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Abstract
We show that the causal properties of asymptotically flat spacetimes depend on
their dimensionality: while the time-like future of any point in the past confor-
mal infinity I− contains the whole of the future conformal infinity I+ in (2 + 1)
and (3 + 1) dimensional Schwarzschild spacetimes, this property (which we
call the Penrose property) does not hold for (d + 1) dimensional Schwarzschild
if d > 3. We also show that the Penrose property holds for the Kerr solution
in (3 + 1) dimensions, and discuss the connection with scattering theory in the
presence of positive mass.
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1. Introduction

In his criticism of a theory of quantum gravity, Penrose [11] has considered the problem of
whether any pair of endless timelike curves in an asymptotically flat Lorentzian spacetime can
be connected by a timelike curve (figure 1). This causal property is conformally invariant, and
can be reformulated (theorem 2.5) in terms of past and future conformal infinities I− and I+.
We shall say that a weakly asymptotically simple Lorentzian manifold (see section 2 for precise
assumptions and definitions) admits the Penrose property if and only if the timelike future of
any point p ∈ I− contains the whole of I+(see also [17]). Penrose established that while the
property does not hold for Minkowski space (in any dimension), it does in fact hold for positive
mass Schwarzschild spacetime in 3 + 1 dimensions. We will consider the Penrose property in
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Figure 1. Two endless timelike curves connected by a timelike curve.

a more general setting and investigate how it is affected by dimension and by the presence of
both positive and negative mass. The results can be summarised by the following theorem:

Theorem A. The Penrose property is satisfied by Schwarzschild spacetime of mass m and
varying spacetime dimension according to the following table

Spacetime dimension m > 0 m � 0

3 �
4 �
� 5

Besides the quantum gravity motivation of [11], we also seek to clear up some apparent
contradictions in the literature. For example, in a footnote in section 2 of [19], Witten states
that one can leave the dimension arbitrary when studying the causal properties of spacetimes
and that restricting to 4 spacetime dimensions ‘does not introduce any complications’. This is
in contradiction with [3], where in section 2.1 the authors outline an argument which suggests
that the causal properties of higher dimensional asymptotically flat spacetimes are different to
those in 4 dimensions. The results of theorem A agree that the causal structure of spacetime is
affected by dimensionality.

We begin in section 2 by summarising Penrose’s motivation for studying the Penrose
property. This comes from considering, as he describes it, a ‘Lorentz covariant’ approach to
quantum gravity. In section 3 we consider Minkowski spacetime in more detail and deter-
mine which pairs of points on I− and I+ can be connected by timelike curves. In section 4.1,
we then consider the effect of inserting a point mass in 2 + 1 dimensions. We will see that
only in the case of positive mass is the Penrose property satisfied. In section 4.2.1 we review
Penrose’s argument that the Penrose property does hold for Schwarzschild in 3+ 1 dimensions.
By comparison with previous results for Minkowski spacetime, we then show in section 4.2.2
that this is not true in the negative mass case. In sections 4.3.1 and 4.3.2 we investigate the
higher dimensional Schwarzschild metrics of positive and negative mass respectively. The
results are summarised again in section 4.4 and we observe that the Penrose property appears
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to be a property of positive mass spacetimes in low dimensions. In section 5 we show how
the methods used in previous sections can be extended to study the Penrose property for the
(positive mass) Kerr metric in 3 + 1 dimensions. This case is more complicated because the
metric is no longer spherically symmetric. Nevertheless, we are able to prove the following
theorem:

Theorem B. The ( positive mass) Kerr spacetime in 3 + 1 dimensions satisfies the Penrose
property.

Finally, in section 6, we show that the results found previously are consistent with the recent
work of [1] on unique continuation from null infinity of the linear wave equation in various
spacetimes. We also discuss the Penrose property for general static, spherically symmetric
spacetimes.

2. ‘Lorentz covariant’ quantum gravity

In [11], Penrose considers a ‘Lorentz covariant’ approach to quantum gravity where the theory
is constructed with respect to some background Minkowski metric η. The physical field tensors,
including the metric g, are constructed as an infinite sum of tensors defined with respect to this
background metric. For example, we write a physical operator as a sum

Og (xμ) = O(0)
η (xμ) +O(1)

η (xμ) +O(2)
η (xμ) + . . . (2.1)

where the operators O(α)
η are Lorentz covariant operators such that for any states |ψ〉, |ψ′〉 and

any point xμ, we have
∣∣〈ψ′|O(α)

η (xμ)|ψ〉
∣∣ → 0 sufficiently quickly as α→∞ so that this sum

converges.
This construction places restrictions on the physical theory one can write down. In partic-

ular, the physical metric g defines the causal structure of the theory and we need to ensure
this causal structure is consistent with the standard rules of quantum field theory. For example,
we know that any two operators evaluated at spacelike separated points must commute, while
operators evaluated at timelike separated points should have non-zero commutator in general
(where we evaluate this condition using η for the background operators and g for the physi-
cal operators). This leads to a consistency condition on the theory. In order for the ‘Lorentz
covariant’ approach to hold, we will require that the lightcones defined by g should be con-
tained inside the lightcones defined by η. Following [11], we will denote this condition1 by
g < η, since it tells us that if a curve is timelike with respect to g, then it must also be timelike
with respect to η. If the condition g < η fails, then there are points a, b as shown on the right
in figure 2 which are timelike separated with respect to g but spacelike separated with respect
to η. This means we require the background Lorentz covariant operators defined at these points
to commute, but the physical operators should have non-zero commutator in general. This is
clearly incompatible with the Lorentz covariant expansion (2.1).

We now make some definitions which will be used throughout this paper.

Definition 2.1. A spacetime (M, g) is a connected manifold M of dimension d + 1, where
d � 1, equipped with a Lorentzian metric g of signature (1, d). We assume also that the metric
tensor, gab, is C3 since this will be required for theorem 4.6.

1 We are using the ‘mostly minus’ signature (+,−, . . . ,−).
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Figure 2. g < η is a necessary condition for the ‘Lorentz covariant’ approach to be
consistent with QFT.

Following [9], we make some further definitions

Definition 2.2. A time- and space-orientable spacetime (M, g) is asymptotically empty and
simple if there exists a strongly causal spacetime (M̃, g̃) and an embedding map λ : M → M̃
such that

(a) M̃ = λ(M) ∪ ∂M̃, where ∂M̃ is the boundary of M̃;
(b) λ∗(g̃) = Ω2g, where Ω is a smooth function on M̃ such that Ω > 0 on λ(M) and Ω = 0,

dΩ 
= 0 on ∂M̃
(c) Every null geodesic in (M, g) is mapped by λ to a null geodesic in (M̃, g̃) which has two

endpoints on ∂M̃;
(d) The Ricci tensor of g vanishes on an open neighbourhood of ∂M̃ in M̃.

We will mostly omit the embedding map λ since the identification between M and M̃ should
be clear (the exceptions to this are in sections 4.3.2 and 5). Definition 2.2 ensures that a con-
formal compactification (M̃, g̃) exists for this spacetime. Condition (c) however is extremely
restrictive, since it rules out spacetimes containing black hole regions. We will instead consider
spacetimes which are weakly asymptotically empty and simple.

Definition 2.3. A spacetime (M, g) is weakly asymptotically empty and simple if there is an
asymptotically empty and simple spacetime (M′, g′) and a neighbourhood U′ of ∂M̃ in M′ such
that U′ ∩ M′ is isometric to an open set U of M.

We will also restrict ourselves to spacetimes containing only one asymptotically flat end.
The boundary of the conformally related spacetime (M̃, g̃) can then be split into five parts
in the usual way [18]—two null surfaces I− and I+ (known as past and future null infinity
respectively), spatial infinity denoted i0 as well as past and future timelike infinity denoted i−

and i+ respectively. All null geodesics which do not enter a black hole region will have past
endpoint on I− and future endpoint on I+. Similarly, all timelike geodesics which do not enter
a black hole region will have past endpoint on i− and future endpoint on i+. The definition of
a weakly asymptotically empty and simple spacetime includes the Minkowski, Schwarzschild
and Kerr spacetimes.

We will also use units in which c = G = 1.
In order to understand the condition g < η on a spacetime, (M, g), we shall consider the

following property:

Definition 2.4. A spacetime, (M, g), with conformal compactification (M̃, g̃) has the Pen-
rose property if any points p ∈ I− and q ∈ I+ can be timelike connected (i.e. connected by a
smooth timelike curve).
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Figure 3. Two everywhere spacelike-separated branches of the hyperbola x2
1 − t2 = 1.

These branches tend towards null lines as we approach infinity.

An equivalent definition given in [11] which makes no mention of conformal compactifica-
tion is a consequence of the following:

Theorem 2.5 (Penrose [11], statement that theorem 4.3 is equivalent to theorem
4.4). A spacetime, (M, g), has the Penrose property if and only if given any two endless timelike
curves λ and μ in M, there exist points p ∈ λ, q ∈ μ and a future directed timelike curve from
p to q.

