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Abstract

We derive a multiscale generalisation of the Bakrnymery criterion for a measure to sat-
isfy a Log-Sobolev inequality. Our criterion relies on the control of an associated PDE well
known in renormalisation theory: the Polchinski equation. It implies the usual Bakrnymery
criterion, but we show that it remains effective for measures which are far from log-concave.
Indeed, using our criterion, we prove that the massive continuum sine-Gordon model with
B < 67 satisfies asymptotically optimal Log-Sobolev inequalities for Glauber and Kawasaki
dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity
structures, but our results are independent of this theory.

1 Introduction and results

1.1. Introduction. Log-Sobolev inequalities are strong inequalities with numerous general con-
sequences, including concentration of measure, relaxation and hypercontractivity of stochastic
dynamics, transport inequalities, and others. See [4,47] for a review. They originate from Quan-
tum Field Theory where Log-Sobolev inequalities were first derived for Gaussian measures as a
tool to study non-Gaussian measures in infinite dimensions (Euclidean Quantum Field Theories,
EQFTs) [26,32,55]. As a consequence of a general new approach, we prove Log-Sobolev inequali-
ties for the massive sine-Gordon model. This is a fundamental example of a non-Gaussian EQFT
in two dimensions and its stochastic dynamics is a prototypical example of a singular SPDE.

As Log-Sobolev inequalities provide strong control on the measures they apply to, proving
them remains in general a difficult problem even if the equilibrium correlation functions are well
understood. This applies especially to strongly correlated measures. For log-concave measures (or
measures satisfying a curvature dimension condition), the fundamental Bakryf]:lmery criterion
provides a simple and often quite sharp sufficient condition [2,3]. In its proof, a Log-Sobolev
inequality for a Markov semigroup is derived by integration of local Log-Sobolev inequalities for
the same Markov semigroup. Our method also uses local Log-Sobolev inequalities, but for a
semigroup that is different from the one for which the Log-Sobolev inequality is proven. Namely
our method uses the time-dependent semigroup driven by the Polchinski equation, a version of the
renormalisation semigroup. Unlike the original semigroup, this Polchinski semigroup provides a
notion of scale and hence we effectively obtain a multiscale version of the Bakryf]é)mery criterion.

The simplest version of our new Polchinski equation criterion for the Log-Sobolev inequality is
stated in Section 1.2. In Example 1.3, we illustrate that it implies the Bakryf]é]mery criterion. As
an application of the new criterion, demonstrating that it remains effective for measures that are
far from log-concave, we prove the following theorem for the continuum sine-Gordon model. For
a precise statement of this result and related discussion, we refer to Section 1.3. In Section 1.4,
we discussed further directions and related results.

Theorem 1.1. The continuum massive sine-Gordon model with 3 < 6 satisfies asymptotically
optimal Log-Sobolev inequalities for Glauber and Kawasaki dynamics (under suitable conditions).

Throughout this paper, we make the assumption that all functions considered are Borel mea-
surable and that all functions to which derivatives are applied are continuously differentiable of
the required order.
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1.2. Polchinski equation and Log-Sobolev inequality. In this section we state the simplest
version of our new criterion for a probability measure to satisfy a Log-Sobolev inequality.

Given a linear space X C RY with the induced inner product (+,+), a symmetric matrix A that
acts positive definitely on X, and a potential V) : X — R, we consider the probability measure
1y with expectation

(1.1) B, F o / e~ 3(6A)-V0(0) F(¢)dc.
X

We call the set A = {1,..., N} the index space and the space X the field space; see also Figure 1.1.
Let Q; = e *4/2 be the heat semigroup associated with A (acting on elements ¢ € X i.e., functions
¢ : A — R on the index space), set

t
(1.2) Cy=Q? =e 4, C, = / Cds,
0

and denote by E¢, the expectation of the Gaussian measure with covariance Cs. For t > s > 0,
we define the renormalised potential V;, the renormalisation semigroup Ps; (acting on functions
F : X — R on the field space), and the renormalised measure v by

(1.3) e~ Vilp) — Ec,t(e—Vo(WrC))’
(1.4) P, F(p) = " Eq, c,(e” ¥ IF(p + ),
(15) EVtF = IDEOOF(O) = evw(O)ECoo—Ct (e_Vt(C)F(C))a

where ¢ € X, the expectation E¢, applies to ¢, and it is natural to define E, F = F(0).
Essentially equivalently to (1.3), V4 solves the Polchinski equation; see (1.10) below.

In what follows, we will impose the following ergodicity assumption on the semigroup P: For
all bounded smooth functions F': X - R and ¢g: R — R,

(1.6) E,,g(PoF) — g(E, F) ast— oo.

Like the ergodicity assumption in the Bakryf]:lmery theory (see [1,4]), this assumption is quali-
tative and easily seen to be satisfied in all examples of interest.

The following theorem bounds the Log-Sobolev constant of the measure vy. For its statement,
recall that the relative entropy of F': X — R, with respect to vy is given by

(1.7) Ent,, (F) =E,,®(F) — ®(E,, F), O(x) = zlogx,

where 0log 0 = 0. We write V for the gradient on X and (VF)? = (VF,VF); thus in particular

it X =RY then (VF)? = 30, (45)2.

Theorem 1.2. In the set-up above, assume (1.6), let X > 0 be the smallest eigenvalue of A,
suppose there are real numbers fi; (possibly negative) such that for all t > 0, as quadratic forms
on X,

(1.8) Q¢ Hess Vi(¢)Qy > 1 id, where Q¢ = e_tA/2,

and define py = fg fts ds. Then vg satisfies the Log-Sobolev inequality

(19) EntV() (F) § ,‘?/I[’nyo(V\/F)Z7 ’]}-/ = / 67)‘1572/“ dt’
0

provided the integral is finite.
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Figure 1.1. The heat semigroup Q: acts on the index space A = {1,..., N}, i.e., ‘horizontally.” In our primary applications,
the index space A is identified with a finite approximation to Z¢ or R% and A is the Laplacian on A. The original semigroup
with Dirichlet form E,, (VF)? acts on the field space X C RA. Tt acts ‘vertically’ in the sense that the principal part of its
generator is the standard Laplacian on X, i.e., Ajq in the notation (1.11). The Polchinski renormalisation semigroup Ps ¢
also acts on field space X, but it acts ‘diagonally’ in the sense that the principal part of its generator is time dependent and
given in terms of the heat kernel as AQ% (see (2.8)).

The proof of Theorem 1.2, given in Section 2, shares significant elements with the celebrated
Bakrny,)mery argument, but with the crucial difference that it uses the time-dependent Polchinski
semigroup (1.4) rather than the original semigroup, associated with the Dirichlet form E,,(VF)?,
to decompose the relative entropy. The above version of our criterion relies on the particular
decomposition of the matrix Css = A~ in terms of the heat semigroup C; = e *4. In Section 2,
we also consider variations of the criterion that apply to other decompositions.

To apply the theorem, the main task is to verify (1.8). It is not difficult to see that the
renormalised potential V; solves the Polchinski equation (see Section 1.4 for its history)

1 1
(1.10) Vi =50 Vi— S (V).
where we use the notation (and with w = id if the argument w is omitted)

(1.11) (0, 0)w = > _wiguvj, (VF)2, = (VFE,VF)y, AyF=(V,V),F.
i,J

In general, verifying (1.8) is a challenging problem because the Polchinski equation is a non-linear
PDE in N dimensions, where in the examples of main interest N — oo. Nonetheless, we believe
that the required estimates are true in many relevant examples, including spin systems near the
critical point. In particular, in Section 3, we verify the condition for the continuum sine-Gordon
model by analysing the Polchinski equation.

To illustrate our new criterion, we note briefly that (1.8) is not hard to verify for log-concave
measures, in which case we recover the Bakryf]i')mery criterion as a special case.

Example 1.3 (Bakryf]é]mery criterion). Consider a probability measure vy with expectation

(1.12) E,,F o / e HOP¢) de,
RN

where Hess H > Aid holds uniformly for some A > 0. Equivalently, 1y can be written as in (1.1):
1
(1.13) H(() = §(C,A§) + W (Q), with A = Aid and Vj convex.

It follows that V; is convex for all ¢ > 0 (see, e.g., [10, Theorem 4.3]). Hence p; > 0 for all ¢ and
thus v > A in (1.9). This is the Bakry-Emery criterion.

We remark that an alternative proof that V; remains convex for ¢t > 0 can be deduced from the
maximum principle for symmetric tensors [37, Theorem 9.1]. This argument is in fact analogous
to the proof that positive Ricci curvature remains positive under the Ricci flow in [37].



Theorem 1.2 can be considered a multiscale version of the Bakry—Emery criterion in which the
global convexity assumption inf, Hess V(¢) > 0, which is equivalent to inf;>g inf, Hess Vi () > 0,
is replaced by the assumption (1.8) on the Hessians of the effective potential V; at each scale t. We
emphasise that these Hessians are not required be positive definite; and in fact in the example of
the continuum sine-Gordon model which we consider in Section 1.3 below, the effective potential
remains non-convex at all scales t > 0. We also emphasise that the application of the heat kernel
Q: to Hess Vi(p) in (1.8) has an important smoothing effect. In particular, for the sine-Gordon
model, we will see that this smoothing effect is essential when 5 > 4.

Remark 1.4. We have defined the renormalised potential V; as the convolution solution (1.3)
to the Polchinski equation (1.10). Since equivalently Z; = e~ v+ solves the heat equation 9;7; =
%Ac-t Zy, the Polchinski equation has a unique solution under weak conditions. Then one may
equivalently solve (1.10) instead of (1.3); for an example for which this is useful, see Section 3.

Remark 1.5. We remark that with the time-dependent metric g; = e**4 on X and V,, and A,,
defined as in Riemannian geometry, i.e., Vg, = g, 1V and Ay, the Laplace-Beltrami operator, one
has A, = Ay, and (VF)%Q = (VgtF)fh. The condition (1.8) then becomes Hessy, Vi > fi1g;.

1.3. Continuum sine-Gordon model. In Section 3, we apply Theorem 1.2 to prove asymp-
totically sharp Log-Sobolev inequalities for Glauber and Kawasaki dynamics of the massive con-
tinuum sine-Gordon model with § < 6w. The massive sine-Gordon model is a fundamental
example of a two-dimensional interacting Euclidean Quantum Field Theory, i.e., a non-Gaussian
probability measure on D’(R?) sometimes formally written as

(1.14) %exp {_ /R (;go(—Acp) + %m24p(m)2 22 : cos(v/Be()) :) da:] [T dea)-

z€ER2

Here A is the Laplacian on R?, and the notation : denotes Wick ordering, i.e., that z is formally
multiplied by a divergent constant (making the microscopic potential extremely non-convex); see
(1.15)-(1.16) below for the precise definition that we will use. The Glauber dynamics of the sine-
Gordon model (also called dynamical sine-Gordon model) can be realised as a singular SPDE that
was recently constructed using the theory of regularity structures. References on the sine-Gordon
model are provided further below.

For clarity, we consider the model in a lattice approximation of a two-dimensional torus, and
prove estimates uniformly in the lattice spacing and in the size of the torus. Therefore, from
now on, let d = 2, let Q7 = LT? be the torus of side length L > 0, and let Qe =QrN eZ% be
its lattice approximation with mesh size € > 0 (where we always assume L is a multiple of ).
The continuum sine-Gordon model v, 7, in the lattice approximation is the probability measure
on R%.L with density proportional to e~ #=.2(#) where H, 1, is defined for ¢ : Q. ;, — R by

(1.15) Hosl9) == 3 (Goal-ap)s + guie? + 22 cos(ign) ).

