraction 
patterns. The match (or very rarely, matches) is then used to extract data from the candidate phrase, which is 
highly likely to be accurate. When τsim is lowered, a new phrase can match to multiple centroid extraction pat-
terns, most of which are not perfectly suitable for the testing phrase. Having multiple potential centroid extrac-
tion patterns creates the possibility for the Snowball model to fit the candidate phrase to a non-best match, 
which will only produce less accurate, if not incorrect, results. Therefore, some of the true positive records 
become false positives when simτ  decreases. Using less perfect matches for data extraction is also the primary 
reason why precision diminishes with decreasing simτ .

Although the “disappearing” records do not affect the workflow or performance of the Snowball parser in 
unexpected ways, their presence indicates that there is performance headroom that cannot be achieved by sim-
ply tuning τsim to a single value. To solve this problem, we developed a new approach that we call “dynamic simτ ”. 
Data extraction is divided into two passes. In the first pass, simτ  is set to a relatively high value (85% in this work), 
close to the value used in training. Thereby, if data records are found in a sentence, the records are accepted, and 
the second pass is skipped. If no data records are found, the second pass is executed, whereby the sentence is 
processed by another Snowball model with the exact same sub-clusters but with a lower τsim value (65% in this 
work). This new workflow can capture the “disappearing” records that would not be extracted by simply optimiz-
ing τsim to 65%, while avoiding the double counting problem caused by running two models independently, 
hence giving a performance boost over single-pass workflow. Evaluation shows that the double-pass workflow 
gives a 1% increase in precision and a 3% increase in recall. These results are also given at the end of Table 4.

Overall, a total of 100,236 records were compiled into the final database, 92,437 of which are extracted by 
the two parsers of ChemDataExtractor, and 7,656 are sourced from BandgapDB. The weighted precision of all 
records that are extracted by ChemDataExtractor is estimated to be 84%, and the weighted recall is 65%, giving 
an F-score of 73%. Thereby, a record randomly chosen from the NLP part of the database has an 84% probabil-
ity of being correct, and the database covers 65% of all band gap records in the sourced papers. It is clear that 
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by combining AutoSentenceParser and the Snowball model into a single pipeline, better performance can be 
achieved which is not possible for either one of the two parsers.

Another way of validating the quality of the database is a visual inspection of the data. Figure 3 shows the band 
gap distribution of all data records in the database, as well as the band gap distribution for a typical transition 
metal oxide, TiO2, as a case study. The overall energy distribution of band gaps is centered around the visible spec-
trum range and 0 eV, where the peak at 3.4 eV results from two frequently mentioned compounds TiO2 and ZnO. 
This trend is in line with the general research interests in materials science: compounds that have unique transi-
tion properties (i.e. graphene can transit from a conductor to a semiconductor with band gap around 0 eV), and 
chemicals that can interact with solar light. For TiO2, there are three distinct peaks between 3.0 and 3.3 eV, which 
correspond to the three polymorphs of TiO2: anatase, rutile, and brookite. This again demonstrates the usefulness 
of the database, that users can acquire valuable information from the database with little background research.

Usage Notes
The band gap database can be found in Figshare27. The database is configured in multiple formats for easier access to 
the data. The CSV and JSON formats are machine-readable and can be loaded using all mainstream programming 
languages including Python, C, Java, MatLab, and R. The MongoDB files require MongoDB to be pre-installed 
before use. Instructions on setting up MongoDB are available at https://docs.mongodb.com/manual/. The code 
used to generate the database can be easily repurposed to process more articles, by following the data-extraction 
pipeline outlined in https://github.com/QingyangDong-qd220/BandgapDatabase1.

The data entries can be queried by their attribute names, listed in Table 3. For example, chemical com-
pounds can be queried by the raw text string that is extracted from the source document as well as the nor-
malized compound name which is recognized by the Chemical Named Entity Recognition (CNER) function 
of ChemDataExtractor. The compounds can therefore be categorized into sub-classes so that further combina-
tion and comparison can be made. The user can also prioritize precision over recall to obtain a more accurate 
(cleaner) database, by removing data entries with lower confidence scores that are assigned by the modified 
Snowball pipeline. This improves precision at the cost of affording lower recall, as shown in Fig. 2.

Code availability
All source code for this work is freely available under the MIT license. The source code used to generate the band 
gap database is available at Figshare27 and https://github.com/QingyangDong-qd220/BandgapDatabase1. The 
updated patch for the modified Snowball algorithm, which is now compatible with nested models, is available at 
https://github.com/QingyangDong-qd220/BandgapDatabase1/tree/main/chemdataextractor2. A clean build of 
the ChemDataExtractor version 2.0 code is available at http://www.chemdataextractor2.org/download.
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