To begin studying the Penrose property it is helpful to consider the simple example of
Minkowski spacetime in d + 1 dimensions (d � 2):

Theorem 2.6 (Penrose [11], theorem 4.5). The Penrose property is not satisfied by
Minkowski spacetime in d + 1 dimensions, M(1,d), for any d � 1.

Proof. With respect to co-ordinates (t, x1, x2, . . . , xd), the Minkowski line element in d + 1
dimensions can be written as

ds2 = dt2 − dx2
1 − dx2

2 − · · · − dx2
d (2.2)

Now consider the hyperbola in the x1 − t plane defined by x2
1 − t2 = 1, x2 = · · · = xd = 0.

We see (figure 3) that the two branches of this hyperbola are endless timelike curves which
are everywhere spacelike separated. We therefore conclude, by theorem 2.5, that the Penrose
property does not hold for Minkowski spacetime in any dimension. �

Penrose’s motivation for studying the Penrose property in [11] is that it can be related to
the consistency condition g < η established previously for the ‘Lorentz covariant’ quantum
gravity construction:

Proposition 2.7 (Penrose [11], statement that theorem 4.5 follows from theorems
4.3 or 4.4). If the spacetime (M, g) satisfies the Penrose property, then the condition g < η
fails.

In the proof of this proposition, we assume that the compactified manifolds of the physical
and background spacetimes are diffeomorphic, at least in some neighbourhood of I− ∪ i0 ∪
I+ (see definition 2.3). We expect this to be the case since g and η should have the same
asymptotics if the ‘Lorentz covariant’ theory is to be able to describe physical situations such
as scattering experiments.

Proof. If g < η is satisfied, then curves which are timelike with respect to the physical met-
ric, g, must also be timelike with respect to the background metric, η (and this is also true for
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Figure 4. A curve in d + 1-dimensional, spherically symmetric, static spacetime can be
thought of as a pair of curves in Σ and Sd−1.

their respective compactifications). So if the Penrose property were to hold for g then it would
also hold for η—we can use exactly the same path through the compactified manifolds. But
we have seen that the Penrose property does not hold for Minkowski space which leads to a
contradiction and we conclude that g does not satisfy the Penrose property. �

We will consider the Penrose property as a property in its own right, rather than as a tool
to constrain possible theories of quantum gravity. It will turn out that a useful way to prove
results relating to this property will be to use a similar trick of comparing the metric of interest
to some other metric, defined on the same manifold, whose properties we do understand.

3. Minkowski causality

Before looking at more complicated situations, we should first make sure we fully under-
stand Minkowski spacetime. We have seen from the hyperbola example that in compactified
Minkowski space, some points on I− cannot be timelike connected to certain points on I+.
To understand exactly which points this applies to, we first note the following lemmas:

Lemma 3.1. Consider a static, spherically symmetric spacetime, (M, g), which is weakly
asymptotically flat at null infinity. Let γ be a timelike curve with endpoints p ∈ I− and q ∈ I+.
Then we can choose polar co-ordinates (t, r, θ1, . . . , θd−2,φ), where t ∈ R, r is defined on some
subset of R, φ ∈ [0, 2π) and θ1, . . .θd−2 ∈ [0, π] as well as a timelike curve, γ′, from p to q
such that θ1 = . . . = θd−2 = π/2 along γ′.

In other words, it suffices to look for timelike curves between p and q which lie in a
submanifold Σ× S1 ⊂ M, where Σ a two-dimensional surface with co-ordinates (t, r).

Proof. Let the metric take the form

g = A(r)2dt2 − B(r)2dr2 − r2gd−1,

where gd−1 is the round metric on a unit (d − 1)–dimensional sphere Sd−1. We follow [10] and
consider the conformally re-scaled metric

ḡ = r−2g = gΣ − gd−1,

defined on the product space Σ× Sd−1, where gΣ is a Lorentzian metric on the surface Σ. An
endless non–spacelike curve in the d + 1 dimensional spacetime therefore corresponds to a
pair of curves described by a common parameter, s, which we choose to be the arc length of
the second curve (figure 4). One of these is an endless curve in Σ and the other is a curve in
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Figure 5. Assume γ1 ∪ γ2 is not a single null geodesic. Then we choose the points a′

and c′ to lie in a normal neighbourhood of b, so there exists a timelike geodesic between
them (dashed line). Thus we have connected a to c using three causal geodesic segments,
where in particular one of these segments is timelike. This can be smoothed to give a
timelike curve from a to c (dotted line).

Sd−1 (which may be a single point) with endpoints which come from looking at the points on
Sd−1 at which γ meets I± 2.

If the full curve in M is timelike, then the line element evaluated at each point along it
satisfies

d̄s2 = ds2
Σ − dω2

d−1 > 0

where ds2
Σ and dω2

d−1 are the line elements along the curves in (Σ, gΣ) and (Sd−1, gd−1) respec-
tively. Now consider the curve in (Sd−1, gd−1). The metric gd−1 is a Riemannian metric, so
dω2

d−1(s) � 0 for each value of the parameter s (with equality corresponding to a radial line
segment in M). We can modify this curve, keeping the endpoints the same, so that it becomes a
geodesic. Since we chose s to be the arc length, this reduces the value of dω2

d−1(s) at each
value of s and ensures that the curve in the full spacetime remains timelike. Furthermore,
the geodesic in Sd−1 is a segment of a great circle, so we can choose spherical co-ordinates
(θ1, . . . , θd−2,φ) (where θ1, . . . , θd−2 ∈ [0, π], φ ∈ [0, 2π)) such that θ1 = · · · = θd−2 = π/2
along the geodesic. This means that the curve in the full spacetime is restricted to the surface
θ1 = . . . = θd−2 = π/2, i.e. a Σ× S1 submanifold of M. �

2 Recall that both I+ and I− are topologically R× Sd−1 —this is a straightforward extension of proposition 6.9.4 in
[9]).
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Proposition 3.2 (Penrose [12], proposition 2.20 and proposition 2.23). Let γ1

and γ2 be future pointing causal (i.e. timelike or null) geodesics from a to b and from b to
c respectively. Then either there exists a smooth timelike curve from a to c or the union of these
geodesics, γ = γ1 ∪ γ2, is itself a null geodesic ( figure 5).

We now return to considering Minkowski spacetime in d + 1 dimensions, M(1,d). Since this
spacetime is spherically symmetric, proposition 3.2 ensures that if two points can be connected
by a timelike curve then we can choose this curve to lie in a three-dimensional surface with
induced metric equal to that of M(1,2). It therefore suffices to consider only the compactifi-
cation of Minkowski spacetime in 2 + 1 dimensions. The Minkowski line element in 2 + 1
dimensions in polar co-ordinates is

ds2 = dt2 − dr2 − r2 dφ2 (3.3)

We define retarded and advanced time co-ordinates respectively by

u = t − r, v = t + r (3.4)

We then compactify the metric by defining

u = tan P, v = tan Q (3.5)

Finally, we define new co-ordinates

T = Q + P ∈ (−π, π), χ = Q − P ∈ [0, π) (3.6)

which we can think of as ‘time’ and ‘radial’ co-ordinates respectively in the compactified
spacetime.

We then consider the conformally related metric g̃, given by

g̃ = Ω2g = (2 cos P cos Q)2g

This gives the line element

d̃s2 = dT2 − dχ2 − sin2 χ dφ2 (3.7)

In 2 + 1 dimensions, the compactified manifold, M̃, is a double cone, as shown in figure 6,
where we can think of time as moving upwards. The antipodal points p and q in figure 6 corre-
spond to the past and future endpoints of different branches of the hyperbola shown in figure 3.
They have T and χ co-ordinates (T,χ) = (− π

2 , π
2 ), ( π2 , π

2 ) respectively. The radial null geodesic
between these points is a straight line in this diagram. Moreover, any null geodesic from p
which enters the interior spacetime, M, has future endpoint at q. For a general point p′ ∈ I−,
there is a unique q′ ∈ I+ which is the future endpoint of null geodesics from p′ which enter
M. The points p′ and q′ can be obtained from p and q by a simple translation in T and φ.

Proposition 3.3. Let p ∈ I− and let q be the unique point in I+ which is connected to
p by a null geodesic which enters M. Then the only points in I+ which cannot be timelike
connected to p are the points in I+ which can be reached from q by a past pointing null
geodesic, including the point q itself. That is, for any p ∈ I−

I+(p) ∩ I+ = I+\
(
J−(q) ∩ I+

)
(3.8)
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Figure 6. The points p ∈ I− and q ∈ I+ are connected by a radial null geodesic through
the origin. The point p can be timelike connected to all points in I+ except those that
lie to the past of q and on the same null generator of I+. These points correspond to the
shaded interval.

where q ∈ I+ ∩ ∂J+(p) can be connected to p by a null geodesic which does not pass through
i0 (and hence enters M) and where we define the following sets

J+(p) = {q ∈ M̃|∃ a smooth future-directed causal curve from pto q}

J−(p) = {q ∈ M̃|p ∈ J+(q)}

I+(p) = {q ∈ M̃|∃ a smooth future-directed timelike curve from pto q}

I−(p) = {q ∈ M̃|p ∈ I+(q)}

(3.9)

For non-compact spacetimes, (M, g), we can define the same sets as subsets of M rather than
as subsets of M̃.