$6957L
with divergent coupling constant
(1.16) ze = ze PIAT

and where (A®g), = 2 > y~z(Py — o) is the discretised Laplacian, i.e., the sum y ~ z is over
nearest neighbour vertices y of = in eZ¢. Under suitable assumptions, this normalisation ensures
that, for 0 < 8 < 8w, the measures v, 1, converge weakly to a non-Gaussian probability measure
on D'(R?) as e — 0 and L — oo; see the discussion after the statement of the theorems below.
Our first theorem is a uniform Log-Sobolev inequality for the Glauber dynamics of the massive
sine-Gordon measure v, (with dimension always d = 2). The Glauber Dirichlet form is given
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by

1 aF \*
1.17 D, (F)=— E, o )
(117 uh=3 ¥ B (57,)
TClle, L
corresponding to the system of SDEs
0 .
(1.18) 5% = (A% )e + m2oS + e P1A722./Bsin(v/BeS) + V2WE,

where W¢ is space-time white noise (with discretised space), i.e., the (W2 )zeq. ;, are independent
Brownian motions with quadratic variation (WZ)(t) = t/&2.

Theorem 1.6. Fiz < 6w, and let L > 0, m > 0, and z € R. Then there is v(f,z,m,L) > 0
independent of € > 0 such that, for all F > 0,

2
(1.19) Ent,_, (F) < WDE,L(\/F).

Moreover, there is g > 0 such that if Lm > 1 and |z|m_2+5/4” < 03, then
(1.20) Y(B,2,m, L) = m? — Og(m?/47|2)),
where the constant Og depends on B only (and is thus uniform in L > 1/m).

Our next theorem is a (conservative) Kawasaki version of the previous result. We thus consider
0 . o . . _
the measure Vel obtained by constraining the mean spin of the measure v, 1, to erQE,L pr =0,

i.e., 2, is supported on {¢ : > ¢, = 0}. (The same proof also works for arbitrary nonzero
mean of ¢.) The Dirichlet form for Kawasaki dynamics with invariant measure l/g 7 is defined by

(5 55)
Opy 8307;
Theorem 1.7. Fiz 8 < 67, and let L > 0, m > 0, and z € R. Then there is v°(B3, z,m, L) > 0
independent of € > 0 such that, for all F > 0,

0
VE,L

(1.21) DY (F) = E% >

CUNZ/EQE,L

2 0
(1.22) Bntyp (F) < S5,y De(VE).

Moreover, there is 85 > 0 such that if Lm > 1 and |z|m=2+8/4™ L 55, then

(1.23) (B, z,m,L) > (2;;)2 <m2 + (2L7T2)2 - Og(m6/4”\z])) 7

where the constant Og depends on 3 only (and is thus uniform in L > 1/m).

For z = 0, the sine-Gordon model degenerates simply to the continuum Gaussian free field
with covariance (—A+m?)~! as e | 0, for which the Glauber Log-Sobolev constant is m? (by [32]
or the Bakryf]é)mery criterion), and similarly in the Kawasaki case. Note that, in this scaling in
which the convexity of the Gaussian measure is of order 1, the best lower bound on the Hessian
of the interaction term Vj is of order —e~#/47 if z # 0 and thus tends to —oo as € — 0. Thus the
measure is far out of the scope of the applicability of the Bakryf]*jmery criterion if z # 0. Our
proof of the above theorems via Theorem 1.2 relies on the smoothing of the effective potential V;
along the flow of the Polchinski equation.

The Glauber dynamics of the sine-Gordon model is considered in [16,36]. Using the theory of
regularity structures, it is shown in these references that versions of (1.18) that are regularised in



space-time instead of space only converge as € — 0 pathwise in a space of distributions on a short
noise-dependent time interval. In our setting, it is essential that the noise is white in time for the
regularised dynamics to define a Markov process. The question of regularisation in space rather
than space-time was considered for the closely related problems of the subcritical continuum ¢?*
model and KPZ equation in [34,35,66] as well as in [23,51,54]. Presumably similar arguments
would apply also to the sine-Gordon model, but have not been carried out.

Finally, we provide some references on the continuum sine-Gordon model. For 0 < § < 8, at
least when the domain is a torus and z # 0 is small and m? > 0, it is known that Ve, — v weakly,
where v is a non-Gaussian measure on D’(R?) with a precise description in terms of renormalised
expansions; see [28,29], [9,56], [14], and [11,20,21] for different approaches. This result is simplest
for § < 4w, when in finite volume the continuum sine-Gordon measure is absolutely continuous
with respect to the Gaussian free field. For 47 < < 8, there is an infinite sequence of thresholds
at § = 8r(1 —1/2n), n = 1,2,..., at which the partition function (but not the normalised
probability measure) acquires divergent contributions; see [9] for further discussion. The physical
meaning of these divergences remains debated [27]. The sine-Gordon model satisfies a very
interesting duality with the massive Thirring model, the Coleman correspondence or Bosonization
[17]. For restricted values of 3, this correspondence has been established in finite volume or with
a mass term [8,18,29], but in general its proof remains an open problem, most importantly in
the formally massless case m? = 0. In particular, under this correspondence, for the special
value 8 = 4, the correlations functions of the sine-Gordon model are equivalent to those of free
fermions. In general, an important question for the sine-Gordon model that has remained open
is the formally massless case L — oo and m? — 0, in which case correlations decay polynomially
if z=0. For z # 0, it is conjectured that the equilibrium correlation functions have exponential
decay, for any 8 < 8. Closely related results for small 5 were obtained in [13,64]. It would be
very interesting to understand the dynamical behaviour in this regime.

Our result extends up to the second threshold 8 < 67 and makes use of the approach of [14].
It remains a very interesting problem to extend our results to the optimal regime 5 < 87. Recent
progress in the direction of extending the method of [14] includes [43]. Other recent results for
the sine-Gordon model include [40]. For a one-dimensional analogue of the sine-Gordon model, a
recent construction using martingales was given in [44].

1.4. More discussion of our approach and of further directions. Our approach to the
Log-Sobolev inequality involves the Polchinski equation (1.10). The Polchinski equation is a
continuous version of Wilson’s renormalisation group (which typically proceeds in discrete steps)
and variations of it go back to [62,63], while the continuous point of view was first systematically
used by Polchinski [59]. See [42] for a review of its history as well as for an account of the important
role it has played in recent advances in Perturbative Quantum Field Theory. The relation of the
Polchinski equation to the Mayer expansion and its iterated versions was investigated in [14] on
which we rely for the sine-Gordon model. Ideas related to the Polchinski equation were also used
recently in [5] for a simple construction of the continuum ¢* model in d = 2,3. We also mention
that approaches involving aspects of renormalisation have been used for a long time to study
dynamics of spin systems, e.g., in the form of block dynamics [45,50,65] and more recently in the
two-scale approach [22,33,53,57]. Our approach involves infinitely many scales.

The regime of the continuum limit considered in Section 1.3 is known as the ultraviolet problem
in physics, which for the two-dimensional sine-Gordon model is well-posed for 5 < 8. The long-
distance behaviour is predicted to be independent of €. For 8 < 8w, it can studied as a property
of the continuum limit € — 0, but it makes sense for all 5 > 0 when the regularisation ¢ is fixed
(lattice problem). For 5 > . (where the curve f.(z) passes through 87 at z = 0, see [24,25]) and
small z and m? = 0, the scaling limit is known to be Gaussian free field in a suitable sense, for
the model defined on the torus [19,25]. This is called the infrared problem in physics. However,
we emphasise that, while the ultraviolet problem can be translated to a lattice problem, as we do,
the scaling of the infrared problem is more delicate than that of the ultraviolet problem. For the



sine-Gordon model, in the ultraviolet limit, the microscopic coupling constant is very small, of
order e27P/4™ « 1. For the infrared problem, the microscopic coupling constant is of order 1, and
unlikely field configurations play a more important role in understanding the measure (large field
problem); see [19,24,25]. We studied the spectral gap for the hierarchical version of the infrared
problem in [6]. Using Theorem 2.6 and the estimates proved in [6], the results for the spectral
gap stated in [6] can be improved to results about the Log-Sobolev constant; see Example 2.7.

The next natural class of models that would be interesting to apply Theorem 1.2 to is the ¢*
model. The problem analogous of the one considered for the sine-Gordon model would be the
continuum ¢* model on R? where d = 2, 3 with sufficiently large mass (ultraviolet problem). On
a finite two-dimensional torus, a spectral gap result for the continuum ¢* model has been shown
in [61]. We stress again that the Polchinski equation has also been used in [5] in the construction
of the continuum ¢* model on a torus in d = 2,3. As in the case of the sine-Gordon model, the
infrared problem appears more difficult than the ultraviolet problem. For the latter we expect
that the Log-Sobolev constant of the lattice ¢* model or the Ising model in d = 4 (respectively
d > 4) scales as u(—logu)® (respectively u) as the critical point is approached with distance
w | 0. Again, for the hierarchical p* model, we proved the analogous statement for the spectral
gap in [6] and the results of this paper can again be used to improve the latter result to prove
also an analogous Log-Sobolev inequality; again see Example 2.7.

In a different direction, the Bakrny’)mery theory has a well-known formulation in the context
of manifolds (and beyond). The Polchinski equation is closely related to the Gaussian convolution
semigroup E¢, on X and thus to the linear structure of X. However with the disintegration of
the Gaussian measure taking the role of the reverse Ricci flow, there is an interesting resemblence
of our construction with those in [48,52,58]; see also Remark 1.5.

Finally, we remark that Log-Sobolev inequalities are a very useful tool to derive mixing results
in general, see, e.g., [49]. It would be very interesting to derive such results in our context.

2 Log-Sobolev inequality and the Polchinski equation

In this section we prove Theorem 1.2 and variations of this result that apply in slightly different
set-ups. The proofs share many elements with the Bakry—Emery argument which we will review.

2.1. The renormalisation semigroup. Let ¢ € [0, 00| — C; be a function of positive semidef-
inite matrices on RY i 1ncreasmg continuously as quadratic forms to a matrix C. More precisely,
we assume that C; = fo C ds for all t, where t > C’t is a bounded function Wlth values in the
space of positive semidefinite matrices that is the derivative of C; except at isolated points. As
before, we denote by E¢, the expectation of the possibly degenerate Gaussian measure with
covariance Cy. We consider a probability measure vy with expectation

(2.1) E,, F oc Ec, (e” O F(()),

for a potential Vy : RN — R. For ¢t > s > 0, we recall the definitions

(2.2) e V1) = g, (e7 V040,
(2.3) Py F(p) = "D Ec, ¢ (7" #TIF (o + (),
(2.4) E,, F = P oo F(0) = "= Ec__c,(e " OF(()),

where the expectations again apply to (. We impose the following continuity assumption: For all
bounded smooth functions F': X — R and ¢ : R — R,

(2.5) E,,g(PoF) 1is continuous in ¢t € [0, +00].

The assumption (2.5) reduces to (1.6) when C} is differentiable in ¢, as in Section 1.2, and it is
again clear in all examples of practical interest.



The following proposition collects some properties of the above definitions; we postpone its
elementary proof to Section 2.4.

Proposition 2.1. Let (Cy) be as above, let Vo € C?, and assume (2.5). Then for everyt such that
Cy is differentiable the renormalised potential V defined in (1.3) satisfies the Polchinski equation

1 1
(2.6) oV = iAC}Vt - §(V‘/§f)2¢t-

The operators (Ps)s<t form a time-dependent Markov semigroup with generators (L), in the
sense that P,y = id and PP, = Py, for all s <r < t, that Ps;F' >0 if F > 0 and Ps;1 =1,
and that for all t at which Cy is differentiable (respectively s at which Cs is differentiable),

(27) ;PSJF = LtPS,tFa _885P87tF = Ps,thF7 (8 g t),

for all smooth functions F', where Ly acts on a smooth function F' by
1
(2.8) LF = §AC‘tF — (VV4, VF)g,.

The measures vy evolve dual to (Psy) in the sense that

B,
(2.9) E,PyF=E,F (s<t), —5BE,F=E,LF

Finally, for any smooth function F with values in a compact subset of (0,00) and ®(z) = xlogzx,
(2.10) E,, ®(Py+F) is continuous in t € [0, +00].

