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Abstract

This thesis studies the structure of categories of polynomials, the diagrams

that represent polynomial functors. Specifically, we construct new models

of intensional dependent type theory based on these categories.

Firstly, we formalize the conceptual viewpoint that polynomials are built

out of sums and products. Polynomial functors make sense in a category

when there exist pseudomonads freely adding indexed sums and products

to fibrations over the category, and a category of polynomials is obtained

by adding sums to the opposite of the codomain fibration.

A fibration with sums and products is essentially the structure defining a

categorical model of dependent type theory. For such a model the base

category of the fibration should also be identified with the fibre over the

terminal object. Since adding sums does not preserve this property, we

are led to consider a general method for building new models of type

theory from old ones, by first performing a fibrewise construction and

then extending the base.

Applying this method to the polynomial construction, we show that given

a fibration with sufficient structure modelling type theory, there is a new

model in a category of polynomials. The key result is establishing that

although the base category is not locally cartesian closed, this model has

dependent product types.

Finally, we investigate the properties of identity types in this model, and

consider the link with functional interpretations in logic.
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Introduction

The concept of a polynomial function on natural numbers, built out of sums and prod-

ucts, generalizes naturally to an abstract categorical setting. On sets, a polynomial

functor is a functor

X 7→
∑
a∈A

XBa

where (Ba)a∈A is a family of sets indexed by A and the sum is a disjoint union. From

a computer science perspective, a functor of this form corresponds to a datatype: A

defines a set of ‘shapes’ of data structures and for each shape a the exponent Ba is a

set of ‘positions’ to be filled by elements of X.

Such a functor can be completely characterized by specifying just the indexing

B
f−→ A (0.1)

where f−1(a) = Ba. The functor
∑

a∈AX
Ba is then explicitly described in terms of

the left and right adjoints Σ and Π of pullback functors as ΣAΠfB
∗ : Set→ Set.

In this form, polynomial functors make sense in any locally cartesian closed category

B. More generally, an indexed family of polynomials in multiple variables

(Xi)i∈I 7→

∑
a∈Aj

∏
b∈Ba

Xs(b)


j∈J

can be represented by a diagram

I
s←− B

f−→ A
t−→ J (0.2)

in B, which defines the polynomial functor ΣtΠfs
∗ : B/I → B/J on slice categories.

Notions of polynomial functors arise in a wide variety of fields (see [GK13] for ex-

amples). The categories formed by their polynomial diagrams provide a simplifying

1



2 INTRODUCTION

framework in which to work with such functors, and over the last decade the study

of these categories has revealed a remarkably rich structure [AAG03, GK13, Hyv13].

In most cases this structure can be constructed by hand, but from a conceptual point

of view it makes sense to see polynomials in terms of indexed sums and products.

The category Poly of diagrams of shape (0.2) in a category B is fibred over B, and

this fibration is constructed from the pseudomonads Σ and Π which freely add sums

and products to fibrations. In fact the requirement that B be locally cartesian closed

corresponds exactly to the existence of a pseudo-distributive law between Σ and Π

giving ΣΠ the structure of a pseudomonad. The pseudomonad Π is itself a composite

construction (Σ(−)op)op, formed from Σ and the construction which takes the opposite

of a fibration. From this we see that ΣΠ is two iterations of a more basic construction

Pol(−) = Σ(−)op. In particular the fibred version of the category of single-variable

polynomials as in (0.1) is just given by applying Pol to the canonical indexing of B
over itself. For a general fibration p, we think of Pol(p) as the fibration of polynomials

over p.

The monads Σ and Π also play a central role in the categorical perspective on de-

pendent type theory. Type theories are formal systems used variously in studying

foundations of mathematics, constructive mathematics and the formalization of pro-

gramming languages. Categorical models provide a useful framework for describing

semantics of these type theories. It is standard that a model of intuitionistic Martin-

Löf type theory [ML84] can be essentially represented by a fibration of types over

contexts, and the model has sum and product types when the fibration has the struc-

ture of a pseudoalgebra for Σ and Π (see e.g. [Jac99]).

Considering this link between the polynomials and type theories, it seems natural to

ask if they can be combined in some way. Given a fibration modelling type theory

with sums and products, can applying the polynomial construction to the fibration

produce another such model?

There are certain points making this not quite straightforward. Firstly, in order that

the base of the fibration represents the contexts of the corresponding type theory,

it is necessary that the base be identified with the fibre over the terminal object.

Constructions like adding sums or taking fibrewise opposites will not preserve this

property. We therefore need a way of extending the fibration over a new base category

to take into account the new contexts.

In addition, we would like the construction of the new model to interact with identity

types of the type theory in a meaningful way. In a category, identity types correspond
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to certain factorizations of morphisms [AW09]. Since the base category of polynomi-

als is cartesian closed [ALS10], it automatically has a trivial type theory structure

using the fibration of product projections, in which there is no type dependency and

the identity types internally identify all terms. On the other hand this category is not

locally cartesian closed, so it cannot model extensional type theory, where the fibra-

tion consists of all morphisms in the category and identity is just categorical equality.

Thus to get a reasonable notion of model we wish to find a class of maps intermediate

between these, which is closed under dependent products and has suitable factoriza-

tions. This thesis shows that, when the original model of type theory has sufficient

structure, we can in fact construct such a class of maps defining a polynomial model.

Outline of the thesis

To begin, Chapter 1 describes an abstract framework for defining polynomials. After

recalling the usual construction of categories formed by polynomials and polynomial

functors together with their morphisms and composition, we return to some foun-

dations. To build up a conceptual picture of these categories, we review the basic

notions of monads, fibrations and opposites of fibrations in the setting of a bicategory

of spans. Taking as a template the interaction between the free fibration monad and

free opfibration monad on a functor, we then see how a category of polynomials arises

from the interaction between the free sum and product pseudomonads on a fibration.

Finally we consider a way of making sense of this in a category which is not locally

cartesian closed. Some 2-categorical concepts used are defined in Appendix A. While

the constructions of sums, products and opposites for fibrations are well-known, they

have not previously been studied in the context of bicategories, or for fibrations of

internal categories. The connection here between distributive laws, local cartesian

closure and polynomials is new.

Chapter 2 reviews some basic background on type theory and categorical models.

This chapter does not contain new material, but motivates the form of categorical

structures used in the rest of the thesis. There are various essentially equivalent

ways of presenting a model of type theory in a category. More significantly, there are

choices to be made about which type constructors to include and which rules type

constructors should be required to satisfy, in particular when to admit an η-conversion

rule corresponding to a strong universal property. We describe here one formulation,

which is chosen to make the constructions in this thesis clearer rather than for philo-

sophical reasons.
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Chapter 3 investigates a general method for taking a model of type theory and con-

structing a new one from it. Thinking of models of type theory from the fibration

point of view, we would like to perform some categorical constructions in the fibres.

We then need to fix the base category to ensure it is identified with the fibre over

the terminal object. Specifically, we freely add sums to a fibration with sufficient

structure, and construct a new model by extending along the right adjoint of the

fibration. Under suitable conditions the type constructors of the original model are

also preserved.

Chapter 4 is the heart of the thesis. The construction of the previous chapter is

applied to the opposite of a fibration, to give a model of type theory in a category

of polynomials. There are many details which then need to be checked. The crucial

step is showing that the display maps of this model are closed under dependent

products; in doing so we also characterize the exponential morphisms in the category

of polynomials over Set. We then construct identity types, and as an application of

this model show that in constrast to many models of type theory currently studied,

the principle of function extensionality does not hold in this case.

Finally, Chapter 5 explores some possible themes for future research. We look at the

link between polynomials and Gödel’s Dialectica interpretation, raising the question

of potential extensions to other functional interpretations and how such models might

fit into a general theory.



Chapter 1

Polynomials, monads and

fibrations

1.1 Polynomials

We start by reviewing some of the theory of polynomials and polynomial functors

[GK13, Abb03]. The setting for this section is a locally cartesian closed (lcc) cat-

egory B, so that for each object I of B the slice category B/I is cartesian closed.

Equivalently, B has (chosen) pullbacks and for each morphism f : I → J in B, the

pullback functor f ∗ : B/J → B/I has left and right adjoints

Σf : B/I → B/J
Πf : B/I → B/J

respectively. We also assume that B has a terminal object, so it has all finite limits

and is cartesian closed.

Definition 1.1. A polynomial F in B is a diagram

B
f //

s

ww

A
t

''
I J.

The polynomial F induces a functor PF : B/I → B/J , called the extension of F , or

5



6 1.1. POLYNOMIALS

the functor represented by F , which is the composite

PF = Σt Πf s
∗.

A functor B/I → B/J is called a polynomial functor if it is isomorphic to one which

has the above form.

In the internal language of a locally cartesian closed category (defined in Chapter

2), an object X → J of B/J can be thought of as a J-indexed family (Xj)j∈J . The

pullback f ∗ : B/J → B/I corresponds to reindexing, sending (Xj)j∈J to (Xf(i))i∈I .

The left adjoint Σf sums the components of each fibre Ij of f , sending (Xi)i∈I

to (Σi∈IjXi)j∈J , while the right adjoint Πf sends (Xi)i∈I to the family of sections

(Πi∈IjXi)j∈J . So the functor PF takes the form of the polynomial

PF : (Xi)i∈I 7→

∑
a∈Aj

∏
b∈Ba

Xs(b)


j∈J

.

Example 1.2. (a) For an object A of B, the identity functor B/A → B/A is repre-

sented by the polynomial

A A
= //=oo A = //A.

(b) The functor A×− : B → B is represented by

1 A = //oo A //1.

(c) The free monoid monad Σn∈N(−)n : Set→ Set is represented by

1 {(i, n) | i ≤ n ∈ N} π2 //oo N //1,

since the fibre of π2 over each n ∈ N is a set of size n.

The locally cartesian closed structure of B gives a canonical enrichment of each slice

category B/I in B [Kel05]. In the internal language, the hom-object for a pair of

objects A→ I and B → I is

HomB/I((Ai)i∈I , (Bi)i∈I) =
∏
i∈I

BAi
i .

For a morphism f : I → J in B, each of f ∗, Σf and Πf extends naturally to an enriched
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functor between the enriched slice categories. This means that all polynomial functors

are enriched in B, and the natural notion of morphism between them is an enriched

natural transformation. The corresponding notion for polynomials is the following:

Definition 1.3. A morphism of polynomials F → F ′ is given by morphisms h, k, l,m

in B making

I

h

��

Bsoo f // A

k

��

t // J

l

��

B′ ×A′ A
m
OO 44

��
I ′ B′

s′
oo

f ′
// A′

t′
// J ′

commute.

When h and l are identities, F and F ′ both represent polynomial functors B/I → B/J .

To make sense of this definition intuitively, we can think of B as the category of

sets. For each I-indexed family (Xi)i∈I , PF ((Xi)i∈I) gives the J-indexed family(∑
a∈Aj

∏
b∈Ba Xs(b)

)
j∈J

of elements in Aj together with a function mapping each

b in Ba to some φ(b) in Xs(b). Then the morphism k defines an element a′ = k(a) in

A′j, and for each b′ in Bk(a) the element φ(m(b′)) is in Xs′(b). Thus we have a function∑
a∈Aj

∏
b∈Ba

Xs(b)


j∈J

→

∑
a′∈A′j

∏
b′∈B′

a′

Xs′(b′)


j∈J

or a component of a transformation PF → PF ′ .

Proposition 1.4 ([GK13]). Polynomials from I to J and morphisms of polynomi-

als over I and J form a category PolyB(I, J), which is equivalent to the category

PolyFunB(B/I,B/J) of polynomial functors B/I → B/J and enriched natural trans-

formations.

When h and l are not necessarily identities, a morphism as above corresponds to an

enriched natural transformation between the composites with the left adjoints Σh and

Σl:

B/I PF //

Σh

��

~�

B/J

Σl

��
B/I ′

PF ′
// B/J ′.

(1.1)

Given two polynomials I
s←− B

f−→ A
t−→ J and J

u←− D
g−→ C

v−→ K representing functors
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PF : B/I → B/J and PG : B/J → B/K, the composite functor PGPF : B/I → B/K
is also polynomial. This follows using two principles which hold in locally cartesian

closed categories which will reoccur throughout this thesis.

Proposition 1.5. Beck-Chevalley condition for sums (respectively products) (BCC):

For every pullback square

D h //

g

��

B

f

��
C

k
// A

in B, the canonical map Σgh
∗ → k∗Σf (respectively k∗Πf → Πgh

∗) is an isomorphism.

Proposition 1.6. “Type-theoretic axiom of choice” (AC): Given morphisms X
x−→ B

and B
f−→ A in B, there is a diagram

f ∗Πfx
g //

ε

vv

��

Πfx

k

��

X
x

)) B
f

// A

where ε is the component at x of the counit of the adjunction f ∗ a Πf . Then the

canonical morphism ΣkΠgε
∗ → ΠfΣx is an isomorphism.

Using these, the composite PGPF is represented by the polynomial

I ←M → Πgh→ K

as in the diagram

M m //

p

ww

g∗Πgh
n //

ε

vv

��

Πgh

l

��

E
k

vv
h

))
B

f
//

s

ww

A

t ''

D g
//

uuu

C
v

((
I J K,
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since

PGPF = Σv Πg u
∗ Σt Πf s

∗

∼= Σv Πg Σh k
∗ Πf s

∗ (BCC)

∼= Σv Σl Πn ε
∗k∗ Πf s

∗ (AC)

∼= Σv Σl Πn Πm p∗ s∗ (BCC)

∼= Σvl Πnm (sp)∗.

Composition of polynomials is associative up to isomorphism and compatible with

polynomial morphisms.

Proposition 1.7 ([GK13]). Polynomials in B form the horizontal morphisms of a

(pseudo) double category PolyB which has B as its vertical category. It is equivalent

as a double category to the double category PolyFunB with slice categories as objects,

polynomial functors as horizontal morphisms and enriched natural transformations

as in (1.1) as 2-cells.

Additionally, the double category PolyB has the structure of a framed bicategory

[Shu08] (equivalently a proarrow equipment [Woo82]). This says in particular that

the functor

(PolyB)1 → B × B

projecting a polynomial onto its endpoints (I, J) is both a fibration and an opfibration.

In the rest of this chapter, we shall investigate how the structure of these categories

of polynomials arises naturally in an abstract setting when considering monads and

fibrations.

1.2 Spans and internal categories

While the polynomials described above correspond to functors on Cat, analogues

of the pullbacks, sums and products used also make sense for internal categories in

a setting other than Set. For example we might consider categories in other sheaf

toposes. It is interesting to investigate what structure of Set is needed to develop

the theory of polynomials. We will start by working merely with a category E with

pullbacks, and add other conditions as they are required. The case E = Set will be

a running example throughout this section, and is the only case considered in later

chapters.



10 1.2. SPANS AND INTERNAL CATEGORIES

As a first step towards the construction of polynomials, we recall the well-known

construction of internal categories as monads. Let E be a category with (chosen)

pullbacks. Then there is a bicategory Span(E) of spans in E , where the objects are

the objects of E , 1-cells X −7→ Y are spans of arrows

A

�� ��
X Y,

and 2-cells are maps of spans. Composition is given by pullback.

If E is a 2-category, then Span(E) is a bicategory enriched in 2-Cat (as defined in

Appendix A): each hom-category has the structure of a 2-category and this structure

is compatible with horizontal composition. The 3-cells of Span(E) are the 2-cells in

E
A

�� ��

		��

+3X Y

B

__ ??

which are vertical over X and Y .

To equip a 1-cell

A1
d

��
c

��
A0 A0

in Span(E) with the structure of a monad A is exactly to equip A1

d //
c
// A0 with

the structure of identities A0 → A1 and composition A1×A0A1 → A1 of an internal

category in E .

Thus monads in Span(E) are the objects of the 2-category Cat(E) of internal cate-

gories. A 1-cell f : A → B is an internal functor, that is a diagram

A0

f0

��

A1
doo

f1

��

c // A0

f0

��
B0 B1d
oo

c
// B0
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preserving the category structure; and a 2-cell α : f ⇒ g between 1-cells A
f //
g
// B is

an internal natural transformation, that is a map A0 → B1 satisfying the usual equa-

tions. Garner and Shulman show in [GS13] how internal categories and profunctors

form a proarrow equipment arising from E together with Span(E), but we will not

consider this here.

The category Cat(E) has pullbacks, so we can repeat the construction to form the

2-Cat-enriched bicategory Span(Cat(E)). Monads in Span(Cat(E)) are internal

categories in Cat(E), which are (strict) double categories.

1.3 The arrow category

Let B ∈ Cat(E) be an internal category. We consider a particular monad on B in

Span(Cat(E)), i.e. a double category in E .

Using pullbacks in E , we can construct the internal category of arrows B2. This is

the cotensor of B with the category 2 = • → •, i.e. it is equipped with functors and

a natural transformation

B2
d

''

c

77�� α B

and is universal with this data.

This is equivalently described as the comma object

B2 c //

d

��

B

1B

��
B

1B
// B

<Dα

over the identity cospan B → B ← B, or as the lax limit

B2

d

  

c

~~

ks
α

B B
1B

oo

of the identity arrow on B.
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This universal property applied to the natural transformations

B
1B

��

1B

��
B B

1B
oo

and B2 ×B B2
π2

��
π1

��
B2

c

��
d

��
ks
α

B2
c

��
d

��
ks
α

B B
1B

oo B
1B

oo

determines maps η : B → B2 and µ : B2 ×B B2 → B2 giving the span

B2
c

��
d

��
B B

the structure of a monad ΦB in Span(Cat(E)).

Example 1.8 (E = Set). When E is Set, Cat(E) is the category of small categories

Cat. The monad ΦB is given by the usual category of arrows and commutative

squares B2, with d and c the domain and codomain functors.

A monad in a 2-Cat-enriched bicategory acts by composition as a 2-monad on each

of the hom-2-categories. Thus ΦB defines by composition on one side a 2-monad on

Span(Cat(E))(A,B), and on the other a 2-monad on Span(Cat(E))(B, C), for all

A, C in Cat(E). Moreover, the definition of ΦB as a limit in a 2-category gives these

monads a form of uniqueness property which is characteristic of monads involving

limits and colimits. Recall from [Koc95]:

Definition 1.9. A pseudomonad (T, η, µ) on a 2-category is lax-idempotent (also

called Kock-Zöberlein) if the following equivalent conditions hold:

1. The multiplication µ is left adjoint to ηT with invertible counit,

2. The multiplication µ is right adjoint to Tη with invertible unit,

3. there is a modification δ : Tη → ηT such that δη = 1 and µδ = 1,

4. to give an object A a T -pseudoalgebra structure is exactly to give a left adjoint

to ηA : A→ TA with invertible counit.

Dually, a pseudomonad is colax-idempotent if the multiplication is right adjoint to

ηT with invertible unit.

A pseudomonad in a 2-Cat-enriched bicategory is called lax-idempotent if it acts as a
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lax-idempotent pseudomonad on the left, equivalently if it acts as a colax-idempotent

pseudomonad on the right.

In particular, the 2-dimensional universal property of the arrow category B2 deter-

mines a 3-cell

B2
ηΦB ,,

ΦBη

22�� δ B2 ×B B2

satisfying δη = 1 and µδ = 1, so ΦB is colax-idempotent.

1.4 Fibrations and opfibrations

We now take a closer look at the 2-monads that ΦB induces by composition.

Consider the slice Cat(E)/B for an object B. When E has a terminal object, then

this can be identified with either of the hom-2-categories Span(Cat(E))(B, 1) or

Span(Cat(E))(1,B). So composing with monad ΦB gives two 2-monads on Cat(E)/B
which send an object A → B to the composites d∗A → B2 c−→ B and c∗A → B2 d−→ B
respectively, as in the diagrams

d∗A

�� ��
B2

c

��
d

��

A

��
B B

c∗A

�� ��
A

��

B2
c

��
d

��
B B.

Definition 1.10. A module for ΦB acting on the left hom-2-category is called a

fibration and on the right hom-2-category an opfibration; strict left and right modules

are strict fibrations and strict opfibrations respectively.

Note that since ΦB is colax-idempotent these are ‘property-like’ structures – a mor-

phism can have at most one module structure up to isomorphism.

Example 1.11 (E = Set). To give a functor A p−→ B in Cat the structure of a left

ΦB-module is exactly to give p the structure of a cloven Grothendieck fibration, i.e. to

give a chosen cartesian lifting f ∗J → J for each morphism f : I → pJ in B. Likewise

to give A p−→ B the structure of a right ΦB-module is to give p the structure of a cloven

Grothendieck opfibration, i.e. a chosen opcartesian lifting I → f!I for each morphism

f : pI → J in B. Strict fibrations and opfibrations correspond to split Grothendieck

fibrations and opfibrations.
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The morphism B2 d−→ B is naturally a fibration, and B2 c−→ B is an opfibration.

Definition 1.12. The internal category B has pullbacks if c is also a fibration.

This definition is a generalization of the case in Cat:

Example 1.13 (E = Set). A functor

B2 ×B B2
π2

��

e

��

B2
d

��
B

B2
c

77

in Cat gives c the structure of a left ΦB-module exactly when e sends a cospan

I
f−→ K

g←− J in B to a pullback of f along g.

Definition 1.14. A span A q←−M p−→ B is a two-sided fibration if it is a Φ-bimodule,

i.e. has the structure of a right ΦA-module and left ΦB-module in a compatible way

(See Definition A.6).

Example 1.15 (E = Set). In Cat, a span A q←−M p−→ B is a two-sided fibration iff:

• p is a cloven fibration with q-vertical cartesian liftings f ∗J → J for each mor-

phism I
f−→ pJ in B,

• q is a cloven opfibration with p-vertical opcartesian liftings J → g!J for each

qJ
g−→ K in A,

• each canonical morphism g!f
∗J → f ∗g!J is an isomorphism.