This proposition is illustrated in figure 7. In particular, we note that antipodal points close
to spacelike infinity cannot be timelike connected.

Proof. Let p ∈ I− have co-ordinates (T,χ,φ) = (− π
2 , π

2 , 0), so q has co-ordinates ( π2 , π
2 , π).

This is shown in figure 6. These points correspond to the past and future endpoints of separate
branches of the hyperbola shown in figure 3. A general point p′ ∈ I− is related to p by a trans-
lation in T and φ. Since the compactified metric (3.7) does not depend on these co-ordinates,
it suffices to prove the proposition for this point p. The same argument would then apply to
general p′ ∈ I−, only with the point q ∈ I+ shifted in the same way to become q′. This is
shown in figure 7 for a translation in T (we assume without loss of generality that φ = 0 at p′).

First we note that it is clear none of the shaded points in figure 6 lie in the interior of the
future lightcone from p. Next observe that it is straightforward to find a timelike curve from
p to points such as q̂ in figure 8 which lie on I+ with T-value greater than or equal to that of
q (and excluding q itself ). We can use two radial null geodesics intersecting at the origin O
as well as a radial null geodesic up I+ if necessary. Since q̂ 
= q, the total curve is not a null
geodesic, so we can use proposition 3.2 to deduce that there exists a smooth timelike curve
from p to q̂. By using a curve of constant φ which is also a straight line in (T,χ) co-ordinates,
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Figure 7. The point p′ ∈ I− can be connected to all points on I+ except those that lie
to the past of q′ and on the same null generator of I+ (i.e. the shaded interval), where q′

is the unique future endpoint of null geodesics from p′ which enter M.

Figure 8. p can be timelike connected to any point on I+ with T co-ordinate greater
than or equal to that of q (other than q itself). The path shown consists of two radial null
lines through the origin as well as a null line up I+. Proposition 3.2 then implies the
existence of a smooth timelike curve between p and q̂.

we are able to timelike connect p to any point in I+ which has the same φ co-ordinate as p.
This means we can concentrate on points on I+ with larger χ co-ordinates than p, i.e. which
are closer to spacelike infinity, and whose φ co-ordinate differs from that of p by a value in
(0, π) (without loss of generality).

It is helpful to look at the double cone from above, as in figure 9. The circles shown cor-
respond to surfaces χ = constant, with the larger circle χ = π representing spatial infinity. To
show that all non-antipodal points can be timelike connected, we will follow an argument
similar to the one used by Penrose in [11]. This argument, which will be used again in

10
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Figure 9. Double cone of compactified Minkowski spacetime viewed from above.

section 4.2.1, relies on repeated applications of proposition 3.2 to a curve which is com-
posed of segments of null geodesics. More specifically, the curve is based on several radial
null geodesics, as well as a single non-radial one, which we use to achieve the desired change
in the angular co-ordinate φ.

From the null geodesic equations, we have

Ṫ = 1 (w log)

sin2(χ)φ̇ = h = constant

χ̇2 = 1 − h2

sin2 χ

(3.10)

where overdots denote differentiation with respect to some parameter which we have nor-
malised so that Ṫ = 1.

We can integrate these equations to find explicit expressions for χ and φ involving T. Firstly
we have

tan2 T =
sin2 χ− h2

cos2 χ
(3.11)

where we have chosen the geodesic to intersect I− at (T,χ) = (−π/2, π/2). This ensures that
the maximum value of χ is achieved at T = 0 and that the curve intersects (T,χ) = (π/2, π/2).
Using this, we can solve for φ along the curve (assuming h 
= 0). We have

sin2 χφ̇ = h

=⇒ φ̇ =
h

(
1 + tan2 T

)
h2 + tan2 T

=⇒ φ = tan−1

(
tan T

h

)
+

π

2

(3.12)

11
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Where we have chosen our geodesic to have φ = 0 at I−. This ensures that φ = π on I+ for
h 
= 0.

Consider a point q̃ ∈ I+ at which χ = χ∗ ∈ (π/2, π) and φ = φ∗ ∈ (0, π). It suffices to
show that a null geodesic with past endpoint at p reaches a point with these same values of
the χ and φ co-ordinates, since we could then reach q̃ by following this null geodesic until we
reach such a point before switching to a timelike geodesic of constant χ,φ. This construction
is shown as the bold path in figure 9. Finally we could then apply proposition 3.2 to obtain a
smooth timelike curve with the same endpoints at p and q̃.

Re-arranging equation (3.12), the null geodesic intersects the required point provided we
choose

h2 =
sin2χ∗

1 + cos2χ∗ tan2(φ∗ − π/2)

where we choose the positive sign for h since we assumed φ∗ ∈ (0, π).
Choosing this value of h gives us the required null geodesic and we conclude that points in

I− with χ = T = π
2 are timelike connected to all non-antipodal points in I+. �

4. The Penrose property in Schwarzschild spacetime

We now consider the effect of adding mass. In particular, we will consider the Schwarzschild
spacetime in various dimensions and for both positive and negative mass.

4.1. Schwarzschild spacetime in 2 + 1 dimensions

4.1.1. Positive mass. We begin by focussing on the 2 + 1 dimensional case, where we prove
the following result:

Proposition 4.1. The Penrose property is satisfied by the Schwarzschild spacetime of mass
m in 2 + 1 dimensions if and only if m > 0.

Proof. We first note that the failure of the Penrose property when m = 0 has already been
established in section 3 (since the spacetime in this case is Minkowski with a point removed).
We now consider the case where the mass is non-zero.

In 2 + 1 dimensions, the symmetries of the Riemann tensor are highly constraining, and we
have [16]

Rabcd =

(
Rmn − 1

2
Rgmn

)
εmabεncd (4.13)

where εabc is the fully anti-symmetric tensor of rank 3 with ε123 = 1.
Away from sources, the Einstein equations imply Rab = 0 and hence spacetime is flat. This

means that gravity in 2 + 1 dimensions is different to the theory in higher dimensions. In par-
ticular, the curvature is fully determined by the Einstein equations and there is no propagating
field of gravity.

The stress–energy tensor for a point source of mass m at the origin is

T00 = mδ (r) , T0i = Ti j = 0

The spacetime is static and spherically symmetric, so we can write the metric in isotropic
co-ordinates as

ds2 = N(r)dt2 − ϕ(r)(dr2 + r2 dφ2)

12
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Figure 10. The deficit angle resulting from inserting a positive point mass removes
antipodal points.

Solving the Einstein equations in vacuum (Rab = 0), we find ([5], equation (2.4)) that N is a
constant, which we can choose to be 1 by a re-scaling of t. Next we solve for ϕ(r) to find ([5],
equation (2.6))

ϕ(r) = r−8m

Making the change of variables3 r̃ = α−1rα, φ̃ = αφ, whereα = 1–4m, we arrive at the metric

ds2 = dt2 − dr̃2 − r̃2 dφ̃2 (4.14)

We recognise this as the Minkowski metric (3.3). The important thing to note is that the co-
ordinates (t, r,φ) do not cover all of R3. This is because the range of φ̃ is now 0 � φ̃ < 2πα,
so there is a conical singularity at the origin.

If m > 0, the range of φ̃ is strictly less than 2π. We have therefore introduced a deficit angle

φ̃deficit = 8πm

This means that any two points on I− and I+ will have φ̃ co-ordinates which differ by strictly
less than π (mod 2π), so we have effectively removed all the antipodal points (see figure 10).
By the arguments presented in section 3 (in particular proposition 3.3 and its extension to
general points on I−), this means we are able to connect any pair of points on I− and I+ with
a timelike curve, so the Penrose property is satisfied.

On the other hand, inserting a negative mass yields the opposite effect. We now have a
surplus angle, so φ̃ has a range strictly greater than 2π. The result of this is that given any
initial point p ∈ I−, there is a wedge of points on I+ which cannot be reached by a timelike
curve (see figure 11). At these points, the φ̃ co-ordinate differs by strictly greater than π from
the value at p. The Penrose property is not satisfied by this negative mass spacetime. In fact, the
situation is worse than in Minkowski, since the set of points on I+ which cannot be reached by
a timelike curve from p now forms a two-dimensional area (as opposed to the 1 dimensional
line segment we found in Minkowski spacetime). �

So it appears that the Penrose property is linked to the presence of positive mass4. This is
not wholly unsurprising since we expect a positive mass source to focus and retard nearby
geodesics (and to correspondingly time-advance geodesics passing far from the source as

3 We are actually restricting here to m < 1
4 . The case m > 1

4 corresponds to a ‘mass at infinity’, while m = 1
4 gives a

cylinder in the spatial dimensions. See [5] for a discussion of this. We will not consider these cases further.
4 This link, and some of its consequences has been explored in [4, 6–8, 13].
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Figure 11. The surplus angle resulting from inserting a negative point mass means that
given any point on I− there is now a wedge of points on I+ which cannot be reached
by a timelike curve.

described in [13]). This should make it easier for timelike curves to reach antipodal points
near i0. The results in 2 + 1 dimensions, along with this intuition, suggest that we should look
at positive mass spacetimes if we want to satisfy the Penrose property.

