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Abstract

We derive a multiscale generalisation of the Bakry–Émery criterion for a measure to sat-
isfy a Log-Sobolev inequality. Our criterion relies on the control of an associated PDE well
known in renormalisation theory: the Polchinski equation. It implies the usual Bakry–Émery
criterion, but we show that it remains effective for measures which are far from log-concave.
Indeed, using our criterion, we prove that the massive continuum sine-Gordon model with
β < 6π satisfies asymptotically optimal Log-Sobolev inequalities for Glauber and Kawasaki
dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity
structures, but our results are independent of this theory.

1 Introduction and results

1.1. Introduction. Log-Sobolev inequalities are strong inequalities with numerous general con-
sequences, including concentration of measure, relaxation and hypercontractivity of stochastic
dynamics, transport inequalities, and others. See [4,47] for a review. They originate from Quan-
tum Field Theory where Log-Sobolev inequalities were first derived for Gaussian measures as a
tool to study non-Gaussian measures in infinite dimensions (Euclidean Quantum Field Theories,
EQFTs) [26,32,55]. As a consequence of a general new approach, we prove Log-Sobolev inequali-
ties for the massive sine-Gordon model. This is a fundamental example of a non-Gaussian EQFT
in two dimensions and its stochastic dynamics is a prototypical example of a singular SPDE.

As Log-Sobolev inequalities provide strong control on the measures they apply to, proving
them remains in general a difficult problem even if the equilibrium correlation functions are well
understood. This applies especially to strongly correlated measures. For log-concave measures (or
measures satisfying a curvature dimension condition), the fundamental Bakry–Émery criterion
provides a simple and often quite sharp sufficient condition [2, 3]. In its proof, a Log-Sobolev
inequality for a Markov semigroup is derived by integration of local Log-Sobolev inequalities for
the same Markov semigroup. Our method also uses local Log-Sobolev inequalities, but for a
semigroup that is different from the one for which the Log-Sobolev inequality is proven. Namely
our method uses the time-dependent semigroup driven by the Polchinski equation, a version of the
renormalisation semigroup. Unlike the original semigroup, this Polchinski semigroup provides a
notion of scale and hence we effectively obtain a multiscale version of the Bakry–Émery criterion.

The simplest version of our new Polchinski equation criterion for the Log-Sobolev inequality is
stated in Section 1.2. In Example 1.3, we illustrate that it implies the Bakry–Émery criterion. As
an application of the new criterion, demonstrating that it remains effective for measures that are
far from log-concave, we prove the following theorem for the continuum sine-Gordon model. For
a precise statement of this result and related discussion, we refer to Section 1.3. In Section 1.4,
we discussed further directions and related results.

Theorem 1.1. The continuum massive sine-Gordon model with β < 6π satisfies asymptotically
optimal Log-Sobolev inequalities for Glauber and Kawasaki dynamics (under suitable conditions).

Throughout this paper, we make the assumption that all functions considered are Borel mea-
surable and that all functions to which derivatives are applied are continuously differentiable of
the required order.
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1.2. Polchinski equation and Log-Sobolev inequality. In this section we state the simplest
version of our new criterion for a probability measure to satisfy a Log-Sobolev inequality.

Given a linear space X ⊆ RN with the induced inner product (·, ·), a symmetric matrix A that
acts positive definitely on X, and a potential V0 : X → R, we consider the probability measure
ν0 with expectation

(1.1) Eν0F ∝
∫
X
e−

1
2

(ζ,Aζ)−V0(ζ) F (ζ) dζ.

We call the set Λ = {1, . . . , N} the index space and the space X the field space; see also Figure 1.1.
LetQt = e−tA/2 be the heat semigroup associated withA (acting on elements ϕ ∈ X, i.e., functions
ϕ : Λ→ R on the index space), set

(1.2) Ċt = Q2
t = e−tA, Ct =

∫ t

0
Ċs ds,

and denote by ECs the expectation of the Gaussian measure with covariance Cs. For t > s > 0,
we define the renormalised potential Vt, the renormalisation semigroup Ps,t (acting on functions
F : X → R on the field space), and the renormalised measure νt by

e−Vt(ϕ) = ECt(e
−V0(ϕ+ζ)),(1.3)

Ps,tF (ϕ) = eVt(ϕ)ECt−Cs(e
−Vs(ϕ+ζ)F (ϕ+ ζ)),(1.4)

EνtF = Pt,∞F (0) = eV∞(0)EC∞−Ct(e
−Vt(ζ)F (ζ)),(1.5)

where ϕ ∈ X, the expectation ECt applies to ζ, and it is natural to define Eν∞F = F (0).
Essentially equivalently to (1.3), Vt solves the Polchinski equation; see (1.10) below.

In what follows, we will impose the following ergodicity assumption on the semigroup P : For
all bounded smooth functions F : X → R and g : R→ R,

(1.6) Eνtg(P0,tF )→ g(Eν0F ) as t→∞.

Like the ergodicity assumption in the Bakry–Émery theory (see [1, 4]), this assumption is quali-
tative and easily seen to be satisfied in all examples of interest.

The following theorem bounds the Log-Sobolev constant of the measure ν0. For its statement,
recall that the relative entropy of F : X → R+ with respect to ν0 is given by

(1.7) Entν0(F ) = Eν0Φ(F )− Φ(Eν0F ), Φ(x) = x log x,

where 0 log 0 = 0. We write ∇ for the gradient on X and (∇F )2 = (∇F,∇F ); thus in particular
if X = RN then (∇F )2 =

∑N
i=1( ∂F∂ϕi )

2.

Theorem 1.2. In the set-up above, assume (1.6), let λ > 0 be the smallest eigenvalue of A,
suppose there are real numbers µ̇t (possibly negative) such that for all t > 0, as quadratic forms
on X,

(1.8) Qt HessVt(ϕ)Qt > µ̇t id, where Qt = e−tA/2,

and define µt =
∫ t

0 µ̇s ds. Then ν0 satisfies the Log-Sobolev inequality

(1.9) Entν0(F ) 6
2

γ
Eν0(∇

√
F )2,

1

γ
=

∫ ∞
0

e−λt−2µt dt,

provided the integral is finite.
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Figure 1.1. The heat semigroup Qt acts on the index space Λ = {1, . . . , N}, i.e., ‘horizontally.’ In our primary applications,
the index space Λ is identified with a finite approximation to Zd or Rd and A is the Laplacian on Λ. The original semigroup
with Dirichlet form Eν0 (∇F )2 acts on the field space X ⊆ RΛ. It acts ‘vertically’ in the sense that the principal part of its
generator is the standard Laplacian on X, i.e., ∆ id in the notation (1.11). The Polchinski renormalisation semigroup Ps,t
also acts on field space X, but it acts ‘diagonally’ in the sense that the principal part of its generator is time dependent and
given in terms of the heat kernel as ∆Q2

t
(see (2.8)).

The proof of Theorem 1.2, given in Section 2, shares significant elements with the celebrated
Bakry–Émery argument, but with the crucial difference that it uses the time-dependent Polchinski
semigroup (1.4) rather than the original semigroup, associated with the Dirichlet form Eν0(∇F )2,
to decompose the relative entropy. The above version of our criterion relies on the particular
decomposition of the matrix C∞ = A−1 in terms of the heat semigroup Ċt = e−tA. In Section 2,
we also consider variations of the criterion that apply to other decompositions.

To apply the theorem, the main task is to verify (1.8). It is not difficult to see that the
renormalised potential Vt solves the Polchinski equation (see Section 1.4 for its history)

(1.10) ∂tVt =
1

2
∆Ċt

Vt −
1

2
(∇Vt)2

Ċt
,

where we use the notation (and with w = id if the argument w is omitted)

(1.11) (u, v)w =
∑
i,j

wijuivj , (∇F )2
w = (∇F,∇F )w, ∆wF = (∇,∇)wF.

In general, verifying (1.8) is a challenging problem because the Polchinski equation is a non-linear
PDE in N dimensions, where in the examples of main interest N →∞. Nonetheless, we believe
that the required estimates are true in many relevant examples, including spin systems near the
critical point. In particular, in Section 3, we verify the condition for the continuum sine-Gordon
model by analysing the Polchinski equation.

To illustrate our new criterion, we note briefly that (1.8) is not hard to verify for log-concave
measures, in which case we recover the Bakry–Émery criterion as a special case.

Example 1.3 (Bakry–Émery criterion). Consider a probability measure ν0 with expectation

(1.12) Eν0F ∝
∫
RN

e−H(ζ)F (ζ) dζ,

where HessH > λ id holds uniformly for some λ > 0. Equivalently, ν0 can be written as in (1.1):

(1.13) H(ζ) =
1

2
(ζ,Aζ) + V0(ζ), with A = λ id and V0 convex.

It follows that Vt is convex for all t > 0 (see, e.g., [10, Theorem 4.3]). Hence µt > 0 for all t and
thus γ > λ in (1.9). This is the Bakry–Émery criterion.

We remark that an alternative proof that Vt remains convex for t > 0 can be deduced from the
maximum principle for symmetric tensors [37, Theorem 9.1]. This argument is in fact analogous
to the proof that positive Ricci curvature remains positive under the Ricci flow in [37].
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Theorem 1.2 can be considered a multiscale version of the Bakry–Émery criterion in which the
global convexity assumption infϕ HessV0(ϕ) > 0, which is equivalent to inft>0 infϕ HessVt(ϕ) > 0,
is replaced by the assumption (1.8) on the Hessians of the effective potential Vt at each scale t. We
emphasise that these Hessians are not required be positive definite; and in fact in the example of
the continuum sine-Gordon model which we consider in Section 1.3 below, the effective potential
remains non-convex at all scales t > 0. We also emphasise that the application of the heat kernel
Qt to HessVt(ϕ) in (1.8) has an important smoothing effect. In particular, for the sine-Gordon
model, we will see that this smoothing effect is essential when β > 4π.

Remark 1.4. We have defined the renormalised potential Vt as the convolution solution (1.3)
to the Polchinski equation (1.10). Since equivalently Zt = e−Vt solves the heat equation ∂tZt =
1
2∆Ċt

Zt, the Polchinski equation has a unique solution under weak conditions. Then one may
equivalently solve (1.10) instead of (1.3); for an example for which this is useful, see Section 3.

Remark 1.5. We remark that with the time-dependent metric gt = e+tA on X and ∇gt and ∆gt

defined as in Riemannian geometry, i.e., ∇gt = g−1
t ∇ and ∆gt the Laplace-Beltrami operator, one

has ∆Ċt
= ∆gt and (∇F )2

Ċt
= (∇gtF )2

gt . The condition (1.8) then becomes Hessgt Vt > µ̇tgt.

1.3. Continuum sine-Gordon model. In Section 3, we apply Theorem 1.2 to prove asymp-
totically sharp Log-Sobolev inequalities for Glauber and Kawasaki dynamics of the massive con-
tinuum sine-Gordon model with β < 6π. The massive sine-Gordon model is a fundamental
example of a two-dimensional interacting Euclidean Quantum Field Theory, i.e., a non-Gaussian
probability measure on D′(R2) sometimes formally written as

(1.14)
1

Z
exp

[
−
∫
R2

(
1

2
ϕ(−∆ϕ) +

1

2
m2ϕ(x)2 + 2z : cos(

√
βϕ(x)) :

)
dx

] ∏
x∈R2

dϕ(x).

Here ∆ is the Laplacian on R2, and the notation : denotes Wick ordering, i.e., that z is formally
multiplied by a divergent constant (making the microscopic potential extremely non-convex); see
(1.15)-(1.16) below for the precise definition that we will use. The Glauber dynamics of the sine-
Gordon model (also called dynamical sine-Gordon model) can be realised as a singular SPDE that
was recently constructed using the theory of regularity structures. References on the sine-Gordon
model are provided further below.

For clarity, we consider the model in a lattice approximation of a two-dimensional torus, and
prove estimates uniformly in the lattice spacing and in the size of the torus. Therefore, from
now on, let d = 2, let ΩL = LTd be the torus of side length L > 0, and let Ωε,L = ΩL ∩ εZd be
its lattice approximation with mesh size ε > 0 (where we always assume L is a multiple of ε).
The continuum sine-Gordon model νε,L in the lattice approximation is the probability measure
on RΩε,L with density proportional to e−Hε,L(ϕ) where Hε,L is defined for ϕ : Ωε,L → R by

(1.15) Hε,L(ϕ) = εd
∑

x∈Ωε,L

(
1

2
ϕx(−∆εϕ)x +

1

2
m2ϕ2

x + 2zε cos(
√
βϕx)

)
,

with divergent coupling constant

(1.16) zε = zε−β/4π,

and where (∆εϕ)x = ε−2
∑

y∼x(ϕy − ϕx) is the discretised Laplacian, i.e., the sum y ∼ x is over

nearest neighbour vertices y of x in εZd. Under suitable assumptions, this normalisation ensures
that, for 0 < β < 8π, the measures νε,L converge weakly to a non-Gaussian probability measure
on D′(R2) as ε→ 0 and L→∞; see the discussion after the statement of the theorems below.

Our first theorem is a uniform Log-Sobolev inequality for the Glauber dynamics of the massive
sine-Gordon measure νε,L (with dimension always d = 2). The Glauber Dirichlet form is given
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by

(1.17) Dε,L(F ) =
1

ε2

∑
x∈Ωε,L

Eνε,L

[(
∂F

∂ϕx

)2
]
,

corresponding to the system of SDEs

(1.18)
∂

∂t
ϕεx = (∆εϕε)x +m2ϕεx + ε−β/4π2z

√
β sin(

√
βϕεx) +

√
2Ẇ ε

x ,

where Ẇ ε is space-time white noise (with discretised space), i.e., the (W ε
x)x∈Ωε,L are independent

Brownian motions with quadratic variation 〈W ε
x〉(t) = t/ε2.

Theorem 1.6. Fix β < 6π, and let L > 0, m > 0, and z ∈ R. Then there is γ(β, z,m,L) > 0
independent of ε > 0 such that, for all F > 0,

(1.19) Entνε,L(F ) 6
2

γ(β, z,m,L)
Dε,L(

√
F ).

Moreover, there is δβ > 0 such that if Lm > 1 and |z|m−2+β/4π 6 δβ, then

(1.20) γ(β, z,m,L) > m2 −Oβ(mβ/4π|z|),

where the constant Oβ depends on β only (and is thus uniform in L > 1/m).

