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Summary 

Tumor-host interactions play an increasingly recognized role in modulating tumor 

growth. Thus, understanding the nature and impact of this complex bidirectional 

communication is key to identify successful anti-cancer strategies. It has been proposed 

that tumor cells compete with and kill neighboring host tissue to clear space that they 

can expand into, however, this has not been demonstrated experimentally. Here we use 

the adult fly intestine to investigate the existence and characterize the role of competitive 

tumor-host interactions. We show that APC-/--driven intestinal adenomas compete with 

and kill surrounding cells, causing host tissue attrition. Importantly, we demonstrate that 

preventing cell competition, by expressing apoptosis inhibitors, restores host tissue 

growth and contains adenoma expansion, indicating that cell competition is essential for 

tumor growth. We further show that JNK signaling is activated inside the tumor and in 

nearby tissue and is required for both tumor growth and cell competition. Lastly, we find 

that APC-/- cells display higher Yorkie (YAP) activity than host cells and this promotes 

tumor growth, in part via cell competition. Crucially, we find that relative rather that 

absolute Hippo activity determines adenoma growth. Overall, our data indicate that the 

intrinsic over-proliferative capacity of APC-/- cells is not uncontrolled and can be 

constrained by host tissues if cell competition is inhibited, suggesting novel possible 

therapeutic approaches. 
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Introduction 

It is increasingly recognized that tumors do not simply depend on their own proliferative 

capacity for growth, but instead interact with their environment on multiple levels. For 

example the tumor microenvironment can have a growth-enhancing role by inducing a 

wound healing like pro-proliferative milieu [1] or by recruiting tumor enhancing cancer-

associated fibroblasts [2, 3]. However, in certain instances tumor-host interactions have 

also been reported to inhibit tumor growth [4]. For example, embryonic environments 

have been shown to suppress the aggressiveness of multiple cancer cells [5, 6]. In 

addition, in some contexts fibroblasts have been shown to limit the growth and 

malignancy of neoplastic cells [7]. This suggests that understanding how to enhance the 

tumor suppressive properties of host tissues may help in the fight against cancer. 

 

Reciprocally, it has also been suggested that precancerous lesions and growing tumors 

could adversely affect the host tissue. Specifically, it has been proposed that tumor cells 

could kill surrounding normal cells and use this strategy to clear space in which they can 

expand. This suggestion stems from the observation that in developing tissues, cells 

with tumor promoting mutations can induce cell death in nearby wild-type cells [8, 9]. In 

particular it has been suggested that cancer cells co-opt a form of cell interaction 

normally present in tissues, known as cell competition [10, 11]. Cell competition was 

originally discovered in Drosophila when it was found that wild-type cells can kill cells 

with mutations that reduce their fitness and growth potential [12] and has been 

suggested to act as a quality control mechanism to preserve tissue function [13, 14]. It 

was later found that in developing tissues wild-type cells themselves could be killed via 

cell competition by mutant cells harboring oncogenic mutations, so called super-

competitor cells [8, 9]. This led to the long-standing hypothesis that tumor-host cell 

competition might take place and promote tumor formation, however this has never been 
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tested directly in adult tissues. 

 

The adult Drosophila midgut has recently been established as a model system to study 

adult stem cell behavior, tissue homeostasis, aging and regeneration [15-17]. This tissue 

has a high cellular turnover and is maintained by newly differentiated cells produced 

from intestinal stem cells (ISCs), in a way that is remarkably similar to the mammalian 

intestine [17]. Importantly, mutations that are involved in cancer have also been found to 

lead to overgrowth and tumor formation in the fly intestine [18-20], in some cases by 

niche appropriation [21]. Furthermore, we have recently shown that cell competition is 

active and plays a role in shaping tissue colonization in this tissue [22]. Overall, these 

features provide a unique opportunity to combine the power of Drosophila genetics and 

the simplicity of this adult homeostatic tissue to study the role of cell competition in tumor 

formation. 

 

Here we show that Drosophila intestinal tumors compete with and induce elimination of 

surrounding cells, causing host tissue attrition. Importantly, we demonstrate that 

preventing cell competition, e.g. by inhibiting cell death, dramatically reduces tumor 

growth. Thus, by generating an environment permissive for tumor growth, tumor-induced 

cell competition acts as a key driver of tumorigenesis in this tissue, providing a novel 

angle to counter tumor expansion. 
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Results 

APC-/- adenomas induce apoptosis in surrounding wild-type cells 

To investigate whether cell competition takes place at sites of pre-cancerous lesions, we 

used mutations in the adenomatous polyposis coli (APC) genes, which cause hyper 

activation of the Wnt pathway and induce hyperplasia and benign tumor formations 

(hereafter referred to as adenomas) in the adult Drosophila midgut [19, 20]. We focused 

on Wnt-induced adenomas, because we previously showed that in developing tissues 

cells with increased Wnt-signaling can adopt a super-competitor phenotype and cause 

elimination of normal cells [23]. In addition, the mechanisms driving APC-/- hyperplasia in 

the fly show important similarities with APC-/- intestinal adenoma growth in mammals 

(e.g. activation of the oncogene myc in APC-/- cells and dependence on Myc activity for 

adenoma growth [24]), making our study potentially relevant to the onset of this 

pathology. 

 

To generate APC-/- intestinal adenomas, we introduced intestinal stem cells (ISCs) 

mutant for APC1 and APC2 (hereafter referred to as APC-/-) in the adult fly posterior 

midgut by Flippase (FLP)-mediated mitotic recombination (Figure S1A). Clones derived 

from these cells were significantly bigger than control wild-type clones of similar age 

(Figures 1A-1C) and formed multi-layered structures bulging in the lumen of the gut 

(Figures 1D and 1E), as previously described [19, 20]. This distorted morphology is 

visible 10d after clone induction (ACI; data not shown), but is more prominent at later 

stages. To address if these adenomas induce cell competition, we then looked at the 

incidence of death in cells surrounding these clones. Using cleavage of PARP as a read-

out for caspase activation, we observed apoptotic cells in both control guts and guts 

containing APC-/- cells (Figures 1F-G’). However, while apoptotic cells were randomly 

distributed in control epithelia (Figures 1F-1F’ and 1H, left graph), we found a four-fold 
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enrichment in apoptotic cells around APC-/- adenomas (Figures 1G-1G’ and 1H, right 

graph). Increased apoptosis was observed both among the differentiated cell types, i.e. 

enterocytes (recognized by their large polyploid nuclei, Figure 1I) and enteroendocrine 

cells (marked by expression of Prospero, Figure 1I’), and among ISCs (marked by 

expression on Delta, Figure 1I’’). Overall we conclude that growing APC-/- adenomas 

induce elimination of nearby cells by apoptosis. 

 

APC-/-- induced cell competition causes attrition of healthy tissue  

The increased elimination of cells surrounding APC-/- adenomas urged us to further 

examine the behavior of the host tissue in proximity of adenomas. By labeling the APC 

mutant and the wild-type chromosomes with different fluorescent markers we could 

lineage-trace simultaneously induced clones of cells originating either from APC-/- (RFP 

negative) or from wild-type (GFP negative) stem cells (Figure S1B). Interestingly, we 

found that wild-type clones were dramatically smaller when grown in midguts containing 

APC-/- adenomas (Figures 2B and 2C, right graph) than genetically identical control 

clones grown in wild-type epithelia (Figures 2A and 2C, left graph), with a median clone 

size of only ~25% of their expected size. In addition, we found that the number of wild-

type clones per gut drops drastically over time (Figure S2A) with the majority of residual 

clones made by one cell only at 20 days ACI (Figure 2D), indicating accelerated clone 

extinction. Indeed wild-type clones in control guts showed a much lower incidence of 

one-cell clones (Figure S2B). Altogether, these data indicate that APC-/- adenomas 

engage in cell competition with surrounding wild-type cells and, by acting as super-

competitors, cause attrition of the host tissue. 