4.2. Schwarzschild spacetime in 3 + 1 dimensions

We now consider the Schwarzschild solution in 3 + 1 dimensions. As outlined in theorem A,
we will find that the Penrose property is satisfied when the mass is m > 0 but not when
m < 0 (the case m = 0 corresponds to Minkowski spacetime and has already been considered
in section 3).

4.2.1. Positive mass. The positive mass Schwarzschild metric in 3 + 1 dimensions is

ds2 = V(r)dt2 − dr2

V(r)
− r2

(
dθ2 + sin2 θ dφ2

)
(4.15)

where V(r) = 1 − rs
r and rs = 2m > 0 (m is the mass of the spacetime).

We can conformally compactify this metric using the same procedure as was used in
section 3 for Minkowski spacetime, the only difference being we now use the tortoise
co-ordinate, r∗, which satisfies

dr∗ =
dr

V(r)
(4.16)

in order to define the retarded and advanced time co-ordinates

u = t − r∗ = t − r − rs log(r/rs − 1)

v = t + r∗ = t + r + rs log(r/rs − 1)
(4.17)

where we have set the arbitrary integration constant in the definition of r∗ (equation (4.16)) to
zero.

Just as in section 3, we define compactified ‘time’ and ‘radial’ co-ordinates T ∈ (−π, π)
and χ ∈ [0, π) to be

14
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T = arctan v + arctan u, χ = arctan v − arctan u (4.18)

The conformally compactified metric is then

d̃s2 = Ω2 ds2 = dT2 − dχ2 − r2

V(r)r2
∗

sin2 χ
(
dθ2 + sin2 θ dφ2

)
, (4.19)

where Ω =
2 cos

(
T+χ

2

)
cos

(
T−χ

2

)
√

V(r) .
The compactified manifold for the region of Schwarzschild spacetime {r � r#}, where

r# is the unique solution to r# + rs log(r#/rs − 1) = 0, is the same as the compactified
Minkowski manifold, namely the (higher dimensional) cone

M̃ = {(T,χ) ∈ [−π, π] × [0, π] : |T| � π − χ} × S2

Note that r# > rs, so V(r) > 0 at all points in the compactified manifold.

Theorem 4.2 (Penrose [11]). Positive mass Schwarzschild spacetime in 3 + 1 dimen-
sions satisfies the Penrose property.

Proof. We follow the method used by Penrose in [11] to connect points p ∈ I− and q ∈ I+.
We also fill in some details which are omitted from [11], in particular we show how the posi-
tivity of mass ensures that we can follow null geodesics in order to reach antipodal points (see
equation (4.21)).

Just as we have done in 2 + 1 dimensions, this method uses a piecewise null geodesic con-
struction, with the existence of a smooth timelike curve from p to q guaranteed by proposition
3.2. We choose co-ordinates (t, r, θ,φ) such that θ = π/2 at p and q. The Schwarzschild metric
is static and spherically symmetric, so by lemma 3.1 it suffices to consider curves restricted
to the hypersurface θ = π/2. All curves referred to in this section will be assumed to lie in
this plane. Up to shifts in t and φ, Schwarzschild geodesics in this plane which are null and
inextendible (so in particular r � rs) are uniquely determined by their impact parameter, R,
defined to be the minimal value of r along the curve (which we assume is obtained at t = 0).
The geodesic Lagrangian is

L = V(r)ṫ2 − V(r)−1ṙ2 − r2φ̇2

so that, in the null case,

L = 0, h = −1
2
∂L

∂φ̇
= r2φ̇ = const,

1
2
∂L
∂ ṫ

= V(r)ṫ = const = 1,

where the last equation is our choice of the parametrisation.
For such a geodesic, which in particular must have non-zero angular momentum, h, we

have:

ṙ2 = 1 −
(

1 − rs

r

) h2

r2

� 1 −
(

1 − rs

R

) h2

r2

= 1 − R2

r2
(4.20)

where we use the fact that ṙ = 0 at r = R to solve for h2 = R2
(
1 − rs

R

)−1
.
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Figure 12. |Δφ| > π along null geodesics in positive mass Schwarzschild.

Using this, we can obtain a lower bound for |Δφ|, the magnitude of the change in φ along
this null geodesic:

φ̇ =
h
r2

=⇒ |Δφ| = 2R
(

1 − rs

R

)−1/2
∫ ∞

R

dr
ṙr2

� 2R
(

1 − rs

R

)−1/2
∫ ∞

R

dr(
1 − R2/r2

)1/2
r2

=

[
−2

(
1 − rs

R

)−1/2
tan−1

(
R√

r2 − R2

)]∞

r=R

=
(
1 − rs/R

)−1/2
π � π (4.21)

Therefore |Δφ| � π along a null geodesic in the θ = π
2 plane. This was to be expected near a

positive mass source (see figure 12).
Using this fact, we can connect any points on I− and I+ which lie outside the intervals

between the ends of this null geodesic and spatial infinity. The construction is illustrated in
figure 13. In this figure we are interested in finding a timelike curve between the point p ∈ I−

(with v = v0, φ = φ0) and the point q ∈ I+ (with u = u1, φ = φ1). The details of this
construction are as follows.

Suppose we are able to choose the impact parameter R such that the past and future endpoints
of the null geodesic have v = v∗ > v0 and u = u∗ < u1 respectively. Along this geodesic, we
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Figure 13. Construction used in [11] to timelike connect points p ∈ I− and q ∈ I+.
This is based on using a null geodesic (dashed line) to vary the angular co-ordinate φ
(working in the hypersurface θ = π

2 ). We then complete the path using null geodesics
with zero angular momentum. The existence of a smooth timelike curve from p to q is
then guaranteed by proposition 3.2.

choose points p′ and q′ (with q′ ∈ J+(p′)) at which φ = φ0 and φ = φ1 respectively (we know
this is possible because we have shown that |Δφ| � π along this null geodesic and we can
choose the angular momentum h to be positive or negative). We use this segment of geodesic
to vary the value ofφ. We connect p to p′ using two null geodesics with zero angular momentum
(so φ is constant along them), one of which runs along null infinity towards i0. We connect q
to q′ similarly. This gives us a piecewise null geodesic curve from p to q. We deduce, using
repeated applications of Proposition 3.2, that a smooth timelike curve from p to q must exist. So
we have reduced the Penrose property to a problem concerning the end points of null geodesics
in Schwarzschild. The construction described above will allow us to connect all pairs of points
on I− and I+ if we are able to choose null geodesic endpoints arbitrarily close to spatial
infinity. This also demonstrates how the Penrose property is a property of neighbourhoods
of spatial infinity. If we know that we can connect all points arbitrarily close to i0 then this
construction shows that the Penrose property is satisfied.

Points on I− and I+ can be labelled by co-ordinates (v, θ,φ) and (u, θ,φ) respectively. The
u co-ordinate, u∗, at the future endpoint of a non-radial null geodesic, chosen to be symmetric
about t = 0, is given in terms of the u co-ordinate at r = R, denoted uR, by

u∗ = uR +

∫ ∞

R

du
dr

dr = −R − rs log

(
R
rs

− 1

)
+

∫ ∞

R

du
dr

dr (4.22)

In [11], Penrose shows that

∫ ∞

R

du
dr

dr = R +O(1)
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where O(1) denotes terms which are bounded as R →∞. This proves that u∗ → −∞ as
R →∞. A similar argument also shows that v∗ →∞ as R →∞. This is exactly what we
wanted. We can therefore use this construction to connect any pairs of points on I− and I+

using a timelike curve. We simply need to use a geodesic with sufficiently large impact param-
eter. So we see that the Penrose property holds, and as a result the perturbative quantum gravity
consistency condition g < η described in section 2, is not satisfied. �

4.2.2. Negative mass. We now consider the Schwarzschild metric in 3 + 1 dimensions with
negative mass. The compactified metric is now as in (4.19) except with

V(r) = 1 +
rs

r

=⇒ r∗ = r − rs log(r/rs + 1)
(4.23)

and the compactified manifold covers the whole spacetime {r > 0} outside the naked singu-
larity. This naked singularity will not be relevant for our discussion because, as explained in
the positive mass case, we are concerned only with properties of the spacetime near i0 (and
hence at large values of r).

Proposition 4.3. Negative mass Schwarzschild spacetime in 3 + 1 dimensions does not
satisfy the Penrose property.

Proof. The compactified Schwarzschild line element (4.19) differs from the compactified
Minkowski metric (3.7) only by the function r2

V(r)r2∗
which appears in front of the angular terms

(this function is identically 1 for Minkowski). In fact, the similarity is deeper than this. Not
only do the metrics look similar, we also note that the negative mass Schwarzschild spacetime
is mapped to the same compactified manifold as the r > 0 portion of Minkowski. This means
we have a bijection between curves in compactified Schwarzschild and curves in compactified
Minkowski (with r > 0) which arises from identifying the co-ordinates (T,χ, θ,φ) defined on
both these manifolds. It does not matter that these will correspond to different curves when we
map back to the physically relevant uncompactified spacetimes.