Our next theorem is a (conservative) Kawasaki version of the previous result. We thus consider
the measure ν0

ε,L obtained by constraining the mean spin of the measure νε,L to
∑

x∈Ωε,L
ϕx = 0,

i.e., ν0
ε,L is supported on {ϕ :

∑
x ϕx = 0}. (The same proof also works for arbitrary nonzero

mean of ϕ.) The Dirichlet form for Kawasaki dynamics with invariant measure ν0
ε,L is defined by

(1.21) D0
ε,L(F ) =

1

ε4

∑
x∼y∈Ωε,L

Eν0
ε,L

[(
∂F

∂ϕx
− ∂F

∂ϕy

)2
]
.

Theorem 1.7. Fix β < 6π, and let L > 0, m > 0, and z ∈ R. Then there is γ0(β, z,m,L) > 0
independent of ε > 0 such that, for all F > 0,

(1.22) Entν0
ε,L

(F ) 6
2

γ0(β, z,m,L)
D0
ε,L(
√
F ).

Moreover, there is δβ > 0 such that if Lm > 1 and |z|m−2+β/4π 6 δβ, then

(1.23) γ0(β, z,m,L) >
(2π)2

L2

(
m2 +

(2π)2

L2
−Oβ(mβ/4π|z|)

)
,

where the constant Oβ depends on β only (and is thus uniform in L > 1/m).

For z = 0, the sine-Gordon model degenerates simply to the continuum Gaussian free field
with covariance (−∆+m2)−1, as ε ↓ 0, for which the Glauber Log-Sobolev constant is m2 (by [32]
or the Bakry–Émery criterion), and similarly in the Kawasaki case. Note that, in this scaling in
which the convexity of the Gaussian measure is of order 1, the best lower bound on the Hessian
of the interaction term V0 is of order −ε−β/4π if z 6= 0 and thus tends to −∞ as ε→ 0. Thus the
measure is far out of the scope of the applicability of the Bakry–Émery criterion if z 6= 0. Our
proof of the above theorems via Theorem 1.2 relies on the smoothing of the effective potential Vt
along the flow of the Polchinski equation.

The Glauber dynamics of the sine-Gordon model is considered in [16,36]. Using the theory of
regularity structures, it is shown in these references that versions of (1.18) that are regularised in
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space-time instead of space only converge as ε→ 0 pathwise in a space of distributions on a short
noise-dependent time interval. In our setting, it is essential that the noise is white in time for the
regularised dynamics to define a Markov process. The question of regularisation in space rather
than space-time was considered for the closely related problems of the subcritical continuum ϕ4

model and KPZ equation in [34, 35, 66] as well as in [23, 51, 54]. Presumably similar arguments
would apply also to the sine-Gordon model, but have not been carried out.

Finally, we provide some references on the continuum sine-Gordon model. For 0 < β < 8π, at
least when the domain is a torus and z 6= 0 is small and m2 > 0, it is known that νε,L → ν weakly,
where ν is a non-Gaussian measure on D′(R2) with a precise description in terms of renormalised
expansions; see [28,29], [9,56], [14], and [11,20,21] for different approaches. This result is simplest
for β < 4π, when in finite volume the continuum sine-Gordon measure is absolutely continuous
with respect to the Gaussian free field. For 4π 6 β < 8π, there is an infinite sequence of thresholds
at β = 8π(1 − 1/2n), n = 1, 2, . . . , at which the partition function (but not the normalised
probability measure) acquires divergent contributions; see [9] for further discussion. The physical
meaning of these divergences remains debated [27]. The sine-Gordon model satisfies a very
interesting duality with the massive Thirring model, the Coleman correspondence or Bosonization
[17]. For restricted values of β, this correspondence has been established in finite volume or with
a mass term [8, 18, 29], but in general its proof remains an open problem, most importantly in
the formally massless case m2 = 0. In particular, under this correspondence, for the special
value β = 4π, the correlations functions of the sine-Gordon model are equivalent to those of free
fermions. In general, an important question for the sine-Gordon model that has remained open
is the formally massless case L→∞ and m2 → 0, in which case correlations decay polynomially
if z = 0. For z 6= 0, it is conjectured that the equilibrium correlation functions have exponential
decay, for any β < 8π. Closely related results for small β were obtained in [13, 64]. It would be
very interesting to understand the dynamical behaviour in this regime.

Our result extends up to the second threshold β < 6π and makes use of the approach of [14].
It remains a very interesting problem to extend our results to the optimal regime β < 8π. Recent
progress in the direction of extending the method of [14] includes [43]. Other recent results for
the sine-Gordon model include [40]. For a one-dimensional analogue of the sine-Gordon model, a
recent construction using martingales was given in [44].

1.4. More discussion of our approach and of further directions. Our approach to the
Log-Sobolev inequality involves the Polchinski equation (1.10). The Polchinski equation is a
continuous version of Wilson’s renormalisation group (which typically proceeds in discrete steps)
and variations of it go back to [62,63], while the continuous point of view was first systematically
used by Polchinski [59]. See [42] for a review of its history as well as for an account of the important
role it has played in recent advances in Perturbative Quantum Field Theory. The relation of the
Polchinski equation to the Mayer expansion and its iterated versions was investigated in [14] on
which we rely for the sine-Gordon model. Ideas related to the Polchinski equation were also used
recently in [5] for a simple construction of the continuum ϕ4 model in d = 2, 3. We also mention
that approaches involving aspects of renormalisation have been used for a long time to study
dynamics of spin systems, e.g., in the form of block dynamics [45,50,65] and more recently in the
two-scale approach [22,33,53,57]. Our approach involves infinitely many scales.

The regime of the continuum limit considered in Section 1.3 is known as the ultraviolet problem
in physics, which for the two-dimensional sine-Gordon model is well-posed for β < 8π. The long-
distance behaviour is predicted to be independent of ε. For β < 8π, it can studied as a property
of the continuum limit ε→ 0, but it makes sense for all β > 0 when the regularisation ε is fixed
(lattice problem). For β > βc (where the curve βc(z) passes through 8π at z = 0, see [24,25]) and
small z and m2 = 0, the scaling limit is known to be Gaussian free field in a suitable sense, for
the model defined on the torus [19, 25]. This is called the infrared problem in physics. However,
we emphasise that, while the ultraviolet problem can be translated to a lattice problem, as we do,
the scaling of the infrared problem is more delicate than that of the ultraviolet problem. For the
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sine-Gordon model, in the ultraviolet limit, the microscopic coupling constant is very small, of
order ε2−β/4π � 1. For the infrared problem, the microscopic coupling constant is of order 1, and
unlikely field configurations play a more important role in understanding the measure (large field
problem); see [19,24,25]. We studied the spectral gap for the hierarchical version of the infrared
problem in [6]. Using Theorem 2.6 and the estimates proved in [6], the results for the spectral
gap stated in [6] can be improved to results about the Log-Sobolev constant; see Example 2.7.

The next natural class of models that would be interesting to apply Theorem 1.2 to is the ϕ4

model. The problem analogous of the one considered for the sine-Gordon model would be the
continuum ϕ4 model on Rd where d = 2, 3 with sufficiently large mass (ultraviolet problem). On
a finite two-dimensional torus, a spectral gap result for the continuum ϕ4 model has been shown
in [61]. We stress again that the Polchinski equation has also been used in [5] in the construction
of the continuum ϕ4 model on a torus in d = 2, 3. As in the case of the sine-Gordon model, the
infrared problem appears more difficult than the ultraviolet problem. For the latter we expect
that the Log-Sobolev constant of the lattice ϕ4 model or the Ising model in d = 4 (respectively
d > 4) scales as u(− log u)z (respectively u) as the critical point is approached with distance
u ↓ 0. Again, for the hierarchical ϕ4 model, we proved the analogous statement for the spectral
gap in [6] and the results of this paper can again be used to improve the latter result to prove
also an analogous Log-Sobolev inequality; again see Example 2.7.

In a different direction, the Bakry–Émery theory has a well-known formulation in the context
of manifolds (and beyond). The Polchinski equation is closely related to the Gaussian convolution
semigroup ECt on X and thus to the linear structure of X. However with the disintegration of
the Gaussian measure taking the role of the reverse Ricci flow, there is an interesting resemblence
of our construction with those in [48,52,58]; see also Remark 1.5.

Finally, we remark that Log-Sobolev inequalities are a very useful tool to derive mixing results
in general, see, e.g., [49]. It would be very interesting to derive such results in our context.

2 Log-Sobolev inequality and the Polchinski equation

In this section we prove Theorem 1.2 and variations of this result that apply in slightly different
set-ups. The proofs share many elements with the Bakry–Émery argument which we will review.

2.1. The renormalisation semigroup. Let t ∈ [0,∞] 7→ Ct be a function of positive semidef-
inite matrices on RN increasing continuously as quadratic forms to a matrix C∞. More precisely,
we assume that Ct =

∫ t
0 Ċs ds for all t, where t 7→ Ċt is a bounded function with values in the

space of positive semidefinite matrices that is the derivative of Ct except at isolated points. As
before, we denote by ECt the expectation of the possibly degenerate Gaussian measure with
covariance Ct. We consider a probability measure ν0 with expectation

(2.1) Eν0F ∝ EC∞(e−V0(ζ)F (ζ)),

for a potential V0 : RN → R. For t > s > 0, we recall the definitions

e−Vt(ϕ) = ECt(e
−V0(ϕ+ζ)),(2.2)

Ps,tF (ϕ) = eVt(ϕ)ECt−Cs(e
−Vs(ϕ+ζ)F (ϕ+ ζ)),(2.3)

EνtF = Pt,∞F (0) = eV∞(0)EC∞−Ct(e
−Vt(ζ)F (ζ)),(2.4)

where the expectations again apply to ζ. We impose the following continuity assumption: For all
bounded smooth functions F : X → R and g : R→ R,

(2.5) Eνtg(P0,tF ) is continuous in t ∈ [0,+∞].

The assumption (2.5) reduces to (1.6) when Ct is differentiable in t, as in Section 1.2, and it is
again clear in all examples of practical interest.
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The following proposition collects some properties of the above definitions; we postpone its
elementary proof to Section 2.4.

Proposition 2.1. Let (Ct) be as above, let V0 ∈ C2, and assume (2.5). Then for every t such that
Ct is differentiable the renormalised potential V defined in (1.3) satisfies the Polchinski equation

∂tVt =
1

2
∆Ċt

Vt −
1

2
(∇Vt)2

Ċt
.(2.6)

The operators (Ps,t)s6t form a time-dependent Markov semigroup with generators (Lt), in the
sense that Pt,t = id and Pr,tPs,r = Ps,t for all s 6 r 6 t, that Ps,tF > 0 if F > 0 and Ps,t1 = 1,
and that for all t at which Ct is differentiable (respectively s at which Cs is differentiable),

(2.7)
∂

∂t
Ps,tF = LtPs,tF, − ∂

∂s
Ps,tF = Ps,tLsF, (s 6 t),

for all smooth functions F , where Lt acts on a smooth function F by

(2.8) LtF =
1

2
∆Ċt

F − (∇Vt,∇F )Ċt .

The measures νt evolve dual to (Ps,t) in the sense that

(2.9) EνtPs,tF = EνsF (s 6 t), − ∂

∂t
EνtF = EνtLtF.

Finally, for any smooth function F with values in a compact subset of (0,∞) and Φ(x) = x log x,

(2.10) EνtΦ(P0,tF ) is continuous in t ∈ [0,+∞].

Remark 2.2. The Polchinski semigroup operates from the right, i.e., Ps,t = Pr,tPs,r for s 6 r 6 t.
Thus it acts on probability densities relative to νt: if µ0 = F dν0 is a probability measure then
µt = P0,tF dνt is again a probability measure. For a time-independent semigroup Ts,t = Tt−s that
is reversible with respect to the measure ν0 (as, for example, the original semigroup associated to
the Dirichlet form), one has the dual point of view that T describes the evolution of an observable:

(2.11) EµtG =

∫
G(TtF ) dν0 =

∫
(TtG)F dν0 = Eµ0(TtG).

Such a dual semigroup can be realised in terms of a Markov process (ϕt) as TtF (ϕ) = Eϕ0=ϕF (ϕt).
Since the Polchinski semigroup is not reversible and time-dependent, this interpretation does not
apply to the Polchinski semigroup. Instead, the Polchinski semigroup Ps,t can be realised in terms
of an SDE that starts at time t and runs time in the negative direction from t to s. Indeed, set
ϕr = ϕ̃t−r where ϕ̃ satisfies

(2.12) dϕ̃r = −Ċt−r∇Vt−r(ϕ̃r)dr +

√
Ċt−rdBr, 0 6 r 6 t.

Since G(r, ϕ) = Ps,t−rF (ϕ) satisfies ∂rG + Lt−rG = 0 for s < r < t by (2.7), Itô’s formula and
(2.12) imply that G(r, ϕ̃r) = Ps,t−rF (ϕt−r) is a martingale for r ∈ [s, t]. This implies

(2.13) Ps,tF (ϕ) = Eϕt=ϕF (ϕs).

Thus if ϕt is distributed according to νt by the above backward in time evolution ϕs is distributed
according to νs for s < t. Our interpretation of this is that, while the renormalised measures νt
are supported on increasing smooth (in the index space) configurations as t grows, the backward
evolution restores the small scale fluctuations of ν0.

For later use we also record the following useful relations for the derivatives of Vt; we will not
use these in Section 2. The formulas follow immediately by differentiating (2.2) using (2.3).

Proposition 2.3. For all f ∈ X and t > s > 0,

(f,∇Vt) = Ps,t(f,∇Vs),(2.14)

(f,HessVtf) = Ps,t(f,HessVsf)−
[
Ps,t((f,∇Vs)2)− (Ps,t(f,∇Vs))2

]
.(2.15)
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2.2. Relative entropy, Markov semigroups, and the Bakry–Émery argument. In a
time-dependent generalisation, we now review the decomposition of the relative entropy in terms
of a semigroup that underlies the Bakry–Émery argument. By approximation (see, e.g., [60,
Theorem 3.1.13]), to prove a Log-Sobolev inequality, it suffices to consider smooth functions
F : X → R with values in a compact subset of (0,∞), which we will do from now on.