In particular, every morphism I → J in the category M factors into three

I
α−→ • β−→ • γ−→ J

where α is q-opcartesian p-vertical, β is p, q-vertical, and γ is p-cartesian q-vertical,

and this factorization is unique up to unique vertical isomorphisms.

For a general 2-category E with pullbacks, two-sided fibrations in Cat(E) can be

defined representably: A span B q←−M p−→ A is a two-sided fibration iff

Cat(E)(C,B)
q∗←− Cat(E)(C,M)

p∗−→ Cat(E)(C,A)
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is a two-sided fibration in Cat for each C in Cat(E), and for each f : C → D
in Cat(E) the functor Cat(E)(D,M)

−◦f−−→ Cat(E)(C,M) preserves p-cartesian and

q-opcartesian morphisms.

Two-sided fibrations were defined by Street in [Str74], under the name bifibrations.

For each pair of objects A and B, the two-sided fibrations from A to B assemble

into a 2-category Fib(E)(A,B). It has as objects bimodules, as 1-cells the maps of

spans which preserve cartesian and opcartesian morphisms, and as 2-cells the 2-cells

of Span(Cat(E))(A,B).

Moreover, when E has sufficient structure, these 2-categories form the hom-2-categories

of a 2-Cat-enriched bicategory Fib(E). The composite

N ⊗M

�� ��
A C

(also written as A ← NM → C) of bimodules A ← M → B and B ← N → C
is given by composing as spans and then quotienting out by the action of ΦB, so in

other words it is the following coequalizer:

M×B B2 ×B N ////M×B N // N ⊗M.

The identity for composition is the span ΦB = B c←− B2 d−→ B. Composition is

associative (up to isomorphism) because c and d are an opfibration and fibration

respectively, so are both exponentiable in Cat(E) when E is locally cartesian closed

[Gir64, Joh77], and pulling back along either morphism commutes with coequalizers.

The required reflexive coequalizers exist in Cat(E) when E has pullback-stable finite

colimits and free cartesian monoids. Thus for example the 2-Cat-enriched bicategory

Fib(E) is defined whenever E is locally cartesian closed and has countable colimits,

or when E is a topos with a natural numbers object [Joh77].

By the symmetry of Span(Cat(E)), reversing ΦB gives a span

ΨB = B2
d

��
c

��
B B,

which is also a monad in Span(Cat(E)), and is lax-idempotent. A left module for

ΨB is the reverse of a right ΦB-module, or in other words a span A q←−M p−→ B where
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p has the structure of a cloven opfibration and the structure map commutes with q.

Similarly a right ΨB-module is a span B q←− M p−→ C where q has the structure of a

cloven fibration and the structure map commutes with p.

The span ΨB is not a two-sided fibration, even when c is a fibration, as the compati-

bility condition between c and d does not hold.

1.5 Distributivity

Although ΨB is not a ΦB-module, we can still study the combination of module

structures for ΦB and ΨB by considering pseudo-distributive laws between the two

monads.

Definition 1.16. A pseudo-distributive law of a monad S over a monad T in a

2-Cat-enriched bicategory consists of a 2-cell λ : ST → TS and invertible 3-cells

S2T Sλ //

µST

��
�
 α

STS
λS // TS2

TµS

��
ST

λ
// TS

ST 2 λT //

SµT

��

TST
Tλ // T 2S

µTS

��
ST

λ
// TS

EM
β

T

ηST

��

TηS

!!~� γ
ST

λ
// TS

S

SηT

��

ηTS

!!~� δ
ST

λ
// TS

satisfying 8 coherence conditions given by Marmolejo in [Mar99] (Definition A.7).

Here we have suppressed the associativity and unit constraints for S and T .

In the case when S is colax-idempotent and T is lax-idempotent, such as for S = ΦB

and T = ΨB here, less data is required [Mar99]: a pseudo-distributive law is unique

up to isomorphism if it exists, and to define one it suffices to give λ and γ subject to

5 conditions (Proposition A.8).

To give such a pseudo-distributive law λ : ΦBΨB → ΨBΦB of ΦB over ΨB is equivalent

to giving a lifting of ΨB to a pseudomonad on each 2-category ΦB-Mod(A,B) of

left ΦB-modules, pseudonaturally in A, as shown in [CHP04] and [Mar04]. ΨBΦB

then has the structure of a pseudomonad on Span(E)(A,B), with ΨBΦB-Mod(A,B)

biequivalent to the 2-category of left modules for this lifted pseudomonad. ΨB in
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fact lifts to a pseudomonad on categories of two-sided fibrations Fib(E)(A,B), since

composition of spans with the pseudo-distributive law will not affect the right ΦA-

module structure.

If such a pseudo-distributive law from ΦB to ΨB exists, then since the identity B =−→ B
is canonically a fibration,

ΨB(B = // B) = B2 c // B

will also be a fibration. In other words, B has pullbacks.

Conversely, having pullbacks suffices for such a pseudo-distributive law to exist. We

first consider the case in Set:

Proposition 1.17 (E = Set). There is a pseudo-distributive law of ΦB over ΨB in

Span(Cat) iff the category B has pullbacks.

Proof. Assume B has pullbacks. The map sending a cospan in B to its (chosen)

pullback extends to a functor λ : ΦBΨB → ΨBΦB:

B2

d

��

c

��

B2

c

��

d

��

ΦBΨB

��

.

��

.

��
B B B .

_

��

B2

c

��

d

��

B2

d

��

c

��

.

����ΨBΦB .

��

.

��
B B B .

λ is clearly a 2-cell in Span(Cat)(B,B). The required invertible 3-cell γ in

ΨB

ηΨB

��

ΨBη

$$�� γ

ΦBΨB λ
// ΨBΦB
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is defined for each object A
f−→ B of B2 to be the unique isomorphism of spans

A

∼=
��

1A

��

f

��

A×B B

f∗(1B){{ (1B)∗f ##
A

f ##

B

1B{{
B

Similarly the invertible 3-cells in the coherence conditions (1)-(3) of Proposition A.8

are given by the natural isomorphisms relating (1B)∗g to g, h∗g∗f to (gh)∗f , and

k∗f ∗g to (fk)∗g for any morphisms E
k−→ A

f−→ B
g←− C

h←− D in B.

The remaining two coherence conditions required for a pseudo-distributive law hold

since there is a unique 3-cell fitting into each diagram.

More generally:

Proposition 1.18. There is a pseudo-distributive law of ΦB over ΨB in Span(Cat(E))

iff B has pullbacks.

Proof. We reconstruct the above definition of λ and γ internally in Cat(E). Assuming

B has pullbacks, there is a ΦB-module structure map

B2 ×B B2 e //B2

in Cat(E) as in Example 1.13. Since ΦB is colax-idempotent, e is right adjoint

to (1, ηc) : B2 → B2 ×B B2 with invertible unit. Composing the counit ε of this

adjunction with the map dπ1 : B2 ×B B2 → B gives a 2-cell

B2 ×B B2
de

++

dπ1

33�� B ,

which by the universal property of the arrow category B2 (Section 1.3) corresponds

to a map τ : B2 ×B B2 → B2 satisfying dτ = de, cτ = dπ1, and ατ = dπ1ε.

The morphism

B2 ×B B2
(τ,e) //B2 ×B B2
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is then a map of spans ΦBΨB → ΨBΦB, which we define to be λ.

To construct the 3-cell γ in

B2

(1,ηc)

��

(ηd,1)

&&�
 γ

B2 ×B B2
(τ,e)

// B2 ×B B2,

we require invertible 2-cells in Cat(E) of the form τ(1, ηc)⇒ ηd and e(1, ηc)⇒ 1B2 .

The second of these is the invertible unit of the adjunction (1, ηc) a e, and the first is

again given by the universal property of B2 since ατ(1, ηc) = dπ1ε(1, ηc) ∼= 1d = αηd

by the triangular identity of the adjunction (1, ηc) a e.

The fact that λ and γ satisfy the coherence conditions required for a pseudo-distributive

law now follows from the case E = Set by the Cat-enriched Yoneda embedding. All

the constructions used to form Span(Cat(E)), B2, ΦB and ΨB are defined in terms of

limits, and are preserved by each hom 2-functor Cat(E)(A,−) : Cat(E)→ Cat.

Thus ΨB lifts to a pseudomonad Ψ′B on each Fib(E)(A,B) exactly when B has pull-

backs. Since ΦB and ΨB are colax-idempotent and lax-idempotent respectively, such

a lifting is unique up to isomorphism if it exists. Suppose now that this is the case.

Definition 1.19. A fibration has sums if it has the structure of a left Ψ′B-module.

Recall that composition in Fib(E) is given by bimodule tensor ⊗, in other words by

a coequalizer of composites of spans. Since Ψ′B is given by composition with a span

and pullback along d preserves coequalizers, Ψ′B has a tensorial strength: that is a

family of maps

Ψ′B(N )⊗M
∼=−→ Ψ′B(N ⊗M)

natural in spans M : C −7→ A and N : A −7→ B, which satisfy unit and associativity

conditions. Setting N to be the identity two-sided fibration ΦB shows that the monad

Ψ′B is given by composition in Fib(E) with the span ΣB :≡ Ψ′B(ΦB). In other words,

ΣB is a lax-idempotent pseudomonad in the 2-Cat-enriched bicategory Fib(E), and

composing with ΣB on the right freely adds sums to fibrations.

In Cat, this definition of fibrations with sums reduces to the well-known one [Jac99]:

Example 1.20 (E = Set). To give a cloven fibration 1 ←M p−→ B in Cat sums is to

give a left adjoint
∐

f for each reindexing functor f ∗ :MJ →MI , which satisfy the
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Beck-Chevalley condition. The pseudomonad ΣB is the span

B←·→
l

��
r

��
B B,

where the category B←·→ has as objects the spans I ← A→ J in B and as morphisms

commuting diagrams

I

��

Aoo //

��

J

��
I ′ A′oo // J ′.

The functors l and r send such a morphism to I → I ′ and J → J ′ respectively.

1.6 Opposites of fibrations

In the previous section, when the monad ΦB is considered as an internal category

in Span(E), constructing the reversed span ΨB from ΦB corresponds to taking the

opposite internal category. There is an analogous construction for fibrations. We show

how strict fibrations can also be seen as internal categories in a particular category,

and so we find a natural definition of the opposite of a fibration.

Let B be an internal category in E , so we have objects B0, B1, B2 = B1×B0B1 and

morphisms

B2

s //
m //

t
//
B1

d //
oo i

c
//
B0

satisfying the required equations. Then this diagram also represents a category object

internal to Cat(E), when B0, B1 and B2 are considered to be discrete categories.

B is the lax codescent object of this diagram in Cat(E), i.e. equipped with a functor

u : B0 → B (the inclusion of the discrete category) and natural transformation

α : ud⇒ uc such that αi = 1u and

B1
d // B0

u

��
B2

s
??

m //

t ��

B1

d
??

c ��

�� α B =

B1 c
// B0

u

??

B1
d //

c ��
{� α

B0
u

��
B2

s
??

t ��

B0 u // B

B1 c
//

d
??

�#
α

B0

u

??
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and is universal with this property [Lac02].

For any functor M p−→ B in Cat(E), we can construct (not necessarily discrete)

categories M0, M1 and M2 and functors

M2
m′ //

t′
//

��

M1
oo i′

c′
//

��

M0
� � u′ //

��

M

p

��
B2

s //
m //

t
//
B1

d //
oo i

c
//
B0
� � u // B

(1.2)

such that all corresponding squares are pullbacks. p is a strict fibration exactly if

there are functors

M2
s′ //M1

d′ //M0

such that the corresponding squares involving s and d commute and make the top

row of (1.2) into a category object in Cat(E). The natural transformation α then

induces α′ : u′d′ ⇒ u′c′ making M into the lax codescent object of the top row.

Example 1.21 (E = Set). In Cat, the category M0 consists of the objects of M
with the morphisms of M that are p-vertical. The objects of M1 are pairs (J ∈ B,
f : I → pJ ∈ M), which d′ sends to the domain of the chosen cartesian lifting

f ∗J → J . This lifting is the corresponding component of the natural transformation

α′.

Projecting onto the object, morphism, and composable morphism parts of the cat-

egories in (1.2) gives internal diagrams in E over B, as defined in [Joh77]. Thus a

strict fibration over B corresponds exactly to an internal category in the category EB

of such diagrams.

Taking the opposite of this category corresponds to taking the opposites of all the

categories and functors in Diagram (1.2). This will not affect the bottom row, but

the top row will have a new lax codescent object

Mop
2

//////Mop
1

//oo //Mop
0

//M◦.

Such a lax codescent object always exists in Cat(E), as shown by Weber in [Web15]

for any internal category diagram where the internal codomain functor Mop
1 →M

op
0

is the pullback of a functor of discrete categories. The universal property of the

colimit then induces a functorM◦ pop−−→ B. This gives pop the structure of a fibration,

and it is called the opposite of the fibration p.
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In Cat, this gives the usual construction of the opposite of a split Grothendieck

fibration:

Example 1.22 (E = Set). The opposite of M p−→ B in Cat is given by reversing the

arrows of M which are vertical over B. The category M◦ has the same objects as

M, and as morphisms A→ B over pA
u−→ pB the spans A

α←−M
β−→ B inM where α

is p-vertical and β is a chosen p-cartesian lifting of u.

Opposites for non-strict cloven fibrations are defined in the same way, except that

the Mi no longer form a strict category object, with isomorphisms d′i′ ∼= 1 and

d′m′ ∼= d′s′ rather than equalities.

Example 1.23 (E = Set). For a cloven fibration M p−→ B in Cat, the category M◦

has the same objects as M. Morphisms are spans A
α←− M

β−→ B in M where α is

p-vertical and β is p-cartesian, considered up to the equivalence relation relating two

such spans (α, β) and (α′, β′) if there is a vertical isomorphism M → M ′ forming a

morphism of spans.

For two-sided fibrations A q←−M p−→ B, consider the internal category A×B and the

diagram

M2
//

��

M1
//

��

M0
� � u′ //

��

M

(q, p)

��
A2 ×B2

m×m // A1 ×B1
d×c // A0 ×B0

� � u // A× B.

The fibration structure of p and the opfibration structure of q induce morphisms

d′, c′ :M1 →M0 respectively, and the compatibility between the structures en-

sures that these can be extended to give a (weak) category object in Cat(E) with

lax codescent object M. Taking opposites of categories as above gives a functor

M◦ (qop, pop)−−−−−→ A× B, which defines a new two-sided fibration between A and B.

Definition 1.24. The span

M◦

qop

��

pop

��
A B

is called the opposite two-sided fibration of A q←−M p−→ B.

Example 1.25 (E = Set). In Cat this corresponds to reversing the arrows ofM which

are vertical over both A and B.

Using the universal property of the codescent objects, taking opposites extends to a
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pseudofunctor

(−)op : Fib(E)(A,B)→ Fib(E)(A,B)

for each A and B, and ((−)op)op ∼= 1. When E is either locally cartesian closed with

countable colimits or a topos with a natural numbers object, then opposites commute

with the composition of 2-sided fibrations defined in Section 1.4, i.e. N op ⊗Mop ∼=
(N ⊗M)op naturally in M and N .

1.7 Fibrations with products

Having defined sums and opposites for fibrations, we can now consider their combi-

nation.

Definition 1.26. A (two-sided) fibration has products if its opposite has sums.

Example 1.27 (E = Set). In Cat, a cloven fibration 1 ← M p−→ B has products if

each reindexing functor f ∗ : MJ → MI has a right adjoint Πf satisfying the Beck-

Chevalley condition. In particular, this holds for the codomain functor B2 c−→ B if

and only if B is locally cartesian closed.

Thus in general we define:

Definition 1.28. A category B with pullbacks is locally cartesian closed if the

codomain fibration c has products.

Given a two-sided fibration M, we can freely add products to M by taking the

opposite fibration, adding sums, and then taking the opposite again. Since

(ΣB ⊗Mop)op ∼= (ΣB)op ⊗M,

the span ΠB :≡ (ΣB)op is a colax-idempotent pseudomonad in Fib(E) which freely

adds products by composition on the right. Thus a fibration has products if it has

the structure of a left ΠB-module.

Example 1.29 (E = Set). In Cat, the pseudomonad ΠB is a span

(B←·→)◦

lop

��
rop

��
B B,

where the category (B←·→)◦ is given by reversing the arrows of B←·→ that are vertical
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for both projections onto B. So (B←·→)◦ has as objects the spans I ← A → J in B
and as morphisms commuting diagrams

I

��

Aoo // J

��

E

OO 66

��
I ′ A′oo // J ′.

The functors lop and rop send such a morphism to I → I ′ and J → J ′ respectively.

1.8 Polynomials

We now have two monads in Fib(E): ΣB adding sums and its opposite ΠB adding

products. Mirroring the situation of ΦB and ΨB, we consider the interaction between

ΣB and ΠB.

ΣBΠB will be a pseudomonad in Fib(E) if there is a pseudo-distributive law

λ : ΠBΣB → ΣBΠB.

If such a law exists of ΠB over ΣB, then as before ΣB lifts to a pseudomonad on left

ΠB-modules. Since the identity B =−→ B canonically has products,

ΣB(B = // B) = B2 c // B

will also have products. In other words, B is locally cartesian closed.

In Cat, the converse holds:

Proposition 1.30 (E = Set). There exists a pseudo-distributive law of ΠB over ΣB

in Fib exactly when B is locally cartesian closed.

Proof. In Cat, the composite fibration ΣBΠB is a span B ← M → B where the

categoryM has as objects diagrams I ← B → A→ J in B, i.e. polynomials, and as
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morphisms the morphisms of polynomials

I

��

Boo // A

��

// J

��

E

OO 55

��
I ′ B′oo // A′ // J ′.

The composite ΠBΣB is a span B ← N → B where N has the same objects as M
and as morphisms the commuting diagrams

I

��

Boo // A // J

��

E //

OO

��

F

55

��

OO

I ′ B′oo // A′ // J ′.

If B is locally cartesian closed, there is a functor λ : N → M sending a diagram

I
s←− B

f−→ A
t−→ J to the polynomial

I ← t∗Πtf → Πtf → J

as in the diagram

t∗Πtf //
ε

vv

��

Πtf

��

B
s

xx

f

((
I A

t
// J

where ε is the component at f of the counit of the adjunction t∗ a Πt. The Beck-

Chevalley condition for Π ensures that λ preserves the cartesian and opcartesian

morphisms in N , so it defines a morphism ΠBΣB → ΣBΠB in Span(Cat)(B,B).

The components of the 3-cell γ in the diagram

B←·→

ΠBη

��

ηΠB

""�� γ
N

λ
//M



26 1.8. POLYNOMIALS

are defined for each span I
s←− B

f−→ A as the unique isomorphism of polynomials

I

=

��

(1A)∗Π1Af
soo // Π1Af

∼=

��

// A

=

��

E
∼= OO

33

��
I Boo

=
// B

f
// A.

Similarly the first coherence condition of Proposition A.8 for a pseudo-distributive

law corresponds to giving the isomorphisms Πt(1A) ∼= J for any A
t−→ J . The second

coherence condition follows from the canonical isomorphisms Πmtf ∼= ΠmΠtf for

any morphisms B
f←− A

t−→ J
m−→ K. The third coherence condition reduces to the

‘type-theoretic axiom of choice’ of Proposition 1.6.

As in the proof of Proposition 1.17, the remaining two coherence conditions follow

by uniqueness, since by the universal properties of Π and pullback there is a unique

3-cell fitting into each of the diagrams.

Remark 1.31. Unlike the case of the distributive law for ΦB and ΨB, the previous

proposition does not extend by representability to arbitrary Fib(E). As hom-functors

do not preserve coequalizers in general, composition in the 2-Cat-enriched bicategory

Fib(E) is not representably defined. However, it might still be possible though com-

putationally challenging to internalize the proof of the proposition for Set and check

the coherence conditions by hand. It would also be interesting to investigate a more

conceptual proof by relating these pseudomonads to clubs defined by Kelly in [Kel92],

which are monads interacting well with pullbacks. The two propositions 1.30 and 1.18

have a similar form, stating that to give a distributive law ST → TS between two

monads it suffices to give a S-module structure to T acting on a terminal object (in

this case the terminal object 1 ← B =−→ B of Fib(E)(1,B)), and a theorem of this

form was proved by Garner in [Gar08] using an generalization of clubs.

From now on we focus only on the case E = Set. Since ΠB is colax-idempotent and

ΣB is lax-idempotent, if such a pseudo-distributive law exists then it is unique up

to isomorphism. Suppose that this is the case, then ΣBΠB has the structure of a

pseudomonad with composition

(ΣΠ)(ΣΠ) ∼= Σ(ΠΣ)Π
ΣλΠ−−→ ΣΣΠΠ

µµ−→ ΣΠ
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sending two polynomials I
s←− B

f−→ A
t−→ J and J

u←− D
g−→ C

v−→ K to

I ← P → Πgh→ K

as in the diagram

P //

xx

g∗Πgh //
ε

vv

��

Πgh

��

E

ww
h

((
B

f
//

s

xx

A

t &&

D g
//

u

vv

C
v

''
I J K,

i.e. exactly their composite as polynomials.

Thus we have:

Proposition 1.32 (E = Set). The pseudo double category PolyB of polynomials

in a locally cartesian closed category B, as defined in Proposition 1.7, is exactly the

pseudomonad ΣBΠB.

1.9 Polynomials in non-lcc categories

When a category B (in Set) is not locally cartesian closed, it can still make sense to

consider polynomials in B, as long as we restrict to those diagrams

I
s←− B

f−→ A
t−→ J

for which s∗, Πf and Σt are defined. For example, Weber [Web14] examines the case

of a category with pullbacks, in which the polynomials are all the diagrams of this

shape such that the middle morphism f is exponentiable. Here we generalize in a

slightly different direction, motivated by the above analysis of sums and products as

monads on slice categories. In a non-locally cartesian closed category, we will not

require the associated functor ΣtΠfs
∗ of a polynomial to be defined on the full slice

category B/I, but only on a subcategory of it. Polynomial diagrams should then

consist of morphisms for which pullback and its adjoints Σ and Π are defined on this

subcategory.