Remark 2.2. The Polchinski semigroup operates from the right, i.e., Ps; = P, ; P, for s <r < t.
Thus it acts on probability densities relative to v4: if ug = F dvg is a probability measure then
p = Py F'dyy is again a probability measure. For a time-independent semigroup Ts; = T;_, that
is reversible with respect to the measure vy (as, for example, the original semigroup associated to
the Dirichlet form), one has the dual point of view that T" describes the evolution of an observable:

(2.11) B, = [ G@F) dn = [(GO)F dy = 5,,(TG).

Such a dual semigroup can be realised in terms of a Markov process (¢;) as T F'(¢) = Epo—o F'(¢1).
Since the Polchinski semigroup is not reversible and time-dependent, this interpretation does not
apply to the Polchinski semigroup. Instead, the Polchinski semigroup Ps; can be realised in terms
of an SDE that starts at time ¢ and runs time in the negative direction from ¢ to s. Indeed, set
Yr = Pr—r Where ¢ satisfies

(2.12) dpy = —Ci_p VVi_o(@p)dr +1/Cy_pdB,,  0<r <t

Since G(r,¢) = Py F(p) satisfies 0,G + L;—,G = 0 for s < r < t by (2.7), It6’s formula and
(2.12) imply that G(r, ¢,) = Ps—F(¢i—r) is a martingale for r € [s,t]. This implies

(2.13) P F(p) = Ecpz:@F(Sos)-

Thus if ¢, is distributed according to v; by the above backward in time evolution gy is distributed
according to vs for s < t. Our interpretation of this is that, while the renormalised measures v
are supported on increasing smooth (in the index space) configurations as ¢ grows, the backward
evolution restores the small scale fluctuations of 1.

For later use we also record the following useful relations for the derivatives of V;; we will not
use these in Section 2. The formulas follow immediately by differentiating (2.2) using (2.3).

Proposition 2.3. Forall f € X andt > s >0,
(214) (fa VVYt) = Ps,t(fa VV:;),
(2.15) (f,Hess Vi f) = Ps;(f, Hess Vs f) — |:Ps,t((fu VVe)?) = (Poy(f, VVs))ﬂ'
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2.2. Relative entropy, Markov semigroups, and the Bakry—Emery argument. In a
time-dependent generalisation, we now review the decomposition of the relative entropy in terms
of a semigroup that underlies the Bakry—Emery argument. By approximation (see, e.g., [60,
Theorem 3.1.13]), to prove a Log-Sobolev inequality, it suffices to consider smooth functions
F : X — R with values in a compact subset of (0,00), which we will do from now on.

We consider a curve of probability measures (v;);>0 and a corresponding dual time-dependent
Markov semigroup (Ps;) with generators (L;) as in Proposition 2.1. Namely, we assume that
(2.7) and (2.9) hold, that L; is of the form (2.8) for some positive semidefinite matrices C; and
functions Vt (not necessarily satisfying (2.6)), and also that (2.10) holds. Denoting F} = Py F
and F, = atFt, using first (2.9) and then (2.8), it is then elementary to see that

0

- o) = B (Li(o() - ¥(R))

1 .
~E, ((I)’(Ft)LtFt +®"(F) 3 (VE)E, - @’(Ft)Ft)

1
(2.16) — 35 (R, )
Integrating this relation using (2.10), with ®”(z) = 1/z, it follows that
1= (VP F)E oo )
(2.17) Enty, (F) = / Ey " Ct gy — 2/ E,,(V/Po F)2 di
2 0 POJF 0 ’ Ct

To be precise, recall that C; is differentiable except for at most countably many ¢. For all ¢
such that Cy is differentiable, the identity (2.16) holds and implies that the continuous function
t — E,, ®(F};) is differentiable at ¢ with nonpositive derivative. In particular, this implies that
E,, ®(F}) is decreasing, which justifies the use of the fundamental theorem of calculus and together
with (2.5) with ¢ = 400 for the limit gives (2.17).

To obtain a Log-Sobolev inequality, the right-hand side of (2.17) must be bounded by the
Dirichlet form with respect to the measure 5. The same argument with ®(z) = 2? would give
a bound on the variance rather than the entropy and correspondingly a spectral gap inequality;
the required bound is easier to obtain in this case.

For measures that are log-concave (or, more generally, ones that satisfy a curvature dimension
condition; see [4]), sharp estimates have been obtained by celebrated arguments of Lichnerowicz
(for the spectral gap) and of Bakrnymery. We review the latter briefly now.

Example 2.4 (Bakry—Emery [2,3]). Assume the measure v = v has expectation given by (1.12).
Let vy = v for all ¢ > 0, and define the semigroup T ; = T;_; with generator

(2.18) LF = AF — (VH,VF).

This semigroup leaves 1 invariant. Bakrnymery showed, for all F' > 0,

By, (VV/T,F)? = —=E,, (T,F (| Hess log Ty F|3 + (V log T, F, (Hess H)V log T, F)))
(2.19) < —%Eyo (TLF(V log T,F, (Hess H)V log TyF))).
If Hess H(¢) > Aid > 0 as quadratic forms, uniformly in ¢ € R it follows that
(220)  DELVVTF? < DB, (VWIFP, B, (VVIE) < e B, (VW)
Substituting this into (2.17) yields the Log-Sobolev inequality

(2.21) Ent,, (F) :4/ w(VVTF)?dt < TR, (VVF)2.
0

In fact, (2.19) follows as in Lemma 2.8 below.



2.3. Variations of Theorem 1.2. The following theorem generalises Theorem 1.2 by not
assuming that C, is given by the heat kernel.

Theorem 2.5. Let C"t and V; be as in Section 2.1, assume that C’t is differentiable for all t, and
that (2.5) holds. Suppose there are Ay (allowed to be negative) such that

) ) 1. ..
(2.22) Cy Hess Vi(¢)Ct — §Ct > MCy forallt >0 and all p € X,
and define
t . 1 . o]
(2.23) At —/ As ds, - = \Co|/ e s ds
0 v 0

where |CO| is the largest eigenvalue of Co. Then vy satisfies the Log-Sobolev inequality

(2.24) Ent,, (F) < ~E,,(VVF)2.

2
Y

The proof of the theorem is given in Section 2.5. When C, is given by the heat kernel, as in
the context of Theorem 1.2, the term C} in (2.22) can be eliminated explicitly and we can thus
deduce Theorem 1.2 as follows.

Proof of Theorem 1.2. Let Q; = e *4/2 and C,=e 4 = Qf. Then C; = —AC, = —Q+AQ¢ and
the left-hand side of (2.22) is equal to

1
(225) Qt Qt Hess ‘/t(QO)Qt + §A Qt-
Since by assumption A > A and Q; Hess V;Q¢ > iz we can choose A= %)\ + f1; to get
1 .
(2.26) 5A + Q¢ Hess Vi(¢)Qr > Aid,

which with Q7 = C; implies (2.22). The claim (1.9) is thus implied by Theorem 2.5. O

The next theorem provides a variation of Theorem 2.5 that does not rely on differentiability
or even continuity of C in ¢, and can therefore be applied with more general covariance decompo-
sitions. The price is the less symmetric condition (2.27). However, this condition can for example
be applied to discrete decompositions Co, = Cy + C1 + - -+ by setting Cy = Zj 1(jj+1)(8)Cj. In
particular, this applies to the hierarchical spin models that we studied in [6]; see Example 2.7.

Theorem 2.6. Let C; and V; be as in Section 2.1, and let Xy C X be the image of the matriz
Coo — Cy. Assume that (2.5) holds and that there are Ay (allowed to be negative) such that

17 . .
(2.27) 5 [C’t Hess Vi(¢) + Hess Vt(go)Ct} > Mid  for allt >0 and all ¢ € Xy,
and define
t 1 o] .
(2.28) A\t = / A dt, —= / e 2|0y ds
0 v 0

where |Cy| is the largest eigenvalue of Cy. Then vy satisfies the Log-Sobolev inequality (2.24).

Again the proof is given in Section 2.5.
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Example 2.7 (Hierarchical models). Let C; = p;Q; be the decomposition of the hierarchi-
cal Green function as in [6, Section 2.1] (where we here write p; instead of \;) and set Cy =
Zj 1(,j+1)(#)C; and Qr = Z]‘ 1(j,j+1)(#)@;. Using the structure of the hierarchical decomposition,
for ¢ € X;, the matrix Hess Vi(p) is block diagonal with respect to scale-j blocks (see [6, Sec-
tion 1.3]) where ¢ € (j,7 + 1] and constant on each such block. This means that Hess V;(y)
commutes with Q; and by the hierarchical structure thus with Cy. In particular, for p € Xy,

(2.29) Cl/ Hess Vi (¢ )C/ > \id

implies (2.27). For hierarchical versions of the four-dimensional lattice |p|* model in the ap-
proach of the critical point, and for the two-dimensional lattice sine-Gordon model in the rough
(Kosterlitz-Thouless) phase, we established the estimate (2.29) for integer ¢ (and appropriate ;)
in [6]. By the same methods, one can extend those estimates to noninteger ¢ with —A\; = O(=);)
for t € (4,7 + 1]. Using Theorem 2.6 instead of [6, Theorem 2.1], the theorems for the spectral
gap in [6] can thus be extended to analogous ones for the Log-Sobolev constant.

Further variations of the conditions (2.22) and (2.27) for the Log-Sobolev inequality are pos-
sible and might be useful in other applications, but we do not investigate these here.

2.4. Proof of Proposition 2.1. We start with the proof of Proposition 2.1. This is a straight-
forward computation from the definitions.

Proof of Proposition 2.1. Let Zi(p) = Ec,e”"0#+t0). By a well-known computation (see, e.g.,
[7, Section 2]), it follows that the Gaussian convolution acts as the heat semigroup with time-
dependent generator %Ac-t, i.e., if Zg is C? in ¢ so is Z; for any t > 0, that Z;(p) > 0 for any ¢
and ¢, and that for any ¢t > 0 such that C} is differentiable,

0

(2.30) o

1 _
7y = 5Actzt, Zo=e V0.
Therefore V; = — log Z; satisfies the Polchinski equation

o 27, N7 1
2.31 < __Zast 1
(2:31) gt = Zt 27, 2

e Ap eVt = fACtVt (vvt)gt.

That (Ps;) is a semigroup, i.e., that PP, = Ps; and P,; = id for any s < r < t, follows
immediately from the definition (1 4) and the convolution property of Gaussian measures, i.e.,
that the sum of two independent Gaussian vectors is Gaussian with covariance given by the sum
of the covariances (again see, e.g., [7, Section 2]). The Markov property is obvious. To verify that
its generator Ly is given by (2.8), set Fy(p) = Py F(p) = ") Eq, (e #+OF(p 4 ¢)). Then

0 ) vl
5= (atV{g)Ft—i-e 58 Ec, (e “VHOFR(-4¢))
) 1 v
(mvt)Ft—i-th2ACt(e VFt)
)
(atVt) ( Ae VO F+ 5 (th) Er+ A = (VVi, VF) ¢,
5Acﬁ — (VVi, VFy)g,
(2.32) = L;F,,

which is the second equality in (2.7). The third inequality in (2.7) follows analogously, and the
first inequality is clear from the fact that the Gaussian measure with covariance 0 is the Dirac
measure at 0.

11



The first equality in (2.9) holds by definition, and the second one is a direct computation from
the definition (1.3) and the fact that V satisfies (1.10):

0 0 1 1 1
— Bl = By (5 VO)F — 5 (B¢, Vi) F + 5(VVt)?jtF+ FBeEF = (VV, VE)q,)
1
(2.33) — By, (58¢,F — (VVi, VF)¢,) = By, LiF.