We consider a curve of probability measures (νt)t>0 and a corresponding dual time-dependent
Markov semigroup (Ps,t) with generators (Lt) as in Proposition 2.1. Namely, we assume that
(2.7) and (2.9) hold, that Lt is of the form (2.8) for some positive semidefinite matrices Ċt and
functions Vt (not necessarily satisfying (2.6)), and also that (2.10) holds. Denoting Ft = P0,tF
and Ḟt = ∂

∂tFt, using first (2.9) and then (2.8), it is then elementary to see that

− ∂

∂t
EνtΦ(Ft) = Eνt

(
Lt(Φ(Ft))− Φ′(Ft)Ḟt

)
= Eνt

(
Φ′(Ft)LtFt + Φ′′(Ft)

1

2
(∇Ft)2

Ċt
− Φ′(Ft)Ḟt

)
=

1

2
Eνt
(

Φ′′(Ft)(∇Ft)2
Ċt

)
.(2.16)

Integrating this relation using (2.10), with Φ′′(x) = 1/x, it follows that

(2.17) Entν0(F ) =
1

2

∫ ∞
0

Eνt
(∇P0,tF )2

Ċt

P0,tF
dt = 2

∫ ∞
0

Eνt(∇
√
P0,tF )2

Ċt
dt.

To be precise, recall that Ct is differentiable except for at most countably many t. For all t
such that Ct is differentiable, the identity (2.16) holds and implies that the continuous function
t 7→ EνtΦ(Ft) is differentiable at t with nonpositive derivative. In particular, this implies that
EνtΦ(Ft) is decreasing, which justifies the use of the fundamental theorem of calculus and together
with (2.5) with t = +∞ for the limit gives (2.17).

To obtain a Log-Sobolev inequality, the right-hand side of (2.17) must be bounded by the
Dirichlet form with respect to the measure ν0. The same argument with Φ(x) = x2 would give
a bound on the variance rather than the entropy and correspondingly a spectral gap inequality;
the required bound is easier to obtain in this case.

For measures that are log-concave (or, more generally, ones that satisfy a curvature dimension
condition; see [4]), sharp estimates have been obtained by celebrated arguments of Lichnerowicz
(for the spectral gap) and of Bakry–Émery. We review the latter briefly now.

Example 2.4 (Bakry–Émery [2,3]). Assume the measure ν = ν0 has expectation given by (1.12).
Let νt = ν0 for all t > 0, and define the semigroup Ts,t = Tt−s with generator

(2.18) LF = ∆F − (∇H,∇F ).

This semigroup leaves ν0 invariant. Bakry–Émery showed, for all F > 0,

∂

∂t
Eν0(∇

√
TtF )2 = −1

2
Eν0(TtF (|Hess logTtF |22 + (∇ logTtF, (HessH)∇ logTtF )))

6 −1

2
Eν0(TtF (∇ logTtF, (HessH)∇ logTtF ))).(2.19)

If HessH(ϕ) > λ id > 0 as quadratic forms, uniformly in ϕ ∈ RN , it follows that

∂

∂t
Eν0(∇

√
TtF )2 6 −2λEν0(∇

√
TtF )2, Eν0(∇

√
TtF )2 6 e−2λtEν0(∇

√
F )2.(2.20)

Substituting this into (2.17) yields the Log-Sobolev inequality

(2.21) Entν0(F ) = 4

∫ ∞
0

Eν0(∇
√
TtF )2 dt 6

2

λ
Eν0(∇

√
F )2.

In fact, (2.19) follows as in Lemma 2.8 below.
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2.3. Variations of Theorem 1.2. The following theorem generalises Theorem 1.2 by not

assuming that Ċt is given by the heat kernel.

Theorem 2.5. Let Ċt and Vt be as in Section 2.1, assume that Ċt is differentiable for all t, and
that (2.5) holds. Suppose there are λ̇t (allowed to be negative) such that

(2.22) Ċt HessVt(ϕ)Ċt −
1

2
C̈t > λ̇tĊt for all t > 0 and all ϕ ∈ X,

and define

(2.23) λt =

∫ t

0
λ̇s ds,

1

γ
= |Ċ0|

∫ ∞
0

e−2λs ds

where |Ċ0| is the largest eigenvalue of Ċ0. Then ν0 satisfies the Log-Sobolev inequality

(2.24) Entν0(F ) 6
2

γ
Eν0(∇

√
F )2.

The proof of the theorem is given in Section 2.5. When Ċt is given by the heat kernel, as in
the context of Theorem 1.2, the term C̈t in (2.22) can be eliminated explicitly and we can thus
deduce Theorem 1.2 as follows.

Proof of Theorem 1.2. Let Qt = e−tA/2 and Ċt = e−tA = Q2
t . Then C̈t = −AĊt = −QtAQt and

the left-hand side of (2.22) is equal to

(2.25) Qt

[
Qt HessVt(ϕ)Qt +

1

2
A

]
Qt.

Since by assumption A > λ and Qt HessVtQt > µ̇t we can choose λ̇t = 1
2λ+ µ̇t to get

(2.26)
1

2
A+Qt HessVt(ϕ)Qt > λ̇t id,

which with Q2
t = Ċt implies (2.22). The claim (1.9) is thus implied by Theorem 2.5.

The next theorem provides a variation of Theorem 2.5 that does not rely on differentiability
or even continuity of Ċt in t, and can therefore be applied with more general covariance decompo-
sitions. The price is the less symmetric condition (2.27). However, this condition can for example
be applied to discrete decompositions C∞ = C0 + C1 + · · · by setting Ċs =

∑
j 1(j,j+1](s)Cj . In

particular, this applies to the hierarchical spin models that we studied in [6]; see Example 2.7.

Theorem 2.6. Let Ċt and Vt be as in Section 2.1, and let Xt ⊆ X be the image of the matrix
C∞ − Ct. Assume that (2.5) holds and that there are λ̇t (allowed to be negative) such that

(2.27)
1

2

[
Ċt HessVt(ϕ) + HessVt(ϕ)Ċt

]
> λ̇t id for all t > 0 and all ϕ ∈ Xt,

and define

(2.28) λt =

∫ t

0
λ̇s dt,

1

γ
=

∫ ∞
0

e−2λs |Ċs| ds

where |Ċt| is the largest eigenvalue of Ċt. Then ν0 satisfies the Log-Sobolev inequality (2.24).

Again the proof is given in Section 2.5.
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Example 2.7 (Hierarchical models). Let Cj = µjQj be the decomposition of the hierarchi-
cal Green function as in [6, Section 2.1] (where we here write µj instead of λj) and set Ċt =∑

j 1(j,j+1](t)Cj and Q̇t =
∑

j 1(j,j+1](t)Qj . Using the structure of the hierarchical decomposition,
for ϕ ∈ Xt, the matrix HessVt(ϕ) is block diagonal with respect to scale-j blocks (see [6, Sec-
tion 1.3]) where t ∈ (j, j + 1] and constant on each such block. This means that HessVt(ϕ)
commutes with Qt and by the hierarchical structure thus with Ċt. In particular, for ϕ ∈ Xt,

(2.29) Ċ
1/2
t HessVt(ϕ)Ċ

1/2
t > λ̇t id

implies (2.27). For hierarchical versions of the four-dimensional lattice |ϕ|4 model in the ap-
proach of the critical point, and for the two-dimensional lattice sine-Gordon model in the rough
(Kosterlitz–Thouless) phase, we established the estimate (2.29) for integer t (and appropriate λ̇t)
in [6]. By the same methods, one can extend those estimates to noninteger t with −λ̇t = O(−λ̇j)
for t ∈ (j, j + 1]. Using Theorem 2.6 instead of [6, Theorem 2.1], the theorems for the spectral
gap in [6] can thus be extended to analogous ones for the Log-Sobolev constant.

Further variations of the conditions (2.22) and (2.27) for the Log-Sobolev inequality are pos-
sible and might be useful in other applications, but we do not investigate these here.

2.4. Proof of Proposition 2.1. We start with the proof of Proposition 2.1. This is a straight-
forward computation from the definitions.

Proof of Proposition 2.1. Let Zt(ϕ) = ECte
−V0(ϕ+ζ). By a well-known computation (see, e.g.,

[7, Section 2]), it follows that the Gaussian convolution acts as the heat semigroup with time-
dependent generator 1

2∆Ċt
, i.e., if Z0 is C2 in ϕ so is Zt for any t > 0, that Zt(ϕ) > 0 for any t

and ϕ, and that for any t > 0 such that Ct is differentiable,

(2.30)
∂

∂t
Zt =

1

2
∆Ċt

Zt, Z0 = e−V0 .

Therefore Vt = − logZt satisfies the Polchinski equation

(2.31)
∂

∂t
Vt = −

∂
∂tZt

Zt
= −

∆Ċt
Zt

2Zt
= −1

2
eVt∆Ċt

e−Vt =
1

2
∆Ċt

Vt −
1

2
(∇Vt)2

Ċt
.

That (Ps,t) is a semigroup, i.e., that Pr,tPs,r = Ps,t and Pt,t = id for any s 6 r 6 t, follows
immediately from the definition (1.4) and the convolution property of Gaussian measures, i.e.,
that the sum of two independent Gaussian vectors is Gaussian with covariance given by the sum
of the covariances (again see, e.g., [7, Section 2]). The Markov property is obvious. To verify that
its generator Lt is given by (2.8), set Ft(ϕ) = P0,tF (ϕ) = eVt(ϕ)ECt(e

−V0(ϕ+ζ)F (ϕ+ ζ)). Then

∂

∂t
Ft = (

∂

∂t
Vt)Ft + eVt

1

2
∆Ċt

ECt(e−V0(·+ζ)F (·+ ζ))

= (
∂

∂t
Vt)Ft + eVt

1

2
∆Ċt

(e−VtFt)

= (
∂

∂t
Vt)Ft − (

1

2
∆Ċt

Vt)Ft +
1

2
(∇Vt)2

Ċt
Ft +

1

2
∆Ċt

Ft − (∇Vt,∇Ft)Ċt

=
1

2
∆Ċt

Ft − (∇Vt,∇Ft)Ċt
= LtFt,(2.32)

which is the second equality in (2.7). The third inequality in (2.7) follows analogously, and the
first inequality is clear from the fact that the Gaussian measure with covariance 0 is the Dirac
measure at 0.
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The first equality in (2.9) holds by definition, and the second one is a direct computation from
the definition (1.3) and the fact that V satisfies (1.10):

− ∂

∂t
EνtF = Eνt((

∂

∂t
Vt)F −

1

2
(∆Ċt

Vt)F +
1

2
(∇Vt)2

Ċt
F +

1

2
∆Ċt

F − (∇Vt,∇F )Ċt)

= Eνt(
1

2
∆Ċt

F − (∇Vt,∇F )Ċt) = EνtLtF.(2.33)

Finally, (2.10) follows from (2.5). Indeed, if F takes values in a compact interval I ⊂ (0,∞),
then P0,tF also takes values in I. The function Φ is smooth on I and can be extended to a
bounded smooth function g on R such that g|I = Φ|I . The claim now follows from (2.5).

2.5. Proofs of Theorems 2.5-2.6. Theorems 2.5-2.6 can be proved in the same way as the

Bakry–Émery criterion with the crucial difference that the original semigroup is replaced by the
Polchinski semigroup, that the corresponding potentials depend on time, and that gradients are
taken in terms of a time-dependent quadratic form. We present the primary proofs along the
lines of [4]; see Remark 2.9 for alternative proofs using synchronous coupling as in [15].

Lemma 2.8. Let Lt, P0,t, Ċt, Vt be as in Section 2.1. Then the following identity holds for any
t-independent positive definite matrix Q:
(2.34)

(Lt−∂t)(∇
√

P0,tF )2
Q = 2(∇

√
P0,tF ,HessVtĊt∇

√
P0,tF )Q+

1

4
(P0,tF )|Ċ1/2

t (Hess logP0,tF )Q1/2|22,

where |M |22 =
∑

p,q |Mpq|2 denotes the squared Frobenius norm of a matrix M = (Mpq).

Proof. Throughout the proof, we drop the fixed index t, i.e., write F instead of P0,tF , and L for
Lt, and similarly for Ċt and Vt. Then the left-hand side of (2.34) can be written as

(2.35)
1

2

[
L

(∇F )2
Q

2F
−

(∇LF,∇F )Q
F

+
(∇F )2

Q

2F 2
LF

]
.

To compute the three terms, we denote derivatives by subscripts i, j, k, l, and use the summation
convention for these subscripts. The first term then is
(2.36)

L
(∇F )2

Q

2F
=

1

2
ĊijQkl

[
(
FkFl
2F

)ij − 2Vi(
FkFl
2F

)j

]
=

1

2
ĊijQkl

[
(
FikFl
F
− FkFlFi

2F 2
)j − 2Vi(

FkFl
2F

)j

]
where the last bracket can be expanded as
(2.37)[

FijkFl + FikFjl
F

− FikFlFj
F 2

−
2FkjFlFi + FkFlFij

2F 2
+
FkFlFiFj

F 3
− 2Vi(

FjkFl
F
− FkFlFj

2F 2
)

]
.

The sum of the second and third terms in (2.35) is

(2.38)

−
(∇LF,∇F )Q

F
+

(∇F )2
Q

2F 2
LF =

1

2
ĊijQkl

[
−(Fkij − 2ViFkj − 2VikFj)Fl

F
+

(Fij − 2ViFj)FkFl
2F 2

]
=

1

2
ĊijQkl

[
2Vik

FjFl
F
−
FkijFl
F

+
FijFkFl

2F 2
+ 2Vi(

FkjFl
F
− FjFkFl

2F 2
)

]
.

By adding all three terms, we obtain that (2.35) equals

(2.39)
1

2
ĊijQkl

VikFjFl
F

+
1

4
ĊijQkl

[
FikFjl
F

−
FikFlFj + FjlFiFk

F 2
+
FkFlFiFj

F 3

]
.
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Using that for any given indices i, j, k, l,

(2.40) (logF )ik = (
Fi
F

)k =
Fik
F
− FiFk

F 2
, (logF )jk = (

Fj
F

)l =
Fjl
F
− FjFl

F 2
,

equation (2.39) can be written as

(2.41)
1

2
ĊijQkl

VkiFjFl
F

+
1

4
FĊijQkl(logF )ik(logF )jl.

Using that 2(
√
F )j = Fj/

√
F for the first term, and that, for any symmetric matrix M ,

ĊijQklMikMjl = Ċ
1/2
ip Ċ

1/2
jp Q

1/2
kq Q

1/2
lq MikMjl = Ċ

1/2
ip Ċ

1/2
jp (MQ1/2)iq(MQ1/2)jq

= (Ċ1/2MQ1/2)pq(Ċ
1/2MQ1/2)pq(2.42)

for the second term, (2.41) can therefore be written as

(2.43) 2(∇
√
F ,HessV Ċ∇

√
F )Q +

1

4
F |Ċ1/2(Hess logF )Q1/2|22.

Proof of Theorem 2.5. Lemma 2.8 with Q = Ċs implies

(2.44) (Ls − ∂s)(∇
√

P0,sF )2
Ċs

= 2(∇
√
P0,sF ,HessVsĊs∇

√
P0,sF )Ċs − (∇

√
P0,sF )2

C̈s

+
1

4
(P0,sF )|Ċ1/2

s (Hess logP0,sF )Ċ1/2
s |22.

