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ABSTRACT Serratia plymuthica 4Rx5 was isolated from the rhizosphere of oilseed
rape due to its antagonistic properties against plant-pathogenic fungi. The strain
4Rx5 produces the antifungal and antioomycete haterumalide, oocydin A. Analysis of
its genome revealed the presence of various gene clusters putatively involved in the
biosynthesis of additional secondary metabolites.

Serratia plymuthica strains are frequently isolated from the rhizosphere of agricul-
turally relevant crops and are considered efficient biocontrol agents (1, 2). Their

biocontrol properties have been associated with the production of antibiotics (1–6),
hydrolytic enzymes (1, 2), and their ability to trigger systemic resistance (2, 7).

Serratia plymuthica 4Rx5 was originally isolated by Berg and coworkers (1) from the
rhizosphere of oilseed rape after screening for bacteria that showed hydrolytic activities
and antagonism against phytopathogenic fungi. More recently, strain 4Rx5 has been
used as a model bacterium for the investigation of biosynthesis and regulation of the
antifungal oocydin A (8). In contrast to other oocydin A-producing strains, the biosyn-
thesis of this polyketide in 4Rx5 was shown to be regulated by an N-acyl-L-homoserine
lactone-based quorum-sensing-system (8). Additionally, 4Rx5 was shown to produce
chitinases and proteases (1) and siderophores (M. A. Matilla and G. P. C. Salmond,
unpublished data).

The genomic DNA of 4Rx5 was extracted from stationary-phase cells grown in
lysogeny broth (9) using a Qiagen DNeasy kit. A single-end shotgun library for 454
pyrosequencing was prepared using a Roche GS FLX Titanium rapid library preparation
kit and was run on a picotiter plate for a Roche Applied Science Genome Sequencer FLX
instrument according to the manufacturer’s specifications. Read quality was monitored
with the inclusion of control reads and using the 454 sequencing system software
package v2.6 (Roche) using default settings. The resulting 319,495 reads were de novo
assembled using Newbler v2.6 with default parameters. An approximately 25� cover-
age of the estimated genome size was obtained, and the assembly resulted in 20
contigs larger than 1,000 bp. The largest contig was 1,704,970 bp, and the N50 contig
size was 511,280 bp. The genome was automatically annotated using NCBI Prokaryotic
Genome Annotation Pipeline v4.2 (10).

The draft genome sequence of 4Rx5 comprises 5,367,478 bp with an overall G�C
content of 54.7%. Automated genome annotation predicted 4,870 protein-coding
sequences, 75 pseudogenes, 1 CRISPR array, 6 rRNAs, 71 tRNA genes, and 9 noncoding
RNAs. In addition to the polyketide synthase biosynthetic cluster responsible for the
production of oocydin A (5), bioinformatic analyses using antiSMASH (11) predicted
4 additional uncharacterized gene clusters putatively involved in the production of
polyketides and nonribosomal peptides. Scrutiny of the genome also revealed the
presence of a biosynthetic cluster responsible for production of the antifungal
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metabolite pyrrolnitrin (12). Genome comparison analyses showed that the genome
of 4Rx5 is highly similar to that of Serratia plymuthica 4Rx13 (13). The strain 4Rx13
produces a broad range of volatile organic compounds (VOCs) (13–15), some of
them possessing antifungal properties (14). The bicyclic terpene sodorifen was the
major VOC emitted by 4Rx13 (15), and the sodorifen gene cluster was identified in
the genome of 4Rx5. Altogether, our results highlight the potential of 4Rx5 for the
biocontrol of phytopathogenic fungi and oomycetes. Further research will elucidate
the spectrum of secondary metabolites produced by this bacterium.

Data availability. The sequences obtained by this whole-genome shotgun project
have been deposited in DDBJ/EMBL/GenBank under the accession number PESE00000000.
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