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Summary

Chris Hamilton | Secular Dynamics of Binaries in Stellar Clusters

The orbital evolution of two bound point masses (a ‘binary’) perturbed by external
tidal forces represents one of the oldest problems in celestial mechanics. Most obviously,
tidal perturbations may arise due to an external point mass bound to the binary, as in
the Lidov-Kozai (LK) theory of hierarchical triples, but they can also stem from the
gravitational field of an extended stellar system (e.g. galaxy or globular cluster) in which
the binary resides. Due to the weakness of the external perturbation, the resulting orbital
evolution is usually secular in nature, i.e. it occurs on timescales much longer than
any characteristic orbital period. This thesis is concerned with the secular dynamical
evolution of tidally perturbed binary systems.

If problems of this sort are centuries old, what motivation is there to further study
them now? In fact, interest in the problem of tidally perturbed binaries has surged
recently due to the discovery of various exotic astrophysical phenomena, not least the
mergers of compact object (black hole and/or neutron star) binaries by the LIGO/Virgo
collaboration. The question of how these binaries shrink rapidly enough to merge within
a Hubble time is still an open one, but tidal perturbations may provide the answer. For
instance, LK oscillations driven by a tertiary companion can naturally drive a binary
orbit to become highly eccentric, boosting gravitational wave emission and substantially
speeding up binary coalescence. Similar ideas (with different sources of dissipation at
pericentre) have been previously considered for explaining the origin of other exotic objects,
such as hot Jupiters, blue stragglers, and Type 1a supernovae. Thus, understanding the
tidally-forced eccentricity evolution and possible mergers of binary systems has become
a central focus of modern research in astrophysical dynamics.

In this thesis we consider the secular evolution of binaries driven by the tidal
gravitational field of an arbitrary axisymmetric host system (‘cluster’) in which the
binary moves. We formulate the most general possible theory of tide-driven secular
evolution of two bound point masses, applicable to a wide variety of astrophysical systems.
Our secular Hamiltonian theory (averaged over both the inner Keplerian orbit of the
binary and its outer orbit within the cluster) reproduces classical results — such as LK
evolution and the effect of the Galactic tide on Oort Cloud comets — in appropriate
limits, but is more general. We then investigate the secular dynamics in detail, uncovering
new dynamical characteristics that are far removed from the canonical LK behaviour. We



also extend the secular theory by accounting for the important non-Newtonian effects
of general relativistic (GR) perihelion precession and gravitational wave (GW) emission,
and the non-secular effect of short-timescale fluctuations in the perturbing torque. These
three effects, unavoidably important in many practical applications, add further levels
of complexity and richness to the binary dynamics.

The central result of the theory is that the mean-field gravitational tidal potential of
a star cluster is often sufficient to torque a binary so that it performs large-amplitude
eccentricity oscillations. This result has significant consequences for the dynamical
evolution of compact object binaries, many of which reside in stellar clusters. We show
that it leads to mergers of compact object binaries which could not have merged if they
were isolated, and calculate the resulting observable merger rate.

In summary, then, the purpose of this thesis is three-fold: to formulate a general
unified theory of binary dynamical evolution; to propose a possible origin for LIGO/Virgo
compact object merger events; and to uncover and explain a range of new, important
and beautiful dynamical phenomena.
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Take two point masses in relative motion, and let them attract each other with a force
that is inversely proportional to the square of the distance between them. What happens?

This is the Newtonian (or Keplerian) two-body problem, and it has formed the basis
of celestial mechanics since it was first successfully tackled mathematically by Newton in
1687. As every undergraduate physicist knows, the solution to the Newtonian two-body
problem is very simple: the bodies orbit their common barycentre, and their relative
motion describes a ‘Keplerian ellipse’ with that barycentre at one focus (Figure 1.5; see
§1.A for a review). For the purposes of this thesis, any such bound two-body system
will be called a ‘binary’, whether it involves two stars, two black holes, the Moon-Earth
system, a comet-Sun system, or whatever else.

With that settled, a natural followup question, which turns out to be of huge
astrophysical importance, is: what happens to the internal Keplerian orbit of a binary
under the influence of weak perturbations? It is from this question that the central theme

1



1. Introduction 2

of this thesis shall emerge. Of course as it stands it is an extremely broad question
since, depending on the context, weak perturbations to binaries can be extremely various
in character and duration. To illustrate this, let us consider a wide (semimajor axis
a & 104AU) stellar binary in the Galactic field, somewhere in the vicinity of the Solar
neighbourhood. Let us also be rather informal for now — there will be plenty of time
for exhaustive referencing of the literature hereafter. Treat the stars as pure point
masses with no internal structure, and consider only Newtonian gravity. What kind
of weak perturbations will the binary feel?

First, there will be a number of incoherent, transient flyby perturbations from passing
stars, molecular clouds, clumps of dark matter, and other bits of Galactic detritus. The
great majority of these will be weak perturbations, with impact parameters � a. These
flybys will affect the binary’s barycentric orbit around the galaxy, but also torque the
inner Keplerian orbit, potentially modifying the orbital elements. Second, there will be a
coherent (as opposed to transient) torque on the binary due to the Galactic tide. This
torque will have a periodicity of the order of the Sun’s orbital period around the Galaxy1,
i.e. ∼ 200Myr. Moreover, whereas the aforementioned flyby torques will occur from
more or less random directions, the Galactic tidal torque will be strongly biased in a
particular direction, owing to the extreme aspect ratio of the Galactic disk2. Third, if
the binary also happens to have a bound tertiary companion then it will feel a torque
due to that companion. This torque, while coherent, will have a periodicity far shorter
than that of the Galactic tide; it will not be strongly biased in one direction, but nor
will it be isotropic; and depending on the tertiary’s mass and semimajor axis it may
or may not dominate the binary’s orbital dynamics.

Of course, if we drop the point-mass and Newtonian assumptions then there exists a
slew of weak non-Newtonian and non-secular effects that can potentially modify a stellar
binary’s internal Keplerian orbit. These effects can become important should the binary
somehow achieve a sufficiently small periastron distance. For instance, when stars pass
close enough to one another, their internal fluid motions can lead to tidal friction and an
associated orbital decay; general relativistic (GR) precession can cause rapid advance of
the binary’s apsidal angle; gravitational wave (GW) emission can cause orbital shrinkage
and circularisation; and stellar evolution, mass loss from stellar winds, precession due
to rotational bulges, etc. can all play a potentially crucial role in steering the binary’s
dynamics. This is not to mention the possibility of strong perturbations, e.g. from passing

1Though it does not alter our qualitative argument, this is of course not the only time-scale in the
problem; for instance, stars in the solar neighbourhood are also oscillating vertically with respect to the
Galactic plane with period ∼ 87Myr (Binney & Tremaine 2008). For binaries in a thin disk the existence
of such vertical oscillations tends not to affect the secular dynamics much (see §2.8).

2In technical language, the resulting tidal tensor ∂2Φ/∂Rα∂Rβ will have one strongly dominant
component — see §2.C.
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stars with impact parameters ∼ a, from a natal kick of order ∼ 102km/s when one of the

stars goes supernova, and so forth. The list of potential complications multiplies even

further if one generalises the problem to include more diverse types of ‘binary’, e.g. an

exoplanet orbiting a star, a satellite orbiting the Earth, a pair of tightly-bound white

dwarfs, or a supermassive black hole binary at the centre of a galaxy.

What we learn from this brief thought experiment is that the general problem of

perturbed astrophysical binaries is one of huge complexity. To make progress on the

timescale of a single PhD thesis we must therefore narrow the scope of our investigation.

In order to motivate our choice of priorities, let us now provide some observational context.

We will begin by discussing the recent LIGO/Virgo detections of gravitational waves

emanating from the mergers of compact object binaries.

1.1 Motivation

1.1.1 LIGO/Virgo gravitational wave detections: why do compact
objects merge?

In 1916, Einstein predicted that any two massive objects in orbit around one another

must radiate gravitational waves (GWs). He also predicted that the radiation was far too

weak ever to be detected. Though the first of these predictions was accurate, the second

was not: a century on, the LIGO/Virgo Collaboration finally detected a gravitational

wave burst produced in a cataclysmic merger of two black holes (Abbott et al. 2016). By

2020, LIGO/Virgo was detecting a compact object (black hole (BH) and/or neutron star

(NS)) binary merger roughly every week (The LIGO Scientific Collaboration et al. 2020).

As illustrated in Figure 1.1, by the end of the first half of LIGO/Virgo’s Third Observing

Run (termed ‘O3a’), there was already a populous ‘graveyard’ of 50 known compact object

binary mergers. Hundreds of new merger detections are expected in the coming years.

This high detection rate, however, raises a tantalising theoretical question: what is

making all these compact objects collide? Consider that every compact object binary is

on some elliptical orbit with semimajor axis a and eccentricity e. Moreover, every such

binary is constantly dissipating energy via Einstein’s gravitational radiation, meaning a is

getting smaller, and so given enough time they will all eventually merge. The fundamental

issue is that a large fraction of massive stellar binaries — potential progenitors of compact

object binaries — are born with semimajor axes of a0 ∼ 1− 10 AU (Duquennoy & Mayor

1991). The problem is that 1-10AU is far too large if that compact object binary is

then required to merge via GW emission within a Hubble time. More precisely, the
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Figure 1.1: Masses of all compact binaries detected by LIGO/Virgo after observing run
O3a. Black holes are shown in blue and neutron stars in orange. Also shown are stellar
mass black holes (purple) and neutron stars (yellow) detected via electromagnetic observa-
tions. [Image credit: LIGO/Virgo/Northwestern Univ./Frank Elavsky; downloaded from
https://www.ligo.org/detections/O3acatalog.php on 14 April 2021].

merger time for an isolated binary with constituent masses m1 and m2 on a circular
orbit (e = 0) is (Peters 1964, equation (5.10)):

T circ
m (a0) = 5c5a4

0
256G3(m1 +m2)m1m2

(1.1)

≈ 10 Gyr×
(

m

30M�

)−3 ( a0
0.2 AU

)4
, (1.2)

where in the numerical estimate we assumed m1 = m2 = m. Thus if an isolated BH-BH
binary with total mass 60M� is to merge within the age of the Universe, it must have a
very small initial semimajor axis, a0 . 0.2AU. And yet, somehow, black hole binaries do
merge. Clearly some mechanism is required that can either form compact object binaries
with a very small initial separation, or that can greatly diminish the separation distance
of compact object binaries after they are formed, boosting the efficiency of their GW
emission. Either way, small separation is key. We now discuss some potential mechanisms
by which compact object binaries may achieve small separation.

♣
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To begin with, we should not immediately rule out the formation and subsequent
merger of compact object binaries from massive stellar binary progenitors. We know that
massive stars expand to radii of several AU before going supernova. Thus any binary
consisting of two massive stars which is not significantly wider than this will inevitably
undergo a phase of common envelope evolution in which the gaseous envelope of one star
engulfs the other (Paczynski 1971; Tutukov & Yungelson 1973; Iben & Livio 1993; Taam
& Sandquist 2000; Kalogera et al. 2007; Belczynski et al. 2016). The idea is that provided
neither star loses so much mass during this phase that it fails to go supernova, much of
the orbital angular momentum of the binary can be transferred to the gaseous envelope
that surrounds it. This allows the binary to shrink its orbit significantly and ultimately to
merge. However, in practice the common-envelope evolution is extremely difficult to model
— it involves orbital dynamics, (magneto)hydrodynamics, stellar evolution, mass transfer,
etc. — and as a result it is far from clear that this constitutes a prevalent (or even viable)
merger channel in reality. A second, alternative mechanism, which avoids the common
envelope phase entirely, is that of chemically homogeneous evolution, or CHE (Mandel &
de Mink 2016; de Mink & Mandel 2016). CHE relies on the fact that if a massive star
rotates rapidly, the material inside the star is constantly mixed. This mixing means that
rather than stellar evolution proceeding in radial shells — first with only hydrogen buring
in the core, then with helium burning in the core and a hydrogen-burning shell outside
the core, and so on — it instead proceeds homogeneously throughout the stellar core.
This prevents the build-up of a radial chemical gradient which in turn means the star does
not expand to a problematically large size before it collapses into a compact remnant. If
this mixing process occurs for both stars in the binary then an initially small-separation
stellar binary turns into a small-separation compact object binary, and hence merges
relatively rapidly. Unfortunately, like the mechanism of common-envelope evolution, the
CHE mechanism is replete with uncertainties; in particular, most stellar evolution models
are one-dimensional (i.e. they assume spherical symmetry), and so the mixing caused by
rotation cannot be modelled self-consistently. Finally, a third distinct mechanism that can
lead to small separation is the formation and hardening of compact object binaries directly
within the dense gaseous disks surrounding Active Galactic Nuclei (e.g. Stone et al. 2017;
Bartos et al. 2017; Tagawa et al. 2021). In this case, the binary’s dense environment is
advantageous in speeding up the merger: the binary orbit can harden due to gaseous drag
and/or flyby stellar encounters3. Once again, this is a very difficult problem which couples
star formation, orbital dynamics, and the fluid dynamics of a turbulent magnetized disk.

3In fact, strong encounters between already-formed compact object binaries and passing stars in
dense stellar clusters (as opposed to AGN disks) represent yet another popular channel for producing
LIGO/Virgo mergers — see §1.1.2.
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Thus, just like the other two mechanisms mentioned previously, the errors on the predicted
merger rate from this channel encompass several orders of magnitude.

An altogether different way to achieve small separation is by somehow driving an
initially wide compact object binary (which may have formed from a wide stellar binary
progenitor, or formed dynamically in a cluster core — see §1.1.2) to very high eccentricity
e. The key idea here is that for a given semimajor axis a, if the binary’s eccentricity e→ 1
then its pericentre distance p ≡ a(1− e) is greatly diminished. As a result the components
of the binary repeatedly pass very close to one another, allowing significant energy to
be dissipated in bursts of GWs, efficiently shrinking the binary orbit and hastening the
merger. Mathematically, the merger time for an isolated binary with very large eccentricity
e0 ≈ 1 is related to the formula (1.1) for circular binaries by (Peters 1964):

T iso
m (a0, e0) ≈ T circ

m (a0)× 768
425(1− e2

0)7/2. (1.3)

In other words the merger time is smaller than that for circular binaries by an amount
∼ (1 − e2

0)7/2 � 1. Because of this, it becomes possible to merge a much wider binary
(i.e. a BH-BH binary with a0 � 0.2AU) simply by exciting sufficiently high eccentricity.
Therefore, in recent years a great deal of effort has gone into searching for mechanisms
by which compact object binaries might achieve very high eccentricity.

A broad category of proposed mechanisms consists of secular eccentricity excitation
of binaries by some perturbing tidal potential4. The most famous tidal effect that can
result in high eccentricities is the Lidov-Kozai (LK) mechanism (Lidov 1962; Kozai 1962;
see Naoz 2016 for a review)5. LK theory applies to hierarchical triple systems6, i.e.
systems where an inner binary is orbited by — and hence torqued by — a bound tertiary
perturber. It depends crucially on the the inclination angle between the binary’s inner
orbital plane and that of the tertiary perturber around the binary’s barycentre, which takes
values i0 ∈ (−π, π). If |i0| is sufficiently large, then LK theory tells us that the binary’s
eccentricity e can be driven periodically to large values. This greatly reduces the pericentre
distance p, potentially leading to more rapid mergers via the mechanism described above
(see e.g. Blaes et al. 2002; Wen 2003; Antonini & Perets 2012; Antognini et al. 2014;
Antonini, Chatterjee, et al. 2016; Silsbee & Tremaine 2017; Liu & Lai 2017 and references
therein). From a purely practical point of view, this merger channel has several advantages
over those mentioned above: the most basic LK theory can be solved (semi-)analytically,

4Note that for the remainder of this thesis, except where explicitly stated, the word ‘tidal’ refers to the
tidal gravitational force acting upon a binary due to an external companion (star, stellar cluster, etc.),
and not to e.g. the internal fluid tides of a star.

5It has recently been appreciated that the LK mechanism was essentially already known to Hugo von
Zeipel in the very early 20th Century — see Ito & Ohtsuka (2019).

6Similar ideas also apply to quadruple and other multibody systems, and indeed these too have been
invoked to explain LIGO/Virgo merger events (see e.g. Fragione & Kocsis 2019).
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and there is no complicated fluid dynamics or stellar evolution to contend with, meaning
the governing physics is relatively simple and computation is rather inexpensive. LK is
also a ubiquitous mechanism in the sense that it is available to any binary that has a
tertiary companion. In fact, the simplicity and ubiquity of the LK mechanism means
that LK-induced eccentricity excitation has also been invoked as an explanation for the
formation of other exotic objects such as hot Jupiters (Fabrycky & Tremaine 2007), Type
Ia supernovae (Thompson 2011) and blue stragglers (Antonini, Chatterjee, et al. 2016).

However, despite the considerable appeal of the LK mechanism, it alone cannot solve
the problem of compact object merger progenitors. The fact remains that we need to
understand how and where the compact object binaries are formed in the first place,
and (if we are to appeal to the LK channel) how they came to acquire a bound tertiary
companion. Such considerations naturally lead us to think about the densest stellar
environments in the Universe — globular and nuclear star clusters.

1.1.2 Compact object binaries in stellar clusters

Globular and nuclear star clusters provide several avenues for the formation of compact
object binaries. Three- and four-body encounters in the dense environments of clusters
greatly enhance the binary NS formation rate dynamically: the abundance per unit mass
of low-mass X-ray binaries is around 102 times higher in globulars, and 103 times higher
in the central parsec of the Galaxy, than it is in the Galactic field (Katz 1975; Clark
1975; Generozov et al. 2018). Similarly, BH-BH binaries should form dynamically in
cluster cores provided the BHs are retained in their clusters at birth (Portegies Zwart
& McMillan 2000; O’Leary et al. 2006; Rodriguez, Chatterjee, et al. 2016; Antonini,
Chatterjee, et al. 2016). This possibility is supported by the recent discovery of a detached
binary consitisting of a BH and a main-sequence turnoff star in the globular cluster NGC
3201 (Giesers, Dreizler, et al. 2018; Giesers, Kamann, et al. 2019).

As the majority of dynamically-formed compact object binaries are too wide to merge
via GW emission within a Hubble time, it is not enough to explain how they form:
one must also explain how they shrink. Luckily, dense stellar systems represent ideal
environments for perturbing compact object binaries as well as forming them. Frequent
stellar encounters can harden binaries in cluster cores, leading to eventual mergers that
might occur after the binary is ejected from the cluster (Antonini & Rasio 2016; Leigh
et al. 2018). Cluster cores can also act as factories for the dynamical production of
black hole triples, since massive objects naturally sink to the centres of clusters through
dynamical friction (Martinez et al. 2020). The tertiary companion to any binary may
then drive eccentricity excitation via LK coupling (Antonini, Chatterjee, et al. 2016). For
binaries in nuclear star clusters, a central supermassive black hole (SMBH), if present,
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Figure 1.2: Taken from Abbott et al. (2020). Columns show the estimated probability
distributions for primary mass m1, secondary mass m2, mass ratio q, effective spin χeff , and
luminosity distance dL for all candidate events in the first half of LIGO/Virgo’s third observing
run (O3a). The vertical size of each coloured blob is proportional to the corresponding probability
estimate.

can play the role of the tertiary driving LK oscillations and orbital decay (e.g. Antonini &
Perets 2012; Petrovich & Antonini 2017; Hamers, Bar-Or, et al. 2018a), similar to triples
in the field. An additional formation channel comes from four-body effects and exchange
interactions which are very common in these dense systems (Miller & Hamilton 2002).

Thus, clusters provide an optimal environment for both forming compact object
binaries and merging them via dynamical mechanisms. Moreover, these dynamical
mechanisms may help solve some other problems posed by the LIGO/Virgo data, which
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contains much more information than the basic rate at which compact objects merge in
the local universe. To illustrate this, in Figure 1.2 (taken from Abbott et al. (2020)), we
show the likelihood estimates for the primary and secondary masses m1, m2, the mass
ratio q ≡ m2/m1, the effective spin χeff and the luminosity distance DL for all merger
candidates found in run O3a. Several PhD theses could be written about these data alone;
for simplicity we will focus only on the values of the the effective spin χeff , defined as:

χeff ≡
m1χ1 +m2χ2
m1 +m2

. (1.4)

Here χi ∈ (−1, 1) is the normalised projection of the spin angular momentum vector of
the ith binary component (mass mi) along the binary’s inner orbital angular momentum
axis. Thus χeff represents a mass-weighted combination of these projected spins, and
itself takes values ∈ (−1, 1). If the binary was formed from a massive stellar binary
progenitor (and perhaps then merged via one of the first three mechanisms outlined in
§1.1.1), one would expect the spins to align with each other and with the orbital angular
momentum axis because of mass transfer and/or tidal alignement. Thus in this ‘isloated
binary’ scenario we would predict χeff ≈ 1 (Farr et al. 2018). However, we see from
Figure 1.2 that many of the spin measurements are consistent with χeff = 0 or even
χeff < 0. Such measurements suggest the prevalence of dynamical formation channels,
for which the spins ought to be more or less randomly aligned (Rodriguez, Zevin, et al.
2016; Liu & Lai 2018). As mentioned in §1.1.1 dynamical merger channels are to be
found in abundance in globular and nuclear clusters.

1.1.3 Blue stragglers and millisecond pulsars in globular clusters

In fact, the motivation to study tidally perturbed binaries in stellar clusters extends far
beyond the mergers of compact objects. For instance, the formation of the Solar System
itself may have been strongly influenced by the cluster environment in which the Sun was
presumably born (Brasser et al. 2006; Batygin et al. 2020). Moreover, stellar clusters are
known to host an abundance of other exotica thought to have been formed through high-
eccentricity migration and/or mergers of two-body systems. Here we touch briefly on two
such types of exotic object found in clusters, namely blue stragglers and millisecond pulsars.

First, consider blue stragglers (e.g. Sandage 1953; Boffin et al. 2015). These are stars
that sit to the left of the main-sequence turnoff in their host cluster’s colour-magnitude
diagram, and hence are bluer than normal main sequence stars of equivalent luminosity
— see Figure 1.3 for illustration. Blue stragglers are believed to be formed when a main
sequence star receives a fresh supply of hydrogen. Such a replenishment of hydrogen can
happen either via mass transfer in a short-period binary system, or via direct merger
of the main sequence star with another main sequence star (see Boffin et al. 2015 for



1. Introduction 10

Figure 1.3: Colour-magnitude diagram for 9507 stars in the core of the globular cluster M30.
Blue straggler stars (BSS) are indicated with crosses. Figure taken from Guhathakurta et al.
(1998).

a modern review). Of course, if one appeals to the latter mechanism then one requires
some dynamical channel by which stars can merge efficiently — the probability of chance
collisions between individual main sequence stars in a typical globular cluster is far
too low (Hills & Day 1976). Unsurprisingly, as we saw with compact objects above,
LK oscillations in triple systems have been invoked to explain these supposed mergers
(Perets & Fabrycky 2009; Antonini, Chatterjee, et al. 2016)7. One may also appeal to
direct collisions as a result of chaotic three- and four-body interactions in cluster cores
(e.g. Zevin et al. 2019). While in the latter case one would inuitively expect that the
relative abundance of blue stragglers would peak in the cluster core and decay with radius
thereafter, it is interesting to note that this is not what is observed. Instead, as shown in
Figure 1.4 (see also Mapelli, Sigurdsson, Ferraro, et al. (2006)), in many clusters the blue
stragglers are distributed bimodally, with a prominent rise in their relative abundance
in the cluster’s outskirts. Explaining this radial distribution may require a combination
of the binary mass transfer channel (perhaps between primordial binaries in the cluster

7Indirect evidence for this channel may perhaps be found in the recent detection of a high binary
fraction among blue stragglers in globular clusters; in the cluster NGC3201, a large fraction (∼ 40%) of
blue straggler stars are themselves in binary systems (Giesers, Dreizler, et al. 2018).
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Figure 1.4: From Mapelli, Sigurdsson, Ferraro, et al. (2006). The radial distribution of observed
blue straggler stars in various Galactic globular clusters is shown in blue (red symbols are from
simulations). Here NBSS(r) is the number of blue stragglers in a given radial bin around radius
r, and rc is the characteristic radius of the best fit King model (typically rc ∼ 1pc). In each
panel, NBSS is normalised either by the radial distribution of red giant branch stars NRGB or
horizontal branch stars NHB. Apart from in the (extremely massive, and in several other ways
very peculiar) cluster ω Cen, the radial distribution of blue stragglers in each cluster is clearly
bimodal; in particular the relative abundance of blue stragglers rises prominently in the cluster
outskirts.

outskirts, see Mapelli, Sigurdsson, Colpi, et al. 2004) and a chaotic collisional channel
(Knigge et al. 2009), or something new altogether.

Finally, we consider millisecond pulsars. These are extremely rapidly spinning neutron
stars, believed to have been spun up via accretion of matter from a companion star
(e.g. Bhattacharya & van den Heuvel 1991; Phinney & Kulkarni 1994). Naively, it is
not clear how such systems can be formed since a typical stellar binary with at least
one massive component will inevitably undergo a common envelope phase, and it seems
unlikely that a compact object-main sequence binary will be the result. Note, however,
that out of a total of ∼ 2900 pulsars that are currently documented (Manchester et al.
2005)8, around 8% reside in globular clusters9. This is a very large fraction, given

8ATNF pulsar catalogue, https://www.atnf.csiro.au/people/pulsar/psrcat, accessed 14 April
2021.

9According to the catalogue at https://www3.mpifr-bonn.mpg.de/staff/pfreire/GCpsr.html, ac-
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that all clusters combined contain much less than 1% of the total stellar mass in our
Galaxy10. It is natural therefore to wonder about dynamical mechanisms for forming
millisecond pulsars in such clusters. In principle the neutron star can form in isolation
somewhere in the cluster, and then capture a stellar companion during one of the chaotic
encounters that are prevalent in the dense cluster core. Subsequently, repeated encounters
of the resulting binary system with other cluster stars can gradually ‘harden’ the binary,
decreasing its semimajor axis until it is tight enough to allow accretion (Heggie 1975;
Pooley et al. 2003), spinning up the neutron star. Moreover, some millisecond pulsar
binaries are known to possess finite (though very small) eccentricities. An isolated binary
that was undergoing mass transfer would be circularised, whereas the repeated weak
flyby encounters experienced by a binary in a stellar cluster are capable of exciting
this eccentricity (Heggie & Rasio 1996). Thus, dense stellar clusters are an excellent
environment for producing millisecond pulsars with the properties we observe.

1.1.4 The impact of cluster tides

The main thing that has been overlooked in all studies mentioned above — except those
on Solar System formation (Gaidos 1995; Morbidelli & Levison 2004; Brasser et al. 2006;
Batygin et al. 2020) — is the effect of the smooth component of the cluster’s mean
gravitational field on the internal dynamics of the binary. On the other hand a similar
effect, that of the smooth Galactic tide, is accounted for routinely in studies of Oort
Cloud comet dynamics, and of the evolution of wide binaries in the Milky Way disk
(Heisler & Tremaine 1986; Jiang & Tremaine 2010; Veras & Evans 2013a). In both cases
it is known that the Galactic tide can drive binaries (i.e. the wide stellar binary or the
comet-Sun system) periodically to high eccentricity in a manner very reminiscent of the
LK mechanism. This begs the question: might the mean gravitational field of stellar
clusters do the same to compact object binaries, stellar binaries, and so on?

Given this motivation, we now declare an interest in the following question:

• what happens to (idealised, point-mass, Newtonian) binary systems when they are
perturbed weakly by an external body (e.g. tertiary companion, cluster, or galaxy)
to which they are gravitationally bound?

Answering this question will be the primary focus of Chapters 2 and 3. From that
investigation it will emerge that the similarity between LK dynamics and the Galactic
tide-driven dynamics is not a coincidence. Instead, they are both special cases of a more

cessed 14 April 2021.
10The total mass in stellar clusters in our galaxy is ∼ 108M� while the the remaining stellar population

weighs ∼ 1011M� (Binney & Merrifield 1998).
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general theory of binaries orbiting arbitrary axisymmetric potentials — including cluster
potentials — which we derive and explore in detail.

Having found that cluster potentials can torque binaries to high eccentricity, and with
a view to investigating compact object mergers, a natural followup question is:

• how is the resulting dynamical evolution impacted by non-Newtonian and non-
secular effects, such as GR precession, GW emission and short-timescale fluctuations
in the torque?

This question will be addressed in Chapters 4, 5 and 6. There we will uncover several new
results, some of which shed new light on the LK and Galactic tide-driven mechanisms, and
some of which show markedly different behaviour peculiar to cluster-tide driven systems.

Finally, these different strands of investigation naturally culminate in the question

• can tide-driven eccentricity excitation account for (some of) the compact object
mergers currently being detected by LIGO/Virgo?

This question we address quantitatively in Chapter 7.
As we will see over the following 260 or so pages, answering these three questions will

involve a wide array of analytical, semi-analytical and numerical calculations, and will
conjure up a number of new and non-intuitive physical surprises. Moreover, in several
instances we will uncover new results that pertain to the LK scenario and yet had not been
appreciated before, despite several decades of work on the LK theory and its applications.

1.2 Outline of this thesis

Above we have given a broad-brush review of the literature and observational motivation
for this thesis, as well as an overview of the questions to be addressed. In addition to this
each of the following six Chapters will include a subsection entitled ‘Relation to existing
literature’ or similar, in which we discuss the scholarly context of that Chapter in detail.
Let us now provide a more specific outline of what the main Chapters consist of.

Chapter 2 [based upon Hamilton & Rafikov (2019b)]. In this Chapter we formulate the
most general possible theory of tide-driven secular evolution of two bound point masses
in arbitrary axisymmetric host systems. We derive a secular Hamiltonian (averaged
over both the inner Keplerian orbit of the binary and its outer orbit within the cluster),
valid to quadrupole order in the tidal expansion, for an arbitrary cluster potential and
explore its characteristics. This doubly-averaged ‘tidal’ Hamiltonian depends on just two
parameters, which fully absorb the information about the background cluster potential
and the binary’s orbit within it: a dimensional parameter A setting the secular timescale,
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and a dimensionless parameter Γ which determines the phase portrait of the binary’s

inner orbital evolution. We examine the dependence of A and Γ on the cluster potential

(both spherical and axisymmetric) and on the binary orbit within the cluster. Our theory

reproduces known secular results — such as Lidov-Kozai (LK) theory and the theory

of Galactic tide-driven evolution of Oort Cloud comets — in appropriate limits, but is

more general. It provides a universal framework for understanding dynamical evolution of

various types of binaries driven by the smooth tidal field of any axisymmetric potential.

Chapter 3 [based upon Hamilton & Rafikov (2019c)]. In this Chapter we provide

a thorough exploration of the phase-space of the secular Hamiltonian derived above

as Γ is varied. We find that for Γ > 1/5 the phase-space structure and the resulting

dynamical evolution of binary orbital elements are qualitatively similar to the LK problem.

However, this is only one of four possible regimes, because the dynamics are qualitatively

changed by bifurcations at Γ = 1/5, 0,−1/5. These bifurcations are important because,

for instance, binaries in the cores of clobular clusters tend to have 0 < Γ ≤ 1/5. We

show how the dynamics are altered in each regime and calculate characteristics such as

secular evolution timescale, maximum possible eccentricity, etc. We verify the predictions

of our doubly-averaged formalism numerically and find it to be very accurate when

its underlying assumptions are fulfilled, typically meaning that the secular timescale

should exceed the period of the binary around the cluster by & 10 − 102 (depending

on the cluster potential and binary orbit).

Chapter 4 [based upon Hamilton & Rafikov (2021)]. For many applications, general-

relativistic (GR) apsidal precession is very important, and has been accounted for in

various LK calculations. In this Chapter we generalise and extend these LK studies by

exploring in detail the effect of GR precession on (quadrupole-level) tidal evolution of

binaries orbiting in arbitrary axisymmetric potentials (which includes LK theory as a

special case). We study the (doubly-averaged) orbital dynamics for arbitrary strengths

of GR and binary initial conditions and uncover entirely new phase space morphologies

with important implications for the binary orbital evolution. We also explore how GR

precession affects secular evolution of binary orbital elements when the binary reaches

high eccentricity (e→ 1), and delineate several different dynamical regimes. Finally we

provide an analytic solution to the DA problem at high eccentricity (with or without

GR), which has not been presented before even in LK theory.
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Chapter 5. The results of Chapters 2-4 are applicable to a variety of astrophysical
systems. In particular, they can be used to understand the high-eccentricity behaviour
of (cluster) tide-driven compact object mergers, i.e. LIGO/Virgo gravitational wave
(GW) sources. In this Chapter we add GW emission into our calculations and aim
to understand the physics of cluster tide-driven mergers, thereby expanding upon and
generalising the well-known LK-driven merger scenario. We provide for the first time an
analytical understanding of the different evolutionary stages of the binary’s semimajor
axis, maximum eccentricity, secular oscillation timescale, etc., all the way to merger.

Chapter 6. Everything up to this stage has been tackled using ‘doubly-averaged’
(DA) secular theory. DA theories involve averaging the dynamics both over the binary’s
internal Keplerian orbit and its ‘outer’ barycentric orbit relative to the perturber. At
the test particle quadrupole level, a binary’s DA maximum eccentricity emax is always
limited by the initial relative inclination i0 between the two orbits; precisely, one has
emax ≤ elim ≡ (1 − Θ)1/2 where Θ = (1 − e2

0) cos2 i0 and e0 is the initial eccentricity.
However, DA theories do not account for fluctuations in the torque on the timescale
of the outer orbital period. These short-timescale fluctuations can increase a binary’s
maximum eccentricity beyond elim, and can also accumulate over time such that the secular
behaviour diverges entirely from the initial DA prediction. In this Chapter we consider
the impact of these short-timescale fluctuations and derive an approximate expression for
their magnitude. We also uncover a new effect, relativistic phase space diffusion (RPSD),
which arises from an interplay between extremely high eccentricity secular behaviour,
short-timescale fluctuations, and general relativistic pericentre precession. RPSD occurs
at eccentricity peaks and is essentially instantaneous compared to the secular timescale,
but can change the subsequent secular evolution dramatically. This process is present
even in classical LK dynamics, but it has not been uncovered until now.

Chapter 7 [based upon Hamilton & Rafikov (2019a)]. In this Chapter we bring together
many results from the previous Chapters to explore quantitatively a new channel for
the production of binary mergers in clusters. In this channel, the tidal field of the
cluster secularly drives the binary to high eccentricity until gravitational wave emission
becomes important. We compute present day merger rates for BH-BH, NS-BH and
NS-NS binaries, varying the cluster potential and central concentration of the binary
population (but ignoring cluster evolution and stellar flybys). Unlike other mechanisms,
this new dynamical channel can produce a significant number of mergers out to cluster-
centric distances of several pc. We find merger rates that can contribute to the observed
LIGO/Virgo rate at the level of several per cent.
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Most of these Chapters contain supplementary material in the form of Appendices,
which may be skipped on a first reading. Finally, in Chapter 8 we summarise the results
of this thesis and discuss future directions for research.
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Appendices

1.A The two-body problem in Newtonian gravity

To solve the problem of perturbed binaries, we must first understand unperturbed
binaries. Therefore in this section we will review the most basic problem in celestial
mechanics — the problem of two point masses orbiting each other under Newtonian
gravity. This will allow us to introduce a few key concepts and establish the notation
that we will use throughout this thesis.

1.A.1 Orbital elements

Vital to any study of astrophysical binaries is the set of orbital elements which describe the
relative elliptical motion. Let the binary components have masses m1 and m2 respectively,
and let the relative displacement of m1 from m2 be r. Then r(t) describes a Keplerian
ellipse, as illustrated in Figure 1.5a. This diagram is sufficient to define:

• the semimajor axis a of the ellipse;

• its eccentricity e;

• the mean anomaly M of the binary motion, measured relative to the pericentre line
in the orbital plane.

To complete the set of orbital elements we need three more angles, which follow from
defining a fixed reference plane (X,Y ) and reference direction (X), as illustrated in
Figure 1.5b. This diagram suffices to define:

• the inclination i of the binary orbital plane relative to the (X,Y ) plane;

• the longitude of ascending node Ω, relative to the X axis;

• the binary’s pericentre11 angle ω, measured relative to the line of nodes.

In practise, the definition of the (X,Y ) plane will be related to the symmetry of the
potential in which the binary orbits — see §2.2.

The set of six orbital elements (a, e, i, ω,Ω,M) specify uniquely the relative position
r and velocity ṙ of the binary components at a given time t. The great advantage
of using orbital elements rather than r(t) and ṙ(t) is that for an isolated binary, five
orbital elements — namely (a, e, i, ω,Ω) — remain constant, while the mean anomaly
evolves linearly with time,

M(t) = M(0) + nKt, (1.5)
11also known as the ‘perihelion’, ‘periastron’ or ’apsidal’ angle.
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Figure 1.5: Diagrams illustrating the definition of binary orbital elements. (a) In the binary’s
orbital plane, where r is the relative separation of the binary components. This diagram is
sufficient to define a, e and M . (b) The same ellipse as in (a) viewed from a fixed Cartesian
(X,Y, Z) reference frame. The fixed (X,Y ) reference plane allows us to define the remaining
orbital elements Ω, ω and i.

where nK ≡
√
G(m1 +m2)/a3 is the (constant) Keplerian mean motion. The formulae

that convert between the orbital elements and the components of r are given in §2.2.2.
A central focus of this thesis will be on calculating the time evolution of the other

five orbital elements when the binary is (weakly) perturbed. This will involve deriving
dynamical equations of motion. However, it turns out that the orbital elements are
not the best coordinates with which to derive the equations of motion of a perturbed
binary, becuase they are not canonically conjugate. A more convenient set of canonically
conjugate variables are the Delaunay variables.

1.A.2 Delaunay variables and Hamilton’s equations

The Delaunay variables are a set of canonically conjugate variables which allow us to
take advantage of the Hamiltonian approach to mechanics and thus derive dynamical
equations of motion with ease (for much more detail see Murray & Dermott 1999; Arnold
1989). Let us define the canonical Delaunay coordinates ψ and canonical Delaunay
momenta I as follows:

ψ = (M,ω,Ω), I = (L, J, Jz), (1.6)

where

L ≡
√
G(m1 +m2)a, J = L

√
1− e2, Jz = J cos i. (1.7)

Here J is just the magnitude of a vector J, which is the total internal orbital angular
momentum of the binary divided by its reduced mass m1m2/(m1 + m2), while Jz is
the component of J along the Z axis (Figure 1.5b).
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Then for binaries whose motion is governed by an arbitrary Hamiltonian h(ψ, I) (with
dimensions of energy per unit mass), the equations of motion are simply Hamilton’s equa-
tions:

dψ
dt = ∂h

∂I ,
dI
dt = − ∂h

∂ψ
. (1.8)

Once we have derived the equations of motion using Delaunay variables (M,ω,Ω, L, J, Jz),
it is then trivial to transform back to orbital elements via (1.7).

For an unperturbed binary the governing Hamiltonian is simply h = −G2(m1 +
m2)2/2L2, so that dI/dt = 0 and dψ/dt = (nK, 0, 0), as expected.
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2.1 Introduction

Given the motivation in Chapter 1 we now seek to investigate, in the most general
way possible, the long-term evolution of binary systems moving in the smooth global
potential of a much more massive host system. As we will see, it will turn out that the
only additional constraint we have to place upon the host system in order to develop a
predictive secular theory is that it is axisymmetric. Thus, we devote this Chapter
to the derivation of the general Hamiltonian governing secular orbital evolution of
a binary in an arbitrary axisymmetric ‘cluster’ potential. We also explore how the
characteristics of this Hamiltonian depend on the properties of the cluster potential
and the binary’s orbit within it.

The Chapter is structured as follows. In §2.2 we derive the tidal Hamiltonian for
the dynamical evolution of binary orbital elements due to any tidal perturbation when
expanded to quadrupole order. In §§2.3-2.5 we average the tidal potential over both
the binary’s inner orbit and then over many orbits of the binary around the (assumed
axisymmetric) cluster, arriving at a simple doubly-averaged (secular) Hamiltonian which
describes long-term evolution of the binary’s orbital elements. The coefficients entering
this secular Hamiltonian depend on the potential of the host system and the binary’s
barycentric orbit within this potential, and we explore this dependence in detail in §2.6.
We verify the time-averaging procedure numerically in §2.7. In §2.8 we discuss the
limitations of our theory, and show how our general results are connected with various
special cases already explored by others (see also Appendices 2.B & 2.C).

2.2 Hamiltonian with cluster tides

Let us consider a binary system with semi-major axis a and eccentricity e, consisting of
point masses m1 and m2. The binary components interact gravitationally with each other
and with a fixed smooth background potential Φ of a much more massive system, which
we will later take to be axisymmetric. The application we have most readily in mind is
that of binary stars in the mean field potential of a globular or nuclear star cluster, and
for this reason we will frequently refer to m1 and m2 as ‘stars’ and to the background
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system as ‘the cluster’. However it should be borne in mind that our analysis works for any
system of two gravitationally bound objects (binary black holes, comet-Sun system, etc.)
moving in any axisymmetric potential (galaxy, open cluster, young stellar cluster, etc).

Throughout this thesis we will refer to the binary’s orbit around the cluster as the
‘outer orbit’, while the orbit of the binary components about their common barycentre
will be called the ‘inner orbit’, to coincide with the standard terminology in Lidov-Kozai
(LK) studies (e.g. Naoz 2016). To describe the outer and inner orbits we set up two
coordinate systems — see Figure 2.1 for illustration.

The first, given by R = (X,Y, Z), has its origin at the centre of the cluster. In this
coordinate system, the radius vector of the outer orbit, i.e. from the cluster centre to
the barycentre of the binary is given by Rb = (Xb, Yb, Zb). The second (non-inertial)
coordinate system has its origin at Rb, and its axes are fixed to be aligned with those
of the first system, so only its origin moves. The position of star i = 1, 2 in the non-
inertial system is then given by ri = (xi, yi, zi). The position of star i relative to the
centre of the cluster is Ri = Rb + ri = (Xb + xi, Yb + yi, Zb + zi) and the barycentre
is at Rb = (m1R1 + m2R2)/(m1 + m2).

The equation of motion of star i = 1, 2 is then

d2(ri + Rb)
dt2 = −(∇Φ)Rb+ri −

Gmj

|ri − rj |3
(ri − rj), (2.1)

for i 6= j, where the subscript on derivatives means that we evaluate the derivative at Rb +
ri.

Defining the relative position r = (x, y, z) ≡ r1 − r2, and µ ≡ G(m1 + m2),
one obtains from (2.1)

d2r
dt2 = − [(∇Φ)Rb+r1 − (∇Φ)Rb+r2 ]− µr

r3 , (2.2)

which is the general equation of relative motion of the binary components.

2.2.1 Tidal approximation

We now employ the tidal approximation, which means that in equation (2.2) we expand
the potential Φ(Rb + ri) around Rb. The Cartesian components of the vector ∇Φ
at position Rb + ri are

[(∇Φ)Rb+ri ]α =
(
∂Φ
∂Rα

)
Rb

+
∑
β

(
∂2Φ

∂Rα∂Rβ

)
Rb

ri,β +O(r2
i ), (2.3)

where α, β are the coordinate indices, so that e.g. Rα and ri,α represent the components
of R = (X,Y, Z) and ri = (xi, yi, zi) respectively. We expect that terms O(r2

i ) will be
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Figure 2.1: Illustration of the binary within the axisymmetric cluster. The binary’s barycentre
Rb coincides, to sufficient accuracy, with a ‘guide’ radius vector Rg moving as a test particle in
the cluster-centric coordinate system (X,Y, Z). The symmetry axis of the cluster is Z. Binary
inclination i is measured relative to the (X,Y ) plane and the longitude of the ascending node
Ω of the binary is measured with respect to the X axis (§2.2.2). Note that the trajectory of Rg
(illustrated with a blue dashed line) is not closed in a general axisymmetric cluster potential.

subdominant because the distance to the centre of the cluster (∼ |Rb|) is much greater
than the binary separation r. In this approximation we find

d2r
dt2 = −

∑
β

rβ
∂

∂Rβ
(∇Φ)Rb

− µr
r3 , (2.4)

with rα the components of r = (x, y, z). Keeping in mind that, since the axes of
the two coordinate systems are aligned, we may interchange ∂/∂Rα with ∂/∂rα, we
can also write this as

d2r
dt2 = −(r · ∇) (∇Φ)Rb

− µr
r3 . (2.5)

With x, y, z as our canonical coordinates and px = ẋ, py = ẏ, pz = ż as the correspond-
ing momenta, these equations of motion may be derived from the time-dependent Hamilto-
nian

H = H0 +H1, (2.6)

where

H0 =1
2p2 − µ

r
, (2.7)

H1 =
(
∂2Φ
∂x2

)
Rb

x2

2 +
(
∂2Φ
∂y2

)
Rb

y2

2 +
(
∂2Φ
∂z2

)
Rb

z2

2

+
(
∂2Φ
∂x∂y

)
Rb

xy +
(
∂2Φ
∂x∂z

)
Rb

xz +
(
∂2Φ
∂y∂z

)
Rb

yz, (2.8)
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and H1 � H0. To compress the notation we write (∂2Φ/∂rα∂rβ)Rb ≡ Φαβ so that
the perturbing (‘tidal’) Hamiltonian reads

H1 =1
2
∑
αβ

Φαβ(Rb) rαrβ, (2.9)

where we sum over α, β = x, y, z.
The dominant part of the Hamiltonian H0 corresponds to the motion of an isolated

binary star about its own barycentre, and has no explicit time dependence. The perturbing
term H1 takes into account the tidal effects of the external potential, which will drive
the secular evolution of the binary orbital elements. It implicitly depends on time
through Rb(t), which we look at next.

According to equation (2.1) the evolution of Rb is governed by

d2Rb
dt2 = −m1(∇Φ)Rb+r1 +m2(∇Φ)Rb+r2

m1 +m2

= −(∇Φ)Rb

[
1 +O

(
r2/|Rb|2

)]
. (2.10)

The small correction terms on the right hand side of this equation mean that, in general,
the motion of Rb in the cluster does not coincide exactly with that of a test particle.
However, at the level of accuracy needed in this work we can neglect this difference and
assume that Rb coincides with the ‘guide’ radius vector Rg, which evolves according to
the equation of motion of a test particle in the cluster potential,

d2Rg/dt2 = −(∇Φ)Rg . (2.11)

In other words, in the following we set Rb = Rg and calculate Rg(t) using equation (2.11).
Our neglect of the terms quadratic and higher order in ri in equation (2.3) is equivalent

to the so-called ‘quadrupole approximation’ in the hierarchical three-body problem.
Keeping the next (quadratic) term in the expansion would correspond to the ‘octupole
approximation’, and so on. In Appendix 2.E we describe the extension of our tidal
Hamiltonian to octupole order and provide a connection to the LK problem in the
octupole approximation.

2.2.2 Orbital elements and Delaunay variables

We now introduce standard orbital elements in the frame of the binary (see also §1.A).
The reference direction is taken to be the X direction and the reference plane the (X,Y )
plane (see Figure 2.1; we will later take the Z axis to be the symmetry axis of the potential
but the assumption of axisymmetry is not needed at the moment). We define binary
argument of pericentre ω, inclination i, longitude of ascending node Ω and mean anomaly
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M relative to this reference plane and direction. When written in orbital elements the
relative coordinates r = (x, y, z) become (Murray & Dermott 1999):

x =a
(
cos Ω

[
(cosE − e) cosω −

√
1− e2 sinE sinω

]
− cos i sin Ω

[
(cosE − e) sinω +

√
1− e2 sinE cosω

])
, (2.12)

y =a
(
sin Ω

[
(cosE − e) cosω −

√
1− e2 sinE sinω

]
+ cos i cos Ω

[
(cosE − e) sinω +

√
1− e2 sinE cosω

])
, (2.13)

z =a sin i
[
(cosE − e) sinω +

√
1− e2 sinE cosω

]
, (2.14)

and M = E − e sinE where E is the eccentric anomaly. It is important that the orbital
elements are defined with respect to a reference frame with axis directions fixed in time
(c.f. Brasser 2001; Veras & Evans 2013c; Correa-Otto et al. 2017). In the limit of the
cluster tide going to zero these orbital elements stay constant.