Finally, (2.10) follows from (2.5). Indeed, if F' takes values in a compact interval I C (0, c0),
then Py ,F' also takes values in I. The function ® is smooth on I and can be extended to a
bounded smooth function g on R such that g|; = ®|;. The claim now follows from (2.5). O

2.5. Proofs of Theorems 2.5-2.6. Theorems 2.5-2.6 can be proved in the same way as the

Bakry—Emery criterion with the crucial difference that the original semigroup is replaced by the
Polchinski semigroup, that the corresponding potentials depend on time, and that gradients are
taken in terms of a time-dependent quadratic form. We present the primary proofs along the
lines of [4]; see Remark 2.9 for alternative proofs using synchronous coupling as in [15].

Lemma 2.8. Let Ly, Py, Cy, Vi be as in Section 2.1. Then the following identity holds for any
t-independent positive definite matriz Q:
(2.34)

) 1 .
(Li—0,) (V/PorF)} = 2(V+/Po F, Hess VtCtV\/ngtF)Q—i—Z(ngtF)]Ctl/ ®(Hess log Py, F)Q"/?|3,

where |M|3 =3 | Mpy,|* denotes the squared Frobenius norm of a matriz M = (My,).

p.q |

Proof. Throughout the proof, we drop the fixed index ¢, i.e., write F' instead of Py F, and L for
L, and similarly for C; and V;. Then the left-hand side of (2.34) can be written as

(2.35) %

VF)2 VF)2
L( )Q_(VLF,VF)Q+( )QLF
2F F 2F?

To compute the three terms, we denote derivatives by subscripts i, j, k, [, and use the summation
convention for these subscripts. The first term then is

(2.36)
VF)2 . . - 4
where the last bracket can be expanded as
(2.37)
Fijull + F By By Fy - 2E, B F + Fp R Ey N FpR i F; 2V»(ijFl B FkFle)]
F F2 2?2 F3 “OF 2F2

The sum of the second and third terms in (2.35) is

(2.38)
_(VLEVF)q  (VE 0 1, Qu | =i = 2ViFij = 2VaeFFL | (Fy = 2ViFy) FiFy
F 2F?2 T g UM F 2F2
1. FFy FyiFy | FEFpE FyjFy  FiFyF
= _C.; 2V, J _ J J 2V J _
9 zkal |: ik I3 F + 22 + Z( r 22 )

By adding all three terms, we obtain that (2.35) equals

Vie L5 Fy
F

1.
(2.39) §Cz‘ijl

1. FuyF;  FgpFF; + FyFF,  FyE FF;
+4Ciij:l[ = e L L J].

F F? F3

12



Using that for any given indices 1, j, k, [,

(2.40) (log F)a = (%)k _

Fix  FiF}
F F2’

j= i
l Ia F27

(log F) . = (

|

equation (2.39) can be written as

ViiE5Fy

(241) Clekl Ia

1 .
+ 1 FCijQuilog F)ik(log F)j1-
Using that Q(ﬁ)j = F]/\/F for the first term, and that, for any symmetric matrix M,

CiijlMiijl:C’ilp/Q 111{2@1/2@1/2]\/[ Mj, fCl/QCl/z(MQl/Z) JMQY?) .

(2-42) = (01/2MQ1/2)pq(01/2MQ1/2);D(1

for the second term, (2.41) can therefore be written as
) 1 .
(2.43) 2(VVF,Hess VCVVF) g + ZF\Cl/Q(Hesslog F)Q'Y?3. O

Proof of Theorem 2.5. Lemma 2.8 with Q = C, implies
(244) (L5 = 85)(VV/PosF)% = 2(V /Py F, Hess V.C,V /Py F) ¢ — (VV/PosF)}
1 . .
+ Z(PO,SF)|C;/2(Hess log Py ,F)C/?)3.

By the assumption (2.22) and since the last term is positive, it follows that
(2.45) (Ls — 05)(V\/Po )}, > 20(V/PosF)2 .

Equivalently, 9(s) := e 2M+2A: P, [(V\ /PO,sF)% ] satisfies ¢'(s) < 0 for s < t. This implies

s

(246)  (V/PoF)2, = 0(t) < (0) = e N Ry, [(V\/F)éo} < |Cole M Py, [(vﬁ)ﬂ .

By (2.17), then (2.24) follows. O

Proof of Theorem 2.6. Lemma 2.8 with () = id implies

(2.47) (Lg — 05)(V\/PosF)? = 2(V\/Py F,Hess V,C;V /Py  F)

1 .
+ 5 (PosF)|CY/? (Hess log Py  F) 3.

By the assumption (2.27) and since the last term is positive, it follows that, on Xj,

(2.48) ) (V/Po o F VP, F)>.

Equivalently, pointwise on Xy, ¥(s) := 6_2/\t+2>‘5P37t [(V,/PO,SF)Q} satisfies ¥/(s) < 0 for s < t.
This implies, on Xy,

(249)  (Vy/PorF)2, < |CH(V/PoF)? = [Coltb(t) < [Celh(0) = [Chle Py [(vﬁ)Q].

Again by (2.17), using that v; is supported on X;, (2.24) follows. O

Remark 2.9. Using the representation (2.12)-(2.13) of the semigroup P;; in terms of a stochastic
process (that evolves backwards in time from t to s), one can alternatively prove the theorems
using synchronous coupling as in [15].
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3 Application to the continuum sine-Gordon model

In this section, we prove Theorems 1.6 and 1.7 by applying Theorem 1.2. While it is not necessary,
we find it clearest to rescale the continuum sine-Gordon model at scale € to a unit lattice problem.

3.1. Rescaling and heat kernel decomposition. Identifying ). ; with the unit lattice A =
%Q&L, the continuum sine-Gordon model v, 7, is equivalent to a spin system whose coupling
matrix is given by the nearest neighbour Laplacian on Z¢. We will thus drop the subscripts e, L
now, and write v for the measure of the form (1.1) with X = R” and

(3.1) A=-Ay+m?, Vo(p) =D 2> P/ cos(v/Be),

TEA

where A, is the standard unit lattice Laplacian acting on the discrete torus of side length L /e.
We emphasise that throughout this section Aj denotes the lattice Laplacian on A and not the
Laplacian on R* which we denoted ACt in the previous section. Note that ¢ is not rescaled. As

is natural in this normalisation, we normalise the Glauber Dirichlet form, for F : R® - R, by

(3.2) > Eu <§£>2

zeA
Note that in this normalisation the Log-Sobolev constant of the non-interacting (Gaussian) model
with z = 0 scales as e2m? (corresponding to the unit order Log-Sobolev constant m? > 0 in the
continuum scaling). Also note that the correlation length of the non-interacting model scales as
1/(me), making it natural to assume L > 1/m as in the statements of the theorems.

In the following, we will use Theorem 1.2 to prove the same scaling in ¢ for the Log-Sobolev
constant of the interacting model. To verify the assumptions of Theorem 1.2, we will prove the
following estimates on V; as defined in (1.3). We recall that Q; = e~*4/2 denotes the heat kernel
on the index space A.

Proposition 3.1. Let f < 6w, and L > 0, m > 0, and z € R. Then (1.6) holds, and for all
£>0,

(3.3) Q¢ Hess Vi(¢)Qr > 1 id,

where Ly = f(f [1s ds satisfies

(3.4) || <

with p* = p*(B, z,m, L) independent of € > 0. Moreover, there is dg > 0 such that if
(3.5) Lm>1, and |z|m 2/ L 6,

then the optimal bound satisfies i* = Opg(|z|m™2+8/4™) uniformly in L.

Indeed, Theorem 1.6 is an immediate consequence of these estimates and Theorem 1.2.

Proof of Theorem 1.6. The smallest eigenvalue of A is A = e2m?2. By (1.9) and (3.4), therefore

* *

1 00 . 00 62“ e2,u
(3.6) — = / e M=21 gy < e2H / e Mdt = — = 3>
v 0 0 A em

and Theorem 1.2 implies that 1 satisfies a Log-Sobolev inequality with constant . In the
continuum normalisation of the Dirichlet form (1.17), the sine-Gordon measure thus satisfies a
Log-Sobolev inequality with constant given by m2?e~2*". Moreover, if (3.5) holds, then m2?e=2*" =
m? + Og(mP/47|z)). O
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The proof of Theorem 1.7 for Kawasaki dynamics is almost the same as that of Theorem 1.6.

The constraint measure v can be written as in (2.1), with the degenerate covariance matrix C

supported on the subspace X = R{]\ ={peRA: > » ¢z = 0} given by

_ 1
(3.7) c% =pPATP, where Py, = ¢, — o ze;\tpy.
y

In unit lattice scaling, the Dirichlet form for Kawasaki dynamics is given, for F' : Ré\ — R, by

<8F _ aF)
Opz Oy

We decompose the covariance matrix C in terms of

(3.8) > Ey

r~yEA

(3.9) CY=etp, Q) =et2p,

and define V¥ as in (1.3) with respect to CY. From now on, we will refer to the case that V; is
replaced by V. and C; by C? as the conservative case. Then the statement of Proposition 3.1
remains true in the conservative case.

Proposition 3.2. Let f < 6w, and L > 0, m > 0, and z € R. Then (1.6) holds, and for all
t>0,

(3.10) Q7 Hess V2 (9)Q) = ju P,
where w; satisfies (3.4) with the same bound on p* if (3.5) holds.

Analogously as in the proof of Theorem 1.6, we deduce Theorem 1.7 from Proposition 3.2.

Proof of Theorem 1.7. Since A is a discrete torus of side length L/e, the smallest nonzero eigen-
value of the lattice Laplacian —Ax on A is of order (¢/L)%. We thus denote the smallest nonzero
eigenvalue of —A, on A by (2. Explicitly, as ¢ — 0,

2T

(3.11) 2= ( T )2.

As in the proof of Theorem 1.6, with A\ the smallest eigenvalue on X of A = —A, + £2m?,

* *

1 e e
A2 — < = ,
(3.12) ~0 A e2(¢2 + m?)

and Theorem 1.2 implies that 1/8 satisfies a Log-Sobolev inequality with constant °:

* *

e2H
2 (m? + %)

e

(3.13) Entyg (F) < W

E,o(VF, PVF) < E,o(VF,—A\PVF)

where the last inequality again uses that the smallest nonzero eigenvalue of the lattice Laplacian
—A is €2¢%. We emphasise that V denotes the continuous gradient on R* while Ay is the lattice
Laplacian on A. Recalling the continuum normalisation of the Dirichlet form given by (1.21),
and (3.4), this is the claim of Theorem 1.7. O
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3.2. Outline, scaling conventions, and heat kernel. To prove Propositions 3.1-3.2, we
proceed in the following steps. We first consider the main case (3.5). The proofs are simpler for
B < 47 and we begin with this case in Section 3.4. In Sections 3.5-3.7, we extend this analysis to
the case 8 < 67. Finally, in Section 3.8, we show that a crude argument suffices to remove the
assumption (3.5) at the cost of constants that are uniform in € but not in L.

To prove Propositions 3.1-3.2, we will require estimates on the heat kernel decomposition

t
(3.14) Cy = / C,ds, Cy=Q>=e%4,
0

In this section, we set-up a convenient normalisation and also collect some elementary estimates.
We have chosen the heat kernel decomposition (and not a finite range decomposition, for example)
to be able to directly apply Theorem 1.2. The characteristic length scale of the heat kernel is
defined by

(3.15) b=(1VVt)A —
and we set
(316) Qt = ‘thta Ct = Z?Ct, 29t =€ ;m262t

Standard estimates on the heat kernel imply that Cy(x,y) is essentially supported on |z —y| < 4
and the above normalisation is such that Cy2,(Az, \y) ~ Ci(z,y) and Q? = C;. We will often
express estimates in terms of these quantities and in terms of ¢; (instead of ¢), and write integrals
over the scale in terms of the approximately scale invariant measure dt/¢? ~ dt/t (instead of dt).
For estimates involving the heat kernels @, C’t, Cy and its scaled versions, we will always impose
the following assumption:

1 /1
(3.17) Lm>1, or t< 5 <m2 /\L2)

The next lemma provides some elementary estimates on the heat kernel. These are sufficient
for the case f < 4m; for § > 47 more precise estimates are required (and will be stated in the
section they are used). All of these estimates on the heat kernel are collected in Appendix A.