 

Cell competition drives tumor growth 

Loss of healthy cells in a tumor-bearing environment is detrimental to organ function and 



 7 

compromises health [25]. Therefore we asked next if we could protect wild-type tissue 

from elimination induced by APC-/- adenomas by expressing inhibitors of apoptosis. 

Using the GeneSwitch system, which allows RU486 (mifepristone)-inducible Gal4-driven 

expression, we expressed the Drosophila Inhibitor of Apoptosis 1 (DIAP1) or baculovirus 

protein p35 directly after clone induction, across the posterior midgut in both progenitor 

cells and ECs [22, 26]. Remarkably, we found that inhibiting apoptosis by DIAP1 

(Figures 3A-3C) or p35 (Figures S3A-S3C) expression was sufficient to fully restore 

growth of wild-type clones (Figure 3C; compare also to control clones in Figure 1C left 

graph, P=0.5694). This indicates that apoptotic induction alone can account entirely for 

host tissue attrition during cell competition.  

 

Strikingly, the growth of APC-/- adenomas was drastically reduced in guts in which the 

loss of neighboring tissue had been prevented (Figures 3A’, 3B’ and 3D, and Figures 

S3A’, S3B’ and S3D). In fact, the size of APC-/- clones was statistically indistinguishable 

from that of wild-type clones within the same guts (compare right graphs in 3C and 3D 

P=0.4211). This was not an indirect effect of inhibition of turnover, since wild-type clone 

growth was instead rescued in these same guts (Figures 3A-3C and S3A-S3C). In 

addition, DIAP1 or p35 expression did not affect the behavior of control clones in control 

guts (Figures S3E and S3F). Two complimentary experiments confirmed that this effect 

is due to inhibition of apoptosis specifically in the host tissue. First, expression of DIAP1 

or p35 only in APC-/- cells did not affect their clone size (Figures 3E-3G and S3G-S3H), 

ruling out an autonomous effect. Second, conditional inhibition of apoptosis exclusively 

in the host tissue (see Figures S1C and S1D for genetic set up) reduced growth of APC-/- 

adenomas to a similar extent as inhibition throughout the epithelium (Figures 3H-3J, 

compare right graphs in 3D and 3J P=0.7212). Collectively, these data demonstrate that 

tumor-host cell competition is essential to drive the growth of APC-/- adenomas in the 
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Drosophila adult midgut.  

 

JNK signaling boosts APC-/- adenoma growth autonomously and via cell 

competition 

We next wondered which pathways are involved in APC-/- adenoma expansion. The Jun 

N-terminal Kinase (JNK) pathway plays a fundamental role in modulating both cell 

proliferation and cell death in many tissues, including the fly intestine [27-29] and has 

been shown to be required for loser cell elimination in several types of cell competition 

[30, 31]. Using a phospho-specific antibody that recognizes an activated form of JNK we 

observed high JNK activation specifically in guts that contain APC-/- adenomas (Figures 

4B-4B’ and S4A-A’), but not in control wild-type (Figure 4A-A’) or heterozygous APC-/+ 

(Figure S4B) guts. Hyper-activation of JNK was prominent both inside APC-/- adenomas 

and in surrounding tissue (Figure 4B). This was not an effect of tissue aging [28], 

because increased pJNK signal could be observed as early as 5 days ACI (Figures S4C 

and S4D). Importantly, pJNK staining was still present within APC-/- clones in guts in 

which competition had been blocked by apoptosis inhibition (Figures S4E and S4F, 

arrowhead), however its levels were reduced in small APC-/- clones (Figure S4F), 

indicating that clone size is important for JNK activation.  

 

We next tested the relevance of JNK activation to APC-/- adenoma growth and cell 

competition. Interestingly, inhibition of the pathway throughout the gut epithelium, by 

GeneSwitch-induced expression of the JNK inhibitor Puckered (Puc), rescued wild-type 

clone size (Figures 4C, 4D and 4E). Notably, the growth of APC-/- adenomas was 

severely reduced under these conditions (Figures 4C’, 4D’ and 4F). Since JNK can have 

a pro-proliferative effect, we then asked whether the reduction in APC-/- clone growth 

was due to a cell-autonomous effect. Importantly, we found that JNK inhibition in APC-/- 
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cells, by expression of Puc or a dominant negative version of JNK (JNKDN), caused a 

marked reduction in APC-/- clone size (Figures 4G-4H and S4G-I). This was 

accompanied by a reduction of the proliferation rate and of the proportion of ISCs in 

APC-/- clones (Figures 4G-4J), both of which have been shown to be increased in APC-/- 

tumors [20, 24]. This indicates that JNK signaling is required both for proliferation and for 

stem cell fate maintenance in APC-/- cells. Note that dependence on JNK activity for 

clonal expansion is not a general feature of ISCs, as JNK signaling inhibition has no 

effect on the colonization of wild-type cells in control guts [22]. Next, to dissect the role of 

JNK signaling in cell competition, we inhibited the pathway in non-tumor cells only. 

Importantly, inducible expression of either Puc or JNKDN specifically in the host tissue 

severely reduced growth of APC-/- adenomas (Figures 4K-4M and S4J-S4L). Together, 

these data indicate that JNK signaling has a dual function: it is required in APC-/- cells to 

promote their growth and in loser cells for their elimination by cell competition. 

 

It has been shown that, in the fly intestine, expression of the secreted JAK/STAT 

cytokine Unpaired-3 (Upd-3) can be activated by JNK signaling upon stress or injury [22, 

27, 29]. Furthermore, the growth of APC-/- clones has been reported to be JAK/STAT-

dependent [24]. However, inhibiting JNK signaling in the host tissue by expression of 

JNKDN did not abrogate elevation of JAK/STAT signaling in APC-/- adenomas (Figures 

S4M and S4N). Thus, inhibition of JNK signaling in neighboring cells blocks cell 

competition in a JAK/STAT independent manner. 

Tumor growth is required for cell competition  

By monitoring competing clones at 10 and 20 days ACI, we observed that wild-type 

clones initially grew (Figures 5A and 5C left graph) and subsequently shrunk (Figures 5B 

and 5C right graph). This coincided with an increase in APC-/- clone size (Figures 5A’, 

5B’ and 5D), suggesting that APC-/- clones need to attain a critical size to compete 
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efficiently. Indeed, blocking APC-/- clone growth by inhibiting JNK signaling or silencing 

of Myc [24] was sufficient to rescue wild-type clone size (Figures 5E-5J). We found that 

guts containing APC-/- clones with an average size of ~30 cells were able to outcompete 

wild-type clones (Figure S5A; compare to control size in Figure 2A and 2C left graph) 

indicating that this is a sufficient size for APC-/--induced competition. Notably, although 

myc is upregulated in Drosophila APC-/- intestinal adenomas and required for their 

overgrowth [24], we found that increasing Myc expression in host cells did not rescue 

their outcompetition (Figure S5B) or inhibit APC-/- adenoma growth (Figures 5K-5M). 

This indicates that, like in developing epithelia [23], differences in Myc levels are not 

required for APC-/--induced cell competition in the intestine.  