In detail, we start with a class of morphisms in B which contains identities and is
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closed under composition. This means that these morphisms are the objects of a full

subcategory F of B2, such that the spans

ΦF = F
c

��
d

��
B B

and ΨF = F
d

��
c

��
B B

are submonads in Span of ΦB and ΨB respectively. In diagrams, objects in F will be

denoted by double-headed arrows �.

Just as before (Proposition 1.18) the existence of pullbacks corresponds to a pseudo-

distributive law.

Proposition 1.33. The following are equivalent:

1. ΨF lifts to a lax-idempotent pseudomonad ΣF in Fib,

2. there is a pseudo-distributive law λ : ΦBΨF → ΨFΦB,

3. the codomain functor c : F → B is a fibration,

4. for every morphism f in F and morphism g in B, there exists a pullback

C //

h

����

B

f

����
D g

// A

such that h is in F .

Definition 1.34. A fibration p : M → B has F-sums if it has the structure of a

left module for ΣF considered as a pseudomonad on Fib/B ∼= Fib(1,B). That is,

for every F -map f : B � A in B, the reindexing functor f ∗ :MA →MB has a left

adjoint Σf and the Beck-Chevalley condition holds in the form: For every pullback

square

D
h //

g

����

B

f

����
C

k
// A

in B with f (and hence g) in F , the canonical map Σgh
∗ → k∗Σf is an isomorphism.
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In particular, the fibration F → B itself has F -sums, with the left adjoint Σf for a

morphism f ∈ F given by composition with f .

Dually, a fibration has F-products if it has the structure of a left module for the

opposite pseudomonad ΠF , so each f ∗ :MA →MB has a right adjoint Πf such that

for any pullback square as above the canonical map k∗Πf → Πgh
∗ is an isomorphism.

The results about ΣB and ΠB (Proposition 1.30) now generalize to the monads ΣF

and ΠF .

Proposition 1.35. To give a pseudo-distributive law of ΠF over ΣF is exactly to

give the fibration F c−→ B the structure of F-products.

Remark 1.36. 1. Such a pseudo-distributive law is constructed by Hofstra [Hof11]

for the case when F is the class of product projections in a cartesian closed

category.

2. If F c−→ B has F -products, then the functor Πf is additionally a partial right

adjoint to the pullback functor on slice categories f ∗ : B/A → B/B. In other

words, there is a bijection of morphisms

f ∗C

!!

// E

����
B

⇔ C

k
��

// ΠfE

}}}}
A

even when k : C → A is not in F , since by the Beck-Chevalley condition they

both correspond to morphisms C → k∗ΠfE in the fibre F/C.

To summarize, when F is a class of morphisms which is closed under composition

and identities and F c−→ B is a fibration with F -products, there is a pseudomonad

ΣFΠF in Fib. In other words, we get a double category PolyF of polynomials. The

objects are all objects of B, and the horizontal morphisms are polynomials

B
f // //

s

xx

A
t

&& &&
I J

where t and f are in F . The 2-cells and horizontal composition correspond to mor-

phisms and composition of polynomials as before.

Now consider this pseudomonad acting on the slice category Fib/B ∼= Fib(1,B) of

fibrations over B. Applying it to the domain fibration d : F → B gives the category
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(PolyF)1 of polynomials and polynomial morphisms described above. Considering

just the part fibred over J and not I, we get the fibration

ΣFΠF(B =−→ B) = ΣF(F c−→ B)op = ΣFFop.

For a general fibration M p−→ B, we have

ΣFΠFp ∼= ΣF(ΣF(p)op)op,

so the pseudomonad ΣFΠF is given by two iterations of the construction ΣF(−)op, as

observed by Hyland in [Hyl07]. Thus we think of Pol(−) :≡ ΣF(−)op = (ΠF(−))op as

being the basic construction of polynomials over a fibration, and study the structure

of the fibration Pol(F) further in Chapter 4.



Chapter 2

Categorical models of type theory

2.1 Dependent type theory

We give here an informal account of the language of dependent type theory [ML84],

and how it is interpreted in category theory.

The basic objects of type theory are types, and terms of each type. The notation

a : A denotes that a is a term of type A. In dependent type theory, types and terms

can depend on terms of other types, so types and terms are always defined in context,

written

Γ ` A : Type and Γ ` a : A, (2.1)

where a context Γ is a finite (possibly empty) list of distinct typed variables

x1 : A1, x2 : A2, . . . , xn : An

that A and a can depend on, and each Ai depends only on the previous xj, j < i.

Two types or two terms can be definitionally equal, written

Γ ` A = B : Type and Γ ` a = b : A. (2.2)

The statements to the right of the turnstiles in (2.1) and (2.2) are the basic forms of

judgements that can be made in type theory.

Defined terms can be substituted for the variables in a judgement, so for example if

b is a term of type B in context x : A and a is a term of type A, then b[a/x] is a term

31
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of type B[a/x]. This is written as a rule of inference

Γ, x : A,∆ ` J Γ ` a : A

Γ,∆[a/x] ` J [a/x]
,

where J stands for any judgement, asserting that the conclusion below follows from

the hypotheses above the line.

Further rules state that the hypotheses of a judgement can be weakened:

Γ,∆ ` J Γ ` A : Type

Γ, x : A,∆ ` J

(when x is a new variable); that context variables are valid terms in context:

Γ ` A : Type

Γ, x : A ` x : A
,

that definitional equality is compatible with typing judgements:

Γ ` a : A Γ ` A = B : Type

Γ ` a : B

Γ ` a = b : A Γ ` A = B : Type

Γ ` a = b : B
,

and that definitional equality of types and terms are equivalence relations.

A particular instance of type theory consists of judgements in context given as ax-

ioms, plus all the judgements in context that can be derived using the above rules of

inference.

2.2 Categories of types

Given a type theory, we can study it categorically by thinking of the types as objects

of a category and the terms as morphisms. More formally, we can construct the

term model of a type theory, which is a category of types T fibred over a category of

contexts C (See e.g. [Jac99]).

C has as objects the contexts Γ of the type theory. A morphism Γ→ ∆ in C, where

∆ is a context y1 : B1, y2 : B2, . . . , ym : Bm, is a tuple of terms ~t = (t1, . . . , tm)

satisfying

Γ ` ti : Bi[t1/y1, . . . , ti−1/yi−1] for each 1 ≤ i ≤ m.
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We implicitly identify contexts, types and terms if they are the same up to substitution

of definitionally equal types and terms, as in [Jac99]. The identity morphism on the

context ∆ is the tuple of variables (y1, . . . , ym). The composite of two morphisms

~t : Γ → ∆ and ~s : ∆ → Θ is given by substituting each term ti for the variable yi in

each component of ~s. The empty context is a terminal object in C.

The category of types T has as objects types in context (Γ ` A : Type). A morphism

(Γ ` A : Type) → (∆ ` B : Type) consists of a morphism t1, . . . , tm : Γ → ∆ in C
and a term b where

Γ, x : A ` b : B[t1/y1, . . . , tm/ym].

Proposition 2.1. The forgetful functor p : T → C sending a type in context

(Γ ` A : Type) to Γ is a split fibration.

Proof. Reindexing is given by substitution: If ~t is a morphism of contexts Γ →
∆, then the reindexing functor ~t∗ sends an object (∆ ` B : Type) over ∆ to

(Γ ` B[t1/y1, . . . , tm/ym] : Type).

Γ ` B[t1/y1, . . . , tm/ym] : Type //

��

∆ ` B : Type

��
Γ

~t

// ∆

(2.3)

The cartesian morphism above ~t in T is (~t, z), where z is a new variable of type

B[t1/y1, . . . , tm/ym], representing the projection

Γ, z : B[t1/y1, . . . , tm/ym] ` z : B[t1/y1, . . . , tm/ym].

Splitness of the fibration follows since repeated substitution of terms is associative.

Each type A in context Γ determines a morphism PA : (Γ, x : A) → Γ in C by

projection. Such morphisms are called display maps (and denoted by arrows � in

diagrams). Terms of type A in context Γ correspond to the morphisms in C which

are sections of the display map Γ, x : A� Γ.

Γ a:A //

=

��

Γ, x : A

PA
||||

Γ
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A cartesian morphism as in Diagram 2.3 gives a commuting diagram between the

display maps

Γ, z : B[t1/y1, . . . , tm/ym] //

����

∆, z : B

����
Γ

~t

// ∆,

which has the universal property of a pullback square in C.

There are various essentially equivalent ways to formalize this categorical structure,

such as comprehension categories [Jac93], categories with families [Dyb96], categories

with attributes, contextual categories [Car86], D-categories [Ehr88] and type cate-

gories [Pit00].

Definition 2.2. A full split comprehension category consists of a split fibration

p : E → B, where the category B has a terminal object, together with a full and

faithful functor P : E → B2 such that

E

p

��

P // B2

c

~~
B

commutes and P preserves cartesian morphisms.

The term model of a type theory is a full split comprehension category; conversely

from a split comprehension category p : E → B we can construct a type theory Tp.
Contexts are represented by certain objects of B, and the objects in the fibre EΓ over a

context Γ are regarded as the types in context Γ. The terminal object of B represents

the empty context, and further contexts are generated successively from it: if A is a

type in context Γ then the domain of the display map PA represents the extended

context Γ, x : A. Sections of the display map PA represent the terms of type A.

We usually restrict attention to those comprehension categories such that every ob-

ject of B appears as a context in the above construction of the type theory, called

reachable comprehension categories. In this case, these constructions are inverses

up to isomorphism: the correspondence sending a type theory to its term model

and a comprehension category p to the theory Tp extends to an equivalence between

the category of full split reachable comprehension categories and structure-preserving

functors, and a suitable category of type theories [Car86, Pit00].



CHAPTER 2. CATEGORICAL MODELS OF TYPE THEORY 35

A crucial role in the term model is played by the display maps in the context category

B, which essentially determine the type theory. Each display map defines a type in

context, with terms given by sections. Substitution of terms is the operation of taking

a pullback of a display map to get another display map. In other words we have the

following structure:

Definition 2.3 ([Tay99, HP89]). A class of display maps in a category B with termi-

nal object is a class of morphisms F ⊆ B2 such that F is stable: pullbacks of display

maps along any morphism in B exist and are in F .

Remark 2.4. Such a class of morphisms is frequently called a class of fibrations, but

we will not use this terminology here to avoid confusion with Grothendieck fibrations.

Given a comprehension category P : E → B2, the closure of the image of P in B2

under isomorphism is a class of display maps. Conversely, given a class of display

maps F , the full subcategory of B2 spanned by F defines a fibration

F

  

� � // B2

c

~~
B.

This is not a split comprehension category unless pullbacks are strictly associative.

In general pullbacks are only associative up to isomorphism, so this does not give

a sound interpretation of the strictly associative substitution of terms into types.

However, such a fibration is equivalent to a split comprehension category:

Proposition 2.5 ([Gir71]). The forgetful 2-functor from split fibrations to cloven

fibrations over a category B has a left 2-adjoint F

SplitFib/B
U

>
//
Fib/B

F
oo

such that each component of the unit is an equivalence.

Here the morphisms of the left-hand category are functors over B which preserve the

splitting exactly, while the morphisms of the right-hand category are functors over B
which preserve cartesian morphisms but not necessarily the cleavage. The 2-cells are

natural transformations over B. Thus every class of display maps is equivalent as a

fibration to a split fibration strictly modelling the rules of type theory.

Example 2.6. (a) If B has all pullbacks, so the codomain functor B2 → B is a fibra-



36 2.3. TYPE CONSTRUCTORS

tion, then the class of all maps in B is a class of display maps.

(b) The class of all isomorphisms in any category is a class of display maps.

(c) If B has pullbacks, or at least pullbacks along monomorphisms, then the class of

monomorphisms in B is a class of display maps. In this case a dependent type

a : A ` B : Type can be thought of as a predicate on the type A, where each

fibre B(a) is either empty or uniquely inhabited. However, this and the previous

example are in general not reachable classes.

(d) If B has finite products, then the class of all product projections A × B → B is

a class of display maps, and is the smallest class which is reachable. This is in

some sense a trivial example of dependent type theory: the fibres of a dependent

type are constant, so the type dependency plays no role. The fibration s(B)→ B
of such product projections is called the simple fibration, as the corresponding

syntax is simple type theory.

2.3 Type constructors

In addition to the basic rules of inference of Section 2.1, a type theory can be extended

by rules to construct and manipulate new kinds of types.

Each kind of type has associated rules following a similar pattern: there are rules de-

tailing how to form these types from other given types (formation), how to construct

terms of these types (introduction), how to derive new judgements from judgements

involving the introduced terms (elimination), and how to combine introduction and

elimination (conversion). In particular, we use both β-conversion rules, for simplify-

ing an introduction followed by an elimination, and the dual η-conversion rules for

an elimination followed by introduction. Most of the type constructors given here are

presented as positive types, where the introduction rules ‘generate’ all terms, in the

sense that judgements depending on a general term are specified by the case when

the term is one of the basic terms introduced.

We assume additional rules requiring the new types and terms to interact as expected

with substitution and definitional equality, but these will be left implicit. For clarity

context variables shared by the hypotheses and conclusion of an inference rule will

be omitted when stating the rules.

The new types give additional categorical structure to the term model of the theory.

The presence of η-rules in the type theory means that this usually takes the form of
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some kind of universal property. We shall recall some standard type constructors and

motivate what additional structure should be required of the corresponding class of

fibrations interpreting the theory.

2.3.1 The unit type

A unit type is a specified type which has a unique term. These are constructed by

the rules:

` 1 : Type
1-Formation

` ∗ : 1
1-Introduction

The elimination rule states that types depending on a variable of unit type are de-

termined by the case for ∗:

x : 1 ` C : Type ` c : C[∗/x]

x : 1 ` case(c) : C
1-Elimination

Introduction and elimination are inverse processes:

x : 1 ` C : Type ` c : C[∗/x]

` case(c)[∗/x] = c : C[∗/x]
1-β-Conversion

x : 1 ` C : Type x : 1 ` c : C

x : 1 ` case(c[∗/x]) = c : C
1-η-Conversion

While the last three rules follow the general pattern for positive type constructors,

they can be replaced by a simpler one. Applying the β-conversion rule for the type

C = 1 when c is either u or ∗ gives the rule:

` u : 1

` u = ∗ : 1
1-Uniqueness

In a categorical model, this says that there is an object 1 in the fibre above the

(terminal) empty context {}, such that for any context Γ the display map representing
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(Γ ` 1 : Type) has a unique section.

Γ, x : 1 //

����

x : 1

P1

����
Γ

∗:1

EE

// {}

∗:1

DD

In other words, every Γ has a unique morphism to the context x : 1, so x : 1 is

terminal in B and the display map P1 is an isomorphism.

Since a class of display maps is closed under pullbacks and every isomorphism appears

as a pullback of P1 we define:

Definition 2.7. A class of display maps F ⊆ B2 has a unit type if F contains all

isomorphisms in B.

Example 2.8. If B has finite limits, the classes of display maps consisting of all mor-

phisms, monomorphisms, and product projections respectively all have a unit type.

2.3.2 Dependent sum types

Given a type B depending on a variable in A, the dependent sum type Σx :A.B

represents the disjoint union of the types B(x) as x ranges over A. Objects of Σx :A.B

are pairs of terms a in A and b in the corresponding type B[a/x]:

x : A ` B : Type

` Σx :A.B : Type
Σ-Formation

x : A ` B : Type ` a : A ` b : B[a/x]

` (a, b) : Σx :A.B
Σ-Introduction

The elimination rule states that for types and terms depending on a variable of the

sum type, it is sufficient to know what happens when the variable is a pair:

` p : Σx :A.B z : Σx :A.B ` C : Type

x : A, y : B ` d : C[(x, y)/z]

` case(p, (x, y).d) : C[p/z]
Σ-Elimination
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where the notation (x, y).d means that the variables x and y are bound. The conver-

sion rules ensure that the pairing and case functions are compatible:

` a : A ` b : B[a/x] z : Σx :A.B ` C : Type

x : A, y : B ` d : C[(x, y)/z]

` case((a, b), (x, y).d) = d[a/x, b/y] : C[(a, b)/z]
Σ-β-Conversion

z : Σx :A.B ` C : Type

` p : Σx :A.B z : Σx :A.B ` d : C

` case(p, (x, y).d[(x, y)/z]) = d[p/z] : C[p/z]
Σ-η-Conversion

Remark 2.9. 1. If the type B does not depend on the variable x in A, then terms

of type Σx :A.B are pairs of terms (a : A, b : B). The type Σx :A.B is then

written as A×B and called a binary product type.

2. These rules define strong sum types. If the type C in the elimination and conver-

sion rules is not allowed to depend on a variable in Σx :A.B, the corresponding

types are called weak sum types.

Categorically, the rules for weak sums say that for any types A and C in context

Γ and type B in the extended context Γ, x : A, there is a bijection between terms

of C depending on a variable z : (Σx :A.B) and terms of C depending on variables

x : A, y : B. In other words there is a bijection between maps in the fibre categories:

Σx :A.B //

## ##

C

����
Γ

⇔ B //

## ##

C

{{{{
Γ, x : A

Thus the functor ΣA : F/(Γ, x : A)→ F/Γ sending a type B to Σx :A.B is left adjoint

to the pullback functor P∗A sending C to C in the weakened context.

The fact that sum types are compatible with substitution corresponds to the Beck-

Chevalley condition: Consider a pullback square of the form

Γ, x : A t //

PA

����

∆, y : B

PB

����
Γ s

// ∆

in the context category B. The type A is given by substituting the terms making
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up the morphism s into the type B. For a type C depending on B, there is an

isomorphism of types in context

(Σy :B.C)[s1/x1, . . . , sn/xn] ∼= Σy :B[s1/x1, . . . , sn/xn].C[s1/x1, . . . , sn/xn],

i.e. the canonical map ΣAt
∗ → s∗ΣB is an isomorphism.

Definition 2.10. A class of display maps F has weak dependent sum types if the

fibration F → B has sums along display maps. In other words, for each f ∈ F the

reindexing functor f ∗ has a left adjoint Σf , and the Beck-Chevalley condition holds.

Strong sums correspond to composition of display maps: a pair of composable display

maps represents types Γ ` A : Type and Γ, x : A ` B : Type. If the type theory has

weak sum types, then there is a canonical context map t in

Γ, x : A, y : B t //

����

// Γ, z : (Σx :A.B)

����
Γ, x : A // // Γ

given by pairing. If it has strong sum types, then there is a map in the reverse

direction given by the terms

Γ, z : (Σx :A.B) ` case(z, (x, y).x) : A (called π1(z))

Γ, z : (Σx : :A.B) ` case(z, (x, y).y) : B[case(z, (x, y).x)/z] (called π2(z)), (2.4)

and the conversion rules ensure that it is an inverse to pairing. Since display maps

are closed under composing with isomorphisms, the composite is a display map.

Definition 2.11. A class of display maps F has strong dependent sum types if it is

closed under composition.

Remark 2.12. If F has strong dependent sum types, then the left adjoint Σf to rein-

dexing along f ∈ F is just given by composition with f . In what follows, ‘dependent

sum types’ will refer to the strong version.

In other words, a class of display maps has unit and sum types iff the span

ΨF = F
d

��

c

��
B B
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is a submonad of

ΨB = B2

d

~~

c

  
B B

in the bicategory Span(Cat). As in Proposition 1.33, the fact that F is closed under

pullbacks corresponds to the existence of a pseudo-distributive law ΦBΨF → ΨFΦB

between F and the monad ΦB given by reversing the span ΨB.

Having sum types allows us to blur the distinction between contexts and types. Up to

isomorphism, any non-empty context x1 : A1, x2 : A2, . . . , xn : An can be identified

with the single-type context

x : (Σx1 :A1.(Σx2 :A2.(· · · (Σxn−1 :An−1.An) · · · ))).

If there is additionally a unit type, identified with the empty context, then every

context corresponds to a closed type, and every context morphism corresponds to a

single term. Thus the condition that a categorical model with unit and sum types

be reachable reduces to requiring that there is a display map from each object to the

terminal object.

Definition 2.13. A class of display maps in a category B is called well-rooted if the

unique morphism from each object in B to the terminal object is a display map.

Since every isomorphism in B is a pullback of the identity morphism 1 → 1, a well-

rooted class of display maps automatically has a unit type.

Example 2.14. The classes of display maps consisting of all morphisms, monomor-

phisms, and product projections respectively always have (strong) sum types.

Remark 2.15. Recall the binary product types described in Remark 2.9. The type

Γ ` A×B is the product of A and B in the fibre over Γ. The projections are given

by terms π1(z) : A and π2(z) : B defined as in (2.4), where π1((a, b)) = a and

π2((a, b)) = b for terms a : A, b : B by the conversion rules. A map C → A × B in

the fibre is a term Γ, z : C ` p : A×B, and for such a p two applications of the η-rule

show that (π1(p), π2(p)) = p. Thus a class of display maps with dependent sum types

in particular has fibred binary products.
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2.3.3 Dependent product types

Given a type B depending on a variable in A, the dependent product type Πx :A.B

represents the collection of functions mapping each term a in A to a term in the

corresponding type B[a/x].

x : A ` B : Type

` Πx :A.B : Type
Π-Formation

Terms of the dependent product are formed by abstracting the variable of dependent

terms in B:

x : A ` B : Type x : A ` b : B

` λx :A.b : Πx :A.B
Π-Introduction

The dependent product is not a positive type, but terms of the dependent product

can be applied as functions to terms in A:

` f : Πx :A.B ` a : A

` fa : B[a/x]
Π-Elimination

The conversion rules assert that abstraction and application are inverse processes:

` a : A ` b : B[a/x]

` (λx :A.b)a = b[a/x] : B[a/x]
Π-β-Conversion

` p : Πx :A.B

` p = λx :A.px : Πx :A.B
Π-η-Conversion

Remark 2.16. If the type B does not depend on the variable x in A, then terms of

type Πx :A.B correspond to functions from the terms of type A to the terms of type

B. The type Πx :A.B is then written as A⇒ B and called a function type.

Similarly to the case for sum types, the rules for dependent products give a natural

bijection between terms of the product type Πx :A.B in context Γ, y : C and terms of
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B in context Γ, x : A, y : C. This gives a bijection of maps

C //

�� ��

Πx :A.B

{{{{
Γ

⇔ C //

## ##

B

{{{{
Γ, x : A

for any type C in the fibre category F/Γ, and so the functor F/(Γ, x : A) → F/Γ
sending a type B to Πx :A.B is right adjoint to the pullback functor P∗A.