For dynamical studies it is often more convenient to use Delaunay variables (§1.A),
in which the actions

L = √µa; J = L
√

1− e2; Jz = J cos i, (2.15)

are complemented by their conjugate angles M , ω, Ω. We will use them extensively in
Chapter 3. Since Delaunay variables are angle-action variables, we can easily identify the
conserved quantities in the Hamiltonian. The dominant part of the Hamiltonian (2.7) reads

H0 = − µ

2a = − µ2

2L2 , (2.16)

while the perturbing Hamiltonian is given by equation (2.9) with x, y and z given by
equations (2.12), (2.13) and (2.14) respectively (or their Delaunay equivalents).

2.3 Averaging the tidal Hamiltonian

Dynamics of binaries in stellar clusters benefits from a natural separation of scales. For
example, a Solar mass binary with a = 20 AU has an inner orbital period of ∼ 100 years,
while its outer orbit around a globular cluster might have a period of ∼ 105 years. As
we show in Chapter 3, the resulting secular evolution of the binary’s orbital elements
due to the tidal potential of the cluster may take ∼ 108 years.

This naturally allows us to simplify our Hamiltonian (2.9), first by integrating out
the fast evolution of the mean anomaly M of the inner orbit (‘single-averaging’, see
§2.3.1), and then by also integrating over many (outer) orbits of the binary around
the cluster (‘double averaging’, see §2.3.2).
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2.3.1 Singly-averaged Hamiltonian: averaging over the mean anomalyM

We begin by averaging over the shortest timescale in the problem, namely over the
inner orbital motion of the binary components around their common barycentre. Our
singly-averaged Hamiltonian is

〈H〉M = H0 + 〈H1〉M , (2.17)

where the average of a quantity F over the mean anomaly M is defined as

〈F〉M ≡
1

2π

∫ 2π

0
F dM = 1

2π

∫ 2π

0
(1− e cosE)F dE. (2.18)

The coefficients Φαβ depend on time only through Rg(t), which is a ‘slow’ variable, so

〈H1〉M = 1
2
∑
αβ

Φαβ〈rαrβ〉M . (2.19)

For reference, the full algebraic expressions for 〈rαrβ〉M in terms of orbital elements
are given in Appendix 2.A. The singly-averaged Hamiltonian (2.19) incorporating these
expressions is completely general and can be used to describe orbital evolution of binaries
moving in an arbitrary external potential. As we see later in this Chapter, and study in
detail in Chapter 6, the DA approximation can break down at very high binary eccentricity,
and one must describe the system using the SA theory instead. The explicit SA equations
of motion are written down in §6.A (equations (6.33)-(6.36)).

Obviously we have eliminated the angle M , therefore the conjugate action L = √µa is
conserved, and so the binary’s semi-major axis a is constant. When written in Delaunay
variables, the singly-averaged Hamiltonian 〈H1〉M is a function of J, Jz, ω,Ω and the
time t through the time-dependent coefficients Φαβ(Rg(t)).

Example: orbits in a harmonic potential

For illustration, as well as to connect to subsequent results, we consider a binary orbiting
in a globular cluster with a triaxial constant-density core. For orbits in this core the
potential is that of a three-dimensional harmonic oscillator with frequencies κα, namely
Φ = ∑

α
1
2κ

2
αR

2
α. Then Φαβ = κ2

αδαβ so the singly-averaged Hamiltonian (2.19) becomes

〈H1〉M = 1
2
[
κ2
x〈x2〉M + κ2

y〈y2〉M + κ2
z〈z2〉M

]
. (2.20)

Let us now consider an axisymmetric core where the symmetry axis is the Z axis. Then
κx = κy and the binary’s outer orbit fills a section of a cylindrical surface with elliptical
cross-section (aligned with the Z axis). Using equations (2.59)-(2.61) we end up with

〈H1〉M = κ2
+a

2

8 ×
[
(2 + 3e2)

(
1 + κ2

−
κ2

+
cos2 i

)
+ 5κ

2
−
κ2

+
e2 sin2 i cos 2ω

]
, (2.21)
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where κ2
± ≡ κ2

x ± κ2
z.

Note that the dependence on the longitude of the ascending node Ω has dropped out
of this Hamiltonian, so the z-component of binary angular momentum Jz is conserved.
That is, in the reference frame of a binary orbiting an axisymmetric harmonic potential,
the perturbation due to the tidal field of the cluster effectively becomes axisymmetric
after averaging only over the inner orbit of the binary (single-averaging), not its outer
orbit around the cluster (double-averaging). This is despite the fact that the outer
orbit itself is not axisymmetric in general, even after averaging over a long time interval
(its projection onto the (X,Y ) plane is an ellipse centred at the origin). This property
does not hold for arbitrary potentials.

Things simplify further if we assume the core to be spherically symmetric. Without
loss of generality we can then assume the outer orbit of the binary to be in the Z = 0
plane, and put all frequencies equal to κ (so that κ− = 0). We find that

〈H1〉M =κ2a2

4 (2 + 3e2) = κ2L4

4µ2

(
5− 3J

2

L2

)
. (2.22)

This singly-averaged Hamiltonian is now also independent of the argument of pericentre
ω. As a result, in this case there is no evolution of eccentricity or inclination of the binary.
The only variation of its orbital elements is apsidal precession at the rate

ω̇ = ∂〈H1〉M
∂J

= −3
2
κ2

nK

√
1− e2, (2.23)

independent of the orientation of the binary orbit (i.e. ω, Ω, i). Here nK =
√
µ/a3

is the Keplerian mean motion of the binary.

2.3.2 Doubly-averaged Hamiltonian: averaging over time

As we already mentioned, binary orbital elements change significantly on timescales that
are much longer than the outer orbital period of the binary around its host system.
For that reason, it makes sense to average 〈H〉M over many outer orbits. Indicating
such time-averages with an over bar, we write:

〈H〉M = − µ2

2L2 + 〈H1〉M , (2.24)

where the doubly-averaged perturbing Hamiltonian 〈H1〉M differs from its singly-averaged
predecessor 〈H1〉M (equation (2.19)) only in that each Φαβ is now replaced by its
time-averaged value Φαβ:

〈H1〉M = 1
2
∑
αβ

Φαβ〈rαrβ〉M . (2.25)
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This works because the outer orbit Rg(t) only enters Φαβ and not rαrβ.
Equation (2.25) is the doubly-averaged perturbing Hamiltonian and is the main

result of this section. It describes the secular evolution of the orbital elements of any
binary perturbed by a smooth external potential Φ. However in its current abstract
form it is not of much use. In the following section we show how the time-averages Φαβ

may be calculated for cluster potentials possessing certain symmetries, culminating
in the expressions (2.42), (2.43).

2.4 Time-averaging in axisymmetric potentials

So far we did not need to specify anything about the potential Φ. However, we will
now focus on binaries orbiting in fixed axisymmetric potentials (§§2.4.1-2.4.2). We then
describe how the time-averaging procedure works in practice for binaries in spherical
clusters (§2.4.3) and then for general axisymmetric potentials (§2.4.4).

2.4.1 Φαβ in cylindrical coordinates

In an axisymmetric cluster we can choose the symmetry axis of the potential to be the
Z axis (like in Figure 2.1). Then it makes sense to write down the derivatives Φαβ

in the cylindrical (R,φ, Z) coordinate system with origin at the centre of the cluster,
where R =

√
X2 + Y 2 and φ = tan−1(Y/X). The axisymmetric potential may then

be expressed as Φ(R,Z), and we find

Φxx = 1
2

(∂2Φ
∂R2

)
Rg

+
( 1
R

∂Φ
∂R

)
Rg

+ 1
2 cos 2φg

(∂2Φ
∂R2

)
Rg

−
( 1
R

∂Φ
∂R

)
Rg

 , (2.26)

Φyy = 1
2

(∂2Φ
∂R2

)
Rg

+
( 1
R

∂Φ
∂R

)
Rg

− 1
2 cos 2φg

(∂2Φ
∂R2

)
Rg

−
( 1
R

∂Φ
∂R

)
Rg

 , (2.27)

Φzz =
(
∂2Φ
∂Z2

)
Rg

, (2.28)

Φxy = 1
2 sin 2φg

(∂2Φ
∂R2

)
Rg

−
( 1
R

∂Φ
∂R

)
Rg

 , (2.29)

Φxz = cosφg

(
∂2Φ
∂R∂Z

)
Rg

, (2.30)

Φyz = sinφg

(
∂2Φ
∂R∂Z

)
Rg

. (2.31)

Here φg is the azimuthal coordinate of Rg, namely tan−1(Yg/Xg), and again the sub-
scripts on derivatives mean ‘evaluated at position Rg(t)’. The coefficients Φαβ have
certain symmetry properties which will become important when we consider their time-
averaged values in §2.4.2.
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2.4.2 Orbit families and non-commensurable frequencies

We now consider which orbit families are possible in general axisymmetric potentials.
Numerical orbit integration confirms that most orbits in axisymmetric potentials are
regular and appear to respect a third integral of motion I3 alongside energy E and the Z-
component of angular momentum LZ (Binney & Tremaine 2008; Merritt 2013). The vast
majority of these regular orbits form a tube, or ‘torus’, around the symmetry axis: in an
oblate potential they are short-axis tube orbits, while in a prolate potential they are (inner-
or outer-) long axis tube orbits. Other possibilities include near-resonant regular orbits
and irregular (chaotic) orbits, but both of these are typically scarce compared to the tubes.

We will ignore chaotic orbits in what follows since they are very rare in axisymmetric
potentials (Regev 2006). We are left with tube orbits and (near-)resonant non-tube
orbits. The resonant family corresponds to Rg(t) having commensurable frequencies.
Mathematically, if we denote the frequencies of motion of Rg(t) in each direction by
the vector Ω = (ΩR,Ωφ,ΩZ), we must consider whether there exists any triple of
integers n = (n1, n2, n3) such that

n ·Ω = 0. (2.32)

The role of commensurabilities and near-commensurabilities will be discussed in §§2.7-2.8.
If the frequencies are non-commensurable (i.e. the relation (2.32) does not hold),

then the outer orbit of the binary will trace out a non-repeating path around the cluster.
Over time this path will densely fill a 3D axisymmetric torus whose symmetry axis is Z.
We may therefore replace the time-average of a function following an orbit Rg(t) with a
weighted (by the time the orbit spends at a given point) volume-average over the torus.

Since the torus is axisymmetric, time-averaging over non-commensurable orbits
inevitably involves integrating the expressions (2.26)-(2.31) over azimuthal angle φg.
As a result, time-averages of Φαβ become

Φxx = Φyy = 1
2

[(
∂2Φ
∂R2

)
Rg

+
( 1
R

∂Φ
∂R

)
Rg

]
, (2.33)

Φzz =
(
∂2Φ
∂Z2

)
Rg

, (2.34)

Φxy = 0, (2.35)

Φxz = Φyz = 0, (2.36)

see equations (2.26)-(2.31). In practice, vanishing of Φxy, Φxz, Φyz typically requires
averaging over many outer orbits — see §2.7.
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2.4.3 Time-averages in spherical potentials

In spherical potentials the outer orbit of the binary remains in the same plane, which
can be chosen to coincide with the (X,Y ) plane. In this plane the coefficients Φxz and
Φyz vanish identically. In other words, equation (2.36) holds true even without averaging
over the outer orbit. At the same time, Φxy asymptotically tends to zero only upon
averaging over many orbits, as we will see later in §2.7.1.

In the (X,Y ) plane the path of Rg is a rosette, assuming it has non-commensurable
radial and azimuthal frequencies; see Figure 2.7 for illustration. Over time the rosette
densely fills an axisymmetric annulus with inner and outer radii corresponding to the
pericentre rp and apocentre ra of the outer orbit Rg(t). When discussing spherical
potentials we will sometimes refer to this as the ‘axisymmetric annulus approximation’.

In this case it is easy to write down an analytical formula for the averages Φαβ in
terms of rp and ra, as averaging over dt can be replaced with averaging over dR via
dt = v−1

R dR, where vR = [2(E − Φ(R))− L2/R2]1/2 is the radial velocity. Specific energy
E and angular momentum L of the outer orbit Rg(t) in a spherical potential Φ can be
explicitly expressed as function of rp and ra as follows:

E(rp, ra) =
r2

aΦ(ra)− r2
pΦ(rp)

r2
a − r2

p
, (2.37)

L(rp, ra) =
√

2[Φ(ra)− Φ(rp)]
r−2

p − r−2
a

. (2.38)

With this in mind, we can write the time-average of any radially-dependent function F(R)
as

F =
∫ ra
rp

dRF(R)
[
2(E − Φ(R))− L2/R2]−1/2∫ ra

rp
dR [2(E − Φ(R))− L2/R2]−1/2 . (2.39)

Remembering that only the azimuthally-averaged versions of Φαβ provide non-zero contri-
butions (see §2.4.2 and equations (2.33)-(2.36)), we see that in spherical potentials the time-
averages Φαβ can be calculated in a straightforward fashion via integration over radius R.

2.4.4 Time-averages in axisymmetric potentials

We would like to generalise the approach of §2.4.3 to axisymmetric potentials Φ(R,Z).
This would involve averaging Φαβ over the (R,Z) cross-section of an axisymmetric torus
filled by the outer orbit of the binary — see the central columns of Figures 2.10 & 2.11 for
examples of such cross-sections. However, there are several difficulties with this approach.

First, each dR dZ element of the cross-section enters the averaging procedure with a
certain weight proportional to the time the orbit spends in it. Calculating this weight is
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not trivial and involves the knowledge of the meridional velocity (vR, vZ) structure. For

a general axisymmetric potential this calculation cannot be done analytically.

Second, even the shape of the outer boundary of the cross-section cannot be determined

analytically for a general axisymmetric potential. The difficulty is that the knowledge of
E and the Z-component of angular momentum LZ (which are integrals of motion in a

general axisymmetric potential) is not sufficient to determine the shape of the meridional
cross section of the torus: one also needs to know a third integral of motion I3. The

exact shape of the torus cross-section is known only for orbits in Staeckel potentials
(Binney & Tremaine 2008), since only for those do we have analytic expression for the

third integral I3. Even then, writing down a formula for the time-averaged coefficients

Φαβ is tiresome because of the awkward confocal-ellipsoidal coordinate system involved

(Binney & Tremaine 2008) and the complicated functional form of the third integral.

For these reasons, in this thesis we usually1 compute time-averages over the outer orbit

in axisymmetric potentials by directly integrating the orbit of a guide Rg(t) numerically
using equation (2.11) for a given set of initial conditions (R, vR, φ, vφ, Z, vZ), where vR
is the velocity in the direction of increasing R, etc. This orbit is then used to carry out
the time-average of Φαβ using a method outlined in Appendix 2.F.

Note that, unlike in the spherically symmetric case, Φxz and Φyz no longer vanish

identically due to a symmetry of the potential. Nevertheless, equations (2.35)-(2.36)

are still fulfilled upon averaging over many outer orbits.

2.5 The secular Hamiltonian

Despite the fact that in general axisymmetric potentials we cannot write down a useful
analytic expression for time-averages, we can still continue our derivation of the secular

Hamiltonian owing to the symmetries of the Φαβ coefficients (equations (2.33)-(2.36)).

These symmetry properties allow us to greatly simplify the doubly-averaged perturbing
Hamiltonian (2.25) so that it reads:

〈H1〉M = 1
2Φxx〈x2 + y2〉M + 1

2Φzz〈z2〉M . (2.40)

Let us define the quanitities

A ≡ Φzz + Φxx, B ≡ Φzz − Φxx, Γ ≡ B/3A, (2.41)

1There are special cases in certain axisymmetric potentials where we can compute time-averages
(semi-)analytically, see §2.6.1 & §2.6.3.
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(note that the constants A and B are not related to the Oort constants!) and write
x, y, z in terms of orbital elements using equations (2.59)-(2.61). Then the Hamil-
tonian (2.40) becomes

〈H1〉M = CH∗1 where C = Aa2/8, (2.42)

and H∗1 is the ‘dimensionless Hamiltonian’

H∗1 = (2 + 3e2)(1− 3Γ cos2 i)− 15Γe2 sin2 i cos 2ω. (2.43)

Note that H∗1 involves only a single dimensionless parameter Γ, while C depends on
A (which has units of (frequency)2). In Chapter 3 we will see that Γ determines the
phase space structure of the Hamiltonian while A sets the timescale for secular evolution.
All the information about the cluster properties and the characteristics of the (outer)
orbit of the binary enter the Hamiltonian through these two parameters only. In §2.6
we investigate in detail how these key quantities depend on the form of the background
potential and the outer orbit of the binary within the potential.

The dependence of the Hamiltonian upon the longitude of ascending node Ω has
dropped out under time-averaging and so the z-component of angular momentum Jz

is conserved, as we would expect for an axisymmetric perturbation (which the cluster
potential looks like from the binary frame upon averaging over many outer orbits). The
dimensionless quantity Jz/L =

√
1− e2 cos i is an integral of motion, which implies that

variations of eccentricity must come at the expense of changes in inclination and vice
versa, just as in the LK mechanism (Lidov 1962; Kozai 1962; Naoz, Farr, et al. 2013).

Finally, we note that the doubly-averaged perturbing Hamiltonian (2.42) appears very
similar to the singly-averaged one derived for the example of an axisymmetric harmonic
potential in §2.3.1 (equation (2.21)). Indeed, comparing equations (2.21) and (2.42) one
might be tempted to say that axisymmetric harmonic potentials have Γ = −κ2

−/3κ2
+.

However, this correspondence is a mathematical coincidence: the assumption of non-
commensurability (§2.4.2) does not apply to harmonic potentials, for which all orbits
are closed non-precessing ellipses. Despite their similarities the Hamiltonians (2.21) and
(2.42) are different objects derived under different approximations.

2.5.1 Orbits in a Kepler potential: link to the Lidov-Kozai mechanism

Another example of such a mathematical coincidence is represented by the well known
test particle quadrupole Lidov-Kozai (LK) problem (Lidov 1962; Kozai 1962). The
Hamiltonian for this problem takes the form (2.43) if we were to set Γ = 1. However, we
have derived this Hamiltonian under the assumption that Rg fills an axisymmetric torus,
while in the LK case Rg moves in a Keplerian ellipse, which in the test particle limit does
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not precess. Nevertheless, it is known that for elliptical orbits the time-averaged tidal
Keplerian potential is exactly axisymmetric to quadrupole order (e.g. Katz, Dong, &
Malhotra 2011; Naoz, Farr, et al. 2011), and so (2.42) does in fact hold.

In Appendix 2.B we show explicitly how the LK Hamiltonian is recovered in the ‘test
particle quadrupole’ approximation from the singly-averaged equation (2.19) in the limit
that the background potential Φ in which the binary orbits arises from a point mass at
the origin. We recover the LK Hamiltonian exactly if we set Γ = 1 in (2.43).

2.5.2 Epicyclic orbits in a disk: link to Heisler & Tremaine (1986)

For wide binaries in the solar neighbourhood, the tidal potential of the Galactic disk
can provide the dominant torque, as shown by Heisler & Tremaine (1986) for the Oort
Cloud comets. Averaged over many orbits of the Sun around the Galaxy, the Galactic
disk provides an axisymmetric tide onto the binary. In Appendix 2.C we show how
to calculate Φαβ in the case where Rg performs epicyclic motion in a disk. It is then
easy to recover the tidal Hamiltonian of Heisler & Tremaine (1986) from (2.42). We
reproduce the dimensionless version of Heisler & Tremaine (1986)’s Hamiltonian by
setting Γ = 1/3 in (2.43).

2.6 Dependence of Hamiltonian coefficients A and Γ on the
cluster potential and binary orbit

All of the information about the effect of the tidal potential on secular dynamics of the
binary is contained in the two crucial quantities A and Γ, which are constructed from
the time-averages Φzz and Φxx, see equation (2.41).

The quantity A is a direct measure of the strength of the potential. Its influence
on the dynamics is trivial: it enters the problem only as a proportionality constant of
the Hamiltonian (equation (2.42)), and therefore merely sets the (inverse of the) secular
timescale. In addition, A is also a fairly intuitive quantity: if a binary is in a strong
tidal potential we expect it will have a large A.

The meaning of Γ is less intuitive than A although its influence upon the system is
quite profound. In Chapter 3 we will see that the phase portrait of the Hamiltonian
H∗1 undergoes several bifurcations as we change the value of Γ, altering the dynamics
completely. In particular, we show that there are four qualitatively different regimes —
(i) Γ > 1/5, (ii) 0 < Γ ≤ 1/5, (iii) −1/5 < Γ ≤ 0, and (iv) Γ ≤ −1/5. The value of Γ is
so important because, for instance, high-eccentricity excitation is ubiquitous for binaries
in regime (i), whereas it is much less readily achieved by binaries in regime (ii). Hence,
most effort in this section will be directed towards understanding which cluster potentials
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Figure 2.2: Plot of the function Γ(U) defined by equation (2.47) with U = Φzz/(4πGρ) given by
equation (2.46). See text for details.

and outer binary orbits give rise to which values of Γ. So far we have seen that Γ = 1 for
any orbit in a Keplerian potential, and that Γ = 1/3 for epicyclic orbits in a thin disk. In
this section we explore in more detail how the values of Γ (and A) depend on the form
of the background potential Φ and the binary’s outer orbit Rg within it.

We start by stating some general properties of A and Γ in §2.6.1. We then discuss
the behavior of these parameters in certain spherical (§2.6.2) as well as axisymmet-
ric (§2.6.3) potentials.

2.6.1 General properties of A and Γ

Writing down Poisson’s equation in cylindrical coordinates

∂2Φ
∂R2 + 1

R

∂Φ
∂R

+ ∂2Φ
∂Z2 = 4πGρ, (2.44)

and using equations (2.33)-(2.34) & (2.41), one can easily show that in a general
axisymmetric potential

A = 1
2(Φzz + 4πGρ), B = 1

2(3Φzz − 4πGρ), (2.45)

where ρ is the cluster density in the vicinity of the binary time-averaged over many outer
orbital periods. Then, defining the dimensionless ratio

U ≡ Φzz

4πGρ = −1 + A

2πGρ, (2.46)

we can write Γ quite generally as

Γ(U) = 3U − 1
3(U + 1) . (2.47)
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The function Γ(U) is plotted in Figure 2.2.

In principle there are no limits on the values U can take, although in practice, achieving
values of U less than −1 (and hence Γ > 1) may require rather contrived orbits. An
example of such an orbit with U < −1 and Γ > 1 is given in Appendix 2.D (see Figure
2.13). Note that U < −1 necessarily implies that A < 0, see equation (2.46).

Somewhat stronger statements can be formulated for realistic spherically symmetric
cluster potentials, as we show in Appendix 2.D. In particular, one can demonstrate that
in such potentials A > 0, B ≥ 0, and 0 ≤ Γ ≤ 1. In non-spherical potentials negative
values of Γ become possible for certain binary orbits as we will show in §2.6.3.

It is instructive to consider the values of Γ for some specific potentials Φ.

• In the case of a Keplerian cluster potential, i.e. a spherical point mass potential with
vanishingly small density ρ outside the centre, one has Φzz > 0, ρ→ 0, U → +∞
and Γ→ 1 (see §2.5.1).

• In a spherical harmonic potential, symmetry dictates that Φzz = (1/3)∇2Φ =
(4π/3)Gρ so that U = 1/3 and Γ = 0 (see §2.3.1).

• In a spherical cluster with a cusped density distribution ρ ∝ r−β with 0 < β < 3
(having finite mass at the centre) we have Γ = β/[3(4− β)], see Appendix 2.D.1.

• In a thin galactic disk, assuming that Φzz dominates over other spatial derivatives
in Poisson’s equation, one has Φzz ≈ 4πGρ; hence we find U = 1 and Γ = 1/3 (see
§2.5.2).

• In the opposite limit of a ‘cylindrical’ (or highly prolate) potential Φ = Φ(R) with
no Z-dependence, one has Φzz = 0, U = 0 and Γ = −1/3.

The values (or ranges) of U and Γ(U) for these and some other types of cluster potential
are summarized in Table 2.4. We stress again that even though applying the ‘axisymmetric
annulus’ approximation gives the correct results for Keplerian and spherical harmonic
potentials, this is a mathematical coincidence unless the outer orbit of the binary in
these potentials is circular (see §2.3.1 & 2.5.1).

2.6.2 Behavior of Hamiltonian characteristics in some spherical poten-
tials

In spherical potentials the values of Φαβ that enter A and Γ are computed using the
analytic expression (2.39), which for a fixed potential depends only on the peri/apocentre
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Figure 2.3: Contour plots of log10A
∗, where A∗ ≡ A/(GM/b3), as a function of generalized

semi-major axis ag and eccentricity eg (see equation (2.48)) for binary orbits in four spherical
potentials (equations (2.50)-(2.53)), each with scale radius b. The value of A∗ in general depends
both on ag and eg.

(rp, ra) of the binary’s outer orbit Rg(t). We can define the outer orbit’s generalised
semi-major axis ag and generalised eccentricity eg in terms of the peri/apocentre as

ag ≡
1
2(ra + rp); eg ≡

ra − rp
ra + rp

. (2.48)

These reduce to the usual orbital elements in the case of a Keplerian potential. These
variables fully characterize the outer orbit of the binary in a given spherical potential.

In any spherical potential with scale radius b and total massM we can also construct
the dimensionless parameter A∗ ≡ A/(GM/b3); this normalization arises because A is
constructed from the second derivatives of the potential, which are of order2 GM/b3,
see equation (2.41). This allows us to estimate

A = 226 Myr−2 ×
(
A∗

0.5

)( M
105M�

)(
b

pc

)−3
. (2.49)

2Note that 2π/
√
GM/b3 is roughly ∼ Tφ, the characteristic azimuthal orbital period of the binary

around the cluster, so that A ∼ 4π2A∗/T 2
φ .
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Figure 2.4: Plots of A∗ for circular outer orbits (eg = 0) as a function of ag/b (where b is a scale
radius) in the same four potentials as in Figure 2.3.

Both A∗ and Γ are dimensionless numbers which, for a given potential, depend only
on ag and eg. In the following we will explore the dependence of A∗ (rather than A,
which also depends on the cluster mass and size) and Γ on the shape of the potential
and the binary orbit in it.

We use the following four potentials, which give a representative overview of the
possible behaviours of A in realistic spherically symmetric clusters:
(i) the isochrone potential (which has a constant-density core and half mass radius rh =
3.06b)

Φiso(r) = −GM/(b+
√
b2 + r2), (2.50)

(ii) the Plummer potential (also has a core and rh = 1.31b)

ΦPlum(r) = −GM/
√
b2 + r2, (2.51)

(iii) the Hernquist potential (has no core, and rh = 2.41b)

ΦHern(r) = −GM/(b+ r), (2.52)

(iv) the NFW potential (has no core and has a divergent mass profile)

ΦNFW(r) = −GMr−1 ln(1 + r/b). (2.53)

The NFW potential arises from a density distribution

ρ(r) ∝
(
r

b

)−1 (
1 + r

b

)−2
. (2.54)

In equation (2.53) the quantity M is not the mass of the model (which is formally
infinite), just a constant with units of mass.
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Figure 2.5: Same as Figure 2.3 but showing contour plots of the parameter Γ. Note that Γ→ 0
at the centre of the cored potentials (isochrone and Plummer). The dashed yellow in each plot
corresponds to Γ = 1/5, which is the location of an important bifurcation in the dynamical phase
portrait, as we show in Chapter 3.

Figure 2.6: Behavior of the parameter Γ for circular orbits (eg = 0) as a function of ag/b (where
b is a scale radius) in the same four potentials as in Figure 2.5. This plot demonstrates that Γ
converges to 1 for potentials that are Keplerian at large radii. In the opposite limit ag/b→ 0, we
see that Γ→ 0 for the cored potentials and Γ→ 1/9 for NFW, as expected (§2.6.2).
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For illustration, in Figure 2.7 (left panels) we show three examples of numerically
integrated orbits in some of these potentials. (Each orbit was integrated for 100 azimuthal
periods; the first few periods are highlighted in red). The first two (‘I’ and ‘II’) orbit
the isochrone potential (2.50), which has a constant density core for r . b. The third
(‘III’) orbits the Hernquist potential (2.52), which is coreless. In Table 2.1 we list
the peri/apocentre rp/a, semi-major axis ag, eccentricity eg, azimuthal period Tφ, and
the values of A∗ and Γ calculated using equation (2.39). We also provide values of
A∗num,Γnum obtained by direct averaging of Φαβ along each numerically integrated outer
orbit (see Appendix 2.F), to which we will return when discussing the validity of the
axisymmetric averaging approximation in §2.7.

Behavior of A∗

In Figure 2.3 we plot log10A
∗ in the (ag, eg) plane for the potentials (2.50)-(2.53). We

see that A∗ is a strong function of ag but a weaker function of eg. The dependence on eg

emerges predominantly for orbits with eg & 0.5; it is rather weak at all eg for orbits with
ag . b, where b is the scale radius of the potential in question. The difference in radial A∗

behavior between different potentials is most pronounced for orbits with ag . b. In this
region there is a sharp increase in A∗ in the uncored (Hernquist and NFW) potentials,
but a much shallower gradient in the cored potentials (isochrone and Plummer).

We can make the comparison more quantitative by examining the radial profile of A∗

for circular outer orbits (of radius ag and eccentricity eg = 0). Then A∗ is a function
of ag/b only, and is plotted in Figure 2.4. We see that A∗(ag/b) becomes significantly
larger than 1 for ag � b in the case of non-cored potentials, but reaches a maximum
of 0.5 in the isochrone case. For those potentials with finite total mass M we can
construct the density-weighted average

〈A∗〉ρ = 1
M

∫ ∞
0

4πr2ρ(r)A∗(r) dr, (2.55)

still assuming a circular outer orbit. We find 〈A∗〉ρ = 0.0617, 0.4234 and 0.65 for
isochrone, Plummer and Hernquist potentials respectively. The isochrone model has
by far the smallest 〈A∗〉ρ.

Behavior of Γ

Figure 2.5 shows Γ in the (ag, eg) plane for the same four potentials. We see that Γ→ 0
for ag � b in cored potentials, because in the cluster core the potential is close to the
spherical harmonic potential (for which Γ is effectively zero, see §2.3.1 and §2.6.1). For
the coreless potentials Γ is always positive, as expected. We see that for ag & b, the
value of Γ is quite sensitive to the outer orbit eccentricity eg in all four potentials. At
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fixed ag, increasing eg corresponds to a decrease in Γ. For the cored potentials this is
because high-eg orbits start probing the cluster core where again the potential is roughly
spherical harmonic, which tends to lower Γ.

Meanwhile, increasing ag at fixed eg tends to increase Γ. At large ag all finite mass
potentials reduce to a Keplerian potential for which Γ = 1. In the NFW potential, the
Γ profile is shallow because the potential decays slowly, namely as ΦNFW ∼ r−1 ln(r/b)
for r � b. Hence it never becomes sufficiently Keplerian to reach Γ ∼ 1.

To better illustrate this convergence at large ag/b, in Figure 2.6 we show Γ(ag/b) for
circular outer orbits (eg = 0) in the same four potentials as in Figure 2.5. We see that
the Γ→ 1 convergence does occur for all potentials that are asymptotically Keplerian as
r →∞, although in some cases one has to go to radii ag & 50b to observe it satisfactorily.
Additionally, at very small radii the NFW density profile can be approximated as a
power-law cusp, ρ ∝ r−1, see equation (2.54). Using the result listed in §2.6.1 (and
derived in Appendix 2.D.1) we expect to find Γ = 1/9 as ag → 0, and indeed this is
reflected in Figure 2.6.

We note that some of the orbits in the potentials (2.50)-(2.53) will have commensurable
(or almost commensurable) radial and azimuthal frequencies. For these orbits, i.e. at
some points in (ag, eg) space, equation (2.39) is not valid, because its derivation relies
upon orbits densely filling an axisymmetric annulus, see §2.4.2. This is particularly
true of potentials with a core at small ag, where the potential is close to harmonic (c.f.
§2.7). Nevertheless, Figures 2.3 and 2.5 give a good idea of how A and Γ change as
we consider different orbits within the cluster.

2.6.3 Behavior of Hamiltonian characteristics in axisymmetric potentials

For axisymmetric potentials it is difficult to make rigorous mathematical statements about
A and Γ. In Appendix 2.D.2 we show that in this case, in principle, Γ can take any value
∈ (−∞,∞); however, to achieve extreme negative values of Γ, or Γ > 1, may require
very unusual orbits. (Two such examples are given in Appendix 2.D.2). Meanwhile, in
this section we focus on the most typical orbits in axisymmetric potentials via numerical
examples. The A∗ and Γ values in this section are calculated numerically using the
procedure outlined in Appendix 2.F, and are therefore denoted A∗num,Γnum.

We will use two axisymmetric potentials in our numerical examples. The first is
the flattened power-law potential (Evans 1994):

ΦFPL(R,Z) = −Φ0
bβ

(R2 + (Z/q)2 + b2)β/2
, (2.56)
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Figure 2.7: Orbits in spherical potentials (see Table 2.1) used for demonstrating convergence
to the ‘axisymmetric annulus’ approximation. Left panels show the outer orbit Rg in the (X,Y )
plane, while right panels demonstrate the convergence of time-averaged coefficients Φαβ (insets
illustrate the color scheme for each αβ coordinate pair). Orbits (I) and (II) were integrated in
the spherical isochrone potential (2.50), while Orbit (III) is in the Hernquist potential (2.52).
All panels show 100 azimuthal periods’ worth of data. In the left panels we highlight the first
few azimuthal periods of the orbit in red. Convergence is much slower for Orbit (II) because it
spends most of its time in a constant density core, so radial and azimuthal frequencies are almost
commensurable, leaving large unfilled gaps in the annulus even after 100Tφ.
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Figure 2.8: Contours of constant log10(ρMN/ρMN,0) where ρMN ≡ ∇2ΦMN/(4πG) is the density
distribution corresponding to the Miyamoto-Nagai potential (2.57), and ρMN,0 is the central
density at R = Z = 0. We show the cases bh/b` = 1 (blue) and bh/b` = 0.05 (red). In both cases,
contours are spaced linearly from −1.5 to 0.

where −Φ0 is the central potential, b is a core radius and q is the oblateness parameter:
q < 1 corresponds to an oblate potential which can be used to model elliptical galaxies and
galactic bulges (Evans 1994). The natural definition of A∗ in this case is A∗ ≡ A/(|Φ0|/b2).
We choose β = 1/2 and q = 0.94, meaning that this potential is only slightly flattened. One
can derive a number of useful analytical results in such weakly non-spherical potentials;
we defer this investigation to a future study. Here we simply demonstrate that even in
the case of a weakly flattened potential large departures from the behaviour typical for
purely spherical potentials described in §2.6.2 become possible.

The other potential we will use is the Miyamoto-Nagai potential (Miyamoto & Nagai
1975):

ΦMN(R,Z) = − GM√
R2 +

(
b` +

√
Z2 + b2h

)2
, (2.57)

where b` is the scale length and bh is the scale height. As one changes the value of
bh/b`, the Miyamoto-Nagai potential smoothly transitions from the Kuzmin potential of
a razor thin disk (bh � b`) to the spherical Plummer potential frequently used to model
globular clusters (bh � b`) (Binney & Tremaine 2008). In Figure 2.8 we plot contours
of constant density ρMN ≡ ∇2ΦMN/(4πG) in the (R,Z) plane for two Miyamoto-Nagai
models used in this Chapter, namely bh/b` = 1 and bh/b` = 0.05. The natural definition
of A∗ in this potential is A∗ ≡ A/(GM/b3`).

Orbits in the midplane of an axisymmetric potential

The simplest non-spherical case to consider is when the binary’s outer orbit Rg is confined
to the (X,Y ) midplane of an axisymmetric potential. Then Rg still traces a planar rosette
with a fixed peri/apocentre (rp, ra) just as in the spherical case, so we can easily compute
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Figure 2.9: Examples of orbits in the midplane of the thin disk represented by the Miyamoto-
Nagai potential (2.57) with bh/b` = 0.05. We integrate the orbits for 100Tφ (the first few Tφ are
highlighted red). The resulting numerically determined Γnum values are all very close to the value
Γ = 1/3 that was predicted simply on the basis of the disk being very thin, so that the vertical
curvature of the potential is much larger than the radial curvature. See §2.6.3 for details.

A and Γ as in §2.4.3. In Appendix 2.C we show how to compute A,B,Γ in the case
of epicyclic outer orbits in a disk-like potential. We find A = B = ν2, where ν is the
vertical epicyclic frequency at the guiding radius; therefore Γ = 1/3.

In fact, we already deduced in §2.6.1 that Γ = 1/3 will hold for any orbit Rg which is
confined to the plane of a very thin axisymmetric disk. This follows from the fact that
the curvature of the potential is by far greatest in the Z direction at any given position
in the disk, so that Φzz(R, 0) � Φxx(R, 0) ∀ R. Then A ≈ B ≈ Φzz and so Γ ≈ 1/3.
In Figure 2.9 we confirm this prediction using three very different orbits in the (X,Y )
midplane of a thin (bh/b` = 0.05) Miyamoto-Nagai potential. The Γnum values are (a)
0.321, (b) 0.330 and (c) 0.320, all very close to Γ = 1/3.

Orbits that are far from coplanar

As we show in Appendix 2.D, we always have Γ ≥ 0 in realistic, finite-mass spherical
potentials. For Γ to fall below zero the potential must be non-spherical, but also, according
to definitions (2.41), the outer orbit of the binary must have |Φxx| > |Φzz|. Qualitatively,
this implies that the average ‘radial curvature’ of the potential over the orbit needs to
be greater than the average ‘vertical curvature’. This is not going to be the case while
the orbit is confined near a single plane, as we have just seen. However, this situation is
naturally realised in potentials that are highly prolate in the Z direction (asymptotically
‘cylindrical’, with Φ(R,Z) = Φ(R)). In such potentials Γ ≈ −1/3 (see §2.6.1). Also,
to probe the negative Γ regime we can consider orbits in non-spherical potentials that
make large excursions ‘out of the plane’, i.e. in the Z direction.

This is demonstrated in Figure 2.10, in which we plot four Orbits (‘IV’-‘VII’) in the
flattened power-law potential (2.56) with q = 0.94 and β = 1/2. These four Orbits are
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Table 2.1: Details of the outer orbits Rg used for numerical verification of the ‘axisymmetric
annulus’ approximation in §2.6.2, §2.7.1 and Figure 2.7. An orbit in a spherical potential (with mass
M and scale radius b) is uniquely specified by its peri/apocentre distances rp/a, or equivalently
by its generalised semi-major axis ag and eccentricity eg. We also provide the orbit’s azimuthal
period Tφ around the cluster, its analytical A∗ and Γ values, and the corresponding numerically
computed values A∗

num,Γnum, all to 3 significant figures.

Orbit of Rg Potential (rp/b, ra/b) ag/b eg Tφ
√

GM
b3 A∗ A∗num Γ Γnum

(I) Φiso (5.29, 11.2) 8.2 0.36 171 0.00106 0.00106 0.685 0.686
(II) Φiso (0.08, 1.21) 0.65 0.88 18.0 0.253 0.255 0.0676 0.0650
(III) ΦHern (0.08, 1.21) 0.65 0.88 11.0 1.15 1.15 0.192 0.195

Table 2.2: Properties of Orbits (IV)-(VII) integrated in the flattened power-law potential
(2.56) with β = 1/2 and q = 0.94 (c.f. Figure 2.10). The initial conditions of Orbits (IV)-(VII)
are identical except for the initial azimuthal velocity vφ. We take initial (R, vR, φ, Z, vZ) =
(b, 0.1

√
GM/b, 0.1, 0.2b, 0.5

√
GM/b), and initial vφ is given below.

Orbit Potential vφ/
√
GM/b A∗num Γnum

(IV) ΦFPL 1.35 0.0332 0.243
(V) ΦFPL 0.95 0.182 0.192
(VI) ΦFPL 0.35 0.552 0.016
(VII) ΦFPL 0.05 0.626 −0.085

initiated with exactly the same initial conditions except for their initial azimuthal velocity
vφ; the full details of the initial conditions, as well as the resulting A∗num and Γnum values,
are given in Table 2.2. In the top row of Figure 2.10 we have Orbit (IV), with initial
vφ = 1.35

√
GM/b. Orbit (IV) is certainly not planar but the typical excursions in Z

are fairly small compared to the excursions in R. As a result the Γnum = 0.243 value
is less than 1/3 but still significantly greater than zero. As we move down the page we
decrease the initial azimuthal velocity each time, so that Orbits (V)-(VII) initially have
vφ/

√
GM/b = 0.95, 0.35, 0.05 respectively (while keeping all other initial conditions the

same). The radial excursions decrease as the initial azimuthal velocity decreases, until
they become comparable to the vertical excursions. Eventually Γ moves below zero in
Orbit (VII), see Table 2.2. The A∗ values grow as we move down the page since the
binary samples a stronger potential when it is closer to the origin.

For our final set of examples we compare four more Orbits (‘VIII’-‘XI’) in the Miyamoto-
Nagai potential (2.57) with bh/b` = 1, the intial conditions for which are given alongside

Table 2.3: Properties of Orbits (VIII)-(XI) integrated in the Miyamoto-Nagai potential (2.57)
with bh/b` = 1 (c.f. Figure 2.11). The initial conditions of Orbits (VII)-(XI) are identical except
for the initial vertical coordinate Z. We take initial (R, vR, φ, vφ, vZ) = (b`, 0, 0, 0.25

√
GM/b`, 0),

and initial Z is given below.

Orbit Potential Z/b` A∗num Γnum

(VIII) ΦMN, bh/b` = 1 0.1 0.256 0.153
(IX) ΦMN, bh/b` = 1 1.0 0.122 0.042
(X) ΦMN, bh/b` = 1 2.0 0.0392 −0.163
(XI) ΦMN, bh/b` = 1 3.0 0.0140 −0.384
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Figure 2.10: Similar to Fig. 2.7, but for Orbits (IV)-(VII) demonstrating convergence to the
‘axisymmetric torus’ approximation in non-spherical potentials. Middle panels show the meridional
projection of Rg(t). Also, the right panels show the convergence of Φxz and Φyz, which are not
identically zero for non-coplanar orbits (they should vanish only upon outer orbit averaging).
These Orbits with properties listed in Table 2.2 were integrated for 100 azimuthal periods in a
flattened power law potential (2.56) with β = 1/2 and q = 0.94. Initially, the Orbits differ only in
their azimuthal velocity vφ, see Table 2.2. (Note the different axis scales for different orbits).
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Figure 2.11: Similar to Figure 2.10, but now for Orbits (VIII)-(XI) with characteristics given in
Table 2.3 integrated in a Miyamoto-Nagai potential (2.57) with bh/b` = 1. These orbits differ only
in their initial vertical coordinate Z, with initial Z/b` = 0.1, 1.0, 2.0, 3.0 respectively. All panels
show 100 azimuthal periods’ worth of data. (Note the drastically changing vertical scale in the
central column, particularly panel (b)).
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their resulting A∗num,Γnum values in Table 2.3. At large distances this potential is
significantly flatter than the q = 0.94 flattened power-law potential. Orbits (VIII)-(XI)
are plotted in the left hand column of Figure 2.11. Each Orbit has exactly the same initial
conditions except we change the initial vertical coordinate Z, using Z = 0.1b`, b`, 2b`
and 3b` respectively. Increasing the initial Z thickens the orbit. Orbit (VIII) (top row,
initial Z = 0.1b`) is almost coplanar and has Γnum = 0.153. The Γnum value decreases
as we move down the page, reaching a minimum value of Γnum = −0.384 for Orbit (XI)
(bottom row, Z = 3b`) which is thicker vertically than it is radially. Meanwhile, as we
move from top to bottom the A∗num value decreases because the orbit spends more time
away from the midplane where the tidal potential is strongest. An even more extreme
orbit in this potential, with the same initial conditions except Z = 4b` (resulting in
Γnum = −1.4), is presented in Figure 2.12.

Finally, note that Orbit (VIII) is very similar in appearance to the orbit in Figure
2.9a: both are roughly epicyclic, so they should obey equations (2.75) and (2.76). The
difference between them is that in the case of Orbit (VIII) the potential felt by the binary
is significantly less flattened, since this Orbit resides predominantly in the quasi-spherical
core of the potential (bh/b` = 1). As a result, Φzz does not dominate over Φxx and hence
Γ ends up being significantly less than 1/3 (unlike the orbit in Figure 2.9a which explores
a much more flattened version of the Miyamoto-Nagai potential with bh/b` = 0.05).

2.7 Validity of secular Hamiltonian

In §2.6 we focused on understanding the typical values of A,Γ for various types of orbit
in different potentials. However the Hamiltonian (2.42) is only valid if the symmetry
conditions (2.33)-(2.36) for the time-averages Φαβ are satisfied. In addition it is reasonable
to require that Φαβ converge to fixed values (say to within a few percent) on timescales
significantly shorter than the timescale for secular evolution (which will be derived in
Chapter 3). In this section we check the validity of these assumptions numerically. The
procedure for calculating Φαβ numerically is given in Appendix 2.F.

2.7.1 Spherical potentials

In a spherical potential, orbits Rg(t) that have non-commensurable frequencies densely
fill an axisymmetric annulus. If this is true then the time-averaged coefficients Φαβ

should obey the symmetry properties (2.33), (2.35).
To verify this we use Orbits (I)-(III). Their initial conditions are given alongside

their A∗, A∗num,Γ,Γnum values in Table 2.1. The right panels in Figure 2.7 show the
corresponding running average (from t = 0 to current time) of numerically computed



2. General formulation 48

Φαβ. As the number of completed orbits grows, the time-averaged derivatives of the
potential tend to converge towards fixed values.

Orbit (I) has rather large semi-major axis and small eccentricity, so that it stays
far from the core at all times, filling its annulus densely. The ‘axisymmetric annulus’
approximation works very well in this case, so the (semi-)analytic and numerically
computed values agree: A∗ = A∗num and Γ = Γnum to within 1% accuracy.

We have picked rather extreme examples in Orbits (II) and (III) in order to demonstrate
behaviour of orbits Rg that are both very radial and tightly bound near the centre of
the cluster. Orbit (II) spends a lot of time in the isochrone potential’s constant density
core where its frequencies are almost commensurable (ΩR ≈ 2Ωφ); as a result it precesses
slowly, so that there are unfilled gaps left in its annulus even after t = 100Tφ. This
issue does not arise in the uncored Hernquist potential, so Orbit (III) fills its annulus
more efficiently than Orbit (II). Nevertheless, the axisymmetric approximation is still
very successful in both cases, with a maximum discrepacy of ∼ 4% arising between
the Γ and Γnum values of Orbit (II).

However, we notice that while the converged symmetry properties of the Φαβ (see
equations (2.33), (2.35)) are well established after & 15Tφ for Orbits (I) and (III), they
are less well established for Orbit (II) even at t & 45Tφ. Again this is because Orbit (II)
does not fill its annulus efficiently. This can be problematic because if the Φαβ fail to
converge on a timescale shorter than the secular evolution timescale, the doubly-averaged
theory can break down, as we will see in Chapter 3.

2.7.2 Axisymmetric potentials

In a (non-spherical) axisymmetric potential, orbits Rg(t) that have non-commensurable
frequencies densely fill an axisymmetric torus and so the time-averaged coefficients Φαβ

should obey the symmetry properties (2.33), (2.35), and (2.36). To verify this numerically
we use Orbits (IV)-(VII) in the flattened power-law potential (2.56) with q = 0.94 and
β = 1/2 (see Table 2.2 and Figure 2.10), and Orbits (VIII)-(XI) in the Miyamoto-Nagai
potential (2.57) with bh/b` = 1 (see Table 2.3 and Figure 2.11).

Some features of the Φαβ convergence plots are similar to the spherical case. For
example, in Figure 2.10 the derivatives Φαβ converge rather slowly in the bottom panel
because the Orbit (VII) fills its torus rather sparsely, owing to the large fraction of time
it spends in the almost-harmonic potential of the core.

Note that the rightmost columns in Figures 2.10 and 2.11 also show the convergence of
Φxz and Φyz. This is different from Figure 2.7 since now we are dealing with non-planar
orbits so that these derivatives are no longer identically zero. Although the corresponding
time-averages Φxz,Φyz do indeed converge to zero in all of our axisymmetric examples
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as expected, in most cases their convergence takes significantly longer than that of the
other Φαβ coefficients. This is what we would expect from looking at the φg dependence
of equations (2.26)-(2.31): the derivatives Φxx, Φyy and Φxy fluctuate twice as rapidly
with respect to φg compared to Φxz,Φyz. Slower convergence of Φxz and Φyz seems to
be especially apparent for strongly non-coplanar orbits, i.e. orbits which make large
excursions in the Z direction. Orbits that inefficiently fill their torus (i.e. on timescales
longer than the secular evolution timescale) can render the doubly-averaged theory
inaccurate, as discussed in detail in §3.7.