 

Relative differences in Hippo activity determine the cell competition potential of 

APC-/- cells 

The Hippo pathway plays an important role in growth control and can inhibit proliferation 

and promote apoptosis via inhibitory phosphorylation of the downstream transcriptional 

co-activators YAP and TAZ (Yorkie, Yki, in Drosophila) [32]. Given that Hippo signaling 

has been implicated in cell competition in developing tissues [33-35] and that Wnt 

signaling induces YAP/TAZ activation in mammals [36, 37], we investigated whether Yki 

is active in APC-/- adenomas and whether it plays a role in cell competition. Firstly, we 

observed that activity of the microRNA and Yki target gene bantam was high (Bantam-

GFP levels were low) in some APC-/- clones (Figures S6A-B”). Secondly, diap1-LacZ, 

another reporter of Yki activity, was consistently upregulated in APC-/- adenomas 

(Figures 6A-6A”). Interestingly, diap1-LacZ upregulation was seen predominantly in 

small cells (Figures 6A-6A”, compare inset 1 to inset 2) and was observed throughout 

APC-/- clones and not just at clone borders, where cell competition takes place, 

suggesting that upregulation of Yki activity is autonomous to APC-/- cells and not a 
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consequence of cell competition. Consistent with this, inhibiting cell competition by 

blocking apoptosis (Figures 6B-B”) or JNK signaling (Figures S6C-D”) in the host tissue 

did not affect the ectopic activation of diap1-LacZ, despite the severe reduction in clone 

size. 

 

To test the involvement of Hippo signaling in cell competition, we aimed to level 

differences in Yki activity between APC-/- clones and their surrounding host tissue. Thus, 

we removed one functional copy of the upstream inhibitory kinase Hippo (hpo42-47/+) or its 

upstream activator Expanded (exex1/+), with the aim of marginally decreasing pathway 

activity across the gut. Importantly, we found that halving the hpo or ex gene dosage 

fully rescued the growth ability of otherwise wild-type clones (Figures 6C-6F). This was 

not a consequence of a general hyper-proliferative response to hpo or ex heterozygosity, 

as it did not have any effect on clonal growth in otherwise wild-type guts (Figures S6E-

S6H). Thus, imperceptibly tweaking Hippo activity is sufficient to abrogate APC-/--

induced cell competition in this tissue. Strikingly, the growth of APC-/- adenomas was 

severely reduced in hpo-/+ or ex-/+ heterozygous backgrounds (Figures 6C’-6E’ and 6G). 

This is extremely unexpected, because removing one copy of a tumor suppressor should 

instead promote the proliferative potential of tissues. In contrast, the median size of 

these APC-/- clones reverted to that of wild-type clones in the same tissue (for hpo-/+ 

compare Figures 6D and 6D’ and middle graphs in 6F and 6G; P=0.3744; for ex-/+ 

compare Figures 6E and 6E’ and right graphs in 6F and 6G; P=0.7621). Importantly, this 

was not caused by a detrimental effect of Yki activity on APC-/- adenomas, because 

autonomous overexpression of Yki in APC-/- cells did not inhibit their growth (Figures 

S6I-S6K). Notably, the suppression of APC-/- adenoma growth by hpo heterozygosity 

was not due to a reduction in JNK (data not shown) or JAK-STAT signaling (Figures S6L 

and S6M). Altogether these results show that Yki signaling is activated in APC-/- 
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adenomas and plays a role in APC-/--induced cell competition in the intestine and that 

differences in Hippo signaling rather than absolute Hippo activity determine the cell 

competition potential of APC-/- adenomas. 
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Discussion 

It is well over a decade since the first reports of a connection between cancer-related 

genes and cell competition [8, 9]. These and a panoply of subsequent studies led to the 

long-standing hypothesis that cell competition contributes to cancer formation [10, 11]. 

Here we have investigated this directly, by exploiting the recent establishment of the 

adult Drosophila intestine as a model system to study adult tissue homeostasis and 

tumor formation [15, 18]. Our work shows that Wnt-induced intestinal adenomas directly 

compete with the host tissue. Importantly, we find that cell competition is an essential 

driver of tumor growth. Indeed inhibiting cell competition suppresses over-proliferation in 

APC-/- cells, effectively blocking tumor formation (Figure 7). Importantly, this finding 

demonstrates that the growth of cells with a mutation considered to be a major driver of 

colon cancer is not uncontrolled and that the cellular environment plays a deterministic 

role in the behavior of those cells. In this light, some previously reported observations 

might, at least in part, be explained by cell competition. For example, it has been 

reported that not all micro-metastases have the potential to immediately grow into 

secondary tumors [38], a phenomenon called cancer dormancy [38]. Based on our 

findings, we speculate that the interaction of such micro-metastasis with their 

environment, through cell competition, could play a deterministic role in their ability to 

grow or not. Consistent with this hypothesis, it has been shown that in developing 

Drosophila tissues cells with mutations in some tumor suppressor genes (e.g. lgl and 

scribble) can be eliminated by wild-type cells [39]. It is only through acquisition of 

additional mutations (similarly to ‘second hit’ mutations during tumorigenesis) that those 

cells overcome the tumor-suppressive environment of the host and overgrow [31, 40]. 

Furthermore, it has recently been found that naturally occurring cell competition in the 

thymus protects mice from developing leukemia [41], lending further support to this 
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notion. 

 

Recently, it has been shown that some mutations involved in human colon cancer can 

give a competitive advantage to cells in the mouse gut. Specifically, oncogenic 

mutations in K-Ras [42] or APC [43] endow stem cells with a competitive advantage, 

which increases their chances of colonization. On the basis of clone population 

dynamics, those studies have proposed that cell autonomous differences in cell 

proliferation or cell survival rates among wild-type and oncogenically mutated cells 

account for their colonization bias. Here we have taken a different approach, whereby at 

the same time as scoring adenoma growth we monitored and manipulated the cell 

survival probability of the host tissue. This has allowed us to uncover cell interactions 

among tumor and host cells that cause induction of cell death in surrounding normal 

tissue, a feature that we demonstrate to be essential to enable adenoma growth. In light 

of our findings, we suggest that a similar process may contribute to the colonization bias 

observed in the mouse intestine [42, 43].  

 

We further show that growing APC-/- adenomas cause accelerated extinction of wild-type 

competing clones, resulting in attrition of surrounding tissue. This is remarkable, 

considering that it has been shown that APC mutations induce a cytokine-rich pro-

proliferative environment in and around adenomas, which should instead promote 

growth [24]. This indicates that host tissues recede at sites of tumor growth, a process 

that is not only disadvantageous because it enhances tumorigenesis, but is also 

detrimental to organ performance. Since interfering with tumor growth inhibits 

competition and, vice versa, inhibiting cell competition blocks tumor growth, we propose 

that both events occur simultaneously and enhance one another in a feed forward loop. 

Our finding that apoptosis inhibition allows the host tissue to contain growing adenomas 
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could have important implications for cancer therapy, as it could provide a strategy to 

prevent or delay a lethal aspect of cancer, namely organ failure [25]. It further suggests 

that apoptosis inhibitors might constitute an unexplored arsenal in combination therapies 

against cancer. This is a radical suggestion, given that many anti-cancer chemo- and 

radiotherapies are, on the contrary, based on the use of wide-spectrum cell death 

inducers.  

 

Our work identifies a new role for Yki activity in tumor growth. In particular, we show that 

APC-/- tumors display increased Yki activity, consistent with previous findings [36, 37]. 