As for sum types, the Beck-Chevalley condition corresponds to compatibility of prod-

uct types with substitution. For every pullback square of the form

Γ, x : A t //

PA

����

∆, y : B

PB

����
Γ s

// ∆

and type C, there is always an isomorphism of types

(Πy :B.C)[s1/x1, . . . , sn/xn] ∼= Πy :B[s1/x1, . . . , sn/xn].C[s1/x1, . . . , sn/xn].

Thus the canonical map s∗ΠB → ΠAt
∗ is an isomorphism.

Definition 2.17. A class of display maps has dependent product types if for each

morphism f in F the reindexing functor f ∗ along the display map has a right adjoint

Πf satisfying the Beck-Chevalley condition; in other words, if the fibration F → B
has F -products.

Example 2.18. (a) The codomain fibration has product types if and only if the pull-

back functor f ∗ for each f : A→ B in B has a right adjoint Πf : B/A→ B/B, i.e.

iff B is locally cartesian closed. The Beck-Chevalley condition holds by taking

right adjoints in the corresponding condition for sums, which is automatically

satisfied.

(b) When B has finite products, the class of display maps given by product projections

has product types if and only if the functor A× (−) : B → B has a right adjoint

for each A in B, i.e. iff B is cartesian closed. The Beck-Chevalley condition is

again automatically satisfied. The corresponding product types are known as

simple products.

Remark 2.19. 1. If a class of display maps has dependent product and sum types,
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then the function type Γ ` (A ⇒ B) in Remark 2.16 is an exponential in the

fibre category F/Γ over Γ. Morphisms C → (A ⇒ B) in F/Γ correspond to

morphisms C → B in the fibre over Γ, x : A, which by the adjunction for sums

correspond to morphisms A × C → B in F/Γ. Thus a class of display maps

with unit, sum and product types is a fibred cartesian closed category.

2. As in Remark 1.36, the Beck-Chevalley condition says equivalently that the

functor Πf is additionally a partial right adjoint to the pullback functor on slice

categories f ∗ : B/A→ B/B, or in other words that each inclusion F/A ↪→ B/A
preserves exponentials.

By analogy with Example 2.18(a), a class of display maps with unit, dependent sum

and dependent product types is called a relatively cartesian closed category [Tay99].

We see that a relatively cartesian closed category is exactly the structure required to

model polynomials, in the sense described in Section 1.9. As in that section, in what

follows we frequently write the sum Σx :A.B using subscripts as
∑

x :AB or
∑

x∈AB

to mimic polynomials in Set, and similarly for products.

2.3.4 The empty type

An empty type is a specified type with no terms. It has no introduction rule, but has

rules stating that the existence of a term of this type would imply that all types are

uniquely inhabited.

` 0 : Type
0-Formation

` C : Type ` a : 0

` empty(a) : C
0-Elimination

` C : Type ` a : 0 x : 0 ` c : C

` empty(a) = c[a/x] : C
0-η-Conversion

For any context Γ, the empty type 0 is an object in the fibre F/Γ with a unique map

to any other object C given by empty. 0 is preserved by substitution, i.e. reindexing.

Definition 2.20. A class of display maps has an empty type if the fibration F → B
has a fibred initial object; equivalently if the category B has an initial object 0 which

is preserved by pullback.
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2.3.5 Binary sum types

If A and B are types, the binary sum type A + B represents the disjoint union of A

and B. Each term in A and B gives a term in the sum type:

` A : Type ` B : Type

` A+B : Type
+-Formation

` a : A

` inl(a) : A+B

` b : B

` inr(b) : A+B
+-Introduction

Analogously to the rules for dependent sum types, the elimination and conversion

rules assert that types and terms depending on a variable of the binary sum type are

completely determined by the case when the variable comes from either A or B:

` p : A+B z : A+B,∆ ` C : Type

x : A,∆[inl(x)/z] ` c : C[inl(x)/z]

y : B,∆[inr(y)/z] ` d : C[inr(y)/z]

∆[p/z] ` case(p, x.c, y.d) : C[p/z]
+-Elimination

` a : A z : A+B,∆ ` C : Type

x : A,∆[inl(x)/z] ` c : C[inl(x)/z]

y : B,∆[inr(y)/z] ` d : C[inr(y)/z]

∆[inl(a)/z] ` case(inl(a), x.c, y.d) = c[a/x] : C[inl(a)/z]

` b : B z : A+B,∆ ` C : Type

x : A,∆[inl(x)/z] ` c : C[inl(x)/z]

y : B,∆[inr(y)/z] ` d : C[inr(y)/z]

∆[inr(b)/z] ` case(inr(b), x.c, y.d) = d[b/y] : C[inr(b)/z]
+-β-Conversion

z : A+B,∆ ` C : Type

` p : A+B z : A+B ` c : C

∆[p/z] ` case(p, x.c[inl(x)/z], y.c[inr(y)/z]) = c[p/z] : C[p/z]
+-η-Conversion

Remark 2.21. These rules define strong binary sum types. If the type C in the elimi-

nation and conversion rules does not depend on a variable in A+B, the corresponding

types are called weak binary sum types.

The formation and introduction rules for weak sums define inclusion maps A →
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A + B ← B in the fibre category F/Γ for each context Γ. The elimination and

conversion rules state that there is a bijection between maps A + B → C and pairs

of maps A→ C, B → C for any C in the fibre category, and compatibility with

substitution corresponds to stability of coproducts under reindexing.

Definition 2.22. A class of display maps has weak binary sum types if the fibration

F → B has fibred binary coproducts, i.e. the category B has binary coproducts which

are stable under pullback.

The additional elimination and conversion rules for strong binary sum types assert

that for any types C and D in the fibre category F/(Γ, z : A+B), maps D → C

above A + B correspond bijectively to pairs of maps between the types reindexed

along the coproduct inclusions.

Definition 2.23. A class of display maps has strong binary sum types if it has weak

binary sums and for any diagram

D //

����

C

����

Eoo

����
A // A+B Boo

(2.5)

in B where the bottom row is a coproduct diagram and all the vertical maps are display

maps, the two squares are pullbacks iff the top row is also a coproduct diagram. This

says equivalently that the canonical functor F/(A+B) → F/A × F/B given by

reindexing along the coproduct inclusions is full and faithful.

Remark 2.24. A category with finite coproducts satisfying the above condition when

the vertical morphisms are not required to be display maps is said to be extensive.

This is equivalent to the conditions that pullbacks of coproduct inclusions along any

morphisms exist and finite coproducts are disjoint and stable under pullback [CLW93].

The above rules for binary sums relate terms depending on variables of A and B with

terms depending on a variable of A + B. Further rules make it possible to do the

same for types:

` p : A+B

x : A ` C : Type y : B ` D : Type

` Case(p, x.C, y.D) : Type
+-Type-Elimination
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` a : A

x : A ` C : Type y : B ` D : Type

` Case(inl(a), x.C, y.D) = C[a/x] : Type

` b : B

x : A ` C : Type y : B ` D : Type

` Case(inr(b), x.C, y.D) = D[b/y] : Type
+-Type-β-Conversion

Remark 2.25. 1. The η-conversion rule, which would assert that the type

Case(p, x.C[inl(x)/z], y.C[inl(y)/z]) is the same as C[p/z] for any z : A + B

and type C depending on A + B, holds automatically up to isomorphism for

strong binary sums since by previous rules there is a bijection between their

terms.

2. Similar rules could be defined for types over dependent sums. However these

are automatically satisfied by a type theory with strong dependent sums, using

the projection maps of Equation 2.4.

In particular, assuming there are unit and empty types, the additional rules mean

that for any types A and B there is a type

p : A+B ` Ã(p) ≡ Case(p, x.1, y.0)

such that Ã(inl(a)) = 1 and Ã(inr(b)) = 0 for a : A, b : B. In a categorical model

with strong sums for types, this corresponds to the coproduct inclusion A → A + B

being a display map. Conversely, if types of the form Ã and B̃ exist, then the general

form of the +-Type-elimination rule can be obtained by setting Case(p, x.C, y.D) to

be the type

Σa :Ã(p).C(case(p, x.x, y.empty(a))) + Σb :B̃(p).D(case(p, x.empty(b), y.y)).

If all coproduct inclusions are display maps, then considering a diagram of the form

in (2.5) when the top row is the coproduct diagram

0 //B Boo

shows that coproducts are always disjoint, so the category is extensive.

Definition 2.26. A class of display maps F in B has strong sums for types if it
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has binary sum types and F contains all coproduct inclusions; equivalently if B is

extensive and F contains all coproduct inclusions.

Remark 2.27. This definition says equivalently that for every diagram of the form in

(2.5), if the horizontal rows are coproduct diagrams and the outer vertical maps are

display maps, then the central vertical map D + E → A + B is also a display map.

In other words, the functor F/(A+B)→ F/A×F/B is an equivalence.

Example 2.28. (a) A locally cartesian closed category is extensive iff it has finite dis-

joint coproducts, since pullback functors are left adjoints and preserve all colimits

that exist.

(b) The class of all product projections in a category B cannot have strong sums

for types unless B is trivial, since if the coproduct inclusions 1 → 1 + 1 are also

product projections then 1 ∼= 0.

2.3.6 Coherence

For each type constructor with the rules considered here, the condition a fibration

must satisfy to model these types takes a similar form. We require the existence in

each fibre of objects and morphisms with some universal property, with a stability

condition for reindexing. A variation on this formulation of constructors, which is

sometimes used in homotopy type theory and proof assistants for example, is to

remove the η-conversion rule. In category theory terms, the corresponding objects

and morphisms would then require a weak universal property, which asserts existence

but not uniqueness. The use of η-conversion is chosen here because it simplifies

calculations and fits naturally with the models used; modifications of the results for

other formulations may also be possible.

However, even a universal property will only define an object up to isomorphism. In

a strict categorical model of type theory, to satisfy the rules in the associated type

theory of Section 2.2 it is necessary to make a choice of each such object in such a

way that they are strictly stable under substitution. The following coherence results

by Lumsdaine and Warren [LW14] mean that this can always be done.

Proposition 2.29. If F is class of display maps with at least unit, dependent sum

and dependent product types, then the equivalent strict model of type theory given

by Proposition 2.5 can be given the structure of unit, dependent sum and dependent

product types, including strict associativity.
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If F also has an empty type or binary sum types, then the strict model of type theory

can be given the structure of an empty type or binary sum types respectively.

Remark 2.30. An equivalent coherence result was originally shown by Hofmann [Hof94]

using a right adjoint to the forgetful functor SplitFib/C → Fib/C in Proposition 2.5

instead of a left adjoint. However, this approach does not seem to extend to the

intensional identity types of the next section.

2.4 Identity types

If types are considered to be propositions, then under the Curry-Howard correspon-

dence terms correspond to proofs of the type they inhabit. The unit type represents

truth, and the empty type, which has no proofs, represents falsehood. Dependent

sum types Σx :A.B correspond to existential quantifiers: to give a proof of ∃x ∈ A.B
is to give a witness a in A and a proof of B[a/x]. Dependent product types correspond

to universal quantifiers: to give a proof of ∀x ∈ A.B is to give a function assigning a

proof of B[a/x] to each a in A.

While types and terms can be judgementally equal, it is not possible to reason about

proofs of equality in the same way. Thus the identity type constructor provides a type

IdA(a, b) for each pair of terms a, b of type A, which represents the type of proofs

that a equals b [ML84]. Terms a and b are called propositionally equal if IdA(a, b) is

inhabited.

Alternatively, in the homotopy type theory interpretation [The13] where types are

considered to be spaces, terms represent points of the spaces and the identity type

IdA(a, b) corresponds to the space of paths from point a to point b in A.

The formation rule for identity types defines an identity type for any two elements of

the same type:

` A : Type ` a : A ` b : A

` IdA(a, b) : Type
Id-Formation
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For each term a of A there is a specified term of the identity type IdA(a, a), corre-

sponding to a proof of the reflexivity of equality, or to a constant path:

` a : A

` r(a) : IdA(a, a)
Id-Introduction

The elimination and conversion rules state that given a proof p that terms a and b

are equal, terms of types depending on p are inductively generated by terms of the

type for the reflexivity case:

` a : A ` b : A ` p : IdA(a, b)

x, y : A, u : IdA(x, y) ` C : Type

x : A ` d : C[x/y, r(x)/u]

` J(a, b, p, x.d) : C[a/x, b/y, p/u]
Id-Elimination

` a : A

x, y : A, u : IdA(x, y) ` C : Type

x : A ` d : C[x/y, r(x)/u]

` J(a, a, r(a), x.d) = d[a/x] : C[a/x, a/y, r(a)/u]
Id-β-Conversion

In contrast to the type constructors of the previous section, we do not assume an η-

conversion rule for identity types, which would state that the J constructor uniquely

determines all terms of types depending on identity types:

` a : A ` b : A ` p : IdA(a, b)

x, y : A, u : IdA(x, y) ` C : Type

x, y : A, u : IdA(x, y) ` d : C

` J(a, b, p, x.d[x/y, r(x)/u]) = d[a/x, b/y, p/u] : C[a/x, b/y, p/u]
Id-η-Conversion

This is because such a rule would force the structure of the identity types to be trivial

– each would be uniquely inhabited or empty and so we would lose the intended

computational interpretation identifying terms and proofs:

Proposition 2.31. [Str93] A type theory with identity types satisfies the η-conversion
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rule if and only if it satisfies

` a : A ` b : A ` p : IdA(a, b)

` a = b : A
Id-Reflection

It then also satisfies

` p : IdA(a, b) ` q : IdA(a, b)

` p = q : IdA(a, b)
Uniqueness of Identity Proofs

Proof. Applying the η-rule when the type C is A and d is x gives the judgement

J(a, b, p, x.x) = a : A. However when C is A and d is y it gives J(a, b, p, x.x) = b : A.

Similarly, applying the rule when C is IdA(x, y) and d is u gives J(a, b, p, x.r(x)) =

p : IdA(a, a), which is well-typed since a = b. When d is r(x) it gives J(a, b, p, x.r(x)) =

r(a) : IdA(a, a), so repeating this for q shows p = r(a) = q : IdA(a, b).

Conversely, given the reflection rule, it suffices to prove the η-rule up to propositional

equality, i.e. to give a term of the identity type

x, y : A, u : IdA(x, y) ` IdC(J(x, y, u, x.d[x/y, r(x)/u]), d) : Type.

When x = y and u = r(x), the two terms of C are equal by the β-rule so reflexivity

gives a term of the identity type, and the general case follows by the elimination

rule.

The uniqueness of identity proofs and reflection rules are independent of the other

rules for identity types, first demonstrated by Hofmann and Streicher using a model

in the category of groupoids [HS98]. Dependent type theory with identity types

satisfying the reflection rule is called extensional, and intensional or Martin-Löf type

theory otherwise.

In a categorical model with the type constructors of the previous section, the forma-

tion rule gives an object IdA for each type A in context Γ, with a display map to the

object A×Γ A representing the context Γ, x : A, y : A.
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The reflexivity term corresponds to a morphism rA making the diagram

A
rA //

δ
""

IdA

PIdA
����

A×Γ A

commute, where δ is the diagonal map.

Given any display map over IdA with a commuting square as in the outside of the

diagram

A d //

rA

����

C

PC

����
IdA

J

<<

IdA,

the elimination rule defines a diagonal morphism J : IdA → C. The bottom tri-

angle commutes since J represents a term, and the top triangle commutes by the

β-conversion rule.

More generally, any commuting square between rA and a display map can be given a

diagonal filler, by pulling back the display map along the bottom morphism and then

applying the elimination rule.

A d //

rA

��

D

PD

����
IdA e

// E

= A //

rA

��

C

PC

����

k // D

PD

����
IdA

J

<<

IdA e
// E

(2.6)

The morphism kJ is then a filler for the original square.

Definition 2.32. A morphism f has the left lifting property with respect to g, or

equivalently g has the right lifting property with respect to f , written f � g, if for

every commutative square of the form

A //

f

��

B

g

��
C // D,

there exists a diagonal filler C → B making both triangles commute.
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The elimination and β-conversion rules thus imply that the reflexivity map rA has the

left lifting property with respect to all display maps. The compatibility of identity

types with substitution should mean that this property is stable under pullback, i.e.

that for any morphism s : ∆→ Γ,

s∗A //
s∗(rA)

((

����

A
rA

''

����

s∗IdA //

{{{{

IdA

}}}}
∆ s

// Γ

(2.7)

the pullback s∗(rA) also has the left lifting property with respect to all display maps.

We consider the class of all such morphisms in B.

Definition 2.33. A class of morphisms R in a category B is called factorizing if

every morphism f in B can be factored as f = ρ ◦ λ

Kf

ρ

  
B

f
//

λ

>>

A

(2.8)

such that

• ρ ∈ R,

• λ ∈ �R, the class of morphisms with the left lifting property with respect to

every map in R.

If additionally R = (�R)�, the class of morphisms with the right lifting property

with respect to every map in �R, then (�R,R) form a weak factorization system on

B.

A factorizing class of morphisms is functorial if a chosen factorization as in (2.8) is

given for each morphism in B, which extends to a functor (L,R) : B2 → B2 ×B B2.

It is an orthogonal factorization system if the filler for each square

A //

(�R)3

��

B

∈R

��
C

!

??

// D
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is unique.

Example 2.34. (a) In any category the classes of isomorphisms and all morphisms

form a functorial orthogonal factorization system.

(b) If E → B is a fibration, then the classes of vertical and cartesian morphisms form

an orthogonal factorization system in E .

(c) In an extensive category, the classes of coproduct inclusions and split epimor-

phisms form a functorial weak factorization system. The factorization of a mor-

phism f : B → A is given by B ↪→ A+B
〈1,f〉−−→ A.

The following consequence of identity types was first shown for the term model by

Gambino and Garner [GG08], and in general by Shulman. Emmenegger [Emm14]

extended it to avoid the hypothesis of dependent products, as long as pullbacks of rA

along all display maps have the left lifting property.

Proposition 2.35 ([Shu13]). If a model of type theory with dependent sum, dependent

product and unit types in a category B has factorizations of each diagonal satisfying

the stability condition (2.7), then the class of display maps D ⊆ B2 is factorizing. It

follows that (�D, (�D)�) is a weak factorization system.

Sketch of Proof. Given a map f : B → A, define the factorization of f to be

B
l−→ Id(f)

t−→ A given by the pullback

B
f //

l

��

A

rA

��
Id(f)

(s,t)

��

// IdA

PIdA=(sA,tA)

����
B × A

f×1
// A× A.

In other words, Id(f) represents the type
∑

b:B,a:A IdA(fb, a).

The span B
s←− Id(f)

t−→ A is equivalently described as a composite in Span(B) with
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the span A
sA←− IdA

tA−→ A:

Id(f)

�� ��
B

=

��

f

��

IdA
sA

��

tA

��
B A A.

Since D contains product projections and is closed under composition and pullback,

t is a display map. The morphism l can be shown to be in �D because rA is and D
has product types.

As D ⊆ (�D)�, the class (�D)� is also factorizing, and �((�D)�) = �D, so (�D)� is

the right class of a weak factorization system.

In particular, the identity IdB appears as the factorization of the identity morphism

on B

IdB

tB

!! !!
B

1B
//

rB

==

B.

Conversely, given a class of display maps F which is factorizing, the factorizations of

diagonal maps required for identity types exist. The stability condition (2.7) holds if

F has dependent product types [Shu13]. Thus we define:

Definition 2.36. A class of display maps F ⊆ B with sum, unit and product types

has identity types if F is factorizing, with a chosen factorization for each morphism

in B.

Remark 2.37. Unlike the other type constructors considered in this chapter, identity

types in a categorical model are not unique up to isomorphism. However, a choice of

identity types induces a weaker notion of equivalence in the category. Two morphisms

f, g : B → A are said to be homotopic, written f ∼ g, if (f, g) : B → A × A factors

through the identity type (sA, tA) : IdA � A× A. In the type theory, this says that

the type ∏
b:B

IdA(fb, gb)

is inhabited. Two objects B and A are (homotopy) equivalent, written B ' A, if

there are morphisms f : B → A and h : A→ B such that the composites fh and hf
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are homotopic to identity morphisms.

The object Id(f) then plays the role of a limit of f ‘up to homotopy’: there is a

homotopy fs ∼ t

Id(f)

t

!! !!

s

}}}}
∼

B
f

// A

and Id(f), t, s are universal with this property.

Example 2.38. In a model of extensional identity types, the η-conversion rule requires

the filler J to be unique for any commutative square of the form in Diagram 2.6. In

this case in the square

B
rB //

rB

��

IdB

sB

����
IdB sB

// // B

where sB is the first projection of PIdB , both 1IdB and rBsB are suitable fillers so

they must be equal and rB must be an isomorphism. Thus in a class of display maps

with extensional identity types all diagonal morphisms are display maps. If it is also

well-rooted then since any morphism f : B → A factors as

B
(1,f) //B × A π2 //A

which are pullbacks of the display maps A � A × A and B � 1 respectively, every

morphism is a display map.