2.8 Discussion

In deriving the secular Hamiltonian (equations (2.42), (2.43)) we relied on several
approximations. First, we assumed that the outer orbit-averaging procedure used for
computing potential derivatives Φαβ converges rapidly when compared to the timescale
for secular evolution (to be derived in §3.2.6). The rate of convergence of various Φαβ

components was explored in §2.7. In Chapter 3 we will use direct numerical integrations
of binaries orbiting in stellar cluster potentials to study how well this double averaging
procedure works in practice.

Second, we truncated our expansion of the tidal Hamiltonian in §2.2.1 at the quadrupole
order. However, studies of the LK mechanism have shown the importance of higher order —
‘octupole’ — terms for the dynamics of triples in certain situations, particularly when the
outer orbit is highly eccentric (Lithwick & Naoz 2011; Li et al. 2014). This raises a question
of whether octupole terms can be important for the secular dynamics of binaries in external
tidal fields. While we derive octupole-level corrections to our doubly-averaged Hamiltonian
in Appendix 2.E, in practice they are unlikely to be important for our purposes. This is
because in realistic situations the ratio of the semi-major axis of the inner binary orbit
(a . 100 AU) is much smaller than the size of its outer orbit (|Rg| ∼ 1 pc, comparable to
the cluster size), rendering the timescale on which octupole-level effects may manifest
themselves too long (we will see in Chapter 3 that a characteristic timescale of secular
evolution driven by quadrupole terms in a typical globular cluster is at least tens of Myrs)3.

Third, our calculation assumes a spatially smooth and time-invariant tidal potential.
This approximation neglects the granularity and stochastic variability of the cluster
potential caused by encounters with other stars, which are very important in dense
environments of clusters (Heggie 1975; Hut & Bahcall 1983; Hut 1983; Heggie & Rasio

3On the other hand, octupole terms could have some relevance at high outer orbital eccentricities,
where the pericentre distance of the binary’s outer orbit is much smaller than 1pc. Additionally, octupole
effects might accumulate to a significant level on timescales of many tens or hundreds of secular periods,
which could be relevant for cluster tide-driven mergers (Chapter 5).
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1996; Collins & Sari 2008). The cumulative effect of a large number of such encounters
is what eventually contributes to the smooth tidal field of the cluster (Collins & Sari
2010); thus, one hopes that in the long run our framework should provide a qualitatively
accurate picture of binary evolution in clusters. We discuss stellar encounters further
in §3.9.3 and §8.2.1.

An effect that can modify the binary’s outer orbit in a stellar cluster is resonant
relaxation. Rauch & Tremaine (1996) showed that in quasi-Keplerian systems (such as
nuclear clusters dominated by a central super-massive black hole) angular momentum is
efficiently exchanged between stellar orbits that have commensurable frequencies. When
applied to a binary in a quasi-Keplerian cluster, precession of the binary’s outer orbit due
to resonant interactions with other stars (so-called ‘vector resonant relaxation’) can alter
its inclination relative to the inner orbital plane, potentially bringing an initially low-
inclination binary into a high-inclination regime and triggering LK oscillations (Hamers,
Bar-Or, et al. 2018b). While this effect has not been explored for binaries in non-Keplerian
potentials, vector resonant relaxation can indeed operate in non-Keplerian systems such
as globular clusters (Meiron & Kocsis 2019).

Additionally, the fact that a binary is typically heavier than the average star in a
cluster means that it will tend to sink towards the centre of the cluster via dynamical
friction (Binney & Tremaine 2008). Moreover, the global properties of the cluster itself
may evolve as a result of two-body relaxation leading to core collapse. All of these effects
can change the values of A and Γ for a given binary over long time intervals. We defer an
exploration of their impact upon binary evolution to future work (see also §8.2).

Finally, an important assumption that lies at the foundation of our time-averaging
procedure is that different frequencies characterizing binary motion in the cluster are not
commensurable with each other (see §2.4.2). If this condition is violated, the outer orbit
Rg no longer fills an axisymmetric torus inside the cluster uniformly in azimuth, rendering
the equations (2.33)-(2.36) formally invalid. This issue is addressed in more detail next.

2.8.1 Commensurable frequencies

Orbits in realistic spherical potentials obey the following relation between the radial (ΩR)
and azimuthal (Ωφ) frequencies (Binney & Tremaine 2008):

1/2 ≤ Ωφ/ΩR ≤ 1. (2.58)

Thus, in spherical potentials there are infinitely many rational values of Ωφ/ΩR in the
interval (1/2, 1). As a result, a small number of resonant points in the (ag, eg) plane will
have Ωφ/ΩR = p/q with integer p, q. Strictly speaking, binaries on these resonant outer
orbits will not satisfy the axisymmetric (‘filled annulus’) averaging approximation. On
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the other hand we expect that these orbits should still be described (at least roughly)
by the filled annulus approximation as long as the integers p, q � 1. In fact, numerical
experiments in spherical potentials (not shown here) suggest that even for binaries with
Ωφ/ΩR very close to 2/3, 3/4, etc., good convergence to this approximation occurs within
several outer orbital periods. One has to choose highly pathological initial conditions
in order to get this approximation to fail.

The most important cases of outer orbits with commensurable frequencies are those in
the harmonic (Ωφ/ΩR ≡ 1/2) and Keplerian (Ωφ/ΩR ≡ 1) potentials. Even here we can
continue to describe the dynamics straightforwardly: if the potential is purely harmonic
we can treat it as in §2.3.1, and we show in Appendix 2.B that Keplerian potentials are
described by our doubly-averaged formalism with Γ = 1. However, it should be stressed
that we have not used the axisymmetric averaging approximation in either of these cases:
the harmonic potential just happens to be effectively axisymmetric after single-averaging,
and the Keplerian potential is known to be axisymmetric under double averaging to
quadrupole order. In neither case do orbits ‘fill their annulus’4.

In practice the most problematic case is when the binary experiences a potential that
is almost harmonic or almost Keplerian, so that the outer orbit precesses apsidally, but
not quickly enough to fill a circular annulus on a secular timescale and thereby qualify for
an axisymmetric treatment (see also Bub & Petrovich 2020). For example, orbits that
spend a lot of time in a constant-density core of the cluster potential experience an almost
harmonic potential and so tend to fill their annulus very slowly (Figure 2.7c).

2.8.2 Relation to previous work

Many previous studies have looked at secular evolution of binaries perturbed by external
potentials. The effect of an arbitrary quadrupole perturbation upon a binary has been
briefly considered by Mikkola & Nurmi (2006). In particular, their equation (20) gives the
quadrupole potential experienced by a binary in a star cluster consisting of a large number
of point masses mk. Our perturbing Hamiltonian H1 is recovered from their result in the
mean-field limit (i.e. by replacing the exact potential of the cluster, −G∑kmk/|R−Rk|,
with the smooth potential Φ(R)). However, Mikkola & Nurmi (2006) did not explicitly
convert to orbital elements, perform any averaging, or develop any secular theory as
we do here. In a similar vein, a short paper by Katz & Dong (2011) considered the
secular dynamics of a binary perturbed by a generic quadratic potential and included
axisymmetric potentials as a special case. They did convert to orbital elements but did
not go much further; in particular they did not provide any prescription for computing
the coefficients of the averaged perturbing potential.

4The Keplerian potential is not axisymmetric to octupole order — see Appendix 2.E.
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Studies of tidal effects of the Galactic disk on wide binaries (Heisler & Tremaine 1986;
Byl 1986; Yabushita 1989) represent an important limit (Γ→ 1/3) of our general theory,
see §2.5.2 and Appendix 2.C. Since Heisler & Tremaine (1986), Galactic tides have been
included in many studies of cometary orbits (e.g. Matese & Whitman 1989; Matese &
Whitmire 1996; Breiter, Dybczynski, et al. 1996; Wiegert & Tremaine 1999; Brasser
2001; Fouchard 2004; Fouchard, Froeschlé, Matese, et al. 2005; Fouchard, Froeschlé,
Valsecchi, et al. 2006; Breiter, Fouchard, et al. 2007), as well as planetesimal orbits
(e.g. Higuchi et al. 2007).

Veras & Evans (2013c) considered a very general form of the perturbed two-body
problem, allowing for both position- and velocity-dependent tidal forces to act upon
the binary. Their equations (25)-(29) are more general versions of our singly-averaged
equations (c.f. our singly-averaged Hamiltonian (2.19)), and our equations are recovered if
one sets the velocity-dependent forces to zero. However they did not derive any analogues
of our doubly-averaged equations. Veras & Evans (2013b) noted that Galactic forces may
impact the evolution of exoplanetary systems around stars near the bulge of the Galaxy
where the Galactic tide is much stronger than it is in the Solar neighbourhood.

Another interesting and obvious limit of our theory, Γ = 1 — which is, however,
rather distinct, see §2.5.1 and Appendix 2.B — has been explored in numerous studies
of Lidov-Kozai dynamics (Lidov 1962; Kozai 1962; Fabrycky & Tremaine 2007; Naoz
2016) and its extensions. One interesting extension to the LK problem was made by
Petrovich & Antonini (2017), who considered the effect of an axisymmetric (non-spherical)
nuclear cluster potential on compact object binaries that are themselves orbiting a central
super-massive black hole (SMBH). The non-spherical part of the cluster potential was
considered to drive nodal precession of the binary’s quasi-Keplerian outer orbit around
the SMBH (continuously changing the relative inclination in the triple system composed
of the binary and SMBH, which is important for the operation of LK cycles in this
sub-system), while the dominant spherical part drove apsidal precession of the outer orbit.
Our doubly-averaged formalism covers this problem in the case where the characteristic
timescales for nodal and apsidal precession of the outer orbit are much shorter than the
secular timescale, so that the outer orbit fills its torus. Our singly-averaged equations
cover it in all cases. However, unlike Petrovich & Antonini (2017), we also account for
the direct effect of the tidal torque due to the potential of the cluster on the orbital
elements of the inner orbit of the binary.

Several authors have considered the problem of a star in orbit around a SMBH in a
nuclear cluster (e.g. Sridhar & Touma 1999; Ivanov et al. 2005; Löckmann et al. 2008;
Šubr et al. 2009; Chang 2009; Haas et al. 2011; Merritt 2013; Li et al. 2015; Iwasa & Seto
2016; Iwasa & Seto 2017). The SMBH-star system effectively forms a binary. The binary’s
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Keplerian orbital elements may then evolve on secular timescales due to some combination
of (i) the mean field nuclear cluster potential, (ii) GR pericentre precession, (iii) an infalling
massive black hole on a slowly decaying circular orbit, (iv) a circumnuclear ring of material,
etc. While this class of problems is reminiscent of our work, it is not quite the same
because in the SMBH-star case the barycentre of the binary does not move, and so there is
no clean separation between single- and double-averaging. In some cases, e.g. for a binary
that sits at the centre of a spherical cusp, there is not even a well-defined tidal expansion
of the potential. Instead, averaging of the potential is incorporated into the averaging
over the stellar Keplerian orbit around the SMBH, which is different from our approach.

One of the most interesting recent applications of secular dynamics has been the
possibility of substantial shrinking of binary orbits by LK cycles with dissipative effects.
Such applications include the origin of hot Jupiters (Fabrycky & Tremaine 2007; Naoz, Farr,
et al. 2011; Petrovich 2015; Hamers 2017), formation of blue stragglers (Perets & Fabrycky
2009; Knigge et al. 2009), white-dwarf mergers (Thompson 2011; Katz, Dong, & Malhotra
2011; Toonen et al. 2018), and compact object binary mergers in globular or nuclear star
clusters (Antognini et al. 2014; Rodriguez, Morscher, et al. 2015; Naoz 2016; Silsbee &
Tremaine 2017; Petrovich & Antonini 2017; Leigh et al. 2018). Binary evolution driven by
cluster tides explored in our work represents a different evolutionary scenario that may
lead to similar outcomes (without invoking a nearby third companion). The possibility
that this mechanism can lead to compact object mergers is studied in Chapters 5 and 7.

2.9 Summary

In this Chapter we explored secular evolution of binary systems orbiting in axisymmetric
stellar clusters. We derived a Hamiltonian describing this evolution for an arbitrary
form of the smooth cluster potential, averaged it over the (inner) orbital motion of the
binary, and then averaged it again over the (outer) orbit of the binary around the cluster
assuming the potential is axisymmetric. Our results can be summarized as follows.

• When the doubly-averaged Hamiltonian is cast in dimensionless form, all the
information about the tidal potential is contained in a single dimensionless parameter
Γ, which depends on the background potential Φ and the orbit of the binary in the
cluster. The value of this parameter determines the phase portrait of the binary
evolution, to be explored in Chapter 3.

• The timescale of secular evolution is set by another (dimensional) parameter A,
which, like Γ, depends on the cluster potential and the binary’s outer orbit.
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• In certain cases A and Γ can be calculated (semi-)analytically. Such cases include (a)
orbits in spherical potentials, (b) orbits confined to the midplane of an axisymmetric
potential, and (c) epicyclic orbits near the midplane of an axisymmetric potential.
We demonstrate how our calculations reproduce the known results for Lidov-Kozai
evolution, evolution of Oort Cloud comets due to the Galactic tide, and so on.

• We map out the behavior of A and Γ in different spherically symmetric potentials
as a function of size and radial elongation of the binary orbit. We find that Γ is
small in the central regions of clusters with cored potentials, but tends to unity in
clusters with finite mass as the orbit size increases. In general, 0 ≤ Γ ≤ 1 in realistic
finite-mass spherical potentials.

• In general axisymmetric potentials, Γ can easily attain negative values, in particular
for highly inclined (i.e. non-coplanar) orbits.

• The accuracy with which our doubly-averaged Hamiltonian characterizes binary
evolution deteriorates for highly non-coplanar orbits in axisymmetric potentials.
Commensurability of orbital frequencies in the cluster potential may also present a
problem for application of our theory at a quantitative level.

These results will be used extensively in Chapter 3, where we systematically explore
the dynamics of binaries driven by the tidal field of clusters for different values of Γ. There
we verify numerically the predictions of the secular theory based on our doubly-averaged
Hamiltonian, and derive timescales for secular eccentricity oscillations.
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Appendices

2.A The singly-averaged Hamiltonian in orbital elements

In this Appendix we give the full algebraic expressions in terms of orbital elements for
the terms 〈rαrβ〉M that enter the singly-averaged Hamiltonian (2.19). They are

〈x2〉M =a2

16
(
cos 2i(2 + 3e2 + 5e2 cos 2ω cos 2Ω) + 5e2 cos 2ω(3 cos 2Ω + 2 sin2 i)

+(2 + 3e2)(3 + 2 cos 2Ω sin2 i)− 20e2 cos i sin 2ω sin 2Ω
)
, (2.59)

〈y2〉M =a2

16
(
cos 2i(2 + 3e2 − 10e2 cos 2ω cos2 Ω) + 5e2 cos 2ω(1− 3 cos 2Ω)

+(2 + 3e2)(3− 2 cos 2Ω sin2 i) + 20e2 cos i sin 2ω sin 2Ω
)
, (2.60)

〈z2〉M = a2

4 sin2 i
(
2 + 3e2 − 5e2 cos 2ω

)
, (2.61)

〈xy〉M =a2

16
(
20e2 cos i cos 2Ω sin 2ω

+(5e2(3 + cos 2i) cos 2ω + 2(2 + 3e2) sin2 i) sin 2Ω
)
, (2.62)

〈xz〉M = a2

4 sin i
(
5e2 cos Ω sin 2ω − cos i(2 + 3e2 − 5e2 cos 2ω) sin Ω

)
, (2.63)

〈yz〉M = a2

4 sin i
(
5e2 sin Ω sin 2ω + cos i(2 + 3e2 − 5e2 cos 2ω) cos Ω

)
. (2.64)

2.B Recovering the Lidov-Kozai quadrupole Hamiltonian

To derive the LK Hamiltonian we take equation (2.19) and average it over time using
Φ(r) = −GM/r, and with Rg(t) describing a Keplerian ellipse with the focus at the origin.

First, it is obvious that for the this potential, Φ′′(Rg) ∝ Φ′(Rg)/Rg ∝ R−3
g . Then

we must average the right hand sides of equations (2.26)-(2.29) which requires that we
average the quantities R−3

g , R−3
g cos 2φg and R−3

g sin 2φg.
Without loss of generality we may choose the argument of pericentre ωg of the ellipse

to be zero, so that φg = fg, the true anomaly. Then Rg = ag(1− eg cosEg) with Eg being
the eccentric anomaly, so for an arbitrary function S(φg) we can write

R−3
g S(φg) = 1

2π

∫ 2π

0
dEga

−3
g (1− eg cosEg)−2S(fg), (2.65)
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and we can convert between fg and Eg using

cos fg = cosEg − eg
1− eg cosEg

. (2.66)

The answers are

R−3
g = 4

3R
−3
g cos 2φg = a−3

g (1− e2
g)−3/2, (2.67)

R−3
g sin 2φg = 0. (2.68)

Using these identities, we find a remarkably simple relation between the time-averaged coef-
ficients:

Φxx = Φyy = −1
2Φzz, with Φzz = GMa−3

g (1− e2
g)−3/2, (2.69)

and as expected Φxy = Φxz = Φyz = 0. Note that the regime Φxx = Φyy is exactly
that of an axisymmetric perturbing potential (see e.g. Katz, Dong, & Malhotra 2011).
The resulting perturbing Hamiltonian will therefore be the same as (2.42), with the
added simplification that A = (GM/2)a−3

g (1 − e2
g)−3/2 and Γ = 1. Making these

substitutions we find

〈H1〉M = − GMa2

16a3
g(1− e2

g)3/2 [(2 + 3e2)(3 cos2 i− 1) + 15e2 sin2 i cos 2ω]. (2.70)

This is precisely the dimensionless test particle quadrupole Lidov-Kozai Hamiltonian
(Lidov 1962; Kozai 1962; Kinoshita & Nakai 2007; Lithwick & Naoz 2011; Antognini
et al. 2014). It describes the secular evolution of a hierarchical triple system in which
the outer orbit dominates the angular momentum budget.

2.C Epicyclic orbits

In this Appendix we look at the behavior of A and Γ in the case of a binary performing
epicyclic motion in an axisymmetric disk, to connect with the results of Heisler & Tremaine
(1986), who calculated the secular effect of the Galactic tide on the Oort Cloud comets.

Let the guiding centre of the binary’s orbit be a circle of radius Rc in the Z = 0 plane
of the potential. The potential experienced by the binary can then be approximated as5

Φ(R,Z) =Φ(Rc, 0) +
(
∂Φ
∂R

)
(Rc,0)

(R−Rc)

+ 1
2

(
∂2Φ
∂R2

)
(Rc,0)

(R−Rc)2 + 1
2

(
∂2Φ
∂Z2

)
(Rc,0)

Z2. (2.71)

5We implicitly assume that the disk is symmetric about its midplane, Φ(R,Z) = Φ(R,−Z), so that
∂2Φ/∂R∂Z = 0 at Z = 0. Otherwise the binary would not remain in the midplane anyway.
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Using this expression and equations (2.33)-(2.34) it is easy to show that

Φxx = Φyy = 1
2(κ2 − 2Ω2

c); Φzz = ν2, (2.72)

while all other Φαβ = 0; here

Ω2
c =

( 1
R

∂Φ
∂R

)
(Rc,0)

, (2.73)

is the angular frequency of the guiding centre, while

κ2 ≡
(
∂2Φ
∂R2 + 3

R

∂Φ
∂R

)
(Rc,0)

, ν2 ≡
(
∂2Φ
∂Z2

)
(Rc,0)

, (2.74)

are the radial and vertical epicyclic frequencies of Rg respectively. Hence

A = ν2 + 1
2(κ2 − 2Ω2

c), (2.75)

Γ =
ν2 − 1

2(κ2 − 2Ω2
c)

3[ν2 + 1
2(κ2 − 2Ω2

c)]
. (2.76)

Near the midplane of a galactic disk, and in particular in the Heisler & Tremaine

(1986) case of the solar neighbourhood of the Milky Way, it is almost always the case that

Ωc ∼ κ� ν. Thus to a very good approximation A = ν2 and Γ = 1/3. Plugging these

results into our doubly-averaged Hamiltonian (2.42), written in Delaunay variables, we find

〈H1〉M = ν2L2

4µ2J2 (J2 − J2
z )[J2 + 5(L2 − J2) sin2 ω]

= πGρ0L
2

µ2J2 (J2 − J2
z )[J2 + 5(L2 − J2) sin2 ω], (2.77)

where we have eliminated ν in favour of the density in the Solar neighbourhood ρ0

using Poisson’s equation 4πGρ0 = (∇2Φ)Rg ≈ (∂2Φ/∂z2)Rg ≡ ν2. This is precisely the

Hamiltonian arrived at by Heisler & Tremaine (1986) (c.f. their equation (14)) when

considering the effect of the Galactic tide on the Oort Cloud comets.

2.D Signs and sizes of A and Γ

Here we provide some technical details about the statements on the signs and values of A

and Γ made in §2.6.1. Also, in Table 2.4 we summarize some information about these coef-

ficients for certain potentials. We provide two examples of orbits with extreme values of Γ.
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Table 2.4: Summary of U and Γ(U) ranges that are possible for orbits Rg in different classes of
potential Φ.

Type of the potential/orbit Rg U range Γ range
General axisymmetric potential −∞ ≤ U ≤ ∞ −∞ ≤ Γ ≤ ∞
Spherical potential (assuming dρ/dr ≤ 0 and finite mass) 1/3 ≤ U ≤ ∞ 0 ≤ Γ ≤ 1
Midplane of a thin disk U = 1 Γ = 1/3
Vertical cylindrical potential U = 0 Γ = −1/3
Axisymmetric harmonic potential 0 ≤ U ≤ 1 −1/3 ≤ Γ ≤ 1/3
Spherical harmonic potential U = 1/3 Γ = 0
Keplerian potential U →∞ Γ→ 1
Spherical cusp potential (density ρ ∝ r−β) U = 1/(3− β) Γ = β/[3(4− β)]

2.D.1 Spherical potentials

Consider a spherically symmetric potential Φ = Φ(r), where r ≡
√
R2 + Z2 is the

sphericl radius. According to our convention, the outer orbit of the binary always
lies in Z = 0 plane of the associated cylindrical (R,φ, Z) coordinate system. Then
it is a simple matter to show that(

∂2Φ
∂Z2

)
Rg

=
( 1
R

∂Φ
∂R

)
Rg

=
(1
r

dΦ
dr

)
Rg

, (2.78)
(
∂2Φ
∂R2

)
Rg

=
(

d2Φ
dr2

)
Rg

. (2.79)

Using these conversions as well as equations (2.33), (2.34), (2.41) we find

A = 1
2

[(d2Φ
dr2

)
Rg

+ 3
(1
r

dΦ
dr

)
Rg

]
, (2.80)

B = −1
2

[(d2Φ
dr2

)
Rg

−
(1
r

dΦ
dr

)
Rg

]
. (2.81)

We can now prove that A > 0 for (almost) any realistic spherical potential, and
thereby show that for such systems 0 ≤ Γ ≤ 1. In a spherical potential Φ(r) we have

dΦ
dr = GM(r)

r2 , (2.82)

whereM(r) is the cluster mass enclosed inside radius r. Also, Poisson’s equation reads

d2Φ
dr2 + 2

r

dΦ
dr = 4πGρ, (2.83)

allowing us to rewrite equation (2.80) as

A = 1
2

[
4πGρ(Rg) +

(
GM(r)
r3

)
Rg

]
. (2.84)

Since ρ > 0 and M > 0 at all radii, this inevitably results in A > 0.
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Finally, since

d2Φ
dr2 −

1
r

dΦ
dr = r

d
dr

(1
r

dΦ
dr

)
, (2.85)

equation (2.81) can be rewritten as

B = −1
2

[
r

d
dr

(
GM(r)
r3

)]
Rg

. (2.86)

For any spherical system in which the density is a non-increasing function of radius,
d(M/r3)/dr ≤ 0 for any r and hence B ≥ 0.

Let us now focus on spherical systems with dρ/dr ≤ 0. If the cluster has a constant
density core, then M(r) ∼ r3 as r → 0 and so B → 0 (equation (2.86)). Hence if Rg

orbits entirely inside the constant density region, Γ = 0. A potential without a core
will always have a non-zero value of Γ for orbits at small radii.

At the other extreme, as r → ∞ we have ρ → 0, and usually the enclosed mass
M(r) → const (although see below for potentials arising from power-law cusp density
profiles). Hence d(M(r)/r3)/dr → −3M/r4 whereM is the total mass of the cluster,
and in this limit we get B = 3A. Thus an orbit Rg that spends its time exclusively at very
large radii r compared to the scale radius of the cluster will have Γ→ 1. This is precisely
the Lidov-Kozai limit: for potentials that are Keplerian as r →∞ (i.e. those with finite
mass), orbiting far from the core is equivalent to orbiting a point mass at the origin.

Finally, for any orbit in a spherical cluster with a power-law density cusp ρ(r) ∝ r−β

with 0 < β < 3 (so that the mass is finite at the centre) one naturally has M(r) =
4πρr3/(3 − β). Then we find from equations (2.84), (2.86) that

A = 2πGρ 4− β
3− β , B = 2πGρ β

3− β , (2.87)

and so U = 1/(3 − β) and Γ = β/[3(4 − β)].

2.D.2 Axisymmetric potentials

In a general axisymmetric potential there is no constraint on how negative the parameter
U (defined by equation (2.46) and plotted in Figure 2.2) can be. Non-spherical potentials
naturally feature regions with Φzz < 0, especially near the poles; choosing a highly
inclined (with respect to the equatorial plane of the potential) orbit with large radius
so that ρ is vanishingly small, one can drive strongly negative U , thereby achieving
extreme (positive or negative) values of Γ.

In Figure 2.12 we give an example of an orbit with Γnum = −1.4. We use the
Miyamoto-Nagai potential with bh/b` = 1 and precisely the same initial conditions as
Orbits (VIII)-(XI) in the main text (see Table 2.3), except that we now take the initial Z
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Figure 2.12: Example of an orbit with Γnum = −1.4. We use the Miyamoto-Nagai potential
with bh/b` = 1 and the same initial conditions as Orbits (VIII)-(XI) in the main text, except the
initial Z value is 5.0b`.

coordinate to be 5.0b`. All three panels show 100Tφ of data. The large initial value of Z
means that the orbit spends a lot of time near the poles of the potential where Φzz < 0.

In Figure 2.13 we provide an example of a very polar orbit resulting in Γnum = 2.0
(U = −2.3). We use the Miyamoto-Nagai potential bh/b` = 0.1, and initial conditions

(R, vR, φ, vφ, Z, vZ) = (0.011b`, 0, 0.04, 0.4
√
GM/b`, 4.0b`, 0). (2.88)

In Figure 2.13a we display only the first 5 vertical periods TZ of the orbit in the meridional
(R,Z) plane. When integrated for a long time, the orbit remains almost polar but precesses
very slowly around the Z axis until it eventually fills an axisymmetric torus after a few
thousand TZ . Figure 2.13a shows that the convergence of the Φαβ coefficients in this case
is very slow and takes & 5000TZ . In practice, unless the binary is very tight, secular
theory is unlikely to work well for such an orbit. Indeed, for a relatively wide binary the
secular evolution timescale is likely to be much shorter than 5000TZ , meaning that our
assumption that the binary fills its torus (and hence the Φαβ converge) in much less than
a secular timescale is violated. We will explore this issue in more detail in §3.7.

2.E Octupole Hamiltonian

The Hamiltonian derived in §2.2 is correct to quadratic order in a/|Rg|, the so-called
‘quadrupole approximation’. We can attempt to derive a more accurate Hamiltonian
by keeping the higher order terms in the series expansion of equation (2.3). The next
(‘octupole’) term that we would include is

1
2!
∑
βγ

(
∂2Φ

∂Rα∂Rβ∂Rγ

)
Rg

ri,β ri,γ . (2.89)



2. General formulation 61

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
R/b�

−4

−3

−2

−1

0

1

2

3

4
ℓ
/
b �

(a)
[Side view]

0 1000 2000 3000 4000 5000
t/TZ

−0.004

−0.002

0.000

0.002

0.004

Φ
α
β
/(
G
M
/b

3 	
)

(b) xx

yy

zz

xy

xz

yz

Figure 2.13: Example of an orbit with Γnum = 2.0. We use the Miyamoto-Nagai potential
with bh/b` = 0.1 and initial conditions (R, vR, φ, vφ, Z, vZ) = (0.011b`, 0, 0.04, 0.4

√
GM/b`, 4b`, 0).

In panel (a) we show the meridional (R,Z) plane for only the first 5 vertical periods TZ of the
integration. The orbit precesses very slowly in azimuth, filling its torus after several thousand TZ .

We then use the fact that r ≡ r1 − r2 and m1r1 + m2r2 = 0 to write

r1,α = m2
m1 +m2

rα; r2,α = − m1
m1 +m2

rα. (2.90)

As a result, the equation for the relative motion d2r/dt2 (equation (2.5)) can be written
purely in terms of r. The next order (‘octupole’) correction to the Hamiltonian (2.42) is

Hoct = 1
3!

(
m2 −m1
m2 +m1

)∑
αβγ

Φαβγrα rβ rγ . (2.91)

Note that the octupole term vanishes for equal-mass binaries (m1 = m2).
The corresponding doubly-averaged perturbing octupole term is then simply

〈Hoct〉M = 1
3!

(
m2 −m1
m2 +m1

)∑
αβγ

Φαβγ〈rα rβ rγ〉M . (2.92)

2.E.1 Time-averaging over an axisymmetric torus

As in the quadrupole case, it turns out that when time-averaged over an axisym-
metric torus the coefficents Φαβγ satisfy various symmetry properties. After a little
algebra one can show that

Φxxz = Φyyz, (2.93)

and all other Φαβγ = 0 except for Φzzz. Hence

〈Hoct〉M = 1
3!

(
m2 −m1
m2 +m1

) [
3Φxxz〈(x2 + y2)z〉M + Φzzz〈z3〉M

]
. (2.94)
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Writing out the 〈.〉M factors in terms of orbital elements we have

〈(x2 + y2)z〉M =− 5
128a

3e
[
28e2 sin3 i sin 3ω + (4 + 3e2)(7 sin i+ 3 sin 3i) sinω

]
, (2.95)

〈z3〉M = − 5
16a

3e(6 + e2 − 7e2 cos 2ω) sin3 i sinω. (2.96)

Equations (2.94)-(2.96) provide a general framework for accounting for the octupole
contribution to the tidal Hamiltonian in an arbitrary axisymmetric potential. Note there
is no Ω dependence in the octupole Hamiltonian, so Jz is still conserved to octupole order.

2.E.2 Link to the test particle octupole LK Hamiltonian

Note that one cannot recover the test particle octupole term of the doubly-averaged
Lidov-Kozai Hamiltonian by putting Φ = −GM/r in (2.94), because equation (2.94)
is derived under the axisymmetric approximation. The time-averaged potential of a
perturber on a Keplerian orbit is only axisymmetric at the quadrupole level, and the
symmetry is broken by octupole terms. Instead one must integrate over the outer
Keplerian orbit exactly, as in Appendix 2.B.

In general there are 10 independent time-averaged coefficients Φαβγ to consider. We
choose the outer orbit to be in the Z = 0 plane so we can immediately eliminate four of
these, Φzzz = Φxxz = Φyyz = Φxyz = 0. We can also choose the pericentre of the outer
orbit to be on the X axis without loss of generality, so that the ellipse traced by the
outer orbit is symmetric under Y → −Y . Then all Φαβγ that contain an odd number
of Y derivatives will be antisymmetric under Y → −Y , so their time-averages over this
ellipse will vanish: Φxxy = Φzzy = Φyyy = 0. This leaves us with only three non-zero
terms in the doubly-averaged octupole LK Hamiltonian:

〈Hoct〉M = 1
3!

(
m2 −m1
m2 +m1

) [
Φxxx〈x3〉M + 3Φyyx〈y2x〉M + 3Φzzx〈z2x〉M

]
. (2.97)

For reference we now write down the terms that make up equation (2.97). First we write
down the necessary Φαβγ coefficients in terms of cylindrical coordinates Rg and φg:

Φxxx = 3GM
R4

g
cosφg(5 cos2 φg − 3), (2.98)

Φyyx = 3GM
R4

g
cosφg(5 sin2 φg − 1), (2.99)

Φzzx = −3GM
R4

g
cosφg. (2.100)
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The time-averages of these coefficients are

Φxxx = GMa−4
g (1− e2

g)−5/2 × (9eg/4), (2.101)

Φyyx = GMa−4
g (1− e2

g)−5/2 × (3eg/4), (2.102)

Φzzx = GMa−4
g (1− e2

g)−5/2 × (−3eg). (2.103)

The mean-anomaly averaged quantities are

〈x3〉M =− (5/64)a3e(cosω cos Ω− cos i sinω sin Ω)

×
[
cos 2i(6 + e2 + 7e2 cos 2ω cos 2Ω)

+7e2 cos 2ω(3 cos 2Ω + 2 sin2 i)

+(6 + e2)(3 + 2 cos 2Ω sin2 i)

−28e2 cos i sin 2ω sin 2Ω
]
, (2.104)

〈y2x〉M =(5/256)a3e

×
[
2 cos 2i cosω(−2− 5e2 + 7e2 cos 2ω)

×(cos Ω + 3 cos 3Ω)

+2 cosω(−7(2 + e2 + e2 cos 2ω) cos Ω

+(6− 13e2 + 35e2 cos 2ω) cos 3Ω)

+4 cos 3i(6 + e2 − 7e2 cos 2ω) cos2 Ω sinω sin Ω

+ cos i sinω[(26 + 23e2 + 7e2 cos 2ω) sin Ω

−3(2 + 19e2 + 35e2 cos 2ω) sin 3Ω]
]
, (2.105)

〈z2x〉M = (5/16)a3e sin2 i

×
[
cosω(−2− 5e2 + 7e2 cos 2ω) cos Ω

+ cos i(6 + e2 − 7e2 cos 2ω) sinω sin Ω
]
. (2.106)

Plugging the results (2.106)-(2.101) in to (2.97), the resulting doubly-averaged test
particle octupole Lidov-Kozai Hamiltonian is

〈Hoct〉M =
(
m2 −m1
m2 +m1

)
× 15

128GMa−4
g eg(1− e2

g)−5/2a3

×
{(

e+ 3e3

4

)[
(1− 11θ − 5θ2 + 15θ3) cos(ω − Ω)

+ (1 + 11θ − 5θ2 − 15θ3) cos(ω + Ω)
]

− 35
4 e

3
[
(1− θ − θ2 + θ3) cos(3ω − Ω)

+ (1 + θ − θ2 − θ3) cos(3ω + Ω)
]}
, (2.107)

where θ ≡ cos i. Equation (2.107) is precisely the result found in standard LK literature
(e.g. Ford, Kozinsky, et al. 2000; Lithwick & Naoz 2011; Naoz 2016).
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2.F Numerical prescription for computing time-averages

To calculate the time-averages Φαβ numerically we use the orbit integrator in galpy (Bovy
2015). Given the initial position Rg(0) and velocity of the binary’s outer orbit around
the cluster, we integrate its equation of motion (2.11) numerically in the smooth cluster
potential Φ. We use a constant timestep ∆t so that after k timesteps the time elapsed
is tk = k∆t. Then the running time-average of a quantity F(Rg(t)) is

F(t) = 1
t

∫ t

0
dt′F(t′) ≈ ∆t

t

t/∆t∑
k=0
F(tk). (2.108)

In nearly all numerical examples shown in this Chapter we used ∆t ≈ Tφ/100 where Tφ
is the azimuthal period of Rg, and integrated the outer orbit for approximately 100Tφ.
The exception is Figure 2.13, where we used ∆t ≈ TZ/10 (TZ is the vertical period of
Rg) and integrated the outer orbit for 5000TZ .
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3.1 Introduction

In Chapter 2 we developed a general Hamiltonian framework to describe the evolution of
the orbital elements of a binary driven by the tidal field of a cluster in which it orbits. In
so doing we arrived at a secular (‘doubly-averaged’) perturbing Hamiltonian (equations
(2.42)-(2.43)), which we repeat here for convenience:

〈H1〉M = CH∗1 , where C = Aa2

8 (3.1)

is a constant with dimensions of energy per unit mass andH∗1 is the ‘dimensionless Hamilto-
nian’

H∗1 = (2 + 3e2)
(
1− 3Γ cos2 i

)
− 15Γe2 sin2 i cos 2ω. (3.2)

Chapter 2 explored in detail the dependence of A and Γ upon the shape of the background
potential and the binary’s orbit within it.

The goal of this Chapter is to systematically explore the dynamics that result from
the general secular theory based on the Hamiltonian (3.1)-(3.2). As we will see, central
to this investigation is the orbital phase space, i.e. the (ω, e) plane within which a
binary moves on a one-dimensional trajectory. It turns out that the binary dynamics
and phase space structure in the range Γ > 1/5 are qualitatively very similar to those
arising in the LK case, but that bifurcations occur when Γ = 1/5, 0 and −1/5, which
change the picture significantly. As a result, in this Chapter we treat separately four
distinct dynamical regimes:

Γ > 1/5, (3.3)

0 < Γ ≤ 1/5, (3.4)

−1/5 < Γ ≤ 0, (3.5)

Γ ≤ −1/5. (3.6)
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This Chapter is structured as follows. In §3.2 we derive general results that hold for
all Γ: conditions for the existence of fixed points in the phase space (§3.2.2), the criteria
for phase-space trajectories to librate or circulate (§3.2.3), the values of maximum and
minimum eccentricities (§3.2.4), the timescale of eccentricity oscillations (§3.2.6), etc.
Then, in §§3.3-3.6, we explore the details of each of the Γ regimes (3.3)-(3.6) separately.
The validity of the doubly-averaged (secular) theory is verified numerically in §3.7. The
impact of short-range forces, in particular general relativistic (GR) pericentre precession,
on the cluster tide-driven secular evolution is explored in §3.8 (a much more detailed
study is deferred to Chapter 4). We collect our results in §3.9, discuss them in light of
the existing literature and comment on the applicability of our formalism. We summarise
our findings and discuss potential applications in §3.10.

3.2 General aspects of secular dynamics

Our goal is to understand evolution of the orbital elements of the inner orbit of the binary —
eccentricity, inclination, etc. — as it moves in the cluster potential. We do this by carefully
investigating the phase-space of the dimensionless Hamiltonian H∗1 (equation (3.2)).

The DA Hamiltonian (3.1) does not depend on the mean anomaly M , so the action L
is conserved. Hence we can choose to work with dimensionless versions of our variables
(J, Jz); following the notation of Antognini (2015) we define

Θ ≡ J2
z /L

2 = (1− e2) cos2 i, j ≡ J/L =
√

1− e2, (3.7)

and we clearly have 0 ≤ Θ ≤ j2 ≤ 1. Obviously j is just the dimensionless angu-
lar momentum. Then

H∗1 = 1
j2

[
(j2 − 3ΓΘ)(5− 3j2)− 15Γ(j2 −Θ)(1− j2) cos 2ω

]
. (3.8)

Since H∗1 is independent of the longitude of the ascending node Ω, the dimensionless
quantity Θ is also an integral of motion (the analog of the ‘Kozai constant’). This simply
reflects conservation of the Z-component of angular momentum since the doubly-averaged
potential is axisymmetric. Since Θ is conserved, we can always infer the time evolution of
binary inclination from the behavior of its eccentricity via cos2 i = (1− e2)−1Θ. Finally,
definitions (3.7) imply that e and j must obey

0 ≤ e ≤
√

1−Θ, Θ1/2 ≤ j ≤ 1, (3.9)

to be physically meaningful for a fixed Θ.
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Given these considerations, the secular Hamiltonian is a function of the dimensionless
angle-action variables ω and j. The equations of motion fully describing their evolution are

dω
dt = C

L

∂H∗1
∂j

= 6C
L

[5ΓΘ− j4 + 5Γ(j4 −Θ) cos 2ω]
j3 , (3.10)

dj
dt = −C

L

∂H∗1
∂ω

= −30ΓC
L

(j2 −Θ)(1− j2)
j2 sin 2ω. (3.11)

Our subsequent analysis of binary dynamics is largely based on these evolution equations.

3.2.1 Phase portrait

Since the dimensionless doubly-averaged Hamiltonian (3.8) ends up being a function of
j =
√

1− e2 and ω, one can get a good perception of the secular dynamics by plotting
contours of H∗1 in the (ω, e) plane. We do this in Figures 3.4, 3.5, 3.6 & 3.7 for the Γ
ranges (3.3)-(3.6) respectively, and for varying Θ. In each panel the limiting eccentricity
elim =

√
1−Θ is represented by a dashed black line. The direction in which orbits traverse

their trajectories is indicated with green arrows in Figures 3.4a, 3.5d, 3.6a & 3.7d.
We will explain the features of these phase portraits as we discuss each of them

individually in §§3.3-3.6. An observation that we would like to make now is that all
phase-space trajectories are split into two families: librating and circulating. The librating
orbits are closed contours of H∗1 which loop around a fixed point (always located at
ω = ±π/2 as explained in §3.2.2), whereas circulating orbits run over all ω ∈ (−π, π).
The separatrices between families of librating and circulating orbits are indicated with
red dashed lines. Depending on the values of Γ and Θ, one could have either only
circulating orbits (typically the case for large Θ, and always true for −1/5 < Γ ≤ 0),
only librating orbits (a rare case realized for Γ = 1/5, see Figure 3.5), or a mix of both
(for low enough Θ in most dynamical regimes).

3.2.2 Fixed points and orbit families

We start by exploring characteristics of the fixed points of the system, around which
phase-space orbits librate. As these points are extrema of H∗1 in (ω, j) space, they must
be solutions of dω/dt = dj/dt = 0. With a small amount of algebra, we find from
equations (3.10)-(3.11) two possible formal solutions for the non-trivial fixed points in
our phase-space1, namely (ω, j) = (±π/2, jf) where

jf(Θ,Γ) =
(Θ

Λ

)1/4
, Λ(Γ) = 5Γ + 1

10Γ . (3.12)

1Fixed points also exist for all ω along the lines j = 1 and j =
√

Θ, but these are trivial in the sense
that they can never be reached by orbits which do not start on those lines. However, they are still
important because they bound the phase-space and are often the locations of maximum/minimum H∗1 ,
see §3.2.5.
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Figure 3.1: Ranges of Θ for which fixed points and librating orbits can exist (shaded regions),
shown as a function of Γ. Red and blue curves show Λ (defined by equation (3.12)) and Λ−1

respectively. Shaded regions correspond to the constraints (3.13) and 0 ≤ Θ ≤ 1.

The value of ω corresponding to fixed points agrees with the phase portraits discussed in
§3.2.1.

For a given Γ, fixed points can exist in the (ω, j) phase-space as long as jf(Θ,Γ)
satisfies the condition (3.9). Solving the inequality

√
Θ < jf < 1 gives the following

constraint on Θ for the existence of fixed points:

Θ < min
(
Λ, Λ−1

)
. (3.13)

Depending on the value of Γ, this constraint may or may not have meaningful solutions.
The functions Λ(Γ) and Λ−1(Γ) are plotted in Figure 3.1. We can see from this plot
that there are four distinct Γ regimes, given by the ranges (3.3)-(3.6). We will return
to Figure 3.1 when discussing the existence of fixed points in §§3.3-3.6.

3.2.3 Does a given orbit librate or circulate?

Next we work out whether a given phase-space orbit with specified H∗1 , Θ, Γ librates
or circulates. We do this by considering the behaviour at ω = 0: from the morphology
of the phase portraits (Figures 3.4, 3.5, 3.6 & 3.7), it is clear that if constant H∗1 =
H∗1 (Θ,Γ, ω, j) has a physical solution for j at ω = 0 then the orbit circulates; if not,
it has to librate about one of the fixed points.

We find from equation (3.8) a formal solution

j2(ω = 0) = 5/3− 2ΓΘ− 5Γ−H∗1/3
1− 5Γ . (3.14)
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Figure 3.2: Plot showing j2
0 and j2

± defined by equations (3.17) and (3.18) as a function of Γ for
fixed (D,Θ). Vertical dotted lines indicate Γ = ±1/5, 0. Thick horizontal dashed lines correspond
to j2 = Θ and j2 = 1. Note that j2

±, j
2
0 can take values outside the allowed Θ < j2 < 1 range and

can even be negative, because they are simply formal solutions (see the text after equation (3.20)).
In each Γ range, either two or none of j2

±, j
2
0 are physically relevant — physical solutions j2 must

always lie in the shaded regions. Panel (a) corresponds to circulating orbits (which exist for all
Γ 6= 1/5), while panels (b) and (c) correspond to librating orbits. From these plots one can read
off the relative amplitudes of j2

±, j
2
0 (and hence the values of jmin/max and ∆) in each Γ regime.

The trajectory is circulating whenever the condition (3.9) is satisfied for j(ω = 0). If j(ω =
0) does not obey this inequality, then it does not represent a physically meaningful solution.
As a result, the orbit must librate around one of the fixed points and never reach ω = 0.

Let us define the quantity

D ≡ 1− j2(ω = 0) = H∗1/3− 2/3 + 2ΓΘ
1− 5Γ . (3.15)

It represents e2(ω = 0) and is an integral of motion since it depends on H∗1 and Θ. It
will prove useful to eliminate Θ and H∗1 in the above expression in favour of e, i, ω.
We find after some algebra

D = e2
(

1 + 10Γ
1− 5Γ sin2 i sin2 ω

)
. (3.16)

Equations (3.9) and (3.15) imply that for 0 < D < 1−Θ the trajectory is circulating,
whereas for D < 0 or D > 1 − Θ it librates around a fixed point. If both families
exist then the separatrix between them corresponds to either D = 0 or D = 1 −
Θ (see the upcoming Figure 3.3).

3.2.4 Maximum and minimum eccentricities

We now find the minimum and maximum eccentricities that a binary reaches as it
evolves along its phase-space trajectory. We do this by finding the extrema of j,
which we call jmin/max.

From the phase portraits in Figures 3.4, 3.5, 3.6 & 3.7 it is clear that librating orbits,
whenever they exist, have both their minimum and maximum eccentricities at ω = ±π/2.
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On the other hand, for circulating orbits the maximum and minimum eccentricities can be
at either ω = 0 or ω = ±π/2 depending on the value of Γ; see Figures 3.4 and 3.5. To find
jmin/max, we therefore separately plug ω = 0, π/2 into H∗1 (equation (3.8)) and solve for j.

The solution for ω = 0 is simply the square root of equation (3.14), and we denote it j0:

j0 ≡ j(ω = 0) =
√

1−D. (3.17)

For ω = π/2 there are two solutions, which we call j±:

j± ≡ j(ω = π/2) =

√
Σ±

√
Σ2 − 10ΓΘ (1 + 5Γ)

1 + 5Γ , (3.18)

where

Σ = 1 + 5Γ
2 + 5ΓΘ +

(5Γ− 1
2

)
D (3.19)

= 1 + 5Γ
2 (1− e2) + 5Γ

(
cos2 i+ e2 sin2 i cos2 ω

)
. (3.20)

We would like to stress here that although we use the notation j2
±, j

2
0 , these quantities are

nothing more than possible solutions to the equations dj/dt = dω/dt = 0, and should
not therefore be interpreted as always positive. Indeed, depending on the Γ regime
either two or none of j2

±, j
2
0 will lie in the allowed physical range (Θ, 1) (equation (3.9)) —

the remaining one or three will lie outside this range and can even be negative, but
are physically irrelevant.

This is demonstrated in Figure 3.2, which shows j2
±, j

2
0 as functions of Γ for various

points in (D,Θ) space. Depending on the dynamical regime (determined by the value
of Γ) each of these j±, j0 solutions, if they exist, can correspond to either the minimum
or maximum of j, as we describe in further detail in §§3.3-3.6.

3.2.5 Range of parameter values

We would first like to determine the range of values that the integral of motion H∗1 can take.
To do this we need to find the extrema of our Hamiltonian H∗1 in the (ω, e) (or equivalently
(ω, j)) phase-space. It is clear from the phase portraits (Figures 3.4, 3.5, 3.6 & 3.7) that
extrema of H∗1 can only occur in three distinct locations: fixed points2 (ω = π/2, j = jf),
the line j = 1, and the line j =

√
Θ. Evaluating H∗1 in these locations, we find

H∗1 (j = 1) = 2(1− 3ΓΘ), (3.21)

H∗1 (j = Θ) = (5− 3Θ)(1− 3Γ), (3.22)

H∗1 (ω = π/2, j = jf) =
{
H−, Γ > 0,
H+, Γ ≤ −1/5,

(3.23)

2Evaluating at ω = −π/2 gives the same answers as evaluating at ω = π/2. Fixed points exist in both
locations, but to avoid confusion with other upcoming ± signs we prefer just to consider ω = π/2 from
here on.
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where3

H± = 5(1 + 3Γ) + 24ΓΘ± 6
√

10ΓΘ(1 + 5Γ). (3.24)

(No fixed points exist in the range −1/5 < Γ ≤ 0). One must then investigate each
Γ regime independently to work out which of the above corresponds to a maximum
or minimum. We will not pursue the details here but we state the results for each Γ
regime in §§3.3-3.6, and summarise them in Table 3.2.