Since YAP/TAZ and Yki are oncogenes, it is paradoxical that halving the gene dosage of 

hpo or ex, both of which are Yki inhibitors and recognized/putative tumor suppressors, 

should inhibit adenoma growth. This points at a new unappreciated role of Hippo 

signaling, which provides APC-/- adenomas with the ability to compete. Importantly, it 

further highlights that relative rather than absolute differences in Hippo activity are 

important for tumor growth. A hpo or ex heterozygous background (but interestingly not 

yki heterozygosity (Figure S6O-P)), likely limits the ability of Hippo to inhibit Yki in the 

host tissue. We show that while that has no noticeable effect on the behavior of 

otherwise wild-type cells under normal conditions, it is sufficient to allow them to 

withstand the competition from APC-/- adenomas. There are several possible 

mechanistic explanations for this observation. First, the Hippo pathway is an important 

sensor of cell density [44]. This might be relevant because APC-/- tumors disregard the 

normal morphology of the midgut epithelium and exhibit higher cell density ([20] and 

Figure 1). Therefore, one could speculate that leveling Yki activity could give 

surrounding cells a chance to be less sensitive to cell density and thereby prevent cell 

competition. Alternatively, hpo or ex heterozygosity may confer some resistance to cell 

death induction, as one of the targets of Yki is the inhibitor of apoptosis DIAP1 [45]. 
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Lastly, there is evidence that the crosstalk between Hippo and Wnt pathways is 

bidirectional and that, besides the previously discussed activation of YAP/TAZ by Wnt, 

the Hippo pathway can also restrict Wnt signaling [46]. Reduced Hippo signaling in 

surrounding cells could therefore act as a positive feedback to facilitate Wnt activation in 

these cells.  

 

Finally, our findings also reveal an important role of the JNK pathway in APC-/--driven 

adenoma formation. As we show, JNK activation in APC-/- cells and in patches of 

surrounding tissue is important to drive tumor growth. A similar activation of JNK has 

also recently been observed around, but not inside, intestinal Notch-/- tumors [21]. 

Interestingly, however while Notch-/- tumors rely on the niche microenvironment to supply 

proliferative JAK/STAT ligands, we find that APC-/- tumors, which also require JAK/STAT 

activation [24], do not depend on a supply from the niche. Both JNK and JAK/STAT 

pathways are involved in sensing stress, injury and inflammation and enabling 

regeneration and repair in the Drosophila adult gut [27-29]. This is particularly relevant 

because there are many reports that inflammation and stress influence tumorigenesis. 

For example, Colitis, induced by dextran sodium sulphate feeding can strongly promote 

carcinogenesis in APCmin mice [47] and increase the colonization potential of p53 mutant 

cells [43]. Furthermore, it has been shown that chronic inflammation causes a 

predisposition for colorectal cancer [48], while treatment with anti-inflammatory drugs 

decreases this probability [49]. In this regard, we speculate that targeting JNK signaling 

could provide a particularly effective therapeutic strategy, as it could simultaneously 

inhibit cancer cell growth and protect host tissue from competition-induced attrition. 

 

Overall, our findings shed light on new potential strategies for cancer treatment. They 

suggest that the growth of early lesions or micro-metastases could be more effectively 
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prevented by strengthening the surrounding healthy tissue, in addition to focusing on 

killing the cancer cells themselves, which is the main goal of current treatments.  
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Experimental Procedures 

Drosophila genetics and stock maintenance 

Detailed information about the Drosophila stocks is given in the Supplemental 

Experimental Procedures along with a list of all the experimental genotypes.  

Flies were grown at 25°C and fed on standard fly food containing yeast. For experiments 

using the GeneSwitch system [50] food was supplemented with 40 or 200µM RU486 

(mifepristone; Sigma-Aldrich, M8046) in 80% EtOH or with an equal volume of 80% 

EtOH as control. Single stem cell-derived clones were generated by mitotic 

recombination, using the FLP/FRT system. One to two days after eclosion, fertilized 

female flies were heat-shocked in a water bath at 37°C for 10 minutes. Adults were 

transferred to fresh vials every 2-3 days and kept at 25°C until dissection at day 17 

unless stated otherwise.  

 

Immunostaining 

Guts were dissected in PBS and fixed for 20 minutes at room temperature in PBS 

containing 3.7% Formaldehyde and 0.025% Triton X-100. After several washes in 0.25% 

Triton X-100/ PBS (washing buffer), guts were blocked for 30 minutes in a solution of 

0.1% BSA/ 0.1% Triton X-100/ PBS (blocking buffer). They were then incubated in the 

appropriate primary antibody diluted in blocking buffer, overnight at 4°C. After several 

washes in washing buffer, guts were incubated for two hours at room temperature with 

the appropriate secondary antibody, followed by several washes in washing buffer. 

Samples were mounted in Vectashield (Vector laboratories) on a borosilicate glass slide 

(no 1.5, VWR International). A list of the antibodies used is given in the Supplemental 

Experimental Procedures.  
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Figure Legends 

Figure 1. APC-/- adenomas eliminate surrounding cells 

A-E) Posterior midguts harboring control (A and D) or APC-/- clones (B and E), marked 

by absence of GFP (A and B) or by 2xGFP (D and E). A and B show a maximum 

intensity projection of multiple Z-sections in X/Y. D and E show a reconstruction of all Z-

sections in Y/Z. Graph in C displays the distribution of clone sizes (left n=176 and right 

n=164 clones).  

F-I) Analysis of cell death in posterior midguts harboring control (F and F’) or APC-/- 

clones (G, G’ and I-I’’) marked by absence of hPARP-Venus. Immunostaining for 

cleaved hPARP (red) marks apoptotic cells. The graph in H displays the ratio of cleaved-

hPARP positive cells at clone borders (‘near’) normalized to the rest of the tissue (‘far’). 

Each dot represents one gut and the black bar indicates the average ratio (±SD, n=8 

guts per condition). I-I”) Apoptotic cells around APC-/- adenomas are enterocytes 

(identified by a polyploid nucleus (I), anti-Prospero positive enteroendocrine cells (I’) or 

anti-Delta positive intestinal stem cells (I’’); arrowheads point to apoptotic cells.  

Throughout the figures colored lettering describes fluorescent-protein positive and white 

lettering fluorescent-protein negative tissue and dashed lines indicate clone borders. 

Unless stated otherwise, in the graphs each dot represents one clone, red bars indicate 

median clone sizes and P-values are displayed above graphs (Mann-Whitney test). 

Detailed genotypes are listed in the Supplemental Experimental Procedures. Scale bars 

represent 50 µm. 

 

Figure 2. APC-/- - induced cell competition causes attrition of healthy tissue 

A-C) Posterior midguts harboring simultaneously induced GFP-negative WT (A, A’’, B 

and B’’) and RFP-negative WT (A’ and A’’) or APC-/- clones (B’ and B’’). Graph in C 

displays the distribution of WT clone sizes (left n=106 and right n=227 clones). Graph in 
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D shows the percentage of 1-cell clones across a whole population of WT clones in guts 

containing APC-/- clones dissected 10d or 20d ACI (left n=179 and right n=74 clones, 

Fisher’s exact test). See also Figure S2. 

 

Figure 3. Cell competition fuels tumor growth 

A-D) Posterior midguts harboring WT clones (A and B), and APC-/- clones, (A’ and B’). 

Clones are marked by 2xGFP (WT) or by absence of GFP (APC-/-). In B-B’ cell death 

was blocked by inducible expression of DIAP1 (+DIAP1, 40µM RU486). Control guts (A 

and A’) are of the same genotype as B but were treated with carrier only (-RU486). 