Lemma 3.3. Assume (3.17). For any x € A,
1 ' 2 92
(318) Ct(.’ﬁ,l') = %logﬂt%—O(l), SupZ|Ct(x,y)| = O(ft"gt)7
y

and the same estimates hold in the conservative case.

Proof. This follows from standard estimates on the heat kernel on Z?, see Appendix A. O
Further we define the scale dependent coupling constant z; and its microscopic version z; by

(3.19) zs = 022, 2 = e_gct(o’o)zo, where zg = 27 8/47 2.

For later purposes, we will now collect some basic properties of this definition. By (3.18) and the
definitions of z; and ¢, uniformly in ¢ > 0,

(3.20) 20 = Op(|2[(etr)*7/*T) = Op(|2lm=>P/4T),

In the following, we write < y or x = Og(y) if |z| < Cgly| for a f-dependent constant Cg. For
any ( < 8m, by (3.20) then

ds
(3.21) / ER @ S Jzel,
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as is straightforward to check from the definitions. For use in the proof for § > 4, we also record
the following estimates (again straightforward from the definitions): for all positive integers n,

¢ ds _ 1
(3.22) /0 | 2|02 1) 92 55 ﬁ\zm(cﬁﬁf)”—l for B < 8r(1 —1/n),
t d 1 .
(3.23) /0 | 2|21 B/ A 2 ?j < g\zm(cﬁzf)”—léf“ for B < 8.

3.3. Fourier representation. To estimate the Hessian of the renormalised potential V;, we use
the Brydges—Kennedy approach [14]. Namely, for any function V : RA — R that is %—periodic

in each variable, we will write its Fourier series (assuming it converges absolutely) as

(B24) V()= V), n, 3 TG e
= 7£n

where V" : (A x {£1})" — R and

(3.25) & = ($i70i) €A x {:l:l}.

We think of §; as a particle with position z; and charge o;. Since the index n is determined from
the number of arguments of V"), we will often omit it and write V(£1,...,&,) = VW (€1, ..., &),
The representation (3.24) is not manifestly unique without further conditions, but in the relevant
cases we will in fact construct coefficients V' (&1, ... ,&,) such that (3.24) holds.

The initial potential V{y of the sine-Gordon model corresponds to

(3.26) Vo) =0,  Vol&) =2, Vol&,...,&) =0 (n>1).
Set
(3.27) (&, &) = BCs(xi, )00, Us(&i, &) = C2us(&, &) = BCs(w4, 5) 050,

and

(3.25) Wl =5 O (0,0,

k,l€[n]

where [n] = {1,...,n}. We define u, and W, analogously by replacing C, by Cj. For later use,
we note that W; — W, > 0 holds for all arguments by positive definiteness of Cs.

Then in terms of the Fourier representation (3.24), the two terms on the right-hand side of
the Polchinski equation (1.10) are represented by

SBVIE ) =g Y G &)V (6 6
,Je[n}
(3.29) = —Wil&,- . &)V (&, ., &)
and
(330) (VI (6 b=y S VEITEL) Y )
IlLJIQ [’n] i€ly,j€ls

The sum over I;Uly = [n] is over all nonempty disjoint subsets I; and I of [n] with I; U Is = [n].
Moreover, given &1,...,&, and I = {i1,...,ix} C [n] we denote by & the vector (&,,...,&)-
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Indeed, (3.29) is straightforward to verify in the sense that if V' is given by (3.24) and lct‘//
by (3.29) then

(331) Z 7’L' Z A V 61, . 7€n)ei\/BZg:1 Py Ok
€7L

To see (3.30), note that differentiating (3.24) gives

8 P . . P o
(332) asox V(p Z V 613 ... ,£p) Z ’L\/Bo-klx:xkeZ\/BZk:1 Py, Ok
517 76? k=1
and thus
(3.33) (VV®, vV @), ( Z V(L. &)V (Epity - Epiq)
51» 7§P+q
P ptq .
Do D (& &)eVIRI e,
i=1 j=p+1

Therefore taking the sum over p and ¢, using that the number partitions of [n] into two subsets
with p and ¢ = n — p elements is n!/(plq!) and that V is symmetric in its arguments, we find

(3.34) (VV,VV)e Zm Z (VV,VV)g, (&1, ., n)etVPTiim @i

&1,

if (VV,VV)g, is given by (3.30).
By (3.29)-(3.30) and the Duhamel principle, the Polchinski equation has the following formu-
lation as an integral equation:

(335) Vi(lr,... &) = e V18IV (6, L 6)
/ds Z Z IR DAI AT . (Wt (€1se8n) =W (§15-1€n))

LU= [n] i€ly,j€ls

For n < 1, the unique solution to (3.35) is simply

(3.36) Vi) =Vo(0) =0,  Vi(&r) = e 2 EEIT () = 2,

with 2 defined in (3.19). For n > 1, Vi(€1,..., &) is then determined explicitly by (3.35) in terms
of Vi(&1,...,&k), k < n. Hence by induction, (3.35) has a unique solution for any n and t. This
is summarised in the following lemma along with a uniqueness property.

Lemma 3.4. The integral equation (3.35) has a unique solution V for all n and t. Moreover,
if Vi defined in terms of Vi by (3.24) converges absolutely, locally uniformly in t > 0, then V; is
equal to (1.3), the convolution solution of the Polchinski equation.

Proof. We have already shown that (3.35) has a unique solution. For coefficients V; such that
(3.24) and its derivatives converge absolutely, the function V; defined by (3.24) is smooth. More-
over, for smooth V;, the integral equation (3.35) implies the Polchinski equation (1.10). Unique-
ness of bounded solutions to the Polchinski equation by Remark 1.4 then implies that V; coincides
with the convolution solution of the Polchinski equation. ]
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3.4. Up to the first threshold: proof of Propositions 3.1-3.2 for § < 47 assuming (3.5).
The following proposition, due to [14], gives good bounds when 8 < 47. For completeness, we
reproduce their argument here in our set-up and notation. (See also [12,30,31,38,43] for related
results.) We will then use the result to derive Proposition 3.1 in the case § < 4m. Let

(3.37) 1] = sup Y its(1, 62)]
& &2
and
(3.38) HV(”H:s?pW(sl)L vt | =sup Yo V&)l (> ).
1 1 527 7§n

Proposition 3.5. For all n > 1, the solution to (3.35) satisfies
t

(3.39) VN < =2z MY, where M, = / di|i (€= 00,
0

with z; defined in (3.19). In particular, if zzM; < 1/e, the Fourier series for Vi converges and
Vi coincides with the convolution solution to the Polchinski equation. The analogous statements
hold in the conservative case.

Proof. For n = 1, the bound (3.39) is obvious from (3.36). To prove the bounds (3.39) for n > 1,
we use induction. Note that the first term on the right-hand side of (3.35) does not contribute

for n > 1 since then f/o(n) =0 by (3.26). In the second term, we drop the exponential inside the
integral (as W; — Wy > 0) to obtain

(3.40) Tiler,. )] < /ds ST iel6 &) V() Valen)-
LU= [TL]ZGILJGIQ

Note that if |I1| = n — k and |I3| = k then

(3.41) sup Y las(& E)ValEn)Vilén)| < sV PV,
! 627 7§n

For example,

sup Z s (&1, €3) Vs (€1, £2) Vi (€3, &4)|

61 527531{4
(3.42) <sup Y ig(61, &3)|sup Y [Va(&r, &) sup D [Val&s, &a)| < s ||V %,
51 53 gl 52 53 54

Assuming the bound (3.39) for integers less than n, therefore

- (n 1 -
70 < 5 antant 32 ()t - 0117200
1
(3.43) < 2/ ds ||| Z (Z) 26| "M 2(n — k)n k= LghoL
0 k=1

Using that 71 (DE* L (n— k)" 1 =2(n—1)n"? and n/2 < n—1forn > 2,
t
HVt(n)” < nn—z‘zt|n(n _ 1)/ ds HasHe%ﬁ(C’t—Cs)(O,O)Mg—Q
0

t
(3.44) < "2z (n — 1) /0 ds [t ]| e DBC=CO0) pyn=2 _ =2, |npm=1,

19



For n > 2, the last equality follows from the following change of variables,

(3.45) =) [asao) ([ ds'g(s'>)n_2 -([ dsg<s>)n_1,

applied with g(s) = ||i|le ?¢(09) Indeed,
t

(3.46) (n—1) / s [ty [ (C=CL)(0.0) y o2
0

t s n—2
=(n— 1)65(n—1)0t(0,0)/ ds ||t e =P 0:0) (/ ds’ ’us,He—ﬂCs/(Oﬂ)) = ML
0 0

Finally, using the bounds (3.39) for V;(&1,...,&,) and the assumption sup, z,M; < 1/e, the
series (3.24) for Vi(¢) converges absolutely since (using n"/n! < e™),

[e.o]

[Vi(p L oo -1 < -1 _ e|z|
(3.47) ‘A, va [zl M; Ze £l = T SO <

n=1

and analogously for derivatives. Hence V solves the Polchinski equation (1.10) by Lemma 3.4. [J

Using the conclusion of the last proposition together with the basic estimates for C, given in
Lemma 3.3, it is straightforward to complete the proof of Propositions 3.1-3.2 for § < 4.

Proof of Propositions 3.1-3.2 for 5 < 47 assuming (3.5). Since the proofs of the two propositions
are identical we only discuss Proposition 3.1. From (3.18),

(3.48) sl < BOZ sup Y |Cs(z, )| < Op(92).
Ty
For 8 < 4m, the definition of M; in (3.39), the definition of ¢; in (3.15), and (3.18) imply
t
(3.49) M, < Cpt?/ 2 / ds 9% €59/27) — 04(£2).
0

In this proof, the condition 8 < 4 is only needed in order to achieve the scaling /7 in the
previous upper bound. By (3.19)-(3.20) therefore, using in the last inequality that |z|m=2+8/47
is sufficiently small,

1
(3.50) |24 My = O3 (|z1]) = Op(|2|m™>7/47) < .
Let
(3.51) | Hess Vi ()| = supz 'a i, @)

From (3.24) together with (3.39), (3.49), and with n"/n! < e” we obtain

o0

o0
Z — — Z - Belz|
(352) || HeSS‘/t 2 n 2’Zt|thn 1 < B - €n|2t‘thn 1 = m < 2ﬁ€|2t’

Since |(f,Hess Vy() f)| < || Hess Vi() ||| f]5 and |Q;f|o < U¢|f|2, we obtain
(3.53) [(Q1f, Hess Vi(9)Qif)| < Op(|2e97)|£13-
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In the notation of Theorem 1.2 we thus have that fi; > —Os(|2¢|U7). Hence, using the bounds for
z from (3.21) and (3.20), for all t > 0,

t ds _ - «
@5z [ Ol > ~Oa(lal) > ~Os(lsim™14) =~y

Finally, the ergodicity assumption (1.6) follows from the weak-* convergence v, — Voo = o
and Py F(p) = PyooF(p) uniformly in ¢. Indeed, vy — vo holds since the Gaussian mea-
sure covariance Co, — Cy converges to g and Vi(¢) is bounded (uniformly in ¢ and t). The
uniform convergence Py F — Py o F holds since Vi(¢) — Vio(p) and Eq,e 0 HOF(p +¢) —
Ec_e YW@t OF(p + ¢), both uniformly in ¢, where the last claim holds since the integrand is a
bounded Lipschitz function. ]

3.5. Up to the second threshold: proof of Propositions 3.1-3.2 for § < 67 assuming
(3.5). The remainder of Section 3 is devoted to extending the proof of Proposition 3.1 from
B < 4w to f < 67. For this, we will estimate the n = 2,3, 4 terms in (3.24) more carefully.