Rather than H∗1 ,Θ, it is often convenient to take D and Θ to be our primary integrals
of motion, so that for fixed Γ each phase-space trajectory of a binary corresponds to a
point in the (D,Θ) plane (see the upcoming Figure 3.3). It is obvious that Θ can always
run between 0 and 1 for circulating orbits, and is bounded by equation (3.13) for librating
orbits. We would like to know which values D can take for a given Θ,Γ. From equation
(3.15) we see that extrema of D are also extrema of H∗1 , so we must evaluate D at the
same three locations as H∗1 , see equations (3.21)-(3.23). We find

D(j = 1) = 0, (3.25)

D(j = Θ) = 1−Θ, (3.26)

D(ω = π/2, j = jf) =
{
D−, Γ > 0,
D+, Γ ≤ −1/5,

(3.27)

where

D± = 1
(1− 5Γ)

[
1 + 5Γ + 10ΓΘ± 2

√
10ΓΘ (1 + 5Γ)

]
. (3.28)

In each Γ regime and for each type of orbit the maximum and minimum D will correspond
to some combination of D±, D = 0 and D = 1−Θ. These limits give rise to distinctive
morphologies of the physically allowed regions in the (D,Θ) plane — see Figure 3.3.
They are summarised in Table 3.1 and discussed in §§3.3-3.6.

3.2.6 Timescales of eccentricity oscillations

We can also derive a general expression for the timescale of secular eccentricity oscillations,
for any binary and for any given Γ.

Since H∗1 is a conserved quantity we can rearrange (3.8) to get ω explicitly in terms of j:

cos 2ω = (j2 − 3ΓΘ)(5− 3j2)− j2H∗1
15Γ(j2 −Θ)(1− j2) . (3.29)

3Note that the functions H±, unlike j±, are not two independent solutions. The ± sign is due merely to
an algebraic peculiarity that arises when evaluating the single-valued function H∗1 at (π/2, jf), depending
on the Γ range. For a given Γ, only one of H± is correct. The same consideration holds for D± in the
next paragraph.
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Figure 3.3: Contour plots of log10(tsec/t1), where tsec is the period of secular eccentricity
oscillations (equation (3.33)), in the (D,Θ) plane for various values of Γ. Each row corresponds
to one of the dynamical regimes (3.3)-(3.6). In each panel the circulating orbits fill the triangle
0 < D < 1−Θ, while regions of librating orbits are indicated with white hashing (one of their
boundaries is given by D±(Θ) defined by equation (3.28)). The secular period diverges at the
separatrix between the regions of librating and circulating orbits. It also diverges everywhere
in (D,Θ) space in the special cases of Γ = ±1/5. Bifurcations at Γ = 1/5, 0,−1/5 change the
morphology of the (D,Θ) plane.
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Plugging this into equation (3.11) allows us to eliminate ω from dj/dt, turning it into
an equation for j only. Factorizing the result and multiplying both sides by j we arrive
at a simple equation for the rate of change of j2:

dj2

dt = ±12C
L

√
(25Γ2 − 1)(j2

0 − j2)(j2
+ − j2)(j2 − j2

−). (3.30)

The square root here is well defined because for |Γ| > 1/5 and < 1/5 the signs of bracketed
terms change in such a way that the whole expression under the square root is positive4,
as can be checked using the results collected in Table 3.1 (also see Figure 3.2).

The maximum and minimum j reached by a given phase-space orbit and satisfying
the constraint (3.9) are denoted jmin/max. They correspond to two of the three possible
roots j±, j0 depending on the orbit type and the value of Γ, as we will see in §§3.3-3.6.
Regardless of their precise values, an entire oscillation runs from jmin to jmax and back
again, so an entire secular oscillation takes

tsec = 2
∫ j2

max

j2
min

(
dj2

dt

)−1

dj2, (3.31)

which is expressible in terms of complete elliptic integrals of the first kind5 K(k) =∫ π/2
0 dα/

√
1− k2 sin2 α (Gradshteyn & Ryzhik 2014). Defining6

∆ ≡ max[j2
+, j

2
−, j

2
0 ]−min[j2

+, j
2
−, j

2
0 ], (3.32)

we find, in general, that

tsec = t1√
|1− 25Γ2|∆

K

√j2
max − j2

min
∆

 , (3.33)

where

t1 ≡
8

3A

√
G(m1 +m2)

a3 (3.34)

= 1.7 Gyr×
(
A∗

0.5

)−1 ( M
105M�

)−1 ( b

pc

)3 (m1 +m2
M�

)1/2 ( a

10AU

)−3/2
(3.35)

is the characteristic secular timescale. In the numerical estimate we assumed the binary
orbits a spherical cluster with scale radius b and total mass M, and defined A∗ ≡
A/(GM/b3). (Recall that maps of A∗ for different cluster potentials and binary orbits
are presented in Chapter 2). Note that in the LK case, A = GM/[2a3

g(1− e2
g)3/2], where

4For Γ = ±1/5 we have dj2/dt = 0. This reflects the fact that secular evolution stalls and tsec →∞
for Γ = ±1/5 — see equation (3.33) and Figure 3.3.

5See Figure 5.4.
6Note that, in general, min[j2

+, j
2
−, j

2
0 ] 6= j2

min. This is because min[j2
+, j

2
−, j

2
0 ] can take any value

(including negative values, see Figure 3.2), whereas jmin is the physical minimum angular momentum
reached by a given binary, which must lie between

√
Θ and 1. An analogous statement holds for jmax.
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Figure 3.4: Contour plots of constant H∗
1 in the (ω, e) phase-space for Γ > 1/5. Phase portraits

are shown for Γ = 1, 0.7, 0.4 and Θ = 0.1, 0.5, 0.8. Contours are spaced linearly from H∗
1,min to

H∗
1,max. The black dashed line shows the limiting eccentricity elim =

√
1−Θ and the red dashed

lines show separatrices between regions of librating and circulating orbits. Green arrows in panel
(a) show the direction of phase-space trajectories.
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ag and eg are respectively the semimajor axis and eccentricity of the outer orbit. Thus
one can evaluate any numerical estimate like that above in the LK limit by putting
Γ = 1, A∗ = 0.5 and b = ag(1 − e2

g)1/2.
In Chapter 2 we noted that A ∼ 4π2A∗T−2

φ , where Tφ = 2π(GM/b3)−1/2 is the
characteristic azimuthal period of the outer orbit of the binary around the cluster.
Introducing the period of the inner orbit of the binary Tb = 2π[G(m1 + m2)/a3]−1/2,
we can then use equation (3.34) to estimate t1 as

t1 ∼
4

3π
T 2
φ

Tb
. (3.36)

A similar estimate of the characteristic secular timescale — ratio of the square of the
outer orbital period to the inner orbital period — is known to hold for the LK problem
(Naoz 2016). Although equation (3.36) was derived for a spherical cluster potential, we
also expect the same scaling to hold in (non-spherical) axisymmetric potentials.

The ratio tsec/t1 is plotted in the (D,Θ) plane for various fixed Γ in Figure 3.3. In
each panel, circulating orbits fill the triangle 0 < D < 1 −Θ while regions of librating
orbits are shown with white hashing. In §3.2.2 we noted that the four distinct Γ regimes
(equations (3.3)-(3.6)) would give rise to different phase-space behaviours. We see in
Figure 3.3 that they also give rise to different morphologies of the allowed regions in
the (D,Θ) plane, to be discussed in §§3.3-3.6.

The analytic derivation of eccentricity oscillation period (equation (3.33)) was previ-
ously done in the LK limit (Γ = 1) by Vashkov’yak (1999) and Kinoshita & Nakai (2007),
and in the Γ = 1/3 limit by Brasser (2001). Our expression (3.33) generalizes their results
for arbitrary external tidal potentials of the type explored in Chapter 2.

Much of §§3.3-3.6 will be focused on deriving the values of jmin/max, ∆, and the
bounds on Θ, D and H∗1 appropriate to each of the distinct Γ regimes (3.3)-(3.6).
For ease of reference all of the results are collected in Tables 3.1 and 3.2, which will
be discussed in more detail in §3.9.

3.3 Secular dynamics in the case Γ > 1/5

In this section we focus exclusively on the case Γ > 1/5. In short, we find the dynamics
in this regime to be qualitatively similar to (but quantitatively different from) the ‘test
particle quadrupole’ LK problem. A similar investigation in the LK limit (Γ = 1) was
carried out by Antognini (2015). This regime also covers the case of Γ = 1/3 relevant for
Oort Cloud comets perturbed by the Galactic tide (Heisler & Tremaine 1986).
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In Figure 3.4 we plot contours of the dimensionless doubly-averaged perturbing
Hamiltonian H∗1 (equation (3.2)) in the (ω, e) plane, with Γ = 1, 0.7, 0.4 from top to
bottom and Θ = 0.1, 0.5, 0.8 from left to right.

Fixed points exist in the left and centre columns, but not in the rightmost column
(large Θ) where there are only circulating orbits. Circulating orbits show prograde
pericentre precession ω̇ > 0, while librating orbits traverse clockwise loops in the (ω, e)
plane. As we increase Θ (i.e. move from left to right), the maximum eccentricity reached
by the average orbit sharply decreases.

We see that whenever a fixed point is present, the circulating orbits run ‘over the
top’ of the librating orbits. As a result, the eccentricity of a fixed point provides a lower
bound on the maximum eccentricity reached by any orbit in the phase-space7. Furthermore,
the eccentricity of the fixed point increases slightly as we decrease Γ (move down the
page) — see equation (3.12). Thus for Γ close to (but greater than) 0.2 and Θ → 0
more binaries may reach very high eccentricities than for Γ ∼ 1.

We now proceed to explain these features quantitatively.

3.3.1 Fixed points and orbit families

Looking at Figure 3.1, we see that whenever Γ > 1/5, for fixed points to exist (shaded
regions) Θ must be less than Λ. However, Λ has a minimum value of 1/2 in this Γ range
(namely as Γ→∞); hence fixed points always exist for Γ > 1/5 provided we choose Θ
small enough, see equation (3.13). The precise requirement is

Θ ∈ (0,Λ) , Γ > 1/5. (3.37)

The range of Θ for which fixed points exist increases as Γ decreases.
This result allows us to understand the lack of librating orbits in panels (c), (f) and

(i) in Figure 3.4: their Θ value is too large for the range (3.37). Physically, at large Θ
the inclination of the binary with respect to the symmetry plane of the cluster is too
low for its tidal field to efficiently torque the binary to high eccentricities. In the LK
case Γ = 1 we recover the classic result that the critical Θ range for fixed points to
exist is Θ ∈ (0, 3/5). For initially circular binaries the resulting minimum inclination
is then imin = cos−1(

√
3/5) ≈ 39.2◦ (see also §3.9.1).

We can convert (3.12) into an eccentricity via e =
√

1− j2:

ef =

1−
√

Θ
Λ

1/2

. (3.38)

7This is not true for general Γ — c.f. §3.4.
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This helps us to understand why in Figure 3.4, the maximum eccentricity is largest for

small Θ, and only weakly dependent on Γ: since each trajectory reaches a maximum

eccentricity which is at least ef , decreasing Θ will increase that maximum. And since

Λ is a weak function of Γ in this range (taking values Λ ∈ (1/2, 1) — see Figure 3.1),

dependence on Γ is not very strong.

3.3.2 Range of parameter values

In §3.2.5 we mentioned that Θ is bounded by equation (3.13) for librating orbits and

runs between 0 and 1 for circulating orbits. From equations (3.25)-(3.27) we know that

in the regime Γ > 1/5, the extrema of D correspond to some combination of D = 0,

D = 1−Θ and D−. It can be shown that D− is negative all for Θ when Γ > 1/5, while

D = 1 − Θ is obviously non-negative. Hence the bounds on D are:

D ∈
{

(D−, 0) , Γ > 1/5, librating orbits,
(0, 1−Θ) , Γ > 1/5, circulating orbits.

(3.39)

These ranges dictate the morphology of the (D,Θ) plane in the top row of Figure 3.3.

It is easy to verify that for Γ > 1/5 the minimum of H∗1 is attained at j2 = Θ

(i.e. along the black dashed lines of limiting eccentricity in Figure 3.4), so H∗1,min is

given by equation (3.22). As for H∗1,max, if fixed points exist for a given Γ,Θ, then the

Hamiltonian is maximised at the fixed point and H∗1,max = H−, see equation (3.23). If

fixed points do not exist, then H∗1,max is attained at j2 = 1 (i.e. along the line of zero

eccentricity), and hence is given by equation (3.21).

3.3.3 Maximum and minimum eccentricities

For Γ > 1/5, librating orbits, if they exist, will have minimum angular momentum

jmin = j− and maximum angular momentum jmax = j+, since these are the two solutions

at ω = π/2, and j+ > j− (see Figure 3.4 and equation (3.18)).

Meanwhile, circulating orbits also reach minimum angular momentum at ω = π/2

(Figure 3.4), so that their jmin = j−. At the same time, jmax = j0 for circulating orbits since

the maximum value of their angular momentum (lowest eccentricity) is reached at ω = 0.

Maximum and minimum eccentricites are then given by emax/min = (1− j2
min/max)1/2

for both types of phase-space trajectories.
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3.3.4 Timescales of eccentricity oscillations

To find the timescale tsec using equation (3.31) we need to know the values of jmin/max

(§3.3.3) and ∆ for each orbit family. First of all, in the Γ > 1/5 regime it is clear (equation
(3.18)) that we always have j2

+ > j2
− ≥ 0 (see Figure 3.2 for an illustration).

Librating orbits in this regime have D < 0 (see Figure 3.3), so we see from equation
(3.14) that j2

0 > 1. Since j2
± provide upper and lower bounds on the true angular

momentum j2, it must be the case that j2
− < j2 < j2

+ < j2
0 , from which we read off

that librating orbits have ∆ = j2
0 − j2

−.
Meanwhile for circulating orbits D > 0 and we know that j2 is bounded from

above by j2
0 < 1, so we must have j2

− < j2 < j2
0 < j2

+, see Figure 3.2a. Hence
∆ = j2

+ − j2
− for circulating orbits.

Using these results we plot the ratio log10(tsec/t1) in (D,Θ) space for Γ = 1, 0.5, 0.25
in the top row of Figure 3.3. The triangle 0 < D < 1−Θ contains the circulating orbits
in each case; the orbits outside of this triangle librate. The bounds on Θ and D are
given by equations (3.37) and (3.39) respectively. The timescale for oscillations is seen to
depend primarily on the proximity to the separatrix between librating and circulating
orbits at D = 0. Along the separatrix the timescale for secular oscillations diverges8.
(Note, however, that the divergence only occurs in a very narrow region around D = 0
— see Figure 1 of Antognini (2015), as well as Appendix 3.B.4). As we decrease Γ from
1, the region containing librating orbits gets larger, though of course the triangle of
circulating orbits is unchanged. The value tsec/t1 is amplified when we decrease Γ, so
that the timescale for oscillations increases as we decrease Γ (at fixed A).

For any Γ in the approximate range 0.25 ≤ Γ . 0.5, and sufficiently far from the
separatrix, t1 provides a good estimate of tsec. For Γ & 0.5, large portions of the (D,Θ)
space have secular timescales that are shorter than t1 by a factor of a few. As Γ→ 0.2,
the timescale diverges everywhere in (D,Θ) space (see equation (3.33)).

All of the results arrived at in this section will change when we leave the regime Γ > 1/5.

3.4 The case 0 < Γ ≤ 1/5

We now turn to the second regime, 0 < Γ ≤ 1/5, which is realised quite naturally for
example by binaries orbiting close to the core of a spherical cluster (see Chapter 2).

We begin as in §3.3 by showing the phase portraits as one varies Γ and Θ. In Figure 3.5
we plot contours of H∗1 , with Γ = 0.2, 0.1, 0.01 from top to bottom and Θ = 0.1, 0.5, 0.8

8To see this note that as D → 0, we have j+ → j0 = 1, and the function K(k) diverges logarithmically
as k → 1.
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from left to right. The green arrows in panel (d) show the sense in which orbits traverse
their trajectories. We immediately note qualitative differences between the plots with
0 < Γ ≤ 1/5 (Figure 3.5) and those for Γ > 1/5 (Figure 3.4). For Γ = 1/5 = 0.2 only
librating orbits exist, as we can see in the top row of Figure 3.5. In panels (d) and (e)
we again have fixed points at ω = ±π/2 and librating orbits surrounding them, but note
that the circulating orbits which exist for Γ = 0.1, 0.01 now have eccentricity minima at
ω = ±π/2 and maxima at ω = 0, which is the opposite of the Γ > 1/5 case. In the (ω, e)
phase plane, circulating orbits now run ‘underneath’ the librating orbits, whereas for
Γ > 1/5 they ran ‘over the top’. As a result, fixed points no longer provide a lower bound
on the maximum eccentricity. The librating orbits still run clockwise but the circulating
orbits now display retrograde precession, ω̇ < 0, whereas in the Γ > 1/5 case we had ω̇ > 0.

3.4.1 Fixed points and orbit families

Figure 3.1 shows that for Γ = 1/5 we have Λ = Λ−1 = 1. This means that all Θ ∈ (0, 1)
accommodate librating trajectories, and nothing circulates. Moving to lower Γ in Figure
3.1 one finds Λ−1(Γ) < Λ(Γ), so that for fixed points and librating trajectories to exist Θ
must now now be less than Λ−1 (i.e. the shaded region is now bounded by the blue curve):

Θ ∈
(
0,Λ−1

)
, 0 < Γ < 1/5. (3.40)

The range of Θ for which fixed points exist diminishes as Γ → 0.
The fact that circulating orbits have changed their sense of pericentre precession

from prograde to retrograde is easily explained by calculating dω/dt (equation (3.10))
at ω = 0. The result is proportional to (5Γ − 1), so that ω̇ is positive when Γ >

1/5 and negative when Γ < 1/5.

3.4.2 Range of parameter values

We again want to derive the bounds on the (D,Θ) plane and to find the extrema of
H∗1 . We begin as in §3.2.5 by considering the limits on D.

First of all, according to its definition (3.17), D diverges when Γ = 1/5, which is in
agreement with the absence of circulating orbits in the top row of Figure 3.5 (circulating
orbits require 0 < D < 1−Θ). For 0 < Γ < 1/5 the quantity 10Γ/(1− 5Γ) is positive;
then it follows from equation (3.16) that the minimum value of D for any fixed Θ is
zero (attained for e = 0). Hence, D = 0 is the lower bound. The other possible bounds
on D are D− and 1 − Θ (see equations (3.25)-(3.27)); it turns out that D− ≥ 1 − Θ
for all Θ in this Γ range, so we conclude that:

D ∈
{

(1−Θ, D−), 0 < Γ < 1/5, librating orbits,
(0, 1−Θ), 0 < Γ < 1/5, circulating orbits.

(3.41)
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Figure 3.5: Contour plots of constant H∗
1 in the (ω, e) plane as in Figure 3.4, but now for the

regime 0 < Γ ≤ 1/5. Phase portraits are shown for Γ = 0.2, 0.1, 0.01. Note the different sign
of precession of circulating orbits compared to Figure 3.4 as well as the change of morphology:
circulating orbits (when they exist, i.e. for Γ 6= 1/5) now run below the islands of libration.

Looking at the timescale plots in the second row of Figure 3.3, we see that the (D,Θ)

plane morphology has completely changed compared to Γ > 1/5 (top row).

This time the minimum of H∗1 is situated at j2 = 1 (i.e. along the line of zero

eccentricity in Figure 3.5), so H∗1,min is given by equation (3.21). If fixed points exist

for a given (Γ,Θ), then H∗1,max = H− is found at the fixed point, see equation (3.23).

Otherwise H∗1,max is found on the line j2 = Θ (the line of limiting eccentricity), and

its value is given by equation (3.22).
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Figure 3.6: Contour plots of constant H∗
1 in the (ω, e) plane as in Figure 3.4, but now for the

regime −1/5 < Γ ≤ 0. Phase portraits are shown for Γ = −0.01,−0.1,−0.18. Note the absence of
fixed points and librating orbits for all Γ and Θ in this regime.

3.4.3 Maximum and minimum eccentricities

For Γ > 1/5 it was easy to determine for example that librating orbits have j2
− < j2 <

j2
+ < j2

0 . From this we were able to instantly read off jmin/max = j± and ∆ = j2
0 − j2

−

(§3.3.4). When Γ ≤ 1/5 things become more complicated. While it is possible to calculate
the analagous results in each Γ regime algebraically, it is easier and more informative to
look at Figure 3.2, in which we plot j2

±, j
2
0 as a function of Γ for various fixed (D,Θ).

Let us consider only Figure 3.2a to begin with, which is for Θ = 0.15, D = 0.15 and
therefore sits inside the triangle of circulating orbits (0 < D < 1−Θ) for any Γ 6= 1/5.
The properties of circulating orbits in each Γ regime can be read off from Figure 3.2a.
In the current regime 0 < Γ < 1/5 we see that j2

− < j2
0 < j2

+. Moreover, the horizontal
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Figure 3.7: Contour plots of constant H∗
1 in the (ω, e) plane as in Figure 3.4, but now for the

regime Γ ≤ −1/5. Phase portraits are shown for Γ = −0.2,−0.4,−1.

dotted lines represent j2 = Θ and j2 = 1, so physical solutions j2 must lie between these
two lines. Hence j2 must be bounded by the green and blue lines (that is by j2

0 and j2
+).

We therefore deduce that jmin = j0, jmax = j+, and ∆ = j2
+ − j2

−.
This exercise can be repeated with panels (b) and (c) to find the corresponding

results for librating orbits. The only subtlety is that as one changes Γ, the region of the
(D,Θ) plane corresponding to librating orbits changes shape and moves (this is most
clearly seen by comparing different panels along the same row in Figure 3.3). The (D,Θ)
points we have chosen for panels (b) and (c) in Figure 3.2 do not quite fall inside the
region of librating orbits for some Γ because that region becomes too small, which is
why for example the red and blue curves in panel (b) are not defined in a small range
near Γ = −0.2. However these plots are good enough for anticipating the results of the



3. Secular dynamics 84

algebraic calculations. When 0 < Γ < 1/5 the j2 ranges for librating orbits can be read

off from Figure 3.2c: for j2 to lie between the upper and lower horizontal dotted lines we

must have j2
0 < j2

− < j2 < j2
+; as a result, jmin = j−, jmax = j+, and ∆ = j2

+ − j2
0 .

3.4.4 Timescales of eccentricity oscillations

In the second row of Figure 3.3 we present contour plots of log10(tsec/t1) in (D,Θ) space

for Γ = 0.15, 0.1, 0.01. This time the bounds on Θ and D are given by equations (3.40)

and (3.41) respectively. The triangle 0 < D < 1 − Θ again contains the circulating

orbits, but now the librating orbits have moved to the right of this triangle, and the

separatrix corresponds to D = 1 − Θ. Along the separatrix the timescale for secular

oscillations again diverges. The timescale is also infinite everywhere in the (D,Θ) plane

in the special case Γ = 1/5 (see equation (3.33)).

For 0 ≤ Γ . 0.15, we see that t1 again provides a fair estimate of tsec, although

it is really a lower bound on tsec in much of the (D,Θ) space, whereas for Γ > 1/5

it was typically an effective upper bound.

3.5 The case −1/5 < Γ ≤ 0

The two regimes −1/5 < Γ ≤ 0 and Γ ≤ −1/5 cannot be realised by binaries orbiting

spherical potentials. In fact, they typically require rather extreme orbits in strongly

aspherical potentials. For this reason, here and in §3.6 we simply summarise the qualitative

results for each regime — the details are given in Appendices 3.A and 3.B respectively.

The regime −1/5 < Γ ≤ 0 is typically realised when the binary’s outer orbit makes

large excursions in the Z direction in an oblate potential, i.e. is highly inclined with

respect to the potential’s symmetry plane (see Chapter 2). Orbits in prolate potentials

can also result in this range of Γ.

In Figure 3.6 we plot contours of constant H∗1 for Γ = −0.01,−0.1,−0.18 from top

to bottom and Θ = 0.1, 0.5, 0.8 from left to right. The phase portrait has undergone

another bifurcation as we passed through Γ = 0. We see from Figure 3.6 that only

circulating orbits exist in this Γ regime, all with retrograde precession (ω̇ < 0). Fixed

points and librating trajectories do not emerge at all in this regime, which is explained

in Appendix 3.A along with some more technical details.
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Figure 3.8: Comparison of the evolution of inner binary orbital elements computed via N-body,
SA and DA integrations (see legend in panel (b)), over 100 azimuthal periods of Rg. The binary
(m1 = m2 = 0.5M�) orbits a spherical isochrone cluster (3.42) with total mass M = 105M�
and scale radius b = 1pc. The outer orbit (plotted in the (X,Y ) plane in panel (a)) has initial
conditions (R, vR, Z, vZ, φ, vφ) = (3.03b, 0, 0, 0, 0, 0.363

√
GM/b), giving the theoretical values

A = 0.0206(GM/b3) and Γ = 0.4. Panels (b) and (c) display the (ω, e) phase-space portrait and
time dependence of eccentricity, respectively, for three binaries. Their initial orbital elements are
(a, e, i,Ω,M) = (103AU, 0.5, 70◦, 17.188◦, 161.36◦), with initial ω taking the values (A) 91.67◦, (B)
5.73◦, (C) 34.14◦. See §3.7.2 for discussion.

3.6 The case Γ ≤ −1/5

Situations where Γ ≤ −1/5 may arise, for example, from orbits that are highly inclined
with respect to the symmetry plane of a strongly flattened potential. Cylindrical potentials,
i.e. ones in which Φ(R,Z) = Φ(R) (no Z-dependence, extremely prolate configurations),
also fall into this regime as they always have Γ = −1/3.

In Figure 3.7 we plot contours of H∗1 with Γ = −0.2,−0.4, 1 from top to bottom
and Θ = 0.1, 0.5, 0.8 from left to right. A final bifurcation has occured as we moved
below Γ = −1/5, such that the phase portrait morphology now looks similar to the case
Γ > 1/5, with fixed points at ω = ±π/2 and circulating orbits running ‘over the top’ of
librating orbits in the (ω, e) plane. However, the direction of ω precession is the opposite
to the Γ > 1/5 case: circulating orbits in the Γ ≤ −1/5 regime have retrograde precession
(ω̇ < 0) while librating orbits run anticlockwise. Appendix 3.B provides additional details
on this Γ regime.

This completes our detailed exploration of the dynamical regimes corresponding to
the different ranges of Γ (equations (3.3)-(3.6)) considered in this Chapter.

3.7 Accuracy of the doubly-averaged approximation

In Chapter 2 we developed three successive levels of approximation for the evolution
of the binary’s inner orbital elements.
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First, we had the set of six time-dependent equations for the relative position and
velocity of the binary components, subject to the gravitational force of each other and the
smooth background potential of the cluster. No tidal approximation had been made at this
stage. These six equations can only be solved by direct numerical (‘N-body’) integration.

Second, we had a set of four ‘singly-averaged’ (SA) equations, which were obtained
by tidally expanding the six N-body equations, recasting them in Hamiltonian form,
and averaging over the binary’s mean anomaly (i.e. over the ‘inner orbit’). The singly-
averaged equations are still explicitly time-dependent through the external potential
Φ(Rg(t)), where Rg(t) is the barycentric position of the binary (assumed to move as
a test particle in the cluster potential).

Finally, we derived a system of two ‘doubly-averaged’ (DA) time-independent equations
(3.10)-(3.11) resulting from the secular Hamiltonian (3.1), which was itself obtained by
averaging the singly-averaged Hamiltonian over many ‘outer orbits’ of the binary around
the cluster. Our time-averaging procedure relied on the assumption that Rg(t) densely
fills an axisymmetric torus whose symmetry axis coincides with the symmetry (Z) axis
of the potential (in the case of a spherical potential, the ‘torus’ is a two-dimensional
annulus perpendicular to Z). More technically, we required that the time-averages
of the derivatives Φαβ of the potential (where Φxy = ∂2Φ/∂X∂Y , etc.) converge to
constant values — in particular, Φxy ≡ Φxz = Φyz = 0. This condition is almost always
satisfied for orbits in any axisymmetric potential after a sufficient number of outer orbital
periods. Then, the time-dependent torque on the binary can be replaced with a converged
time-independent torque that arises from an axisymmetric mass distribution as seen
from the binary’s frame. In §§3.2-3.6 we examined the dynamics that arise from the
doubly-averaged equations (3.10)-(3.11).

However, it is to be expected that the DA theory will break down under certain
circumstances. The goal of this section is to explore the validity of the DA approximation
for computing inner binary dynamics in the different Γ regimes covered in §§3.3-3.6.
To do so, we present several examples comparing numerical integrations of the N-
body9, SA and DA equations.

We will see that the secular approximation is good as long as the ratio of the secular
timescale to the outer orbital period, tsec/Tφ, is large enough. Given that tsec ∼ T 2

φ/Tb (see
equations (3.33) and (3.36)), this is equivalent to the statement that Tφ/Tb be sufficiently
large. Hence, alongside each case where the DA theory fails we present another example
with identical initial conditions except for a smaller binary semi-major axis. The effect of
this is to decrease the inner binary orbital period Tb, rendering the DA theory valid.

9Note the term ‘N-body’ is not meant to imply that we integrate an entire cluster of, say, 105 particles.
Instead we integrate the exact two-body equations of motion in the presence of the time-dependent
external potential calculated via numerical orbit integration of Rg(t).
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3.7.1 Method

We use two particular forms of the background potential Φ in our examples. The first
is the spherical isochrone potential

Φiso(r) = − GM
b+
√
b2 + r2

, (3.42)

where r =
√
X2 + Y 2 + Z2 is the spherical radius. This is a model potential for a spherical

star cluster with total mass M and scale radius b (Binney & Tremaine 2008). Since
the potential (3.42) is spherical we can always choose the plane of the binary’s outer
orbit Rg to be the (X,Y ) plane. The other potential we will use is the Miyamoto-Nagai
potential (Miyamoto & Nagai 1975):

ΦMN(R,Z) = − GM√
R2 + (b` +

√
Z2 + b2h)2

, (3.43)

where R =
√
X2 + Y 2 is the usual cylindrical radius. Here M is the total mass of the

model, b` is the scale length and bh is the scale height. By changing the value of bh/b`,
the Miyamoto-Nagai potential interpolates between the Kuzmin potential of a razor
thin disk (bh � b`) and the spherical Plummer potential (bh � b`) frequently used to
model globular clusters (Binney & Tremaine 2008).

In either case the binary’s outer orbit Rg(t) is stipulated via its initial conditions
(R, vR, Z, vZ, φ, vφ), where φ = tan−1(Y/X) is the azimuthal angle in cylindrical coordi-
nates, vR is the velocity of the binary in the direction of increasing R, etc. We integrate
the orbit Rg(t) in this potential numerically using galpy (Bovy (2015); see §2.F for
details), and then feed the resulting time series into the SA and N-body equations10. The
DA equations (3.10)-(3.11) are integrated using the theoretical values of A and Γ when
they are available (i.e. in the spherical isochrone case); otherwise we use the numerical
prescription outlined in §2.F and denote them by11 Anum,Γnum. In all numerical examples
the binary has constituent masses m1 = m2 = 0.5M�.

3.7.2 Accuracy of the doubly-averaged approximation for Γ > 1/5.

Here we give two examples where the N-body, SA and DA integrations are in very
good agreement, both in the regime Γ > 1/5 (explored in §3.3). In the first the binary
orbits the spherical isochrone potential, and in the second it orbits the Miyamoto-Nagai
potential. The details of each example are given in the following paragraphs, and the
results are shown in Figures 3.8 and 3.9 respectively.

10Note that in some examples where there is an extremely large separation between the secular timescale
and inner orbital period it becomes prohibitively expensive to integrate the N-body equations of motion,
so we just show the DA and SA results.

11In spherical potentials, A and Γ can be calculated theoretically by stipulating the outer orbit’s
peri/apocentre rp/a. See Chapter 2 for more information about calculating A, Anum,Γ, Γnum and possible
small discrepancies between the theoretical and numerical values.



3. Secular dynamics 88

−6−4−2 0 2 4 6
X/b�

−6
−4
−2
0
2
4
6

ℓ
/b

�

(a)

3 4 5 6 7
R/b�

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

ℓ
/b

�

(b)

−3 −2 −1 0 1 2 3
ω

0.0

0.2

0.4

0.6

0.8

1.0

e (A) (B)
(C)

(c)

N-body
SA
DA

0.5
0.6
0.7
0.8
0.9

e

(A)

0.5
0.6
0.7
0.8
0.9

e

(B)

0 10 20 30 40 50
t/Gyr

0.15
0.30
0.45
0.60
0.75
0.90

e

(d)

(C)

Figure 3.9: Comparison of N-body, SA and DA integrations in a non-spherical cluster. The
binary (m1 = m2 = 0.5M�) orbits a Miyamoto-Nagai potential (3.43) with total mass M =
1011M� and b` = bh = 3.5kpc. The outer orbit has initial conditions (R, vR, Z, vZ, φ, vφ) =
(2.29b`, 0, 0.143b`, 0, 0, 0.667

√
GM/b`), its projections onto the (X,Y ) (equatorial) and (R,Z)

planes are shown in panels (a) and (b); numerically we find Anum = 0.0149(GM/b3`) and Γnum =
0.370. Panels (c) and (d) are similar to panels (b) and (c) of Figure 3.8. Initial orbital elements
are (a, e, i,Ω,M) = (5 × 104AU, 0.5, 70◦, 17.188◦, 161.36◦), with initial ω taking the values (A)
91.67◦, (B) 5.73◦, (C) 30.65◦. See §3.7.2 for discussion.

[Figure 3.8: Isochrone potential, Γ = 0.4.] We consider a binary orbiting a spherical
isochrone cluster (3.42) with scale radius b = 1pc and total mass M = 105M�. The
initial conditions for the outer orbit Rg are as follows:

(R, vR, Z, vZ, φ, vφ) = (3.03b, 0, 0, 0, 0, 0.363
√
GM/b). (3.44)

It is easy to show that this choice of initial conditions is equivalent to a choice of
peri/apocentre (rp/b, ra/b) = (2.40, 3.03). The theoretical A,Γ values that result are
A = 0.0206(GM/b3) and Γ = 0.4. The outer orbit is shown in Figure 3.8a in blue.
In panels (b) and (c) we show the (ω, e) phase space evolution and the e(t) timeseries
for three characteristic trajectories (A)-(C). The black lines in panel (b) just show the
level curves of the underlying doubly-averaged Hamiltonian, like in Figures 3.4-3.7. All
three panels in Figure 3.8 show 100Tφ worth of data.

The (rather soft) binary has initial orbital elements

(a, e, i,Ω,M) = (103AU, 0.5, 70◦, 17.188◦, 161.36◦), (3.45)
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Figure 3.10: Same as Figure 3.8, including the form of the cluster potential, but now focusing
on the regime 0 < Γ ≤ 1/5. The binary’s outer orbit (shown for 100Tφ in panel (a)) has initial
conditions (R, vR, Z, vZ, φ, vφ) = (1.6b, 0, 0, 0, 0, 0.27

√
GM/b), resulting in A = 0.124(GM/b3)

and Γ = 0.162. In panels (b) and (c) the initial binary semi-major axis is a = 103AU and
we integrate the equations of motion for 100Tφ, while in panels (d) and (e) it is a = 100AU
and we integrate for 3000Tφ. In each case, the other initial orbital elements are (e, i,Ω,M) =
(0.5, 70◦, 17.188◦, 161.36◦), with initial ω taking the values (A) 91.67◦, (B) 5.73◦, (C) 34.14◦. See
§3.7.3 for discussion.

with three different initial values of ω, namely (A) 91.67◦ (librating phase-space orbit),
(B) 5.73◦ (circulating orbit), and (C) 34.14◦ (an orbit very close to the separatrix). From
Figures 3.8b,c we see that the agreement is extremely good between N-body, SA and
DA calculations for phase-space trajectories (A) and (B), even though their secular
timescales are longer than Tφ by just a factor of 20− 30. Although initially the agreement
in trajectory (C) is also excellent, there is a divergence between N-body, SA and DA
calculations when we reach low eccentricity because (C) was chosen to be so close to
the separatrix (where the secular timescale formally is infinite — see Figure 3.3). The
DA result circulates while the others librate.

[Figure 3.9: Miyamoto-Nagai potential, Γnum = 0.370.] This time the binary orbits
the Miyamoto-Nagai potential (3.43) with b` = bh = 3.5kpc and total massM = 1011M�.
The initial conditions of the outer orbit are

(R, vR, Z, vZ, φ, vφ) = (2.29b`, 0, 0.143b`, 0, 0, 0.667
√
GM/b`). (3.46)
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Figure 3.11: Validity of the doubly-averaged secular approximation for a substantially inclined
outer orbit of the binary in a non-spherical cluster. The binary (m1 = m2 = 0.5M�) orbits a
Miyamoto-Nagai potential (3.43) with total massM = 1011M� and b` = 3.5kpc and bh/b` = 5
(less flattened than in Figure 3.9). The outer orbit (shown for 100Tφ in panels (a) and (b)) has initial
conditions (R, vR, Z, vZ, φ, vφ) = (2.29b`, 0.05

√
GM/bl, 0.143b`, 0.05

√
GM/bl, 0, 0.05

√
GM/bl);

numerically we find Anum = 0.00826(GM/b3`) and Γnum = 0.045. In panels (c) and (e) the initial
binary semi-major axis is a = 5 × 104AU and we integrate the equations of motion for 100Tφ,
while in panels (d) and (f) it is a = 104AU and we integrate for 1000Tφ. Initial orbital elements
are (e, i,Ω,M) = (0.9, 70◦, 17.188◦, 161.36◦), with initial ω taking the values (A) 90◦, (B) 24.9◦,
(C) 40.1◦. See §3.7.3 for discussion.

The projections of the outer orbit onto the (X,Y ) and (R,Z) planes shown in Figures
3.9a,b. Again all panels show the first 100Tφ of integration time. Since the outer
orbit is not planar we do not have theoretical A,Γ values; numerically we find Anum =
0.0149(GM/b3`) and Γnum = 0.370 (not too different from Γ = 1/3 corresponding to
binaries near the midplane of a thin disc).

The binary has initial orbital elements

(a, e, i,Ω,M) = (5× 104 AU, 0.5, 70◦, 17.188◦, 161.36◦), (3.47)

and we consider three initial values of ω, namely (A) 91.67◦ (librating orbit), (B) 5.73◦

(circulating orbit), and (C) 30.65◦ (an orbit very close to the separatrix). It is again
evident (Figures 3.9c,d) that the agreement is extremely good between N-body, SA and
DA calculations for trajectories (A) and (B). The agreement in the eccentricity timeseries
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for the separatrix trajectory (C) is also good over the first half-oscillation, but there is
then once again a discrepancy in the phase portrait as to whether the orbit ought to
librate or circulate. Since the semi-major axis used in this example is typical for Oort
Cloud comets, we conclude that the DA approximation should work well for characterising
the secular evolution of the long-period comets (Heisler & Tremaine 1986).

In both of these examples the DA theory is very accurate, except for describing
phase-space trajectories that lie extremely close to the separatrix between librating and
circulating orbits. Note that in each case, 100 outer orbital periods was enough time for
at least two secular cycles to take place, so tsec/Tφ was at most ∼ 50 and usually smaller.
We will see in the upcoming sections that in some circumstances a much greater timescale
separation tsec/Tφ is required for the secular approximation to be valid.

3.7.3 Accuracy of the doubly-averaged approximation for 0 < Γ ≤ 1/5.

We now consider the case 0 < Γ ≤ 1/5 studied in §3.4. We again provide one example in
the spherical isochrone potential and one in the non-spherical Miyamoto-Nagai potential.

This time, in each instance we use two different initial semi-major axes to show how
the secular approximation improves for smaller a (shorter Tb).

[Figure 3.10: Isochrone potential, Γ = 0.162.] The potential is exactly as in
the Γ = 0.4 case discussed in §3.7.2 (Figure 3.8), but now we choose different initial
conditions for the outer orbit, namely

(R, vR, Z, vZ, φ, vφ) = (1.6b, 0, 0, 0, 0, 0.27
√
GM/b). (3.48)

This corresponds to (rp/b, ra/b) = (0.9, 1.6), giving the theoretical values Γ = 0.162 and
A = 0.124(GM/b3). Figure 3.10a shows the outer orbit for the first 100Tφ of integration
time.

In Figures 3.10b,c the binary’s initial orbital elements are also unchanged from those
in Figure 8 (in particular, we still use a = 103AU). We again integrate for 100Tφ. We see
that the agreement between N-body, SA and DA calculations is good for trajectory (A)
and reasonable for (B). Trajectory (C), which is very near the separatrix, does not show
very good agreement between the DA and other approximations. The reason that the DA
theory is so much less accurate in this example than for Γ = 0.4 (Figure 3.8) — despite
having similar ratios of tsec/Tφ — is that this time the binary does not fill its annulus
fast enough for the time-averaged potential coefficients Φαβ to converge rapidly.

To show that the secular approximation can be improved, we rerun integrations of the
same three trajectories with exactly the same initial conditions except we use a smaller
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Figure 3.12: Same as Figure 3.9 except that the initial vertical coordinate for the outer orbit is
now Z = 2b` (otherwise, the potential and initial conditions of the outer orbit are the same). This
gives a negative Γ value, namely Γnum = −0.163 and Anum = 0.0392(GM/b3`). The outer orbit is
shown for the first 100Tφ in panels (a) and (b). In panel (c) we integrate the equations of motion
for a single phase-space trajectory (‘B’), with a = 5× 104AU, for 100Tφ. In panel (d) we show
this trajectory and another trajectory (‘A’) for an a = 5× 103AU binary over 2000Tφ. In all cases
the other inner orbital elements of trajectories (A) and (B) are exactly the same as in Figure 3.9,
namely (e, i,Ω,M) = (0.5, 70◦, 17.188◦, 161.36◦), with initial ω taking the values (A) 91.67◦, (B)
5.73◦. See §3.7.4 for discussion.

semi-major axis, a = 100AU (lowering Tb by ∼ 30 and, correspondingly, increasing tsec

by the same factor). We integrate for 3000Tφ. The results are shown in Figures 3.10d,e.
The secular timescales are much longer now (from tsec/Tφ ∼ 650 for trajectory (A), to
∼ 1300 for (C)). As a result, the binary fills its annulus many times per secular period
and the agreement between DA and SA integrations is almost perfect.

[Figure 3.11: Miyamoto-Nagai potential, Γnum = 0.045.] The binary orbits the
Miyamoto-Nagai potential (3.43) with b` = 3.5kpc and bh/b` = 5, which is a less flattened
potential than the bh/b` = 1 example from Figure 3.9. The total mass is again M =
1011M�. The initial conditions of the outer orbit are

(R, vR, Z, vZ, φ, vφ) = (2.29b`, 0.05
√
GM/bl, 0.143b`, 0.05

√
GM/bl, 0, 0.05

√
GM/bl).

(3.49)
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Figure 3.13: Same as Figure 3.9 except that the initial vertical coordinate for the outer orbit is
now Z = 3b` (other initial conditions and the potential are the same). This gives a highly inclined
outer orbit illustrated in panels (a) and (b) with Γnum = −0.384 and Anum = 0.0142(GM/b3`). In
panel (c) we integrate the equations of motion for a single (circulating) phase-space trajectory, with
a = 5× 104AU, for 100Tφ. In panel (d) we show three trajectories for an a = 5× 103AU binary
over 2000Tφ. In each case the other orbital elements are (e, i,Ω,M) = (0.5, 70◦, 17.188◦, 161.36◦),
with initial ω taking the values (A) 91.67◦ (librating), (B) 5.73◦ (circulating), (C) 67.6◦ (close to
the separatrix). See §3.7.4 for discussion.

From Figures 3.11a,b (which both show the first 100Tφ of integration time) we see that Rg

makes large excursions in the Z direction: the binary’s barycentric orbit is about as thick
vertically as it is radially. Numerically we find Anum = 0.00826(GM/b3` ) and Γnum = 0.045.

In Figures 3.11c,d the binary has initial orbital elements

(a, e, i,Ω,M) = (5× 104AU, 0.9, 70◦, 17.188◦, 161.36◦), (3.50)

and three initial values of ω, namely (A) 90◦ (librating orbit), (B) 24.9◦ (circulating orbit),
and (C) 40.1◦ (separatrix). We integrate the equations of motion for 100Tφ. Although
the N-body and SA integrations agree extremely well (the red and green lines in Figures
3.11c,d are almost indistinguishable), the agreement with the DA integration is only
reasonable for trajectories (A) and (B) and is poor for trajectory (C). Moreover, the
smooth periodicity of the DA solution has disappeared in the SA and N-body integrations,
which show chaotic small-scale oscillations. This is unsurprising — despite the fact that
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tsec/Tφ & 50 in each case, the binary does not fill its torus densely enough over sufficiently
few Tφ to render the axisymmetric secular approximation valid.

The DA theory fares much better in Figures 3.11e,f, in which we rerun the same
three trajectories except with a smaller semi-major axis, a = 104AU (i.e. lowering Tb
by ∼ 10 and increasing tsec by the same amount). We integrate for 1000Tφ, so that
tsec/Tφ & 500. Of course, the timescales involved here are much longer than the age
of the universe and so are not relevant in practice, but this example demonstrates how
the secular approximation becomes more accurate when the binary’s outer orbit has
a better chance to fill its axisymmetric torus.

3.7.4 Accuracy of the doubly-averaged approximation in the cases
−1/5 < Γ ≤ 0 and Γ ≤ −1/5

In this section we present one numerical example in each of the regimes −1/5 < Γ ≤ 0
and Γ ≤ −1/5 (explored in §3.5 and §3.6 respectively). In both cases we use a Miyamoto-
Nagai potential with bh/b` = 1; each time we give an example in which the DA theory
works very poorly, and one in which it works well.

[Figure 3.12: Miyamoto-Nagai potential, Γnum = −0.163.] The potential and
outer orbit initial conditions are exactly as in Figure 3.9, except that the initial vertical
coordinate is Z = 2b`. The resulting (vertically extended) outer orbit (shown in Figures
3.12a,b for the first 100Tφ of integration time) results in a negative Γ value: we find
Γnum = −0.163 and Anum = 0.0392(GM/b3`).

For clarity we only show a single phase-space orbit (‘B’) in Figure 3.12c (integrated
for 100Tφ), which obviously circulates since there are no fixed points in this Γ regime
(§3.5). The initial orbital elements for trajectory (B) are identical to those in Figure 3.9 —
in particular, we again use a = 5× 104AU. From the (ω, e) phase-space portrait (Figure
3.12c) we see that the N-body and SA integrations agree nicely, but the agreement with
the DA theory is very poor. Comparing with Figure 3.9, we note that we have caused the
DA theory to fail simply by changing a single parameter, the initial Z coordinate of the
outer orbit. This is true because the outer orbit is now much more vertically extended
and so takes many more outer orbital periods to fill its torus, delaying the convergence of
the time averages of the potential derivatives Φαβ that enter the DA Hamiltonian.

Much better agreement is found in Figure 3.12d, in which we use a semi-major axis
of a = 5 × 103AU (increasing the secular timescale by a factor ∼ 30) and integrate
for 2000Tφ. Other than semi-major axis, trajectory (B) in this figure has the same
initial conditions as trajectory (B) in Figure 3.12c. Trajectory (A) differs from (B)
only in that it has initial ω = 91.67◦.
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[Figure 3.13: Miyamoto-Nagai potential, Γnum = −0.384.] The potential and the
initial conditions of the outer orbit are exactly the same as in Figure 3.12, except the
initial Z coordinate is now even larger, Z = 3b`, making the orbit very highly inclined.
This thickens the outer orbit’s torus further (the first 100Tφ are shown in Figures 3.13a,b)
and results in Γnum = −0.384 and Anum = 0.0142(GM/b3`). From panel (a) it is clear
that the outer orbit has not come close to filling its torus after 100Tφ.