To further this comparison, we need to understand the relation between the compactified
metrics, which means looking more closely at the function r2

V(r)r2∗
. We consider the large r

asymptotics of this function. Expanding V(r) and r∗(r) to leading order, we have

r2

r2
∗V(r)

=

[
1 +

2rs

r
log

(
r/rs + 1

)
+ O

(
r2

s

r2

(
log

(
r/rs + 1

))2
)] [

1 − rs

r
+ O

(
r2

s

r2

)]

= 1 +
(
2 log

(
r/rs + 1

)
− 1

) rs

r
+ O

(
r2

r2
s

(
log

(
r/rs + 1

))2
)

> 1 for large r (4.24)

This means the conformally compactified negative mass Schwarzschild metric in 3 + 1 dimen-
sions can be bounded above by the conformally compactified Minkowski metric, i.e. g < η (for
large r).

We conclude from this that the Penrose property does not hold for negative mass in 3 +
1 dimensional Schwarzschild spacetime. In particular, if we choose antipodal points on I−

and I+ sufficiently near i0, then these cannot be timelike connected. To see this, suppose we
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could connect such points using a Schwarzschild timelike curve. By choosing these points
sufficiently close to i0, we can ensure that such a curve is restricted to large enough r to ensure
that inequality (4.24) holds. This is because curves near i0 in compactified Schwarzschild are
necessarily restricted to large values of r∗ (since (T ,χ) = (0, π) at i0 with these co-ordinates
defined as in equation (4.18)) and from equation (4.23) we see that r →∞ as r∗ →∞. This
curve would then also be timelike in compactified Minkowski spacetime and would connect
the same points on I±. But we know (section 3) that antipodal points sufficiently near spatial
infinity in Minkowski spacetime cannot be timelike connected, so we conclude (choosing our
points even closer to i0 if necessary) that the Penrose property does not hold for negative mass
Schwarzschild in 3 + 1 dimensions. �

This argument is similar to the argument used for negative mass in 2 + 1 dimensions. The
difference is that the constant α ∈ (0, 1) which created the deficit angle has now been replaced
by the function r2

V(r)r2∗
∈ (0, 1) which depends on r.

4.3. Schwarzschild spacetime in d + 1 dimensions with d > 3

4.3.1. Positive mass. It is tempting to try to use the same construction as [11] (and sum-
marised in section 4.2.1) to show that the Penrose property is true for positive mass
Schwarzschild in 3 + 1 dimensions. In fact, this construction no longer works because the end-
points of non-radial null geodesics do not approach i0 as we let the impact parameter R →∞.
In fact, the situation for positive mass Schwarzschild in higher dimensions is similar to the
negative mass case in 3 + 1 dimensions as we see below.

Proposition 4.4. Positive mass Schwarzschild spacetime in d + 1 dimensions (d > 3) does
not satisfy the Penrose property.

Proof. The Schwarzschild metric in d + 1 dimensions (d > 3) is

ds2 = V(r)dt2 − dr2

V(r)
− r2 dω2

d−1 (4.25)

where V(r) = 1 − rn
s

rn , n = d − 2 and dω2
d−1 is the round metric on Sd−1.

We can conformally compactify the metric as in lower dimensions to obtain the same form
as equation (4.19) (with dω2

2 replaced by dω2
d−1 throughout). Once again we consider the large

r asymptotics of the metric. We have

dr∗ =
dr

V(r)
=

(
1 − rs

n

rn

)−1

dr =

(
1 +

rs
n

rn
+ O

(
rs

2n

r2n

))
dr

=⇒ r∗ = r

(
1 − rs

n

(n − 1)rn
+ O

(
rs

2n

r2n

))

=⇒ r2

r2
∗V(r)

=

(
1 +

2rn
s

(n − 1)rn
+ O

(
r2n

s

r2n

)) (
1 +

rn
s

rn
+ O

(
r2n

s

r2n

))

= 1 +
(n + 1)rn

s

(n − 1)rn
+ O

(
r2n

s

r2n

)

> 1 for large r.

(4.26)
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So we obtain the same bounds as in section 4.2.2, and the same argument tells us that the Pen-
rose property does not hold in this spacetime (again noting that curves near i0 in Schwarzschild
are restricted to large values of r∗ and that r →∞ as r∗ →∞). �

4.3.2. Negative mass. The negative mass Schwarzschild metric in spacetime of dimension

d + 1 (d > 3) is as in equation (4.25) except with V(r) = 1 + rn
s

rn , (n = d − 2). The bound we
obtained in (4.26) is now reversed, so we cannot use this method to conclude that the Penrose
property is not satisfied. In fact, the lightcones of the naturally associated Minkowski met-
ric are now contained inside the Schwarzschild lightcones (at least at large r). This suggests
that the spacetime may have a chance of satisfying the Penrose property (we should at least
be able to timelike connect all the same points as we could in Minkowski by using curves
restricted to large r where this bound holds). However, as we let r →∞, the Schwarzschild
and Minkowski lightcones converge towards each other. This means that we may be unable
to connect antipodal points sufficiently near i0, as is the case in Minkowski spacetime, since
such curves would be restricted to increasingly large values of r. In fact, it turns out that the
deflection of null geodesics away from the negative point mass (see figure 12) prevents us from
timelike connecting certain pairs of antipodal points near i0.

Theorem 4.5. Negative mass Schwarzschild spacetime in d + 1 dimensions (d > 3) does
not satisfy the Penrose property.

To prove this theorem, we will require the following result:

Theorem 4.6 (Seifert [15], theorem 1). Let a, b ∈ M be such that the causal diamond
J+(a) ∩ J−(b) is non-empty, compact and strongly causal. Then there exists a causal geodesic
from a to b.

Proof of theorem 4.5. Suppose we are aiming to timelike connect points p ∈ I− and
q ∈ I+. We choose co-ordinates (t, r, θ1, . . . , θd−2,φ) such that θ1 = . . . = θd−2 = π/2 at p
and q. Once again we can exploit the staticity and spherical symmetry of the metric and argue
using lemma 3.1 that it suffices to consider curves restricted to the surface θ1 = . . . = θd−2

= π/2. All curves and points referred to in this proof will be assumed to lie on this surface.
A negative point mass will be repulsive and will deflect null geodesics away (figure 14). We
therefore expect that, in contrast to positive mass, causal geodesics will undergo an angular
change of strictly less than π. This is what we now prove. Solving the geodesic equations for
the Schwarzschild metric, we find

r2φ̇ = h = constant

and ṙ2 = 1 − V(r)

(
k2 +

h2

r2

) (4.27)

where k � 0 is a constant such that k = 0 for a null geodesic and k > 0 for a timelike geodesic.
We can determine h2 in terms of R (the minimum value of r along the geodesic) by solving
ṙ = 0 at r = R. We find that

h2 =
R2

V(R)

(
1 − k2V(R)

)

=⇒ ṙ2

h2
=

V(R)
R2

1 − k2V(r)
1 − k2V(R)

− V(r)
r2
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Figure 14. |Δφ| < π along null geodesics in negative mass Schwarzschild.

� V(R)
R2

− V(r)
r2

� V(R)
R2

(
1 − R2

r2

)
(4.28)

where we have used the the fact that V(r) � V(R) for r � R and we also assume that h 
= 0 in
order to make the inequalities easier to derive (the case h = 0 is trivial). This gives an upper
bound for the magnitude of the change in φ along a causal geodesic, denoted |Δφ|:

|Δφ| = 2|h|
∫ ∞

R

dr
ṙr2

� 2R
V(R)1/2

∫ ∞

R

dr
(1 − R2/r2)1/2r2

=
π

V(R)1/2

< π

(4.29)
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Figure 15. The causal diamond (shaded) formed by the points p′ and q′ is non-empty,
compact and strongly causal, so we can apply theorem 4.6.

where the final inequality is obtained from the fact that V(R) = 1 + rn
s

Rn > 1. Note that the first
inequality in (4.28) tells us that, as expected, among all causal geodesics with fixed h, |Δφ| is
maximised by null geodesics (for which k = 0).

We aim to apply theorem 4.6 to the causal diamond formed by two points in the uncompacti-
fied spacetime (since inequality (4.29) refers to geodesics in this spacetime). Besides, since i0 is
singular, we could not apply the theorem to points on null infinity. In order to apply theorem 4.6,
we need to make sure that the causal diamond does not intersect the naked singularity at r = 0.

Since the Penrose property relates to the compactified spacetime, we begin by choosing
p ∈ I− and q ∈ I+ sufficiently close to i0 that J+(p) ∩ J−(q) does not intersect the r = 0 sin-
gularity. We can do this because the compactified spacetime can be decomposed asΣ× Sd−1 as
in lemma 3.1 . The causal diamond formed by any p ∈ I− and q ∈ I+ then consists of a region
on the (d − 1)-sphere and a causal diamond on Σ (as shown by the dotted line in figure 15),
which can certainly be chosen so as to avoid the r = 0 singularity.