By the assumption (2.22) and since the last term is positive, it follows that

(2.45) (Ls − ∂s)(∇
√
P0,sF )2

Ċs
> 2λ̇s(∇

√
P0,sF )2

Ċs
.

Equivalently, ψ(s) := e−2λt+2λsPs,t

[
(∇
√
P0,sF )2

Ċs

]
satisfies ψ′(s) 6 0 for s < t. This implies

(2.46) (∇
√
P0,tF )2

Ċt
= ψ(t) 6 ψ(0) = e−2λtP0,t

[
(∇
√
F )2

Ċ0

]
6 |Ċ0| e−2λtP0,t

[
(∇
√
F )2

]
.

By (2.17), then (2.24) follows.

Proof of Theorem 2.6. Lemma 2.8 with Q = id implies

(2.47) (Ls − ∂s)(∇
√

P0,sF )2 = 2(∇
√
P0,sF ,HessVsĊs∇

√
P0,sF )

+
1

4
(P0,sF )|Ċ1/2

s (Hess logP0,sF )|22.

By the assumption (2.27) and since the last term is positive, it follows that, on Xs,

(2.48) (Ls − ∂s)(∇
√

P0,sF )2 > 2λ̇s(∇
√
P0,sF )2.

Equivalently, pointwise on Xt, ψ(s) := e−2λt+2λsPs,t
[
(∇
√
P0,sF )2

]
satisfies ψ′(s) 6 0 for s < t.

This implies, on Xt,

(2.49) (∇
√
P0,tF )2

Ċt
6 |Ċt|(∇

√
P0,tF )2 = |Ċt|ψ(t) 6 |Ċt|ψ(0) = |Ċt|e−2λtP0,t

[
(∇
√
F )2

]
.

Again by (2.17), using that νt is supported on Xt, (2.24) follows.

Remark 2.9. Using the representation (2.12)-(2.13) of the semigroup Ps,t in terms of a stochastic
process (that evolves backwards in time from t to s), one can alternatively prove the theorems
using synchronous coupling as in [15].
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3 Application to the continuum sine-Gordon model

In this section, we prove Theorems 1.6 and 1.7 by applying Theorem 1.2. While it is not necessary,
we find it clearest to rescale the continuum sine-Gordon model at scale ε to a unit lattice problem.

3.1. Rescaling and heat kernel decomposition. Identifying Ωε,L with the unit lattice Λ =
1
εΩε,L, the continuum sine-Gordon model νε,L is equivalent to a spin system whose coupling
matrix is given by the nearest neighbour Laplacian on Zd. We will thus drop the subscripts ε, L
now, and write ν0 for the measure of the form (1.1) with X = RΛ and

(3.1) A = −∆Λ + ε2m2, V0(ϕ) =
∑
x∈Λ

zε2−β/4π cos(
√
βϕx),

where ∆Λ is the standard unit lattice Laplacian acting on the discrete torus of side length L/ε.
We emphasise that throughout this section ∆Λ denotes the lattice Laplacian on Λ and not the
Laplacian on RΛ which we denoted ∆Ċt

in the previous section. Note that ϕ is not rescaled. As

is natural in this normalisation, we normalise the Glauber Dirichlet form, for F : RΛ → R, by

(3.2)
∑
x∈Λ

Eν0

[(
∂F

∂ϕx

)2
]
.

Note that in this normalisation the Log-Sobolev constant of the non-interacting (Gaussian) model
with z = 0 scales as ε2m2 (corresponding to the unit order Log-Sobolev constant m2 > 0 in the
continuum scaling). Also note that the correlation length of the non-interacting model scales as
1/(mε), making it natural to assume L > 1/m as in the statements of the theorems.

In the following, we will use Theorem 1.2 to prove the same scaling in ε for the Log-Sobolev
constant of the interacting model. To verify the assumptions of Theorem 1.2, we will prove the
following estimates on Vt as defined in (1.3). We recall that Qt = e−tA/2 denotes the heat kernel
on the index space Λ.

Proposition 3.1. Let β < 6π, and L > 0, m > 0, and z ∈ R. Then (1.6) holds, and for all
t > 0,

(3.3) Qt HessVt(ϕ)Qt > µ̇t id,

where µt =
∫ t

0 µ̇s ds satisfies

(3.4) |µt| 6 µ∗

with µ∗ = µ∗(β, z,m,L) independent of ε > 0. Moreover, there is δβ > 0 such that if

(3.5) Lm > 1, and |z|m−2+β/4π 6 δβ,

then the optimal bound satisfies µ∗ = Oβ(|z|m−2+β/4π) uniformly in L.

Indeed, Theorem 1.6 is an immediate consequence of these estimates and Theorem 1.2.

Proof of Theorem 1.6. The smallest eigenvalue of A is λ = ε2m2. By (1.9) and (3.4), therefore

(3.6)
1

γ
=

∫ ∞
0

e−λt−2µt dt 6 e2µ∗
∫ ∞

0
e−λt dt =

e2µ∗

λ
=

e2µ∗

ε2m2
,

and Theorem 1.2 implies that ν0 satisfies a Log-Sobolev inequality with constant γ. In the
continuum normalisation of the Dirichlet form (1.17), the sine-Gordon measure thus satisfies a
Log-Sobolev inequality with constant given by m2e−2µ∗ . Moreover, if (3.5) holds, then m2e−2µ∗ =
m2 +Oβ(mβ/4π|z|).
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The proof of Theorem 1.7 for Kawasaki dynamics is almost the same as that of Theorem 1.6.
The constraint measure ν0

0 can be written as in (2.1), with the degenerate covariance matrix C0
∞

supported on the subspace X = RΛ
0 = {ϕ ∈ RΛ :

∑
x ϕx = 0} given by

(3.7) C0
∞ = PA−1P, where Pϕx = ϕx −

1

|Λ|
∑
y∈Λ

ϕy.

In unit lattice scaling, the Dirichlet form for Kawasaki dynamics is given, for F : RΛ
0 → R, by

(3.8)
∑

x∼y∈Λ

Eν0
0

[(
∂F

∂ϕx
− ∂F

∂ϕy

)2
]
.

We decompose the covariance matrix C0
∞ in terms of

(3.9) Ċ0
t = e−tAP, Q0

t = e−tA/2P,

and define V 0
t as in (1.3) with respect to Ċ0

t . From now on, we will refer to the case that Vt is
replaced by V 0

t and Ċt by Ċ0
t as the conservative case. Then the statement of Proposition 3.1

remains true in the conservative case.

Proposition 3.2. Let β < 6π, and L > 0, m > 0, and z ∈ R. Then (1.6) holds, and for all
t > 0,

(3.10) Q0
t HessV 0

t (ϕ)Q0
t > µ̇tP,

where µt satisfies (3.4) with the same bound on µ∗ if (3.5) holds.

Analogously as in the proof of Theorem 1.6, we deduce Theorem 1.7 from Proposition 3.2.

Proof of Theorem 1.7. Since Λ is a discrete torus of side length L/ε, the smallest nonzero eigen-
value of the lattice Laplacian −∆Λ on Λ is of order (ε/L)2. We thus denote the smallest nonzero
eigenvalue of −∆Λ on Λ by ζ2ε2. Explicitly, as ε→ 0,

(3.11) ζ2 → (
2π

L
)2.

As in the proof of Theorem 1.6, with λ the smallest eigenvalue on X of A = −∆Λ + ε2m2,

(3.12)
1

γ0
6
e2µ∗

λ
=

e2µ∗

ε2(ζ2 +m2)
,

and Theorem 1.2 implies that ν0
0 satisfies a Log-Sobolev inequality with constant γ0:

(3.13) Entν0
0
(F ) 6

e2µ∗

ε2(m2 + ζ2)
Eν0

0
(∇F, P∇F ) 6

e2µ∗

ε4ζ2(m2 + ζ2)
Eν0

0
(∇F,−∆ΛP∇F )

where the last inequality again uses that the smallest nonzero eigenvalue of the lattice Laplacian
−∆ is ε2ζ2. We emphasise that ∇ denotes the continuous gradient on RΛ while ∆Λ is the lattice
Laplacian on Λ. Recalling the continuum normalisation of the Dirichlet form given by (1.21),
and (3.4), this is the claim of Theorem 1.7.
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3.2. Outline, scaling conventions, and heat kernel. To prove Propositions 3.1-3.2, we
proceed in the following steps. We first consider the main case (3.5). The proofs are simpler for
β < 4π and we begin with this case in Section 3.4. In Sections 3.5-3.7, we extend this analysis to
the case β < 6π. Finally, in Section 3.8, we show that a crude argument suffices to remove the
assumption (3.5) at the cost of constants that are uniform in ε but not in L.

To prove Propositions 3.1-3.2, we will require estimates on the heat kernel decomposition

(3.14) Ct =

∫ t

0
Ċs ds, Ċs = Q2

s = e−sA.

In this section, we set-up a convenient normalisation and also collect some elementary estimates.
We have chosen the heat kernel decomposition (and not a finite range decomposition, for example)
to be able to directly apply Theorem 1.2. The characteristic length scale of the heat kernel is
defined by

(3.15) `t = (1 ∨
√
t) ∧ 1

εm

and we set

(3.16) Qt = `tQt, Ċt = `2t Ċt, ϑt = e−
1
2
m2ε2t.

Standard estimates on the heat kernel imply that Ċt(x, y) is essentially supported on |x− y| . `t
and the above normalisation is such that Ċλ2t(λx, λy) ≈ Ċt(x, y) and Q2

t = Ċt. We will often
express estimates in terms of these quantities and in terms of `t (instead of t), and write integrals
over the scale in terms of the approximately scale invariant measure dt/`2t ≈ dt/t (instead of dt).
For estimates involving the heat kernels Qt, Ċt, Ct and its scaled versions, we will always impose
the following assumption:

(3.17) Lm > 1, or t 6
1

ε2

(
1

m2
∧ L2

)
.

The next lemma provides some elementary estimates on the heat kernel. These are sufficient
for the case β < 4π; for β > 4π more precise estimates are required (and will be stated in the
section they are used). All of these estimates on the heat kernel are collected in Appendix A.

Lemma 3.3. Assume (3.17). For any x ∈ Λ,

(3.18) Ct(x, x) =
1

2π
log `t +O(1), sup

x

∑
y

|Ċt(x, y)| = O(`2tϑ
2
t ),

and the same estimates hold in the conservative case.

Proof. This follows from standard estimates on the heat kernel on Z2, see Appendix A.

Further we define the scale dependent coupling constant zt and its microscopic version zt by

(3.19) zt = `2t zt, zt = e−
β
2
Ct(0,0)z0, where z0 = ε2−β/4πz.

For later purposes, we will now collect some basic properties of this definition. By (3.18) and the
definitions of zt and `t, uniformly in t > 0,

(3.20) zt = Oβ(|z|(ε`t)2−β/4π) = Oβ(|z|m−2+β/4π).

In the following, we write x . y or x = Oβ(y) if |x| 6 Cβ|y| for a β-dependent constant Cβ. For
any β < 8π, by (3.20) then

(3.21)

∫ t

0
|zs|ϑ2

s

ds

`2s
. |zt|,
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as is straightforward to check from the definitions. For use in the proof for β > 4π, we also record
the following estimates (again straightforward from the definitions): for all positive integers n,∫ t

0
|zs|n`2(n−1)

s ϑ2
s

ds

`2s
.

1

n
|zt|n(Cβ`

2
t )
n−1 for β < 8π(1− 1/n),(3.22) ∫ t

0
|zs|n`2(n−1)

s `β/4πs ϑ2
s

ds

`2s
.

1

n
|zt|n(Cβ`

2
t )
n−1`

β/4π
t for β < 8π.(3.23)

3.3. Fourier representation. To estimate the Hessian of the renormalised potential Vt, we use
the Brydges–Kennedy approach [14]. Namely, for any function V : RΛ → R that is 2π√

β
-periodic

in each variable, we will write its Fourier series (assuming it converges absolutely) as

(3.24) V (ϕ) =
∞∑
n=0

V (n)(ϕ), V (n)(ϕ) =
1

n!

∑
ξ1,...,ξn

Ṽ (n)(ξ1, . . . , ξn)ei
√
β
∑n
k=1 ϕxkσk

where Ṽ (n) : (Λ× {±1})n → R and

(3.25) ξi = (xi, σi) ∈ Λ× {±1}.

We think of ξi as a particle with position xi and charge σi. Since the index n is determined from
the number of arguments of Ṽ (n), we will often omit it and write Ṽ (ξ1, . . . , ξn) = Ṽ (n)(ξ1, . . . , ξn).
The representation (3.24) is not manifestly unique without further conditions, but in the relevant
cases we will in fact construct coefficients Ṽ (ξ1, . . . , ξn) such that (3.24) holds.

The initial potential V0 of the sine-Gordon model corresponds to

(3.26) Ṽ0(∅) = 0, Ṽ0(ξ1) = z0, Ṽ0(ξ1, . . . , ξn) = 0 (n > 1).

Set

(3.27) u̇s(ξi, ξj) = βĊs(xi, xj)σiσj , u̇s(ξi, ξj) = `2su̇s(ξi, ξj) = βĊs(xi, xj)σiσj

and

(3.28) Ẇs(ξ1, . . . , ξn) =
1

2

∑
k,l∈[n]

u̇s(ξk, ξl),

where [n] = {1, . . . , n}. We define us and Ws analogously by replacing Ċs by Cs. For later use,
we note that Wt −Ws > 0 holds for all arguments by positive definiteness of Ċs.