Indeed, for n = 2, a uniform bound on f/t(fl, &) as used for 8 < 4 is not true when 3 > 4,
and we rely crucially on the smoothing effect of the heat kernel @; in (1.8) to obtain the required
bound stated in the following proposition. (Note that this estimate is best expressed in terms of
Q¢ and z; rather than @Q; and z;.)

Proposition 3.6. Let § < 87 and assume (3.17). Then

(3.55) (Quf Hess V2 (9)Quf) = Oz *07) 1113
The analogous statement holds in the conservative case.
For the terms n > 2, the following proposition gives an analogue of Proposition 3.5 for § < 6.

Proposition 3.7. Let f < 6m and assume (3.17). Then there is Cg < oo such that for alln > 3,
(3.56) IVl < =l (Cat)"
The analogous statement holds in the conservative case.

These bounds together imply Propositions 3.1-3.2 when (3.5) holds.

Proof of Propositions 3.1-3.2 assuming (3.5). Since the proofs are again the same, and we only
prove Propositions 3.1. The bound (3.56) (together with the qualitative fact that V") and V(®
are finite) implies that (3.24) converges, exactly as in (3.47). Moreover, exactly as in (3.52)-(3.53),
for |z|m~2+A/47 sufficiently small, it follows that

(3.57) (Quf, (Hess Vi(ip) — Hess V2 (9)Quf) = Op([ze|03)| f13-

Combined with (3.55) this gives the required bound (3.3). The proof of the ergodicity assumption
(1.6) is also identical to that in the proof of Proposition 3.1 for 5 < 4. O

To prove the above propositions, neutral configurations require more careful treatment com-
pared to the case 8 < 47, where neutral means the following. For a configuration £ = (&1, ..., &)
we define the charge o(§) = Zle o; and call  neutral if 0(§) = 0 and call £ charged otherwise.
We will sometimes decompose

(3.58) V() = VIO p) + VD ()
(3.59) VOE) =V(O)loe)=0s VHE(E) = V(E)1oe)20,
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where V("0) is defined as in (3.24) with the sum over £ = (£1,...,&,) restricted to neutral &, and
V(%) by restricting the sum to charged &. As in the proof for 8 < 4, the starting point for the
proofs is (3.35), but now without dropping the exponential inside the integral, i.e., for n > 1,

i E)=—5 /ds[

I1U12 [n] iely,jel2

(3.60) 5 > / ds[

I1U[2 [n] i€ly,j€l2

CENACRIACH| B

Us(&i, &) Vs (&) V2 (&2)} Wi (§)=Ws(€))

3.6. Proof of Proposition 3.6: the term n = 2. The following two lemmas give the explicit
form of V(£1,£&) and bounds on the heat kernel that imply the required bound.

Lemma 3.8.
(3.61) (51 &) = —2; 2(1 - 6—50102&(9017902))'

Proof. By (3.35) and using that V(§) = 2z = 2067§CS(0’0) by (3.36),
t
Vi1, €) = = / s is (&1, €2) Vs (61) Vi (€)™ 1o 827 IWa(6r.62)
0
t
(3.62) — _Z(Q)eWt(él,éz)/ dsus(ghfQ)e*BCs(Ovo)eWs(él,Ez)'
0

Let 0 = 0109. By (3.28), —8Cs(0,0)+W,(&1,&2) = 0fCs(x1, x2), so the integral can be evaluated
as

t t
(363) / ds as(gl’52)efﬁ05(0,0)€ws(§1,£2) — / ds Bacs(xla x2)66005(m1,m) — eﬁUCt(xl,xz) 1,
0 0

which after rearranging gives

(364) %(51752) _ _22€fﬁC’z(O 0)— ,BoCt(xhxg)(e,Bcht(acl,mg) - 1) — _23(1 _ efﬁoct(ml,mz))' n
Lemma 3.9. Let Uy(z,y) = ePC@y) — 1. The following bounds hold fort > 0, f : A — R,
B < 8m:
(3.65) sup » |1 — e PO = Og(47)

x1
(3.66) D Ui, 22)[(Qef (1) = Quf(w2))* = Op(£197)| 13

x1,2T2
and again analogous estimates hold in the conservative case.

Proof. The lemma again follows from estimates for the heat kernel and is given in Appendix A. [

Proof of Proposition 3.6. We first consider V2%, By (3.61) and (3.65),

(3.67) D Vil +1), (g, +1)) = O(|z4/?) le e POV = O(|2/%67),
Yy

which is analogous to the bound for 8 < 47 and thus gives

(3.68) (Quf, Hess VP (0)Quf)| = Op(|2e26102) 13 = Op(|2:|*97) | £13

exactly as in (3.53). On the other hand, the neutral contribution to V() is given by

(3.69) VY —ZtZUt:Uycos (VBos = VBoy)s Uslay) = ePCan) _ 1,
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Therefore

(3.70)  (Quf,Hess V2V (0)Quf) = =228 Ui, ) cos(v/Bipw — /Bioy) (Quf () — Quf ())*.

By (3.66), the right-hand side is bounded by Og(|2:|2¢197)|f|3 = Op(|z¢|?9?)| f|3. O

Remark 3.10. Similarly as in (3.66), for ¢ > 0, f : A — R, 8 < 67, assuming (3.17), we have

(3.71) D U1, 22)||Q1 f (1) — Qi f (w2) = O(€791)| f s

Z1,T2

see Appendix A. Therefore, as in (3.70),
(Quf, VVEY) = -2 52@ z,y)sin(\/Bea — /Bey) (Qif(x) — Quf (1))

(3.72) = B(\Zt|2€t279t)\f|1 = Og(|ze2e|0¢) | fl1 = Op(|2e|94)| f 1,

provided that z; = O(1). Exactly as in (3.68), the same bound holds for V*%) and as in (3.57)
for V — V). In summary, whenever |z is sufficiently small and (3.17) holds,

(3.73) max [(QVVi)e| = Op(|2e[ ).

3.7. Proof of Proposition 3.7: the terms n > 2. To bound the contributions due to (3.61),
we need the following bounds on the heat kernel. For the statement of the bounds, we set

(3.74) 612C (21, w2, 23) = Cyw1, 23) — Cywa, 3)
(3.75) 034019Ce (1, w2, w3, x4) = (Ci(w1, 23) — Co(w2, 23)) — (Ce(w1, 24) — Co(w2, 24)).

Lemma 3.11. Let U;(z,y) = e?Ct@¥) — 1. The following bounds hold fort >0, 5 < 6m:

(3.76) sup Y |Ui(x1, 22)612C, (21, 29, 23)| = Og(£197)
1 go,a3
(3.77) sup Z U (21, 22) U (23, 4)834012Ce (21, 22, 23, 24)| = Op(££97),
U 2g,23,24

and the same bounds hold with the roles of the x; exchanged. Also, for allt > s >0, x; € A,
(3.78)  (Cr— Cs)(0,0) — (Cy — Cs)(x1,22) + (Cp — Cs)(x1,23) — (Cp — Cs)(x2,23) = —O(1).
Again analogous estimates hold in the conservative case.

Proof. The lemma again follows from estimates for the heat kernel and is given in Appendix A. [

Lemma 3.12. Let 5 < 67. Then Hf/t(?’)H < |z|20f. Analogous bounds hold in the conservative
case.

Proof. We start from (3.60). We assume I; = {1,2}, Io = {3} since the other cases are analogous.
We first consider the case that &7, is neutral. Then

/ ds Y (&, &)V, Eo) Vi(Ea)e™ (Wrle 2 fa) mIWelEr82.8))

i=1,2

(3.79) = :I:ﬁ/ Cs(w1,23) — C8($2’$3))U (1‘1,1‘2)2 e~ (We(€1,62,€3) =W (£1,62,63)) |
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By the definition of W in (3.28) and by (3.78),

(380) Wil &) — Wa(61, . 8) > 5 (G~ C)(0,0) ~ O(1) = 1 log(€1/6,) — O().
By (3.76),

(3.81) sup Z |512Cs(l‘1,$2a$3)Us(331,$2)| ~ £4192

z1
T2,T3

Substituting these bounds into (3.79), this shows that the contribution to Hfft(?’)H from neutral
&1, is bounded by

_ tds
(352 6 [ G e 0 < e
S
where we used (3.23).
We turn now to the charged case o1 = 02 Note that (3 80) follows as above if 03 = —01 and
in fact holds with the better lower bound log(ﬁt /ls) — O(1) by positive definiteness of C; — Cy

if o3 = o1, L.e., if all charges are the same. From the expllclt form (3.61) of Vy(&1, &), we thus get

/ds Zus &i, E3)Va(£1, E0) Vs (E5)e™ We(E1E2.88) = Ws(€1,62,63))

1=1,2
B

0.\ i
5/ 52 331,$3)+C (z2,23))|1 — ¢ B0s(x1,22) I 8|3 <£t> .

As the sum over x3 can be controlled uniformly in z1, x5 by O(¢?9?) thanks to (3.18) and then
the sum over z2 can be estimated by O(¢?) thanks to (3.65), we end up with the same upper
bound as in (3.82). This completes the charged case. O

Lemma 3.13. Let § < 67 and assume (3.17). Then \]@(4)]\ < |z|*8. Analogous bounds hold in
the conservative case.

Proof. We again start from (3.60). Up to permutation of the indices, there are terms with |I;]| = 1,
|Io] = 3 and |I;| = |I3] = 2. We begin with the case |I;| = 1 and |I;]| = 3. Using that |0,] < 63195
and that [V < |2 and [|[VAP|] < |22¢4 (by (3.36) and Lemma 3.12),

(3.83) sup D s ENVaEr)VlEr)l < NusllIVIV VPN S Lol 62002,
1 527 ’gn

and we obtain the claimed bound exactly as in the proof for 5 < 4.
In the remainder of the proof we bound the terms with |I;| = |I2| = 2. We begin with the
case that £, and 7, are both neutral. Up to permutation of the indices, we may then assume

&n = ((z1,+1), (z2,-1)) and &, = ((x3, +1), (x4, —1)). By (3.61), using 0:(&1,§;) + 0e(€2,&5) =
010(Cy(x1,25) — Ci(2, ;) and analogously for the sum over j,

(3.84) > (& E)ViEn)Villr) = 2 Ui (w1, x2)Ui(s, 4)934012C, (21, T2, 73, 74).
ich jel

Hence, by (3.77) and (3.22) for 5 < 6,

ds . ~ ~ tds
B s X [P ale e < [ 5 0 S e

T2,23,%4 5 zell JEI>



In the case that I is neutral and I is charged, we similarly use

sup 3 / S 03(€ VA (En) Loen =0 | V(n)Loger, 0

& £2,5€n ]612 7,6]1

7 |sup Y ‘(Cs(m,xs) - Cs($2,$3))Us($1,$2)u [SUPZ|‘7S(§12)|10(5,2)¢0 :

&3 I
By (3.76), the first bracket is bounded by
(3.87) Op (|24 6/97).

Since &1, is charged, the contribution from V(£z,) term is bounded using (3.65) by

(3.88) sup D IVil€n)loger,)20 S l2el? SUPZ |1 — e POlosm| < |z 207
3 54
So altogether these contributions to (3.86) are again bounded using (3.22) (and S < 67) by

"ds 49692 496
(3.89) /O 2 2605 S 24

Again the case that 7, and £, are both charged is easier and analogous to the proof for 5 < 4
so omitted. O

Lemma 3.14. Let 5 < 67 and assume (3.17). Then ||f/t(n)|| <72 (Cpl2)" ! for alln =5
Analogous bounds hold in the conservative case.

