Structure Reports

Online
ISSN 1600-5368

Benzylammonium hexanoate

Mary H. Wood and Stuart M. Clarke

Acta Cryst. (2012). E68, o3004

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The journal publishes over 4000 structures per year. The average publication time is less than one month.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Benzylammonium hexanoate

Mary H. Wood and Stuart M. Clarke*

BP Institute and Department of Chemistry, University of Cambridge, Cambridge, England
Correspondence e-mail: stuart@bpi.cam.ac.uk
Received 5 September 2012; accepted 20 September 2012
Key indicators: single-crystal X-ray study; $T=180 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.068 ; w R$ factor $=0.177$; data-to-parameter ratio $=19.8$.

A binary mixture of benzylamine and hexanoic acid has been reacted to form the title salt, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}^{-}$. This crystal has a $1: 1$ stoichiometry of acid- and amine-derived species which contrasts with other related species which can have a number of other integer ratios of acid and amine components. The diffraction data indicate complete transfer of a proton from the acid to the amine to give the salt, comprising a cation and anion combination, with the formation of three hydrogen bonds around each ammonium group. This contrasts with other related species.

Related literature

For spectroscopic studies of acid-amine complexes, see: Karlsson et al. (2000); Paivarinta et al. (2000); Kohler et al. (1981); Smith et al. (2001, 2002). For recent diffraction studies of acid-amine complexes, see: Jefferson et al. (2011); Sun et al. (2011).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{-} & \gamma=105.641(2)^{\circ} \\
M_{r}=223.31 & V=645.55(6) \AA^{3} \\
\text { Triclinic, } P \overline{1} & Z=2 \\
a=5.7730(3) \AA & \text { Mo } K \alpha \text { radiation } \\
b=7.7465(4) \AA & \mu=0.08 \mathrm{~mm}^{-1} \\
c=15.1707(8) \AA & T=180 \mathrm{~K} \\
\alpha=98.318(3)^{\circ} & 0.37 \times 0.25 \times 0.02 \mathrm{~mm}
\end{array}
$$

Data collection

Nonius Kappa CCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\text {min }}=0.824, T_{\text {max }}=1.000$

9587 measured reflections 2915 independent reflections 1930 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068 \quad 147$ parameters
$w R\left(F^{2}\right)=0.177$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.91	1.99	$2.890(3)$	169
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.91	1.81	$2.705(3)$	169
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots 1^{\text {ii }}$	0.91	1.88	$2.769(3)$	164
$\mathrm{C} 1-\mathrm{H} 1 D \cdots \mathrm{O} 2^{\text {iii }}$	0.99	2.45	$3.366(3)$	154
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 1$	0.95	2.58	$2.902(3)$	100
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1^{\text {ii }}$	0.95	2.53	$3.347(3)$	144

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z$; (iii) $x, y-1, z$.
Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the Department of Chemistry, the BP Institute and the Oppenheimer Trust for financial and technical assistance, and Dr J. E. Davies for collecting and analysing the X-ray data. Thanks are also due to Professor Mague for help improving the clarity of the figures.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2086).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Jefferson, A. E., Sun, C., Bond, A. D. \& Clarke, S. M. (2011). Acta Cryst. E67, o655.
Karlsson, S., Backlund, S. \& Friman, R. (2000). Colloid Polym. Sci. 278, 8-14.
Kohler, F., Atrops, H., Kalali, H., Liebermann, E., Wilhelm, E., Ratkovics, F. \& Salamon, T. (1981). J. Phys. Chem. 85, 2520-2524.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Paivarinta, J., Karlsson, S., Hotokka, M. \& Poso, A. (2000). Chem. Phys. Lett. 327, 420-424.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. \& White, J. M. (2002). Aust. J. Chem. 55, 349-356.

Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. \& Willis, A. C. (2001). Aust. J. Chem. 54, 165-170.
Sun, S., Bojdys, M. J., Clarke, S. M., Harper, L. D., Castro, M. A. \& Medina, S. (2011). Langmuir, 27, 3626-3637.

supplementary materials

Acta Cryst. (2012). E68, o3004 [doi:10.1107/S1600536812039931]