Graphs in C and D display the distribution of WT (C) or APC-/- (D) clone sizes (C left 

n=59, C right n=63, D left n=87 and D right n=161 clones). E-G) Posterior midguts 

harboring APC-/- clones marked by expression of GFP, with (F, +DIAP1) or without (E, 

control) additional expression of DIAP1. Graph in G displays the distribution of APC-/- 

clone sizes with (right) or without (left) DIAP1 expression (left n=172 and right n=187 

clones).  

H-J) Posterior midguts harboring APC-/- clones marked by absence of RFP. In ‘I’ cell 

death was blocked in host cells by expression of DIAP1 (+DIAP1, 40µM RU486). Control 

guts (H) are of the same genotype as ‘I’ but were treated with carrier only (-RU486). 

Graph in J displays the distribution of APC-/- clone sizes with (right) or without (left) 

DIAP1 expression in host cells (left n=160 and right n=218 clones). See also Figure S3. 

 

Figure 4. JNK signaling boosts APC-/- adenoma growth 

A-B) Posterior midguts stained with anti-phospho (active) JNK (pJNK, red) containing 

WT (A and A’) or APC-/- clones (B and B’) marked by absence of GFP.  

C-F) Posterior midguts harboring WT clones, marked by 2xGFP (C’, D’ and outlined in C 

and D), and APC-/- clones, marked by absence of GFP (C’ and D’). JNK signaling was 
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blocked by inducible expression of Puckered (+Puc, 200µM RU486; D and D’). Control 

guts (C and C’) are of the same genotype as D but were treated with carrier only (-

RU486). Graphs in E and F display the distribution of clone sizes for WT (E) and APC-/- 

(F) clones (E left n=38, E right n=44, F left n=184 and F right n=161 clones).  

G-J) Posterior midguts harboring APC-/- clones marked by expression of GFP, with (H) 

or without (G) additional expression of Puckered within the clones and stained with anti-

phospho H3 to mark mitotic cells (green) and anti-Delta to mark ISCs (white). The 

graphs in I-J display the percentage of APC-/- Delta+ stem cells (I) or the percentage of 

mitotic APC-/- Delta+ stem cells per gut (J). Each dot represents one gut and the black 

bar indicates the average (±SEM, left n=14 and right n=23 guts, t test).  

K-M) Posterior midguts harboring APC-/- clones marked by absence of RFP. In L JNK 

signaling was blocked in host cells by inducible expression of Puckered (+Puc, 40µM 

RU486). Control guts (K) are of the same genotype as L but were treated with carrier 

only (-RU486). Graph in M displays the distribution of APC-/- clone sizes (left n=137 and 

right n=227 clones). See also Figure S4 

 
Figure 5. Tumor growth is required for cell competition  

A-D) Posterior midguts harboring simultaneously induced GFP-negative WT (A and B) 

and RFP-negative APC-/- (A’ and B’) clones, dissected 10d (A) or 20d (B) ACI. Graphs in 

C and D display the distribution of clone sizes for WT (C) or APC-/- (D) clones (C left 

n=179, C right n=74, D left n=231 and D right n=186 clones).  

E-J) WT clones, marked by absence of GFP, in posterior midguts harboring control APC-

/- clones (E and H) or APC-/- clones expressing Puckered (F) or MycRNAi (I) specifically 

within the clone. Graphs in G and J display the distribution of WT clone sizes (G left 

n=112, G right n= 62, J left n=164 and J right n= 118 clones).  

K-M) Posterior midguts harboring APC-/- clones marked by absence of RFP. Myc was 



 27 

inducibly expressed in host cells (L, +Myc, 40µM RU486). Control guts (K) are of the 

same genotype as L but were treated with carrier only. Graph in M displays the 

distribution of APC-/- clone sizes (left n=119 and right n=114 clones). See also Figure S5 

 
Figure 6. Differences in Hippo activity determine cell competition potential of APC-

/- cells 

A-B) Posterior midguts with APC-/- clones, marked by absence of RFP 17d (B) or 20d (A) 

ACI. Yki activity was detected by expression of diap1-LacZ (A’-B’ white and A, A’’, B, B’’ 

green). The magnifications in A display regions inside (region 1) and outside (region 2) 

APC-/- clones and arrowheads point at small APC-/- mutant (white arrowheads) or small 

WT (red arrowheads) cells. Cell death was blocked in B by inducible expression of 

DIAP1 (40µM RU486). The magnifications display regions containing APC-/- clones and 

arrowheads point at small APC-/- mutant cells.  

C-G) Guts containing simultaneously induced GFP-negative WT (C, D and E) and RFP-

negative APC-/- (C’, D’ and E’) clones in control (C and C’), hpo-/+ (D and D’) or ex-/+ (E 

and E’) posterior midguts. Graphs in F and G display the distribution of APC+/+ (F) or 

APC-/- (G) clone sizes from control (left), hpo-/+ (middle) or ex-/+ (right) guts (F left n=304, 

F middle n=155, F right n=120, G left n=237, G middle n=183 and G right n=158 clones). 

See also Figure S6.  

 
Figure 7. Cell competition promotes tumor growth in Drosophila 

Schematic model depicting how cell competition affects APC-/- adenoma growth. 

Growing APC-/- adenomas in the adult Drosophila posterior midgut kill surrounding cells 

and cause host tissue attrition. JNK signaling activation in APC-/- cells is required for 

their growth, whereas non-autonomous JNK activation in the host tissue is required for 

cell competition. APC-/- cells also display higher Yki activity than host cells and this is 

required for cell competition. Inhibiting cell competition prevents adenoma growth, 
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indicating that cell competition is an essential driver of tumor growth in this tissue. 
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Figure S1, Introduction to single and dual color lineage tracing, Related to Experimental 

Procedures 

A-B) Schematic representation of single (A) and dual (B) color lineage tracing. Heat-shock 

induced expression of FLP causes mitotic recombination in stem cells that are heterozygous APC 

mutant and express one copy of GFP (A) or one copy of GFP and one copy of RFP (B). This 

results in the generation of daughter cells that are APC-/- (top) or WT/WT (bottom). Clones of cells 

that are generated by single color labeling (A) are marked by absence of GFP (APC-/-) or two 

copies of GFP (WT). Clones of cells that are generated by dual color labeling (B) are marked by 

absence of RFP and two copies of GFP (APC-/-) or absence of GFP and two copies of RFP (WT). 

C) Schematic representation of single color lineage tracing combined with pLoser based 

transgene expression in host cells. Heat-shock induced expression of FLP causes mitotic 

recombination in stem cells that are heterozygous APC mutant and express one copy of RFP and 

a RU486 (mifepristone)-inducible GeneSwitch. This results in the generation of daughter cells that 

are APC-/- (top) or WT/WT (bottom). Clones of cells that are generated by pLoser single color 

labeling are marked by absence of RFP and lack expression of the GeneSwitch. D) Posterior 

midguts harboring hs-FLP induced WT clones marked by absence of RFP. Expression of CD8-

GFP was induced by activation of the pLoser GeneSwitch in cells surrounding clones (200µM 

RU486). Note that absence of RFP directly correlates to absence of GFP induction.  