Proof. Similarly as in the proof of (3.39), we make the inductive assumption that, for some n > 4,
the bound (3.56) holds for all 1 < k < n, k # 2. By (3.36) and Lemmas 3.12-3.13, the inductive
assumption is verified for n = 4. To advance the induction we again start from

(3.90) Vi gl<y X [ 3w gV

I UIz=[n] el ,jelz
For |I1| =n—k # 2 and |I3]| = k # 2, we use
(3.91) sup Y [ (&, &) Vs (€n)Va(€r) | < Ilas VRV,

51 627"'75714

and bound the terms on the right-hand side using the inductive assumption. Then exactly as in
the proof for § < 4m, i.e., of (3.39), the result is

t
(3.92)  sup > > / ds Y [is(& &) Va(€n)Va(En)| < 02|z (Cpt?)"
& €2,bn NUIp=[n] 70 i€l ,jel,
|11 |#2,|1g]|#2

The terms with |I1] = 2 or |I3| = 2 require special treatment. By symmetry we may assume that
|I1] = 2 and that I; = {1,2} and I = {3,...,n} with n > 5. If £, is neutral, we use

sup Z /ds DD 0s(&H EVal€r) laie, =0 | Valén)

£ jely |iel

(393) < (n-2 / [supZ( o(w1,23) — Cy(w2, 73))Us(21, 72) ” [sup > Vilén) ]

xr2,r3 & §4,-€n
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By (3.76), the first bracket is bounded by Op(22¢}9%), while for the second term involving V (&y,),
using inductive assumption for V(£7,) (note that n —2 > 3) to get

(3.94) sup ST WiER) < IV 2N < (n— 2)" ROt
3 €4,.06n

So altogether these contributions to (3.93) are bounded by (using again (3.22) for 5 < 6m),

(3.95)
t
Oﬁ(l)(ﬂ- 2)1@—3053/ |Zs|n€§(n—1)79
0

QL

o ds
s

S O3z (Catd)"™ < n | ()™

[V ]

where in the last bound we have chosen Cj sufficiently large (independently of n). Summing over
the (g) < n? choices for Iy, I with |I;| = 2 leads to the expected upper bound. The charged case
holds in the same way. O

Proof of Proposition 3.7. The bounds (3.56) follows by combining the previous three lemmas. [

3.8. Proofs of Propositions 3.1-3.2 without (3.5). Finally, we remove the assumption (3.5)
at the cost of constants that are uniform in ¢ but not uniform in L. For ¢ < tg, where tg is
sufficiently small but of order 1/¢2, we can apply the same analysis as before. On the other hand,
for t > tgy, a very crude argument is sufficient to show that the Hessian of the effective potential
is bounded from below uniformly in . Our starting point for this is (2.15), i.e.,

(3'96) (fv Hess V;ff) = Boﬂf(f’ Hess Vtof) - (Pto,t((f’ vvto)2) - (Bo,t(ﬁ vwo))2) .
The input from the previous analysis is summarised in the following lemma.

Lemma 3.15. Let 8 < 6mw. Then there is a constant o« = «(fB) > 0 such that for allt > 0
satisfying |z;| < a and (3.17), the following bounds hold uniformly in ¢ € X, f € X, and x € A:

(3.97) [(Quf, Hess ViQuf)| < Op(|z|97)| f13
(3.98) (Q:VVi)z| < Op([2e|0).

Proof. For B < 4w, these bounds follow exactly as in (3.52)-(3.53). For § < 67, the bound on the
Hessian is as in (3.55) and (3.57), and for VV,, see (3.73). O

Proof of Theorems 3.1-3.2 without (3.5). From (3.18), recall that e 7C100) = ft_ﬁ/h and hence
that |2 < €2(ety)~P/47|2| and |z;| < (e£;)> P/ |z|. Here a < b denotes that cs < a/b < 1/cg for
some constant cg > 0. Let t, > 0 be such that |z, | = a. Thus ef;, < (a/|2])/(2=#/47) and hence
(3.99) |2t | = Op(e%(et,) /47 |2]) = Op (2|2 /0 =F/57).

Also, with ¢, , = e 2(m~2 A L?) as in (3.17),

(3.100) |2t | = Op(e*(m™ " A L) P47 |2)).

We choose tg = to At 1, so that, since || in decreasing in ¢ (see (3.19)),

(310 el = 05(e) (™ ALY HTe] 2 0H) = 0 ().

With this and since |A| = e72L?, it follows from (3.98) that, uniformly in ¢,

(3.102) Qi VViol3 = Y (QuoVVig)z < Op oo, 1705
TEA
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For any t > tg, by the Cauchy-Schwarz inequality and [Q;—¢, fl2 < ¥¢—¢,|f|2, in particular,

(3.103) (Qef, VVie)? < Opom.1.(6297)|Qi—to 13 < Op 2m,1.(207)| f13.
Similarly, by (3.97),
(3.104) [(Q¢f, Hess Vi) Qi f)| < Op(24097))|Qi—to f15 = Op(|21€297)| 13-

Substituting (3.103)-(3.104) into (3.96), using that P;, ; is a Markov operator, we conclude that,
for all t > tg,

(3.105) (Qif, Hess ViQ+ f) = fue| f13, where f1; = —Op . . 1(207).

For t < to, we have i, = Op(|2|97) = Op(|2])e*9¥7 exactly as in the proofs of the theorems in the
case (3.5). In summary, for all ¢t > 0,

(3.106) pe > (0312 + Opean (1) | 08 >~ (B, 2.m, L),
0

with p*(8, z,m, L) independent of €. From this bound, the remainder of the proof is the same as
in the case (3.5). O

A Heat kernel estimates: proof of Lemmas 3.3 and 3.9-3.11

In this appendix, we prove Lemmas 3.3 and 3.9-3.11. These follow from standard estimates for
the lattice heat kernel p(z) = €'2(0,x) on Z¢ and its torus version pf(x) = Y, cza pi(2 + Ly),
where L € N. Throughout the appendix, A and V denote the lattice Laplacian and derivative on
Z%, not the Laplacian and gradient on R,

A.1. Bounds on the heat kernel. We begin by collecting estimates on the heat kernel on Z.

To state these, let « be a sequence of |a| = k unit vectors a, ..., ay in Z% ie., a; € {e14,...,eq+}
is one of the 2d unit vectors e;+ in Z¢, and write V* = [[¥_| V,,, with V.f(z) = f(z +¢) — f(z)
the lattice gradient. For z € Z¢, || denotes any fixed norm unless stated.

Lemma A.1. The heat kernel p, on Z¢ satisfies the following upper bounds for t > 1, x € 74,
and all sequences of unit vectors a:

(A1) |V (z)] = Oa(t—d/2—|a\/2e—0\wl/\/f)7
as well as the following asymptotics if d =2, fort > 1 and x # 0,

1

(A2) w0 =5 +0(;

= 31+ /0 (pa(0) ~ pol)) ds = o~ los([z] A V) + O(1).

Moreover, the heat kernel pt on a discrete torus of side length L satisfies, fort > 1, |z|oo < L/2,
(A3) VOpf () = VOpi(w) + Oa(t V2L emeHIVE)
and the mean O heat kernel on the torus is given by pS’L(ZL') = pF(x) —1/L2.

Proof. Writing «; = ej,; with j € {1,...,d} and o; € {£} for each i € {1,...,|a[}, the bound
(A.1) can be seen by writing Vp;(x) in its Fourier representation:

|o|

td/2+|a\/2vapt($\/i) _ (21>d/ H\/E(l . eanikai)etZ?:1(2003(kj)—2) eikx\/ftd/Q dk
A e
|al
1 , d .
A4 _ 1_ waikai/\/i t> 9 1 (2cos(k;/Vt)—2) ikx )
(Ad) @ /[_m]di[[lx/%( c et 5 e i
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For ¢ > 1, the integrand is analytic on a strip k& € (R +i[—c, c])¢ with ¢ > 0 independent of ¢, and
hence (A.4) decays exponentially in |z| (see, e.g., [41, Chapter 1.4, Exercise 4]). The first estimate
in (A.2) is standard and straightforward to verify by writing the left-hand side in terms of the
Fourier transform; we thus omit its proof. The second estimate in (A.2) is similarly standard if
t = oo in which case the left-hand side is the Green function of the discrete Laplacian:

(A5) / " (0a(0) ~ pa(a)) ds = - loga] +0(1).

This estimate can be found, for example, in [39, page 198] or [46, Theorem 4.4.4] (with normali-
sation there differing by a factor 2d = 4). To prove the second estimate in (A.2) for 0 < |x| < V/4,
we use that by (A.1) with |a| =1,

(A.6) / " (0a(0) — pa(a)) ds = O(Ja]) / 52 s = O(al VD),

which using (A.5) implies

t 0 1
A7) [0 =@ ds= [ 0:0) = pu(@) ds+ OV = 5 loglal +O(1)
For |z| > v/t, we use that the first bound in (A.2) (and p;(0) < 1 for ¢ < 1) implies

(A8) / pu(0)ds = -1og Vii+ 0(1),

and hence with (A.1) to bound ps(z),

(A.9) /0 (ps(0) — ps(z)) ds = % log V't + o(1) - /1 O(SflefCle/\/g) ds

where the integral is bounded by a multiple of

t t/|x|? 1
(A.10) / o lzl/v/E 38 :/ o 1/vE 08 g/ Vs o).
1 1 0

S /|$|2 S S

This completes the proof of (A.2).

For the torus of side length L, we use that pf(z) = >_yeza pr(z+Ly) and set [z = inf cza |2+
Ly|. Then

(All) Z e_c|x+Ly‘/\/z = e‘dx‘L/\/{t + O((\/73/_[/)616—%CL/\/{€)7

yeZa

since the remainder between the left-hand side and the first term on the right-hand side of the last

equation can be controlled by (approximating the sum by an integral and using polar coordinates)
(A.12)
o e e} (e e}
/ e—crL/\/ZTd—l dr < e—;cL/\/f/ e—%crL/\/frd—l dr < 6_;CL/\/Z(\/£/L)d/ e—%crrd—l dr.
1 1 1

This shows the estimates (A.3).

The expression for the mean 0 heat kernel follows from p Lz) = (80, PeAtPS,) = (8 —
1/L2,e24(6,—1/L?)) = pF(x)—2/L?+1/L? = pF(x) —1/L? with the projection P from (3.7). [
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A.2. Proof of Lemma 3.3. We recall the definition Cy(z) = ptLE(x)e*EQmZt = ple(x)07.
Lemma 3.3 is an elementary combination of the estimates from Lemma A.1, whose details are
given as follows.

Proof of Lemma 3.3. Applying (A.1) and (A.3) with = 0 to the torus of side length L. = L/e
and, for ¢ > 1, we have

(A.13) p+(0) — pLe(0)] S Lode~cbe/VE pke(0) S =92 v L4

By the assumption (3.17), either ¢ < 1 / £ m or Lm > 1 holds. By the above bound, if Lm >
the contribution to Cy(0) from ¢ > 1/£2m? is negligible since

> L 2 > 1 271 —2 2
/ ptE(O)e_amtdt</ (171 v 2L2) == m?t gy

1/e2m?2 1/e2m?

o
(A.14) < e2m? / e S gt < 1,
/e2m?2
For t < L?/&? (and thus for t < 1/m?e? when Lm > 1), we may moreover replace p-= by p; since

(A.15) l[%@—ﬁwmwzmxwzmm

Finally, the contribution to C;(0) from the infinite volume heat kernel p;(0) is

—2m2t _ i l —2m2t _ L l 2, .2
(A.16) pe(0)e = [47rt + O(t2)]e = + O(tQ) + O(e"m*t),

which integrated up to t < 1/e2m? gives the main contribution
¢ 22 1 1
(A.17) C(0) = / ps(0)e =™ ds+ O(1) = Elogt +0(1) = o log ¢, + O(1).
0

This shows the first estimate in (3.18). The second estimate is straightforward since Cs(x,y) =
Cs(0,x —y) > 0 and the fact that the heat kernel defines a probability density immediately imply

(A.18) supZCt (z,y) = 97> pl(y) =697 > puly) = 607,

Y yeEA yEZ>2

Finally, in the conservative case the estimates are unchanged since

1 t 2. 2 1-— 6_€2m2t
(A19)  C%0,0) = C4(0,0) — \A!/o e s = €4(0,0) ~ L5 = G4(0,0) + 0()
and
~0 - 8202 2
(A.20) 210 2) < D (Cul0,2) + ) = O(69)). O

T T

A.3. Proof of Lemmas 3.9-3.11. To prepare for the proofs of the lemmas, we state the
following consequences of Lemma A.1 in the notation used in the lemmas. In particular, recall
(3.74)-(3.75). For xz € A, abusing notation slightly, we write |z| for the torus distance |z|r. =
inf,cza |z + Ley|. In particular, [x| = O(Lc) for all z € A. Moreover, in all of the following
lemmas, we impose the assumption (3.17) without stating it explicitly.
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Lemma A.2. The following estimates hold for C, Cy fort > 1 and |z —y| > 1:

1 .
(A.21) Cilx,y) = —5-log(lx = yl/te A1)+ O(1), |G, y)| < Wje eVl
The first bounds also implies that
¢
1
(A22) Ct(x7y) :/ Re*‘$*y|2/286752m25 d8+0(1)
1

For any ¢ > 0 small enough,
(A.23) 1619Ce(, y, 2)[e= 10 S 97 (|w — y| /y)e 1A e a2
(A24)  [834012Cs(w, y,w, 2) e W W eI/t 92 (ja — y|/0) (Juw — 2| fl)e oVt

The same estimates hold with C, replaced by 0:9:Q¢, and if C; and Q; are replaced by C? and QY.