Figure 3.13c shows a trajectory with exactly the same initial conditions as trajectory
(B) in Figure 3.12c (i.e. a = 5× 104 AU), integrated for 100Tφ. The DA theory is seen
to be very inaccurate here. For a better example, in Figure 3.13d we again lower the
semi-major axis to a = 5× 103AU and integrate for 2000Tφ. We see that this time (B) is
captured almost perfectly by the DA theory, as are two other trajectories, namely (A)
(identical initial conditions except ω = 91.67◦) and (C) (with ω = 67.6◦).

3.7.5 Discussion: validity of the doubly-averaged secular theory

The examples presented in §§3.7.2-3.7.4 illustrate two possible ways in which the DA
theory can be in error:

(i) The secular approximation is only a good one if the timescale for evolution of the inner
orbital elements is much longer than the time for the time-averages of Φαβ to converge
(i.e. for the binary to ‘fill its torus’). Otherwise, the secular approximation can break
down and the DA equations can fail completely to describe the evolution.

(ii) The torque experienced by the binary fluctuates on the timescale of its outer orbital
period, leading to small fluctuations in the orbital elements on this timescale. Even when
the DA equations provide a good description of the dynamics on average, they will always
fail to resolve these short-timescale fluctuations (which are fully captured at the level of
the SA approximation).

So far in this section we primarily explored the validity of the secular approximation in
the sense of Φαβ convergence (effect (i)). However, in practice both effects (i) and (ii)
are typically present in our calculations and distinguishing them is important.

The best illustration of the two effects operating simultaneously is provided by
Figures 3.12c and 3.13c, in which the secular (DA) approximation completely fails to
follow the dynamics quantitatively over long timescales. First, the overall shape of each
trajectory (the ‘carrier signal’) computed with both the N-body and SA theory does
not line up with the DA prediction. This mismatch is entirely the consequence of effect
(i). Additionally, the N-body and SA curves also exhibit short-timescale ‘wiggles’ on
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top of the smoother ‘carrier’ phase curve. These wiggles are caused by effect (ii), i.e.
torque variations along the outer orbit.

Regardless of how good is the secular approximation by the measure of Φαβ convergence,
there are always small short-timescale fluctuations due to effect (ii) that the DA theory
cannot capture (e.g. see Figures 3.9c,d, 3.10b,c & 3.11c,d). In many applications of
the (quadrupole) LK theory effect (i) is largely absent because there the timescale for
a binary to effectively ‘fill its torus’ is simply equal to its outer orbital period. The
primary deviations from the DA prediction in the LK case are then due to short-timescale
fluctuations (effect (ii)), which has been studied widely in this setup (Ivanov et al. 2005;
Katz & Dong 2012; Antonini & Perets 2012; Bode & Wegg 2014; Antonini, Murray, et al.
2014; Antognini et al. 2014; Luo et al. 2016; Grishin et al. 2018). While we largely pass
over them from now on, the short-period SA fluctuations can become vitally important
when eccentricities get very close to 1 (see LK references above). Their magnitude depends
strongly on the shape of the outer orbit. Accounting for such fluctuations in a systematic
way in the general Γ case is a central focus of Chapter 6.

Focusing now on the issue of the Φαβ convergence, the two examples presented in
§3.7.2 (Figures 3.8 and 3.9 — both in the regime Γ > 1/5) showed very good agreement
between DA theory and direct numerical integration, even for binaries whose secular
evolution timescales were significantly shorter than 100Tφ (for example, trajectory (A)
in Figure 3.8 had tsec/Tφ ∼ 25). However, all other examples required a much larger
ratio of tsec/Tφ for the DA theory to be rendered accurate (typically ∼ a few ×100).
This is because the secular approximation is valid only when the timescale for secular
evolution is much longer than the time for the binary to fill its torus densely. The
number of outer orbital periods required to fill the torus densely depends strongly on
the form of the potential and the choice of outer orbit.

The DA approximation is often most easily satisfied (i.e. it works for relatively
small values of tsec/Tφ) in spherical potentials, because then the ‘torus’ reduces to a
two-dimensional annulus (e.g. Figure 3.8). Not only does this decrease the physical volume
that must be visited by the outer orbit, but also the derivatives Φxz,Φyz automatically
vanish and so pose no problem to the convergence. Circular outer orbits, and outer
orbits that avoid any central core, tend to fill their annuli particularly efficiently (and
typically correspond to Γ > 1/5; see Chapter 2).

However, many spherical cluster potentials are cored (such as the isochrone and
Plummer models), and so binaries that spend significant time near the centre of these
clusters (i.e. those with small rp) experience an almost-harmonic potential. Since orbits
in a harmonic potential are closed ellipses, the apsidal precession of such outer orbits can
be very slow; this frequently leads to unfilled gaps being left in the annulus even after
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∼ 100Tφ (see Figure 2.7c for an example). As a result, the secular approximation may
require relatively large values of tsec/Tφ to be valid, as was the case in Figure 3.10. In
spherical potentials, small rp tends to correspond to small (but always positive) Γ, so
this issue will arise most often for binaries in the regime 0 < Γ ≤ 1/5.

In non-spherical potentials the situation is often worse simply because there is a
third dimension of the torus for the outer orbit to fill. In addition, the derivatives
Φxz,Φyz are no longer identically zero in general, so we must wait for them to converge,
and this typically takes longer than for the other Φαβ (see §2.7.2). In these potentials
the secular approximation is most easily satisfied by binaries on outer orbits that are
coplanar or nearly coplanar — then the torus is small in volume, and, if the potential
is strongly flattened, the vertical oscillations tend to be very rapid, so the torus is filled
efficiently (a good example is Figure 3.9). Orbits confined near the midplane of a strongly
flattened potential have Γ ≈ 1/3 (§2.6.3).

On the other hand, when the outer orbit has a large vertical extent, filling a torus
takes many more outer orbital periods and hence very large values of tsec/Tφ are required
for the secular theory to be accurate (e.g. Figures 3.12 & 3.13). This in turn implies
that for Γ < 0, the DA theory may be of limited practical use in certain cases (when
tsec/Tφ is not large enough) because achieving negative Γ typically requires outer orbits
that make large excursions in the Z direction.

3.8 Effect of short-range forces on the cluster-tide driven
evolution

So far our secular theory considered only the gravitational tidal effect of a stellar cluster
on binary evolution. However in a realistic astrophysical situation there could be other,
short-range forces which must be taken into account, particularly at high eccentricity
when the pericentre distance becomes small (see §3.9.2). Depending on the type of binary
(i.e the masses and sizes of its components) and its semi-major axis these could include
(i) prograde precession of the argument of pericentre ω due to general relativity (GR), (ii)
precession due to the oblateness or tidal distortions of the binary components, (iii) loss of
energy and angular momentum due to gravitational wave emission, (iv) tidal dissipation
within the components of the binary, etc. The first two effects are conservative in that they
do not change the energy of the system and preserve the binary semi-major axis, while
the latter two lead to energy losses and tend to shrink the binary orbit. In this section we
will briefly consider (i), namely GR pericentre precession, to gauge its effect on the secular
dynamics — a full, detailed study of the effect of GR precession is given in Chapter 4.
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We can include GR precession in our doubly-averaged theory by adding the following
term to the Hamiltonian (3.1) (Fabrycky & Tremaine 2007):

〈HGR〉M = −3G2(m1 +m2)2

c2a2
√

1− e2
= −3G4(m1 +m2)4

c2L3J
. (3.51)

The angle brackets remind us that this term is derived by averaging over the binary’s
mean anomaly. The Hamiltonian 〈HGR〉M is independent of the longitude of the
ascending node Ω, so the z-component of angular momentum Jz is conserved; hence,
Θ = (1 − e2) cos2 i remains an integral of motion. Another integral of motion is the
full perturbation energy 〈H1〉M + 〈HGR〉M — the sum of the cluster tide and GR
Hamiltonians, equations (3.1) and (3.51).

We put (3.51) into dimensionless form by dividing by C = Aa2/8 (see equation (3.8)).
Then we must compare the perturbation H∗1 due to the potential of the cluster to the
corresponding dimensionless perturbation due to GR:

H∗GR = −24G2(m1 +m2)2

c2Aa4
√

1− e2
= −24G6(m1 +m2)6

c2AL8j
= − εGR√

1− e2
= −εGR

j
. (3.52)

where the relative strength of GR precession compared to the cluster tide is measured
by the (not necessarily small) parameter

εGR ≡
24G2(m1 +m2)2

c2Aa4 (3.53)

= 0.258×
(
A∗

0.5

)−1 ( M
105M�

)−1 ( b

pc

)3 (m1 +m2
M�

)2 ( a

20 AU

)−4
. (3.54)

In the numerical estimate we have again assumed that the binary is orbiting a spherical
cluster with scale radius b and total mass M. The parameter εGR represents, up to
a constant factor, the ratio of the GR apsidal precession rate for a circular binary to
the binary precession rate due to the cluster tide.

The prograde pericentre precession rate induced by GR is

ω̇GR ≡
C

L

∂H∗GR
∂j

= 3G3/2(m1 +m2)3/2

a5/2c2(1− e2)
. (3.55)

With this we can evaluate the ratio of ω̇GR to the precession rate ω̇1 due to the background
cluster tide alone (equation (3.10)):

ω̇GR
ω̇1

= εGRj

6
(
5ΓΘ− j4 − 5Γ cos 2ω(Θ− j4)

)−1

= εGRj

6Θ

(
10Γ sin2 ω + j4

Θ (5Γ− 1)
)−1

. (3.56)
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We expect GR effects to be most important at high eccentricity, when j2 ∼ Θ � 1.
Also, in most cases of interest jmin occurs at ω = π/2. Plugging these relations into
(3.56) we can evaluate

ω̇GR
ω̇1
≈ εGR

60Γ
j

Θ . (3.57)

We can ignore GR precession only when |ω̇GR/ω̇1| � 1, which requires rather small
εGR � 60ΓΘ1/2(j/Θ1/2)−1.

3.9 Discussion

The main result of this Chapter is the unveiling of a variety of new dynamical regimes that
characterise the orbital evolution of a binary system subject to an external gravitational
tidal field (‘cluster’). While the results of §3.2 are completely general, we found that we
need to investigate dynamics in four separate regimes, corresponding to certain ranges of
the parameter Γ characterising the external tidal field of the cluster and the binary orbit
in it. For Γ > 1/5 (§3.3), the results were found to be qualitatively very similar to those
previously derived in the test particle quadrupole Lidov-Kozai problem, which is recovered
exactly by taking Γ = 1 (Vashkov’yak 1999; Kinoshita & Nakai 2007; Antognini 2015).

However, when leaving the regime Γ > 1/5 several qualitative differences emerge.
The condition for the existence of fixed points changes, as do locations of minimum and
maximum eccentricities in the (ω, e) phase-space and the morphology of the (D,Θ) plane;
even the very existence of the fixed points and orbits librating around them changes
with Γ. The first bifurcation in the qualitative dynamics happens at Γ = 1/5 but there
are others at Γ = 0 and Γ = −1/5, so we separately treated the regimes 0 < Γ ≤ 1/5
(described in §3.4), −1/5 < Γ ≤ 0 (in §3.5), and Γ ≤ −1/5 (in §3.6).

In Tables 3.1 & 3.2 we collect the results of §§3.3-3.6. In Table 3.1 we provide the
locations and values of minimum/maximum j, the values of ∆ which enter the secular
timescale (3.33), and the allowed ranges of the constants of motion D and Θ, for each
family of phase-space orbit and in each Γ regime. Table 3.2 collects the locations and
values of the extrema of the dimensionless Hamiltonian H∗1 , depending on the Γ regime
and whether or not fixed points exist.

In this Chapter we never explicitly considered the possibility of Γ > 1 — all our
examples were given for Γ ≤ 1. Situations in which Γ exceeds unity are possible. However
we found in Chapter 2 that this regime is realised only for rather extreme binary orbits
inside the cluster, e.g. close to polar, which justifies our overall neglect of the Γ > 1
possibility. Also, we should note that none of the results obtained in the Γ > 1/5 regime
(§3.3) explicitly assumed Γ ≤ 1; they also hold when Γ > 1. The only substantial
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difference in this case would be that A becomes negative for Γ > 1. As a result, maxima

and minima of the (dimensional) perturbing Hamiltonian would swap their locations

in the (ω, e) phase-space, and the phase-space trajectories would be traversed in the

opposite direction compared to the 1/5 < Γ ≤ 1 case.

For our doubly-averaged theory to properly characterise binary orbital evolution

certain conditions should be met. We already saw in §3.7 that the description based on

the doubly-averaged Hamiltonian (3.1) may fail when the secular timescale tsec is not

much longer than the period of the outer orbit of the binary Tφ. In such cases one should

resort to the SA framework (although even this can break down in extreme cases — see

§6.5.2). Other phenomena that may affect the orbital evolution of binaries in clusters (on

top of the smooth cluster tide-driven secular evolution) are discussed in §3.9.3.

3.9.1 Critical inclination for the existence of fixed points

A classic result of LK theory is the value of the critical initial inclination i0 = ic,

above which fixed points appear in the (ω, e) phase-space. This critical angle marks

the onset of large eccentricity oscillations, and a qualitative departure from classical

Laplace-Lagrange dynamics. It provides a constraint on which binary orientations can

lead to large eccentricity excursions.

Assuming an initial binary eccentricity of zero, we can calculate ic for general Γ using

the conservation of Θ = cos2 i0. The upper bounds on Θ for fixed points to exist (= 3/5

in the test particle quadrupole LK case) are given by equations (3.37), (3.40) and (3.65);

it then easily follows that the existence of fixed points requires i0 > ic where

ic =
{

cos−1(Λ1/2), |Γ| > 1/5,
cos−1(Λ−1/2), 0 < Γ ≤ 1/5,

(3.58)

with Λ(Γ) given in equation (3.12). There are no fixed points for any initial inclination

if −1/5 < Γ ≤ 0 — see §3.5. If the initial eccentricity of the binary e0 is non-zero, the

argument of the cos−1 needs to be additionally divided by
√

1− e2
0, further lowering ic.

We plot ic as a function of Γ in Figure 3.14. In the LK limit Γ = 1 we recover the

classic result ic = cos−1√3/5 ≈ 39.2◦. As we decrease Γ from 1, fixed points exist for ever

smaller initial inclinations, until ic reaches zero at Γ = 1/5; note however that the secular

timescale diverges as |Γ| → 1/5. Asymptotes at Γ = −1/5 and Γ = 0 ensure that fixed

points never exist between those values. As Γ→ −∞ we find Λ→ 1/2 and so ic → 45◦.
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Figure 3.14: Critical inclination ic assuming zero initial eccentricity (equation (3.58)), as a
function of Γ. For initial inclinations greater than ic (shaded regions), fixed points exist in the
(ω, e) phase-space. There are no fixed points in the range −1/5 < Γ ≤ 0. The classic LK result
ic = 39.2◦ is recovered when Γ = 1.

3.9.2 High eccentricity behaviour

One is often interested in the high-eccentricity behaviour of binaries undergoing LK-like
cycles, because it is at small pericentre distances that exotic effects like GR precession,
mass transfer, gravitational wave emission and tidal circularisation become important.
To explore these possibilities we consider orbits that are capable of reaching e → 1
or j → 0, which necessarily requires

Θ� 1, (3.59)

(see definitions 3.7) and study their behavior as they evolve through highest eccentricity.
We will focus on orbits that start at eccentricities that are not too close to unity, and
ignore the effects of GR precession.

We base our discussion on equation (3.30). One of the roots (j±, j0) corresponds to
the smallest value of j satisfying the constraint (3.9), which we have called jmin. Normally,
when (3.59) is true, the other two roots are much larger in magnitude. With this in mind
equation (3.30) can be approximately integrated in the vicinity of this root jmin as

j(t) =
√

1− e2(t) ≈ jmin

[
1 +

(
t

tmin

)2
]1/2

, (3.60)

where we defined

tmin = L

6C
√

25Γ2 − 1
jmin
j1j2

= t1Θ1/2

2j1j2
√

25Γ2 − 1
jmin
Θ1/2 , (3.61)
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(see equation (3.34)) and j1 and j2 are the other two roots of equation (3.30), i.e not
jmin (which we normalized by its smallest possible value Θ1/2); |j1|,|j2| � jmin. Time t is
counted from the point of reaching highest eccentricity, i.e. j(t = 0) = jmin, while tmin is
the characteristic evolution timescale in the vicinity of jmin — the time it takes for j to
change from jmin (at t = 0) to 21/2jmin. Note also that j(t) ∝ t when j & jmin.

The fact that the time spent near maximum eccentricity is of order tmin ∝ jmin =√
1− e2

max is a familiar result from the Lidov-Kozai case (e.g. Miller & Hamilton 2002).
It has been used to characterise the timescale for gravitational-wave induced mergers of
binaries driven to high eccentricity through the LK effect (e.g. Thompson 2011; Antonini
& Perets 2012; Bode & Wegg 2014; Liu & Lai 2018; Grishin et al. 2018; Randall & Xianyu
2018). The more general result (3.60)-(3.61) is applicable for an arbitrary axisymmetric
perturbation (not just that of a point mass companion). This formula has to be modified
when one inludes GR precession (Chapter 4).

Finally, phase space morphology (as determined by the value of Γ) is a crucial
factor in determining how many phase space orbits are able to reach e → 1. For
example, provided (3.59) is satisfied, all orbits in the regime Γ > 1/5 will reach very
high eccentricities, whereas this ceases to be true for 0 < Γ < 1/5 (compare Figures
3.4a,d,g with Figures 3.5d,g). This effect is important when calculating merger rates
of compact object binaries in stellar clusters (7).

3.9.3 Stellar scattering and other non-ideal effects

Throughout this thesis we assume that the gravitational field of the cluster can be
adequately approximated as time-independent. This is of course not true in general.
For example, globular clusters in the Milky Way can be shocked and tidally stripped
as they move through the Galactic disk. Also, stellar clusters inevitably undergo some
secular evolution on & Gyr timescales which eventually leads to core collapse. Both of
these effects would directly modify the mean field potential Φ and could therefor alter
both the outer and inner orbit behavior dramatically.

Additionally, we have assumed that the cluster’s potential is perfectly smooth. However,
one must remember that the cluster’s true potential is in fact the sum of the potentials of
the many individual stars comprising it. As a result the true potential felt by the binary
is both granular in space and stochastic in time. In practice, these effects can be explored
by considering the impact of individual stellar passages in the vicinity of a binary on its
orbital elements. The issue of binaries undergoing flyby encounters has been studied widely.
Heggie & Rasio (1996) first considered the case of ‘secular encounters’, where the scattering
event takes much longer than the orbital period of the inner binary (Hamers 2018a). This
regime is appropriate if one is studying perturbations to the orbits of relatively tight
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systems (hard binaries), such as millisecond pulsars or hot Jupiters. On the other hand,
Collins & Sari (2008) (see also Collins & Sari 2010) considered the opposite regime in
which the timescale for the flyby interaction is much shorter than the inner binary period,
so that the encounter can be treated in the impulse approximation. This is the correct
description when studying the dynamics of the Oort Cloud comets in the Galaxy or very
soft binaries in clusters. Finally, when the approach distance and velocity of the external
perturber are comparable to the semi-major axis and the orbital speeds of the binary
components, the binary changes its orbital elements in a dramatic fashion on a short
(non-secular) timescale, with a high chance of being disrupted (Heggie 1975; Goodman &
Hut 1993). This would completely reset the course of the smooth secular evolution of the
binary orbit explored in this Chapter. Thus, the prescription needed for estimating the
effects of stellar scattering depends on the physical problem one wishes to address.

We defer a careful study of the coupling between the effects of stochastic stellar
encounters and the smooth cluster tide-driven evolution of binaries to future work (see
§8.2). Here we simply estimate the characteristic time between close encounters of a
binary with field stars. Assuming that all perturbers have mass m and can be drawn from
an homogeneous, isotropic Maxwellian distribution with number density n and velocity
disperision σ, we can estimate the typical time elapsed before the binary experiences an
encounter with impact parameter qenc = a/2 as (Binney & Tremaine 2008):

tenc = 4
πnσa2

(
1 + 4G(m1 +m2 +m)

3σ2a

)−1

≈ 5 Gyr× 1
1 + ξGF

(
n

104 pc−3

)−1 ( σ

10 kms−1

)−1 ( a

10AU

)−2
, (3.62)

where

ξGF ≡
4G(m1 +m2 +m)

3σ2a

= 1.2×
(
m1 +m2 +m

M�

)(
σ

10kms−1

)−2 ( a

10AU

)−1
, (3.63)

is a measure of gravitational focusing, and we have used typical values of n and σ for a
globular cluster (although as the binary moves through the cluster, the velocity dispersion
and number density of field stars it experiences may change dramatically; this is especially
true in the cores of nuclear clusters, which can easily have n > 105pc−3 and σ > 100km
s−1). One can see that depending on cluster mass, number density, binary semi-major axis,
etc., tenc can be larger or smaller than the secular timescale due to cluster tides (equations
(3.33) and (3.34)). Moreover, weaker (secular) encounters (Heggie & Rasio 1996) which
cause slow random walk of the binary orbital elements would occur more frequently.

Thus, it is usually very important to take into account the effect of stellar flybys.
However, we do not believe that this diminishes the astrophysical relevance of cluster
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tides, for several reasons. First, tidal effects can be important even in the outskirts
of clusters where n is low and stellar encounters are rare. In fact, tides can drive
compact object binaries to merge out to cluster-centric distances of several parsecs12

(Chapter 7). Second, in massive centrally cusped clusters (such as nuclear clusters with
or without a central massive black hole), secular timescales due to tides can be as short
as ∼ 105yr, potentially leading to interesting effects before close encounters occur. Third,
while dense stellar environments can lead to frequent disruption of binaries they can
also result in efficient binary formation, i.e. they can act as a source of new binaries
that can then undergo tidal evolution.

3.9.4 Relation to previous work

The secular dynamics of binaries presented in this Chapter have been investigated
thoroughly by other authors in the LK (Γ = 1) limit (the ‘test particle quadrupole’
LK problem). In particular, Vashkov’yak (1999) and Kinoshita & Nakai (2007) derived
analytically the maximum and minimum eccentricities and the timescale of LK oscil-
lations. Antognini (2015) rederived the same results and provided an approximate
fitting formula for the timescale.

A study of the phase-space portrait of binaries perturbed by the Galactic tide — a
problem investigated by Heisler & Tremaine (1986) and many others, see Chapter 2 —
has been performed by Brasser (2001). Keeping only the ∂2Φ/∂Z2 contribution in the
tidal expansion of the potential (equivalent to Γ = 1/3), they derived the fixed points,
secular timescale, and criteria for circulation and libration in (ω, e) space.

Petrovich & Antonini (2017) considered an extension to the LK problem in which a
binary orbits a supermassive black hole (SMBH), and its (outer) orbit is perturbed by
a non-spherical nuclear cluster potential (the inner orbit is assumed to be unperturbed
by the cluster). Unlike our study, Petrovich & Antonini (2017) only looked at the effect
of the cluster potential on the outer orbit of the binary and completely ignored the
direct effect of the cluster potential on the secular dynamics of the inner orbital elements.
Relevant for this Chapter, part of their paper involves an investigation of the (ω, e) phase
portrait of the inner binary in the quadrupole approximation, assuming (a) the outer
orbit is almost circular and (b) the cluster potential is only weakly flattened. However,
our doubly-averaged formalism does not cover this part of Petrovich & Antonini (2017)’s
paper, because in this particular limit the outer orbit’s nodal precession timescale is long
compared to the secular evolution time, so the perturbing potential cannot be considered
axisymmetric (the situation here is similar to that described in §3.7.4).

12That is, of course, provided that they do not sink to the centre of the cluster via dynamical friction
on a much shorter timescale.
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3.10 Summary

In this Chapter we considered the secular dynamics of binaries arising from the general
doubly-averaged tidal Hamiltonian derived in Chapter 2. Our study focused on exploring
the phase portraits describing the evolution of binaries perturbed by the tidal field of a
host cluster. We unravelled a number of new dynamical regimes previously not accounted
for in studies of binary evolution problem, and provided their full classification. Our
results can be briefly summarized as follows.

• We find that that under a wide range of initial conditions, a generic axisymmetric
potential (including spherical potentials) can generate a sufficient tidal torque on
a binary to allow it to perform large-amplitude secular eccentricity oscillations
reminiscent of the LK mechanism.

• The morphology of the binary evolution in the phase-space of its orbital elements
(e.g. ω and e) is uniquely set by the value of a single dimensionless parameter Γ,
which encodes all information about the shape of the cluster potential and the
binary orbit within it. We mapped out different dynamical behaviours of the binary
as a function of Γ.

• Although the dynamics are qualitatively similar to the LK mechanism for Γ > 1/5,
there are bifurcations in the phase-space portrait when Γ = ±1/5 and 0 such
that the dynamics become drastically different from LK case. We provide detailed
descriptions of the binary evolution in each of the corresponding dynamical regimes.

• We numerically verify our theoretical predictions and find that they work well when
the timescale for secular evolution is much longer than the time for the binary’s
outer orbit to fill an axisymmetric torus inside the cluster. Such circumstances may
be rare when Γ < 0, because this regime typically requires strongly non-coplanar
outer orbits that may take large number (several hundred) of orbital periods to fill
a torus.

• While the LK mechanism is efficient at driving high eccentricity oscillations, it
requires the presence of a long-term distant companion to a binary. In contrast,
every binary in a cluster feels the cluster potential, just as every comet feels the
Galactic tide. As a result, the cluster tide-driven effect considered in this Chapter,
while possibly weaker than in the standard LK scenario, should be more ubiquitous
in nature since it is available to any binary bound to an axisymmetric host system.
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Appendices

3.A Detailed characteristics of the −1/5 < Γ ≤ 0 regime.

Here we provide more details about the properties of the dynamical regime −1/5 < Γ ≤ 0,
see §3.5.

3.A.1 Fixed points and orbit families

When Γ = 0 the dimensionless Hamiltonian is simply H∗1 = 2 + 3e2, so the phase portrait
consists of straight horizontal lines: all orbits circulate with e(t) = e(0).

When −1/5 < Γ < 0, we use the constraint (3.13) to explore the possibility of
fixed points. Since both Λ and Λ−1 are negative (see Figure 3.1), while Θ > 0, we
conclude there are no fixed points in this Γ regime. As a result, all orbits circulate,
in agreement with Figure 3.6.

3.A.2 Range of parameter values

In the absence of fixed points in this Γ regime, the only possible bounds on D are D = 0
and D = 1 − Θ. Hence the (D,Θ) plane consists simply of a triangle of circulating
orbits (see the third row of Figure 3.3):

D ∈ (0, 1−Θ) , − 1/5 < Γ ≤ 0. (3.64)

It is easy to show that the Hamiltonian is maximised at j2 = Θ (i.e. at the upper limit
on eccentricity in Figure 3.6), so H∗1,max obeys equation (3.22). Similarly it is minimised
along the line of zero eccentricity (j2 = 1), so H∗1,min is given by equation (3.21).

3.A.3 Maximum and minimum eccentricities

Figure 3.6 shows that circulating orbits’ maximum and minimum eccentricities are back
at ω = ±π/2 and ω = 0 respectively, as they were in the Γ > 1/5 case (§3.3).

To understand the ordering of j2
±, j

2
0 we only need to consider panel (a) of Figure

3.2, because we have only circulating orbits in this Γ regime. For −1/5 < Γ ≤ 0 the
ordering of j2

0 and j2
+ has flipped compared to 0 < Γ ≤ 1/5, while j2

− still lies outside
of the physical region (i.e. it is not bounded by the horizontal dotted lines j2 = Θ, 1).
Hence we must have j2

− < j2
+ < j2 < j2

0 , so that jmin = j+, jmax = j0, and ∆ = j2
0 − j2

−.

3.A.4 Timescales of eccentricity oscillations

The timescale log10(tsec/t1) is plotted in the third row of Figure 3.3 for Γ = −0.01,−0.1,−0.18.
We have only a triangle of circulating orbits, and their secular timescale is rather
well approximated by t1.
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3.B Detailed characteristics of the Γ ≤ −1/5 regime.

Here we provide more details about the properties of the dynamical regime Γ ≤ −1/5, see

§3.6.

3.B.1 Fixed points and orbit families

When Γ = −1/5 there are still no librating orbits, because Λ(−1/5) = 0. However,

librating orbits emerge as we decrease Γ further. In terms of the constraint on Θ

for fixed points and librating orbits to exist, the regime Γ < −1/5 mirrors the first

(Γ > 1/5) regime in that we again require Θ < Λ (in Figure 3.1, the shaded region

is bounded by the red curve):

Θ ∈ (0,Λ) , Γ < −1/5. (3.65)

3.B.2 Range of parameter values

It is perhaps unsurprising from the morphology of the phase portraits (compare Figures

3.4 and 3.7) that the (D,Θ) plane for Γ ≤ −1/5 (bottom row of Figure 3.3) looks similar

to the Γ > 1/5 case (top row of Figure 3.3). However, in this case the librating orbits

are bounded to the left by D+ (see equation (3.27)):

D ∈
{

(D+, 0), Γ < 1/5, librating orbits,
(0, 1−Θ), Γ < 1/5, circulating orbits.

(3.66)

As for the extrema of H∗1 , the only change from the case −1/5 < Γ ≤ 0 is that

we now have fixed points available. If they exist then the Hamiltonian is minimised

at the fixed point and so H∗1,min obeys equation (3.23); if not, it is minimised at the

zero eccentricity line j2 = 1 (equation (3.21)). The maximum H∗1,max is always found

at j =
√

Θ and is therefore given by equation (3.22).

3.B.3 Maximum and minimum eccentricities

For circulating orbits we may again inspect Figure 3.2a. When Γ ≤ −1/5 the physical

solutions j2 run from j2
+ to j2

0 as in the −1/5 < Γ < 0 case, but j2
− > 1 is suddenly larger

than the others, so j2
+ < j2 < j2

0 < j2
−. Thus jmin = j+, jmax = j0 and ∆ = j2

− − j2
+.

For librating orbits we read off from Figure 3.2b that j2
+ < j2 < j2

− < j2
0 (with

j0 > 1), giving jmin = j+, jmax = j− and ∆ = j2
0 − j2

+.
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Figure 3.15: Exactly as in the bottom three panels of Figure 3.3, except we show only the region
D ∈ (−0.1, 0.1).

3.B.4 Timescales of eccentricity oscillations

We plot log10(tsec/t1) for Γ = −0.25,−0.5,−0.8 in the bottom row of Figure 3.3.
Bounds on Θ and D are given by equations (3.65) and (3.66) respectively. The sep-
aratrix lies along D = 0.

Along the separatrix the timescale for secular oscillations once again diverges. To
illustrate the nature of the divergence further we present Figure 3.15, in which we plot
exactly the same three panels as in the bottom row of Figure 3.3, and with the same
colour scale, except we zoom in on the region D ∈ (−0.1, 0.1). We see that one has to
have D extremely close to zero for tsec to be amplified by even an order of magnitude.

The timescale also diverges everywhere in (D,Θ) space for Γ = −1/5, see equation
(3.33). However, as Γ is lowered, one can see that tsec becomes substantially smaller
than t1, just as in the case of Γ → 1 considered in §3.3.4.
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4.1 Introduction

At the very beginning of Chapter 1 we mentioned that the mathematical solution of
the two-body problem was obtained for the first time by Newton in 1687. Of course,
this solution is only ‘correct’ if one considers purely Newtonian gravity, and ignores
general relativistic corrections. In 1915, Einsten updated Newton’s solution by showing
that the lowest order correction to the binary’s elliptical orbit (in the small parameter
G(m1 +m2)/ac2, with mi the constituent masses and a the binary semimajor axis) was
simply an extra prograde apsidal precession at a rate

ω̇GR = ω̇GR|e=0
1− e2 with ω̇GR|e=0 = 3[G(m1 +m2)]3/2

a5/2c2 , (4.1)

where e is the orbital eccentricity, and ω̇GR|e=0 is the GR precession rate for a circular
orbit. Einstein’s solution is now known as the first post-Newtonian (1PN) approximation
to the two-body problem.

A century on from Einstein’s discovery, the LIGO/Virgo Collaboration has detected,
and continues to detect, dozens of merging compact object (black hole or neutron star)
binaries (The LIGO Scientific Collaboration et al. 2019; The LIGO Scientific Collaboration
et al. 2020). As reviewed in §1.1.1 these discoveries warrant an astrophysical explanation,
which is complicated by the fact that the timescale for an isolated compact object binary
to merge via gravitational wave (GW) emission is typically much longer than the age
of the Universe. Thus nature must have a way of forcing these relativistic binaries to
small separations. The cluster tide-driven eccentricity excitation revealed in Chapter
3 is a candidate mechanism that may help achieve this (a scenario which is further
explored in Chapters 5 and 7). LK coupling of a compact object binary with a tertiary
perturber is a special case of this theory that has also been widely promulgated as a
possible solution to this problem (e.g. Naoz 2016).

However, when investigating such merger channels it is almost always necessary to
account for the effect of (1PN) GR precession of the binary’s pericentre angle. This is
because GW emission primarily occurs during close pericentre passages when the binary is
highly eccentric, and this is precisely the regime in which GR precession is most important
(equation (4.1)). For similar reasons it is often necessary to include GR precession (as
well as other short-range precession effects, such as those arising from rotational or tidal
bulges, see e.g. Liu, Muñoz, et al. (2015) and Muñoz et al. (2016)) in studies of LK secular



4. The effect of general relativistic precession 112

evolution, which rely on tidal dissipation (inside one or both binary components) to shrink
the binary orbit (Fabrycky & Tremaine 2007; Antonini, Chatterjee, et al. 2016). Tidal
dissipation is strongest when e→ 1, meaning that GR precession is important as well.

GR precession is routinely accounted for in LK population synthesis calculations (e.g.
Antonini, Murray, et al. 2014; Rodriguez, Morscher, et al. 2015; Liu, Muñoz, et al. 2015;
Liu & Lai 2018; Hamers, Bar-Or, et al. 2018a; Samsing et al. 2019). Its effect is understood
as increasing a binary’s prograde apsidal precession rate as e→ 1, preventing the perturber
from coherently torquing the binary and effectively stopping the reduction of the binary’s
angular momentum. A result of this so-called ‘relativistic quenching’ effect is a reduction
in the maximum eccentricity emax that the binary can reach, even if the initial inclination
between binary and perturber orbits is favourable (Fabrycky & Tremaine 2007). Some
authors have derived approximations to this maximum eccentricity in the limit where GR
precession can be treated as a small perturbation to the LK evolution (Miller & Hamilton
2002; Blaes et al. 2002; Wen 2003; Veras & Ford 2010; Liu, Muñoz, et al. 2015; Anderson,
Lai, et al. 2017; Grishin et al. 2018). Also, Iwasa & Seto (2016) looked at the modification
of the phase space portrait of the LK problem in the presence of GR precession, although
their study was far from exhaustive. However, so far nobody has studied carefully the
impact of the GR precession for binaries perturbed by general tidal potentials (Brasser
et al. 2006; Bub & Petrovich 2020) where we expect similar considerations to apply.

The main purpose of this Chapter is to explore systematically the effect of GR
precession on the underlying phase space dynamics and eccentricity evolution of a tidally
perturbed binary. We will focus exclusively upon the doubly-averaged (DA) dynamics
of binaries perturbed by quadrupole-order tidal potentials. We will also make the test-
particle approximation, i.e. assume that the binary’s outer orbital motion relative to
its perturber contains much more angular momentum than its internal Keplerian orbit
(Naoz 2016). The quadrupolar and test-particle approximations are very good ones for
the applications we have in mind (such as compact object binaries perturbed by globular
cluster tides), but they can be relaxed, see §4.5.3.

In §4.2 we write down the doubly-averaged perturbing Hamiltonian and establish the
notation that we will use for the rest of the paper. In particular we introduce the key
parameter εGR which measures the strength of GR precession relative to tidal torques. In
§4.3 we explore the phase space behaviour as εGR is varied; the quantitative results that
we quote in this section are derived in Appendix 4.A. In §4.4 we investigate very high
eccentricity behaviour in the presence of weak or moderate GR precession. In particular we
explore how finite εGR modifies both the maximum eccentricity reached and the timescale
of high eccentricity episodes. In §4.5 we discuss our results in the light of the existing
literature, and comment on the limitations of our study. We summarise in §4.6. Lastly,
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in Appendix 4.C we provide for the first time an explicit, analytical solution to the DA
equations of motion for all orbital elements in the high eccentricity limit. We also check
the accuracy of this solution against direct numerical integration of the DA equations.

4.2 Dynamical framework

As already discussed in §3.8, when GR precession is included the dynamical evolution
of the binary’s inner orbital elements is governed by the secular ‘doubly-averaged’
perturbing Hamiltonian1:

H = CH∗ ≡ C(H∗1 +H∗GR), where C ≡ Aa2/8. (4.2)

Here H∗1 and H∗GR are the dimensionless Hamiltonians accounting for quadrupole-order
cluster tides and GR pericentre precession, respectively:

H∗1 = (2 + 3e2)(1− 3Γ cos2 i)− 15Γe2 sin2 i cos 2ω, (4.3)

H∗GR = −εGR(1− e2)−1/2. (4.4)

The relative strength of GR precession is measured in equation (4.4) by the crucial parame-
ter

εGR ≡
24G2(m1 +m2)2

c2Aa4 ∼ n2
K
A

(
v

c

)2
∼ ω̇GR|e=0tsec (4.5)

= 0.258×
(
A∗

0.5

)−1 ( M
105M�

)−1 ( b

pc

)3 (m1 +m2
M�

)2 ( a

20 AU

)−4
. (4.6)

Here nK =
√
G(m1 +m2)/a3 and v ∼

√
G(m1 +m2)/a are the Keplerian mean motion

and typical orbital speed of the inner orbit of the binary, respectively, while tsec is the
timescale of secular eccentricity oscillations in the non-GR limit (equation (3.33)). As usual,
in the numerical estimate (4.6) we have assumed that the binary is orbiting a spherical
cluster with scale radius b and total massM. We reiterate that one can always evaluate
any numerical result in the LK limit by setting Γ = 1, A∗ = 0.5 and b = ag(1 − e2

g)1/2.
Thus, for illustration, we might consider a black hole binary with m1 = m2 = 30M�, on a
circular outer orbit with radius ag = 0.1pc around the supermassive black hole at the centre
of our Galaxy, which has massM = 4× 106M�. In this case εGR ≈ 0.02× (a/20AU)−4.

Converting from orbital elements to Delaunay variables we can choose to rewrite
the dimensionless Hamiltonians (4.3)-(4.4) in the form

H∗1 =
[
(j2 − 3ΓΘ)(5− 3j2)− 15Γ(j2 −Θ)(1− j2) cos 2ω

]
j−2, (4.7)

H∗GR = −εGRj
−1. (4.8)

1For simplicity we have replaced the notation 〈H1〉M , 〈HGR〉M from Chapters 2 and 3 with H1, HGR.
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Since both Hamiltonians are independent of Ω, the dimensionless quantity Θ is an integral
of motion. The total dimensionless Hamiltonian H∗ = H∗1 + H∗GR can be taken as
the other integral of motion. The equations of motion fully describing the evolution
of the dimensionless variables ω, j are

dω
dt = C

L

∂H∗

∂j
= C

L

∂

∂j
(H∗1 +H∗GR)

= 6C
L

[5ΓΘ− j4 + 5Γ(j4 −Θ) cos 2ω + εGRj/6]
j3 , (4.9)

dj
dt = −C

L

∂H∗

∂ω
= −C

L

∂H∗1
∂ω

= −30ΓC
L

(j2 −Θ)(1− j2)
j2 sin 2ω. (4.10)

Since ω, j are decoupled from Ω, the evolution of the nodal angle Ω can be explored
separately using the equation of motion

dΩ
dt = C

∂H∗

∂Jz
= C

∂H∗1
∂Jz

= −6CΓ
L

Θ1/2 5− 3j2 − 5 cos 2ω(1− j2)
j2 . (4.11)

Obviously, the equation of motion for Jz is trivial, dJz/dt = −∂H/∂Ω = 0.
Given that H∗(ω, j) is a constant we can use equations (4.7)-(4.8) to eliminate ω

from equation (4.10). Following a derivation analogous to that of equation (3.30), and
without making any approximations, we find

dj
dt = ± 6C

Lj2

{
(25Γ2 − 1)

[
(j2

+ − j2)(j2 − j2
−)− εGR

3(1 + 5Γ)j
]

×
[
j2(j2

0 − j2) + εGR
3(5Γ− 1)j

]}1/2

, (4.12)

where

j2
± ≡

Σ±
√

Σ2 − 10ΓΘ (1 + 5Γ)
1 + 5Γ , (4.13)

j2
0 ≡ 1−D, (4.14)

with

Σ ≡ 1 + 5Γ
2 + 5ΓΘ +

(5Γ− 1
2

)
D, (4.15)

D ≡ H∗/3− 2/3 + 2ΓΘ
1− 5Γ

= e2
(

1 + 10Γ
1− 5Γ sin2 i sin2 ω

)
− εGR

3(1− 5Γ)
√

1− e2
. (4.16)



4. The effect of general relativistic precession 115

Note that the definitions of j2
±, j2

0 , Σ, and D are equivalent to those given in Chapter 3
(equations (3.18), (3.17), (3.20) and (3.16) respectively) except that we have replaced H∗1
in equation (4.16) by H∗ = H∗1 +H∗GR, i.e. we have used the value of the Hamiltonian
that includes GR precession. Therefore in the limit εGR = 0, equation (4.12) reduces to
equation (3.30). Note also that, just like in Chapter 3, j2

±, j2
0 are not necessarily positive.

We will use equation (4.12) extensively when we study high-eccentricity behaviour in §4.4.

Some shorthand notation will be necessary as we proceed. In particular, several different
values of e and j will come with distinct subscripts. We provide a summary of our
notation in Table 4.1. A summary of key results derived in this Chapter can also
be found in Table 4.2.

We saw in Chapter 2 that to get negative Γ values typically requires a highly inclined
outer orbit in a sufficiently non-spherical potential. Since our applications are mostly
concerned with spherical or near-spherical potentials such as those of globular clusters, for
which negative Γ values are very rare, we concentrate on the Γ > 0 regimes in the main
body of the paper. Discussion of the negative-Γ regimes can be found in Appendix 4.D.

4.3 Phase space behaviour

To gain a qualitative understanding of the dynamics driven by the Hamiltonian equations
(4.9)-(4.10), one can fix the values of Γ,Θ, εGR and then plot (ω, e) phase space portraits,
i.e. contours of constant H∗ in the (ω, e) plane.

Let us briefly recap what we found for εGR = 0 in Chapter 3. In this case the phase
portraits are simply contours of constant H∗1 — see Figures 3.4-3.7. Then, one finds
that two distinct phase space orbit families are possible for Γ > 0: circulating orbits,
which run over all ω ∈ (−π, π), and librating orbits, which loop around fixed points
located at (ω = ±π/2, e = ef), where ef ≡ (1 − j2

f )1/2 and

jf =
( 10ΓΘ

1 + 5Γ

)1/4
, (4.17)

see equation (3.12). The precise requirement for fixed points to exist is (§3.2.2):

Θ < min
(
Λ, Λ−1

)
, where Λ(Γ) ≡ 5Γ + 1

10Γ . (4.18)

For Γ > 0, fixed points always exist for sufficiently small Θ when εGR = 0. Neither this
nor the existence of fixed points exclusively at ω = π/2 are generally true for εGR 6= 0,
as we will see below. In §4.4 we will be interested exclusively in situations where some
fraction of binaries can reach eccentricities very close to unity (i.e. 1− e� 1). Given that
Θ = (1− e2) cos2 i is conserved, a necessary condition for this is that Θ� 1. Finally, a
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Figure 4.1: Contour plots of constant Hamiltonian H∗ ≡ H∗
1 + H∗

GR in the (ω, e) plane for
Γ = 0.5. In the top (bottom) row we fix Θ = 0.1 (Θ = 0.5). We increase εGR from left to
right, using the values εGR = 0, 2, 5, 10, 30 indicated in each panel. Contours are spaced linearly
from the minimum (blue) to maximum (red) value of H∗ — see the colour bar at the top of
each panel. We have also added by hand dashed contours passing through (ω, e) = (0, 0.01) and
(ω, e) = (±π/2, 0.1) in each panel. Dashed black horizontal lines indicate the limiting possible
eccentricity elim =

√
1−Θ, while fixed points are shown with grey crosses should they exist. Black

separatrices illustrate the boundary between families of librating and circulating phase space
trajectories.

key result of Chapter 3 (again with εGR = 0) was that for Γ > 1/5, whenever fixed points

exist, ef provides a lower bound on emax. Equation (4.17) implies that ef is close to unity

whenever Θ� 1; high eccentricity excitation is then ubiquitous. On the other hand, for

0 < Γ ≤ 1/5 the fixed points no longer provide a lower bound on circulating trajectories’

emax and so high-e excitation is much rarer.

In the rest of this section we explore how the phase space behaviour uncovered in

Chapter 3 (i.e. for εGR = 0) is modified in the case of finite εGR, which we do separately

for Γ > 1/5 (§4.3.1) and for 0 < Γ ≤ 1/5 (§4.3.2). In §4.3.3 we describe some properties

of the fixed points that arise in the phase portraits. In §4.3.4 we show how to calculate

the maximum eccentricity of a given binary. Details of the mathematical results that

we quote throughout §§4.3.1-4.3.4 are given in Appendix 4.A. Note that the Γ ≤ 0

regimes are treated in Appendix 4.D.



4. The effect of general relativistic precession 118

0

0.2

0.4

0.6

0.8

1.0

e

(a) εGR =0.0 (b) εGR =0.5 (c) εGR =2.0 (d) εGR =5.0 (e) εGR =10.0

−π/2 0 π/2

ǫ

0

0.2

0.4

0.6

0.8

1.0

e

(f) εGR =0.0

−π/2 0 π/2

ǫ

(g) εGR =0.5

−π/2 0 π/2

ǫ

(h) εGR =2.0

−π/2 0 π/2

ǫ

(i) εGR =5.0

−π/2 0 π/2

ǫ

(j) εGR =10.0

2.0 2.9 3.8 1.5 2.2 3.0 -2.0 -0.5 0.3 -10.2 -6.5 -3.1 -23.4 -15.7 -8.1

1.7 2.0 2.3 1.2 1.4 1.7 -0.3 -0.2 -0.1 -4.3 -3.8 -3.3 -10.9 -9.6 -8.3

Γ=0.1

Θ
=
0.
1

Θ
=
0.
5

Figure 4.2: Same as Figure 4.1 except for Γ = 0.1, and we have taken different values of εGR to
better demonstrate the new phase space behaviour. Note that dashed contours above the saddle
points have the same H∗ value as the low-e dashed contours. See text for details.

4.3.1 Phase space behaviour in the case Γ > 1/5

Figure 4.1 shows phase portraits for the case Γ = 0.5 > 1/5. In the top (bottom)
row we set Θ = 0.1 (0.5). From left to right we vary εGR taking εGR = 0, 2, 5, 10, 30.
In each panel a black horizontal dashed line shows the limiting possible eccentricity
elim =

√
1−Θ (equation (3.9)). Contours are spaced linearly from the minimum (blue) to

maximum (red) value of H∗ indicated by the colour bar at the top of each panel. Since the
linearly sampled contours become too widely separated at low eccentricity, to illustrate
the low-e behaviour we have added dashed contours passing through (ω, e) = (0, 0.01)
and (ω, e) = (±π/2, 0.1) in each panel. Just like in Chapter 3, trajectories are split into
librating and circulating families. We plot the separatrices between these families with
solid black lines. Fixed points are denoted with grey crosses.

In panels (a) and (f) we encounter the usual εGR = 0 behaviour familiar from the
LK problem: (I) there are fixed points2 at ω = ±π/2, each of which is surrounded by a
region of librating orbits, (II) these librating islands are connected to e = 0 line, (III)
the family of circulating orbits runs ‘over the top’ of the librating regions, and (IV) all
phase space trajectories reach maximum eccentricity at ω = ±π/2.

2We have deliberately chosen Θ values such that the fixed points do exist for εGR = 0, i.e. satisfying
(4.18).
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Inspecting the other panels, we see that the effect of increasing εGR from zero is simply
to push the fixed points at ω = ±π/2 to lower eccentricity. As a result, large amplitude
eccentricity oscillations along a given secular trajectory are noticeably quenched as εGR

is increased, and the region of librating orbits is diminished in both area and vertical
extent. Eventually the eccentricity of the fixed points reaches zero and so they vanish
altogether, leaving only circulating orbits (panels (e), (i) and (j)).