Then in terms of the Fourier representation (3.24), the two terms on the right-hand side of
the Polchinski equation (1.10) are represented by

1

2
˜(∆Ċs

V )(ξ1, . . . , ξn) = −1

2

∑
i,j∈[n]

u̇s(ξi, ξj)Ṽ (ξ1, . . . , ξn)

= −Ẇs(ξ1, . . . , ξn)Ṽ (ξ1, . . . , ξn)(3.29)

and

1

2
˜(∇V,∇V )Ċs(ξ1, . . . , ξn) = −1

2

∑
I1∪̇I2=[n]

Ṽ (ξI1)Ṽ (ξI2)
∑

i∈I1,j∈I2

u̇s(ξi, ξj).(3.30)

The sum over I1∪̇I2 = [n] is over all nonempty disjoint subsets I1 and I2 of [n] with I1 ∪ I2 = [n].
Moreover, given ξ1, . . . , ξn and I = {i1, . . . , ik} ⊂ [n] we denote by ξI the vector (ξi1 , . . . , ξik).
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Indeed, (3.29) is straightforward to verify in the sense that if V is given by (3.24) and ∆̃Ċs
V

by (3.29) then

(3.31) ∆Ċs
V (ϕ) =

∑
n

1

n!

∑
ξ1,...,ξn

˜(∆Ċs
V )(ξ1, . . . , ξn)ei

√
β
∑n
k=1 ϕxkσk .

To see (3.30), note that differentiating (3.24) gives

(3.32)
∂

∂ϕx
V (p)(ϕ) =

1

p!

∑
ξ1,...,ξp

Ṽ (ξ1, . . . , ξp)

p∑
k=1

i
√
βσk1x=xke

i
√
β
∑p
k=1 ϕxkσk

and thus

(3.33) (∇V (p),∇V (q))Ċs(ϕ) =
−1

p!q!

∑
ξ1,...,ξp+q

Ṽ (ξ1, . . . , ξp)Ṽ (ξp+1, . . . , ξp+q)

p∑
i=1

p+q∑
j=p+1

u̇s(ξi, ξj)e
i
√
β
∑p+q
k=1 ϕxkσk .

Therefore taking the sum over p and q, using that the number partitions of [n] into two subsets
with p and q = n− p elements is n!/(p!q!) and that Ṽ is symmetric in its arguments, we find

(3.34) (∇V,∇V )Ċs(ϕ) =
∑
n

1

n!

∑
ξ1,...,ξn

˜(∇V,∇V )Ċs(ξ1, . . . , ξn)ei
√
β
∑n
k=1 ϕxkσk

if ˜(∇V,∇V )Ċs is given by (3.30).

By (3.29)-(3.30) and the Duhamel principle, the Polchinski equation has the following formu-
lation as an integral equation:

(3.35) Ṽt(ξ1, . . . , ξn) = e−Wt(ξ1,...,ξn)Ṽ0(ξ1, . . . , ξn)

+
1

2

∫ t

0
ds

∑
I1∪̇I2=[n]

∑
i∈I1,j∈I2

u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)e−(Wt(ξ1,...,ξn)−Ws(ξ1,...,ξn)).

For n 6 1, the unique solution to (3.35) is simply

(3.36) Ṽt(∅) = Ṽ0(∅) = 0, Ṽt(ξ1) = e−
1
2
ut(ξ1,ξ1)Ṽ0(ξ1) = zt,

with zt defined in (3.19). For n > 1, Ṽt(ξ1, . . . , ξn) is then determined explicitly by (3.35) in terms
of Ṽs(ξ1, . . . , ξk), k < n. Hence by induction, (3.35) has a unique solution for any n and t. This
is summarised in the following lemma along with a uniqueness property.

Lemma 3.4. The integral equation (3.35) has a unique solution Ṽ for all n and t. Moreover,
if Vt defined in terms of Ṽt by (3.24) converges absolutely, locally uniformly in t > 0, then Vt is
equal to (1.3), the convolution solution of the Polchinski equation.

Proof. We have already shown that (3.35) has a unique solution. For coefficients Ṽt such that
(3.24) and its derivatives converge absolutely, the function Vt defined by (3.24) is smooth. More-
over, for smooth Vt, the integral equation (3.35) implies the Polchinski equation (1.10). Unique-
ness of bounded solutions to the Polchinski equation by Remark 1.4 then implies that Vt coincides
with the convolution solution of the Polchinski equation.
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3.4. Up to the first threshold: proof of Propositions 3.1-3.2 for β < 4π assuming (3.5).
The following proposition, due to [14], gives good bounds when β < 4π. For completeness, we
reproduce their argument here in our set-up and notation. (See also [12,30,31,38,43] for related
results.) We will then use the result to derive Proposition 3.1 in the case β < 4π. Let

(3.37) ‖u̇s‖ = sup
ξ1

∑
ξ2

|u̇s(ξ1, ξ2)|

and

(3.38) ‖Ṽ (1)‖ = sup
ξ1

|Ṽ (ξ1)|, ‖Ṽ (n)‖ = sup
ξ1

∑
ξ2,...,ξn

|Ṽ (ξ1, . . . , ξn)| (n > 1).

Proposition 3.5. For all n > 1, the solution to (3.35) satisfies

(3.39) ‖Ṽ (n)
t ‖ 6 nn−2|zt|nMn−1

t , where Mt =

∫ t

0
ds‖u̇s‖eβ(Ct−Cs)(0,0),

with zt defined in (3.19). In particular, if ztMt < 1/e, the Fourier series for Vt converges and
Vt coincides with the convolution solution to the Polchinski equation. The analogous statements
hold in the conservative case.

Proof. For n = 1, the bound (3.39) is obvious from (3.36). To prove the bounds (3.39) for n > 1,
we use induction. Note that the first term on the right-hand side of (3.35) does not contribute

for n > 1 since then Ṽ
(n)

0 = 0 by (3.26). In the second term, we drop the exponential inside the
integral (as Wt −Ws > 0) to obtain

(3.40) |Ṽt(ξ1, . . . , ξn)| 6 1

2

∫ t

0
ds

∑
I1∪̇I2=[n]

∑
i∈I1,j∈I2

|u̇s(ξi, ξj)Ṽs(ξI1) Ṽs(ξI2)|.

Note that if |I1| = n− k and |I2| = k then

sup
ξ1

∑
ξ2,...,ξn

|u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)| 6 ‖u̇s‖‖Ṽ (n−k)
s ‖‖Ṽ (k)

s ‖.(3.41)

For example,

sup
ξ1

∑
ξ2,ξ3,ξ4

|u̇s(ξ1, ξ3)Ṽs(ξ1, ξ2)Ṽs(ξ3, ξ4)|

6 sup
ξ1

∑
ξ3

|u̇s(ξ1, ξ3)| sup
ξ1

∑
ξ2

|Ṽs(ξ1, ξ2)| sup
ξ3

∑
ξ4

|Ṽs(ξ3, ξ4)| 6 ‖u̇s‖‖Ṽ (2)
s ‖2.(3.42)

Assuming the bound (3.39) for integers less than n, therefore

‖Ṽ (n)
t ‖ 6

1

2

∫ t

0
ds ‖u̇s‖

n−1∑
k=1

(
n

k

)
k(n− k)‖Ṽ (n−k)

s ‖ ‖Ṽ (k)
s ‖

6
1

2

∫ t

0
ds ‖u̇s‖

n−1∑
k=1

(
n

k

)
|zs|nMn−2

s (n− k)n−k−1kk−1.(3.43)

Using that
∑n−1

k=1

(
n
k

)
kk−1(n− k)n−k−1 = 2(n− 1)nn−2 and n/2 6 n− 1 for n > 2,

‖Ṽ (n)
t ‖ 6 nn−2|zt|n(n− 1)

∫ t

0
ds ‖u̇s‖e

n
2
β(Ct−Cs)(0,0)Mn−2

s

6 nn−2|zt|n(n− 1)

∫ t

0
ds ‖u̇s‖e(n−1)β(Ct−Cs)(0,0)Mn−2

s = nn−2|zt|nMn−1
t .(3.44)
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For n > 2, the last equality follows from the following change of variables,

(3.45) (n− 1)

∫ t

0
ds g(s)

(∫ s

0
ds′ g(s′)

)n−2

=

(∫ t

0
ds g(s)

)n−1

,

applied with g(s) = ‖u̇s‖e−βCs(0,0). Indeed,

(3.46) (n− 1)

∫ t

0
ds ‖u̇s‖eβ(n−1)(Ct−Cs)(0,0)Mn−2

s

= (n− 1)eβ(n−1)Ct(0,0)

∫ t

0
ds ‖u̇s‖e−βCs(0,0)

(∫ s

0
ds′ ‖u̇s′‖e−βCs′ (0,0)

)n−2

= Mn−1
t .

Finally, using the bounds (3.39) for Ṽt(ξ1, . . . , ξn) and the assumption supt ztMt < 1/e, the
series (3.24) for Vt(ϕ) converges absolutely since (using nn/n! 6 en),

(3.47)
|Vt(ϕ)|
|Λ|

6
∞∑
n=1

1

n!
nn−2|zt|nMn−1

t 6
∞∑
n=1

en|zt|nMn−1
t =

e|zt|
1− e|zt|Mt

6 C <∞,

and analogously for derivatives. Hence V solves the Polchinski equation (1.10) by Lemma 3.4.

Using the conclusion of the last proposition together with the basic estimates for Ċs given in
Lemma 3.3, it is straightforward to complete the proof of Propositions 3.1-3.2 for β < 4π.

Proof of Propositions 3.1-3.2 for β < 4π assuming (3.5). Since the proofs of the two propositions
are identical we only discuss Proposition 3.1. From (3.18),

(3.48) ‖u̇s‖ 6 βϑ2
s sup

x

∑
y

|Ċs(x, y)| 6 Oβ(ϑ2
s).

For β < 4π, the definition of Mt in (3.39), the definition of `t in (3.15), and (3.18) imply

(3.49) Mt 6 Cβ`
β/(2π)
t

∫ t

0
ds ϑ2

s `
−β/(2π)
s = Oβ(`2t ).

In this proof, the condition β < 4π is only needed in order to achieve the scaling `2t in the
previous upper bound. By (3.19)-(3.20) therefore, using in the last inequality that |z|m−2+β/4π

is sufficiently small,

(3.50) |zt|Mt = Oβ(|zt|) = Oβ(|z|m−2+β/4π) 6
1

2e
.

Let

(3.51) ‖HessVt(ϕ)‖ = sup
x

∑
y

| ∂2

∂ϕx∂ϕy
Vt(ϕ)|.

From (3.24) together with (3.39), (3.49), and with nn/n! 6 en we obtain

(3.52) ‖HessVt(ϕ)‖ 6 β
∞∑
n=1

1

n!
n2nn−2|zt|nMn−1

t 6 β
∞∑
n=1

en|zt|nMn−1
t =

βe|zt|
1− e|zt|Mt

6 2βe|zt|.

Since |(f,HessVt(ϕ)f)| 6 ‖HessVt(ϕ)‖|f |22 and |Qtf |2 6 ϑt|f |2, we obtain

(3.53) |(Qtf,HessVt(ϕ)Qtf)| 6 Oβ(|zt|ϑ2
t )|f |22.
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In the notation of Theorem 1.2 we thus have that µ̇t > −Oβ(|zt|ϑ2
t ). Hence, using the bounds for

zt from (3.21) and (3.20), for all t > 0,

(3.54) µt > −
∫ t

0
Oβ(|zs|ϑ2

s)
ds

`2s
> −Oβ(|zt|) > −Oβ(|z|m−2+β/4π) ≡ −µ∗.

Finally, the ergodicity assumption (1.6) follows from the weak-* convergence νt → ν∞ ≡ δ0

and P0,tF (ϕ) → P0,∞F (ϕ) uniformly in ϕ. Indeed, νt → ν∞ holds since the Gaussian mea-
sure covariance C∞ − Ct converges to δ0 and Vt(ϕ) is bounded (uniformly in ϕ and t). The
uniform convergence P0,tF → P0,∞F holds since Vt(ϕ) → V∞(ϕ) and ECse

−V0(ϕ+ζ)F (ϕ + ζ) →
EC∞e

−V0(ϕ+ζ)F (ϕ+ ζ), both uniformly in ϕ, where the last claim holds since the integrand is a
bounded Lipschitz function.

3.5. Up to the second threshold: proof of Propositions 3.1-3.2 for β < 6π assuming
(3.5). The remainder of Section 3 is devoted to extending the proof of Proposition 3.1 from
β < 4π to β < 6π. For this, we will estimate the n = 2, 3, 4 terms in (3.24) more carefully.

Indeed, for n = 2, a uniform bound on Ṽt(ξ1, ξ2) as used for β < 4π is not true when β > 4π,
and we rely crucially on the smoothing effect of the heat kernel Qt in (1.8) to obtain the required
bound stated in the following proposition. (Note that this estimate is best expressed in terms of
Qt and zt rather than Qt and zt.)

Proposition 3.6. Let β < 8π and assume (3.17). Then

(3.55) (Qtf,HessV
(2)
t (ϕ)Qtf) = Oβ(|zt|2ϑ2

t )|f |22.

The analogous statement holds in the conservative case.

For the terms n > 2, the following proposition gives an analogue of Proposition 3.5 for β < 6π.

Proposition 3.7. Let β < 6π and assume (3.17). Then there is Cβ <∞ such that for all n > 3,

‖Ṽ (n)
t ‖ 6 nn−2|zt|n(Cβ`

2
t )
n−1.(3.56)

The analogous statement holds in the conservative case.

These bounds together imply Propositions 3.1-3.2 when (3.5) holds.

Proof of Propositions 3.1-3.2 assuming (3.5). Since the proofs are again the same, and we only
prove Propositions 3.1. The bound (3.56) (together with the qualitative fact that V (1) and V (2)

are finite) implies that (3.24) converges, exactly as in (3.47). Moreover, exactly as in (3.52)-(3.53),
for |z|m−2+β/4π sufficiently small, it follows that

(3.57) (Qtf, (HessVt(ϕ)−HessV
(2)
t (ϕ))Qtf) = Oβ(|zt|ϑ2

t )|f |22.

Combined with (3.55) this gives the required bound (3.3). The proof of the ergodicity assumption
(1.6) is also identical to that in the proof of Proposition 3.1 for β < 4π.