Note in particular that the causal diamond formed by any two points in J+(p) ∩ J−(q) will
also not intersect this singularity. Now if the Penrose property were satisfied in this space-
time then there would exist a timelike curve from p to q (recall that this curve would be
timelike with respect to both the compactified and uncompactified metrics). Since the met-
ric is invariant under φ �→ −φ, we can assume without loss of generality that φ is increas-
ing along this curve. Now for any point a ∈ M̃, I±(a) are open sets ([12], proposition 2.8),
so we must be able to modify this curve to obtain a new timelike curve, with the same u
and v values at its endpoints, except with φ = −ε on I− and φ = π + ε on I+ (for some
ε > 0) and such that φ is still increasing along this new curve. By restricting to a seg-
ment of this curve, we obtain a timelike curve between points p′ and q′ in the interior
spacetime, where φ = 0 at p′ and φ = π at q′. The set J+(p′) ∩ J−(q′) (or more precisely,
λ∗ (

J+(p′) ∩ J−(q′)
)
, the pullback to the uncompactified manifold of this set by the embed-

ding map defined in definition 2.2) then satisfies the conditions of theorem 4.6 (in particular it
is free of any singular points). We therefore conclude that there must exist a causal geodesic
(with respect to the uncompactified Schwarzschild metric) from λ∗(p′) to λ∗(q′). But we also
know that such a geodesic cannot exist. In particular, it would necessarily have Δφ � π along
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its full length which would contradict inequality (4.29). We therefore conclude that the Penrose
property is not satisfied by negative mass Schwarzschild in higher dimensions. �

Note that the spacetime is singular at i0, so it was necessary to choose p′ and q′ to lie in
the interior of the spacetime in order to ensure that i0 /∈ J+(p′) ∩ J−(q) so we are able to apply
theorem 4.6 to this region.

4.4. Summary of the Penrose property

Propositions 4.1, 4.3, 4.4 and theorems 4.2, 4.5 together establish theorem A from the
Introduction which we now re-state.

Theorem A. The Penrose property is satisfied by Schwarzschild spacetime of mass m and
varying spacetime dimension according to the following table

Spacetime dimension m > 0 m � 0

3 �
4 �
� 5

The Penrose property appears to be a property of positive mass in low dimensions. We have
seen that adding positive mass in 3 or 4 dimensions gives us the inequality

d̃s2
S � d̃s2

M (4.30)

at large r, where d̃s2
M is the naturally associated compactified Minkowski metric. This tells

us that the lightcone condition g < η fails. This is also the case for negative mass in higher
dimensions (although in this case, rather than diverging, the cones converge together at infinity
and, as we have seen, the effect of the mass is not strong enough for the Penrose property
to be satisfied). For negative mass in 3 and 4 dimensions as well as positive mass in higher
dimensions, the inequality (4.30) is now reversed at large r and the Penrose property fails (by
comparison with Minkowski space). It is curious that positive and negative mass seem to have
the opposite effect on lightcones in higher dimensions compared with 3 and 4 dimensions.

Since the Penrose property is concerned only with the asymptotic behaviour of the metric
near spatial infinity, these results can be immediately applied to a number of other spacetimes.
For example the Reissner-Nordström line element in d + 1 dimensions (d � 3) is

ds2 =

(
1 − 2m

rd−2
+

Q2

r2d−4

)
dt2 −

(
1 − 2m

rd−2
+

Q2

r2d−4

)−1

dr2 − r2 dω2
d−1

where Q is the charge of the black hole. Just like Schwarzschild, this spacetime satisfies the
Penrose property only when d = 3 and m > 0. The case where m = 0, Q 
= 0 is notable because
the large r asymptotics are now the same as those of negative mass Schwarzschild in 2d − 2
spatial dimensions.

5. Kerr spacetime

We can also use this method of comparing metrics to gain insight into the Penrose property of
a spacetime which is not spherically symmetric, namely the Kerr spacetime.

The Kerr metric in Boyer–Lindquist co-ordinates is
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ds2
K,m =

(
1 − 2mr

Σ

)
dt2 − Σ

Δm
dr2 − Σdθ2 − Λ2

m sin2 θ dφ2 +
4mar sin2 θ

Σ
dφ dt

where we define

Δm(r) = r2 − 2mr + a2

Σ(r, θ) = r2 + a2 cos2 θ

Λ2
m(r, θ) = r2 + a2 +

2ma2r sin2 θ

Σ

(5.31)

and a = J
m is a constant rotation parameter written in terms of the angular momentum J and

the mass m > 0 of the black hole. The subscripts m refer to the mass parameter and have been
inserted for later convenience.

Theorem B. The ( positive mass) Kerr spacetime in 3 + 1 dimensions satisfies the Penrose
property.

To prove this theorem, it will be useful to refer to the following metric which will be used
to bound the Kerr line element.

Definition 5.1. For any R > 2m > 0, we define the quasi-Schwarzschild metric with param-
eters (m, a) by

ds2
QS,m =

(
1 − 2m

r

)
dt2 − dr2

1 − 2m
r

− r2 dθ2 − r2 sin2 θ
(
dφ− ωm,α (r, θ) dt

)2

where α2 := 1 + a2

R2

(
1 + 2m

R

)
, ωm,α(r, θ) := 2marα−2

Σ( r
α ,θ)Λ2

m
α

( r
α ,θ)

. Again we have inserted subscripts

for later convenience.

This metric is similar to the 3 + 1 dimensional Schwarzschild metric of mass m, the only
difference being the ωdt term in the final bracket. Since we are interested in neighbour-
hoods of spatial infinity, it suffices to define the quasi-Schwarzschild metric on the manifold
MR :=R×

(
R

3\BR(0)
)
, where BR(0) denotes the ball of radius R centred at the origin, for

some R > 2m. For r � R, the components of the quasi-Schwarzschild metric are then smooth
functions of the co-ordinates.

We can now prove the following lemma, which will be used in the proof of theorem B.

Lemma 5.2. For r � R, the line element of the Kerr metric with mass m and rotation param-
eter a can be bounded from below by a quasi-Schwarzschild line element with parameters
(m̃ = αm, a):

ds2
K,m � ds2

QS,m̃
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Proof.

ds2
K,m =

(
1 − 2mr

Σ
+

4m2a2r2 sin2 θ

Σ2Λ2
m

)
dt2 − Σ

Δm
dr2 − Σdθ2

− Λ2
m sin2 θ

(
dφ− 2mar

ΣΛ2
m

dt

)2

�
(

1 − 2m
r

)
dt2 − r2 + a2

r2 − 2mr
dr2 − (r2 + a2)dθ2

−
(

r2 + a2

(
1 +

2m
r

))
sin2 θ

(
dφ− ωαm,α(αr, θ)dt

)2

�
(

1 − 2m
r

)
dt2 − α2 dr2

1 − 2m
r

− α2r2dθ2

− α2r2 sin2 θ
(
dφ− ωαm,α(αr, θ)dt

)2

=

(
1 − 2m̃

r̃

)
dt2 − dr̃2

1 − 2m̃
r̃

− r̃2 dθ2 − r̃2 sin2 θ
(
dφ− ωm̃,α(r̃, θ)dt

)2

= ds2
QS,m̃ (5.32)

where we have defined the new variable r̃ = αr. �

From now on we will omit the subscripts α, m and m̃, with the understanding that for r > R,
the Kerr spacetime of mass m should be compared to the quasi-Schwarzschild spacetime of
mass m̃ = αm. The actual numerical value of m̃ > 0 is unimportant. We simply require the
existence of some quasi-Schwarzschild metric with positive mass with which to bound the
Kerr metric.

Proof of Theorem B. We begin by compactifying the Kerr and quasi-Schwarzschild space-
times. To compactify the quasi-Schwarzschild spacetime, we can define the same compactified
co-ordinates and conformal factor as were used for Schwarzschild in section 4.2.1. This gives
an embedding

λQS : (MR, gQS) → (M̃R, g̃QS)

from the quasi-Schwarzschild spacetime to its conformal compactification. The map λQS is
invertible, so it is possible to express the ωm,α(r, θ)dt term of the quasi-Schwarzschild line
element in terms of the compactified co-ordinates.

The compactification of the Kerr metric can be carried out by defining Kruskal co-ordinates
as in section 8 of [14]. This gives an embedding

λK : (MR, gK) → (M̃Rg̃K)

We will use the fact that the compactifications of the Schwarzschild, quasi-Schwarzschild and
Kerr metrics can all be defined on the same manifold M̃R, so in particular we can identify points
on I± in these three spacetimes. This will be important in the argument below.