Benzylammonium hexanoate

Mary H. Wood and Stuart M. Clarke

Comment

Several studies, mainly spectroscopy-based, have reported the existence of stable complexes formed between simple fatty acids and amines, both alkyl and aromatic-based e.g. (Karlsson et al., 2000). Numerous 1:1 acid:amine complexes have been identified; in addition, various examples of $2: 1$ and $3: 1$ adducts have been discovered, usually in an acid-rich environment (Sun et al., 2011; Kohler et al., 1981). Interestingly, no amine-rich complexes have yet been observed; indeed, it has been proposed that these would be highly unstable were they to form (Paivarinta et al., 2000), although there is a report of a diamine complex formed between methylamine and dnsa (3,5-dinitrosalicyclic acid) due to deprotonation of the phenolic group in the acid (Smith et al., 2001; Smith et al., 2002).
The $1: 1$ acid:amine complexes are generally considered to derive their stablity from the complete transfer of a proton from the acid to the amine with subsequent cation-anion electrostatic interaction and strong hydrogen-bond formation. In $2: 1$ or high stoichiometry complexes, the hydrogen bond is considered to extend over the three (or more) species involved.

The $1: 1$ complex of hexanoic acid and benzylamine forms by reaction of the two species with complete proton transfer from the acid to the base. Each ammonium ion in this salt can now form three hydrogen bonds, one of which is shown in Fig. 1 and all three in Fig. 2. This work follows from similar findings reported by (Jefferson et al., 2011) who report the structure of a $1: 1$ complex of octanoic acid and decylamine using the same experimental method of preparation. This work differs from the previous study concerning complex formation with an aromatic amine, rather than an alkyl amine reported previously. In general, few examples of such single-crystal data exist for such complexes, due mainly to the difficulty of growing suitable crystals. The molecular arrangement of the alkyl and aromatic groups is also somewhat surprising. One might have imagined the aromatic rings interacting strongly together and 'stacking' separately from the alkyl chains of the hexanoic acid. However, they appear to be arranged adjacent to each other in the $1: 1$ crystal, with the planes of the aromatic ring and the alkyl chain backbone essentially parallel, Fig. 2.

Experimental

Hexanoic acid and benzylamine, with purities of 99.5% and 99.7% respectively as determined by titration and GC, were purchased from Sigma Aldrich and used without further purification. The crystals were grown by pipetting a small volume (approximately 1 ml) of each into two small vials, and leaving both within a larger vial over a number of weeks all under an inert atmosphere of nitrogen. After this period numerous crystals were observed, with particularly abundant growth on a polypropylene surface that had been left therein as a nucleating surface. The inert atmosphere was employed to minimize reaction of the amine with atmospheric CO_{2}, which can make such complexation studies difficult (Sun et al. 2011).

Elemental analysis gave values of $69.85 \%, 6.22 \%, 9.42 \%$ and 14.52% for carbon, nitrogen, hydrogen and oxygen respectively. For a $1: 1$ complex these values are expected to be $69.92 \%, 6.27 \%, 9.48 \%$ and 14.32%, in excellent
agreement. The $1: 1$ stoichiometry also agrees with the crystal structure determination given here. The experimental sample temperature 180 K represents a compromise of several factors. It is selected as the temperature which is cold enough to get improved thermal factors but not so cold that the crystals fracture and it is a temperature at which the cryostream can run efficiently for an extended period.

Computing details

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1

Perspective view of the asymmetric unit showing one of the three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Figure 2
Illustration of the packing. Hydrogen bonds are shown by dashed lines.

Benzylammonium hexanoate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}^{-}$
$M_{r}=223.31$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.7730$ (3) \AA
$b=7.7465$ (4) \AA
$c=15.1707(8) \AA$
$\alpha=98.318(3)^{\circ}$
$\beta=90.638(3)^{\circ}$
$\gamma=105.641$ (2) ${ }^{\circ}$
$V=645.55$ (6) \AA^{3}

Data collection

Nonius Kappa CCD diffractometer
Radiation source: fine-focus sealed tube
Thin slice ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.824, T_{\text {max }}=1.000$
9587 measured reflections
$Z=2$
$F(000)=244$
$D_{\mathrm{x}}=1.149 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 18567 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=180 \mathrm{~K}$
Block, colourless
$0.37 \times 0.25 \times 0.02 \mathrm{~mm}$

2915 independent reflections
1930 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-7 \rightarrow 7$
$k=-10 \rightarrow 10$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.177$
$S=1.04$
2915 reflections
147 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0564 P)^{2}+0.4841 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}