To prove the above propositions, neutral configurations require more careful treatment com-
pared to the case β < 4π, where neutral means the following. For a configuration ξ = (ξ1, . . . , ξk)
we define the charge σ(ξ) =

∑k
i=1 σi and call ξ neutral if σ(ξ) = 0 and call ξ charged otherwise.

We will sometimes decompose

V (n)(ϕ) = V (n,0)(ϕ) + V (n,±)(ϕ)(3.58)

Ṽ (0)(ξ) = Ṽ (ξ)1σ(ξ)=0, Ṽ (±)(ξ) = Ṽ (ξ)1σ(ξ)6=0,(3.59)
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where V (n,0) is defined as in (3.24) with the sum over ξ = (ξ1, . . . , ξn) restricted to neutral ξ, and
V (n,±) by restricting the sum to charged ξ. As in the proof for β < 4π, the starting point for the
proofs is (3.35), but now without dropping the exponential inside the integral, i.e., for n > 1,

Ṽt(ξ1, . . . , ξn) = −1

2

∑
I1∪̇I2=[n]

∫ t

0
ds

[ ∑
i∈I1,j∈I2

u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)

]
e−(Wt(ξ)−Ws(ξ))

= −1

2

∑
I1∪̇I2=[n]

∫ t

0

ds

`2s

[ ∑
i∈I1,j∈I2

u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)

]
e−(Wt(ξ)−Ws(ξ)).(3.60)

3.6. Proof of Proposition 3.6: the term n = 2. The following two lemmas give the explicit

form of Ṽ (ξ1, ξ2) and bounds on the heat kernel that imply the required bound.

Lemma 3.8.

(3.61) Ṽt(ξ1, ξ2) = −z2
t (1− e−βσ1σ2Ct(x1,x2)).

Proof. By (3.35) and using that Vs(ξ) = zs = z0e
−β

2
Cs(0,0) by (3.36),

Ṽt(ξ1, ξ2) = −
∫ t

0
ds u̇s(ξ1, ξ2)Ṽs(ξ1)Ṽs(ξ2)e−(Wt(ξ1,ξ2)−Ws(ξ1,ξ2))

= −z2
0e
−Wt(ξ1,ξ2)

∫ t

0
ds u̇s(ξ1, ξ2)e−βCs(0,0)eWs(ξ1,ξ2).(3.62)

Let σ = σ1σ2. By (3.28), −βCs(0, 0)+Ws(ξ1, ξ2) = σβCs(x1, x2), so the integral can be evaluated
as

(3.63)

∫ t

0
ds u̇s(ξ1, ξ2)e−βCs(0,0)eWs(ξ1,ξ2) =

∫ t

0
ds βσĊs(x1, x2)eβσCs(x1,x2) = eβσCt(x1,x2) − 1,

which after rearranging gives

(3.64) Ṽt(ξ1, ξ2) = −z2
0e
−βCt(0,0)−βσCt(x1,x2)(eβσCt(x1,x2) − 1) = −z2

t (1− e−βσCt(x1,x2)).

Lemma 3.9. Let Ut(x, y) = eβCt(x,y) − 1. The following bounds hold for t > 0, f : Λ → R,
β < 8π:

sup
x1

∑
x2

|1− e−βCt(x1,x2)| = Oβ(`2t )(3.65) ∑
x1,x2

|Ut(x1, x2)|(Qtf(x1)− Qtf(x2))2 = Oβ(`4tϑ
2
t )|f |22(3.66)

and again analogous estimates hold in the conservative case.

Proof. The lemma again follows from estimates for the heat kernel and is given in Appendix A.

Proof of Proposition 3.6. We first consider V (2,±). By (3.61) and (3.65),

(3.67)
∑
y

|Ṽt((x,+1), (y,+1))| = O(|zt|2)
∑
y

|1− e−βCt(x,y)| = O(|zt|2`2t ),

which is analogous to the bound for β < 4π and thus gives

(3.68) |(Qtf,HessV
(2,±)
t (ϕ)Qtf)| = Oβ(|zt|2`4tϑ2

t )|f |22 = Oβ(|zt|2ϑ2
t )|f |22

exactly as in (3.53). On the other hand, the neutral contribution to V (2) is given by

(3.69) V
(2,0)
t (ϕ) = z2

t

∑
x,y

Ut(x, y) cos(
√
βϕx −

√
βϕy), Ut(x, y) = eβCt(x,y) − 1.
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Therefore

(3.70) (Qtf,HessV
(2,0)
t (ϕ)Qtf) = −z2

t β
∑
x,y

Ut(x, y) cos(
√
βϕx −

√
βϕy)(Qtf(x)− Qtf(y))2.

By (3.66), the right-hand side is bounded by Oβ(|zt|2`4tϑ2
t )|f |22 = Oβ(|zt|2ϑ2

t )|f |22.

Remark 3.10. Similarly as in (3.66), for t > 0, f : Λ→ R, β < 6π, assuming (3.17), we have

(3.71)
∑
x1,x2

|Ut(x1, x2)||Qtf(x1)−Qtf(x2)| = Oβ(`2tϑt)|f |1;

see Appendix A. Therefore, as in (3.70),

(Qtf,∇V (2,0)
t ) = −z2

t

√
β
∑
x,y

Ut(x, y) sin(
√
βϕx −

√
βϕy)(Qtf(x)−Qtf(y))

= Oβ(|zt|2`2tϑt)|f |1 = Oβ(|ztzt|ϑt)|f |1 = Oβ(|zt|ϑt)|f |1,(3.72)

provided that zt = O(1). Exactly as in (3.68), the same bound holds for V (2,±), and as in (3.57)
for V − V (2). In summary, whenever |zt| is sufficiently small and (3.17) holds,

(3.73) max
x
|(Qt∇Vt)x| = Oβ(|zt|ϑt).

3.7. Proof of Proposition 3.7: the terms n > 2. To bound the contributions due to (3.61),
we need the following bounds on the heat kernel. For the statement of the bounds, we set

δ12Ċt(x1, x2, x3) = Ċt(x1, x3)− Ċt(x2, x3)(3.74)

δ34δ12Ċt(x1, x2, x3, x4) = (Ċt(x1, x3)− Ċt(x2, x3))− (Ċt(x1, x4)− Ċt(x2, x4)).(3.75)

Lemma 3.11. Let Ut(x, y) = eβCt(x,y) − 1. The following bounds hold for t > 0, β < 6π:

sup
x1

∑
x2,x3

|Ut(x1, x2)δ12Ċt(x1, x2, x3)| = Oβ(`4tϑ
2
t )(3.76)

sup
x1

∑
x2,x3,x4

|Ut(x1, x2)Ut(x3, x4)δ34δ12Ċt(x1, x2, x3, x4)| = Oβ(`6tϑ
2
t ),(3.77)

and the same bounds hold with the roles of the xi exchanged. Also, for all t > s > 0, xi ∈ Λ,

(3.78) (Ct − Cs)(0, 0)− (Ct − Cs)(x1, x2) + (Ct − Cs)(x1, x3)− (Ct − Cs)(x2, x3) > −O(1).

Again analogous estimates hold in the conservative case.

Proof. The lemma again follows from estimates for the heat kernel and is given in Appendix A.

Lemma 3.12. Let β < 6π. Then ‖Ṽ (3)
t ‖ . |zt|3`4t . Analogous bounds hold in the conservative

case.

Proof. We start from (3.60). We assume I1 = {1, 2}, I2 = {3} since the other cases are analogous.
We first consider the case that ξI1 is neutral. Then

−
∫ t

0
ds
∑
i=1,2

u̇s(ξi, ξ3)Ṽs(ξ1, ξ2)Ṽs(ξ3)e−(Wt(ξ1,ξ2,ξ3)−Ws(ξ1,ξ2,ξ3))

= ±β
∫ t

0

ds

`2s
(Ċs(x1, x3)− Ċs(x2, x3))Us(x1, x2)z3

se
−(Wt(ξ1,ξ2,ξ3)−Ws(ξ1,ξ2,ξ3)).(3.79)
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By the definition of W in (3.28) and by (3.78),

(3.80) Wt(ξ1, ξ2, ξ3)−Ws(ξ1, ξ2, ξ3) >
β

2
(Ct − Cs)(0, 0)−O(1) =

β

4π
log(`t/`s)−O(1).

By (3.76),

(3.81) sup
x1

∑
x2,x3

|δ12Ċs(x1, x2, x3)Us(x1, x2)| . `4sϑ
2
s.

Substituting these bounds into (3.79), this shows that the contribution to ‖Ṽ (3)
t ‖ from neutral

ξI1 is bounded by

`
−β/4π
t

∫ t

0

ds

`2s
|zs|3`4s`β/4πs ϑ2

s . |zt|3`4t(3.82)

where we used (3.23).

We turn now to the charged case σ1 = σ2. Note that (3.80) follows as above if σ3 = −σ1 and
in fact holds with the better lower bound 3β

4π log(`t/`s)−O(1) by positive definiteness of Ct −Cs
if σ3 = σ1, i.e., if all charges are the same. From the explicit form (3.61) of Ṽs(ξ1, ξ2), we thus get

−
∫ t

0
ds
∑
i=1,2

u̇s(ξi, ξ3)Ṽs(ξ1, ξ2)Ṽs(ξ3)e−(Wt(ξ1,ξ2,ξ3)−Ws(ξ1,ξ2,ξ3))

. β

∫ t

0

ds

`2s
(Ċs(x1, x3) + Ċs(x2, x3))|1− e−βCs(x1,x2)||zs|3

(
`s
`t

) β
4π

.

As the sum over x3 can be controlled uniformly in x1, x2 by O(`2tϑ
2
t ) thanks to (3.18) and then

the sum over x2 can be estimated by O(`2t ) thanks to (3.65), we end up with the same upper
bound as in (3.82). This completes the charged case.

Lemma 3.13. Let β < 6π and assume (3.17). Then ‖Ṽ (4)
t ‖ . |zt|4`6t . Analogous bounds hold in

the conservative case.

Proof. We again start from (3.60). Up to permutation of the indices, there are terms with |I1| = 1,
|I2| = 3 and |I1| = |I2| = 2. We begin with the case |I1| = 1 and |I1| = 3. Using that |u̇s| . `2sϑ

2
s

and that ‖Ṽ (1)
s ‖ . |zs| and ‖Ṽ (3)

s ‖ . |zs|3`4s (by (3.36) and Lemma 3.12),

(3.83) sup
ξ1

∑
ξ2,...,ξn

|u̇s(ξi, ξj)Ṽs(ξI1)Vs(ξI2)| 6 ‖u̇s‖‖Ṽ (1)
s ‖‖Ṽ (3)

s ‖ . |zs|4`6sϑ2
s,

and we obtain the claimed bound exactly as in the proof for β < 4π.

In the remainder of the proof we bound the terms with |I1| = |I2| = 2. We begin with the
case that ξI1 and ξI2 are both neutral. Up to permutation of the indices, we may then assume
ξI1 = ((x1,+1), (x2,−1)) and ξI2 = ((x3,+1), (x4,−1)). By (3.61), using u̇t(ξ1, ξj) + u̇t(ξ2, ξj) =
σ1σj(Ċt(x1, xj)− Ċt(x2, xj)) and analogously for the sum over j,

(3.84)
∑

i∈I1,j∈I2

u̇t(ξi, ξj)Ṽt(ξI1)Ṽt(ξI2) = z4
tUt(x1, x2)Ut(x3, x4)δ34δ12Ċt(x1, x2, x3, x4).

Hence, by (3.77) and (3.22) for β < 6π,

(3.85) sup
x1

∑
x2,x3,x4

∫ t

0

ds

`2s

∣∣∣∣∣∣
∑

i∈I1,j∈I2

u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)

∣∣∣∣∣∣ .
∫ t

0

ds

`2s
|zs|4`6sϑ2

s . |zt|4`6t .
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In the case that I1 is neutral and I2 is charged, we similarly use

sup
ξ1

∑
ξ2,...,ξn

∣∣∣∣∣∣12
∫ t

0

ds

`2s

∑
j∈I2

∑
i∈I1

u̇s(ξi, ξj)Ṽs(ξI1)1σ(ξI1 )=0

 Ṽs(ξI2)1σ(ξI2 )6=0

∣∣∣∣∣∣
6 β

∫ t

0

ds

`2s

[
sup
x1

∑
x2,x3

∣∣∣(Ċs(x1, x3)− Ċs(x2, x3))Us(x1, x2)
∣∣∣][sup

ξ3

∑
ξ4

|Ṽs(ξI2)|1σ(ξI2 ) 6=0

]
.(3.86)

By (3.76), the first bracket is bounded by

(3.87) Oβ(|zt|2`4tϑ2
t ).

Since ξI2 is charged, the contribution from V (ξI2) term is bounded using (3.65) by

sup
ξ3

∑
ξ4

|Ṽt(ξI2)|1σ(ξI2 )6=0 . |zt|2 sup
x3

∑
x4

|1− e−βCt(x3,x4)| . |zt|2`2t .(3.88)

So altogether these contributions to (3.86) are again bounded using (3.22) (and β < 6π) by

(3.89)

∫ t

0

ds

`2s
|zs|4`6sϑ2

s . |zt|4`6t .

Again the case that ξI1 and ξI2 are both charged is easier and analogous to the proof for β < 4π
so omitted.

Lemma 3.14. Let β < 6π and assume (3.17). Then ‖Ṽ (n)
t ‖ 6 nn−2|zt|n(Cβ`

2
t )
n−1 for all n > 5.

Analogous bounds hold in the conservative case.

Proof. Similarly as in the proof of (3.39), we make the inductive assumption that, for some n > 4,
the bound (3.56) holds for all 1 6 k 6 n, k 6= 2. By (3.36) and Lemmas 3.12-3.13, the inductive
assumption is verified for n = 4. To advance the induction we again start from

(3.90) |Ṽt(ξ1, . . . , ξn)| 6 1

2

∑
I1∪̇I2=[n]

∫ t

0
ds

∣∣∣∣ ∑
i∈I1,j∈I2

u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)

∣∣∣∣.
For |I1| = n− k 6= 2 and |I2| = k 6= 2, we use

sup
ξ1

∑
ξ2,...,ξn

|u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)| 6 ‖u̇s‖‖Ṽ (n−k)
s ‖‖Ṽ (k)

s ‖,(3.91)

and bound the terms on the right-hand side using the inductive assumption. Then exactly as in
the proof for β < 4π, i.e., of (3.39), the result is

(3.92) sup
ξ1

∑
ξ2,...,ξn

∑
I1∪̇I2=[n]
|I1|6=2,|I2|6=2

∫ t

0
ds

∑
i∈I1,j∈I2

|u̇s(ξi, ξj)Ṽs(ξI1)Ṽs(ξI2)| 6 nn−2|zt|n(Cβ`
2
t )
n−1.