Genotype:  

D)  hs-FLP; UAS-CD8-GFP; FRT82B, pLoser, Ubi-RFP-nls / FRT82B 

 

	  



	

 

Figure S2, APC-/-- induced cell competition causes attrition of healthy tissue, Related to 

Figure 2  

A) Frequency of WT clones per midgut from guts containing APC-/- clones dissected 10d or 20d 
ACI (left n=231 and right n=187 clones, ±SEM, P-value is displayed above graph, Mann-Whitney 
test). B) Percentage of 1-cell clones across the whole population of WT clones in control posterior 
midguts 20d ACI (n=50 clones).  
Genotypes:  

A)  hs-FLP; pSwitchall /+; FRT82B, APC2G10, APC1Q8, Ubi-GFP/ FRT82B, Ubi-RFP-nls  
B)  hs-FLP;; FRT82B, Ubi-GFP/ FRT82B 
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Figure S3, Cell competition fuels tumor growth, Related to Figure 3  

A-D) Posterior midguts harboring hs-FLP induced WT clones, marked by two copies of GFP (A 
and B), and APC-/- clones, marked by absence of GFP (A’ and B’) 17dACI. Cell death was 
blocked by inducible expression of p35 in all ECs and progenitors cells using the GeneSwitch 
system (+p35, 200µM RU486; B and B’). Control guts (A and A’) are of the same genotype as B 
but were treated with carrier only (-RU486). Graphs in C and D display the distribution of WT (C) 
or APC-/- (D) clone sizes on the y-axis (Log2 scale) from guts with (right) or without (left) p35 
expression. Each dot represents one clone and the red bar indicates the median clone size (C left 
n=67, C right n=82, D left n=122 and D right n=345 clones). E-F) Graphs in E and F display on 
the y-axis (Log2 scale) the size distribution of hs-FLP induced WT clones marked by absence of 
GFP in WT control posterior midguts (E and F, left graphs) or in WT midguts where cell death 
was blocked by inducible expression of either DIAP1 (E, right graph) or p35 (F, right graph) in all 
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ECs and progenitors cells using the GeneSwitch system (40µM RU486). Control guts were 
treated similarly to experimental guts, but lack the UAS transgene. Each dot represents one clone 
and the red bar indicates the median clone size (E left n=72, E right n=54, F left n=74 and F right 
n=50 clones). G-H) Posterior midguts harboring hs-FLP induced APC-/- clones marked by 
MARCM-driven expression of GFP, with (H, p35) or without (G, control) additional expression of 
the cell death inhibitor p35 exclusively in APC-/- cells at 17dACI. P-values are displayed above 
graphs (Mann-Whitney test).  
Genotypes:  
A-D)   hs-FLP; pSwitchall/ UAS-p35; FRT82B, Ubi-GFP/ FRT82B, APC2G10, APC1Q8 
E left)   hs-FLP; pSwitchall/ GlBc; FRT82B, Ubi-GFP/ FRT82B 
E right)  hs-FLP; pSwitchall/ UAS-DIAP1; FRT82B, Ubi-GFP/ FRT82B  
F left)   hs-FLP; pSwitchall/ CyO; FRT82B, Ubi-GFP/ FRT82B 

F right)  hs-FLP; pSwitchall/ UAS-p35; FRT82B, Ubi-GFP/ FRT82B 
G)   hs-FLP,UAS-GFP-nls,Tub-Gal4;; FRT82B, Tub-Gal80/ FRT82B, APC2G10, APC1Q8 
H)   hs-FLP,UAS-GFP-nls,Tub-Gal4; UAS-p35/+; FRT82B,Tub-Gal80/ FRT82B,  
  APC2G10, APC1Q8  
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Figure S4, JNK signaling boosts APC-/- adenoma growth, Related to Figure 4 

A-D) Posterior midguts stained with anti-phospho (active) JNK (pJNK, red). B and D display APC-

/+ heterozygous guts and A and C guts containing hs-FLP induced APC-/- clones, marked by 
absence of GFP, dissected 5d (C and D) or 10d (A and B) ACI. E-F) Posterior midguts harboring 
hs-FLP induced APC-/- clones marked by absence of RFP dissected 17dACI and stained with 
anti-phospho (active) JNK (pJNK, green). Cell death was blocked by inducible expression of 
DIAP1 in all ECs and progenitors cells using the GeneSwitch system (F, +DIAP1, 40µM RU486), 
control guts were treated similarly to experimental guts, but lack the UAS-DIAP1 transgene (E, 
control). The arrowhead in F points to an APC-/- clone with higher pJNK staining. G-I) Posterior 
midguts harboring hs-FLP induced APC-/- clones marked by MARCM-driven expression of GFP, 
with (H) or without (G) additional expression of JNKDN within the clones at 17dACI. Graph in I 
displays the distribution of APC-/- clone sizes for guts of the same genotypes as in G-H (left n=347 
and right n=487 clones). J-L) Posterior midguts harboring hs-FLP induced APC-/- clones dissected 
17dACI. Clones are marked by absence of RFP. JNK signaling was blocked in K by inducible 
expression of JNKDN in host cells using the GeneSwitch system (+JNKDN, 40µM RU486). Control 
guts (J) are of the same genotype as K but were treated with carrier only. Graph in L displays the 
distribution of APC-/- clone sizes on the y-axis (Log2 scale) with (right) or without (left) JNKDN 
expression in host cells. Each dot represents one clone and the red bar indicates the median 
clone size (left n=148 and right n=214 clones). M-N) Posterior midguts harboring hs-FLP induced 
APC-/- clones, marked by absence of RFP, dissected 17dACI. JAK/STAT activity was detected by 
expression of 10xSTAT-GFP (green). JNK signaling was blocked in N by inducible expression of 
JNKDN in surrounding cells using the GeneSwitch system starting 7d ACI  (+JNKDN, 10days 40µM 
RU486). Control guts (M) are of the same genotype as N but were treated with carrier only. P-
values are displayed above graphs (Mann-Whitney test). Genotypes:  

A and C)  hs-FLP;; FRT82B, Ubi-GFP/ FRT82B, APC2G10, APC1Q8 
B and D)  hs-FLP;; FRT82B, APC2G10, APC1Q8/+  
E)   hs-FLP ; pSwitchall / CyO ; diap1-LacZ, FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, 
  APC1Q8 
F)   hs-FLP ; pSwitchall / UAS-DIAP1 ; diap1-LacZ, FRT82B, Ubi-RFP-nls / FRT82B, 
  APC2G10, APC1Q8 
G, I (left)  hs-FLP, UAS-GFP-nls,Tub-Gal4 ;; FRT82B, Tub-Gal80/ FRT82B, APC2G10,APC1Q8 
H, I (right) hs-FLP, UAS-GFP-nls, Tub-Gal4 / UAS-BskDN;;  FRT82B, TubGal80/ FRT82B, 
  APC2G10, APC1Q8 
J-L)   hs-FLP ; UAS-Puc/+ ; FRT82B, pLoser, Ubi-RFP-nls / FRT82B,APC2G10,APC1Q8 
M-N)   hs-FLP / UAS-BskDN ; 10xSTAT-GFP/+ ; FRT82B, pLoser, Ubi-RFP-nls / FRT82B, 
  APC2G10, APC1Q8  



	

 