The phase space evolution for non-zero εGR exhibited in Figure 4.1 is characteristic of
all systems with Γ > 1/5, including the LK case Γ = 1, which has already been discussed
to some degree by Iwasa & Seto (2016) — see §4.5.2. Of course, the precise characteristics,
such as the eccentricity of the fixed points, the critical εGR for fixed points to vanish,
etc., do depend on the value of Γ, as we detail in §4.3.3.

4.3.2 Phase space behaviour in the case 0 < Γ ≤ 1/5

For 0 < Γ ≤ 1/5 (a regime typical of binaries orbiting the inner regions of a cored cluster),
a similar but slightly more complex picture emerges. In Figure 4.2 we show phase portraits
similar to Figure 4.1 except that we now take Γ = 0.1 < 1/5, and pick some new values
of εGR to better demonstrate the modified phase space behaviour. The strength of GR
still increases from left to right. As in Figure 4.1 we have added in dashed contours that
take the values H∗(ω = 0, e = 0.01) and H∗(ω = ±π/2, e = 0.1).

Starting with the non-GR case εGR = 0, we immediately notice a qualitative difference
between the phase space morphologies for 0 < Γ ≤ 1/5 (Figures 4.2a,f) and Γ > 1/5
(Figures 4.1a,f), discussed at length in Chapter 3. Although there are again fixed
points at ω = ±π/2, the librating islands that surround them are now connected to
e = elim (and not to e = 0, like in the Γ > 1/5 case). As a result, circulating orbits
run ‘underneath’ librating orbits (rather than ‘over the top’ as for Γ > 1/5) and the
maximum eccentricity of circulating orbits is found at ω = 0 (rather than at ω = ±π/2).
Crucially, unlike for Γ > 1/5, a binary that starts at low eccentricity does not necessarily
reach a high eccentricity even if there are fixed points located near e = 1. This fact is
responsible for the dearth of cluster-tide driven mergers in cored clusters, which host
many binaries with 0 < Γ ≤ 1/5 (Chapter 7).

As we increase εGR from zero, the fixed points again get pushed to lower eccentricity
(panels (b) and (g)). However, the effect of this for Γ = 0.1 is to initially increase, rather
than decrease, the fraction of the phase space area that is encompassed by the librating
islands. Additionally, as the fixed points get pushed to lower eccentricity, a new family
of high-eccentricity circulating orbits emerges once εGR exceeds a threshold value which
we determine in §4.3.3. These phase space trajectories run ‘over the top’ of the fixed
points and have their eccentricity maxima at ω = ±π/2 (panels (b), (c) and (h)). The
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qualitative change from εGR = 0 is reflected in the fact that the librating island is now
truly an island, disconnected from both e = 0 and e = elim. This is different from the
case Γ > 1/5, in which the lower portion of the librating regions always stretches down
to e = 0 until εGR becomes so large that fixed points cease to exist.

Physically these new features might have been anticipated. First of all, in Chapter 3
we saw that for 0 < Γ ≤ 1/5, the cluster-driven ω evolution of circulating trajectories is
always retrograde, contrary to the Γ > 1/5 case in which it is prograde. Since GR always
promotes prograde precession, its effect in this Γ regime is initially to slow down the overall
precession rate ω̇, allowing for a more coherent torque compared to the case of εGR = 0.
This leads to the appearance of new librating solutions. This is first true for binaries that
previously lay just below the separatrix in the (ω, e) phase space, as these circulate the
slowest (recall that the secular period diverges on the separatrix itself), giving ω̇ ∼ 0 for
a relatively small value of εGR. On the other hand, at the highest binary eccentricities
(near e = elim) GR may dominate the dynamics, causing the binary’s pericentre angle ω
to precess rapidly, leading to the appearence of new high-e circulating solutions.

Simultaneously with the new high-e family of orbits, two saddle points (i.e. fixed
points that are not local extrema of H∗) emerge at ω = 0, π. Passing through them are
separatrices that isolate the distinct phase space orbital families in panels (b), (c) and (h).
This is an entirely new phase space feature that is not found in LK theory, as it is only
possible for Γ ≤ 1/5 and only when GR is present, as we show in §4.3.3. The ‘two-eyed’
phase space structure of panels (b), (c) and (h) has therefore not been uncovered before.
Note that for a system exhibiting this structure, a circulating trajectory ‘above’ the saddle
point can have the same H∗ value as a circulating trajectory ‘below’ the saddle point. In
other words a single value of the Hamiltonian can correspond to two entirely different
phase space trajectories. This can be seen in Figures 4.2c,h where the dashed contours
circulating above the librating islands appear because they have the same H∗ values as the
manually added dashed low-e contours passing through (ω, e) = (±π/2, 0.1) and (0, 0.01).

As εGR is increased further, the eccentricity of the saddle points diminishes, similar
to the fixed points at ω = π/2. It is interesting to note that these various types of fixed
points move at different ‘speeds’ down the phase portrait as εGR grows. In particular,
panels (d) and (i) of Figure 4.2 demonstrate that for 0 < Γ ≤ 1/5 there is a range of
εGR values where the saddle point at ω = 0 has gone below e = 0 and so no longer
exists, but the ω = ±π/2 fixed points still do exist.

Even these remaining fixed points get pushed to (and past) e = 0 as εGR is increased
ever further, leaving the entire phase space filled with circulating trajectories that have
their eccentricity maxima at ω = ±π/2, just as for Γ > 1/5 (Figure 4.2e,j). The amplitude
of eccentricity oscillations decreases correspondingly until cluster tides are completely
negligible and only GR apsidal precession remains.
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Figure 4.3: Plots of jf,π/2 — i.e. the values of j for fixed points at ω = π/2 — for several
values of Γ and Θ (indicated on panels using labels and colours). Solid lines show the exact
solution jf,π/2(Γ,Θ, εGR) found by solving the quartic equation (4.63). Dot-dashed and dashed
lines indicate the asymptotic solutions (4.20) and (4.21) respectively, while vertical dotted lines
indicate εGR = επ/2 (see equation 4.19) where the two asymptotic solutions match.
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Figure 4.4: Plots of Θmax, the maximum value of Θ for which fixed points could exist at
ω = ±π/2, defined by equation (4.23), as a function of Γ for various values of εGR. Solid lines
show Θmax = Θ1 while dotted lines show Θmax = Θ2. The vertical dotted line corresponds to
Γ = 1/5. This figure is discussed in more detail after equation (4.67).

4.3.3 Fixed points

We now proceed to understand mathematically the nature of the various fixed points

that we found in the phase portraits in §§4.3.1-4.3.2. By setting dj/dt = 0 in equation

(4.10), we see that all possible non-trivial fixed points3 are located on (i) the lines

ω = ±π/2, as in Chapter 3, and/or (ii) the lines ω = 0,±π, consistent with Figures

4.1 and 4.2. Finding the j values of the fixed points requires plugging these ω values

into dω/dt = 0, given by equation (4.9), and solving the resulting algebraic equation

for j. We do this next for each of the fixed points.

3i.e. not corresponding to j2 = Θ or j2 = 1.



4. The effect of general relativistic precession 122

Fixed points at ω = ±π/2

In §4.A.1, we show how to calculate the j value of the fixed points at ω = ±π/2, which
we call jf,π/2, for arbitrary εGR and for any Γ > 0, i.e. for both types of phase portraits
shown in Figures 4.1, 4.2. The values of jf,π/2 are found as solutions to the quartic
polynomial (4.63), and we illustrate their behaviour in Figure 4.3 for several values of
Γ and Θ. One can see that jf,π/2 always increases with εGR (see (4.66)), explaining
why in Figures 4.1,4.2 the fixed points at ω = ±π/2 always get pushed to lower e as
εGR is gradually increased from zero.

While the explicit expressions for jf,π/2 are too complicated to be shown here, we
can gain important insights by considering two limiting cases, namely when εGR is much
smaller/larger than a particular critical value:

επ/2 ≡ 6(10ΓΘ)3/4(1 + 5Γ)1/4. (4.19)

(In the top and bottom rows of Figure 4.1, επ/2 takes values around 4.9 and 16.3
respectively). In the limit εGR � επ/2, which we will call ‘very weak GR’ regime,
the εGR term in (4.63) is small and we find to lowest order in εGR/επ/2

jf,π/2 ≈ jf

(
1 + εGR

4επ/2

)
. (4.20)

In the opposite limit εGR � επ/2 the right hand side in (4.63) becomes small and
we find to lowest order in επ/2/εGR

jf,π/2 ≈
[

εGR
6(1 + 5Γ)

]1/3
[
1 + 1

3

(
επ/2
εGR

)4/3
]
. (4.21)

Figure 4.3 shows that these asymptotic solutions match the actual jf,π/2 behaviour
in the appropriate limits very well.

In §4.A.1 we show also that for fixed points at (ω, j) = (±π/2, jf,π/2) to exist for a
given Γ > 0, the quantities Θ and εGR must obey the inequalities

6Θ1/2[(1 + 5Γ)Θ− 10Γ] < εGR < 6[1 + 5Γ− 10ΓΘ], (4.22)

and

Θ < Θmax ≡
{

Θ1, Γ > 1/5,
min[Θ1,Θ2], 0 < Γ ≤ 1/5.

(4.23)

Here Θ2 is the smallest positive real solution to equation (4.67), while

Θ1 ≡
1 + 5Γ

10Γ

(
1− εGR

2εstrong

)
= 1 + 5Γ− εGR/6

10Γ , (4.24)
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and we have defined

εstrong ≡ 3(1 + 5Γ), (4.25)

a quantity that will appear repeatedly throughout this Chapter, as well as throughout
Chapter 5.

In Figure 4.4 we plot Θmax (equation (4.23)) as a function of Γ for various values of
εGR (c.f. Figure 3.1). It is easy to check that the combinations of Γ,Θ and εGR that give
rise to ω = ±π/2 fixed points in Figure 4.1 do obey the inequalities (4.22)-(4.23).

Of course, in the limit εGR → 0 equations (4.23)-(4.25) reduce to the non-GR constraint
(4.18). Finally we note that for sufficiently small Θ, the conditions (4.22), (4.23) reduce
simply to the requirement that

εGR < 2εstrong (for Θ� 1). (4.26)

In other words, if (4.26) is not satisfied then there are no fixed points even for initially
orthogonal inner and outer orbits (i0 = 90◦). εGR beyond a critical value of 6(1 + 5Γ)
the right hand of (4.21) is necessarily > 1, so that fixed points no longer exist even
for Θ = 0, having disappeared through e = 0. This reflects what we see in Figures
4.1d,e and 4.2d,e (see also §4.4.1).

Fixed points at ω = 0, π

Fixed points at ω = 0, π are unique to the 0 < Γ ≤ 1/5 regime (for Γ > 0). They
are always saddle points, and we explore their properties mathematically in §4.A.2.
From now on, for brevity we will simply refer to them as being located at ω = 0
rather than ω = 0,±π, because phase space locations separated in ω by multiples of
π are equivalent (see equation (4.7)).

As we demonstrate in §4.A.2, these saddle points are always located at (ω, j) = (0, jf,0)
where

jf,0 ≡
[

εGR
6(1− 5Γ)

]1/3
. (4.27)

Note that jf,0 is independent of Θ, which can is reflected in Figure 4.2c,h. Also, the
constraint (3.9) implies that fixed points exist at (ω, j) = (0, jf,0) if and only if

Θ3/2 <
εGR

6(1− 5Γ) < 1. (4.28)

Obviously εGR must be finite for the inequality (4.28) to hold even for very small Θ —
hence fixed points at ω = 0 do not exist for εGR = 0, which is why they were not found
in Chapter 3 and do not exist in Figures 4.1a,f or 4.2a,f.
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In addition we learn from (4.28) that there are never any fixed points at ω = 0 for
Γ > 1/5 regardless of εGR, which explains the phase space structure in Figure 4.1. In
particular this implies that for the LK problem (Γ = 1) the only possible fixed point
locations are the standard ones at ω = ±π/2, regardless of the value of εGR. For positive
Γ, fixed points at ω = 0 can be realised only for Γ ≤ 1/5 and we see from (4.27)-(4.28)
that when εGR exceeds the threshold value 6(1− 5Γ)Θ3/2 (corresponding to εGR = 0.095
and 1.06 in the top and bottom rows of Figure 4.2, respectively), a fixed point appears
at the limiting eccentricity elim =

√
1−Θ. Increasing εGR at fixed Γ always acts to

increase jf,0, i.e. to decrease the eccentricity ef,0 ≡ (1 − j2
f,0)1/2 of this particular fixed

point. As we increase εGR to the threshold value εGR = 6(1− 5Γ) (which is independent
of Θ and corresponds to εGR = 3 in Figure 4.2), the saddle point vanishes through
e = 0, leaving only the fixed points at ω = ±π/2.

Beyond that threshold, as mentioned in §4.3.3, there is a range of εGR values for
which the saddle point at ω = 0 is no longer present, but the ω = ±π/2 fixed points
still do exist. Combining the constraints (4.22), (4.23) and (4.28) we see that for Θ� 1
this range is given approximately by

6(1− 5Γ) < εGR < 6(1 + 5Γ). (4.29)

The lower limit here is exact, while the upper limit is correct to zeroth order in Θ. Within
this range the qualitative behaviour resembles the Γ > 1/5 behaviour we saw in Figure
4.1; in particular, the maximum eccentricity of all orbits is found at ω = ±π/2. The range
(4.29) is important because it allows for eccentricity excitation of initially near-circular
binaries, which is not possible in the 0 < Γ ≤ 1/5 regime when εGR = 0 (see §4.3.4).

4.3.4 Determination of the maximum eccentricity of a given orbit

Our next goal is to calculate the maximum eccentricity emax reached by a binary given
the initial conditions (ω0, e0,Θ,Γ, εGR). In particular, we wish to know if a binary
will reach emax → 1, since this is the regime in which dissipative effects (e.g. GW
emission) can become important.

For Γ > 1/5, a binary’s maximum eccentricity is always found at ω = π/2 regardless
of whether its phase space orbit librates or circulates (Figure 4.2). Plugging ω = π/2
into H∗(ω, j) gives us a depressed quartic equation:

j4 +
(
H∗ − 24ΓΘ− 5− 15Γ

3(1 + 5Γ)

)
j2 + εGR

3(1 + 5Γ)j + 10ΓΘ
1 + 5Γ = 0. (4.30)

We call real roots of equation (4.30) j(ω = π/2). In the limit εGR = 0, equation
(4.30) reduces to a quadratic for j2(ω = π/2) and we recover the non-GR solution
(3.18). For εGR 6= 0 the real roots of (4.30) can still be written down analytically
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but they are too complicated to be worth presenting here. The minimum angular
momentum jmin (corresponding to the maximum eccentricity emax ≡

√
1− j2

min) will
then be given by the smallest physical root j(ω = π/2), i.e. the smallest root of (4.30)
that satisfies

√
Θ < j(ω = π/2) < 1.

The situation is slightly more complex for 0 < Γ ≤ 1/5. In this case we must first
work out whether an orbit librates or circulates (and if it circulates, to which circulating
family it belongs, since it can be above or below the saddle point, as in Figures 4.2b,c,h).
To do so we use the procedure given in §4.A.3 to calculate j(ω = 0), which is the
solution to the depressed cubic equation (4.69) that results from plugging ω = 0 into
H∗(ω, j). If the orbit circulates ‘below’ the librating regions and the saddle point then
we have jmin = j(ω = 0). Otherwise jmin is found at ω = ±π/2 and we proceed as
for Γ > 1/5 by solving equation (4.30).

Maximum eccentricity achieved by initially near-circular binaries

We can gain further insight and connect to the results of previous LK studies by considering
the simplified case of initially near-circular binaries, e0 ≈ 0. Evaluating the integrals
of motion H∗ and Θ with the initial condition e0 = 0 we find

H∗ = 2(1− 3Γ cos2 i0)− εGR, Θ = cos2 i0. (4.31)

Note the lack of ω0 dependence in these constants.
Now, for Γ > 1/5 eccentricity is always maximised at ω = π/2, so can be found by

solving (4.30). Plugging (4.31) into (4.30) we find that jmin is the solution to the equation

0 =(j − 1)
[
j3 + j2 − (10Γ cos2 i0 + εGR/3)

1 + 5Γ j − 10Γ cos2 i0
1 + 5Γ

]
. (4.32)

In the LK limit of Γ = 1, equation (4.32) is equivalent to e.g. equation (34) of Fabrycky
& Tremaine (2007) or equation (50) of Liu, Muñoz, et al. (2015)4. Note that jmin = 1
(i.e. emax = 0) is a solution to this equation. It is the correct solution in the special
case of a perfectly initially circular orbit, e0 ≡ 0, which necessarily remains circular
forever. This is because perfectly circular binaries feel no net torque from the external
tide, which can be seen by plugging j = 1 into equation (4.10).

Meanwhile, an orbit that has e0 infinitesimally larger than zero can have jmin

corresponding to a non-trivial solution of (4.32). This will be the case if and only
if the ω = ±π/2 fixed points have not yet disappeared below e = 0 (panels (a)-(d) and
(f)-(h) of Figure 4.1). Because of the constraint (4.22), a necessary (and for i0 → 90◦,
sufficient) requirement for this is εGR < 6(1 + 5Γ). In that case the fixed points bound

4Note that there is a typo in Liu, Muñoz, et al. (2015)’s equation (50) — the factor of 3/5 on the right
hand side should be 5/3.



4. The effect of general relativistic precession 126

0

0.2

0.4

0.6

0.8

e m
a
x

(a) Γ= 1.0

ǫGR =0 1 3 5 10 30

(b) Γ=0.5 (c) Γ= 0.25

0 20 40 60 80

i0(
◦ )

0

0.2

0.4

0.6

0.8

e m
ax

(d) Γ= 0.19

0 20 40 60 80

i0(
◦ )

(e) Γ= 0.1

0 20 40 60 80

i0(
◦ )

(f) Γ= 0.05

Figure 4.5: Maximum eccentricity emax as a function of i0 for initially near-circular binaries.
Panels (a)-(c) are for Γ > 1/5 while panels (d)-(f) correspond to 0 < Γ ≤ 1/5. In each panel,
different coloured lines represent the different values of εGR (see legend). A dashed black line
corresponds to emax = elim = sin i0. Note that for initially circular orbits to reach a non-zero
emax we require fixed points to exist in the phase portrait at ω = ±π/2 but not at ω = 0; for
i0 ≈ 90◦ this corresponds to 6(1−5Γ) < εGR < 6(1+5Γ) — see equation (4.29). Note also that for
Γ < 1/5, eccentricity excitation of near-circular binaries may be possible regardless of inclination,
even when i0 = 0◦, as for εGR = 3 in panel (e).

the maximum eccentricity from below, so emax > ef,π/2 ≡ (1 − j2
f,π/2)1/2. On the other

hand, if εGR is large enough that the fixed points have disappeared through e = 0 then
we simply have emax = 0 (see panels (e), (i), (j) of Figure 4.1).

Next we turn to the regime 0 < Γ ≤ 1/5. By consulting Figure 4.2 one can see that
a finite eccentricity is only achieved if εGR is sufficiently large that the saddle point at
ω = 0 has passed ‘down’ the (ω, e) phase space and disappeared through e = 0, but
also sufficiently small that the ω = ±π/2 fixed points still exist (as in Figure 4.2d,i). A
necessary requirement for this (which is again sufficient in the case i0 → 90◦) is that
(4.29) be true. Then e is maximised at ω = ±π/2 and jmin is a non-trivial solution to
equation (4.32). On the other hand, if (4.29) is not satisfied then a binary that starts
at e0 ≈ 0 never increases its eccentricity5 even for i0 = 90◦.

Overall then, we see that for near-circular binaries to reach finite emax we require
fixed points to exist in the phase portrait at ω = ±π/2 but not at ω = 0, and this
necessarily requires εGR to satisfy (4.29).

5There is another solution at ω = 0 given by equation (4.93) which is unphysical for Γ > 0 but will
become important for Γ ≤ 0 — see §4.D.3.
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In Figure 4.5 we plot emax as a function of i0 for initially near-circular binaries. Panels
(a)-(c) are for Γ > 1/5 (c.f. Figure 3 of Fabrycky & Tremaine (2007) and Figure 6 of
Liu, Muñoz, et al. (2015)) while panels (d)-(f) correspond to 0 < Γ ≤ 1/5. In each panel,
different coloured solid lines represent the different values of εGR, while a dashed black
line indicates the limiting eccentricity elim =

√
1−Θ = sin i0 (the highest possible e for

an initially near-circular binary, corresponding to j = cos i0). We see that for Γ > 1/5,
the effect of increasing εGR at a fixed i0 (and therefore a fixed Θ) is always to decrease
emax. This is what we would expect by comparing the top and bottom rows of Figure 4.1.
Moreover, if we consider the most favourable orbital inclination i0 = 90◦ then we can easily
derive the exact solution to (4.32). We find that either jmin = 1 (so emax = 0), or that

jmin = 1
2

(1 + 4εGR
εstrong

)1/2

− 1

 , (4.33)

with εstrong defined in (4.25); in the LK limit this result reduces to equation (35) of
Fabrycky & Tremaine (2007). Expanding the solution (4.33) for εGR/εstrong � 1 we find

emax ≈ 1− 1
2

(
εGR
εstrong

)2

. (4.34)

Thus we expect emax → 1 for these favourably inclined binaries when GR is negligible,
but also that emax will deviate from 1 considerably when εGR starts approaching εstrong,
which is what we see in Figure 4.5a,b,c. Obviously this means that the smaller is Γ, the
smaller εGR needs to be to suppress the very highest eccentricities. Finally we note that
there is no magenta curve — corresponding to εGR = 30 — in either panel (b) or panel
(c). This is because for these Γ values the constraint (4.29) is violated for εGR = 30,
so the only possible solution to (4.32) is emax = 0.

Now consider the regime 0 < Γ ≤ 1/5 exhibited in panels (d)-(f). The reader will
notice the diminishing number of curves in these panels. Indeed, there is not even a
red curve corresponding to εGR = 0. This again is a consequence of the fact that for
εGR = 0, equation (4.29) cannot be satisfied, so that initially circular orbits achieve
no eccentricity excitation (emax = 0).

A related phenomenon is that in panel (e), the green (εGR = 3) curve asymptotes
to the black dashed line e = elim as i0 → 0◦. This is also as expected: since Γ = 0.1,
equation (4.29) tells us εGR = 3 is precisely the lower bound on GR strength above which
initially near-circular binaries can reach non-zero eccentricities at all i0, since at this
value of εGR the saddle point crosses e = 0 — see Figure 4.6i,j,k.

Note that this 0 < Γ ≤ 1/5 behaviour is completely different from that found for
near-circular binaries in the Γ > 1/5 regime (and therefore to the known LK results).
For Γ > 1/5, taking i0 ≈ 0◦ inevitably leads to emax ≈ 0 — in other words there
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is no eccentricity excitation for initially coplanar (i0 = 0) orbits, regardless of εGR.
Moreover, for Γ > 1/5 even if a binary can reach a finite maximum eccentricity for
εGR = 0, increasing εGR always decreases this maximum eccentricity. On the contrary,
for 0 < Γ ≤ 1/5 reaching a finite emax may be possible even for initially almost coplanar
orbits, and a finite εGR is actually necessary to trigger the eccentricity excitation starting
from a circular orbit. Despite this, comparison of the top and bottom rows of Figure
4.5 reinforces the idea that the 0 < Γ ≤ 1/5 regime admits far fewer high-eccentricity
solutions than Γ > 1/5 as εGR is varied.

4.4 High eccentricity behaviour

Our next goal is to understand the impact of GR precession on the time dependence
of the binary orbital elements in the important limit of very high eccentricity, e → 1.
This limit is relevant in a variety of astrophysical contexts. For example, the dramatic
reduction of the binary pericentre distance that occurs when e approaches unity can
trigger short-range effects such as tidal dissipation (leading to hot Jupiter formation), GW
emission (leading to compact object mergers), and so on. Thus we wish to understand
in detail how GR precession affects not only the maximum eccentricity emax, but also
the behaviour of e(t) and other orbital elements in the vicinity of emax.

In §4.3.4 we explained how to find emax for arbitrary Γ > 0, initial conditions
(e0, i0, ω0), and value of εGR. Here we will examine the solutions quantitatively in the
high eccentricity limit, and explore the time spent near highest eccentricity. To this end
we will make extensive use of equation (4.12), which tells us dj/dt as a function of j. It
is important to note that the solutions for extrema of j at ω = 0 and ω = ±π/2 are all
contained within (4.12). Indeed, setting the first square bracket inside the square root
in (4.12) to zero gives the depressed quartic equation (4.30) whose roots correspond to
extrema of j at ω = ±π/2, i.e. what we have so far called j(ω = ±π/2). Setting the
other square bracket to zero gives the depressed cubic (4.69)-(4.70) which determines
the roots at ω = 0, i.e. what we called j(ω = 0).

In this section we will focus on situations in which emax is achieved at ω = ±π/2,
since this is the most common prerequisite for e→ 1 (§§4.3.1-4.3.2). The rare cases in
which e approaches unity at ω = 0 are covered in Appendix 4.B.

4.4.1 Phase space behaviour for Θ � 1, Γ > 0

We are interested in binaries that start with initial eccentricity e0 not close to unity, and
that are capable of reaching extremely high eccentricities emax → 1, i.e. jmin → 0. For
this to be possible a necessary condition is that Θ � 1, owing to the constraint (3.9).
Hence it is important to understand the regime Θ � 1 in detail.
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Figure 4.6: As in Figures 4.1 and 4.2, except we have (I) fixed Θ = 10−3 and used two values of
Γ (namely 0.5 and 0.1 for the top and bottom row respectively), (II) plotted 1− e on the vertical
axis using an inverted logarithmic scale (so that e still increases vertically), (III) added by hand
additional dashed contours with the value H∗(ω = ±π/2, e = 0.9), and (IV) used some new values
of εGR.

In Figure 4.6 we show phase portraits for Γ = 0.5 (top row) and Γ = 0.1 (bottom
row), this time fixing Θ = 10−3 in both cases, and adding in extra dashed contours6 with
the value H∗(ω = ±π/2, e = 0.9). Note that on the vertical axis we now plot 1− e on a
logarithmic scale, with eccentricity still increasing vertically as in Figures 4.1, 4.2. This
allows us to see in detail how trajectories separate from e ≈ elim as we increase εGR.

In these plots, Θ is sufficiently small that to a very good approximation the requirement
for fixed points at ω = ±π/2 to exist is just εGR < 2εstrong (equation (4.26)). This
critical value is surpassed in panel (l), since in that case εGR = 10 while 2εstrong = 9,
which is why all fixed points have disappeared. Meanwhile the criterion for a saddle
point to exist at ω = 0 (equation (4.28)) for Γ = 0.1 and Θ = 10−3 is approximately
10−5 < εGR < 3. This is consistent with what we see in panels (f)-(l) — note in particular
the transitional point εGR = 3 in panel (j).

Comparing the top and bottom rows of Figure 4.6, one observes a striking difference
between behaviour in the Γ > 1/5 and 0 < Γ ≤ 1/5 dynamical regimes. For Γ = 0.5 > 1/5,
an initially near-circular binary can be driven to very high eccentricity (& 0.99) even
for εGR = 1.0 (panel (d)). Conversely, for Γ = 0.1 < 1/5 the phase space structure
simply does not allow such behaviour (panels (f)-(i)). More precisely, for 0 < Γ ≤ 1/5,
the eccentricity of the saddle point (4.27) acts as a hard boundary on the maximum
eccentricity of low-e orbits, and most of them do not get close even to that value. Even

6In addition to the dashed contours already included in Figures 4.1 and 4.2.
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when εGR is increased so that a new family of circulating orbits appears, and the librating
region is significantly enlarged, the system admits very few solutions that start at low-e
and achieve high-e. It is therefore unsurprising that one finds fewer cluster-tide driven
compact object mergers from systems such as globular clusters that have a relatively
high fraction of binaries in the 0 < Γ ≤ 1/5 regime (Chapter 7).

4.4.2 High eccentricity behaviour for εGR = 0

Before embarking on a full study of high eccentricity evolution for arbitrary εGR, we first
consider the case εGR = 0. In that case the non-zero roots of the polynomial on the
right hand side of (4.12) are j±, j0, one of which will correspond to the minimum angular
momentum jmin. Then we can integrate (4.12) with εGR = 0 to find t(j); the resulting
expression involves an incomplete elliptical integral of the first kind (see §3.2.6 for the
general Γ case, and Vashkov’yak (1999) and Kinoshita & Nakai (2007) in the LK case of Γ =
1). Next, assuming that j2 � 1, we can expand this elliptical integral to find7 (see §3.9.2):

j(t) = jmin

√
1 +

(
t

tmin

)2
, where tmin ≡

jmin
j1j2

τ, (4.35)

j1, j2 are the two roots not corresponding to jmin, and τ is a characteristic secular
timescale which is independent of e0, i0, ω0:

τ ≡ L

6C
√
|25Γ2 − 1|

. (4.36)

Using the definitions of C and L one can show that τ is, up to constant factors, the same
at tsec defined after equation (4.6). Note we have taken the origin of the time coordinate
to coincide with j = jmin. Clearly tmin is the characteristic evolution timescale in the
vicinity of jmin, i.e. the time it takes for j to change from jmin to

√
2jmin.

Note that the solution (4.35) is quadratic in t for t . tmin and linear when t & tmin,
as long as j remains � 1. It provides a better approximation to j(t) over a wider interval
of time near the peak eccentricity than the purely quadratic approximation adopted by
Randall & Xianyu (2018), in their calculation of the GW energy emitted by a binary
undergoing LK oscillations (§4.C.3; see also §5.A).

4.4.3 Modifications brought about by finite εGR

Before we proceed to examine the j(t) behaviour, it is important to realise that including
a finite εGR affects the right hand side of (4.12), and therefore the value of jmin, in
two distinct ways. First, there is the obvious explicit dependence on εGR that appears
twice in equation (4.12). Second, there is also an implicit dependence on εGR in (4.12)

7Note that one can get the same result simply by expanding the right hand side of (4.12) for j � 1.
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through the values of j± and j0 (see equations (4.13), (4.14)). We will now discuss
this implicit dependence, and then use the results to understand j(t) behaviour in
different asymptotic εGR regimes.

In the limit Θ � 1, and assuming that e0 is not too close to 1 and Γ is not too
close to 1/5, equations (4.15), (4.16) tell us that

Σ ≈ (εstrong + εGR)/6 +O(e2
o). (4.37)

Equation (4.37) implies that Σ, and hence j2
±, will be modified significantly by GR only

if εGR & εstrong, in agreement with what we saw in Figures 4.1, 4.2 & 4.6. In this case, a
perturbative approach around the non-GR solution will fail. We therefore say that any
binary with εGR & εstrong exists in the regime of ‘strong GR’, which we explore in §4.4.5.
Conversely, if εGR is in what we will call the ‘weak-to-moderate GR’ regime:

εGR � εstrong, (4.38)

then Σ ∼ 1, and so for fixed Θ � 1 the values of j± will stay close to their non-GR
values as we increase εGR, namely (see equation (4.13)):

j2
+ ≈

2Σ
1 + 5Γ ∼ 1, and j2

− ≈
5ΓΘ

Σ ∼ Θ� 1. (4.39)

In other words the relative perturbations to j± induced by GR can normally be neglected.
Note that the weak-to-moderate GR regime (4.38) already encompasses the very weak
GR regime introduced in §4.3.3. In §4.4.4 we will further delineate distinct ‘weak
GR’ and ‘moderate GR’ regimes.

Also, using equations (4.14), (4.16) it is easy to show that the absolute change to
j0 incurred by including GR will be small (� 1) whenever

εGR � 3|1− 5Γ|
√

1− e2
0. (4.40)

Note that for Γ not close to 1/5 and e0 not close to unity, the condition (4.40) is
automatically guaranteed by the weak-to-moderate GR condition (4.38). In that case the
relative perturbation to j0 due to GR precession can be neglected (if j0 ∼ 1).

4.4.4 High-e behaviour in the weak-to-moderate GR limit

In the non-GR limit (εGR = 0), for Γ > 0 the vast majority of phase space trajectories
that are capable of reaching very high eccentricities reach them at8 ω = ±π/2. As
shown in Chapter 3, for Γ > 0 the corresponding minimum angular momentum for

8The exception is for circulating orbits with 0 < Γ < 1/5 that lie very close to the separatrix. These
rare orbits are discussed in Appendix 4.B.
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these orbits is always jmin = j− � 1. The maximum j is equal to j0 if the orbit
circulates and j+ if it librates.

We now want to see what happens to (4.12) for finite εGR � εstrong. From the
discussion in §4.4.3 we expect that we may neglect j2 compared to j2

+, j2
0 in this

regime. As a result we can write
dj
dt ≈ ±

6C
Lj3/2

√
(25Γ2 − 1)j2

+j
2
0
[
j2 − j2

− − γjj−
]
[j + σj−], (4.41)

where we defined the following dimensionless numbers:

γ ≡ εGR
3(1 + 5Γ)j2

+j−
= 2εGR
εweak

, (4.42)

σ ≡ εGR
3(5Γ− 1)j2

0j−
= 2εGR
εweak

× 5Γ + 1
5Γ− 1

j2
+
j2
0
, (4.43)

with

εweak ≡ 6(1 + 5Γ)j2
+j− ≈ (720ΓΣ)1/2 Θ1/2. (4.44)

To get the second equality in (4.44) we used the approximation (4.39). Both εweak and
γ are manifestly positive in the weak-to-moderate GR regime given Γ > 0. Except in
pathological cases, σ is also positive for the regimes we are interested in here9.

To find the minimum j at ω = ±π/2 we require the right hand side of (4.41) to
equal zero, which, as we mentioned earlier, means that the first square bracket inside the
square root must vanish. This gives a quadratic equation for jmin, the only meaningful
(positive) solution to which is

jmin = γj−
2

[
1 +

√
1 + 4γ−2

]
= 1

2j2
+εstrong

[
εGR +

√
ε2GR + ε2weak

]
. (4.45)

Equations (4.41) and (4.45) work as long as Θ� 1 and εGR is in the weak-to-moderate
GR regime, i.e. satisfies (4.38) and (4.40).

Equation (4.45) has been used by several authors in the LK limit of Γ = 1 — see
§4.5.2. Importantly, it allows us to write down a solution for the maximum eccentricity
reached by initially near-circular binaries in the weak-to-moderate GR regime. Indeed,
let us put Θ = cos2 i0 and assume Θ � 1 (i.e. i0 ≈ 90◦) so that the binary is capable
of reaching very high eccentricity. Then j+ ≈ 1 and from (4.45) we find

jmin ≈
1
2

 εGR
3(1 + 5Γ) +

√[
εGR

3(1 + 5Γ)

]2
+ 40Γ cos2 i0

1 + 5Γ

 . (4.46)

9This is true because (5Γ − 1)j2
0 is positive in the εGR = 0 limit for all the cases we care about,

namely any orbit with Γ > 1/5 and librating orbits with 0 < Γ ≤ 1/5. The inclusion of GR subtracts
from (5Γ− 1)j2

0 by an amount εGR/(3
√

1− e2
0). For j0 ∼ 1 and e2

0 � 1, this modification will not make
(5Γ− 1)j2

0 negative as long as (4.40) is satisfied.
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Figure 4.7: High-e behaviour in the weak GR regime (§4.4.4). Panel (a) shows the solution (4.49)
for j(t) near the eccentricity peak for various values of σ (equation (4.43)). The horizontal dotted
line shows j/jmin =

√
2 and the vertical dotted line shows t = tmin. Panel (b) shows βweak(σ),

which is the time (in units of tmin) over which the binary’s j/jmin changes from 1 to
√

2, defined
by setting j/jmin =

√
2 in the right hand side of (4.49). Note that both axes are on a logarithmic

scale in this panel. A dashed magenta line shows the scaling βweak ∝ σ−1/2 for σ � 1.

Note that this result is consistent with what we found in §4.3.4, where we assumed

near-circularity from the outset and made no (explicit) assumptions about jmin or εGR

other than (4.29). For instance: (I) we can alternatively derive (4.46) by solving equation

(4.32) in the limit j � 1; (II) if we take i0 = 90◦ in (4.46) then we get exactly the same

result as if we expand (4.33) for εGR � εstrong, namely equation (4.34). Moreover, in the

LK limit Γ = 1 we recover from (4.46) a well-known result, identical to10 e.g. equation

(8) of Miller & Hamilton (2002) and equation (52) of Liu, Muñoz, et al. (2015).

It is now instructive to investigate separately the high-e behaviour in the asymp-

totic regimes of weak and moderate GR precession (still assuming eccentricity is max-

imised at ω = ±π/2).
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Weak GR, εGR � εweak

In the asymptotic regime of weak GR, defined by εGR � εweak, the solution (4.45)
becomes approximately

jmin ≈ j−
(

1 + γ

2

)
= j−

(
1 + εGR

εweak

)
. (4.47)

In other words, GR causes only a slight perturbation of jmin away from the non-GR
value of j− at the relative level εGR/εweak � 1.

To determine the time dependence of j(t) in the vicinity of jmin, we make use of the
weak GR assumption to drop the γ term in the first square bracket in (4.41). The result is

dj
dt ≈ ±

6C
Lj3/2

√
(25Γ2 − 1)j2

+j
2
0
[
j2 − j2

−
]
[j + σj−]. (4.48)

Integration of (4.48) gives an implicit solution for j(t) in the form

t

tmin
=
∫ j/jmin

1

dxx3/2√
(x2 − 1)(x+ σ)

, (4.49)

where tmin is defined in equation (4.35). In Figure 4.7a we plot the implicit solution
for j/jmin as a function of t/tmin for various values of σ.

We can gain insight into σ in the weak GR regime by using the fact that in this
regime, εGR � jmin ≈ j− ∼ Θ1/2. Evaluating (4.16) at ω = ±π/2, j = jmin and
using these scalings we find

D ≈ 1 + 10Γ
1− 5Γ

(
1− Θ

j2
min

)−1
. (4.50)

Plugging this into (4.14) and the resulting expression into (4.43) gives

σ ≈ εGR
30Γjmin

(
1− Θ

j2
min

)−1
= εGRχ

30Γjmin
, (4.51)

where χ ≥ 1 is defined in equation (4.82). For typical values of χ ∼ 1, since εGR �
jmin we expect σ � 1. However, when χ greatly exceeds unity, σ & 1 or even
σ � 1 is also possible11.

In the case σ � 1, the term σj− in the final square bracket in (4.48) can also be
dropped compared to j. Then equation (4.48) takes the same functional form as its
non-GR analogue; integrating, we get a solution j(t) in precisely the form (4.35) with12

jmin → j− and j1, j2 → j+, j0. This is reflected in Figure 4.7a, in which the black
10Note that our definition of εGR differs from what Miller & Hamilton (2002) call θPN and what Liu,

Muñoz, et al. (2015) call εGR. Our εGR is defined for any outer orbit in any axisymmetric potential,
whereas their parameters are defined only in the Keplerian (LK) limit. In this limit, εGR = 6θPN = 16εGR.

11Note that contrary to what a naive interpretation of (4.43) might suggest, the condition for σ � 1 is
not that Γ→ 1/5.

12Note that j±, j0 depend on εGR through (4.13)-(4.14) only weakly, at the relative level O(εGR/εweak).
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line (σ = 0) is exactly the non-GR result from (4.35), and as expected j =
√

2jmin

coincides with t = tmin in that case.
However the assumption σ � 1 may not always be valid. Figure 4.7a shows that as

we increase σ the behaviour of j(t) becomes more sharply peaked around jmin (when time
is measured in units of tmin), although against this trend one must remember that to
change σ is to change one or more of εGR, Γ, j0 and j−, any of which will modify tmin.
We are particularly interested in the value of tweak

min (σ), which is the time it takes for j to
go from jmin to

√
2jmin in the weak GR regime, to compare with the solution (4.35). By

setting j/jmin =
√

2 on the right hand side of (4.49) and t = tweak
min on the left, we find

tweak
min (σ) = βweak(σ)tmin, (4.52)

where βweak(σ) is plotted as a function of σ in Figure 4.7b. As expected βweak → 1 for
σ → 0, i.e. in the limit of negligible GR precession. For finite GR, typical values of βweak

are ∼ 1 except for very large σ & 10. For σ � 1 we see that βweak falls off like ∼ σ−1/2.
In Figures 4.11, 4.12, 4.14 and 4.15 we compare the weak GR solution for j(t), namely

equation (4.49), to direct numerical integration of the DA equations of motion (4.9),
(4.10), for binaries in different dynamical regimes. Full details are given in §4.C.3; here
we only note that the values of the key quantities Γ, εGR, εweak, σ, etc. are shown at
the top of each figure. In every example, panel (a) shows log10(1− e) behaviour in the
vicinity of peak eccentricity, while panel (b) shows the same thing zoomed out over a
much longer time interval13. The weak GR solution for j(t) (equation (4.49)) is plotted
in panels (a) and (b) with a dashed green line, while the numerical solution is shown with
a solid blue line. We see that for εGR � εweak (Figures 4.11, 4.12) this weak GR solution
works very well, but that substantial errors begin to set in when εGR approaches εweak

(Figures 4.14, 4.15). Finally, in each of these plots we also show with red dashed lines
an ‘analytic’ solution, equation (4.78), which coincides with (4.35) provided j4

min/Θ� 1.
As we have already stated, in the weak GR regime j(t) takes the form (4.35) provided
that σ � 1, so it is unsurprising that in the plot with very small σ (Figure 4.11) this
analytic solution (equation 4.78, denoted with red dashed lines) overlaps with the weak
GR solution (equation 4.49, shown with green dashed lines).

Moderate GR, εweak � εGR � εstrong

Perhaps more interesting is the asymptotic regime of moderate GR, defined as εweak �
εGR � εstrong. In this regime one finds from (4.45) that

jmin ≈
εGR

3(1 + 5Γ)j2
+

= γj− = 2εGR
εweak

j− � j−, (4.53)
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Figure 4.8: Similar to Figure 4.7 except now for the moderate GR regime (§4.4.4). In panel (a)
the solution for j(t) is defined implicitly by equation (4.55) and we plot it for various values of κ
(equation (4.56)). In panel (b) we show βmod(κ), which is the time (in units of tmin) over which
j changes from jmin to

√
2jmin in this regime. Dotted lines show κ = 1 and βmod = 1, while a

dashed magenta line shows the scaling βmod ∝ κ−1/2 for κ� 1.

i.e. a significant perturbation of jmin away from j−, resulting in a significantly reduced
maximum eccentricity emax.

To determine the time dependence of j(t) around jmin we neglect j2
− compared to

j2 in the first square bracket in (4.41) and find

dj
dt ≈ ±

6C
Lj

√
(25Γ2 − 1)j2

+j
2
0 [j − γj−] [j + σj−]. (4.54)

Integration of (4.54) gives an implicit solution for j(t) in the form

t

tmin
=
∫ j/jmin

1

x dx√
(x− 1)(x+ κ)

, (4.55)

where

κ ≡ σ

γ
= j2

+
j2
0

5Γ + 1
5Γ− 1 . (4.56)

Note that tmin in (4.55) is still defined by equation (4.35) but taking jmin equal to its
GR-modified value, namely γj−. In Figure 4.8a we plot this implicit solution for various
values of κ. Note also that κ = 1 (red line) gives precisely the solution j/jmin in the form

13Note however that on the horizontal axis we plot time in units of t′min (equation (4.79)) rather than
tmin, as explained in Appendix 4.C.
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(4.35), and so unsurprisingly j/jmin =
√

2 coincides with t/tmin = 1 in that case. As we

increase κ we see that the time spent near the minimum j decreases (when measured

in units of tmin, which itself also depends on κ).

We can get a better feel for the quantity κ in the moderate GR regime using the fact

that in this regime, εGR ∼ jmin � Θ1/2. Then from (4.15), (4.16) we get

Σ ≈ εGR
6jmin

, and D ≈ 1 + 10Γ
1− 5Γ

(
1− εGR

30Γjmin

)−1
. (4.57)

Plugging these results into (4.13) and (4.14) and inserting the resulting expressions into

(4.56), we find

κ ≈
(30Γjmin

εGR
− 1

)−1
. (4.58)

Since jmin ∼ εGR we typically expect the first term in the bracket to be � 1, resulting in

κ� 1 . However, as we will see in Appendix 4.C.3, much larger values of κ are also possible.

Moreover, in writing down the scaling εGR ∼ jmin � Θ1/2 we have implicitly assumed that

Θ is fixed while εGR is increased in equation (4.45). This is not how things work when

we include GW emission and track the evolution of εGR, Θ for a shrinking binary — see

Chapter 5. In that case both Θ and εGR increase as the semimajor axis a decreases, while

Θ1/2/jmin = | cos imin| remains very nearly constant. Thus the results of this subsection

will need to be modified there (for instance we will find that κ < 0 is common).

Analogous to §4.4.4, by setting j/jmin =
√

2 on the right hand side of (4.55) and

t = tmod
min on the left, we find that the time for j to increase from jmin to

√
2jmin in

the moderate GR regime is

tmod
min (κ) = βmod(κ)tmin, (4.59)

where βmod(κ) is plotted as a function of κ in Figure 4.8b. Clearly when κ ∼ 1 (which is

true for Γ not too close to 1/5) we have β ∼ 1 and so tGR
min ∼ tmin. But for κ� 1 the time

spent in the high eccentricity state is somewhat reduced, with a scaling tGR
min ∝ κ−1/2tmin.

However for this to be a significant effect requires rather extreme values of κ � 1.

Finally, in panels (a) and (b) of Figures 4.13 and 4.16 we compare the moderate GR

solution (4.55), shown with dashed cyan lines, to direct numerical integration of the DA

equations of motion, shown in solid blue. In both cases the moderate GR solution provides

an excellent fit to the numerical result despite εGR only being slightly larger than εweak.
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4.4.5 High-e behaviour in the strong GR limit

The final asymptotic case to consider is that of strong GR, εGR � εstrong. This regime
is important for understanding the later stages of evolution of shrinking compact object
binaries. Indeed, GW emission eventually brings any merging binary to a small enough
semimajor axis to put it in this regime.

In this limit GR precession is the dominant effect, exceeding the secular effects
of the external tide — see e.g. panels (e) and (j) of Figures 4.1 and 4.2. Thus we
anticipate that at high eccentricity the lowest order solution will be one of constant
eccentricity and uniform prograde precession:

j(t) = j(0), ω = ω(0) + ω̇GR(0)t, (4.60)

where ω̇GR(0) = (C/L)εGR/j
2(0) — see equation (4.1). High eccentricity can therefore

only be achieved if j(0) � 1 to start with. This is actually a highly relevant scenario
in practice because it is at very high eccentricity that GW emission, and hence the
shrinkage of a and the growth of εGR, is concentrated. Binaries periodically torqued to
very high eccentricity by cluster tides eventually become trapped in a highly eccentric
orbit as they enter the strong GR regime (Chapter 5). Their phase space trajectories
are then well described by (4.60).

Interestingly, the minimum angular momentum jmin = j(0) predicted by the solution
(4.60) can still be described by the expression (4.45) in the limit εGR � εstrong. To see
this we note that for εGR � εstrong equation (4.45) gives jmin ≈ εGR/(j2

+εstrong). Then
we take the expression (4.39) for j2

+, and substitute into it the value of Σ we get by
taking εGR � 1 in (4.15)-(4.16), namely Σ ≈ εGR(1 − e2

0)−1/2/6. Putting these pieces
together we find jmin ≈

√
1− e2

0 = j(0). Thus the solution (4.45) interpolates smoothly
between the different asymptotic GR regimes.

4.4.6 Evolution of ω(t) and Ω(t) as e → 1

So far we focused on understanding the behaviour of j(t). Once this is determined one
can understand the evolution of other orbital elements as well. In particular, since the
Hamiltonian (4.2) is conserved, we can use equations (4.7)-(4.8) to express cos 2ω entirely
in terms of j(t) and conserved quantities, leading to an explicit analytical expression for
ω(t). Finally one can plug this cos 2ω(t) and j(t) into the equation of motion (4.11) for
Ω(t) and integrate the result. Together with Jz(t) = Jz(0) = const., this constitutes a
complete solution to the DA, test-particle quadrupole problem with GR precession.

Unfortunately this proposed solution for ω(t) and Ω(t) is very messy for arbitrary
values of j. Luckily, in the high eccentricity regime j � 1, one can make substantial
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progress by (i) making the additional (and often well-justified) assumption given by

equation (4.77) and (ii) adopting the ansatz14 (4.35) for j(t). Then, as we show in

Appendix 4.C, one can derive relatively simple explicit analytical solutions for ω(t) and

Ω(t). These solutions work very well as long as equation (4.35) is a good approximation

to the j(t) behaviour near the peak eccentricity, as we verify numerically in §4.C.3. To

our knowledge, an explicit high-e solution of this form accounting for GR precession has

not been derived before even for the LK problem. It can be used for instance in order

to explore the short-timescale (i.e. non-DA) effects near peak eccentricity, which are

important for accurate calculation of the LK-driven merger rate (Grishin et al. 2018).