Conversely identity types in the codomain comprehension category are automatically

extensional, since the reflexivity map rA has the left lifting property with respect to

all maps and so must be an isomorphism [See84].

In the intensional case, the lack of uniqueness of fillers means choices have to be

made for each term J . This gives another coherence problem in addition to the

stability under pullback considered in Section 2.3.6. In a strict categorical model of

type theory, to give identity types requires not only specifying types Id and terms rA

which are stable, but also specifying extra data to give a filler J for each square in

such a way that they are compatible with substitution. This problem is considered

in detail in [War08] and [vdBG12]. However, for the associated strict model of type

theory of Proposition 2.5, it is always possible to choose these fillers in a coherent
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way:

Proposition 2.39 ([LW14]). If F is well-rooted class of display maps with dependent

sum and product types and identity types, then the associated comprehension category

models identity types.

2.5 Interaction of type constructors

We now consider types built out of more than one type constructor, and the properties

that can be deduced.

2.5.1 Sums and products

Proposition 2.40. For types C � B � A in a context Γ, there is an isomorphism∏
a:A

∑
b:B(a)

C(a, b) ∼=
∑

f :
∏
a:AB(a)

∏
a:A

C(a, fa).

Proof. Let ϕ be a term of type
∏

a:A

∑
b:B(a) C(a, b). Then for any a : A, we have

terms

π1(ϕa) : B(a) and

π2(ϕa) : C(a, π1(ϕa)).

So the term (λa.π1(ϕa), λa.π2(ϕa)) has the type of the right-hand side.

Conversely, given a term of type
∑

f :
∏
a:AB(a)

∏
a:AC(a, fa), it suffices by the rules for

sums to assume that it has the form (f, ψ) where f :
∏

a:AB(a) and ψ :
∏

a:AC(a, fa).

Then the term λa.(fa, ψa) has the type of the left-hand side. The conversion rules for

products and sums ensure that the two constructions are inverse to each other.

Translating this into a categorical model gives exactly the distributive law between

the monads ΣF and ΠF in Proposition 1.35.

Remark 2.41. Under the propositions-as-types interpretation of type theory, reading

Σ as ∃ and Π as ∀, the statement above corresponds to a form of the axiom of choice.

However, to give a term of a sum type Σa:AP (a) involves specifying a witness a, so

there is no actual choice involved.
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2.5.2 Binary sums and products

Proposition 2.42. For types C and B in the same context Γ, there is an isomorphism

C +B ∼=
∑
s:1+B

(1̃(s)⇒ C)

over Γ, where 1̃ � 1 +B is the type corresponding to the coproduct inclusion.

Proof. To construct a term of type
∑

s:1+B(1̃(s)⇒ C) from a term p of type C+B, it

suffices by the rules for binary sums to consider the cases p = inl(c) and p = inr(b) for

terms c : C, b : B. If p = inl(c), then since 1̃(inl(∗)) = 1, we get that (inl(∗), λx.c)
is a term of type

∑
s:1+B(1̃(s) ⇒ C). If p = inr(b), then since 1̃(inr(b)) = 0,

(inr(b), λx.empty(x)) is a term of type
∑

s:1+B(1̃(s)⇒ C).

Conversely, given a term p of type
∑

s:1+B(1̃(s) ⇒ C), it suffices to consider p =

(inl(∗), φ : 1⇒ C) and p = (inr(b), φ : 0⇒ C). In the first case, inl(φ(∗)) is a term

of type C +B, and in the second case inr(b) is. The two constructions are inverse to

each other.

2.5.3 Identities and sums

As the lack of η-conversion rules means that identity types are not defined uniquely,

we cannot expect that identity types will commute up to isomorphism with other

type constructors. However, at least for sum types they do commute up to homotopy

equivalence, i.e. up to a term of a corresponding identity type.

Proposition 2.43 ([The13]). For types B � A and terms

x, y :
∑
a:A

B(a),

there is an equivalence of types

Id∑
a:AB(a)(x, y) '

∑
p:IdA(π1x,π1y)

IdB(π1y)(p∗(π2x), π2y),

where for any a1, a2 : A, the path transport map p∗ : B(a2)⇒ B(a1) is defined using

the identity type rules to be the term J(a2, a1, x.1B(x)).

Proof. To construct a term f(q) of the type on the right-hand side from a term q of
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type Id∑
a:AB(a)(x, y), it suffices to assume that x = y and q = r(x). But then r(π1x)

is a term of type IdA(π1x, π1y) and r(π1x)∗ is the identity function by β-conversion,

and so (r(π1x), r(π2x)) is a term of the right-hand side as required.

Conversely, given p : IdA(π1x, π1y) and s : IdB(π1y)(p∗(π2x), π2y), using the identity

rules twice we can assume that π1x = π1y and p = r(π1x), and also that π2x = π2y

and s = r(π2x). Since x = (π1x, π2x) = (π1y, π2y) = y, r(x) is then a term g(p, s) of

the left-hand side.

To show that f and g form an equivalence, we need to find terms of the identity types

Id(q, gf(q)) and Id((p, s), fg(p, s)) for q, p, s as above. Again, it suffices to assume

q = r(x), so gf(q) = g(r(π1x), r(π2x)) = r(x) = q. Similarly, assuming p = r(π1x)

and s = r(π2x), we get fg(p, s) = f(r(x)) = (r(π1x), r(π2x)) = (p, s) as required.

In a similar way, identities for binary sum types and the unit type are characterized

up to homotopy by their constituent types.

Proposition 2.44 ([The13]). For types A,B and terms a1, a2, a : A, b : B there are

equivalences of types

IdA+B(inl(a1), inl(a2)) ' IdA(a1, a2)

IdA+B(inl(a), inr(b)) ' 0

Id1(∗, ∗) ' 1.

2.5.4 Identities and products

In the case of product types, identities are not constrained in the same way. For any

types B � A and any dependent functions

f, g :
∏
a:A

B(a),

there is a map

happly : Id∏
a:AB(a)(f, g) →

∏
a:A

IdB(a)(f(a), g(a)).

To construct it, it suffices by the rules for identity types to assume that f = g and r(f)

is a term of the left-hand side, in which case λa.r(f(a)) is a term of the right-hand

side.
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However, unlike the case for sum types, the rules of type theory do not necessarily

imply that this is an equivalence.

Definition 2.45. A type theory satisfies the principle of function extensionality if

for all f, g :
∏

a:AB(a), happly is an equivalence

Id∏
a:AB(a)(f, g) '

∏
a:A

IdB(a)(f(a), g(a)).

Intuitively, function extensionality says that functions which have equal values every-

where are equal. In a type theory without this principle, functions can be intensionally

different despite being extensionally the same – the identity types of function spaces

are not fixed by the identity types of their images. Assuming function extensionality

as an axiom determines these function space identity types up to equivalence.

By a result of Streicher [Str93], function extensionality cannot be derived from the

rules for Π-types, Σ-types and Id-types given above. Indeed, Streicher constructed

a model where function extensionality fails, obtained by glueing the global sections

functor of the category of assemblies. This model has intensional identity types

satisfying the propositional version of the uniqueness of identity proofs condition,

i.e. such that any two terms of an identity type are propositionally equal. It was

previously known that function extensionality is independent of the rules of type

theory without η-rules for product types, see [TvD88]. Hofmann [Hof95] gives an

informal explanation for why it would not be expected to hold in general, using the

normalization property of type theory.

It has been shown by Voevodsky (see [Lum11]) that to ensure happly is an equivalence,

it is sufficient to construct a function in the opposite direction:

Proposition 2.46. Function extensionality holds iff for all f, g :
∏

a:AB(a) there

exists a map ∏
a:A

IdB(a)(f(a), g(a)) → Id∏
a:AB(a)(f, g). (2.9)

Example 2.47. (a) For an extensive type theory modelled by a locally cartesian closed

category, the identity type of a dependent type B � A is represented by the

diagonal map

B
(1,1) //B ×A B.

There is a (unique) term of type Id(f, g) for functions f and g if and only f and g
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are equal as terms of the function type, so function extensionality automatically

holds.

(b) For the class of display maps consisting of product projections, identity types

are trivial: given a dependent type B � A, the diagonal B → B ×A B is a

split monomorphism so has the left lifting property with respect to all product

projections. Thus the identity type is just B×AB and there is a (unique) identity

path between any two terms in a fibre. Both sides of (2.9) represent the product∏
a:AB(a)×

∏
a:AB(a), so function extensionality always holds.

Remark 2.48. 1. A well-rooted class of fibrations with dependent sum and product

types and identity types is called a tribe by Joyal [Joy14], a typical category by

Awodey [Awo14], and a type-theoretic fibration category by Shulman [Shu13].

A tribe satisfying function extensionality is called a Martin-Löf tribe [Joy14].

2. In the models of type theory usually studied from a homotopy type theory per-

spective, function extensionality holds. A term of the identity type between

two functions can then be thought of as a path or a continuous homotopy. In

particular, function extensionality is implied by Voevodsky’s univalence axiom

[The13]. This asserts the existence of a universe type, whose terms are types,

such that the identity type between two types corresponds to the type of ho-

motopy equivalences between them.
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Chapter 3

Constructing new models

3.1 Extending the type theory

Suppose we have a well-rooted class of display maps

F

��

� � // B2

c

~~
B

representing a type theory. The aim of this chapter is to use such a model of type

theory to build other models with possibly different properties, or in other words to

construct a different well-rooted class of display maps G in some related category C.

We start with some informal motivation for the form this construction will take.

The model F represents some particular instance of type theory T. If we were to

modify the type theory in some way, this should give a corresponding change in the

categorical model, and conversely a categorical construction on F which produces a

new class of display maps should correspond to a type-theoretic construction on T.

In particular, consider the process of adding new types to the theory. For each context

Γ in T, suppose there is an embedding

FΓ
� � // EΓ

of the fibre FΓ into some category which we want to think of as additional types in

context Γ.

63
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In order for the new types to respect substitution along morphisms in B, the categories

EΓ should also assemble into a fibration E → B, with the inclusions of original types

forming a full and faithful fibred functor from F

F

c
  

� � Φ // E

q
��

B.

However, if types have been added to the fibre F1 over the terminal object, then

we have added ‘closed types’ in the new theory which no longer correspond to the

category of contexts B. To get a model of type theory it is necessary to add contexts

as well, and ‘extend’ the fibration q along the functor

B ∼= F1
� � Φ1 // E1 = C

in some way to construct a well-rooted class of display maps G in the category C.
The functor Φ1 should preserve the terminal object and pullbacks of display maps

to preserve the existing types. Requiring that the pullback of G along Φ1 is just E
then ensures that for an original context Γ coming from B, EΓ represents exactly the

category of types over Γ in the new theory.

In summary, the proposed construction of a new model proceeds according to the

following scheme. We start with a model of type theory F in B. Then, given a fibred

inclusion Φ : F → E over B such that Φ1 : B → C preserves finite limits where C = E1,

we obtain (under appropriate assumptions) a new model of the form

G

��

� � // C2

��
C

such that the square

E

��

� � // G

��
B � �

Φ1

// C

(3.1)

is a pullback.
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3.2 Adding sums

This section describes a family of new models of type theory which fit into the above

framework. In particular, we consider models based on the monad Σ which freely

adds sums to fibrations. We give two variants of the construction, one of which is a

generalization of the other.

Given the class of display maps F in B, let ψ : C → B be any cloven fibration over

B. To relate this to the above setting, we assume ψ has the following property.

Proposition 3.1. The following are equivalent:

1. ψ has a full and faithful right adjoint

B
� � φ

>
//C

ψ
oo (3.2)

making B into a reflective subcategory of C,

2. C has a terminal object preserved by ψ,

3. ψ has fibrewise terminal objects.

Proof. (1)⇒ (2) : B has a terminal object 1 preserved by the right adjoint φ. Then

ψφ(1) ∼= 1 by the counit of the reflection.

(2)⇒ (3) : For any object A of B, the reindexing of the terminal object 1 of C along

the unique morphism A → ψ(1) is terminal in the fibre over A, and is stable under

reindexing.

(3) ⇒ (1) : For an object A of B, define φ(A) to be the terminal object of the fibre

of ψ over A. This extends to an adjunction ψ a φ where for D in C the component

of the unit ηD : D → φψ(D) is the unique vertical arrow over ψ(D), and the counit

is ψφ = 1.

Assume now that the class of display maps F has (strong) dependent sum types, so

the monad ΣF is defined which adds sums along morphisms in F to fibrations over

B as in Definition 1.34.
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Proposition 3.2. Given φ and ψ as above, there is a fibred adjunction

F
� � Φ

>
//

!!

∑
F C

Ψ
oo

��
B
� � φ

>
// C

ψ
oo

such that the restrictions of Φ and Ψ to the fibres over the terminal object of B are φ

and ψ respectively.

Proof. The fibration ΣFC → B is given by pullback:

ΣFC
Ψ

�� ��
F

c

��

d

��

C
ψ

��
B B

The fibre Ψf of Ψ over an object f of F is the fibre ψdf of ψ, with reindexing along

a morphism h : f → g given by (dh)∗ : ψdg → ψdf . The cartesian morphisms for the

fibration cΨ : ΣFC → B are the pairs (h ∈ F2, g ∈ C2) such that g is ψ-cartesian

over dh and h is c-cartesian, so Ψ preserves cartesian morphisms and hence defines a

fibred functor over B. Because F is well-rooted, the restriction of d to the fibre of c

over 1 in B is an isomorphism, so Ψ restricts to ψ.

Each fibre category of ψ has a terminal object preserved by reindexing, so the same

holds for Ψ. This defines a full and faithful functor Φ which is right adjoint to Ψ and

restricts to the right adjoint φ over 1 in B. Φ preserves cartesian morphisms and the

unit and counit of the adjunction are vertical over B.

Thus we have a fibred inclusion of F into ΣFC as described in the previous section.

We want to construct a model of type theory FC in C, which extends ΣFC in the sense

outlined there.

Firstly, the display maps over an object φD in C should correspond to the fibre of

ΣFC over D, which is just the set of pairs

{(C, f : ψC → D) | C ∈ C, f ∈ F}.
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To give such a pair it suffices to give the transpose f̄ : C → φD of f under the

adjunction ψ a φ. This means that the display maps of FC over objects in the image

of φ should be exactly

F = {f : C → φD | (f̄ : ψC → D) ∈ F}, (3.3)

that is, the class of morphisms in C whose transpose under the adjunction is in F .

If FC is to form a class of display maps, then pullbacks along these morphisms must

exist in C. We therefore assume that the following equivalent conditions hold.

Proposition 3.3. Given F and an adjunction as above, the following are equivalent:

1. C has and ψ preserves finite products,

2. the pullback of a morphism f ∈ F along any morphism in C exists, and ψ

preserves this pullback.

Proof. (2)⇒ (1) : Since φ preserve terminal objects, the product of objects A and B

in C is the pullback

A×B //

��

A

!A

��
B // φ1,

where the transpose ψA → 1 of the morphism !A is in the well-rooted class of maps

F . ψ preserves this product because it also preserves the terminal object.

(1) ⇒ (2): Let f : C → φψA in F and g : B → φψA be morphisms for which we

want to construct a pullback in C. The pullback

P
q //

p

��

ψC

f̄

��
ψB

ḡ
// ψA

(3.4)

exists in B since f̄ is in the class of display maps F . Now since ψ preserves binary

products, ψB × ψC ∼= ψ(B × C). Consider the morphism

P
(p,q) //ψB × ψC

∼= //ψ(B × C)

in B. ψ is a fibration, so this morphism has a cartesian lifting (m,n) : Q→ B×C in C.
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This satisfies ψQ = P , ψm = p and ψn = q, and so also fn = gm by transposing. The

universal property of the lifting is the condition that a morphism (h, k) : K → B×C
factors uniquely through (m,n) if and only if ψ(h, k) factors through (p, q),

K

��

s &&

(h,k)

--Q
(m,n)

//

��

B × C

��

ψK

t && --
P

(p,q)
// ψB × ψC ∼=

// ψ(B × C),

if and only if f̄ψk = ḡψh, if and only if fk = gh (and then automatically ψ applied

to the morphism s : K → Q must give t by uniqueness of t). In other words, it is

exactly the condition that

Q
n //

m

��

C

f

��
B g

// φψA

is a pullback square in C. The image of this square under ψ is the pullback of f̄ and

ḡ in (3.4), so ψ preserves this pullback.

Remark 3.4. When f ∈ F is in the image of φ, so it is of the form φψf : φψC → φψA,

then condition (2) always holds: the pullback of φψf along g is given by

Q
ηQ //

m

��

φP
φq //

φp

��

φψC

φψf

��
B ηB

// φψB
φψg

// φψA

where Q
m−→ B is the cartesian lifting of P

p−→ ψB. This property makes the adjunction

ψ a φ together with the classes of morphisms F and FC into an admissible Galois

structure defined by Janelidze in [Jan89]. An adjunction which satisfies condition

(2) in the case when F consists of all morphisms of C is said to have stable units in

[CHK85].

We can now define the new model of type theory.

Proposition 3.5. Suppose we are given
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(i) a well-rooted class of display maps F ⊆ B2 with dependent sums,

(ii) an adjunction

B
� � φ

>
//C

ψ
oo

where ψ is a finite-product-preserving fibration.

Let F ⊆ C2 be the class of transposed maps defined in (3.3), and let FC be the closure

of F under pullback. Then FC is a well-rooted class of display maps in C, and the

restriction of FC along φ is ΣFC.

Proof. Since all pullbacks of morphisms in FC exist and are in FC by definition, it

is a stable class of maps. The right adjoint φ preserves the terminal object of B, so

any morphism A→ 1 in C corresponds to ψA→ 1 in B, which is in F because F is

well-rooted. The class FC contains all isomorphisms since 1→ 1 is in F .

Proposition 3.6. FC is exactly the class of morphisms in C which appear as the left

vertical morphism in a pullback square of the form

D //

��

C

∈F
��

A ηA
// φψA.

Proof. This class of morphisms is clearly contained in FC. Conversely, given a mor-

phism h : D → B in FC which arises as a pullback

D //

h

��

C

f

��
B g

// φψA,

this factors by naturality as

D //

h

��

C ′ //

f ′

��

C

f

��
B ηB

// φψB
φψg

// φψA.

Since ψ preserves the right pullback, the transpose f̄ ′ : ψC ′ → ψB of f ′ is a pullback
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of f̄ ∈ F in B. Hence f̄ ′ is in F , i.e. f ′ ∈ F .

Example 3.7. (a) Let C be any category with finite products. Then C → 1 is trivially

a fibration preserving finite products and the terminal object defines a unique

adjunction

1
1

>
//C.oo

There is a unique well-rooted class of display maps F on the category 1. The class

of transposed morphisms F in C consists of all maps into the terminal object, so

applying the construction of Proposition 3.5 to this adjunction gives the simple

model of type theory of Example 2.6(d) where the display maps in C are the

product projections.

(b) For a class of display maps F with dependent sums, the functor c : F → B is

itself a fibration such that F has and c preserves finite products. This means we

can construct a model of type theory FF in the category F . The morphisms in

F in this model are commutative squares

B // //

��

A

∈F
����

C =
// // C.

Thus the display maps between objects (B � A) and (D � C) in F are the

commutative squares

B // //

f

��

A

g

����
D // // C

with g in F which arise as a pullback

(B � A) //

(f,g)

��

(E � A)

��
(D � C) // (C � C)

for some (E � A) in F , in other words such that B is the pullback D×C E and
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f is the right morphism in

B //

��

E

����
D ×C A //

��

A

g

����
D // // C.

(c) The category of small categories Cat is fibred over Set via the objects functor,

where the cartesian morphisms are the full and faithful functors. This fibration

preserves finite limits and has a full and faithful right adjoint which sends a set to

the indiscrete category on that set. Using the locally cartesian closed structure

of Set, we get a well-rooted class of display maps in Cat, albeit a not very

interesting one: the display maps are all pullbacks of functors with codomain an

indiscrete category.

We now look again at the construction of display maps from a different viewpoint.

In the hypotheses of Proposition 3.5, ψ is a fibration, so every morphism f in C
factors uniquely (up to ψ-vertical isomorphism) as a vertical morphism f v followed

by a morphism f c which is cartesian over ψf . In other words, f factors through a

pullback

B

f

��

fv

��

ηB

((
P ηP

//

fc

��

φψB

φψf

��
A ηA

// φψA.

This gives another characterization of the display maps of the new model:

Proposition 3.8. FC is exactly the class of maps f : B → A in C such that ψf ∈ F
and the vertical comparison map f v is a product projection in the fibre of ψ over ψB.

Proof. From the description of display maps in Proposition 3.6, f is a display map
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iff ψf ∈ F and

B //

fv

��

C

ηC

��
P ηP

// φψB

is a pullback for some C in the fibre of ψ over ψB. But this universal property makes

B into the product P × C in the fibre category.

Generalizing from the class of product projections to other classes of display maps in

the fibre categories, we get a more general construction of new models of type theory

extending ΣFC.

Proposition 3.9. Suppose we have

(i) a well-rooted class of display maps F ⊆ B2 with dependent sums,

(ii) an adjunction

B
� � φ

>
//C

ψ
oo

where ψ is a finite-product-preserving fibration.

Assume additionally that for each D ∈ C, the fibre category ψD of ψ has a class of

morphisms RD such that

(iii) RD is a well-rooted class of display maps with dependent sums,

(iv) reindexing preserves these classes, i.e. for any f : B → A in RψB and cartesian

g : D → B in B, the induced vertical morphism h : D → E in

D
g

cart
//

h

��

B

f

��
E

cart
// A

is in RψE,

(v) reindexing preserves the pullbacks of maps in RD.

Then

G = {f : B → A ∈ C | ψf ∈ F and the comparison map f v ∈ RψB}
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is a well-rooted class of display maps in C. The restriction of G along φ is again ΣFC.