The compactified Kerr and compactified quasi-Schwarzschild line elements are conformal
to the uncompactified versions. We have
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Figure 16. The function λK ◦ λ−1
QS maps timelike curves in (M̃R, g̃QS) to timelike curves

in (M̃R, g̃K). This mapping also preserves the endpoints of these curves on I±.

d̃s2
K = Ω2

K ds2
K

d̃s2
QS = Ω2

QS ds2
QS

for some functionsΩQS andΩK which in particular are strictly positive away from the boundary
of the compactified spacetimes. From lemma 5.2 we have, for r > R:

ds2
K � ds2

QS

=⇒ Ω−2
K d̃s2

K � Ω−2
QS d̃s2

QS

=⇒ d̃s2
K � Ω2

K

Ω2
QS

d̃s2
QS

(5.33)

So we have a lower bound for the compactified Kerr line element in terms of the compactified
quasi-Schwarzschild line element. This bound tells us that the mappingλK ◦ λ−1

QS maps timelike
curves in compactified quasi-Schwarzschild spacetime to timelike curves in compactified Kerr
spacetime.

Next we investigate how points on I± behave under this mapping. It is possible that they
relate to entirely different points on I±.5 However, suppose we choose compactified co-
ordinates defined by ‘quasi-spherical light cones’ as described in section 5 of [14]. This means
compactifying the metric as in section 4.2.1, with r∗ defined as in [14]. Then these compact-
ified co-ordinates agree with the compactified Schwarzschild co-ordinates from section 4.2.1
as r →∞, so points on I± are fixed under the mapping λK ◦ λ−1

QS. In particular, this means that
if we have a timelike curve between two points on I± in compactified quasi-Schwarzschild
spacetime, then under the mapping λK ◦ λ−1

QS, this becomes a timelike curve between the same
two points on I± in the compactified Kerr spacetime figures.

Hence in order to show that the Penrose property holds in Kerr spacetime, it suffices to show
that it holds in quasi-Schwarzschild spacetime. This is what we will now prove. For this argu-
ment, we will refer to the Schwarzschild spacetime (MR, gS) in 3 + 1 dimensions with mass

5 This is precisely why this argument fails to show, for example, that positive mass Schwarzschild spacetime does
not satisfy the Penrose property. In this situation we have ds2

S � ds2
M , however when we compactify both metrics, the

compactified co-ordinates diverge away from each other as we approach null infinity. This means that all timelike
curves in compactified Schwarzschild correspond to curves between past and future timelike infinity in compactified
Minkowski. As a result, we cannot use the failure of the Penrose property in Minkowski spacetime to deduce that it
also fails in positive mass Schwarzschild.
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Figure 17. γ̂S is a timelike curve in (M̃R, g̃S) between p and q′. Using this curve, we
define a curve γQS which is timelike in (M̃R, g̃QS) and which connects p and q. These
curves follow the same path in (T,χ, θ) space.

m > 0. Suppose we wish to find a timelike curve in compactified quasi-Schwarzschild space-
time connecting the point p ∈ I− with co-ordinates (T,χ, θ,φ) = (T0,χ0, θ0, 0) to the point
q ∈ I+ with co-ordinates (T1,χ1, θ1,φ1) (we have exploited the axial symmetry of (M̃R, g̃QS)
to setφ = 0 at p). Since (MR, gS) satisfies the Penrose property, we can find a curve,γS, which is
timelike with respect to gS and which connects the point p to the point on I+ with co-ordinates
(T1,χ1, θ1, π).

We can parametrize this curve by t and write the compactified co-ordinates along the curve
as functions T = T(t), χ = χ(t), φ = φS(t), θ = θ(t). We have used a subscript S on the φ
co-ordinate function to note that this refers to the Schwarzschild timelike curve γS. This is
the function we will change when we construct a curve which is timelike with respect to the
quasi-Schwarzschild metric.

We can also writeω = ω(r(t), θ(t)) along this curve. This allows us to compute the following
quantity:

A :=
∫ t=∞

t=−∞
ω(r(t), θ(t))dt

Note that this integral converges since ω is finite at any r, θ (assuming a 
= 0) and for a path
with endpoints on I± we have

ω ∼ 1
r3

∼ 1
r3
∗
∼ 1

|t|3 as |t| →∞

where r∗ is the co-ordinate defined in section 5 of [14]. The point about this definition is that
t ± r∗ tends to a constant near I± and the leading order difference between r∗ and r is a term
which is logarithmic in r.

Observe that A is independent of the function φS(t). It depends only on the path in (T,χ, θ)
space (since (t, r) are defined only in terms of (T,χ)).

Next note that if a curve is timelike in compactified Schwarzschild it will still be timelike
if we reduce (and possibly reverse) the rate at which the φ co-ordinate varies, while keeping
the same path in (T,χ, θ) space. By adding a suitable number of integer multiples of 2π to A
if necessary, we may assume that φ1 − A ∈ (−π, π]. We then define a new curve

γ̂S(t) = (T(t),χ(t),
1
π

(φ1 − A)φS(t), θ(t))
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This curve is the same as γS except with the φ co-ordinate function re-scaled by the constant
1
π

(φ1 − A) ∈ (−1, 1], which in particular means that γ̂S is timelike. It is important to note that
A remains unchanged by this re-scaling. The reason for this re-scaling is that the endpoints of
the curve γ̂S satisfy

φ̂S(t = −∞) = 0

φ̂S(t = ∞) = φ1 − A
(5.34)

We therefore have a curve, γ̂S, which is timelike with respect to gS and which connects p ∈ I−

to the point q′ ∈ I+ with co-ordinates (T1,χ1,φ1 − A, θ1).
Using this we can construct a curve, γQS, from p to q which is timelike with respect to gQS.

To do this, we define γQS to follow the same path in (T ,χ, θ) space as the curve γ̂S (figure 17).
The φ co-ordinate along γQS will be given by a function, φQS(t), defined such that

d̃sQS(t) ≡ d̃sS(t) � 0 (5.35)

at every point on γQS and γ̂S. This ensures that γQS is timelike with respect to the quasi-
Schwarzschild metric gQS. Since γ̂S and γQS follow the same path in (T,χ, θ) space (so the
functions r(t), θ(t) are the same along both curves), equation (5.35) becomes the requirement
that

φ̇QS(t) = ˙̂
φS(t) + ω(r(t), θ(t))

To satisfy this, we define the function φQS(t) by

φQS(t) = φ̂S(t) +
∫ t

−∞
ω(r(t′), θ(t′))dt′

This means that at the future endpoint of γQS, the φ co-ordinate is

φQS(t = ∞) =
∫ ∞

−∞
φ̇QS(t)dt =

∫ ∞

−∞

[
˙̂
φS(t) + ω(r(t), θ(t))

]
dt = φ0 − A + A = φ0

as required. �

6. Unique continuation of the linear wave equation

6.1. The null geodesic endpoint condition

The Penrose property, or more specifically the property of null geodesic endpoints proved by
Penrose for positive mass Schwarzschild in 3 + 1 dimensions [11], can help with understanding
the problem of unique continuation from null infinity of the linear wave equation. In [1], the
authors consider the linear wave equation

�gϕ+ aμ∂μϕ+ Vϕ = 0 (6.36)

where �g is the Laplace–Beltrami operator for the metric g and the functions aμ, V satisfy
certain fall-off conditions (see [1]). They investigate conditions on the solution at null infinity
which ensure that it can be uniquely continued into some region of the interior spacetime.

Two separate classes of spacetimes are considered. The first is Minkowski spacetime in
d + 1 dimensions (d � 2) along with perturbations to the metric described in [1] (which are
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such that the ADM mass [2] of the spacetime remains zero). The second class is Schwarzschild
spacetime in 3 + 1 dimensions along with metric perturbations [1]. Again these perturbations
are sub-leading in the sense that they do not change the ADM mass of the spacetime. Note that
this set-up is consistent with the proof in [11], summarised in section 4.2.1, that we cannot think
of Schwarzschild spacetime in 3 + 1 dimensions as arising from a perturbation of Minkowski
due to differences in their asymptotic behaviours near i0.

Following [1], we define the following subsets of null infinity

I+
u0

= {v = ∞, u � u0}, I−
v0
= {u = −∞, v � −v0} (6.37)

for any u0, v0 ∈ R, where the retarded and advanced time co-ordinates u and v are given by
equation (3.4) for perturbations of the Minkowski metric and equation (4.17) for perturbations
of the Schwarzschild metric. For some u0, v0 ∈ R, we will be interested in uniquely continuing
the solution to equation (6.36) from I+

u0
∪ I−

v0
into a region

D(u0,v0)
ω :=

{
0 <

1
(v + v0)(u0 − u)

< ω

}
(6.38)

where ω > 0.
It turns out that for perturbations of the Minkowski metric, if we impose conditions on the

solution on subsets I+
ε ⊂ I+ and I−

ε ⊂ I− for any ε > 0, then this solution can be uniquely
continued into the interior spacetime . In particular, if we demand thatϕ and its first derivatives
vanish to infinite order on I+

ε ∪ I−
ε (for ε > 0), then ϕ must vanish on some open domain in

the interior spacetime which contains I+
ε ∪ I−

ε on its boundary, i.e. ϕ = 0 on D(ε,ε)
ω for some

ω > 0
Now consider perturbations of the Schwarzschild metric in 3 + 1 dimensions (which in

particular include the Kerr spacetime). We define the sets I+
u0

, I−
v0

and D(u0,v0)
ω as in (6.37) and

(6.38), with the retarded and advanced time co-ordinates now defined by

u = t − r − rs log(r/rs − 1)

v = t + r + rs log(r/rs − 1)

Suppose we demand that the solution, ϕ, and its first derivatives vanish to infinite order on
I+

u0
∪ I−

v0
for any u0, v0 ∈ R. Then in [1] it is shown that ϕ must vanish in D(u0,v0)

ω for some
ω > 0.