4.5 Discussion

In this Chapter we have studied the impact of 1PN GR precession on secular evolution

of binaries perturbed by cluster tides. A single dimensionless number Γ effectively

encompasses all information about the particular tidal potential and the binary’s outer

orbit within that potential. Meanwhile the relative strength of GR precession compared

to external tides is characterised by the dimensionless number εGR (equation (4.5)).

In the main body of the Chapter we only discussed the systems with Γ > 0. Although

the resulting dynamics are significantly complicated by bifurcations that occur at Γ =

±1/5, 0, for Γ > 1/5 our qualitative results are intuitive, falling in line with those gleaned

from previous LK (Γ = 1) studies that accounted for GR precession. However, for

0 < Γ ≤ 1/5 we uncovered a completely new pattern of secular evolution, which we

characterised in detail. Secular dynamics of binaries with negative Γ (possible for binaries

on highly inclined outer orbits in strongly non-spherical potentials, see Chapter 2) and

non-zero εGR is covered in Appendix 4.D. Like in Chapter 3 we find that the Γ ≤ 0 regime

splits into two further regimes, namely −1/5 < Γ ≤ 0 and Γ ≤ −1/5. It turns out that

in both of these regimes the resulting phase space structures and maximum eccentricity

behaviour are considerably more complex and counter-intuitive than for Γ > 0.

Furthermore, we have explored the evolution of binary orbital elements in the limit of

very high eccentricity (§4.4). This investigation revealed a number of distinct dynamical

regimes that are classified according to the value of εGR. In §4.5.1 we summarise and

systematise these regimes based on their physical characteristics. In §4.5.2 we compare

our study to the existing LK literature, and in §4.5.3 we discuss its limitations.
14Strictly speaking this ansatz is valid only for σ � 1, but is often a good approximation in the vicinity

of jmin even for σ � 1 — see §4.C.3.
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Figure 4.9: (a) Plot showing several characteristic values of the GR strength εGR as functions of
Γ > 0: εstrong (black solid line), εweak (dotted lines) and επ/2 (dashed lines). The values of εweak
and επ/2 depend on Θ so we show them for three Θ values, namely 0.1 (blue), 10−2 (red) and
10−3 (green). (b) Same, but now as a function of Θ, for Γ = 0.5 (cyan) and Γ = 0.1 (magenta).

4.5.1 Summary of εGR regimes and their physical interpretation

In this Chapter we introduced three characteristic values of εGR, namely επ/2 (equation
(4.19)), εweak (equation (4.44)), and εstrong (equation (4.25)). The first two scale with Θ
in such a way that in the high-e limit, when Θ � 1, one finds

επ/2 . εweak . εstrong. (4.61)

This hierarchy is illustrated in Figure 4.9, in which we show how15 επ/2, εweak, εstrong

depend on both Γ > 0 and Θ. We see that decreasing Θ widens the gap between εstrong

and εweak. This is as expected because small Θ tends to promote high-e, and since
ω̇GR ∝ εGR/(1− e2), the higher is e, the smaller is the critical value of εGR at which GR

15to calculate εweak for this figure we set e0 = εGR = 0, so that j2
± is given by (4.13) with Σ =

(1 + 5Γ + 10ΓΘ)/2.
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effects become important. Note however that even for Θ = 10−3 the difference between
εstrong and εweak does not exceed∼ 102. Since εGR ∝ a−4 (equation (4.5)), a relatively small
change in semimajor axis a can easily shift εGR from one asymptotic regime to another.

These characteristic values of εGR allow us naturally to delineate four important
regimes of secular dynamics:

• very weak GR: εGR . επ/2,

• weak GR: επ/2 . εGR . εweak,

• moderate GR: εweak . εGR . εstrong,

• strong GR: εGR & εstrong.

Based on our findings in §§4.3-4.4 we now provide a description of the basic fea-
tures of each regime.

Very weak GR In this limit (below the dashed curves in Figure 4.9) GR precession
has essentially no effect on the dynamics for Γ > 1/5. More precisely, GR is too weak to
affect either the locations of the fixed points at ω = ±π/2, which are given by equation
(4.20), or the maximum eccentricity reached by the binary at the same ω in the course
of its tide-driven secular evolution, given by equation (4.47). Thus all Γ > 1/5 results
of Chapter 3, which were derived for εGR = 0, are valid16. However, for 0 < Γ ≤ 1/5 an
important modification arises if 6(1− 5Γ)Θ3/2 < εGR . επ/2, which is that saddle points
appear at ω = 0, π. These saddles do not exist for εGR = 0 (see equation (4.28) and §4.3.3),
but they do change the maximum eccentricity reached by the binary — see Appendix 4.B.

Weak GR In this regime (between the dashed and dotted curves in Figure 4.9) GR
precession starts to modify the j locations of the fixed points at ω = ±π/2, which are
now given by equation (4.21). At the same time, GR precession does not appreciably
change jmin (or equivalently emax), which stays close to its εGR = 0 value j− (see
equation (4.47)). If σ � 1 then GR also modifies the time spent in the high eccentricity
state (equation (4.52)).

Moderate GR In this regime (between the dotted and solid curves in Figure 4.9)
GR precession modifies not only the locations of the fixed points but also the values
of jmin (and hence of emax), now given in equation (4.53). GR also modifies the time
spent in the high-e state (equation (4.59)). In other words, in this regime GR precession
presents an efficient barrier suppressing the maximum eccentricity reached by the binary
in the course of its secular evolution.

16Note that this is not necessarily true in the SA approximation, in which even a very weak amnount
of GR can totally alter the phase space dynamics if the binary is capable of reaching extremely high
eccentricity — see Chapter 6.
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Strong GR In this limit (above the solid curves in Figure 4.9) GR precession dominates
the binary dynamics at all times; the quantities j± are significantly affected by GR
precession (equation (4.37)) and all fixed points in the phase portrait disappear (equations
(4.26), (4.28)). Cluster tides drive only very small eccentricity oscillations on top of
uniform GR precession, so that e is roughly constant — see equation (4.60).

In Table 4.2 we summarise the main features of the asymptotic εGR regimes that we
have found in this and previous sections.

We may use this regime separation to shed light on the physical meaning of the character-
istic εGR values introduced in this work. To do so, we first note that the GR precession
rate (4.1) can be written as ω̇GR(j) = ω̇GR|e=0j

−2 ∼ εGRt
−1
secj
−2 (see the definition (4.5)).

Next, consider some arbitrary cluster tide-driven process occurring on a characteristic
timescale tch. GR precession will affect this process if εGR is such that

ω̇GR(j)tch ∼ 1, i.e. εGR
tch
tsec

j−2 ∼ 1. (4.62)

If εGR satisfies (4.62), or exceeds that value, then GR breaks the coherence of the tidal
torque over the timescale ∼ tch, and so GR precession substantially interferes with the
secular evolution. We now demonstrate how this simple physical argument leads one
to the critical values εstrong, εweak and επ/2.

First, in the strong GR regime we expect GR precession to dominate binary evolution
at all times, even for near-circular orbits. Setting tch ∼ tsec and j ∼ 1 we obtain εGR ∼ 1,
which is consistent with the definition (4.25) of εstrong up to a numerical coefficient.

Second, in the moderate GR regime, we anticipate that GR precession will present
an effective barrier that stops the decrease of j if tch is the characteristic timescale of
secular evolution near the eccentricity peak. In §4.4 we find quite generally this timescale
to be tch ∼ tmin ∼ jmintsec — see e.g. equations (4.35) and (4.59). Plugging this into
the condition (4.62) and evaluating ω̇GR at jmin we immediately find that jmin ∼ εGR, in
agreement with equation (4.53). When the GR barrier first emerges at the transition
between weak and moderate regimes, jmin is still well approximated by the εGR = 0
solution j− ∼ Θ1/2 (see equation (4.39)). As a result, the εGR value corresponding to
this transition is ∼ Θ1/2, in agreement with the definition (4.44) of εweak.

Third, we expect fixed points in the phase portrait at ω = ±π/2 to be substantially
displaced by GR precession when ω̇GR(jf) becomes comparable to the characteristic
secular frequency ω̇ of libration around a fixed point. Since we are interested in the
displacement of jf by an amount ∼ jf , we take this ω̇ from the H? = const. contour
centred on the ω = ±π/2 fixed point and with vertical extent ∼ jf . Plugging j ∼ jf into
the equation (4.9) and using the expression (4.17) for jf we find ω̇ ∼ Θ1/4t−1

sec, so that in
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this case tch ∼ Θ−1/4tsec. Substituting this into the condition (4.62) and again setting
j ∼ jf ∼ Θ1/4 we find εGR ∼ Θ3/4 for the transition between the weak and very weak
GR regimes. This agrees with the definition of επ/2 in equation (4.19).

Note that while these considerations allow us to understand the scalings of char-
acteristic εGR values with Θ, one still needs the full analysis presented in §§4.3-4.4 to
obtain the numerical coefficients, which are actually quite important. Indeed, equations
(4.19), (4.44), and (4.25) feature constant numerical factors which can substantially
exceed unity, especially for the LK case of Γ = 1.

4.5.2 Relation to LK studies

Many authors who studied the LK mechanism and its applications have included 1PN GR
precession in their calculations. The maximum eccentricity of an initially near-circular
binary undergoing LK oscillations (i.e. the Γ = 1 limit of §4.3.4) was derived by Miller
& Hamilton (2002), Blaes et al. (2002), Wen (2003), Fabrycky & Tremaine (2007), and
Liu, Muñoz, et al. (2015). Of these, Fabrycky & Tremaine (2007) and Liu, Muñoz,
et al. (2015) also produced plots very similar to Figure 4.5 that show how increasing εGR

decreases the maximum eccentricity achieved by initially near-circular binaries. Various
authors have derived equations identical to, or very similar to, the quartic (4.30) and
the weak-to-moderate maximum eccentricity solution (4.45) in the LK limit — see for
instance equation (A7) of Blaes et al. (2002), equation (8) of Wen (2003), equation (A6) of
Veras & Ford (2010), and equations (64)-(65) of Grishin et al. (2018). Of course, because
these studies only work with Γ = 1, the rather non-intuitive behaviour for Γ < 1/5
revealed in §4.3.4 and Appendix 4.D.3 has not been unveiled before. Moreover, to our
knowledge no previous study has presented a clear classification of the different εGR

regimes (which we do in §4.5.1), even in LK theory.
The quantitative results in the aforementioned papers have been employed in many

practical calculations. Typically one simply adds the term (4.1) to the singly- or doubly-
averaged equations of motion along with any other short range forces or higher PN effects.
In population synthesis calculations of compact object mergers (Antonini & Perets 2012;
Antonini, Murray, et al. 2014; Silsbee & Tremaine 2017; Liu & Lai 2018) one often puts
a sensible lower limit on the semimajor axis distribution below which GR is so strong
that sufficient eccentricity excitation is impossible. As explained in §2.1 of Rodriguez &
Antonini (2018) there are at least two ways to decide when GR dominates. One method is
to take jmin corresponding to the pericentre distance that needs to be reached according
to the problem at hand, and then equate ω̇GR(jmin) with the precession rate due to the
tidal perturbations (see their equation (29)), which is what we did in §3.8. As discussed
in §4.5.1, this method would set a rough upper limit of εGR . jmin; see equation (4.53)
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for a more accurate expression. A second method is to demand that ω = ±π/2 fixed
points do exist in the phase portrait (Fabrycky & Tremaine 2007) allowing for substantial
eccentricity excitation to occur starting from the near-circular orbits, which is equivalent
to εGR . εstrong. However, this is not a very stringent requirement, and does not guarantee
that the majority of systems with such εGR would reach the required jmin — many of
them will be stopped by the GR barrier at eccentricities much lower than needed. The
former method of setting an upper limit on εGR is typically more stringent and allows
more efficient selection of systems for Monte Carlo population synthesis (see Figure 4.9).

With regard to phase space structure, the only study we know of that resembles our
§4.3 is that by Iwasa & Seto (2016). They considered a hierarchical triple consisting of a
star on an orbit around a supermassive black hole (SMBH), with another massive black
hole also orbiting the SMBH on a much larger, circular orbit and acting as the perturber
of the star-SMBH ‘binary’. Their §C provides a brief explanation of the phase space
behaviour as a parameter they call γ, which is equivalent to our εGR/3, is varied. Since the
LK problem has Γ = 1 > 1/5, their Figure 2 is qualitatively the same as our Figure 4.1.

4.5.3 Approximations and limitations

To derive the Hamiltonian (4.3) we truncated the perturbing tidal potential at the
quadrupole level. This is justified if the semimajor axis of the binary is much smaller than
the typical outer orbital radius. Next order corrections to the perturbing potential — so
called octupole terms — are routinely accounted for in LK studies (Naoz, Kocsis, et al. 2013;
Will 2017). In §2.E we provided the octupole correction to (4.3) for arbitrary Γ. When
octupole-order effects are important, the maximum eccentricity can actually be increased
by GR precession (Ford, Kozinsky, et al. 2000; Naoz, Kocsis, et al. 2013; Antonini, Murray,
et al. 2014). However for the applications we have in mind, e.g. a compact object binary of
a ∼ 10AU orbiting a stellar cluster at ∼ 1pc, octupole corrections are typically negligible.

We also employed the test particle approximation, which is valid if the outer orbit
contains much more angular momentum than the inner orbit. One can relax the test
particle approximation: in particular, this is often necessary for weakly-hierarchical
triples. Anderson, Lai, et al. (2017) made a detailed study of the ‘inclination window’
that allows fixed points to exist in the (quadrupole) LK phase space for different εGR,
as one varies the ratio of inner to outer orbital angular momenta. We recover their
results in the test particle limit valid for our applications.

Finally, several of the results derived at very high eccentricity (§4.4) are rather delicate
when Γ is close to ±1/5 or when the binary’s phase space trajectory is close to a separatrix.
These are not major caveats; for instance, in a given stellar cluster potential only a small
fraction of binaries will have Γ values close enough to 1/5 to be affected (Chapter 2).
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4.6 Summary

In this Chapter we completed our investigation of doubly-averaged (test-particle quadrupole)
cluster tide-driven binary dynamics in the presence of 1PN general relativistic pericentre
precession. Throughout, we parameterised the strength of GR precession relative
to tides using the dimensionless number εGR (equation (4.5)). We can summarise
our results as follows:

• We investigated the effect of non-zero εGR on phase space morphology. For values
of εGR much less than a critical value εstrong, bifurcations in the dynamics happen
at Γ = ±1/5, 0, so that we must consider four Γ regimes separately. We found that
for Γ ≤ 1/5 a non-zero εGR can lead to entirely new phase space morphologies,
including (previously undiscovered) fixed points located at ω = 0,±π.

• We presented general recipes for computing the locations of fixed points in the
phase portrait, for determining whether a given phase space trajectory librates or
circulates, and for finding its maximum eccentricity, for arbitrary εGR.

• We considered how the maximum eccentricity reached by an initially circular binary
is affected by GR precession. For Γ > 1/5 the intuitive picture holds that a larger
εGR leads to a lower maximum eccentricity, but this is not always the case for
Γ ≤ 1/5.

• We delineated four distinct regimes of secular evolution with GR precession depend-
ing on the value of εGR — ‘strong GR’, ‘moderate GR’, ‘weak GR’, and ’very weak
GR’ — and provided physical justification for transitions between them.

• We also studied secular evolution with GR precession in the limit of very high
eccentricity. We determined the GR-induced modifications to the minimum angular
momentum jmin achieved by the binary and the time dependence of j(t) near the
eccentricity peak, which can be rather non-trivial.

• We also provided an approximate analytic description for the evolution of other
orbital elements — pericentre and nodal angles — near the eccentricity peak,
accounting for the GR precession.

In Chapter 5 we will use these results to understand the long-term evolution of compact
object binaries whose inner orbits decay through GW emission, ultimately leading to their
mergers and the production of LIGO/Virgo GW sources. Furthermore, these results will
inform our study of the effect of short-timescale fluctuations (‘singly-averaged effects’)
on binaries undergoing cluster tide-driven secular evolution (Chapter 6), as well as our
population synthesis calculation of merger rates (Chapter 7).
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Appendices

4.A Mathematical details of phase space behaviour for Γ > 0

In this Appendix we provide some mathematical details for the results quoted in §4.3.

4.A.1 Fixed points at ω = ±π/2

Putting ω = ±π/2 and dω/dt = 0 into equation (4.9) gives us the following quartic
equation for j values of the fixed points, which we will call jf,π/2:

jf,π/2

(
j3
f,π/2 −

εGR
6(1 + 5Γ)

)
= 10ΓΘ

1 + 5Γ . (4.63)

For any Γ > 0 the right hand side of (4.63) is obviously positive. Thus, for there to
be a positive (not necessarily physical) solution to equation (4.30) a necessary but
insufficient requirement is that

jf,π/2 ≥
[

εGR
6(1 + 5Γ)

]1/3
, (4.64)

which, since j < 1, in turn means that εGR must necessarily be ≤ 6(1 + 5Γ). By
differentiating (4.63) it is then easy to show that(

∂jf,π/2
∂Θ

)
εGR

= 10Γ
1 + 5Γ

(
4j3

f,π/2 −
εGR

6(1 + 5Γ)

)−1
> 0, (4.65)(

∂jf,π/2
∂εGR

)
Θ

=
jf,π/2

6(1 + 5Γ)

(
4j3

f,π/2 −
εGR

6(1 + 5Γ)

)−1
> 0. (4.66)

In other words, for Γ > 0 the fixed points at (ω, j) = (±π/2, jf,π/2) always get pushed to
lower eccentricity when we increase εGR or Θ (see Figures 4.1, 4.2 & 4.6).

The criteria for these ω = ±π/2 fixed points to exist can be found by demanding
that the condition (3.9) is obeyed, i.e. that

√
Θ < jf,π/2 < 1. Let us begin by fixing

Γ and Θ; then, owing to the monotonic behaviour of jf,π/2(εGR) (equation (4.66)), we
simply look for the εGR values that correspond to jf,π/2 =

√
Θ and jf,π/2 = 1. Doing

so, we arrive straightforwardly at the condition (4.22) on εGR.
Next we wish to instead fix Γ and εGR and look for the resulting condition on Θ

that allows the fixed points to exist. To begin with, we look for the critical Θ values for
which jf,π/2 = 1 and jf,π/2 =

√
Θ. The former is Θ1, the expression for which is given in

equation (4.24), and the latter is Θ2 which is determined implicitly through the equation

Θ1/2
2

(
Θ2 −

10Γ
1 + 5Γ

)
= εGR

6(1 + 5Γ) . (4.67)

For Γ > 0 this equation can have meaningful (0 ≤ Θ2 ≤ 1) solutions only if 10Γ/(1+5Γ) ≤
1, i.e. if Γ ≤ 1/5. For Γ > 1/5 the value of Θ2 has no physical significance. Next, to
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determine the proper constraint on Θ we begin by setting Θ = 0 in (4.63) — we see that
the fixed point exists and has value jf,π/2 = (εGR/[6(1 + 5Γ)])1/3, so that jf,π/2 >

√
Θ at

Θ = 0. As we increase Θ, there are two possibilities. The first is that jf,π/2 increases
steeply enough that it reaches unity (at Θ = Θ1) before it intersects

√
Θ. In this case

the constraint on Θ for fixed points to exist is Θ < Θ1. The second scenario is that jf,π/2
intersects

√
Θ (at Θ2) before it reaches unity. Then for the inequality

√
Θ < jf,π/2 to

be satisfied one needs Θ < Θ2. Of course, since Θ2 is only physically meaningful for
Γ ≤ 1/5, the second scenario can only occur in that Γ regime. This reasoning leads us
to the constraint (4.23) for fixed points to exist at ω = ±π/2. In the limit εGR → 0
this constraint reduces to the non-GR constraint (4.18).

In summary, for Γ > 0, fixed points at ω = ±π/2 exist if the constraints on both Θ and
εGR are satisfied simultaneously; thus they exist in the sub-volume of (Γ,Θ, εGR) space
bounded by the inequalities (4.22), (4.23). We can use this information to understand
Figure 4.4 in more detail. Recall that in this figure we plotted Θmax(Γ), namely the
maximum value of Θ for which fixed points exist at ω = ±π/2 for a given εGR (equation
(4.23)). We now seek to understand separately the behaviour for Γ > 1/5 and 0 < Γ ≤ 1/5.

For Γ > 1/5, the lines in Figure 4.4 correspond to Θmax = Θ1 (equation (4.24)).
Then ∂Θ1/∂Γ = Γ−2(εGR − 6)/60, so that Θ1 increases (decreases) monotonically with
Γ for εGR > 6 (εGR < 6). For the special value εGR = 6 we have Θ1 = 1/2 = const.,
hence the straight horizontal brown line in Figure 4.4.

On the other hand, for 0 < Γ ≤ 1/5 we have Θmax = min[Θ1,Θ2]. By equating
Θ1 = Θ2 in equations (4.24), (4.67) it is straightforward to show that Θ2 becomes smaller
than Θ1 when Γ is reduced below a critical value Γcrit = (6 − εGR)/30, and that this
happens at Θ1 = Θ2 = 1. This is reflected in Figure 4.4 — as we decrease Γ starting
from 1/5, the red (εGR = 0), yellow (εGR = 3) and green (εGR = 5) lines transition from
solid (Θ1) to dotted (Θ2) at the points (1/5, 1), (1/15, 1) and (1/30, 1) respectively. For
εGR > 6 (blue, pink and black lines in Figure 4.4) we have Γcrit < 0, so this transition
never occurs for positive Γ. Finally, for the special value εGR = 6 we have from equation
(4.67) that Θ2 = (1− 5Γ)−1 > 1, which is obviously greater than Θ1 = 1/2, so Θmax = Θ1.
Hence the brown horizontal line in Figure 4.4 extends all the way to Γ → 0.

4.A.2 Fixed points at ω = 0

For Γ ≤ 1/5 we found (e.g. Figure 4.2) that hitherto undiscovered fixed points could arise
at ω = 0. To find the eccentricity of these fixed points we plug ω = 0 into dω/dt = 0 using
equation (4.9). The result is a cubic equation for j with no quadratic or linear terms. The
solution is j = jf,0 with jf,0 given in equation (4.27), which is physically meaningful only
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for 0 < Γ ≤ 1/5 (i.e. fixed points at ω = 0 do not exist for Γ > 1/5). The determinant of
the Hessian matrix of H∗(ω, j) evaluated at the point (0, jf,0) is equal to

−180εGRΓ×
(j2

f,0 −Θ)(1− j2
f,0)

j5
f,0

. (4.68)

Clearly for 0 < Γ ≤ 1/5 the determinant (4.68) is negative whenever the fixed point jf,0
exists, so (ω, e) = (0, ef,0) is necessarily a saddle point in the phase portrait, consistent
with Figures 4.2b,c,h.

4.A.3 Does a given orbit librate or circulate?

Here we show how to determine whether a phase space trajectory is librating or circulating,
given Γ,Θ, εGR and the initial phase space coordinates (ω0, e0). For Γ > 0, librating orbits
cannot cross ω = 0 and so any trajectory that passes through ω = 0 must be circulating17.
Therefore we can figure out whether an orbit librates or circulates by determining whether
it crosses ω = 0. Plugging ω = 0 into H∗(ω, j) gives us a depressed cubic polynomial:

j3 − j2
0j + q = 0, (4.69)

where

q ≡ εGR
3(1− 5Γ) , (4.70)

and we used the definition (4.14), (4.16) of j2
0 , which need not be positive. We call the

real roots of this polynomial j(ω = 0). In the limit εGR = 0 we have q = 0 and so we find
j(ω = 0) = j0, recovering the expression for j(ω = 0) from equation (3.17). For εGR 6= 0,
the nature of the roots of (4.69) depends on the sign of the discriminant

∆ ≡ 4j6
0 − 27q2. (4.71)

We can evaluate ∆ given (ω0, e0,Θ,Γ, εGR). There are then a few different cases to consider:

• If ∆ < 0, equation (4.69) has one real root, which may or may not be physical. If
j2
0 > 0 then this root can be written as

j(ω = 0) = −2 |q|
q

√
j2
0
3 cosh

(
1
3arccosh

[
3|q|
2j2

0

√
3
j2
0

])
, (4.72)

whereas for j2
0 < 0 it is given by

j(ω = 0) = −2

√
−j2

0
3 sinh

(
1
3arcsinh

[
−3q
2j2

0

√
−3
j2
0

])
. (4.73)

Once j(ω = 0) has been determined, the orbit circulates if
√

Θ < j(ω = 0) < 1, and
librates otherwise.

17This general statement does not hold for Γ ≤ 0 — see Appendix 4.D.
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• If ∆ > 0 (which necessarily requires j2
0 > 0) there are three distinct real roots, and

they can be expressed as

j(ω = 0) = 2

√
j2
0
3 cos

(
1
3 cos−1

[
−3q
2j2

0

√
3
j2
0

]
− 2πk

3

)
, (4.74)

for k = 0, 1, 2. From the theory of polynomial equations we also know that that the
product of the three real roots of (4.69) is −q = εGR/[3(5Γ− 1)] and their sum is 0.

For Γ > 1/5 this implies that two roots (namely k = 1, 2) must be negative and one
(k = 0) positive. Thus the orbit circulates if the k = 0 solution lies in (

√
Θ, 1), and

librates otherwise.

For 0 < Γ ≤ 1/5, one root (k = 2) must be negative and the other two (k = 0, 1)
positive. If either or both of the two positive roots lies in (

√
Θ, 1) then the orbit

circulates. If neither of them do then it librates. The case of both positive roots
lying in (

√
Θ, 1) corresponds to two coexisting families of circulating orbits that

share values of H∗, one above ef,0 and one below, as in Figure 4.2b,c,h. To determine
the family of circulating orbits to which the trajectory belongs we compare its initial
eccentricity e0 with that of the saddle point ef,0. If e0 > ef,0 then the orbit circulates
in the family ‘above’ the saddle point, and vice versa.

4.B High-eccentricity behaviour for orbits whose eccentric-
ity maxima are found at ω = 0

When GR is switched off, the only binaries whose eccentricity is maximised at ω = 0
are those on circulating phase space trajectories in the regime 0 < Γ ≤ 1/5 (e.g. Figure
4.6f; see Chapter 3 for a thorough discussion). The minimum j in this case is jmin = j0

(Chapter 3), which is given in equation (4.14). For this to correspond to very high
eccentricity one needs D ≈ 1, and the orbit must sit very close to the separatrix between
librating and circulating orbits, which can be hard to achieve in practice.

Nevertheless, suppose j0 ∼ Θ1/2 � 1 for εGR = 0; then for emax not to be changed
radically when we do include GR, a necessary but insufficient condition is (4.40). Finding
the minimum j at ω = 0 requires that we set the final square bracket in (4.12) to zero,
which is the same as solving the depressed cubic (4.69). In §4.A.3 we explained how to
determine the appropriate explicit solution to (4.69) for arbitrary initial conditions. In
particular, we note that the εGR = 0 solution jmin = j0 corresponds exactly to equation
(4.74) with k = 0. However, the general solutions for εGR 6= 0 are not very enlightening.
We can make some analytical progress if we further assume that

εGR � |1− 5Γ|j3
0 . (4.75)
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If (4.75) is true, then the first order solution for finite εGR is

jmin ≈ j0
[
1− εGR

6(1− 5Γ)j3
0

]
= j0

[
1−

(
jf,0
j0

)3
]
. (4.76)

In other words, since j2
0 ∼ Θ � 1 by construction, jmin starts to substantially deviate

from j0 when the saddle points appear at ω = 0 — see equation (4.28) and §4.3.3. Note
that the condition (4.75) is very stringent and requires that the binary be deep in the
very weak GR regime (§4.5.1), so (4.76) may not be useful in practice.

4.C Analytic solution for orbital elements at high eccentric-
ity

In this Appendix we present an analytic solution to the DA equations of motion for
all orbital elements in the limit of high eccentricity, assuming Γ > 0. To do this we
will make the following four assumptions:

• (I) j = jmin � 1 is realised at ω = ±π/2,

• (II) Weak or very weak GR, i.e. εGR � εweak,

• (III) σ � 1 (equation (4.43)),

• (IV) j4/Θ� 1.

Assumptions (I)-(III) are familiar from §4.4.4 (and of course if we set εGR = 0 then (II)
and (III) are satisfied automatically). Taken together, assumptions (I)-(III) imply, in
particular, that j(t) takes the form (4.35) with jmin = j−, j1 = j+, j2 = j0, which can
be seen by expanding the weak GR equation (4.48) for σ � 1.

However, assumption (IV) is new. It is equivalent to the requirement that

j

cos2 imin
� 1, where cos2 imin ≡ Θ/(1− e2

max) (4.77)

is the cosine of the binary’s minimum inclination. Assumption (IV) is nearly always
satisfied at high eccentricities since we normally have18 j2 ∼ Θ. The additional assumption
(IV) allows us to take the solution for j(t) from (4.35) that we got using assumptions
(I)-(III) and simplify the expression for tmin. The result is:

j(t) = jmin

√
1 +

(
t

t′min

)2
, (4.78)

18Indeed, equation (4.17), which is valid in the very weak GR regime, tells us that j4
f ∼ Θ� 1 and we

know that jf then provides an upper bound on jmin for Γ > 1/5.
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where19

t′min ≡
j3
min

60Γ
√

Θ(j2
min −Θ)

L

C
. (4.79)

We note that t′min diverges as jmin → Θ, that is as emax → elim. This is as expected from
e.g. Figure 4.6a, since trajectories that approach elim become ever ‘flatter’ in the vicinity
of ω = ±π/2, i.e. less and less sharply peaked around their eccentricity maxima, so the
fraction of a secular period they spend in the vicinity of emax increases.

Next we obtain the solution for ω(t). First, using the conservation of H∗ (equation
(4.2)) and assumptions (I) and (IV) we easily get an expression for cos2 ω(j) without
stipulating any particular form of j(t):

cos2 ω = Θ
j2 −Θ

[
j2

j2
min
− 1 + εGRjmin

30ΓΘ

(
j2

j2
min
− j

jmin

)]
. (4.80)

Now plugging in the particular form (4.78) for j(t) we find the following explicit solution
for20 ω(t):

ω(t) = π

2 + sgn(t) cos−1
(√

1 + (t/t′min)2 − εGRP (t)
1 + (t/t′min)2χ

)
, (4.81)

where

χ ≡ j2
min

j2
min −Θ =

(
1− Θ

j2
min

)−1
= 1

sin2 imin
, (4.82)

and

P (t) ≡ χ

30Γjmin

[
1 + (t/t′min)2 −

√
1 + (t/t′min)2

]
. (4.83)

is a dimensionless function of time. In Figure 4.10a we show how χ varies as a function of
jmin/Θ1/2 ≥ 1. We see that χ > 1 always and that typical values of χ are ∼ a few.

Finally we can get the solution for Ω(t) by using assumption (I) in equation (4.11),
plugging in the solutions (4.78) and (4.81) for j(t) and ω(t) respectively, and integrating
in time. The result is

Ω(t) = Ω(0) + sgn(jz)
{
− tan−1

(√
χ

t

t′min

)
+ εGR

30Γ
χ

jmin

[
tan−1

(√
χ

t

t′min

)
−
√

χ

χ− 1 tan−1
(√

χ− 1 t/t′min√
1 + (t/t′min)2

)]}
, (4.84)

19To see this we take the explicit expressions for j1 = j+ and j2 = j0 from (4.13)-(4.16) and simplify
them using assumption (I). Plugging the simplified expressions into (4.35) and expanding the result using
assumption (IV) we recover equation (4.79).

20We have included the sgn(t) factor in (4.89) because for Γ > 0 the pericentre angle ω must increase
towards π/2 as j decreases to jmin (at t = 0), and continue to increase as j increases away from jmin.
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where we introduced jz ≡ Jz/L = j cos i.
In equation (4.84) the value of Ω(0) is an arbitrary constant to be prescribed. Otherwise,

equations (4.78)-(4.79), (4.81)-(4.84), and the equation jz(t) = jz(0) provide a complete,
explicit description of the DA dynamics in the high-e limit whenever assumptions
(I)-(IV) are satisfied.

We note that ω,Ω make finite ‘swings’ across the maximum eccentricity peak. Indeed,
equation (4.81) tells us that ω takes asymptotic values

ω(t→ ±∞) = π

2 ± cos−1
(√

1
χ
− εGR

30Γjmin

)
, (4.85)

giving a total swing of magnitude |∆ω| = 2 cos−1√[χ−1 − εGR/(30Γjmin)]. Clearly the
larger εGR, the bigger is this swing21, which makes sense since GR promotes fast apsidal
precession. Similarly from (4.84) we find:

Ω(t→ ±∞) = Ω(0)∓ sgn(jz)
{π

2 −
εGRχ

30Γjmin

[
π

2 −
√

χ

χ− 1 tan−1(
√
χ− 1)

] }
. (4.86)

Thus, the size of the swing in Ω across the eccentricity peak |∆Ω| = π − O(εGR) is
reduced by GR effects.

4.C.1 Analytic solution in the LK limit

To apply the analytic solution to the LK case of hierarchical triples, let the tertiary
perturber have mass M and the outer orbit have semimajor axis ag and eccentricity
eg. We may then use the results of §2.B. In particular, the value of A in this case
is (Chapter 2, Appendix B):

ALK = GM
2a3

g(1− e2
g)3/2 , (4.87)

and obviously Γ = 1. We then evaluate εGR using equations (4.5) and take t′min equal to

t′min,LK ≡
4a3

g(1− e2
g)3/2√m1 +m2

15G3/2Ma3/2
χ3/2
√
χ− 1 . (4.88)

4.C.2 Simplified analytic solution in the limit εGR = 0

One can get a simplified version of the analytic solution if one takes the non-GR limit. For
εGR = 0 the solution for j(t) takes the same form (4.78), while (4.81) and (4.84) simplify to

ω(t) = π

2 + sgn(t) cos−1
(√

1 + (t/t′min)2

1 + (t/t′min)2χ

)
, (4.89)

Ω(t) = Ω(0)− sgn(jz) tan−1
(√

χ t

t′min

)
. (4.90)

21Of course this value becomes ill-defined when εGR > 30Γjmin/χ ∼ εweak/χ. For typical values of χ ∼ 1
this is never an issue in the weak GR regime εGR � εweak.
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Figure 4.10: Analytic solution to the DA equations of motion without GR at high eccentricity, for
binaries that achieve maximum eccentricity at ω = ±π/2. The solution depends on the parameter
χ (equation (4.82)) which is plotted as a function of jmin/Θ1/2 in panel (a). Panels (b)-(d) show
the evolution of j(t), ω(t) and Ω(t) respectively, where we have taken the maximum eccentricity
to coincide with t = 0.

In Figure 4.10 we show the characteristic behaviour of this non-GR solution. In panel
(b) we plot j/jmin as a function of t/t′min: obviously j(t) is quadratic in t for t . t′min

and linear for t & t′min. Panels (c) and (d) demonstrate how the solutions for ω(t)
and Ω(t) look for various χ. We note that both angles evolve very rapidly during the
interval −1 . t/t′min . 1 and rather slowly otherwise, particularly for χ � 1. We see
also that the behaviour of ω is quite strongly dependent on χ; it completes a swing
|∆ω| = 2 cos−1(χ−1/2) as t runs from −∞ to +∞. The evolution of Ω depends somewhat
less strongly on χ, and its asymptotic value is independent of χ, so that that the total
swing in Ω across the eccentricity peak is always |∆Ω| = π. Of course these swings in
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ω and Ω are not completely correct because we expect our analytic formulae to break
down once e differs significantly from unity (§4.C.3).
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Figure 4.11: Comparing analytic results at
high eccentricity with exact numerical integra-
tion (see §4.C.3 for details). In this example
εGR < επ/2 so the binary is in the very weak
GR regime. Note also that σ � 1.
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Figure 4.12: As in Figure 4.11 except we take
a0 = 30AU, so the binary is in the weak GR
regime, επ/2 < εGR < εweak, and the value of σ
is now approaching unity.
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Figure 4.13: As in Figure 4.11 except we take
a0 = 15AU, so the binary is in the moderate
GR regime, εweak < εGR < εstrong. Note that σ
is significantly larger than unity in this case.
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Figure 4.14: As in Figure 4.11 except we
replace the Kepler potential with the Hernquist
potential with scale radius 1pc. This results in
Γ = 0.235 so σ � 1 even though the binary is
in the weak GR regime.
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Figure 4.15: As in Figure 4.14 except we
take a0 = 40AU. Again the binary is in the
weak GR regime, επ/2 < εGR < εweak, but is
approaching the moderate GR regime.
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Figure 4.16: As in Figure 4.14 except we take
a0 = 35AU. In this case the binary is (just)
in the moderate GR regime εweak < εGR <
εstrong.

4.C.3 Validity of the analytic solution

In this section we test the accuracy of the analytical solution (4.78), (4.81), (4.84) and the
simplified solution (4.89), (4.90) derived in the non-GR limit, against direct numerical inte-
gration of the DA equations of motion (4.9), (4.10), (4.11), in different dynamical regimes.

Three examples with Γ = 1

First we consider some examples in the LK case of Γ = 1. Precisely, we consider a
binary with component masses m1 = m2 = 1M� orbiting a point massM = 105M�. For
the outer orbit we choose a pericentre distance rp = 0.4pc and an apocentre distance
ra = 0.6pc. The outer orbit is then an ellipse with semimajor axis ag = 0.5pc and
eccentricity eg = 0.2. For the inner binary orbit we take the initial conditions e0 = 0.5,
i0 = 89.75◦ (so that Θ = 1.4 × 10−5), ω0 = 0◦. When we integrate the equations of
motion we will shift the time coordinate so that maximum eccentricity is achieved at
t = 0; in each example we choose a value of Ω0 so that Ω(0) ≈ π/2. All that remains
is to specify the initial semimajor axis a0.

In Figure 4.11 we take a0 = 50AU. Then in each panel we plot the result of the
direct numerical integration with a black line and we show the analytic solution (4.78),
(4.81), (4.84) with a dashed red line. Panel (a) shows the evolution of log10(1 − e) as
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a function of time t over a short time interval −2.2 ≤ t/t′min ≤ 2.2 centred on the
eccentricity peak. Panel (b) shows the same solution zoomed out over a much longer time
interval −200 ≤ t/t′min ≤ 200. Analogously, panels (c) and (d) show the numerical and
analytical solutions for the apsidal angle ω(t) over these same time intervals, while panels
(e) and (f) show the evolution of the nodal angle Ω(t). Finally, in panels (c)-(f) we plot
blue dashed lines which correspond to the simple non-GR form of the analytic solution,
namely equations (4.89), (4.90), though to evaluate it we still use the GR-modified value
of jmin. (There are also green dashed lines in panels (a), (b) — see §4.4.4). At the
top of the figure we show the values of various key quantities that allow us to check
the validity of the assumptions (I)-(IV).

Overall, in Figure 4.11 the analytic solution provides an excellent fit to the exact
numerical integration. Errors are only noticeable once e falls below ∼ 0.9 (panels (b) and
(d)). This good agreement reflects the fact that σ, j4

min/Θ� 1 and εGR � εweak, meaning
that all assumptions (I)-(IV) are fulfilled. Moreover, we see that the full analytic solution
(red dashed lines) and non-GR solution (blue dashed lines) overlap almost exactly in
panels (c)-(f). This is unsurprising because the binary actually sits in the very weak GR
regime εGR < επ/2, meaning GR effects are negligible (§4.5.1).

In Figure 4.12 we use all the same system parameters as in Figure 4.11 except
we set a0 = 30AU. This increases εGR and puts the binary in the weak GR regime
επ/2 < εGR < εweak. The fact that εGR is no longer smaller than επ/2 is responsible for the
disagreement between the analytic and non-GR solutions in panels (c)-(f). Nevertheless,
the analytic solution still matches the numerical one very well for e & 0.9, although
not quite as well as in Figure 4.11, owing to the fact that σ is now comparable to
unity (breaking assumption (III)).

Next, in Figure 4.13 we again run the same experiment but this time with a0 = 15AU.
This puts the binary in the moderate GR regime, εweak < εGR < εstrong, which violates
assumption (II). Additionally we have σ � 1, violating assumption (III). We see solutions
(4.78), (4.81), (4.84) largely fail to capture the high-eccentricity behaviour even over a
very short timescale. At the same time, we note that the moderate GR solution (4.55)
captures the j(t) behaviour extremely well in this case.

Three examples with Γ = 0.235

Next we consider some examples with a different value of Γ. To achieve this we replace
the Kepler potential with a Hernquist potential Φ(r) = −GM(b+ r)−1, where the total
mass M = 105M� and the scale radius b = 1pc. (The outer orbit still has rp = 0.4pc
and ra = 0.6pc, but will now fill a 2D annulus rather than forming a closed ellipse —



4. The effect of general relativistic precession 158

see Chapter 2). As a result we find Γ = 0.235. Also in this case both σ and κ attain
large values, putting our analytical solutions to a demanding test.

In Figure 4.14 we integrate exactly the same system as in Figure 4.11 except for this
replacement of the potential — in particular, we again take a0 = 50AU. We see that this
puts the binary in the weak GR regime επ/2 < εGR < εweak (as in Figure 4.12), but that
σ is much larger than unity (unlike in Figure 4.12). One consequence of this is that the
analytic approximation to log10(1− e) fails rather early on, with significant errors by the
time e falls below 0.99 (Figure 4.14b). Despite this, the analytic approximations to ω(t)
and Ω(t) are still excellent (panels (c)-(f)). This is because ω and Ω are sensitive only to
the eccentricity behaviour at the very peak — they change very rapidly over the interval
−2.2 < t/t′min < 2.2 (panels (c) and (e)), but are almost constant the rest of the time.
Thus, as long as j(t) is captured well near the very peak eccentricity, as it is in panel (a),
the analytic solutions for ω, Ω work well despite assumption (II) being broken.

In Figure 4.15 we investigate the same system except with a0 reduced to 40AU. The
binary is still in the weak GR regime but only just so, violating assumption (II). It
also has σ � 1 like it did in Figure 4.14, violating assumption (III). We see that the
analytic fit to log10(1− e) is quite poor even at the very peak (panel (a)). Interestingly
though, the evolution of ω (panel (d)) is reproduced rather accurately, highlighting how
sensitive ω(t) is to the value of peak eccentricity jmin (see equation (4.85)), and how
insensitive it is to anything else. However, the evolution of Ω(t) is not reproduced very
well. The same conclusions hold for Figure 4.16, in which we have reduced the semimajor
axis further to a0 = 35AU, putting the binary squarely in the moderate GR regime (so
that both assumptions (II) and (III) are broken).

Conclusions

While assumptions (I) and (IV) are almost always good provided we consider binaries
that reach very high eccentricity (1 − e � 0.1), assumptions (II) and (III) are liable
to fail in some regimes.

We have seen that for log10(1 − e) to be accurately reproduced by the analytical
solution (4.78) for e & 0.9, all four assumptions (I)-(IV) must be valid.

However, the analytic solution (4.84) for Ω can be very accurate even for σ �
1 (violating assumption (III)) provided the behaviour of j(t) in the close vicinity of
jmin is reproduced reasonably well.

What is more, the solution (4.81) for ω(t), and the swing ∆ω in particular, can be very
accurate even if the system is in the moderate GR regime, invalidating both assumptions
(III) and (IV). This is because ω is extremely sensitive to the behaviour of j around
absolute peak eccentricity and largely insensitive to j otherwise.

Lastly, if all assumptions (I)-(IV) are valid and we additionally have εGR . επ/2, then
one can employ the simpler non-GR form of the solution for ω,Ω (equations (4.89), (4.90)).
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Figure 4.17: As in the top row of Figure 4.2 except we take Γ = −0.1 and use some new εGR
values.
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Figure 4.18: As in Figure 4.17 except for Γ = −0.15, and for twelve values of εGR.

4.D Phase space behaviour and maximum eccentricity in
Γ ≤ 0 regimes

In this Appendix we discuss the dynamical behaviour that arises in negative Γ regimes.
This behaviour can be significantly more complicated than for positive Γ. In what follows
we offer an overview of the phase space dynamics for −1/5 < Γ ≤ 0 (in §4.D.1) and
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Figure 4.19: As in Figure 4.17 except for Γ = −0.19 and some different εGR values.
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Figure 4.20: As in Figure 4.17 except for Γ = −0.5, and some new εGR values.

0

0. 2

0. 4

0. 6

0. 8

e m
a
x

(a) Γ= − 0. 05

ǫGR =0 1 3 5 10 30

(b) Γ= − 0. 1 (c) Γ= − 0. 19

0 20 40 60 80

i0(
◦ )

0

0. 2

0. 4

0. 6

0. 8

e m
ax

(d) Γ= − 0. 25

0 20 40 60 80

i0(
◦ )

(e) Γ= − 0. 5

0 20 40 60 80

i0(
◦ )

(f) Γ= − 1. 0

Figure 4.21: As in Figure 4.5 except for −1/5 < Γ ≤ 0 (panels (a)-(c)) and Γ ≤ −1/5
(panels (d)-(f)). The vertical dotted lines in panels (a) and (b) show the critical inclination
i0 = cos−1

√
Θ1(Γ, εGR) for εGR = 5 — see §4.D.3.

Γ ≤ −1/5 (in §4.D.2). Lastly we consider the eccentricity maxima of binaries with
negative Γ (§4.D.3), focusing mainly on initially near-circular orbits.

4.D.1 Phase space behaviour in the case −1/5 < Γ ≤ 0

Unlike for Γ > 0, the dynamical behaviour in the regime −1/5 < Γ ≤ 0 cannot be
understood using only one value of Γ as an example. Thus, we consider three values. In
Figures 4.17, 4.18 and 4.19 we plot contours of constant H∗ in the (ω, e) phase space for
Θ = 0.1, taking Γ = −0.1, Γ = −0.15 and Γ = −0.19 respectively. The manually-added
dashed contours are the same as in Figure 4.2. We now discuss these three figures in turn.

First we discuss Figure 4.17 (Γ = −0.1). From Chapter 3 we know that when εGR = 0,
fixed points never exist in the phase space for −1/5 < Γ ≤ 0. Thus all phase space
trajectories circulate and their maximum eccentricity is found at ω = ±π/2, as in panel (a).
Now we consider finite εGR. In panel (b), namely for εGR = 1.0, we see that fixed points
have appeared at ω = 0,±π, which we will refer to simply as ω = 0 from now on. These
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fixed points are not saddle points like they were for 0 < Γ ≤ 1/5 (Figure 4.2); instead
they are maxima of H∗ and host a region of librating orbits that is connected to elim.

As we increase εGR further we see that these fixed points move down the page to
lower eccentricity, and their associated librating islands become larger in area. At some
threshold value of εGR the librating islands become disconnected from the line e = elim,
coinciding with the appearance of new saddle points at ω = ±π/2, e = elim. As we
increase εGR beyond this threshold the fixed point at ω = 0 continues to move down
the page (panels (c) and (d)), as do the saddle points at ω = ±π/2, and a new family
of high-e circulating orbits runs over the top of the librating islands, reminiscent of
what we saw for 0 < Γ ≤ 1/5 in Figure 4.2. Partitioning the different librating islands
and circulating regions in panels (c) and (d) are separatrices that cross at the saddle
points. Continuing to increase εGR forces both kinds of fixed point to move to lower
eccentricities. The saddle points move fastest and disappear first; in panel (e), the fixed
point at ω = 0 remains but the saddle points at ω = ±π/2 have disappeared through
e = 0. Increasing εGR even further still, the ω = 0 fixed point reaches e = 0 and then
disappears. This leaves a phase space filled with circulating trajectories (panel (f)), which
is similar to the εGR = 0 case shown in panel (a) except that the maximum eccentricities
are now found at ω = 0 rather than ω = ±π/2, and the locations of the maxima and
minima of H∗ are reversed (see the colourbars).