Figure S5, Tumor growth is required for cell competition, Related to Figure 5 

A) Graph displaying the average APC-/- clone size per gut (x-axis) plotted against the average WT 
clone size (y-axis) for clones from guts of the same genotype as in Figure 2B. The dotted 
horizontal line indicates the expected average WT clone size 17dACI based on the data shown in 
Figure 2A and 2C, left. The dotted vertical line indicates the extrapolated APC-/- clone size that is 
sufficient to induce competition. B) Graph displaying the size distribution on the y-axis (Log2 
scale) of WT clones marked by two copies of RFP from guts containing APC-/- clones with (right) 
or without (left) additional Myc expression throughout host cells (from guts of the same genotype 

as in Figures 5K (left) L (right)). Each dot represents one clone and the red bar indicates the 
median clone size (left n=115 and right n=105 clones). The P-value is displayed above graphs 
(Mann-Whitney test).  
Genotypes:  
A)  hs-FLP; pSwitchall /+; FRT82B, APC2G10, APC1Q8, Ubi-GFP/ FRT82B, Ubi-RFP-nls  
B)  hs-FLP ; UAS-Myc/+ ; FRT82B, pLoser, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8 
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Figure S6, Differences in Yki activity determine cell competition potential of APC-/- cells, 

Related to Figure 6 

A-B) Posterior midguts with hs-FLP induced APC-/- (A) or WT (B) clones, marked by absence of 
RFP, dissected 17d ACI. Yki activity was detected by decreased expression of the Bantam-GFP 
sensor (A’ and B’ white and A’’ and B’’ green). Increased activity was observed in at least one 
APC-/- clone per gut, in about two thirds of APC-/- adenoma containing guts (63% n=19). C-D) 
Posterior midguts harboring hs-FLP induced APC-/- clones marked by absence of RFP dissected 
17dACI. Yki activity was detected by expression of diap1-LacZ (C’ and D’ white and C, D, C’’ and 
D’’ green). JNK signaling was blocked by inducible expression of Puckered (D) in all ECs and 
progenitors cells using the GeneSwitch system (40µM RU486), control guts were treated similarly 
to experimental guts, but lack UAS transgenes (C, control). Insets in D displays regions 
containing APC-/- clones and arrowheads point at small APC-/- mutant cells. E-H) Guts containing 
WT clones marked by absence of GFP, in control (E), hpo-/+ (F) or ex-/+ (G) heterozygous 
posterior midguts 17dACI. Graph in H displays the distribution of WT clone sizes on the y-axis 
(Log2 scale) from control (left), hpo-/+ (middle) or ex-/+ (right) heterozygous guts (left n=329, 
middle n=328 and right n=247 clones). I-K) Posterior midguts harboring hs-FLP induced APC-/- 
clones marked by MARCM-driven expression of GFP, with (J) or without (I) additional expression 
of Yki within the clones at 17dACI. Graph in K displays the distribution of APC-/- clone sizes for 
guts of the same genotypes as in I-J (left n=102 and right n=135 clones). L-M) Posterior midguts 
harboring hs-FLP induced APC-/- clones, marked by absence of RFP, in a control (L and L’) or 
hpo-/+ (M and M’) heterozygous background, dissected 17dACI. JAK/STAT activity was detected 
by expression of 10xSTAT-GFP (green). O-P) Graphs display the distribution of simultaneously 
induced GFP-negative WT (O) or RFP-negative APC-/- (P) clone sizes on the y-axis (Log2 scale) 
from control (left) or yki-/+  (right) guts. In all graphs each dot represents one clone, the red bars 

indicate median clone sizes and P-values are displayed above (Mann-Whitney test). Genotypes:  
A) hs-FLP ; Bantam-GFP/ +; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8 

D)  hs-FLP; Bantam-GFP/+; FRT82B, Ubi-RFP-nls/ FRT82B 
C) hs-FLP ; pSwitchall / CyO ; diap1-LacZ, FRT82B, Ubi-RFP-nls/ FRT82B, APC2G10, APC1Q8  
D) hs-FLP; pSwitchall/ UAS-Puc; diap1-LacZ,FRT82B,Ubi-RFP-nls/ FRT82B,APC2G10,APC1Q8 
E&H)  hs-FLP;; FRT82B, Ubi-RFP-nls/ FRT82B, Ubi-GFP  
F&H) hs-FLP; hpo42-47/+; FRT82B, Ubi-RFP-nls/ FRT82B, Ubi-GFP 
G&H)  hs-FLP; exex1/+; FRT82B, Ubi-RFP-nls/ FRT82B, Ubi-GFP  
I& K) hs-FLP, UAS-GFP-nls,Tub-Gal4; GlBc/+; FRT82B,Tub-Gal80 / FRT82B,APC2G10, APC1Q8 
J& K) hs-FLP,UAS-GFP-nls,Tub-Gal4;UAS-Yki/+;FRT82B,TubGal80/FRT82B,APC2G10,APC1Q8 
L)  hs-FLP ; 10xSTAT-GFP/+ ; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8 
M)  hs-FLP ; 10xSTAT-GFP/ hpo42-47 ; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8 
O&P) hs-FLP; Sp/+; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8, Ubi-GFP 
O&P hs-FLP; YkiB5/+; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8, Ubi-GFP 
	 	



	

Supplemental Experimental Procedures 

Experimental Genotypes 

Figure 1: 
A:  hs-FLP ;; FRT82B, Ubi-GFP / FRT82B  
B:  hs-FLP ;; FRT82B, Ubi-GFP / FRT82B, APC2G10, APC1Q8 
D, C (left): hs-FLP ; pSwitchall /+; FRT82B, Ubi-GFP / FRT82B, Ubi-RFP-nls  
E, C (right):  hs-FLP; pSwitchall /+; FRT82B, APC2G10, APC1Q8, Ubi-GFP / FRT82B, Ubi-RFP-nls  
F, H (left): hs-FLP ;; FRT82B, Act-Gal4, UAS-CD8-hPARP-Venus / FRT82B  
G,H (right),I: hs-FLP;; FRT82B, Act-Gal4, UAS-CD8-hPARP-Venus / FRT82B, APC2G10, APC1Q8 
 
Figure 2: 
A, C (left): hs-FLP ; pSwitchall /+; FRT82B, Ubi-GFP / FRT82B, Ubi-RFP-nls  
B, C(right),D: hs-FLP ; pSwitchall /+; FRT82B, APC2G10,APC1Q8, Ubi-GFP / FRT82B, Ubi-RFP-nls  
 
Figure 3: 
A-D:  hs-FLP ; pSwitchall / UAS-DIAP1 ; FRT82B, Ubi-GFP / FRT82B, APC2G10, APC1Q8 
E, G (left): hs-FLP, UAS-GFP-nls, Tub-Gal4 ; GlBc / + ; FRT82B, Tub-Gal80 /  
  FRT82B, APC2G10, APC1Q8 
F, G (right): hs-FLP,UAS-GFP-nls,Tub-Gal4 ; UAS-DIAP1/+ ; FRT82B,Tub-Gal80 /  
  FRT82B,APC2G10,APC1Q8 

H-J:  hs-FLP ; UAS-DIAP1/+ ; FRT82B, pLoser, Ubi-RFP-nls / FRT82B,APC2G10,APC1Q8 
 
Figure 4: 
A:   hs-FLP ;; FRT82B, Ubi-GFP / FRT82B  
B:  hs-FLP ;; FRT82B, Ubi-GFP / FRT82B, APC2G10, APC1Q8 
C-F:  hs-FLP ; pSwitchall / UAS-Puc ; FRT82B, Ubi-GFP / FRT82B, APC2G10, APC1Q8 
G, I& J (left):  hs-FLP, UAS-GFP-nls,Tub-Gal4;; FRT82B, Tub-Gal80 /  
  FRT82B, APC2G10, APC1Q8, Ubi-GFP 
H, I& J(right): hs-FLP, UAS-GFP-nls, Tub-Gal4 ; UAS-Puc/ +; FRT82B, TubGal80 /  
  FRT82B, APC2G10, APC1Q8, Ubi-GFP 
K-M:  hs-FLP ; UAS-Puc/+ ; FRT82B, pLoser, Ubi-RFP-nls / FRT82B,APC2G10,APC1Q8 
 