The terms with |I1| = 2 or |I2| = 2 require special treatment. By symmetry we may assume that
|I1| = 2 and that I1 = {1, 2} and I2 = {3, . . . , n} with n > 5. If ξI1 is neutral, we use

sup
ξ1

∑
ξ2,...,ξn

∣∣∣∣∣∣12
∫ t

0

ds

`2s

∑
j∈I2

∑
i∈I1

u̇s(ξi, ξj)Ṽs(ξI1)1σ(ξI1 )=0

 Ṽs(ξI2)

∣∣∣∣∣∣
6 (n− 2)

∫ t

0

ds

`2s

[
sup
x1

∑
x2,x3

∣∣∣(Ċs(x1, x3)− Ċs(x2, x3))Us(x1, x2)
∣∣∣][sup

ξ3

∑
ξ4,...,ξn

|Ṽs(ξI2)|
]
.(3.93)
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By (3.76), the first bracket is bounded by Oβ(z2
t `

4
tϑ

2
t ), while for the second term involving V (ξI2),

using inductive assumption for Ṽ (ξI2) (note that n− 2 > 3) to get

sup
ξ3

∑
ξ4,...,ξn

|Ṽt(ξI2)| 6 ‖Ṽ (n−2)
t ‖ 6 (n− 2)n−4|zt|n−2(Cβ`

2
t )
n−3.(3.94)

So altogether these contributions to (3.93) are bounded by (using again (3.22) for β < 6π),

Oβ(1)(n− 2)n−3Cn−3
β

∫ t

0
|zs|n`2(n−1)

s ϑ2
s

ds

`2s
. C−2

β nn−4|zt|n(Cβ`
2
t )
n−1 6 nn−4|zt|n(Cβ`

2
t )
n−1

(3.95)

where in the last bound we have chosen Cβ sufficiently large (independently of n). Summing over
the

(
n
2

)
6 n2 choices for I1, I2 with |I1| = 2 leads to the expected upper bound. The charged case

holds in the same way.

Proof of Proposition 3.7. The bounds (3.56) follows by combining the previous three lemmas.

3.8. Proofs of Propositions 3.1-3.2 without (3.5). Finally, we remove the assumption (3.5)
at the cost of constants that are uniform in ε but not uniform in L. For t 6 t0, where t0 is
sufficiently small but of order 1/ε2, we can apply the same analysis as before. On the other hand,
for t > t0, a very crude argument is sufficient to show that the Hessian of the effective potential
is bounded from below uniformly in ε. Our starting point for this is (2.15), i.e.,

(3.96) (f,HessVtf) = Pt0,t(f,HessVt0f)−
(
Pt0,t((f,∇Vt0)2)− (Pt0,t(f,∇Vt0))2

)
.

The input from the previous analysis is summarised in the following lemma.

Lemma 3.15. Let β < 6π. Then there is a constant α = α(β) > 0 such that for all t > 0
satisfying |zt| 6 α and (3.17), the following bounds hold uniformly in ϕ ∈ X, f ∈ X, and x ∈ Λ:

|(Qtf,HessVtQtf)| 6 Oβ(|zt|ϑ2
t )|f |22(3.97)

|(Qt∇Vt)x| 6 Oβ(|zt|ϑt).(3.98)

Proof. For β < 4π, these bounds follow exactly as in (3.52)-(3.53). For β < 6π, the bound on the
Hessian is as in (3.55) and (3.57), and for ∇Vt, see (3.73).

Proof of Theorems 3.1-3.2 without (3.5). From (3.18), recall that e−
β
2
Ct(0,0) � `

−β/4π
t and hence

that |zt| � ε2(ε`t)
−β/4π|z| and |zt| � (ε`t)

2−β/4π|z|. Here a � b denotes that cβ 6 a/b 6 1/cβ for
some constant cβ > 0. Let tα > 0 be such that |ztα | = α. Thus ε`tα � (α/|z|)1/(2−β/4π) and hence

(3.99) |ztα | = Oβ(ε2(ε`tα)−β/4π|z|) = Oβ(ε2|z|1/(1−β/8π)).

Also, with tm,L = ε−2(m−2 ∧ L2) as in (3.17),

(3.100) |ztm,L | = Oβ(ε2(m−1 ∧ L)−β/4π|z|).

We choose t0 = tα ∧ tm,L so that, since |zt| in decreasing in t (see (3.19)),

(3.101) |zt0 | = Oβ(ε2)
(

(m−1 ∧ L)−β/4π|z|+ |z|1/(1−β/8π)
)

= Oβ,z,m,L(ε2).

With this and since |Λ| = ε−2L2, it follows from (3.98) that, uniformly in ϕ,

(3.102) |Qt0∇Vt0 |22 =
∑
x∈Λ

(Qt0∇Vt0)2
x 6 Oβ,z,m,L(ε2ϑ2

t0).
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For any t > t0, by the Cauchy-Schwarz inequality and |Qt−t0f |2 6 ϑt−t0 |f |2, in particular,

(3.103) (Qtf,∇Vt0)2 6 Oβ,z,m,L(ε2ϑ2
t0)|Qt−t0f |22 6 Oβ,z,m,L(ε2ϑ2

t )|f |22.

Similarly, by (3.97),

(3.104) |(Qtf,HessVt0Qtf)| 6 Oβ(zt0ϑ
2
t0)|Qt−t0f |22 = Oβ(|z|ε2ϑ2

t )|f |22.

Substituting (3.103)-(3.104) into (3.96), using that Pt0,t is a Markov operator, we conclude that,
for all t > t0,

(3.105) (Qtf,HessVtQtf) > µ̇t|f |22, where µ̇t > −Oβ,z,m,L(ε2ϑ2
t ).

For t 6 t0, we have µ̇t = Oβ(|zt|ϑ2
t ) = Oβ(|z|)ε2ϑ2

t exactly as in the proofs of the theorems in the
case (3.5). In summary, for all t > 0,

(3.106) µt > −(Oβ(|z|) +Oβ,z,m,L(1))

∫ ∞
0

ε2ϑ2
t > −µ∗(β, z,m,L),

with µ∗(β, z,m,L) independent of ε. From this bound, the remainder of the proof is the same as
in the case (3.5).

A Heat kernel estimates: proof of Lemmas 3.3 and 3.9-3.11

In this appendix, we prove Lemmas 3.3 and 3.9-3.11. These follow from standard estimates for
the lattice heat kernel pt(x) = et∆(0, x) on Zd and its torus version pLt (x) =

∑
y∈Zd pt(x + Ly),

where L ∈ N. Throughout the appendix, ∆ and ∇ denote the lattice Laplacian and derivative on
Zd, not the Laplacian and gradient on RΛ.

A.1. Bounds on the heat kernel. We begin by collecting estimates on the heat kernel on Zd.
To state these, let α be a sequence of |α| ≡ k unit vectors α1, . . . , αk in Zd, i.e., αi ∈ {e1±, . . . , ed±}
is one of the 2d unit vectors ei± in Zd, and write ∇α =

∏k
i=1∇αi with ∇ef(x) = f(x+ e)− f(x)

the lattice gradient. For x ∈ Zd, |x| denotes any fixed norm unless stated.

Lemma A.1. The heat kernel pt on Zd satisfies the following upper bounds for t > 1, x ∈ Zd,
and all sequences of unit vectors α:

(A.1) |∇αpt(x)| = Oα(t−d/2−|α|/2e−c|x|/
√
t),

as well as the following asymptotics if d = 2, for t > 1 and x 6= 0,

(A.2) pt(0) =
1

4πt
+O(

1

t2
),

∫ t

0
(ps(0)− ps(x)) ds =

1

2π
log(|x| ∧

√
t) +O(1).

Moreover, the heat kernel pLt on a discrete torus of side length L satisfies, for t > 1, |x|∞ < L/2,

(A.3) ∇αpLt (x) = ∇αpt(x) +Oα(t−|α|/2L−de−cL/
√
t)

and the mean 0 heat kernel on the torus is given by p0,L
t (x) = pLt (x)− 1/L2.

Proof. Writing αi = ejσj with j ∈ {1, . . . , d} and σj ∈ {±} for each i ∈ {1, . . . , |α|}, the bound
(A.1) can be seen by writing ∇αpt(x) in its Fourier representation:

td/2+|α|/2∇αpt(x
√
t) =

1

(2π)d

∫
[−π,π]d

|α|∏
i=1

√
t(1− eiσαikαi )et

∑d
j=1(2 cos(kj)−2) eikx

√
t td/2 dk

=
1

(2π)d

∫
[−tπ,tπ]d

|α|∏
i=1

√
t(1− eiσαikαi/

√
t)et

∑d
j=1(2 cos(kj/

√
t)−2) eikx dk.(A.4)
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For t > 1, the integrand is analytic on a strip k ∈ (R+ i[−c, c])d with c > 0 independent of t, and
hence (A.4) decays exponentially in |x| (see, e.g., [41, Chapter I.4, Exercise 4]). The first estimate
in (A.2) is standard and straightforward to verify by writing the left-hand side in terms of the
Fourier transform; we thus omit its proof. The second estimate in (A.2) is similarly standard if
t =∞ in which case the left-hand side is the Green function of the discrete Laplacian:

(A.5)

∫ ∞
0

(ps(0)− ps(x)) ds =
1

2π
log |x|+O(1).

This estimate can be found, for example, in [39, page 198] or [46, Theorem 4.4.4] (with normali-
sation there differing by a factor 2d = 4). To prove the second estimate in (A.2) for 0 < |x| 6

√
t,

we use that by (A.1) with |α| = 1,

(A.6)

∫ ∞
t

(ps(0)− ps(x)) ds = O(|x|)
∫ ∞
t

s−3/2 ds = O(|x|/
√
t),

which using (A.5) implies

(A.7)

∫ t

0
(ps(0)− ps(x)) ds =

∫ ∞
0

(ps(0)− ps(x)) ds+O(|x|/
√
t) =

1

2π
log |x|+O(1).

For |x| >
√
t, we use that the first bound in (A.2) (and pt(0) 6 1 for t < 1) implies

(A.8)

∫ t

0
ps(0) ds =

1

2π
log
√
t+O(1),

and hence with (A.1) to bound ps(x),

(A.9)

∫ t

0
(ps(0)− ps(x)) ds =

1

2π
log
√
t+O(1)−

∫ t

1
O(s−1e−c|x|/

√
s) ds

where the integral is bounded by a multiple of

(A.10)

∫ t

1
e−|x|/

√
s ds

s
=

∫ t/|x|2

1/|x|2
e−1/

√
s ds

s
6
∫ 1

0
e−1/

√
s ds

s
= O(1).

This completes the proof of (A.2).

For the torus of side length L, we use that pLt (x) =
∑

y∈Zd pt(x+Ly) and set |x|L = infy∈Zd |x+
Ly|. Then

(A.11)
∑
y∈Zd

e−c|x+Ly|/
√
t = e−c|x|L/

√
t +O((

√
t/L)de−

1
2
cL/
√
t),

since the remainder between the left-hand side and the first term on the right-hand side of the last
equation can be controlled by (approximating the sum by an integral and using polar coordinates)
(A.12)∫ ∞

1
e−crL/

√
trd−1 dr 6 e−

1
2
cL/
√
t

∫ ∞
1

e−
1
2
crL/

√
trd−1 dr 6 e−

1
2
cL/
√
t(
√
t/L)d

∫ ∞
1

e−
1
2
crrd−1 dr.

This shows the estimates (A.3).

The expression for the mean 0 heat kernel follows from p0,L
t (x) = (δ0, P e

∆tPδx) = (δ0 −
1/L2, e∆t(δx−1/L2)) = pLt (x)−2/L2 +1/L2 = pLt (x)−1/L2 with the projection P from (3.7).
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A.2. Proof of Lemma 3.3. We recall the definition Ċt(x) = pLεt (x)e−ε
2m2t = pLεt (x)ϑ2

t .
Lemma 3.3 is an elementary combination of the estimates from Lemma A.1, whose details are
given as follows.

Proof of Lemma 3.3. Applying (A.1) and (A.3) with x = 0 to the torus of side length Lε = L/ε
and, for t > 1, we have

(A.13) |pt(0)− pLεt (0)| . L−dε e−cLε/
√
t, pLεt (0) . t−d/2 ∨ L−dε .

By the assumption (3.17), either t 6 1/ε2m2 or Lm > 1 holds. By the above bound, if Lm > 1,
the contribution to Ct(0) from t > 1/ε2m2 is negligible since∫ ∞

1/ε2m2

pLεt (0) e−ε
2m2t dt .

∫ ∞
1/ε2m2

(t−1 ∨ ε2L−2) e−ε
2m2t dt

. ε2m2

∫ ∞
1/ε2m2

e−ε
2m2t dt . 1.(A.14)

For t 6 L2/ε2 (and thus for t 6 1/m2ε2 when Lm > 1), we may moreover replace pLεt by pt since

(A.15)

∫ t

0
(ps(0)− pLεs (0)) ds = O(L−2

ε t) = O(1).

Finally, the contribution to Ċt(0) from the infinite volume heat kernel pt(0) is

(A.16) pt(0)e−ε
2m2t = [

1

4πt
+O(

1

t2
)]e−ε

2m2t =
1

4πt
+O(

1

t2
) +O(ε2m2t),

which integrated up to t 6 1/ε2m2 gives the main contribution

(A.17) Ct(0) =

∫ t

0
ps(0)e−ε

2m2s ds+O(1) =
1

4π
log t+O(1) =

1

2π
log `t +O(1).

This shows the first estimate in (3.18). The second estimate is straightforward since Ċs(x, y) =
Ċs(0, x−y) > 0 and the fact that the heat kernel defines a probability density immediately imply

(A.18) sup
x

∑
y

Ċt(x, y) = `2tϑ
2
t

∑
y∈Λ

pLt (y) = `2tϑ
2
t

∑
y∈Z2

pt(y) = `2tϑ
2
t .