Proof. Firstly, since RψB contains all vertical isomorphisms and is closed under com-

position, G is well-defined whatever the choice of f v. G is closed under composition

with isomorphisms: given

D ∼=
β //B

f

∈G
//A

α
∼=

//E

in C, ψ(αfβ) ∈ F since F is a class of display maps. All isomorphisms in C are

cartesian, and the stability property of R ensures that fβ factors as a cartesian

morphism composed with a vertical map in RψD.

To show that pullbacks along morphisms in G exist, let f : B → A be in G. The

cartesian part of f is stable under pullback as in Proposition 3.5, so assume f is

vertical and in RψB. For any cartesian morphism g : C → A, the square

P
p //

q

��

B

f

��
C g

// A

is a pullback where P
p−→ B is a cartesian lifting of ψg, and q ∈ RψC by the stability

property. For any vertical morphism g : C → A, the pullback of f along g exists in

the fibre category ψψB and is in RψB. Since reindexing preserves this pullback, it also

has the universal property of a pullback in C.

For any A in C, φψA is terminal in the fibre of ψ over ψA, so each component

ηA : A→ φψA of the unit of the adjunction is in the well-rooted class RψA and so is

in G. Thus F̄ ⊆ G and G is well-rooted. Similarly, a morphism f : B → φψA in C is

in G iff ψf ∈ F , so the class of display maps extends ΣFC.

Remark 3.10. Intuitively, this construction based on the sums monad ΣF gives a

type theory whose types look like elements of a dependent sum – a type A in the new

theory is a pair (A,A), where A = ψA is a type in the theory corresponding to F ,

and A is a type in the theory corresponding to RA. A dependent type f : B � A

consists of a dependent type f : B � A in F (which is the morphism ψf), together

with a dependent type B � (f)∗A in RB (which is f v). We can think of such a B as

having two kinds of type dependency, on B and A respectively, and write B � A in
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type theory notation as

(B(a), B(a, b; a)) � (A, A(a)).

A term of this type is a pair (b, b), where b : A→ B is a term in F and b : A→ (b)∗B

is a term of the reindexed type in RA.

Example 3.11. (a) When each class of display maps RD consists of the product pro-

jections in the fibre ψD, they each have dependent sums and are stable under

reindexing exactly when ψ preserves finite products. So the model FC is indeed

a special case of this construction.

(b) Consider again the fibration c : F → B in Example 3.7(b). Each fibre of c is a

slice category F/B, which has a class of display maps (F/B)F consisting of the

commuting triangles with all morphisms in F :

A

    