Note that, in contrast to the case of perturbations of the Minkowski metric, we require condi-
tions onϕ and its first derivatives only on arbitrarily small sub-regions of I+ ∪ I− surrounding
i0 (since we are allowing u0, v0 < 0). This agrees with what we would have expected given
the results obtained in previous sections. This is because for hyperbolic equations, initial data
propagates along the characteristic curves. In this problem, the characteristic curves are the
null curves of the metric g. Suppose that, having fixed ϕ and its first derivatives to vanish suffi-
ciently quickly on some intervals I+

u0
∪ I−

v0
, we are unable to extend the solution uniquely into

a region D(u0,v0)
ω for any ω > 0. Then for arbitrarily small ω > 0, there must exist null curves

which propagate from outside either of these intervals into D(u0,v0)
ω . Equivalently, the following

condition must fail to hold:
Null Geodesic Endpoint Condition: We say that a weakly asymptotically empty and sim-

ple spacetime, (M, g), satisfies the null geodesic endpoint condition if, given any u0, v0 ∈ R,
there exists ω > 0 such that any inextendible null geodesic entering D(u0,v0)

ω must have at least
one endpoint in I−

v0
or I+

u0
.
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Figure 18. In Schwarzschild spacetime, requiring a null geodesic with past endpoint
not in I−

v0
to enter D(u0,v0)

ω (shaded region) for arbitrarily small ω > 0 forces the future
endpoint to lie arbitrarily close to i0.

This is the property which Penrose shows [11] holds in positive mass Schwarzschild space-
time in 3 + 1 dimensions and which we have reviewed in section 4.2.1. Indeed for a null
geodesic in this spacetime with fixed past endpoint not contained in I−

v0
, the requirement of

enteringD(u0,v0)
ω for arbitrarily small ω is equivalent to letting R →∞. This results in the future

endpoint sliding along I+ towards i0 and eventually entering I+
u0

(see figure 18). This is a con-
sequence of the stationarity of the spacetime, which allows us to extend the endpoint results of
[11] and section 4.2.1. The null geodesics considered there were assumed to satisfy r = R at
t = 0 and hence were symmetric about t �→ −t. Translations in t will have the effect of moving
the endpoints of these null geodesics along null infinity, so we can choose to keep the past
endpoint fixed as we let R →∞, which we then see results in the future endpoint approaching
i0.

For Minkowski spacetime, this endpoint condition does not hold. We can, for example, fix
the endpoints to lie at u = 0 and v = 0 while choosing the impact parameter to be arbitrar-
ily large, so for any u0, v0 < 0, the null geodesic enters D(u0,v0)

ω for ω arbitrarily small (see
figure 19). This is exactly why it is necessary to impose conditions on the solution on I+

ε ∪ I−
ε

for some ε > 0 in order to achieve the unique continuation result. The solution will vanish in
regions D(ε,ε)

ω which cannot be entered by any inextendible null geodesic with both endpoints
outside I+

ε ∪ I−
ε .

6.2. General static, spherically symmetric spacetimes

We saw in section 4.3.1 that Penrose’s method of proof does not extend to positive mass
Schwarzschild in higher dimensions. This is because the null geodesic endpoint condition is no
longer satisfied. In particular, if we impose r = R at t = 0, then at the past and future endpoints
we have v → 0− and u → 0+ respectively as we let R → 0. As noted in [1], this is why it is
necessary to impose conditions on ϕ on I+

ε ∪ I−
ε for some ε > 0 (as in Minkowski) in order

to obtain a unique continuation result.
As we have seen, to prove that the Penrose property holds for some spacetime we could

try to use the same construction as Penrose in [11]. If the metric is stationary then, as dis-
cussed in the previous section, showing that non-radial null geodesic endpoints approach i0
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Figure 19. For any u0, v0 < 0, null geodesics in Minkowski spacetime with past and
future endpoints lying outside I−

v0
and I+

u0
(e.g. at v = 0 and u = 0) can enter D(u0,v0)

ω

(shaded region) for any ω > 0.

as we let R →∞ is equivalent to proving that the null geodesic endpoint condition holds. If
we now restrict attention further and consider only static, spherically symmetric spacetimes
in d + 1 dimensions (d � 3) then the other result we require for the Penrose construction is
that |Δφ| � π along all non-radial null geodesics (restricted to large r if necessary). A general
static, spherically symmetric metric is characterised by two functions, A(r) and B(r), and in
d + 1 dimensions can be written as

ds2 = A(r)2dt2 − B(r)2dr2 − r2 dω2
d−1 (6.39)

Since both the Penrose property and the null geodesic endpoint condition are conformally
invariant, we are only interested in the conformal class of this metric. This allows us to remove
one of these functional degrees of freedom. If we conformally re-scale the metric by a factor
A(r)−2, define a new radial co-ordinate r̃ = r

A(r) and then define the function6 C(r̃) = B(r(̃r))
A(r(̃r))

dr
d̃r ,

it suffices to consider a metric of the form (dropping tildes):

ds2 = dt2 − C(r)2dr2 − r2 dω2
d−1 (6.40)

Using lemma 3.1, we can restrict attention to theΣ× S1 submanifold with co-ordinates (t, r,φ),
on which the induced metric is

ds2 = dt2 − C(r)2dr2 − r2 dφ2 (6.41)

6 We assume that we can invert the function r̃(r) (restricted to large r if necessary). This is guaranteed to be the case if
we assume, consistent with asymptotic flatness, that A(r) can be expanded as a Taylor series in 1/r (as we assume for
C(r) in equation (6.42)). This ensures that r̃(r) is a monotonic function (for sufficiently large r), and hence is invertible
by the inverse function theorem. Recall that we can restrict attention to large r if necessary since the Penrose property
is a property near i0.
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Consistent with asymptotic flatness, we assume we can expand:

C(r) = 1 +
Cd−2

rd−2
+ O

(
1

rd−3

)
(6.42)

A calculation similar to the one carried out in [11] shows that the null geodesic endpoint con-
dition is satisfied if and only if Cd−2 > 0 and d = 3. This is precisely the condition required to
get the logarithmic divergence observed by Penrose. On the other hand, the angular condition
(|Δφ| � π along non-radial null geodesics restricted to sufficiently large r) is satisfied if and
only if C(r) > 1 for r sufficiently large. We therefore observe that this is a weaker condition
than the null geodesic endpoint condition and hence that Penrose’s construction works if and
only if Cd−2 > 0 and d = 3.

To determine if the Penrose property is satisfied for a metric of the form (6.40) we can
use the same arguments as were used in previous sections for Schwarzschild spacetime. We
have seen that if d = 3 and C1 > 0 then the Penrose construction suffices to show that the
Penrose property is satisfied. If d = 3 and C1 < 0 or d > 3 and Cd−2 > 0, then the comparison
arguments outlined in sections 4.2.2 and 4.3.1 still hold and show that the Penrose property is
not satisfied. If Cd−2 < 0 and d > 3, we can use the same arguments as section 4.3.2 to again
show that the Penrose property is not satisfied. The only remaining case is Cd−2 = 0 (d � 3).
This case is straightforward because either C(r) ≡ 1, in which case the metric is flat and we
have seen that the Penrose property does not hold, or we have

C(r) = 1 +
Cd′−2

rd′−2
+ O

(
1

rd′−3

)

for some d′ > d � 3, where Cd′−2 
= 0. In this case, the problem reduces to the question of
whether the Penrose property is satisfied by some d′ + 1 dimensional spacetime with metric
of the form (6.40) [and inducing a metric of the form (6.41)], where Cd′−1 
= 0. But we have
seen that the Penrose property is never satisfied for such higher dimensional spacetimes, so
we conclude that for static, spherically symmetric spacetimes in d + 1 dimensions (d � 3), we
have

Penrose property ⇐⇒ [d = 3 and C1 > 0] ⇐⇒ Null Geodesic Endpoint Condition

where C1 is the constant arising from considering the conformally related metric of the form
(6.40) and expanding C(r) as in equation (6.42).

The constant Cd−2 is equal to the ADM mass of the spacetime. However it does not make
sense to phrase the Penrose property in terms of the ADM mass. This is because, unlike the
Penrose property, the ADM mass (and even its sign) is not a conformally invariant quantity. In
particular, in 3 + 1 dimensions it is possible to have two metrics of the form (6.39) with the
same functions B(r) (and hence the same ADM mass) where one satisfies the Penrose property
but the other does not (we can choose the function A(r) such that the constant Cd−2 has either
sign).
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