Special details

Experimental. The data is moderately weak at high angle (66% observed), a fact reflected in the rather large K value in the analysis of variance.
Absorption correction: multi-scan from symmetry-related measurements Sortav (Blessing, 1995)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
N1	$0.2211(3)$	$0.3348(3)$	$0.04302(13)$	$0.0433(5)$
H1A	0.2402	0.4524	0.0359	0.052^{*}
H1B	0.0980	0.2617	0.0056	0.052^{*}
H1C	0.3594	0.3036	0.0301	0.052^{*}
O1	$0.3458(3)$	$0.7110(2)$	$0.01788(10)$	$0.0369(4)$
O2	$0.1113(3)$	$0.8658(2)$	$0.08527(12)$	$0.0499(5)$
C1	$0.1663(4)$	$0.3134(4)$	$0.13431(15)$	$0.0435(6)$
H1D	0.1370	0.1838	0.1402	0.052^{*}
H1E	0.0153	0.3472	0.1473	0.052^{*}
C2	$0.3600(4)$	$0.4245(3)$	$0.20347(14)$	$0.0330(5)$
C3	$0.3043(4)$	$0.4336(3)$	$0.29247(16)$	$0.0406(6)$
H3	0.1468	0.3744	0.3079	0.049^{*}
C4	$0.4766(5)$	$0.5283(4)$	$0.35889(16)$	$0.0477(7)$
H4	0.4366	0.5337	0.4196	0.057^{*}
C5	$0.7059(5)$	$0.6149(4)$	$0.33769(17)$	$0.0476(7)$
H5	0.8237	0.6795	0.3836	0.057^{*}
C6	$0.7630(4)$	$0.6073(3)$	$0.24995(17)$	$0.0403(6)$
H6	0.9204	0.6679	0.2350	0.048^{*}
C7	$0.5917(4)$	$0.5113(3)$	$0.18271(15)$	$0.0353(5)$
H7	0.6335	0.5052	0.1222	0.042^{*}
C8	$0.3117(4)$	$0.8349(3)$	$0.07608(14)$	$0.0295(5)$
C9	$0.5207(4)$	$0.9530(3)$	$0.13816(14)$	$0.0317(5)$
H9A	0.5665	1.0766	0.1220	0.038^{*}
H9B	0.6610	0.9029	0.1296	0.038^{*}
C10	$0.4613(4)$	$0.9650(3)$	$0.23628(14)$	$0.0318(5)$
H10A	0.3210	1.0151	0.2450	0.038^{*}
H10B	0.4160	0.8416	0.2527	0.038^{*}
C11	$0.6721(4)$	$1.0840(3)$	$0.29756(14)$	$0.0335(5)$

H11A	0.7103	1.2091	0.2834	0.040^{*}
H11B	0.8151	1.0385	0.2856	0.040^{*}
C12	$0.6235(4)$	$1.0890(3)$	$0.39634(15)$	$0.0410(6)$
H12A	0.4842	1.1386	0.4088	0.049^{*}
H12B	0.5800	0.9635	0.4102	0.049^{*}
C13	$0.8384(5)$	$1.2031(4)$	$0.45713(16)$	$0.0548(7)$
H13A	0.7975	1.2008	0.5195	0.082^{*}
H13B	0.8795	1.3285	0.4451	0.082^{*}
H13C	0.9765	1.1536	0.4459	0.082^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0280(10)$	$0.0569(13)$	$0.0401(11)$	$0.0120(9)$	$-0.0066(8)$	$-0.0083(10)$
O1	$0.0315(8)$	$0.0390(9)$	$0.0364(9)$	$0.0099(7)$	$-0.0016(7)$	$-0.0069(7)$
O2	$0.0281(9)$	$0.0604(11)$	$0.0541(11)$	$0.0168(8)$	$-0.0111(7)$	$-0.0223(9)$
C1	$0.0300(12)$	$0.0537(15)$	$0.0380(13)$	$0.0004(11)$	$0.0007(10)$	$-0.0003(11)$
C2	$0.0305(11)$	$0.0324(12)$	$0.0336(12)$	$0.0080(9)$	$-0.0025(9)$	$-0.0011(9)$
C3	$0.0390(13)$	$0.0409(13)$	$0.0392(13)$	$0.0082(10)$	$0.0040(10)$	$0.0030(10)$
C4	$0.0592(17)$	$0.0549(16)$	$0.0300(12)$	$0.0199(13)$	$-0.0033(12)$	$0.0019(11)$
C5	$0.0488(16)$	$0.0467(15)$	$0.0431(14)$	$0.0134(12)$	$-0.0185(12)$	$-0.0063(11)$
C6	$0.0310(12)$	$0.0369(13)$	$0.0487(14)$	$0.0056(10)$	$-0.0071(10)$	$0.0006(11)$
C7	$0.0300(12)$	$0.0365(12)$	$0.0365(12)$	$0.0067(9)$	$-0.0026(9)$	$0.0014(10)$
C8	$0.0260(11)$	$0.0302(11)$	$0.0297(11)$	$0.0048(9)$	$-0.0014(8)$	$0.0024(9)$
C9	$0.0249(11)$	$0.0343(12)$	$0.0323(11)$	$0.0050(9)$	$-0.0017(9)$	$-0.0003(9)$
C10	$0.0268(11)$	$0.0329(12)$	$0.0324(11)$	$0.0046(9)$	$-0.0017(9)$	$0.0009(9)$
C11	$0.0301(11)$	$0.0341(12)$	$0.0318(11)$	$0.0035(9)$	$-0.0029(9)$	$0.0013(9)$
C12	$0.0392(13)$	$0.0440(14)$	$0.0332(12)$	$0.0027(11)$	$-0.0027(10)$	$0.0016(10)$
C13	$0.0500(16)$	$0.0684(19)$	$0.0341(13)$	$0.0016(14)$	$-0.0057(12)$	$-0.0016(13)$