Proof. The estimates (A.21) follow easily from those for the heat kernel in (A.1)-(A.3). Indeed,
the second bound in (A.21) is a special case of (A.1) and (A.3):

t L2

. 1 1
(A25)  Cila,y) = G0ipi(z,y) < (107 ( e ey e—chNf) S dfeer IV,
3
where in the last inequality we used that ¢;/L. < 1 follows from (3.17) and the definition of ¢;
in (3.15). Indeed, by (3.17), either ¢t < L2 which implies ¢; < Le, or otherwise Lm > 1 and then
also ly/L. = (Vt AN1/(em))/(L/e) < Ve2m2t A1 < 1.
For the first bound in (A.21) we note that (A.2) implies

t 1 1
(A.26) / ps(w) ds = o |log Vit —log(|z| AVE)| +0(1) = —5 log(|z|/Vt A1) +O(1).
0
The additional factor e =€ m"s multiplying p,(z) leads to the replacement of v/ by ¢; exactly as in

the proof of (3.18). By an analogous calculation, the same formula holds with the discrete heat
kernel replaced by the continuous one, i.e.,

! 2 1
A27 —e /2 s = — — tA1)+0(1
(A27) [ e s = - hox(lal/VEA ) + O(1),
from which (A.22) follows after taking into account the additional factor e=="m*s ag before.

To verify (A.23)-(A.24), for z,y € Z%, let 74, be a path from z to y of length |z — y| where
|z| denotes the 1-norm in this proof. Then (A.1) and (A.3) imply

|612pth(x7ya 2)‘ = |ptL€(1"7z) _ptLE(yaZ)‘ < Z ‘ths(u7 Z)‘
UE'Y.ry

(A.28) Sy emelumEl/t

UEYzy

For u € 7y, we have |z — 2| < |z —u| + |u — 2| < |z — y| + |u — 2|, and we deduce from the
symmetric estimate in y that —|u — z| < —|z —y| — |z — 2|/2 — |y — 2| /2. Choosing ¢ < ¢, we get

(A.29) ’512pt 6(1.7 v, z)‘ S @—2(‘1. _ y‘/£t>efc’|a:fz|/2€tefc’|yfz|/2€te+c’\xfy\/€t.

This completes (A.23). Analogously, again applying (A.1) and (A.3) and choosing ¢ < ¢, we get

|634012p)° (2,9, w,2)| < D Y (VPP (u— )]

’lLE'me VEYwz

S€;4 Z Z 6—c|u—v|/€t

UEYzy VEYwz
(ASO) 5 gt—2(|x B y‘/gt)qw _ Z|/€t)efc’|xfw\/fte+C’\xfy|/fze+C/|wfz\/Zt

using that |z —w| < |z —u| + jJu—v|+ v —w| < |z —y| + |[u — v| + |w — 2| O
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Lemma A.3. Forallz,y,z € A, 0 < s <t,
(A.31) (Cr — C5)(0,0) — (Cy — Cy)(x,y) + (Cy — Cs)(x,2) — (Cy — Cs)(y, 2) = —O(1).

Proof. 1t suffices to assume that s > 1. Throughout this proof, |x| denotes the Euclidean norm.
Suppose first that |z — y| < |z — 2| A |y — z|. We will show that

(A.32) [(Cr = Cs)(@,2) = (Cr = Ci)(y, 2)| < / |Cul@, 2) = Culy, 2) du S 1.

Indeed, this bound follows from the following two estimates: using (A.1) with |«| = 0 for the first
bound and with || =1 for the second bound, and also (A.3) for the error due to periodicity,

le—y|> ) lz—y|?
(A.33) / (|Cu(, 2)| + |Culy, 2)|) du < 1 +/ uwtedEul/VE gy < 1
t t
(A.34) / G, 2) — Coa(y, 2) du < 1+ | — ] w2 du < 1.
|z—y|? lz—y|?

Here we have used that the remainder in (A.3) due to the periodicity is bounded by

2,,—2
(A35) ’x _ y| t u_l/Qe—cLe/\/a—emeZu <1+ ‘.%‘ — y‘ u_l/Qe_CLe/\/a <1
L2 2 ~ L2 9 ~
€ lxz—y| 2 o=y
when Lm > 1, and that an analogous bound holds when instead ¢t < e~2(m~2 A L?). The bound

(A.31) then follows from (A.32) and (C; — C5)(0,0) — (Ct — Cs)(z,y) = 0 which holds by the
positive definiteness of C; — Cs and translation invariance.

The same argument as above also applies if |y — z| < |x — z| A |x — y|. Therefore suppose that
|z —z| < |x —y| Ay — z|. From (A.22) recall that

(A.36) Co(a, 2) = 4; a2 /2 tmiu gy L 0(1),

Since e~ l#—=I?/2u > e~ lv=21?/2u therefore

(A.37) (Cr = Cs)(x,2) = (Cr — C5)(y, 2) = —O(1).

The conclusion (A.31) now again follows from (C; — C5)(0,0) — (Cy — Cy)(x,y) = 0. O

Lemma A.4. Let Uy(z) = 8¢+0%) — 1. Then for 8 < 2n(k +2) and sufficiently small ¢ > 0,
(A.38) > U @) (fel ) e IVE S .

xT

The analogous estimate holds in the conservative case.

Proof. By (A.21), Cs(0,z) = —5=log(|z|/¢s A1) + O(1) and 1Cs(0, )| < W2ecl#l/V5, Therefore

z Lo o ds
\Ut(:c)| = ‘eﬁCt(U, ) _ 1| < / B|CS(O,:L')‘BBCS(O’ )ﬁ
(A.39) < / <g5/27r|$| B/2m ,—clal /5 y—e?m? ) ds
0 12

Choosing ¢’ < ¢/2, we get e¢lzl/Vig=clal/Vs < e~ 2°7/V5 for ¢ > s. Furthermore
(A.40) Z |x|k—ﬁ/2ﬂe—%c|x\/\/§ < \/§2+k7ﬁ/27r

holds if 2+ k > /27 and s > 1. Therefore

t
|z — 24k —?m?s ds
(A1) S Wi/t < g+ [ (e ) S <

z 0 s

The bounds are the same in the conservative case. O
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With the above preparation, we now prove Lemmas 3.9-3.11.

Proof of (3.65). For (3.65), we use C;(0,2) > 0 which with 1 —e™* < z for > 0 gives the claim
(A.42) Z 11— e @O0 =3 (1 — e 0" <370 (0,2) = O(6)).

T

In the conservative case, Cy(z) > —1/L? and the claim follows similarly from |1 —e™2| < 2|z| for
r > —1. O]

Proof of (3.66). For sufficiently small ¢ > 0, we write

(A.43) D U, ) |(Quf(2) = Quf (y Z Awy B3y,
T,y
where
(A1) Auy = sl )| (2 — yl /)23 =01/
_Quf (@) = Quf W) —joyisen
(A45) Ba,‘y - ’.’E — y’/gt € Y 133759

By (A.38), then sup, >_, Axy < 2 for ¢ > 0 small enough. By (A.23) for £,0,Q; instead of C;
and the inequality 2ab < a® + b%, we have for = # y,

‘Qt(x Z) Qt(yv )‘ —c’\a: Y|/t < -t Uy —c’\x z|/2¢6; —c’|y z|/2¢4
|z —yl/b ~ 0
<O

2@

(A.46) ( —c|z—z| /s +€fc’\yfz|/£t)_

Thus there are positive My, = My, = OVl 1 _CI|”_1/V@), i.e., sup, Zy My S 4494, such that

(A.47) Buy <Y (M. + M)\ f2].

z

Then (using (a + b)? < 2a® + 2b% and A,y = Ayy),

2
> AwyBr <Y Awy | D Mazlfel + ) Myzyfz\]
z,y T,y z z
2
> Mlfol| <4 [supZAzy
x
z Y

Similarly (with 2|ab| < a? + b* and My, = My,)

2
(A.48) <4) Ay > [Z Mmlfz|]
z,Y x z

(A.49) Z Moy M| f2]? < lsupZMzZ] [sngMw] PR
Therefore
(A.50) Z Ay B2, <4 [sup Z Agy| [sup Z Mm] [Sllp Z wa] |£13-

z,y Ty oz T w

Since sup,, Z Azy S 07 and sup, Z vy S Uely, the desired bound < 924} follows. The bounds
are unchanged in the conservative case. O
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Proof of (3.71). We proceed analogously to the proof of (3.66), i.e., for sufficiently small ¢’ > 0,
we write

(A.51) U, 9)l|Quf(2) = Quf ()] = Z AzyBay,
T,y
where
(A.52) Agy = Ui, y)|(Jw = yl/l)e ¥4,
Q) = Quf W] — ety
(A53) Bz‘y - |$ — y|/€t € Y 1$7Ay

By (A.38), again sup,, Zy Agy <07 for ¢ > 0 small enough, but now using that 8 < 67 due to the
different power in the definition of A;,. The bound for B, is the same. From this, we conclude

> b <23 A sz\fZ]
supZAw
Yoy

Since Q¢ = £;Qy, this is (3.71). The bounds are unchanged in the conservative case. O

(A.54) <2

SupZsz] ’f‘l S g?ﬁt’f‘l

Proof of (3.76). By (A.23) and (A.38) (with 8 < 6m), one can find ¢ > 0 small enough such that

(A.55) supE |Ut(w1,m2)H512Ct(x1,x2,x3)|
1 g9,x3
|21

/ — X / /
SoRsup 3 [Urlar, ) |ectm—oabte L2 =l —salate—ctoasalfate < gy,
1 gt
2,3
where a factor 2 comes first by summing over z3 and another factor ¢? from (A.38). The same
applies when the roles of x1, x2, 3 in the sup and sum are exchanged. The bounds are unchanged

in the conservative case. O

Proof of (3.77). By (A.24), there is ¢’ > 0 small enough such that

(A.56)  [034012C; (1, T, w3, 14) |~ IT1 T2l —2al /s

S (1 = @l /) (Jwz — wal fr)eme 11wl g,

and using (A.38) both for the sum over z9 and z4 (with 5 < 67), as well as the elementary bound
SUDg, D s e~clei—wsl/te < 02 this implies

(A.57) sup Y |Us(wr, 2)Us(ws, 24)[|634012Co (21, 32, w3, 34)| S €097

z1
T2,T3,T4

with one factor ¢? from each of the sums. The bounds are unchanged in the conservative case. [
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