Figure 5: 
A-D:   hs-FLP; pSwitchall /+; FRT82B, APC2G10, APC1Q , Ubi-GFP / FRT82B, Ubi-RFP-nls 
E, G (left):  hs-FLP, UAS-GFP-nls,Tub-Gal4 ;; FRT82B, Tub-Gal80 /  
  FRT82B, APC2G10, APC1Q8, Ubi-GFP  
F, G (right):  hs-FLP,UAS-GFP-nls,Tub-Gal4; UAS-Puc/+; FRT82B,TubGal80 /  
  FRT82B, APC2G10, APC1Q8,Ubi-GFP 
H, J (left):  hs-FLP,UAS-GFP-nls,Tub-Gal4 ; GlBc / +; FRT82B,Tub-Gal80 /   
  FRT82B,APC2G10,APC1Q8,Ubi-GFP  
I, J (right):  hs-FLP, UAS-GFP-nls, Tub-Gal4; UASMycRNAi / +; FRT82B,TubGal80 /  
  FRT82B,APC2G10,APC1Q8,Ubi-GFP 
K-M:   hs-FLP ; UAS-Myc/+ ; FRT82B, pLoser, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8 
 
Figure 6: 
A:  hs-FLP;; diap1-LacZ, FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8, Ubi-GFP 
B:   hs-FLP ; pSwitchall / UAS-DIAP1 ; diap1-LacZ, FRT82B, Ubi-RFP-nls /  
  FRT82B, APC2G10, APC1Q8 
C, F&G(left): hs-FLP ;; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8, Ubi-GFP 

D, F&G(mid): hs-FLP ; hpo42-47/ + ; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10,APC1Q8,Ubi-GFP 

E, F&G(right): hs-FLP ; exex1/ + ; FRT82B, Ubi-RFP-nls / FRT82B, APC2G10, APC1Q8, Ubi-GFP 



	

 
Drosophila Stocks 

The following fly stocks were used: hs-FLP;; FRT82B, Ubi-GFP/TM6B, hs-FLP; Sp/CyO; 
FRT82B, Ubi-RFP-nls/ TM6B (Daniel StJohnston), hs-FLP; Sp/CyO; FRT82B, Ubi-GFP/ TM6B, 
FRT82B (Bloomington), FRT82B, APC2G10, APC1Q8/TM6B (M.Peifer), FRT82B, APC2G10, 
APC1Q8 , Ubi-GFP/ TM6B (recombinant generated for this study), FRT82B, Act-Gal4, UAS-CD8-
hPARP-Venus (recombinant generated for this study from Act-Gal4, UAS-mCD8-hPARP-Venus 
[1, 2] and FRT82B), pSwitchall  (Recominant generated from pSwitchAMP  and pSwitchPC [3], 
previously described [1], hs-FLP, UAS-GFP-nls, Tub-Gal4;; FRT82B, Tub-Gal80 / TM6B, w; UAS-
DIAP1/Cyo KrGal4, UAS-GFP; TM2/ TM6, Df YFP ([4] P. Meier), UAS-Puc14C (E. Martin-Blanco 
[5]), UAS-BskDN (E. Martin-Blanco [6]), Bantam-GFP / CyO (S. Cohen [7]), diap1-LacZ, FRT82B, 
Ubi-RFP-nls (Recombinant generated for this study from LacZ-diap1j5C8 (Bloomington [8, 9]) and 
FRT82B, Ubi-RFP-nls), UAS-p35 ; TM2 / TM6B [10], FRT42D, hpo42-47/ CyO (I. Palacios [9]), 
FRT42D, ykiB5/ CyO (I. Palacios [8]), w; UAS-yki.GFP4-12-1 (Bloomington), w; FRT40A, exex1 / 
CyO-GFP; hs-FLP, MKRS / TM6B (J.P. Vincent [11]), UAS-myc (L.A. Baena-Lopez), UAS-
mycRNAi (VDRC), 10xSTAT-GFP (E. Bach [12]). The pLoser line (Figure S1C) was generated by 
recombination of P{Switch2}GSG2326 (Bloomington) and FRT82B, Ubi-RFP-nls. The integration 
site of P{Switch2}GSG2326 was mapped to chromosome 3R by inverse PCR 
(www.fruitfly.org/about/methods/inverse.pcr) and induction of expression in the midgut epithelium 
upon RU486 (mifepristone) feeding was validated with UAS-CD8-mGFP (Figure S1D). 
 
Antibodies: 

Mouse anti-Delta (DSHB, C594.9B) 1/1000, mouse anti-Prospero (DSHB, MR1A) 1/50, chicken 
anti-GFP (Abcam, ab13970) 1/500, rabbit or mouse anti-Cleaved human PARP (Abcam ab2317, 
1/100 and Abcam ab110315, 1/500 respectively), rabbit anti-pJNK pTPpY (Promega V793B) 
1/500, chicken anti-β-galactosidase (Abcam ab9361) 1/500 and rabbit anti-phospho Histone H3 

Ser10 (Cell Signaling 9701) 1/1000. Secondary antibodies used were coupled to Alexa488, 
Alexa555 or Alexa633 or Cy5 (Molecular Probes). Nuclei were counterstained with DAPI or 
Hoechst 33342. 

 

Generation of mitotic clones 

For clone generation, single stem cell-derived clones were generated by mitotic recombination, 
using the FLP/FRT system [13]. One to two days after eclosion, fertilized female flies were heat-
shocked in a water bath at 37°C for 10 minutes and then reared at 25°C. Clones were induced 
sparsely to minimize clone fusion, except for Figure 6A, where flies were heat-shocked in a water 



	

bath at 37°C for 30 minutes, with the intention of generating large clones. Flies were aged up to a 
maximum of 20 days ACI, to avoid ageing effects, which disrupt tissue homeostasis.  
	
Confocal Acquisition and image analysis 

Samples were imaged with Leica SP5 inverted or Leica SP8 upright confocal microscopes, using 
a 40x 1.3 NA PL Apo or 40x/1.3 HC PL Apo CS2 Oil objective respectively. All images were taken 
as z-stacks of 1μm sections in the posterior midgut region immediately anterior to the hindgut 
(these corresponds to the regions P4 in [14] or region R5 in [15]. Image processing, analysis and 
3D reconstruction were done with Volocity (Perkin Elmer, version 6.3) and Photoshop (Adobe 
version CS6).  
 

Cell counting  

All quantifications were done throughout the volume of 3D reconstructions of z-stacks using 
Volocity (Perkin Elmer, version 6.3). Quantifications of cell numbers were done manually. Clone 
sizes were calculated as the number of DAPI positive cells per clone in the 3D volume. To count 
cells around clones (“near” in Figure 1H) we counted all cells surrounding a clone within two cell 
diameters in the 3D volume. To characterize cells not adjacent to clones (“far” in Figure 1FH, we 
counted cells that were not in within two cell diameters of a clone or at the edge of the image. For 
quantification of WT clones in the absence of tumors (Figure 5F and 5G, right graph) we only 

included samples in which inhibition of JNK signaling had efficiently reduced tumor growth.  
 

Statistical tests 

Statistical analyses were done using Prism (GraphPad, version 6.0 for Mac OS X). P-values were 
determined using the non-parametric Mann-Whitney test throughout, except for Figures 2D, 4I-J 
where a Fisher’s exact contingency test or t test was used respectively. 
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