// // C

~~~~
B.

This has dependent sums, and is stable under reindexing because F is stable

under pullback, so we can construct a model of type theory G in the category F
which has more display maps than the model FF . This class of display maps is

described by Shulman in [Shu13]. Cartesian morphisms for c in C are pullback

squares, so display maps between objects (B � A) and (D � C) in F are the

commutative squares

B // //

f

��

A

g

��
D // // C

with g in F such that the comparison map h in

B

f

��

h
## )) ))D ×C A //

����

A

g

����
D // // C
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is also in F .

3.3 Dependent sum and product types

In order to construct the new models, the original class of display maps F was assumed

to have at least dependent sum types. We now consider sum, product and identity

types in F , and investigate conditions for which the extended models inherit this

structure.

Proposition 3.12. The class of display maps G has dependent sum types, that is G
is closed under composition.

Proof. Let g : C � B and f : B � A be display maps in G. Then ψ(fg) = ψ(f)ψ(g)

is in F because F has dependent sum types. The morphisms g and f factor as

C
gv−→ P

gc−→ B and B
fv−→ Q

fc−→ A for some cartesian gc, f c and gv ∈ RψC , f v ∈ RψB.

If M
m−→ Q is a cartesian lifting of ψ(g) = ψ(gc) and n the induced vertical map in

P
gc //

n

��

B

fv

��
M m

// Q,

then n ∈ RψC by stability. Thus

C
ngv //M

fcm //A

is a cartesian-vertical factorization of gf with ngv ∈ RψC , so gf is in G.

In the notation of Remark 3.10, given display maps C
g−→ B

f−→ A corresponding to

types

(C(a, b), C(a, b, c; a, b)) � (B(a), B(a, b; a)) � (A, A(a)),

the sum Σb:BC(a, b) � A is just calculated componentwise as∑
b:B(a)

C(a, b),
∑

b:B(a,b;a)

C(a, b, c; a, b)

� (A, A(a)).

Here the first Σ refers to the sum types of the model F , and the second to the sum



76 3.3. DEPENDENT SUM AND PRODUCT TYPES

types of the model RC .

Lemma 3.13. If the class of display maps F has dependent product types and the

fibration ψ has F-products which preserve the display maps RD, then G has products

along all cartesian morphisms f in C with ψf ∈ F .

Proof. If f : B → A is cartesian, it appears as a pullback

B
ηB //

f

��

φψB

φψf

��
A ηA

// φψA.

Firstly, consider products along φψf . Since G restricts to ΣFC along φ, to give a right

adjoint Πφψf for the reindexing functor

(φψf)∗ : (G)φψA → (G)φψB

is equivalent to giving a right adjoint Πψf for

(ψf)∗ : (ΣFC)ψA → (ΣFC)ψB.

But ψf is in F , and if the fibration ψ : C → B has products along morphisms in F
then so does ΣFC → B, by the distributivity law for F . The Beck-Chevalley condition

holds for morphisms of this form in G since it holds for ψ.

Let g : D → B be another morphism in G for which we want to construct the product

Πfg. Since G contains ηA and is closed under composition, g is also a morphism

ηAfg → ηAf in the slice category G/(φψA). The fact that products exist along φψf

means that φψf is an exponentiable object in this slice category. As products for ψ

preserve display maps, gφψf is in G and we can form the pullback

P
q //

p

��

Dφψf

gφψf

��
A a

// Bφψf

in G/(φψA), where A
a−→ Bφψf is the transpose of A× φψf

∼=−→ B. Given any K
k−→ A

in G, there are natural correspondences between morphisms
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k → p in C/A

ak → gφψf in C/(Bφψf )

k × φψf → g in C/(φψA)

f ∗k → g in C/B.

In other words, the morphism P
p−→ A has the universal property of the product Πfg.

The Beck-Chevalley condition holds since it holds for morphisms of the form φψf .

Proposition 3.14. If F has dependent product types, each class of display maps RD

has dependent product types which are preserved by reindexing, and the fibration ψ

has F-products which preserve RD-maps, then G has dependent product types.

Proof. Using the above lemma, it remains to construct products along vertical maps

in G. Consider morphisms g : D → B and f : B → A in G where f is ψ-vertical,

f ∈ RψB, for which we we want to construct Πfg. Let q : Q → A be a cartesian

lifting of ψg, so there is an induced factorization of g

D

gv

�� ��
P h //

gc

��

Q

q

��
B

f
// A

where h and gv are vertical. Then q : Q → A has the universal property of the

product Πfg
c in C. To show this, take any other morphism k : K → A ∈ G. To give

a morphism K → Q over A corresponds to giving a morphism n : ψK → ψQ in B
such that ψk = (ψq)n. Since gc is also cartesian over ψg, this corresponds to giving

a morphism f ∗K → P over B.

By the stability under reindexing of the class RψB, h ∈ RψP , so we can form the

product Πhg
v → Q in the fibre category over ψP . This is in fact a product in the
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category C too: given any morphism k : K → Q in C, form the diagram

D′

(gv)′

��

// D

gv
��

(Πhg
v)′

��

// Πhg
v

��

P ′ //

h′ $$

P
h

""
Q′ // Q

where all the horizontal morphisms are cartesian over ψk. Then to give a map K →
Πhg

v over Q corresponds to giving a map K → (Πhg
v)′ over Q′, which since fibrewise

products are stable under reindexing corresponds to giving (h′)∗K → D′ over P ′, i.e.

a morphism h∗K → D over P .

Putting this together, the morphism ΣqΠhg
v → A has the universal property of the

product Πfg → A. For any other morphism K → A ∈ G, a morphism K → ΣqΠhg
v

over A corresponds to a morphism K → Q over A together with a morphism K →
Πhg

v over Q, i.e. a morphism f ∗K → P over B and h∗K → D over P , which

corresponds to just a morphism f ∗K → D over B as required.

Intuitively, a cartesian display map f : B � A in G takes the form (B(a), A(a)) �

(A, A(a)). For another morphism g : C � B, the construction of
∏

f g =
∏

b:B(a) C(a, b)

in Lemma 3.13 gives  ∏
b:B(a)

C(a, b),
∏
b:B(a)

C(a, b, ϕ(b); a)

 .

The first Π refers to the product types of the model of type theory F , and the second

to the structure of F -products of the fibration ψ. When f is vertical, so it has the

form (A, B(a; a)) � (A, A(a)), the product type constructed in Proposition 3.14 isC(a),
∏

b:B(a;a)

C(a, c; a, b)

 .

The Π here refers to the product types of the model RC .

Combining the two cases, the general form of a product type
∏

b:B(a) C(a, b) in the
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extended model is ∏
b:B(a)

C(a, b),
∏
b:B(a)

∏
b:B(a,b;a)

C(a, b, ϕ(b); a, b)

 .

In the case of the model FC where the classes of display maps RD consist of the

product projections in the fibres, each RD has dependent product types iff the fibre

ψD is cartesian closed. F -products for ψ are right adjoints and so always preserve

RD-maps. So we have as a special case of Proposition 3.14:

Corollary 3.15. If F has dependent product types and the fibration ψ : C → B
has F-products and fibred exponentials (that is, each fibre has exponentials which are

preserved by reindexing), then the class of display maps FC has dependent product

types.

Remark 3.16. (a) When FC has dependent product types, then in particular it has

products along maps to the terminal object, so the base category C is cartesian

closed. In this case the cartesian closed structure of the original category B
is inherited from that of C and preserved by the adjunction: Day’s reflection

theorem states that a reflective subcategory of a cartesian closed category is an

exponential ideal if and only if the reflector preserves finite products [Day72].

(b) In the case of Corollary 3.15, the previous remark can be demonstrated directly.

As shown by Hermida in [Her99], if a fibration C → B over a cartesian closed

category B has simple products and fibred exponentials then the total category

C is cartesian closed. For objects A,B in C the exponential B ⇒ A is given by∏
π1

((π2)∗B ⇒ (ev)∗A)

where ev : (ψB ⇒ ψA) × ψB → ψA is the evaluation map in B. Thus ψ(B ⇒
A) = (ψB ⇒ ψA), and ψ preserves the cartesian closed structure.

Example 3.17. (a) If B is cartesian closed, then the functor B → 1 clearly has fibred

exponentials so the the model of type theory consisting of product projections

has dependent product types.

(b) If F has dependent product types, then each slice category F/B has exponentials

which are preserved by pullback. Thus the class of display maps FF adding sums

along the fibration F → B has dependent product types.
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3.4 Identity types

Proposition 3.18. If each class of display maps F and RA has identity types, and

ψ is an opfibration as well as a fibration, then G has identity types.

Proof. This was proved by Stanculescu in [Sta12], where F and RA are the right

classes of weak factorization systems (i.e. closed under retracts).

Given a morphism f : B → A in C, we require a factorization f = ρf ◦ λf where

ρf ∈ G, λf ∈ �G.

The image ψf in B has a factorization ρψf ◦λψf with ρψf ∈ F , λψf ∈ �F . If p : P → A

is a cartesian lifting of ρψf , then f factors through p:

B

l

��
f

��

ηB // φψB

φλψf

��
P

p

��

ηP // φKψf

φρψf

��
A ηA

// φψA

p is in the class of display maps G. The cartesian property of p means it has the right

lifting property with respect to all morphisms m such that ψm ∈ �F : There exists a

filler for a square

E

m

��

// P

p

����
M // A

if there exists a filler for

E

m

��

// φψP

φψp

����
M // φψA,
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so by transposing, if there exists a filler for

ψE

ψm

��

// ψP

ψp

����
ψM // ψA.

Since ψ is also an opfibration, l factors as

B l //

m

��

P

Q

v

??

where m is cocartesian over φλψf and v is ψ-vertical. Dually to the above, the

cocartesian property of m means it has the left lifting property with respect to all

morphisms g such that ψg ∈ F , so in particular m ∈ �G.

Since RψP has identity types, v factors as Q
x−→ Kv

y−→ P for some y ∈ RψP and

x ∈ �RψP . Since the classes of morphisms R are stable under reindexing, x will in

fact have the left lifting property with respect to RA-maps for any A. Then

B
f //

xm
  

A

Kv

py

>>

is a factorization of f as required.

In most of the examples we have considered, ψ does not have sums along morphisms

in �F , so it is not an opfibration. However, in some cases it is still possible to get a

factorization of the morphism l as a map in �G followed by a vertical morphism, by

requiring that the adjunction ψ a φ commutes suitably with the identity types in F .

Proposition 3.19. The following are equivalent:

1. For any l in �F , φl ∈ �G,

2. For any l : B → ψC in �F , φl � ηC,

3. For any h : φB → C in C such that ψh ∈ �F , h factors as t ◦ φψh for some

vertical t : φψC → C.
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Proof. (1) clearly implies (2). Given (2) and a morphism l : B → A in �F , as above

φl lifts against all cartesian morphisms in G. It also lifts against all R-maps, since

for any commutative diagram

φB

φl

��

k // E

r∈RψD
����

φA g
// D,

there exists a filler by reindexing along g

φB

φl

��

h // C //

ηC

����

E

r

����
φA

<<

φψC g
// D.

Condition (3) is a restatement of (2), saying that if a square such as the left one in

the above diagram commutes, then it has a filler t : φψC → C.

Definition 3.20. The functor φ preserves left morphisms if the above equivalent

conditions hold.

Proposition 3.21. If G has dependent product types, each class of display maps F
and RA has identity types and φ preserves left morphisms, then G has identity types.

To show this we need the following result about product types and identities:

Lemma 3.22. When a class of display maps F has product types, the class of mor-

phisms �F is stable under pullback along F-maps.

Proof. Given a pullback

f ∗U //

m

��

U

l∈�F

��
W

f
// // V,

to show that m is in �F it suffices to show there exists a filler for every commutative
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square

f ∗U //

m

��

Z

r∈F
����

W W.

But such a filler corresponds under the adjunction f ∗ a Πf to a filler for

U //

l

��

ΠfZ

Πf r∈F
����

V V,

which exists since l ∈ �F .

Proof of Proposition 3.21. Given a morphism f : B → A, we can factorize ψf as

ρψfλψf and construct p ∈ G and l as in the previous proposition. Recall from the

construction of factorizations from identity types (Proposition 2.35) that in general

we work with a factorization of the morphism (1, g) : B → A × A rather than g

itself. In other words, the factorization ρλ of g is chosen in such a way that λ has a

retraction s : A → B. In particular, we can do this for the factorization of ψf in B.

We therefore have pullbacks

B
ηB //

m

��

φψB

φλψf

��
Q

q

��

ηQ // φKψf

φsψf

��
B ηB

// φψB

in C, where m and q are cartesian over λψf and sψf respectively.

Since φ preserves left morphisms, φλψf is in �G. The morphism m is then also in �G
by the above lemma, so in other words m lifts against all display maps. In particular
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there is a filler v for the square

B
l //

m

��

P

ηP

����
Q ηQ

//

v

<<

φKψf.

(3.5)

Now v is ψ-vertical, so just as in the proof of Proposition 3.18 it can be factored using

the identity types of RψP as Q
x−→ Kv

y−→ P for some y ∈ RψP and x ∈ �RψP . Then

B
xm−−→ Kv

py−→ A is the required factorization of f .

In other words, the factorization of a morphism f : B � A is constructed by factoriz-

ing the projection ψf in B, and then factorizing the induced morphism v in the fibre

of ψ:

Kv

&&xx

��

Q
v //

zz

��

33

P

$$

��

B

��

f 11

33

A

��

Kψf

ww ''
ψB ψf 11

44

ψA

C

ψ

��
B

In the notation of Remark 3.10, the type IdA(fb, a) = Kf � B × A looks like(
IdA(fb, a), IdA(a)(vb, a)

)
�
(
B × A, B(b)× A(a)

)
where v is the map B(b)→ A(a) induced by f and a term of the identity IdA(fb, a).

This description matches what we might expect for the identity type of an element

of a dependent sum as in Section 2.5.3.

Remark 3.23. If G has identity types and also dependent product types as con-

structed in Proposition 3.21, then for dependent functions f, g :
∏

a:AB(a) the type∏
a:A IdB(a)(f(a), g(a)) could be thought of as∏

a:A

IdB(a)(f(a), g(a)),
∏
a:A

∏
a:A(a)

IdB(a,g(a,a),a)(vf(a, a), g(a, a))

 .
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On the other hand the type Id∏
a:AB(a)(f, g) would look like(

Id∏
a:AB(a)(f, g), Id∏

a:A

∏
a:A(a)B(a,g(a),a)(vf, g)

)
.

Thus if function extensionality holds for each class F and RA, and the F -products of

ψ preserve the identity types ofRA, then the products and identity types in each com-

ponent would commute, so that the types
∏

a:A IdB(a)(f(a), g(a)) and Id∏
a:AB(a)(f, g)

would have equivalent descriptions. In other words in this case we would expect that

function extensionality should also hold for G. In contrast, in Section 4.5 we shall

see in a model in a category of polynomials that without these assumptions, this no

longer holds.

Example 3.24. (a) For a class of display maps F with dependent products and iden-

tities, consider the model of type theory over the category F constructed in

Example 3.11(b). The inclusion 1 : B → F preserves left morphisms. To show

this, let h : B → C be a morphism in �F and D � C an object of F . We require

a filler for all squares of the form

(B � B) //

1(h)

��

(D � C)

ηD�C

��
(C � C) (C � C).

To give such a square is to give a morphism k in B such that

B

k

��

B

h

��
D // // C

commutes. Using the left lifting property of h, the square

B
k //

h

��

D

����
C

g

??

C

then has a diagonal filler g, and the morphism (g, 1C) is a filler for the original

square. Thus this model has identity types. It also has dependent product types

by Proposition 3.14, and the model satisfies function extensionality, as shown by
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Shulman in [Shu13].

(b) Let G be a class of display maps in a category C. If G has a functorial choice of

identity types such that the functor Id : C → C preserves coequalizers, then this

model arises naturally as an example of the construction of this chapter. In other

words there is a particular adjunction φ a ψ : B → C and class of display maps F
for which G is an extended type theory. Specifically, let B be the full subcategory

Cdisc of objects A which are internally discrete, i.e. for which the two morphisms

Id(A)
sA

//
tA //A

are equal. The restriction F of G to B gives a model of type theory in which

identity types are trivial, as internally all paths are constant. The inclusion

Cdisc ↪→ C has a left adjoint L which sends an object A to the coequalizer of sA

and tA, the discrete reflection of A. LA can be thought of as the set of ‘path

components’ of A. Non-constant paths in G are determined by the identity types

of the display maps R in each fibre of L, in other words by the paths in each

connected component. A similar construction is used by van Oosten [vO10] to

describe a model of type theory in the effective topos Eff which arises from the

category of discrete objects Effdisc studied by Hyland, Robinson and Rosolini in

[HRR90].

In the case of Proposition 3.21 when each class of display mapsRA consists of product

projections, RA automatically has identity types. The factorization in the extended

class of display maps FC can then be equivalently described by a pullback in C:

Proposition 3.25. If F has identity types and φ preserves left morphisms, then FC
has identity types, where the factorization B

λf−→ Kf
sf−→ A of a morphism f is given

by

B

λf

��
(1,f)

��

ηB // φψB

φλψf

��
Kf

(sf ,ρf )

��

ηKf // φKψf

(φsψf ,φρψf )

��
B × A ηB×A

// φψB × φψA

Proof. In the proof of the previous proposition, the factorization of the morphism f

is constructed by forming the pullbacks P and Q of φsψf and φρψf along components
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of the unit η and then factoring the morphism v : Q→ P (Diagram 3.5) in the fibre

over Kψf . In this model FC, the factorization of v is given by

Q
(1,v) //Q× P π2 //P ,

using the product in the fibre of ψ. This fibrewise product is constructed in the total

category C by the pullback of ηQ and ηP , as in the diagram

Q×φKψf P

����
Q

q

��

ηQ

��

P

ηP

��

p

��
B

ηB
��

φKψf

φsψf

��

φρψf

��

A,

ηA
��

φψB φψA

which is equivalently described as the pullback of (φsψf , φρψf ) along ηB×A.

Remark 3.26. In this case, because the identity types of each class of display maps

RψA are trivial, to give a term of an identity type IdA is just to give a term of the

projected identity type IdψA in B. Two distinct terms of A can have equal values

under ψ, so the identity types of FC will not in general be extensional, even if the

identity types in F are. The principle of uniqueness of identity proofs holds if and

only it holds for F .
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Chapter 4

A polynomial model

4.1 Polynomials

In the previous chapter, new models of type theory were constructed by applying the

sums monad ΣF to a fibration. We now combine this with the other key component

of the polynomial construction – the opposite of a fibration.

In particular, assume we have a fixed model

F

p

  

� � // B2

~~
B.

As p is a fibration we can also form the fibration of polynomials

Pol(F → B) = ΣF(pop)

over B, where the fibre over the terminal object of this fibration is PolyF :≡ F◦. The

objective of this chapter is to use the techniques of Chapter 3 to extend this along

the opposite fibration pop : PolyF → B and construct a new model

FPoly

##

� � // (PolyF)2

yy
PolyF

89
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where FPoly is a suitable class of display maps in PolyF .

The base category of the new type theory PolyF is also known as the category of

containers and studied in the case when B is locally cartesian closed in [Abb03,

AAG03]. It is the fibre over the terminal objects of the 2-sided fibration

ΣFΠFF
%%yyB B

constructed in Section 1.9, and corresponds to the category of polynomial functors

B → B.

An object of PolyF is a display map (B � A) in F . Using the type theory structure

of F , it can be thought of as an indexed family over A and written as∑
a:A

B(a) � A.

It represents the polynomial functor B → B given by

X 7→
∑
a:A

XB(a).

A morphism from a display map (B � A) to (D � C) in PolyF is a pair of

morphisms (f, ϕ) making the diagram

Df
ϕ //

��

B // // A

f

��
D // // C

commute (where the subscript of Df refers to the pullback along f). In other words,

to give such a morphism is to give a pair of terms

f : A→ C

ϕ :
∏
a:A

(D(fa)→ B(a)),

which by the type-theoretic axiom of choice is equivalent to giving a term of type∏
a:A

∑
c:C

(D(c)→ B(a)).
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As in Chapter 1, PolyF is equivalent to a full subcategory of the category [B,B] of

enriched endofunctors and enriched natural transformations. In the internal language

of B, a morphism as above corresponds to a natural transformation of polynomial

functors ∑
a:A

XB(a) →
∑
c:C

XD(c)

defined on terms by Xϕ(a) : XB(a) → XD(fa).

To construct a new model of type theory in PolyF using the methods of the previous

chapter, Proposition 3.5 requires an adjunction

B
� � φ

>
//
PolyF

ψ
oo

where ψ is a finite-product-preserving fibration.

Proposition 4.1. Such an adjunction exists when the class of display maps F has

an empty type and weak binary sum types.

Proof. The fibration ψ = pop : PolyF → B sends (B � A) to A and (f, ϕ) to f .

This fibration has fibred finite products exactly when its opposite F → B has fibred

finite coproducts, so when B has an initial object 0 and binary coproducts which are

stable under pullback. As shown in Section 2.3, these correspond to an empty type

and weak binary sum types in the type theory interpreted by F . Then (0 � 1) is

clearly terminal in the category Fop, and the functor

φ : A 7→ (0 � A)

is a full and faithful right adjoint to ψ. The product of display maps (B � A) and

(D � C) is

B × C + A×D � A× C,

or in type theory notation, ∑
(a,c):A×C

B(a) +D(c) � A× C.

As well as products, the category PolyF has some pullbacks. Given morphisms

(f, ϕ) : (B � A) → (D � C) and (g, γ) : (F � E) → (D � C), assume the
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pullback P of f and g exists in B. Then whenever the following pushout exists in

F/P and is stable under pullback,

P
π1 //

π2

��

A

f

��
E g

// C

Dfπ1 = Dgπ2

ϕπ1 //

γπ2

��

Bπ1

ι1

��
Fπ2 ι2

// Q

the induced display map (Q � P ) has the universal property of a pullback of (f, ϕ)

and (g, γ). The projections onto (B � A) and (F � E) are the morphisms (π1, ι1)

and (π2, ι2) respectively. In particular, if B has stable coproducts then we always

have pullbacks along a morphism (f, ι) when f is in F and ι is a coproduct inclusion

Df ↪→ Df + B for some display map (B � A). The pullback of (g, γ) in this case is

the polynomial (Fπ2 +Bπ1 � P ).

4.2 A model of type theory

Applying Proposition 3.5 when PolyF → B has fibred finite products as above gives:

Proposition 4.2. If F is a class of display maps representing a type theory with unit,

dependent sum, dependent product, empty and weak binary sum types, then there is a

model of type theory FPoly ⊆ (PolyF)2 in the category of polynomials.

The display maps in the new model are those appearing as the left vertical morphism

in a pullback of the form

. //

��

(B � A)

(f,ι)

��
(D � C) ηD→C

// (0 � C)

where f is in F . This is a morphism

Df
� � ι //

��

Df +B // // A

f

����
D // // C.

In other words, the display maps are the morphisms (f, ϕ) such that f ∈ F and ϕ is



CHAPTER 4. A POLYNOMIAL MODEL 93

a coproduct inclusion.

Under the correspondence with polynomial functors, a display map represents a nat-

ural transformation of the form∑
(c,a):

∑
c:C A(c)

XD(c)+B(c,a) →
∑
c:C

XD(c)

which is termwise just a projection XD(c)+B(c,a) → XD(c).

In order for this construction to be stable, so that the new model of type theory

has the type constructors of the original, we can strengthen the binary sum type

requirement:

Proposition 4.3. The model of type theory in Proposition 4.2 has unit, dependent

sum, and empty types. If F has strong binary sum types and binary sum types for

types, then so does the new model.

Proof. As a class of display maps the new model automatically has unit and dependent

sum types. The polynomial (0 � 0) is initial in PolyF since 0 is stable under

pullback and is therefore a strict initial object in B, and this polynomial is stable

under pullback. The binary sum of polynomials (B � A) and (D � C) is

B +D � A+ C,

which is a display map by the extensivity property of F . The sum is then represented

as ∑
s:A+C

B̃(s) + D̃(s) � A+ C

where B̃ is the type B considered as a dependent type over A + C. The coproduct

inclusions from (B � A) and (D � C) are the morphisms (ιA, 1B) and (ιC , 1D)

respectively. Given a display map into the sum

(H � G)→ (B +D � A+ C)

for another object of PolyF , we have G ∼= G1 +G2 for some (G1 � A) and (G2 � C)
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and so H ∼= H1 +H2 for some (H1 � G1) and (H2 � G2), giving pullbacks

(H1 � G1) //

����

(H � G)

����

(H2 � G2)oo

����
(B � A) ι

// (D +B � A+ C) (D � C).ι
oo

Conversely if the two outer maps are given and (H � G) is defined as the coproduct

then the centre map is clearly a display map in PolyF , so the new model has strong

binary sum types and sum types for types.

4.3 Dependent product types

The binary sums and products in Section 4.1 can alternatively be constructed by

considering PolyF as a full subcategory of the functor category [B,B]. Limits and

colimits are calculated pointwise in this category, so given polynomials (D � C) and

(B � A) representing functors P and Q respectively,

QP (X) =
∑
a:A

XB(a) ×
∑
c:C

XD(c) ∼=
∑

(a,c):A×C

XB(a)+D(c)

(Q+ P )(X) =
∑
a:A

XB(a) +
∑
c:C

XD(c) ∼=
∑
s:A+C

XB̃(s)+D̃(s),

which are again polynomial functors. Thus PolyF is closed under finite sums and

products.

Exponential objects in PolyF can be calculated similarly. If PQ exists in [B,B] and

is also represented by a polynomial, then this should be (D � C)(B�A) in PolyF .

Theorem 4.4 ([ALS10]). The category PolyF is cartesian closed.

Proof. We use the Yoneda lemma to motivate the form that an exponential in PolyF
should take. When B is locally small, the category [B,B] is enriched in B, with

internal hom given by the end

Hom[B,B](P,Q) =

∫
X∈B

HomB(P (X), Q(X)).

First consider the case when Q is represented by (B � 1), so Q is internally a

representable functor HomB(B,−). When the exponential PQ exists, it follows from
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the enriched Yoneda lemma that it must have the form

PQ(X) ∼= Hom[B,B](HomB(X,−), PQ)

∼= Hom[B,B](HomB(X,−)×Q,P )

∼= Hom[B,B](HomB(X,−)×HomB(B,−), P )

∼= Hom[B,B](HomB(X +B,−), P )

∼= P (X +B).

The extensivity property of F ensures that the functor X 7→ X+B can be formalized

as expected as a polynomial functor. We have that

X +B ∼=
∑
s:1+B

X 1̃(s)

corresponding to the display map 1 � 1 +B in B.

A general Q is the sum of representable functors, and so

PQ(X) ∼= P
∑
a:AHomB(B(a),−)(X)

∼=
∏
a:A

PHomB(B(a),−)(X)

∼=
∏
a:A

P (X +B(a))

∼=
∏
a:A

∑
c:C

∏
d:D(c)

∑
s:1+B(a)

X 1̃(s)

which can be rearranged by the axiom of choice to give

∼=
∏
a:A

∑
c:C

∑
φ:D(c)→1+B(a)

∏
d:D(c)

X 1̃(φ(d))

∼=
∑
σ:S

∏
a:A

∏
d:D(σ(a)1)

X 1̃(σ(a)2(d))

where S is the type ∏
a:A

∑
c:C

(D(c)→ 1 +B(a)).
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Thus when it exists, PQ is a polynomial endofunctor represented by the display map

∑
σ:S

∑
a:A

∑
d:D(σ(a)1)

1̃(σ(a)2(d))

� S.

A direct calculation shows that this does indeed have the universal property of an

exponential: a morphism in PolyF from another object (H � G) into this polynomial

corresponds to a term of type

∏
g:G

∑
σ:S

∑
a:A

∑
d:D(σ(a)1)

1̃(σ(a)2(d))

→ H(g)

∼=
∏
g:G

∑
σ:S

∏
a:A

∏
d:D(σ(a)1)

(
1̃(σ(a)2(d))→ H(g)

)
∼=
∏
g:G

∏
a:A

∑
c:C

∑
τ :D(c)→1+B(a)

∏
d:D(c)

(
1̃(τ(d))→ H(g)

)
(AC)

∼=
∏
g:G

∏
a:A

∑
c:C

∏
d:D(c)

∑
s:1+B(a)

(
1̃(s)→ H(g)

)
(AC)

∼=
∏

(g,a):G×A

∑
c:C

(D(c)→ H(g) +B(a))

which corresponds to a morphism (B � A)× (H � G)→ (D � C).

Recall from Corollary 3.15 that when a fibration ψ : C → B has fibrewise exponen-