Geometric parameters ($A,{ }^{\circ}$)

N1-C1	1.447 (3)	C6-H6	0.9500
N1-H1A	0.9100	C7-H7	0.9500
N1-H1B	0.9100	C8-C9	1.520 (3)
N1-H1C	0.9100	C9-C10	1.527 (3)
O1-C8	1.265 (3)	C9-H9A	0.9900
O2-C8	1.248 (3)	C9-H9B	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	1.511 (3)	C10-C11	1.522 (3)
C1-H1D	0.9900	C10-H10A	0.9900
C1-H1E	0.9900	C10-H10B	0.9900
C2-C3	1.388 (3)	C11-C12	1.525 (3)
C2-C7	1.388 (3)	C11-H11A	0.9900
C3-C4	1.383 (3)	C11-H11B	0.9900
C3-H3	0.9500	C12-C13	1.522 (3)
C4-C5	1.378 (4)	C12-H12A	0.9900
C4-H4	0.9500	C12-H12B	0.9900
C5-C6	1.372 (4)	C13-H13A	0.9800
C5-H5	0.9500	C13-H13B	0.9800
C6-C7	1.390 (3)	C13-H13C	0.9800

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$114.89(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	108.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	108.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{E}$	108.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{E}$	108.5
$\mathrm{H} 1 \mathrm{D}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{E}$	107.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$118.7(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.8(2)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$123.4(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.4(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.8
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.5(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.7
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.6(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.2
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.2
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.3(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.8
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	119.8
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$120.4(2)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	119.8
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.8
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1$	$122.74(19)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$117.60(19)$

O1-C8-C9	119.66 (18)
C8-C9-C10	$112.88(17)$
C8-C9-H9A	109.0
C10-C9-H9A	109.0
C8-C9-H9B	109.0
C10-C9-H9B	109.0
H9A-C9-H9B	107.8
C11-C10-C9	$112.24(18)$
C11-C10-H10A	109.2
C9-C10-H10A	109.2
C11-C10-H10B	109.2
C9-C10-H10B	109.2
H10A-C10-H10B	107.9
C10-C11-C12	$113.42(18)$
C10-C11-H11A	108.9
C12-C11-H11A	108.9
C10-C11-H11B	108.9
C12-C11-H11B	108.9
H11A-C11-H11B	107.7
C13-C12-C11	$113.0(2)$
C13-C12-H12A	109.0
C11-C12-H12A	109.0
C13-C12-H12B	109.0
C11-C12-H12B	109.0
H12A-C12-H12B	107.8
C12-C13-H13A	109.5
C12-C13-H13B	109.5
H13A-C13-H13B	109.5
C12-C13-H13C	109.5
H13A-C13-H13C	109.5
H13B-C13-H13C	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1$	0.91	1.99	$2.890(3)$	169
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.91	1.81	$2.705(3)$	169
$\mathrm{~N} 1 — \mathrm{H} 1 C \cdots 1^{\mathrm{iii}}$	0.91	1.88	$2.769(3)$	164
$\mathrm{C} 1 — \mathrm{H} 1 D \cdots \mathrm{O}^{\mathrm{iii}}$	0.99	2.45	$3.366(3)$	154
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{~N} 1$	0.95	2.58	$2.902(3)$	100
$\mathrm{C} 7 — \mathrm{H} 7 \cdots 1^{\mathrm{ii}}$	0.95	2.53	$3.347(3)$	144

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z$; (iii) $x, y-1, z$.