Finally, in the conservative case the estimates are unchanged since

(A.19) C0
t (0, 0) = Ct(0, 0)− 1

|Λ|

∫ t

0
e−ε

2m2s ds = Ct(0, 0)− 1− e−ε2m2t

L2m2
= Ct(0, 0) +O(1)

and

(A.20)
∑
x

|Ċ0
t (0, x)| 6

∑
x

(Ċt(0, x) +
`2tϑ

2
t

|Λ|
) = O(`2tϑ

2
t ).

A.3. Proof of Lemmas 3.9-3.11. To prepare for the proofs of the lemmas, we state the
following consequences of Lemma A.1 in the notation used in the lemmas. In particular, recall
(3.74)-(3.75). For x ∈ Λ, abusing notation slightly, we write |x| for the torus distance |x|Lε =
infy∈Zd |x + Lεy|. In particular, |x| = O(Lε) for all x ∈ Λ. Moreover, in all of the following
lemmas, we impose the assumption (3.17) without stating it explicitly.
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Lemma A.2. The following estimates hold for Ċt, Ct for t > 1 and |x− y| > 1:

(A.21) Ct(x, y) = − 1

2π
log(|x− y|/`t ∧ 1) +O(1), |Ċt(x, y)| . ϑ2

t e
−c|x−y|/`t .

The first bounds also implies that

(A.22) Ct(x, y) =

∫ t

1

1

4πs
e−|x−y|

2/2se−ε
2m2s ds+O(1).

For any c′ > 0 small enough,

|δ12Ċt(x, y, z)|e−c
′|x−y|/`t . ϑ2

t (|x− y|/`t)e−c
′|x−z|/2`te−c

′|y−z|/2`t(A.23)

|δ34δ12Ċt(x, y, w, z)|e−c
′|x−y|/`te−c

′|w−z|/`t . ϑ2
t (|x− y|/`t)(|w − z|/`t)e−c

′|x−w|/`t .(A.24)

The same estimates hold with Ċt replaced by `tϑtQt, and if Ċt and Qt are replaced by Ċ0
t and Q0

t .

Proof. The estimates (A.21) follow easily from those for the heat kernel in (A.1)-(A.3). Indeed,
the second bound in (A.21) is a special case of (A.1) and (A.3):

(A.25) Ċt(x, y) = `2tϑ
2
t p
Lε
t (x, y) . `2tϑ

2
t

(
1

t
e−c|x−y|/

√
t +

1

L2
ε

e−cLε/
√
t

)
. ϑ2

t e
−c|x−y|/

√
t,

where in the last inequality we used that `t/Lε 6 1 follows from (3.17) and the definition of `t
in (3.15). Indeed, by (3.17), either t 6 L2

ε which implies `t 6 Lε, or otherwise Lm > 1 and then
also `t/Lε = (

√
t ∧ 1/(εm))/(L/ε) 6

√
ε2m2t ∧ 1 6 1.

For the first bound in (A.21) we note that (A.2) implies

(A.26)

∫ t

0
ps(x) ds =

1

2π

[
log
√
t− log(|x| ∧

√
t)
]

+O(1) = − 1

2π
log(|x|/

√
t ∧ 1) +O(1).

The additional factor e−ε
2m2s multiplying ps(x) leads to the replacement of

√
t by `t exactly as in

the proof of (3.18). By an analogous calculation, the same formula holds with the discrete heat
kernel replaced by the continuous one, i.e.,

(A.27)

∫ t

1

1

4πs
e−|x|

2/2s ds = − 1

2π
log(|x|/

√
t ∧ 1) +O(1),

from which (A.22) follows after taking into account the additional factor e−ε
2m2s as before.

To verify (A.23)-(A.24), for x, y ∈ Zd, let γxy be a path from x to y of length |x − y| where
|x| denotes the 1-norm in this proof. Then (A.1) and (A.3) imply

|δ12p
Lε
t (x, y, z)| = |pLεt (x, z)− pLεt (y, z)| 6

∑
u∈γxy

|∇pLεt (u, z)|

. `−3
t

∑
u∈γxy

e−c|u−z|/`t .(A.28)

For u ∈ γxy, we have |x − z| 6 |x − u| + |u − z| 6 |x − y| + |u − z|, and we deduce from the
symmetric estimate in y that −|u− z| 6 −|x− y| − |x− z|/2− |y− z|/2. Choosing c′ < c, we get

(A.29) |δ12p
Lε
t (x, y, z)| . `−2

t (|x− y|/`t)e−c
′|x−z|/2`te−c

′|y−z|/2`te+c′|x−y|/`t .

This completes (A.23). Analogously, again applying (A.1) and (A.3) and choosing c′ < c, we get

|δ34δ12p
Lε
t (x, y, w, z)| 6

∑
u∈γxy

∑
v∈γwz

|∇2pLεt (u− v)|

. `−4
t

∑
u∈γxy

∑
v∈γwz

e−c|u−v|/`t

. `−2
t (|x− y|/`t)(|w − z|/`t)e−c

′|x−w|/`te+c′|x−y|/`te+c′|w−z|/`t(A.30)

using that |x− w| 6 |x− u|+ |u− v|+ |v − w| 6 |x− y|+ |u− v|+ |w − z|.
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Lemma A.3. For all x, y, z ∈ Λ, 0 6 s 6 t,

(A.31) (Ct − Cs)(0, 0)− (Ct − Cs)(x, y) + (Ct − Cs)(x, z)− (Ct − Cs)(y, z) > −O(1).

Proof. It suffices to assume that s > 1. Throughout this proof, |x| denotes the Euclidean norm.
Suppose first that |x− y| 6 |x− z| ∧ |y − z|. We will show that

(A.32) |(Ct − Cs)(x, z)− (Ct − Cs)(y, z)| 6
∫ t

s
|Ċu(x, z)− Ċu(y, z)| du . 1.

Indeed, this bound follows from the following two estimates: using (A.1) with |α| = 0 for the first
bound and with |α| = 1 for the second bound, and also (A.3) for the error due to periodicity,∫ |x−y|2

s
(|Ċu(x, z)|+ |Ċu(y, z)|) du . 1 +

∫ |x−y|2
s

u−1e−c|x−y|/
√
u du . 1(A.33) ∫ t

|x−y|2
|Ċu(x, z)− Ċu(y, z)| du . 1 + |x− y|

∫ t

|x−y|2
u−3/2 du . 1.(A.34)

Here we have used that the remainder in (A.3) due to the periodicity is bounded by

(A.35)
|x− y|
L2
ε

∫ t

|x−y|2
u−1/2e−cLε/

√
u−ε2m2u . 1 +

|x− y|
L2
ε

∫ ε−2m−2

|x−y|2
u−1/2e−cLε/

√
u . 1

when Lm > 1, and that an analogous bound holds when instead t 6 ε−2(m−2 ∧ L2). The bound
(A.31) then follows from (A.32) and (Ct − Cs)(0, 0) − (Ct − Cs)(x, y) > 0 which holds by the
positive definiteness of Ct − Cs and translation invariance.

The same argument as above also applies if |y− z| 6 |x− z| ∧ |x− y|. Therefore suppose that
|x− z| 6 |x− y| ∧ |y − z|. From (A.22) recall that

(A.36) Ct(x, z) =

∫ t

1

1

4πu
e−|x−z|

2/2ue−ε
2m2u du+O(1).

Since e−|x−z|
2/2u > e−|y−z|

2/2u therefore

(A.37) (Ct − Cs)(x, z)− (Ct − Cs)(y, z) > −O(1).

The conclusion (A.31) now again follows from (Ct − Cs)(0, 0)− (Ct − Cs)(x, y) > 0.

Lemma A.4. Let Ut(x) = eβCt(0,x) − 1. Then for β < 2π(k + 2) and sufficiently small c′ > 0,

(A.38)
∑
x

|Ut(x)|(|x|/`t)kec
′|x|/
√
t . `2t .

The analogous estimate holds in the conservative case.

Proof. By (A.21), Cs(0, x) = − 1
2π log(|x|/`s ∧ 1) +O(1) and |Ċs(0, x)| . ϑ2

se
−c|x|/

√
s. Therefore

|Ut(x)| = |eβCt(0,x) − 1| 6
∫ t

0
β|Ċs(0, x)|eβCs(0,x) ds

`2s

.
∫ t

0

(
`β/2πs |x|−β/2πe−c|x|/

√
se−ε

2m2s

)
ds

`2s
.(A.39)

Choosing c′ < c/2, we get ec
′|x|/
√
te−c|x|/

√
s 6 e−

1
2
c|x|/

√
s for t > s. Furthermore

(A.40)
∑
x

|x|k−β/2πe−
1
2
c|x|/

√
s .
√
s

2+k−β/2π

holds if 2 + k > β/2π and s > 1. Therefore

(A.41)
∑
x

|Ut(x)|(|x|/`t)kec
′|x|/
√
t . `−kt

∫ t

0

(√
s

2+k
e−ε

2m2s

)
ds

`2s
. `2t .

The bounds are the same in the conservative case.
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With the above preparation, we now prove Lemmas 3.9-3.11.

Proof of (3.65). For (3.65), we use Ct(0, x) > 0 which with 1− e−x 6 x for x > 0 gives the claim

(A.42)
∑
x

|1− e−Ct(0,x)| =
∑
x

(1− e−Ct(0,x)) 6
∑
x

Ct(0, x) = O(`2t ).

In the conservative case, C0
t (x) > −1/L2 and the claim follows similarly from |1− e−x| 6 2|x| for

x > −1.

Proof of (3.66). For sufficiently small c′ > 0, we write

(A.43)
∑
x,y

|Ut(x, y)|(Qtf(x)− Qtf(y))2 =
∑
x,y

AxyB
2
xy,

where

Axy = |Ut(x, y)|(|x− y|/`t)2e2c′|x−y|/`t ,(A.44)

Bxy =
|Qtf(x)− Qtf(y)|
|x− y|/`t

e−c
′|x−y|/`t1x 6=y.(A.45)

By (A.38), then supx
∑

y Axy . `2t for c′ > 0 small enough. By (A.23) for `tϑtQt instead of Ċt
and the inequality 2ab 6 a2 + b2, we have for x 6= y,

|Qt(x, z)− Qt(y, z)|
|x− y|/`t

e−c
′|x−y|/`t .

ϑt
`t
e−c

′|x−z|/2`te−c
′|y−z|/2`t

6
ϑt
2`t

(e−c
′|x−z|/`t + e−c

′|y−z|/`t).(A.46)

Thus there are positive Mxy = Myx = O(ϑt`
−1
t e−c

′|x−y|/`t), i.e., supx
∑

yMxy . `tϑt, such that

(A.47) Bxy 6
∑
z

(Mxz +Myz)|fz|.

Then (using (a+ b)2 6 2a2 + 2b2 and Axy = Ayx),

∑
x,y

AxyB
2
xy 6

∑
x,y

Axy

[∑
z

Mxz|fz|+
∑
z

Myz|fz|

]2

6 4
∑
x,y

Axy

[∑
z

Mxz|fz|

]2

6 4

[
sup
x

∑
y

Axy

]∑
x

[∑
z

Mxz|fz|

]2

.(A.48)

Similarly (with 2|ab| 6 a2 + b2 and Mxy = Myx)

∑
x

[∑
z

Mxz|fz|

]2

=
∑
x,z,w

MxzMxw|fzfw|

6
∑
x,z,w

MxzMxw|fz|2 6

[
sup
z

∑
x

Mxz

][
sup
x

∑
w

Mxw

]∑
z

|fz|2.(A.49)

Therefore ∑
x,y

AxyB
2
xy 6 4

[
sup
x

∑
y

Axy

][
sup
z

∑
x

Mxz

][
sup
x

∑
w

Mxw

]
|f |22.(A.50)

Since supx
∑

y Axy . `2t and supx
∑

yMxy . ϑt`t, the desired bound . ϑ2
t `

4
t follows. The bounds

are unchanged in the conservative case.
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Proof of (3.71). We proceed analogously to the proof of (3.66), i.e., for sufficiently small c′ > 0,
we write

(A.51)
∑
x,y

|Ut(x, y)||Qtf(x)− Qtf(y)| =
∑
x,y

AxyBxy,

where

Axy = |Ut(x, y)|(|x− y|/`t)ec
′|x−y|/`t ,(A.52)

Bxy =
|Qtf(x)− Qtf(y)|
|x− y|/`t

e−c
′|x−y|/`t1x 6=y.(A.53)

By (A.38), again supx
∑

y Axy . `2t for c′ > 0 small enough, but now using that β < 6π due to the
different power in the definition of Axy. The bound for Bxy is the same. From this, we conclude

∑
x,y

AxyBxy 6 2
∑
x,y

Axy

[∑
z

Mxz|fz|

]

6 2

[
sup
x

∑
y

Axy

][
sup
z

∑
x

Mxz

]
|f |1 . `3tϑt|f |1.(A.54)

Since Qt = `tQt, this is (3.71). The bounds are unchanged in the conservative case.

Proof of (3.76). By (A.23) and (A.38) (with β < 6π), one can find c′ > 0 small enough such that

(A.55) sup
x1

∑
x2,x3

|Ut(x1, x2)||δ12Ċt(x1, x2, x3)|

. ϑ2
t sup
x1

∑
x2,x3

|Ut(x1, x2)|ec′|x1−x2|/`t |x1 − x2|
`t

e−c
′|x1−x3|/2`t−c′|x2−x3|/2`t . `4tϑ

2
t ,

where a factor `2t comes first by summing over x3 and another factor `2t from (A.38). The same
applies when the roles of x1, x2, x3 in the sup and sum are exchanged. The bounds are unchanged
in the conservative case.

Proof of (3.77). By (A.24), there is c′ > 0 small enough such that

(A.56) |δ34δ12Ċt(x1, x2, x3, x4)|e−c′|x1−x2|/`t−c′|x3−x4|/`t

. (|x1 − x2|/`t)(|x3 − x4|/`t)e−c
′|x1−x3|/`tϑ2

t ,

and using (A.38) both for the sum over x2 and x4 (with β < 6π), as well as the elementary bound
supx1

∑
x3
e−c|x1−x3|/`t . `2t , this implies

(A.57) sup
x1

∑
x2,x3,x4

|Ut(x1, x2)Ut(x3, x4)||δ34δ12Ċt(x1, x2, x3, x4)| . `6tϑ
2
t

with one factor `2t from each of the sums. The bounds are unchanged in the conservative case.
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[28] J. Fröhlich. Quantized “sine-Gordon” equation with a nonvanishing mass term in two space-
time dimensions. Phys. Rev. Lett., 34:833–836, 1975.
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