tials, the resulting extended model of type theory in C has dependent product types.

Unfortunately, we cannot apply this result to get dependent product types in this

case: if ψ : PolyF → B had fibrewise exponentials then the functor ψ would preserve

the cartesian closed structure, but the type

ψ((D � C)(B�A)) =
∏
a:A

∑
c:C

(D(c)→ 1 +B(a))

is clearly not in general isomorphic to
∏

a:AC. And while Theorem 4.4 shows that

dependent products exist along morphisms to 1 in PolyF , the theorem cannot be

extended to products along all morphisms in PolyF , as Altenkirch, Levy and Staton

[ALS10] have shown:

Theorem 4.5. The category PolyF is not locally cartesian closed, even when the

original underlying category B is.
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This is proved in [ALS10] by assuming that the unique morphism from (1 � 1) to

(2 � 1) is exponentiable and deriving a contradiction. In fact, a similar contradiction

can be obtained for a larger class of morphisms in PolyF :

Proposition 4.6. If ϕ is a display map which is not monic, then the morphism (f, ϕ)

is not exponentiable in PolyF .

Proof. If it is exponentiable, then the pullback functor

(f, ϕ)∗ : PolyF/(D � C)→ PolyF/(B � A)

exists and has a right adjoint
∏

(f,ϕ). Then (f, ϕ)∗ preserves all colimits which exist.

We shall construct a coequalizer in PolyF/(D � C) for which this does not hold.

Since ϕ : Df � B is a display map, its kernel pair

K
s // //

t
// //Df

exists in B, with equalizer the unique morphism e : Df → K such that se = te = 1Df .

As ϕ is not monic e is not an isomorphism.

The diagram

Df +Df
� � 1+e //

'' ''

Df +K
〈1,s〉 //

〈1,t〉
//

����

Df

yyyy
A

is then an equalizer diagram in F/A. The fibre of PolyF → B over A is just the

opposite category (F/A)op, so the top row of the diagram

(Df � A)
(1,〈1,s〉) //

(1,〈1,t〉)
//

((

(Df +K � A)
(1,1+e) //

��

(Df +Df � A)

uu
(D � C)

is a coequalizer in PolyF . But the forgetful functor

PolyF/(D � C)→ PolyF

is comonadic and hence creates coequalizers, where the comonad on PolyF is given
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by (D � C)× (−), so the whole diagram is a coequalizer in PolyF/(D � C).

The pullback of this coequalizer along (f, ϕ) is constructed by forming the pullback

Af
π1 //

π2

��

A

f

��
A

f
// C

and the pushout along ϕπ2

Dfπ2
� � //

ϕπ2

��

Dfπ2 +Dfπ2
� � 1+eπ2 //

��

Dfπ2 +Kπ2

〈1,sπ2 〉 //

〈1,tπ2 〉
//

��

Dfπ2

��
Bπ2

� � // Bπ2 +Dfπ2
� � 1+eπ2 // Bπ2 +Kπ2

〈1,(ϕs)π2 〉 //

〈1,(ϕt)π2 〉
// Bπ2

to give

(Bπ2 � Af )
(1,〈1,ϕπ2sπ2 〉) //

(1,〈1,ϕπ2 tπ2 〉)
//

))

(Bπ2 +Kπ2 � Af )
(1,1+eπ2 )

//

��

(Bπ2 +Dfπ2 � Af )

tt
(B � A)

in PolyF/(B � A).

This is a coequalizer if and only if the bottom row of the pushout diagram is an

equalizer. The two morphisms Bπ2 + Kπ2 → Bπ2 in the bottom row are equal, so

eπ2 : Dfπ2 → Kπ2 must be an isomorphism. However, e is a retract of eπ2 and is not

an isomorphism, so this is a contradiction.

For the display maps in the model of Proposition 4.2 however, ϕ is a coproduct

inclusion, and so is a display map in F which is monic. Surprisingly, in this case the

morphism (f, ϕ) is exponentiable, so dependent product types can still be defined.

Note that unlike the other type constructors considered so far this does not follow

from the general methods of Chapter 3, but is shown by a direct calculation.

Proposition 4.7. The polynomial model of type theory FPoly has dependent product

types.
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Proof. Let (f, ι) and (p, ι) be display maps in PolyF

(Dfp +Bp + F � E)

(p,ι)

����
(Df +B � A)

(f,ι)
// // (D � C),

(4.1)

for which we want to form the dependent product
∏

(f,ι)(p, ι).

These can be thought of as a collection of types

(
∑

(c,a,e) D(c) +B(c, a) + F (c, a, e) �
∑

(c,a)E(c, a))

����
(
∑

(c,a) D(c) +B(c, a) �
∑

cA(c)) // // (
∑

cD(c) � C).

As in the previous chapter, display maps in this model factor naturally into a cartesian

and a vertical part, and we can consider each case separately. (f, ι) factors as

Df
� � // Df +B // // A (Df +B � A)

(1A,ι)

��
Df

��

Df
// // A

f

����

(Df � A)

(f,1Df )

��
D // // C (D � C).

Case 2

Case 1

Case 1: Since the fibration F → B has F -sums, its opposite PolyF → B has F -

products. For such a fibration, Lemma 3.13 states that morphisms in PolyF which

are cartesian over F -maps are exponentiable. Thus the lower morphism

(Df � A)
(f,1)−−→ (D � C)

is exponentiable, and the product along it of a morphism

(Df + F � E)
(p,ι)−−→ (Df � A)
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is ∑
(c,φ)

∑
a:A(c)

D(c) + F (c, a, φ(a)) �
∑
c:C

∏
a:A(c)

E(c, a).

Case 2: Since every display map in this model arises as a pullback along a component

of the unit η, it is enough to construct the product in the case when D = 0. The full

product
∏

(f,ιDf )(p, ιDfp+Bp) is then given by the pullback (ηD→C)∗
∏

(f,ι0)(p, ιBp).

For the upper morphism

(B � A)
ηB→A−−−→ (0 � A),

we can factor the display map (p, ι) again into a vertical and cartesian component.

In the proof of Corollary 3.15, which constructed dependent products along vertical

morphisms, the assumption of products in the fibre categories was only used when

both morphisms were vertical. So it suffices to construct a product of the form∏
ηB→E

(1, ι), where the map (1, ι) is a pullback of a component of the unit η:

(B + F � E)

(1,ι)

����

// (F � E)

ηF→E

��
(B � E) ηB→E

// // (0 � E)

Then the product
∏

ηB→A
(p, ι) is given by

∑
(p,10)

∏
ηBp→E

(1, ι).

So, let (H � G) be another object in PolyF with a morphism (k, ι) into (0 � E)

(not necessarily a display map). The pullback of (k, ι) along ηB→E exists and is given

by ∑
g:G

B(k(g)) +H(g) � G.

To give a morphism from this pullback into (B + F � E) over (B � E) is to give a

term of type ∏
g:G

(F (g)→ B(k(g)) +H(g))

∼=
∏
g:G

∏
f :F (k(g))

∑
s:1+B(k(g))

(1̃(s)→ H(g))

∼=
∏
g:G

∑
w:F (k(g))→1+B(k(g))

∏
f :F (k(g))

∏
t:1̃(w(f))

H(g)

∼=
∏
g:G

∑
w:W (k(g))

(Z(k(g), w)→ H(g))
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where we define the dependent types (W � E) and (Z � W ) by

W (e) = F (e)→ 1 +B(e)

Z(e, w) =
∑
f :F (e)

1̃(w(f)).

This corresponds to the type of morphisms (m,ϕ) in PolyF making the diagram

(H � G)
(m,ϕ) //

(k,ι)
%%

(Z � W )

yyyy
(0 � E)

commute, so in other words the polynomial (Z � W ) =∑
e:E

∑
w:F (e)→1+B(e)

∑
f :F (e)

1̃(w(f)) �
∑
e:E

(F (e)→ 1 +B(e))

has the universal property of the product
∏

ηB→E
(1, ι).

Putting together all the above cases, the general form of the dependent product∏
(f,ι)(p, ι) for morphisms as in Diagram 4.1 is the polynomial

∑
(c,φ):S

D(c) +
∑
a:A(c)

∑
f :F (c,a,φ(a)1)

1̃(φ(a)2(f))

� S (4.2)

where S is ∑
c:C

∏
a:A(c)

∑
e:E(c,a)

(F (c, a, e)→ 1 +B(c, a)).

Finally, we look at the Beck-Chevalley condition for the dependent products. Consider

a pullback square in PolyF , which will be a diagram of polynomials of the form

(Ng +Bh + F � P )

(g,ι)

����

(h,H) // (Df +B � A)

(f,ι)

����
(N �M)

(k,K)
// (D � C).

We require the canonical morphism (k,K)∗Π(f,ι) → Π(g,ι)(h,H)∗ to be an isomor-

phism.
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Because the original class of display maps F has dependent types satisfying Beck-

Chevalley, we can use the type theory notation to manipulate expressions such as (4.2)

directly, where substitution of terms commutes naturally with sums and products.

Then if (p, ι) is a dependent type over (Df +B � A) as before, (k,K)∗Π(f,ι)(p, ι) and

Π(g,ι)(h,H)∗(p, ι) both represent the polynomial

∑
(m,φ):S′

N(m) +
∑

a:A(km)

∑
f :F (km,a,φ(a)1)

1̃(φ(a)2(f))

� S ′

for

S ′ =
∑
m:M

∏
a:A(km)

∑
e:E(km,a)

(F (km, a, e)→ 1 +B(km, a))

in a canonical way. Thus the Beck-Chevalley condition holds.

Combining this result with Proposition 4.6 shows that when the underlying category

B is Set, the class of fibrations given by this construction is the largest class of

morphisms which can be given the structure of a model with dependent product

types:

Corollary 4.8. If B is a locally cartesian closed Boolean category, then a morphism

(f, ϕ) is exponentiable in Poly if and only if ϕ is a monomorphism.

4.4 Identity types

Recall from Proposition 3.21 that we can construct identity types in the extended

model as long as it has dependent product types, the original class of display maps

F has identity types, and the left class �F is suitably preserved by the functor along

which we are extending.

Proposition 4.9. The inclusion φ : B ↪→ PolyF preserves left morphisms.

Proof. Given a morphism h : B → C in �F and an object (D � C) in PolyF , we

require a filler for all squares

(0 � B) //

φh

��

(D � C)

ηD�C

��
(0 � C) (0 � C)
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in PolyF . The top horizontal morphism of such a square must take the form

Dh
H //

��

0 // // B

h

��
D // // C

in B for some morphism H. But 0 is a strict initial object, so Dh
∼= 0. Recall from

Lemma 3.22 that �F is stable under pullback along display maps, so the morphism

0→ D must be in �F . By constructing a filler for the square

0 //

��

0

����
D // 1,

it then follows that D ∼= 0. This gives an isomorphism (0 � C) → (D � C) in

PolyF , which is the required filler.

From Proposition 3.21 we therefore get:

Corollary 4.10. If F has identity types, then so does the model of type theory FPoly.

The identity type for an object (B � A) in PolyF is given as in Proposition 3.25 by

the pullback

IdB�A
//

����

(0 � IdA)

((s,1),(t,1))

����
(B � A)× (B � A) η

// (0 � A)× (0 � A).

This is the fibration (Bs +Bt � IdA), i.e.∑
p∈IdA

B(s(p)) +B(t(p)) � IdA,
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with projection

Bs +Bt

��

Bs +Bt
// // IdA

(s,t)

����
B × A+ A×B // // A× A

(Bs +Bt � IdA)

����
(B � A)× (B � A).

4.5 Function extensionality

Because dependent products in this polynomial model are not preserved by the fi-

bration PolyF → B, we cannot use the argument of Remark 3.23 to conclude that

function extensionality in F implies function extensionality in FPoly. And in fact, it

does not hold in general. The following proposition gives a new proof of the indepen-

dence of this principle from the rules for product, sum and identity types, originally

shown by Streicher (see Section 2.5.4).

Proposition 4.11. Function extensionality fails in this model of type theory in PolyF .

Proof. Recall from Proposition 2.46 that function extensionality holds if and only if

for all dependent types B � A and terms f, g :
∏

a:AB(a) there exists a morphism∏
a:A

IdB(a)(f(a), g(a)) → Id∏
a:AB(a)(f, g).

In this model, let the types A and B be polynomials 1 + 1 � 1 and 1 + (1 + 1) � 1

respectively. There is a display map B � A in FPoly given by the coproduct inclusion

1 + 1 ↪→ 1 + (1 + 1).

The product type
∏

a:AB(a) is the polynomial
∑

s:1+(1+1) 1̃(s) � 1 + (1 + 1) where 1̃

refers to the first coproduct inclusion. The type 1 + 1 has two distinct terms inl(∗)
and inr(∗) with Id1+1(inl(∗), inr(∗)) ' 0, and since 0 is a strict initial object in a

categorical model this must actually be an isomorphism. These define two terms f, g

of the product type

0 0 //

��

0 // // 1

��∑
s:1+1+1 1̃(s) // // 1 + (1 + 1)
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where the right vertical morphism is inr(inl(∗)) or inr(inr(∗)) respectively. The type

Id∏
a:AB(a)(f, g) is then represented by the polynomial

0 � Id1+(1+1) (inr(inl(∗)), inr(inr(∗)))
' 0 � 0.

Intuitively, this says there are no ‘global paths’ between the terms f and g.

We now consider the ‘pointwise paths’. The dependent type

IdB(a)(b1, b2) � B ×A B

corresponds to the morphism of polynomials

∑
p:Id1(∗,∗) 1 + 1 + (1 + 1) = //

��

∑
p:Id1(∗,∗) 1 + 1 + (1 + 1) // // Id1(∗, ∗)

��
1 + 1 + (1 + 1) // // 1,

so IdB(a)(f(a), g(a)) � A is ∑
p:Id1(∗,∗)

(1 + 1) � Id1(∗, ∗)

� (1 + 1 � 1),

and then using the construction of product types in Proposition 4.7, the type∏
a:A IdB(a)(f(a), g(a)) is the polynomial

0 � Id1(∗, ∗)
' 0 � 1.

There is clearly no morphism from this to Id∏
a:AB(a)(f, g), and function extensionality

fails.

Remark 4.12. More generally, given a polynomial A = (
∑

c:C D(c) � C) with a

dependent type B = (
∑

c,eD(c) + F (c, e) �
∑

c:C E(c)) over it, terms f, g of the

product type
∏

a:AB(a) corresponds to certain terms s, t of type

T =
∏
c:C

∑
e:E(c)

(F (c, e)⇒ 1 +D(c))
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in B. The type
∏

a:A IdB(a)(f(a), g(a)) is then represented by

0 �
∏
c:C

IdE(c)(s(c)1, t(c)1),

while Id∏
a:AB(a)(f, g) is

0 � IdT (s, t).

If function extensionality holds in B, to give a term of this latter type corresponds to

giving for each c : C a term p of type IdE(c)(s(c)1, t(c)1), together with a term of type

IdF (c,t(c)1)⇒1+D(c)(p∗s(c)2, t(c)2).

This contains more information than just a term of type
∏

a:A IdB(a)(f(a), g(a)), and

in general there is no reason to expect the types to be equivalent.

To summarize, given a categorical model of type theory with unit, dependent sum,

dependent product, binary sum, and identity types, (for example the category Set,

or the groupoid model), the polynomial construction gives a model of type theory

with the same type constructors. This model has identity types which need not be

extensional or satisfy the uniqueness of identity proofs, and function extensionality

can fail to hold. In particular, this gives a new semantic proof that the function

extensionality axiom is independent of the other rules of intensional type theory.



Chapter 5

Outlook

5.1 Iterating polynomials

The existence of a polynomial model suggests various avenues which could be inves-

tigated in future work.

For instance, consider again the pseudomonad ΣΠ acting on fibrations, which is

constructed in Chapter 1. Applying this to a fibration representing a model of type

theory, we could try to build a new model using the general method of Chapter 3

to extend the base. Alternatively, since ΣΠ ∼= Σ(Σ(−)op)op = Pol2, we could use

the construction of a polynomial model twice. The two resulting fibrations would

be different in general, with different base categories, and it might be worthwhile to

compare them.

5.2 Dialectica-style interpretations

The original motivation for studying these iterated constructions comes from the

“Dialectica interpretation”, which Gödel introduced to provide a relative consistency

proof for Heyting Arithmetic [Göd58]. Each formula α of Heyting Arithmetic is

assigned a formula

αD = ∃u ∀x αD(u, x)

in a simply-typed system of computable functionals, where αD is quantifier-free and

decidable and defined by induction on the structure of α. A crucial step is the

interpretation of implication, where for βD = ∃v ∀y βD(v, y) the formula (α → β)D

107
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is defined to be

∃f, F ∀u, y (αD(u, F (u, y))→ βD(f(u), y)) .

An abstract version of this was described by de Paiva [dP89], forming a category

where objects correspond to formulae and morphisms correspond to proofs under this

style of implication. Given a fibration p : P → T (originally taken to be the subobject

fibration), the category Dial(p) has as objects triples (U ∈ T , X ∈ T , α ∈ P(U×X)),

which are thought of as formulae ∃u ∈ U.∀x ∈ X.α(u, x). We can represent this as a

diagram

U U ×Xπ2oo A.αoo

A morphism (U,X, α)→ (V, Y, β) inDial(p) consists of f : U → V and F : U × Y → V

in T together with ϕ : A(u, F (u, y))→ B(f(u), y) in the fibre of P over U × Y , as in

the diagram

U

f

��

U ×Xoo A
αoo

(π1, F )∗A

OO

tt
ϕ

��

U × Y

f×1

��

bb

(π1,F )

OO

(f × 1)∗B

��

jj

V V × Yoo B.
βoo

In other words, Dial(p) is the fibre over 1 of the fibration ΣSΠSp which adds sums

and products along product projections to p. This correspondence is explained by

Hofstra in [Hof11]. Thus iterating the type theory construction as described above

should give some kind of model of type theory in the indexed Dialectica category. It

would be interesting to study the properties of this model and see in what sense it

corresponds to the original interpretation.

Several variants on the Dialectica interpretation have been proposed for proof-theoretic

reasons, and some of these have also been shown to naturally give rise to categories.

For example the Diller-Nahm interpretation, which does not require that atomic for-

mulae be decidable, corresponds to the Kleisli category DialDN(p) for a comonad on

Dial(p) induced by the free commutative monoid monad on p [Hyl02]. Taking the

Kleisli category Dial+(p) for the comonad induced by the monad (−+1) corresponds

to Dialectica with exception passing [Hyl07, Bie08]. These fibrations have good cat-

egorical properties if the original fibration p has sufficient structure: unlike Dial(p)

the fibres of DialDN(p) are cartesian closed and those of Dial+(p) weakly cartesian

closed. It seems reasonable to try to extend them to models of type theory.
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5.3 A model theory for type theory

In addition to constructing new models of type theory, it is useful to study the

relationships between them. With a general theory of models we could compare

and contrast different type theories and understand interpretations of one theory in

another.

One of many viewpoints on the theory of toposes is that it provides a model theory

for higher-order intuitionistic type theory [Joh02]. It seems natural to look for an

analogous categorical model theory for dependent type theory. However, there are

some apparent differences.

Primary examples of toposes are given by categories of sheaves. Dependent type

theory has presheaf models, such as those in simplicial sets [KLV12] and cubical sets

[BCH14], but it is not evident how to extend constructions of this kind to sheaves.

There are also toposes constructed from notions of realizability. Although realizabil-

ity is a form of functional interpretation just as the Dialectica interpretation is, and

Hofstra and Warren [HW13] have constructed models of type theory from realizers

in a slightly different sense, there is no clear type-theoretic analogue of realizabil-

ity toposes. Even describing a model theory for extensional type theories is not

straightforward, as for example considered by van den Berg in [vdB06]. In any case

constructions such as forming polynomials as described in this thesis do not necessar-

ily preserve extensionality of the type theory. It seems there is still much to explore

in this area.
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Appendix A

Some definitions

In this appendix, we spell out for completeness some of the categorical definitions

used in the previous chapters.

A bicategory B is enriched in 2-Cat (Section 1.2) when each hom-category B(X, Y )

has the structure of a 2-category, and this structure is preserved by horizontal com-

position. In detail:

Definition A.1 ([Car95]). A 2-Cat-enriched bicategory B consists of

• a collection of objects obB,

• a 2-category B(X, Y ) for each pair of objects X, Y in B, whose objects are

called 1-cells and written f : X −7→ Y , whose morphisms are 2-cells, and whose

2-cells are 3-cells of B,

• a composition 2-functor

B(Y, Z)×B(X, Y )
◦X,Y,Z−−−−→ B(X,Z)

for each triple of objects X, Y, Z,

• an identity 2-functor 1
1X−→ B(X,X) for each object X,

• a 2-natural isomorphism

B(Z,W )×B(Y, Z)×B(X, Y )
◦×1 //

1×◦

��
��∼= αX,Y,Z,W

B(Y,W )×B(X, Y )

◦

��
B(Z,W )×B(X,Z) ◦

//B(X,W )
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for each quadruple of objects X, Y, Z,W ,

• two 2-natural isomorphisms

1×B(X, Y )

1Y ×1

��

∼=

ww

X`
∼= rX,Y

B(X, Y ) B(Y, Y )×B(X, Y )◦
oo

B(X, Y )× 1

1×1X

��

∼=

''
B(X, Y )×B(X,X) ◦

//

?G
lX,Y ∼=

B(X, Y )

for each pair of objects X, Y ,

such that the diagrams

((k ◦ h) ◦ g) ◦ f (k ◦ (h ◦ g)) ◦ f

(k ◦ h) ◦ (g ◦ f) k ◦ ((h ◦ g) ◦ f)

k ◦ (h ◦ (g ◦ f))

α◦1 //

α

		

α

��

α

$$
1◦α

xx

and

(g ◦ 1) ◦ f α //

l◦1
$$

g ◦ (1 ◦ f)

1◦r
zz

g ◦ f

commute for all 1-cells f, g, h, k such that the necessary composites are defined.

Example A.2. (a) Any bicategory can be considered as a 2-Cat-enriched bicategory

by regarding the hom-categories as locally discrete 2-categories. Conversely, any

2-Cat-enriched bicategory B has an underlying bicategory Bu, obtained by for-

getting the 3-cells.

(b) Any strict 3-category can be considered as a 2-Cat-enriched bicategory with

identities as the 2-natural isomorphisms in Definition A.1.

(c) Reversing the 1-cells of a 2-Cat-enriched bicategory B gives another 2-Cat-

enriched bicategory Bop. In other words, the hom-2-category Bop(X, Y ) is B(Y,X).

Remark A.3. Composition ◦ is usually denoted by juxtaposition and the associativity

and unit isomorphisms for B are suppressed.
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Definition A.4 ([CHP04]). In a 2-Cat-enriched bicategory B, a pseudomonad con-

sists of

• a 1-cell T : X −7→ X,

• 2-cells µ : T 2 → T and η : 1X → T ,

• invertible 3-cells

T 3

µT

��

Tµ //

|� τ

T 2

µ

��
T 2

µ
// T

T
Tη //

=

  

|� λ

T 2

µ

��

T
ηToo

=

~~
T

�#
ρ

such that the following pasting diagrams of 3-cells are equal:

T 4 T 2µ //

µT 2

�� TµT   
�� Tτ

t|
τT

T 3

Tµ

  
T 3

µT
  

T 3 Tµ //

µT

��
|� τ

T 2

µ

��
T 2

µ
// T

= T 4 T 2µ //

µT 2

��

∼=

T 3

µT

��

Tµ

  
t|
τ

T 3

µT
  

Tµ //

�� τ

T 2

µ

  

T 2

µ

��
T 2

µ
// T

T 2 TηT //

=

  

|� λT

T 3 Tµ //

µT

��
|� τ

T 2

µ

��
T 2

µ
// T

= T 2 TηT //

=

  

|� Tρ

T 3 Tµ //

Tµ

��

=

T 2

µ

��
T 2

µ
// T.

It is a monad if the 3-cells τ , λ and ρ are identities, in which case the coherence

axioms are automatically satisfied.

Composition with a 1-cell T : X −7→ X defines a strict 2-functor on each hom-2-

category B(Z,X) and B(X, Y ). If (T, µ, η) is a pseudomonad, then composition

with µ and η define 2-natural transformations giving these 2-functors the structure

of pseudomonads. They are 2-monads if T is a monad.

Definition A.5. A left module for a pseudomonad T : X −7→ X is a pseudoalgebra for

T acting on the left hom-2-category, so in other words consists of a 1-cell E : A −7→ X
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with a 2-cell e : TE → E and invertible 3-cells

T 2E

µE

��
~� ε

Te // TE

e

��
TE e

// E

E
ηE //

=

!!

}� ε̄

TE

e

��
E

satisfying the coherence axioms:

T 3E
T 2e //

µTE

��
TµE

""
�
 Tε

u}
τE

T 2E

Te

""
T 2E

µE
""

T 2E
Te //

µE

��
~� ε

TE

e

��
TE e

// E

= T 3E
T 2e //

µTE

��

∼=

T 2E

µE

��

Te

""
u}
εT 2E

µE
""

Te //

�
 ε

TE

e

""

TE

e

��
TE e

// E

TE
TηE //

=

""

~� λE

T 2E
Te //

µE

��
~� ε

TE

e

��
TE e

// E

= TE
TηE //

=

""

~� T ε̄

T 2E
Te //

Te

��

=

TE

e

��
TE e

// E.

It is a strict left T-module if ε and ε̄ are identities, in which case the coherence axioms

are automatically satisfied.

A right T-module is a pseudoalgebra for T acting on a right hom-2-category, or

equivalently a left module for T in Bop.

Definition A.6. A bimodule for pseudomonads S : Y −7→ Y and T : X −7→ X is a

1-cell M : Y −7→ X with the structure (d, δ, δ̄) of a right S-module and the structure

(e, ε, ε̄) of a left T -module, together with an invertible 3-cell

TMS
Td //

eS

��
�� γ

TM

e

��
MS

d
//M
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which is compatible with δ, δ̄, ε, ε̄, i.e. satisfies the coherence axioms:

TMS2 TdS //

eS2

��
TMµ

$$
�� Tδ

∼=

TMS

Td

##
TMS

Mµ
$$

TMS
Td //

eS

��
�� γ

TM

e

��
MS

d
//M

= TMS2 TdS //

eS2

��
�� γS

TMS

eS

��

Td

##
v~ γTMS

Mµ
$$

dS //

�� δ

MS

d

##

TM

e

��
MS

d
//M

T 2MS T 2d //

TeS

��
µMS

$$

∼=

w�
(εS)−1

T 2M

µM

##
TMS

eS
$$

TMS
Td //

eS

��
�� γ

TM

e

��
MS

d
//M

= T 2MS T 2d //

TeS

��
�� Tγ

T 2M

Te

��

µM

##
v~
ε−1TMS

eS
$$

Td //

�
 γ

TM

e

##

TM

e

��
MS

d
//M

TM

e

��

=

))
TMη

##
∼=

�
 (T δ̄)−1

M

Mη
##

TMS

eS

��

Td
//

�� γ

TM

e

��
MS

d
//M

= TM

e

��

=

))
=M

Mη
""

=

))
�
 δ̄−1

TM

e

��
MS

d
//M

MS d //

=

��

ηMS

##

∼=

v~
ε̄S

M

ηM

##
TMS

eS

��

Td
//

�� γ

TM

e

��
MS

d
//M

= MS d //

=

��

=

M

ηM

""
=

��

u}
ε̄ TM

e

��
MS

d
//M.

Definition A.7. A pseudo-distributive law of a pseudomonad S : X −7→ X over

a pseudomonad T : X −7→ X in a 2-Cat-enriched bicategory consists of a 2-cell



116

λ : ST → TS and invertible 3-cells

S2T
Sλ //

µST

��
�
 α

STS
λS // TS2

TµS

��
ST

λ
// TS

ST 2 λT //

SµT

��

TST
Tλ // T 2S

µTS

��
ST

λ
// TS

EM
β

T

ηST

��

TηS

!!~� γ
ST

λ
// TS

S

SηT

��

ηTS

!!~� δ
ST

λ
// TS

satisfying the coherence axioms:

1.

S3T
S2λ //

µST

��

SµT

��

{�
Sα

S2TS
SλS

��

{�
τT

STS2

STµ

��
S2T

µT

��

S2T Sλ //

µT

��

{� α

STS

λS
��

TS2

Tµ
��

ST
λ

// TS

= S3T
S2λ //

µST

��

{�
Sα

S2TS

µTS

��

SλS

��
∼= STS2

λS2

��
STµ

��
S2T

µT

��

Sλ //

{� α

STS

λS ��

TS3

TµS

��
TSµ
��

s{
τT

∼= STS

λS
��

TS2

Tµ ��

TS2

Tµ
��

ST
λ

// TS

2.

ST

STη

))

SηT

""

1

��

�
 Sγ

~� λT

S2T
Sλ

//

µT

��

u}
α

STS

λS

��
TS2

Tµ

��
ST

λ
// TS

= ST

STη

''

λ

��
TS ∼=

TSη

''

1

��

|�
Tλ

STS

λS

��
TS2

Tµ

��
TS
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3.

S2 S2η //

SηS

((

ηS2

""

µ

��

S2T

Sλ

##
STS

λS

��

EM
Sδ

S

ηS

((

∼= TS2

Tµ

��

?GδS

TS

= S2

µ

��

S2η // S2T

µT

��

Sλ

##
∼= STS

λS

��
S

Sη //

ηS

((

ST

λ

##

TS2

Tµ

��

?Gα−1

TS

EM
δ

4.

1X
η //

η

��

∼=

T

ηT

��
Tη

��

S
Sη //

ηS

((

ST

λ

!!
TS

DL
δ

5=γ−1

= 1X
η //

η

�� ∼=

T

Tη

��

S

ηS

((
TS

5.

S2T 2 S2µ //

µT 2

��

SλT
""

�� Sβ

S2T

Sλ

""

STST
STλ
""

λST

�� ∼=
��
αT

ST 2 SµS //

λTS

��
�� βS

STS

λS

��

TS2T

TµT

��

TSλ ""

��
Tα

TSTS
TλS��

ST 2

λT ""

T 2S2 µS2
//

T 2µ

��

∼=

TS2

Tµ

��

TST

Tλ
""
T 2S

µS
// TS

= S2T 2 S2µ //

µT 2

��

∼=

S2T

Sλ

""

µT

��

�� α

STS

λS

��
ST 2 Sµ //

λT ""
�� β

ST

λ

""

TS2

Tµ

��

TST

Tλ
""
T 2S

µS
// TS
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6.

T 2 µ //

ηT 2

��
∼=

T

Tη

��

ηT

��
ST 2 Sµ //

λT
��

y� β

ST

λ

��

x� γ

TST

Tλ ��
T 2S

µS
// TS

= T 2 µ //

ηT 2

��
TηT

��

T 2η

��

s{
γT

∼=

T

Tη

��

ST 2

λT
�� z� Tγ
TST

Tλ ��
T 2S

µS
// TS

7.

ST 3 STµ //

λT 2

�� SµT ''
�� Sτ

ST 2 Sµ // ST

λ

��

TST 2

TλT
�� �� βT

ST 2

λT

��

Sµ

88

y� βT 2ST

T 2λ ��
µST

''
T 3S

µTS ''

∼= TST

Tλ
��

TS

T 2S
µS

88

= ST 3 STµ //

λT 2

��
∼=

ST 2 Sµ //

λT
��

ST

λ

��

TST 2

TλT
��

TSµ
//

{� Tβ

TST

Tλ

��

�
 β

T 2ST

T 2λ ��
T 3S

µTS ''

TµS //

�� τS

T 2S
µS // TS

T 2S
µS

88

8.

ST
1 //

λ

��

SηT

$$

ηST

��

ST
KS
Sρ

λ

��

ST 2

λT

��

Sµ

::

TS

ηTS $$

∼= TST

Tλ
��

7?δT

TS

@Hβ−1

T 2S

µS

::

= ST
1 //

λ

��

ST

λ

��

=

TS

ηTS ##

1 // TS
KS

ρS

T 2S

µS

;;

Pseudo-distributive laws between pseudomonads are defined with nine coherence con-

ditions in [Mar99], and the ninth is shown to follow from the others in [MW08]. The

conditions are summarized in [Gam09].
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Proposition A.8 ([Mar99]). If S is a colax-idempotent pseudomonad and T is a lax-

idempotent pseudomonad, then to give a pseudo-distributive law of S over T it suffices

to give the 2-cell λ : ST → TS and the invertible 3-cell γ, satisfying the conditions

1. the 3-cell δ =

TS

ηTS
∼=

""

1 //

�

γS

TS

TηS

##

1

))
∼=

S

ηS

>>

∼=

∼=

ηS
((

Sη

66�� ν

Sη
  

S2
SηS

// STS
λS

// TS2
Tµ

// TS

ST
λ

//

STη

<<

∼=

TS

TSη

<<

1

55
∼=

is invertible (equivalently, the composite (Tµ)(λS)(SηS)ν is invertible),

2. the 3-cell (Tµ)(λS)(Sλ)(σT ) is invertible, where σ : 1S2 ⇒ (Sη)µ is the unit of

the adjunction µ a Sη,

3. the 3-cell (µS)(Tλ)(λT )(Sρ) is invertible, where ρ : (Tη)µ ⇒ 1T 2 is the counit

of the adjunction Tη a µ,

4.

ST λ //

ηST

		

SηT

��

ks
νT

∼=
��
γS

TS

TηS

��

ηTS

��
S2T

Sλ
// STS

λS
// TS2

Tµ
// TS

= ST

SηT

��

v~
Sγ

∼=

λ //

STη

��

TS

TηS

		

TSη

��

ks
Tν

S2T
Sλ
// STS

λS
// TS2

Tµ
// TS

5.

ST
λ //

STη

		

SηT

��

ks
Sν

∼=
��

Tδ

TS

TηS

��

TSη

��
ST 2

λT
// TST

Tλ
// T 2S

µS
// TS

= ST
λ //

SηT

��

ηST

��

v~
δT

∼=

TS

TηS

		

ηTS

��

ks
νS

ST 2
λT
// TST

Tλ
// T 2S

µS
// TS.

In this case a pseudo-distributive law is unique up to isomorphism if it exists.
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