Moving on to Figure 4.18 (Γ = −0.15), we find a completely different picture of
rather impressive dynamical diversity. In this figure we have to use twelve panels to fully
illustrate the complex phase space behaviour. To begin with, panels (a) and (b) in Figure
4.18 have the same morphology as Figures 4.17a,b. However, panel (c) is very different
from Figure 4.17c. This time, at some threshold value of εGR a pair of fixed points emerges
from a single point at ω = π/2, e = ef,π/2, and the same thing happens at ω = −π/2.
An increase in εGR nudges these fixed points apart in their eccentricity values (panel
(d)): one of them moves up the page and the other moves down. In each pair, the fixed
point with higher e is a minimum of H∗ and hosts a region of librating orbits. The fixed
point with lower e is a saddle point, and sits on the separatrix that surrounds the upper
point’s librating region. In addition we still have the usual fixed point and accompanying
librating island at ω = 0. As a result, we now find two families of circulating trajectories.
One runs close to e = 0 under the separatrices passing through the saddle points. The
other runs above these separatrices, but below the separatrices surrounding the librating
islands centred on ω = 0,±π. This second type of circulating trajectory reaches high
eccentricity by running above the upper fixed points at ω = ±π/2. Quite remarkably,
these circulating trajectories also exhibit non-monotonic behaviour of ω(t), i.e. ω̇ is > 0
at some times and < 0 at others, despite the trajectory being a circulating one.
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Increasing εGR further, the upper fixed point (minimum) at ω = ±π/2 continues
to move up the page, while the lower fixed point (saddle) moves down (panels (e)-(g)).
Meanwhile the ω = 0 fixed points also move down the page, albeit much more slowly.
Eventually the librating region surrounding the upper fixed point at ω = ±π/2 becomes
connected to e = elim. Simultaneously, the saddle point at ω = ±π/2 and its associated
separatrices merge with the separatrices surrounding the ω = 0 librating regions (see the
transition from panel (g) to panel (h)). Accompanying this transition is the change in the
nature of the second family of finite eccentricity circulating orbits described above — they
now run above (below) the saddle points at ω = 0,±π (ω = ±π/2). As εGR continues
to increase the pair of fixed points at ω = ±π/2 continue to move apart in eccentricity,
until eventually the lower one disappears at e = 0 (panel (j)) followed by the upper one
at e = elim (panel (k)). In panels (k) and (i) we retain only the fixed points at ω = 0,
with qualitatively the same overall phase space behaviour as in Figure 4.17e. The ω = 0
fixed points also disappear once εGR becomes sufficiently large.

Figure 4.19 (Γ = −0.19) shows yet again a different qualitative behaviour. Like in
Figures 4.17, 4.18, fixed points emerge at ω = 0 followed by additional fixed points at
ω = ±π/2, e = ef,π/2 (panel(b)). However, this time the ω = ±π/2 fixed points do
not come in pairs like they did in Figure 4.18. Instead they are minima of H∗ and are
surrounded by a librating island that stretches to e = 0 (though ef,π/2 6= 0 for any εGR).
These fixed points move up the page as we increase εGR (panel(c)) until they become
connected to e = elim (panel (d)). At this stage circulating trajectories exhibit a transition
similar to that in Figure 4.18. Thereafter we have qualitatively the same behaviour as in
Figure 4.18j.

As these three examples demonstrate, the qualitative dynamical behaviour in the regime
−1/5 < Γ ≤ 0 is highly complex. It is also very difficult to analyse mathematically.
The simplest place to start is with the fixed points at ω = 0, j = jf,0. The formulae
describing these fixed points can be carried over from §4.3.2 and Appendix 4.A: the
value of jf,0 is still determined by equation (4.27) and the fixed points exist provided
equation (4.28) is true. The key difference for negative Γ compared to positive Γ is that
the determinant of the Hessian matrix of H∗ evaluated at the fixed points, namely the
expression (4.68), is now manifestly positive rather than negative. Thus the fixed points
at ω = 0, j = jf,0 are now true extrema (more precisely, maxima) of H∗ and host a
librating island, which is reflected in Figures 4.17-4.19.

Understanding the fixed points at ω = ±π/2, j = jf,π/2 is much harder. Just like
for Γ > 0, to find jf,π/2 we must solve the depressed quartic (4.63). From this equation
we can once again derive a necessary but insufficient condition for fixed points to exist
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at ω = ±π/2; however since 10Γ/(1 + 5Γ) < 0 in this Γ regime, rather than the upper
bound εGR < 6(1 + 5Γ) that we found for Γ > 0 (§4.3.1) we instead get a lower bound,
εGR > 6(1+5Γ)Θ3/2. Unfortunately it is not easy to write down analogues of the sufficient
conditions (4.22)-(4.23)22.Indeed, as we saw in Figure 4.18, for −1/5 < Γ ≤ 0 fixed points
can arise in pairs at ω = π/2 (with another, separate pair at ω = −π/2), corresponding
to there being two physical solutions to the quartic (4.63).

Finally, even the nature of the ω = ±π/2 fixed points is a non-trivial issue. The
determinant of the Hessian of H∗(ω, j) evaluated at (±π/2, jf,π/2) is given by

[3(1 + 5Γ)j4
f,π/2 + 10ΓΘ]

360Γ(j2
f,π/2 −Θ)(1− j2

f,π/2)
j6
f,π/2

, (4.91)

where we eliminated εGR using equation (4.63). For negative Γ, the sign of (4.91) depends
on the sign of the first bracket. If [3(1 + 5Γ)j4

f,π/2 + 10ΓΘ] > 0 then the fixed point
at ω = ±π/2 is a saddle point; otherwise it is a true extremum (in fact a minimum).
This puts an implicit constraint on εGR (since jf,π/2 depends on εGR) when determining
the nature of the fixed points. That constraint is responsible for the fact that even for
a fixed Θ = 0.1, the ω = ±π/2 fixed points are saddle points in Figure 4.17, minima
in Figure 4.19, and both are present in Figure 4.18.

4.D.2 Phase space behaviour in the case Γ ≤ −1/5

We now turn to the final Γ regime, Γ ≤ −1/5, which luckily is not as complicated as
0 < Γ ≤ 1/5. We need only illustrate it with a single example, namely Figure 4.20,
which is for Θ = 0.1 and Γ = −0.5.

For εGR = 0 (panel (a)) the phase portrait looks almost identical to those typical of
Γ > 1/5 (e.g. Figure 4.1a). However, as we noted in Chapter 3, despite their similarities
the dynamical regimes Γ > 1/5 and Γ ≤ −1/5 are significantly different. In particular,
the phase space trajectories in each regime are traversed in opposite directions (to see this,
compare the arrows in Figure 3.4a to those in Figure 3.7d). One consequence of this is
that for Γ ≤ −1/5, increasing εGR always pushes the fixed points at ω = π/2 up the page
to higher eccentricity — see panels (b) and (c) of Figure 4.20. This behaviour is easy to
reconstruct mathematically. Since 10Γ/(1 + 5Γ) > 0 in this Γ regime, equation (4.63) tells
us that for fixed points at ω = ±π/2 to exist necessarily requires j3

f,π/2 > εGR/[6(1 + 5Γ)].
Then it is easy to show (c.f. equations (4.65)-(4.66)) that(

∂jf,π/2
∂Θ

)
εGR

> 0, and
(
∂jf,π/2
∂εGR

)
Θ
< 0. (4.92)

22The difficulty arises because the signs of ∂jf,π/2/∂Θ and ∂jf,π/2/∂εGR (expressions for which are given
in (4.65)-(4.66)) are not fixed in this Γ regime, so we cannot look for e.g. the bounding values of εGR that
give j =

√
Θ, 1.
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In other words, increasing Θ decreases the eccentricity of the fixed points at ω = ±π/2
should they exist (same as Γ > 0), but increasing εGR increases their eccentricity (opposite
to Γ > 0). The condition on εGR for the existence of these fixed points is the same as
(4.22) but reversing the inequalities, i.e. replacing each ‘<’ with ‘>’. The condition
on Θ is the same as that given for 0 < Γ ≤ 1/5 in equation (4.23). Additionally, the
fixed points at ω = ±π/2 are always true extrema (minima) of H∗ in this Γ regime
since the expression (4.91) is always positive.

Meanwhile, the fixed points at ω = 0 follow exactly the same rules as for −1/5 <
Γ ≤ 0, appearing at ω = 0, e = elim when εGR reaches the critical value εGR = 6(1 −
5Γ)Θ3/2 and then working their way down the page towards e = 0 as εGR is increased,
disappearing for εGR > 6(1 − 5Γ) (equation (4.28)). The only difference is that these
fixed points are maxima of H∗, not saddle points, which follows from the fact that
the quantity (4.68) is positive for Γ < 0.

4.D.3 Orbit families and maximum eccentricity for Γ ≤ 0 regimes

Owing to the highly complex phase space morphology, working out a trajectory’s orbital
family analytically is often a very tedious job for negative Γ values. The same goes for
finding a binary’s maximum eccentricity: in practice it is best simply to take a brute-force
approach by solving the cubic and quartic equations (4.69), (4.30) numerically to get all
seven possible roots, and then declaring jmin to be the real root closest to but smaller
than the initial j value. We will not pursue any further technical details here.

Maximum eccentricity for initially near-circular binaries

With this brute-force approach it is straightforward to calculate emax for a given i0,Γ
and εGR for initially near-circular binaries when Γ ≤ 0 (c.f. §4.3.4). In Figure 4.21
we show emax(i0) for various εGR values. In each panel we use a different negative
value of Γ (c.f. Figure 4.5).

In the top row of Figure 4.21 (panels (a)-(c)) we explore the regime −1/5 < Γ ≤ 0.
To understand panels (a) and (b) it is worth looking back at Figures 4.17 and 4.18 and
asking what we expect of the behaviour of initially near-circular orbits. We expect from
Figures 4.17a,b,c,d and 4.18a-i that for low enough εGR the maximum eccentricity will be
zero. This immediately explains, for instance, why there is no red line (corresponding
to εGR = 0) in panels (a) and (b) of Figure 4.21. However, when εGR takes a value such
that (I) the fixed point exists at ω = 0 and (II) the librating region that this fixed point
hosts is connected to e = 0, then the eccentricity of initially circular orbits is maximised
at ω = 0 and is nonzero (Figure 4.17e and Figure 4.18j,k,l).
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We know that (I) is true if and only if εGR satisfies (4.28). We also know that for (II) to
be true the fixed points at ω = ±π/2 must have disappeared below e = 0. By examining
equations (4.63) and (4.66) in the limit of jf,π/2 ≈ 1 and small Θ, we find that (II)
becomes true when εGR is increased beyond the threshold value 6(1 + 5Γ). Putting these
constraints together and using the fact that −1/5 < Γ ≤ 0, we find that in the limit Θ→ 0
a necessary condition for both (I) and (II) to be true is 6(1+5Γ) < εGR < 6(1−5Γ), which
is the same as (4.29) if we replace ‘<’ with ‘>’. For Γ = −0.05 this gives 4.5 < εGR < 7.5,
which is why there is only a cyan line in Figure 4.21a. Similarly, for Γ = −0.1 we get
3 < εGR < 9, hence the solo cyan line in Figure 4.21b.

This necessary constraint on εGR was derived for Θ→ 0, i.e. i0 → 90◦. To find the
necessary constraint on i0 for (I) and (II) to be true, we need a constraint on Θ (equivalent
to cos2 i0 for e0 ≈ 0). By considering equations (4.28), (4.63) and (4.65) for jf,π/2 ≈ 1 and
Γ not too close to23 −1/5, we can show that (I) and (II) are true provided Θ < Θ1(Γ, εGR).
So initially near-circular binaries whose Γ values produce phase portraits like in Figures
4.17, 4.18 can achieve a finite emax only if they have i0 greater than the critical value
cos−1√Θ1(Γ, εGR). For panels (a) and (b) of Figure 4.21 these values are i0 = 66◦ and
i0 = 55◦ respectively, which we show with vertical dotted lines. Plugging H∗,Θ from
(4.31) into the depressed cubic (4.69), we find that the corresponding minimum j value is:

jmin = 1
2

(
−1 +

√
1 + 4εGR

3(1− 5Γ)

)
, (4.93)

which is independent of i0. In panels (a) and (b) of Figure 4.21, the straight horizontal
cyan lines for εGR = 5 correspond to the solution (4.93).

Panels (c)-(f) of Figure 4.21 all share a similar morphology, so we will consider them
together. In each panel, for a fixed εGR a finite emax arises at some critical value of i0,
increases as a function of i0 until it reaches emax = elim, and then is constant for all
larger values of i0 up to 90◦. Note that on the non-constant parts of these curves we
have essentially the opposite of the intuitive Γ > 1/5 result: for a fixed initial inclination,
a larger εGR leads to a larger emax. The behaviour we see in these panels is consistent
with what we expect from the Γ = −0.19 example given in Figure 4.19 and the Γ ≤ −1/5
example we studied in Figure 4.20. In those figures, the fixed points that emerge at
ω = ±π/2, e = ef,π/2 host regions of librating orbits that are connected to e = 0. In
each case, the maximum eccentricity of initially circular orbits is determined by the
eccentricity of the separatrix at the point ω = ±π/2. As we increase εGR, the value of

23Values of Γ close to −1/5 are more complicated, essentially because the sign of the right hand side of
(4.65) is liable to change in this regime even for jf,π/2 ≈ 1. This is the case in particular for Γ = −0.19,
which is why the behaviour in Figure 4.21c is different from the other −1/5 < Γ ≤ 0 examples in Figure
4.21a,b.
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ef,π/2 is increased, pushing the separatrix to higher e, and so the maximum eccentricity
of initially circular orbits grows. Eventually, however, ef,π/2 is increased so much that
the separatrix reaches e = elim (dashed black line) — see the transition between Figure
4.20c and 4.20d. At the same time, the librating islands that are hosted by fixed points at
ω = 0 become connected to e = 0. After that the maximum eccentricity is given by (4.93)
and is independent of i0 — hence the straight horizontal lines in Figure 4.21c-f. The main
qualitative difference between panel (c) and panels (d)-(f) is that panel (d) exhibits no
red line, i.e. no solution for εGR = 0. This is because in the regime −1/5 < Γ ≤ 0 a finite
εGR is always required for any fixed points to exist (Figures 4.17-4.19).

Finally we may briefly compare Figure 4.21 with Figure 4.5. Consider what happens
if we fix εGR and increase i0 from zero. In Figure 4.21 (Γ ≤ 0), the larger is εGR, the
lower i0 is required to achieve a non-zero emax (provided εGR is not so large that no
eccentricity excitation is possible). On the contrary, in Figure 4.5 (Γ > 0) the most
favourable situation for eccentricity excitation is always to have εGR as small as possible:
the larger εGR, the larger i0 is required to get a non-zero maximum eccentricity. Though
the two regimes differ in this respect, they are similar in that for binaries with i0 ≈ 90◦

a larger εGR always leads to a smaller maximum eccentricity (again provided εGR is
such that eccentricity excitation is possible).
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5.1 Introduction

5.1.1 Motivation

By the midpoint of their third Observing Run in October 2020, the LIGO/Virgo
Collaboration had detected a total of 50 compact object binary mergers (The LIGO
Scientific Collaboration et al. 2019; The LIGO Scientific Collaboration et al. 2020). These
50 events imply a merger rate in the local Universe of 23.9+14.9

−8.6 Gpc−3yr−1 for black
hole-black hole (BH-BH) binaries and 320+490

−240Gpc−3yr−1 for neutron star-neutron star
(NS-NS) binaries. However, despite these impressive experimental achievements, there
is still ambiguity on the theoretical side about which mechanisms drive the mergers of
compact object binaries. As discussed at length in Chapter 1, one much-studied candidate
is the Lidov-Kozai (LK) mechanism (Lidov 1962; Kozai 1962; Naoz 2016), whereby a
binary is torqued by a bound tertiary perturber. LK theory tells us that under the right
circumstances, the binary’s eccentricity e can be driven periodically to large values. This
greatly reduces the pericentre distance p = a(1− e), potentially leading to more rapid
mergers (see e.g. Blaes et al. 2002; Wen 2003; Antonini & Perets 2012; Antognini et al.
2014; Silsbee & Tremaine 2017 and references therein).

However, this LK-driven merger channel obviously requires the existence of a rather
special scenario, in which a compact object binary is accompanied by a third body on
a much larger, though still bound, orbit. On the other hand, every compact object
binary that resides in a stellar cluster feels that cluster’s potential. As we have seen
in Chapters 2-4, the cluster potential provides a tidal torque on the binary just as a
tertiary perturber would. One can therefore consider the cluster itself to be a ubiquitous
‘third body’, and explore its capacity to induce ‘cluster tide-driven’ mergers. Of course,
to do this quantitatively means we must include GW emission in our equations of
motion, which we have not done so far. In the present Chapter we will introduce
GW emission into our calculations and attempt to understand the physics of cluster
tide-driven compact object mergers.

At this stage the skeptical reader might ask: what is to be gained from a Chapter on
cluster tide-driven mergers that is not already known from LK merger theory? Aren’t we
going to just end up with the usual formulae, but with a few new factors of Γ floating
around? Isn’t the physics essentially understood already? And indeed, the most basic
tenets of LK-driven mergers are certainly well understood (Miller & Hamilton 2002; Blaes
et al. 2002; Wen 2003; Thompson 2011; Liu & Lai 2017). GW emission is very strongly
concentrated at the binary’s peak eccentricity e→ emax ≈ 1, and because of this one can
use the value of emax to characterise the amount of GW energy emitted over one secular
cycle. These losses accumulate over multiple cycles until the binary is so small that it
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‘decouples’ from the tertiary perturber and undergoes a GW-dominated inspiral following
the Peters (1964) formulae. However, very little detailed theory has been developed beyond
this simple picture, even in the LK case. Instead, most of the aforementioned studies opt
either for direct numerical integration of the binary equations of motion, or they aim at
a parameterisation of the total merger timescale as a function of1 emax. On the other
hand, LK-driven (and, by extension, cluster tide-driven) merger dynamics are in fact
much richer than this overview would suggest, exhibiting non-trivial time evolution of
the binary’s semimajor axis, maximum and minimum eccentricity, phase space location,
etc. To take just one example, in LK literature one is frequently confronted with the
counter-intuitive result that as a binary’s semimajor axis a shrinks, the timescale tsec

for the next secular eccentricity oscillation decreases (Randall & Xianyu 2018). This
trend is rarely mentioned and until now has not been fully explained. The purpose of
the present Chapter is to explain such dynamical characteristics.

5.1.2 Outlook for this Chapter

All binaries emit gravitational waves, so given enough time every binary will ultimately
merge. We concentrate on those binaries whose merger timescale is significantly shortened
by secular eccentricity excitation — the so-called ‘cluster tide-driven mergers’ (which
includes LK-driven mergers as a special case). Following Randall & Xianyu (2018) we
can separate these binaries further into ‘fast mergers’ and ‘slow mergers’. Fast mergers
are those that occur after only one (or at most a few) secular eccentricity cycles. By
contrast, slow mergers occur after many secular eccentricity cycles. Inevitably they involve
a gradual transition of the binary from the weak-to-moderate GR regime to the strong
GR regime. In fact, one can consider slow mergers to be a somewhat more general case,
since one can imagine any fast merger merely as the final few secular cycles of a slow
merger. Thus, in this Chapter we will focus on understanding the physics of slow mergers.

Let us therefore consider a binary with initial eccentricity not close to unity, and
suppose that unless excited to high eccentricity it will not merge within a Hubble time.
For the required eccentricity excitation to be possible, we know from Chapter 4 that the
binary must begin its life in the weak-to-moderate GR regime. Supposing this is the case,
and that the binary does indeed achieve high values of e periodically, then its semimajor
axis a will be decreased by some amount ∆a during each high-eccentricity episode because
of GW emission (whereas away from e ≈ 1, GW emission will be completely negligible, so

1Or a version of emax that is modified by non-ideal effects, e.g. the breakdown of the test particle
approximation (i.e. allowing the binary’s inner orbit to have comparable angular momentum to the
teritiary’s outer orbit), the DA approximation (allowing for short-timescale fluctuations in the tidal torque)
and the quadrupole approximation (including octupole or higher terms in the perturbing potential) —
see Antonini, Murray, et al. 2014; Anderson, Lai, et al. 2017; Liu & Lai 2018; Grishin et al. 2018 and
references therein.
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we can treat a as constant). For a slow merger we know by assumption that each individual
decrease is small |∆a| � a, though of course ∆a will itself depend on the value of a.
Next, the time between these high-eccentricity episodes is tsec(a). Therefore on timescales
longer than a few secular periods we can approximate the slow decay of a(t) using

da
dt ≈

∆a(a)
tsec(a) =⇒ t− ti ≈

∫ a(t)

ai
da′ tsec(a′)

∆a(a′) , (5.1)

where ai ≡ a(ti) and ti is some earlier reference time. Equation (5.1) is an implicit
equation for a(t) in the weak-to-moderate GR regime. Clearly to perform the integral
on the right hand side one needs to find expressions for tsec(a) and ∆a(a) — one of the
primary goals of this Chapter will be to compute these two quantities. It will turn out
that the qualitatively different behaviours exhibited by ∆a(a), tsec(a), and ultimately
a(t), will map onto different GR regimes and phase space features explored in Chapter 4.
Eventually a becomes small enough that the binary reaches the strong GR regime and
gets ‘trapped’ at high eccentricity. At this stage (5.1) breaks down and we must use a
different prescription to follow a(t) accurately all the way to merger.

The rest of this Chapter is organised as follows. In §5.2 we gather a few key results from
Chapters 3-4 which are valid when GW emission is switched off. We do this for arbitrary
Γ > 0, which covers the great majority of realistic cases, including LK theory. In §5.3 we
introduce the effect of GW emission, and show how two new approximate conservation laws
— that of the minimum pericentre distance and minimum inclination reached by the binary
— allow us to write all important quantities (jmin tsec, ∆a, etc.) as functions of semimajor
axis a. This in turn allows us understand qualitatively the long-term decay of semimajor
axis as a function of time, a(t), in three key asymptotic regimes. In §5.4 we illustate
our results via numerical examples, in which we integrate directly the DA equations of
motion including both GR precession and GW emission. In §5.5 we discuss our results,
including their implications for LK-driven mergers. We summarise in §5.6. Finally, in
Appendix 5.A we compare our calculations with those of Randall & Xianyu (2018).

5.2 High eccentricity results without GW emission

In this section we gather some results from Chapters 3-4 concerning cluster tide-driven
secular dynamics without gravitational wave emission (but including GR precession).
Though there is nothing strictly new here, it will be useful to have these results gathered
in one place and written in a form that makes their meaning transparent. In particular,
we focus on binaries that reach high eccentricity and write down how various important
quantities depend on four dimensionless constants (Γ,Θ, εGR, jmin). This will form the
basis for the new results we will derive from §5.3 onwards with GW emission included
(though of course, at that stage Θ, εGR, jmin will no longer be constant).



5. The effect of gravitational wave emission 171

We will assume throughout this Chapter that Γ > 0, and that the binary’s maximum
eccentricity emax is achieved at ω = ±π/2. As we have seen in previous Chapters these are
not restrictive conditions, but they allow us to avoid discussing certain pathological cases.
It immediately follows from these assumptions that jmin satisfies (4.45). Furthermore,
without GWs the entire eccentricity evolution is dictated by equation (4.12). It will
therefore be important that we are able to derive simple expressions for j±, j0 etc.
in the high-eccentricity limit. By evaluating (4.15), (4.16) at ω = ±π/2, e ≈ 1 we
find the approximate results

Σ ≈ εGR
6jmin

+ 5ΓΘ
j2
min

, (5.2)

D ≈ 1 + 10Γ
1− 5Γ

(
1− Θ

j2
min
− εGR

30Γjmin

)
. (5.3)

It then follows from (4.39), (4.14) that

j2
+ ≈

10Γ
1 + 5Γ

( Θ
j2
min

+ εGR
30Γjmin

)
, (5.4)

j2
− ≈ j2

min

(
1 + εGRjmin

30ΓΘ

)−1
, (5.5)

j2
0 ≈

10Γ
5Γ− 1

(
1− Θ

j2
min
− εGR

30Γjmin

)
. (5.6)

5.2.1 Minimum and maximum j in the weak-to-moderate GR regime

Minimum j

At this stage we have not said anything about Θ, nor about the size of εGR (i.e. we
have not specified to the weak/moderate/strong GR regime). However, we know from
Chapter 4 that for a binary to start at e ∼ 0 and to end up at e → 1, it must initially
reside in the weak-to-moderate GR regime and have Θ� 1. Supposing this is true, for all
orbits that maximise their eccentricity at ω = ±π/2 the solution jmin is given by equation
(4.45). We used this result to argue in §4.4 that for weak GR,

jmin ∼ Θ1/2 � εGR, (weak GR). (5.7)

For moderate GR, we argued in §4.4 that jmin ∼ εGR � Θ1/2. However, as we mentioned
there, this scaling implicitly assumed that Θ was kept fixed while εGR was increased,
and this is no longer true when we consider shrinking a. In fact it will turn out that
Θ/j2

min is essentially constant as the binary shrinks (§5.3.1). Thus for the moderate
GR regime we find in this case

jmin ∼ εGR ∼ Θ1/2, (moderate GR). (5.8)

It follows from equations (5.4), (5.5) and (5.7)-(5.8) that in the weak-to-moderate regime,
provided Γ ∼ 1, we always have j2

+ ∼ 1 and j2
− . j2

min ∼ Θ � 1.
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Maximum j

So, for all the phase space orbits in which we are interested, jmin is given by the same
formula (4.45). However it will turn out that it is extremely important to be able
to distinguish between qualitatively different orbits, and in particular to know their
maximum angular momentum jmax (corresponding to minimum eccentricity emin), so
we will devote some effort to this now.

The maximum j can either be found at ω = ±π/2 (if the phase space trajectory
librates) or at ω = 0 (if it circulates). In the librating case we find2

jmax ≈ j+, (librating orbits). (5.10)

Finding an approximate expression for jmax for circulating orbits is more complex, because
there are two qualitatively different types of circulating orbit to consider, and it will
be important that we differentiate them clearly. The first type of circulating trajectory,
which we call ‘Type 1’, corresponds to jmax ∼ 1 or emin ∼ 0, i.e. the binary undergoes an
order-unity oscillation in eccentricity during each secular cycle. This is the classic type of
circulating orbit undergone by, for instance, a binary with Γ > 1/5 in the weak GR regime
starting out with small eccentricity at ω ≈ 0 — see e.g. 5.6g for illustration. The second
type of circulating solution, which we call ‘Type 2’, corresponds to jmax � 1 or emin ∼ 1,
so that the ‘oscillation’ in eccentricity is actually rather small despite emax being very
large. These Type 2 orbits are important because every binary passes through this stage
while in the moderate GR regime during a slow merger, as a precursor to the strong GR
regime3 — see e.g. Figure 5.6h. Indeed, it will turn out that Type 2 circulating orbits in
the moderate GR regime have very similar a(t) decay behaviour to those in the strong
GR regime, whereas Type 1 orbits show a qualitatively different behaviour — see §5.3.5.

To make this distinction between Type 1 and Type 2 circulating orbits quantitative,
recall that in either case jmax is a solution to the cubic (4.69), which we write here as

jmax(j2
max − j2

0) = −q ≡ εGR
3(5Γ− 1) . (5.11)

2To see this, recall that for librating orbits jmax is a solution to the quartic found by setting the first
square bracket in (4.12) to zero. We can simplify this quartic by noting that, since librating orbits loop
around fixed points at ω = ±π/2, they necessarily have j2

max > j2
f,π/2. We know from Figure 4.3 that

j2
f,π/2 � Θ, and from equations (5.7)-(5.8) that Θ & j2

−, so we can ignore j− in the quartic and write

j3
max − j2

+jmax + εGR/εstrong ≈ 0. (5.9)

Since in the weak-to-moderate GR regime we have j2
+ ∼ 1 and εGR � εstrong, the solution is obviously

jmax ≈ j+.
3For 0 < Γ ≤ 1/5, we know from Chapter 4 that Type 2 circulating trajectories are immediately formed

once εGR exceeds 6(1− 5Γ)Θ3/2, which is � εweak (equation (4.28); see also e.g. Figure 4.6). Thus, one
does not necessarily need to be in the moderate GR regime to have Type 2 circulating orbits. However
most of our focus in this Chapter will be on Type 2 circulating orbits that exist in the moderate GR
regime, which occur for all Γ.
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Figure 5.1: Solid coloured lines show jmax (the physical solutions to equation (5.11)) for
circulating orbits as a function of j2

0 , for different values of εGR/[3(5Γ− 1)], shown with different
colours. (We know from Chapters 3-4 that j2

0 can be negative). A horizontal black line at
jmax = 0.141 (emin = 0.99) separates ‘Type 1’ and ‘Type 2’ circulating solutions. Grey dashed
lines show the solution jmax = −σj−, valid for Type 2 circulating orbits (see equation (5.13)).
The black dotted line shows jmax = j0, valid for Type 1 circulating orbits (equation (5.12)).

One can solve this cubic analytically using the machinery of §4.A.3, but for simplicity here
we will just plot the answer. Figure 5.1 shows jmax as a function of j2

0 (which we know
can be positive or negative, see Chapters 3-4) for different values of −q ≡ εGR/[3(5Γ− 1)]
(different coloured solid lines). We have (somewhat arbitrarily) chosen to split the figure
into a Type 1 region (jmax > 0.141, i.e. emin < 0.99) and a Type 2 region (jmax < 0.141,
i.e. emin > 0.99). Thus for nearly all positive values of j2

0 the solid red, orange and
green curves correspond to Type 1 circulating orbits; they are well approximated by
ignoring the εGR term in (5.11) and putting

jmax ≈ j0 ∼ 1, (Type 1 circulating orbits). (5.12)

In Figure 5.1 we also plot jmax = j0 with a dotted black curve, and we see that the Type
1 curves asymptote towards this solution for sufficiently large j2

0 > 0. Meanwhile the solid
curves in Figure 5.1 with jmax . 0.141 correspond to Type 2 circulating orbits. Assuming
for these orbits that jmax � |j0|, we find that (5.11) has the approximate solution

jmax ≈
εGR

3(5Γ− 1)(−j2
0) = −σj− � 1, (Type 2 circulating orbits). (5.13)
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In Figure 5.1 we plot this solution with different grey dashed curves for the different
values of εGR/[3(5Γ− 1)] as for the solid lines. We again see that the solid Type 2 curves
asymptote towards the solution (5.13) for sufficiently large |j2

0 |.
Of course by specifying these two asymptotic branches we have ignored one possible

regime, namely that of Type 2 circulating orbits with small |j0|, i.e. |j0| . jmax � 1.
However as Figure 5.1 shows, such solutions only exist for a narrow range of j2

0 values
centred around zero; and as we will see later, this regime is typically ‘short-lived’ in the
sense that a shrinking binary passes through it rather quickly on the way to merger.
In what follows we will ignore this case, so that Type 2 circulating orbits always have
|j0| � jmax (which obviously implies |j0| � jmin).

For negative values of εGR/[3(5Γ− 1)], i.e. for Γ < 1/5, we see that no solution exists
below some (positive) value of j2

0 . This is consistent with what we found in §4.B, where we
saw that the existence of such solutions (which for εGR = 0 just correspond to jmax = j0)
requires the binary to reside in the very weak GR regime. Indeed, a sufficiently positive
j2
0 is always required to render negative the left hand side of equation (5.11).

5.2.2 The strong GR regime

Finally, we recall from §4.4.5 that in the asymptotic limit of strong GR, cluster tides are
negligible and the lowest order solution consists of pure precession at a rate

ω̇GR = 3[G(m1 +m2)]3/2
c2a5/2j2 , (5.14)

In this limit there are no secular oscillations and hence there is no ‘secular timescale’ to
speak of.

5.3 Gravitational wave emission

We now wish to include GW emission in our calculations. Our primary goal in this section
is to compute ∆a(a) and tsec(a) for the different types of orbit and different dynamical
regimes described above, and to use these to understand the slow evolution of a(t).

To 2.5th post-Newtonian order, GW emission causes the binary’s semimajor axis and
eccentricity to evolve according to the Peters (1964) equations4:(da

dt

)
GW

=− 64G3m1m2(m1 +m2)
5c5 × 1

a3(1− e2)7/2

(
1 + 73

24e
2 + 37

96e
4
)
, (5.15)(de

dt

)
GW

=− 304G3m1m2(m1 +m2)
15c5 × 1

a4(1− e2)5/2

(
1 + 121

304e
2
)
. (5.16)

4Of course, in principle one can carry the post-Newtonian expansion to higher order (e.g. Pati &
Will 2002). The higher-order terms are important for e.g. LIGO/Virgo templates of inspiralling binary
waveforms. However, since this is only important at very late times when compared to the long secular
evolution that we are considering here, we always truncate at 2.5pN.
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To include this effect in our formalism we therefore add the following terms to our

equations of motion for L, J and Jz:

(dL
dt

)
GW

= 1
2

√
G(m1 +m2)

a

(da
dt

)
GW

, (5.17)(dJ
dt

)
GW

=
√

1− e2
(dL

dt

)
GW
− eL√

1− e2

(de
dt

)
GW

, (5.18)(dJz
dt

)
GW

= Jz
J

(dJ
dt

)
GW

, (5.19)

Note that at this order, GW emission does not directly affect ω or Ω. It is clear from

equations (5.15) and (5.16) that for a fixed semimajor axis a, GW losses are very strongly

concentrated around peak eccentricity e → 1, as we already anticipated in §5.1.2. In

the weak-to-moderate GR regime we expect these GW contributions to the equations

of motion to be completely negligible except in the vicinity of e ≈ 1.

5.3.1 Conservation laws

When GW emission was switched off, the DA dynamics respected three exact conservation

laws. The first was the conservation of a, which resulted from the ‘adiabatic’ assumption

that the timescale of variation of the weak cluster perturbation (i.e. the outer orbital

timescale) was much longer than that of the binary’s inner orbit. The second was the

conservation of H∗, which followed from the fact that cluster tides were sufficiently weak

that we could average over the outer orbital period and thus treat the perturbation

as time-independent. The third was conservation of the z component of the binary’s

angular momentum, or equivalently Θ, which followed from the axisymmetry of the

time-averaged potential.

Now that we are including GW emission, the binary’s binding energy and inner orbital

angular momentum will be dissipated according to equations (5.15)-(5.19), and so none of

a,H∗ or Θ will be strictly conserved any longer. On the other hand, they can be treated

as roughly conserved on a timescale . tsec, since in the weak-to-moderate GR regime

GW emission is ineffective except for a short burst around e ≈ emax. Additionally, in

their place two new (approximate) conservation laws will arise which are valid on much

longer timescales — indeed they hold almost all the way to merger, and this will ease

our calculations greatly. These are the conservation of the minimum pericentre distance

pmin, and the conservation of the minimum inclination imin.
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Conservation of pmin

Consider the rate of change of the pericentre distance with respect to semimajor axis:

p ≡ a(1− e) =⇒ dp
da = 1− e− ade

da. (5.20)

Dividing (5.16) by (5.15) and taking e→ 1, it is easy to show that5 dp/da ∝ (1− e)2 → 0.
In other words, the pericentre distance does not change across the eccentricity peak. Thus
we arrive at the conservation of the minimum pericentre distance:

pmin ≡ a(1− emax) ≈ 1
2aj

2
min = const. (5.21)

This quantity is approximately constant from one secular peak to the next, even though a
and emax themselves change (see e.g. Figure 5.4.1d for a numerical example). Physically,
this is because dissipation of energy in the form of GWs is concentrated around the peak
of each secular eccentricity cycle, when p ≈ pmin. Since the effective ‘lever arm’ p is then
very small, the binary dissipates angular momentum rather inefficiently compared to
energy6 ∝ [a(1− e2)]1/2 ≈ (2p)1/2, the angular momentum at the peak Jmin ∝ (2pmin)1/2

does not change across the peak (see Wen 2003, §3.1). And since the system is periodic,
for small |∆a| � a the binary returns to essentially the same value of Jmin (and hence
the same pmin) at the peak of the following secular cycle.

Equation (5.21) implies a simple scaling for jmin:

jmin(a) ≈
(2pmin

a

)1/2
, where pmin = a(ti)× (1− e(ti)), (5.22)

and ti is some reference time. Equation (5.22) is a central result of this Chapter and will
allow significant simplification of our analytical formulae as we proceed.

We note that a similar argument to this one also applies when the binary gets trapped
at high eccentricity in the strong GR regime. In that case there are no more secular
oscillations (the binary having decoupled from cluster tides), but GW energy is still being
dissipated efficiently while angular momentum is not (for more details see Wen (2003) and
Antognini et al. (2014)). As a result p (rather than just pmin) is constant, so j ∝ a−1/2.
We will use this scaling to solve for a(t) in the strong GR regime in §5.3.5.

5On the other hand, if one naively calculates dp/dt and takes e→ 1, then one finds that dp/dt diverges.
However, it is also the case that da/dt diverges for e → 1 (as, for that matter, does de/dt). The key
point is that although dp/dt becomes very large at high eccentricity, that high eccentricity phase is over
extremely quickly, so that p suffers almost no change across it. Put differently, dp/dt and da/dt both
diverge but dp/da = (dp/dt)/(da/dt) does not.

6Somewhat more precisely, the very small periastron distance means that the GW emission acts
effectively like an instantaneous force on the binary components, directed radially with respect to their
barycentre at the time of closest passage (pulling them both ‘in’). This radial nudge will change the inner
orbital energy, but obviously cannot change the angular momentum.
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Conservation of imin

All the key quantities in §5.2 were written in terms of Γ, εGR, Θ and jmin. For a given
outer orbit, Γ is constant. And from equations (4.5) and (5.22) we know how εGR and
jmin scale with semimiajor axis a. All that is left is to work out how Θ depends on a.

Recalling Θ ≡ J2
z /L

2 and using the chain rule it is easy to show that

dΘ
da = −Θ

a

(
1− 2a

J

dJ
da

)
. (5.23)

We know from equation (5.21) that at high eccentricity, p ≈ J2/[2G(m1 + m2)]. It
follows that for e → 1,

2a
J

dJ
da ≈

1
1− e

dp
da → 0. (5.24)

Thus dΘ/da ≈ −Θ/a, which has the solution

Θ(t)
Θi

= ai
a(t) , (5.25)

where Θi ≡ Θ(ti). Indeed, the fact that Θ ∝ 1/a could have been guessed a priori on
physical grounds, since Θ = J2

z /[G(m1 + m2)a] and GWs do not appreciably change
the binary angular momentum.

Thus, Θa is constant. Combining this with the definition Θ ≡ j2
min cos2 imin and the

conservation of pmin (equation (5.21)), one concludes that

imin = const. (5.26)

In other words, the binary reaches the same minimum inclination at the peak of
each secular eccentricity cycle, regardless of the decay in a (see e.g. Figure 5.4.1c
for a numerical example).

For the remainder of this Chapter we will take pmin and imin as our two primary,
a−independent constants of motion in the weak-to-moderate GR regime. We can write
Θ in terms only of a and these conserved quantities as

Θ(a) ≈ 2pmin
a

cos2 imin. (5.27)

5.3.2 Evolution of a shrinking binary through phase space

In the previous subsection we have seen how jmin and Θ depend on a — see equations
(5.22) and (5.27). We can now use these results to understand how a binary moves
through phase space as its semimajor axis shrinks.
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To begin, we substitute (5.22), (5.27) and (4.5) into equations (5.4)-(5.6) to get j2
±,

j2
0 as explicit functions of semimajor axis:

j2
+ ≈

10Γ
1 + 5Γ

[
cos2 imin +

(
d

a

)7/2]
, (5.28)

j2
− ≈

2pmin
a

[
1 + 1

cos2 imin

(
d

a

)7/2]−1

, (5.29)

j2
0 ≈

10Γ
5Γ− 1

[
sin2 imin −

(
d

a

)7/2]
, (5.30)

where we defined the lengthscale

d ≡
(

4G2(m1 +m2)2

5c2AΓ(2pmin)1/2

)2/7

(5.31)

≈ 13 AU× Γ−2/7
(
A∗

0.5

)−2/7 ( M
106M�

)−2/7 ( b

pc

)6/7 (m1 +m2
M�

)4/7 ( pmin
10−2AU

)−1/7
,

(5.32)

which is independent of a. As usual, in the numerical estimate (5.32) we have assumed a
spherical cluster of massM and scale radius b. (We reiterate that to evaluate any numerical
result in the LK case one simply sets Γ = 1, A∗ = 0.5 and b = ag(1− e2

g)1/2, where ag and
eg are respectively the semimajor axis and eccentricity of the outer orbit). We can also
calculate the important dimensionless quantities γ, σ and κ as functions of a, as follows.
First, by combining equations (4.44), (5.28) and (5.29) it is straightforward to show that

γ(a) ≡ 2εGR
εweak

≈ 1√
ζ(ζ + 1)

, where ζ ≡ (a/d)7/2 cos2 imin. (5.33)

Second, plugging (4.5), (5.29) and (5.30) into (4.43) we get:

σ(a) ≈
[(

d

a

)7/2 1
cos2 imin

+ 1
]1/2 [(

a

d

)7/2
sin2 imin − 1

]−1

. (5.34)

Third, we can take the ratio of (5.34) and (5.33) to get κ (equation (4.56)):

κ(a) ≈
[(

a

d

)7/2
cos2 imin + 1

] [(
a

d

)7/2
sin2 imin − 1

]−1

. (5.35)

It will also be helpful to define some critical values of the semimajor axis a. A binary
that starts its life in the weak GR regime will inevitably move into the moderate GR
regime at some point as its semimajor axis shrinks. Thus the first critical value is aweak,
which we define to be the semimajor axis corresponding to εGR = εweak, i.e. to the
transition between the weak and moderate GR regimes. Using (5.33) this is

aweak ≡ d×
( √

2− 1
2 cos2 imin

)2/7

≈ 0.63(cos imin)−4/7d. (5.36)
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Note that, since cos imin . 1, we will nearly always have aweak ∼ d, allowing us to
simplify the preceding expressions for j2

±, γ, etc. in the particular asymptotic regimes
of weak ((a/d)7/2 � 1) or moderate ((a/d)7/2 � 1) GR. The second critical semimajor
axis is asep, which we define to be the value corresponding to j2

+ = j2
0 = 1. Physically,

a = asep corresponds to a separatrix between librating (a > asep) and Type 1 circulating
(a < asep) orbits. This is relevant because a binary initially on a librating phase space
orbit will transition to a circulating orbit once a drops below this threshold value, as
we will see. We find from equations (5.28), (5.30) that

asep ≡
(1 + 5Γ

10Γ − cos2 imin

)−2/7
d. (5.37)

Of course, asep only has physical meaning if cos2 imin < (1 + 5Γ)/10Γ. This is because for
cos2 imin > (1 + 5Γ)/10Γ, the binary is already on a circulating orbit even for a� d, so
it never crosses a separatrix on its way to a→ 0. We also note that typically asep & d.
The third critical semimajor axis is that corresponding to j2 = 0, which we note also
corresponds to a divergence in σ and κ; this is adiv, given by:

adiv ≡ (sin imin)−4/7d. (5.38)

Lastly, for completeness let us define astrong, which corresponds to εGR = εstrong ≡
3(1 + 5Γ), i.e. it demarcates the inevitable transition from moderate to strong GR
regimes. Using (4.5) we get

astrong ≡
(

8G2(m1 +m2)2

c2A(1 + 5Γ)

)1/4

, (5.39)

≈ 6.4AU×
(1 + 5Γ

6

)−1/4 (A∗
0.5

)−1/4 ( M
106M�

)−1/4 ( b

pc

)3/4 ( m

1.4M�

)1/2
.

(5.40)

In summary, in this subsection we have defined four critical semimajor axis values
aweak, asep, adiv, astrong. The weak GR regime corresponds to a > aweak, while the moderate
GR regime corresponds to astrong < a < aweak. We emphasise that we have purposely
writen e.g. a > aweak rather than a� aweak here: it will turn out that different dynamical
regimes are not very well separated in semimajor axes (indeed, aweak, asep and adiv are
all clustered around ∼ d), despite being well separated in εGR.

Phase space evolution for Γ > 1/5

We now use these results to understand more precisely how binaries move through
phase space as their semimajor axis shrinks. These considerations will help us develop
approximate expressions for tsec, ∆a and a(t) in different regimes — see §§5.3.3-5.3.5.
We begin with the regime Γ > 1/5.
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In Figure 5.2 we plot j2
+, j2

0 , |σ| and |κ| as functions of a/d for various fixed values
of Γ and cos imin, according to equations (5.28), (5.30), (5.34) and (5.35) respectively.
We also show the critical values aweak (dotted vertical line), asep (dashed vertical line)
and adiv (dot-dashed vertical line), defined in equations (5.36)-(5.38). Additionally, in
the upper panels we show with blue shading the region |j2| < (0.141)2 and with orange
shading the region 0 < j2 < 1. In particular, by looking at the runs of j2

+ and j2
0 and

whether they lie in this orange region, we will be able to infer the value of jmax and
hence infer what type of phase space orbit the binary is on.

Without loss of generality, for each example (a)-(e) we can consider a binary that starts
at the extreme right of each panel, i.e. with a� aweak (the weak GR regime), and follow
it as a decreases. First we focus on examples (a)-(c), which are for Γ = 1 (the LK limit).

In panel (a) we see that for very large a, we have j2
+ > 1 while j2

0 ∼ 0.5. This
corresponds to a binary on a Type 1 circulating orbit in the weak GR regime, with
jmax ≈ j0 (equation (5.12)). Indeed in this case, since cos2 imin > (1 + 5Γ)/10Γ = 0.6,
we have j2

+ > 1 for all a (equation (5.28)), so the red curve never enters the orange
region and the binary remains on a circulating orbit always. However, once a becomes
smaller than adiv we quickly get j2

0 values that are strongly negative, so the binary has
transitioned to a Type 2 circulating orbit (Figure 5.1) with jmax ≈ −σj− � 1. It will
remain on such an orbit until it gets trapped at high eccentricity in the strong GR
regime around a ∼ astrong (not shown here).

Example (b), in which we replace cos imin = 0.9 with cos imin = 0.6, shows different
behaviour. In this cases the binary ‘begins’ at large a with 0 < j2

+ < 1 and j2
0 > 1;

this means that it is on a librating orbit in the weak GR regime, with jmax ≈ j+

(equation (5.10)). The reason for the difference compared to panel (a) is that we now
have cos2 imin ≤ (1 + 5Γ)/10Γ, meaning librating orbits are possible. Of course as a
is decreased j2

+ is always increased, while j2
0 is decreased, and when a = asep the two

cross over, j2
0 = j2

+ = 1. At this point the binary switches to a Type 1 circulating
orbit with jmax ≈ j0. In this case asep < aweak, so that the separatrix crossing occurs
while the binary is still nominally in the weak GR regime. Thereafter the binary follows
the same evolutionary track as in panel (a), moving into the moderate GR regime
and onto a Type 2 circulating orbit.

Example (c) shows very similar behaviour to example (b), except that the smaller
value of cos imin means that the three values aweak, asep and adiv are now even more
closely clustered together around a/d ≈ 1 (note also that asep is now very slightly smaller
than aweak). Because of this clustering, example (c) is perhaps the ‘cleanest’ of the three
examples shown so far: for a significantly larger than d the binary is clearly on a librating
orbit in the weak GR regime, whereas for a significantly smaller than d it is clearly on a
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Type 2 circulating orbit in the moderate GR regime. In practice the transitions between
these two various regimes are not always so well demarcated.

At this stage it is worth noting how different quantities scale with a in each regime.
From all examples (a)-(c) we see that in the weak GR regime (a > aweak) we nearly always
have |j2

+|, |j2
0 | � 0.1, and both of these quantities scale very weakly with a. In the moderate

GR regime (a < aweak) the scaling of j2
+ and j2

0 with a is much stronger, as we would
expect from equations (5.28), (5.30). Moreover, as anticipated in §5.2.1, in every case it is
clear that |j0|2 lies in the blue shaded region only for a very narrow range of semimajor axes
surrounding adiv, and so we were justified in ignoring the small j0 regime when discussing
Type 2 circulating orbits in §5.2.1. Turning to the bottom panels, we see that |σ| and |κ|
both vary over several orders of magnitude as a is decreased. However, it is noteworthy
that for a far away from adiv, the value of |κ| is usually O(1) and scales weakly with a.

Finally we turn to examples (d) and (e), which are for the same cos imin value as
examples (a) and (c) respectively except with Γ = 0.4. The physical interpretation of
these examples is identical to those of (a) and (c), demonstrating a broad uniformity
of evolution for all binaries in the Γ > 1/5 regime7.

Phase space evolution for 0 < Γ ≤ 1/5

In Figure 5.3 we plot the same quantities as in Figure 5.2, except this time we focus
on the regime 0 < Γ ≤ 1/5, replacing Γ = 1, 0.4 with Γ = 0.15, 0.05. We see that a
rather different phase space evolution emerges.

First we consider panel (a), which is for Γ = 0.15 and cos imin = 0.9. In this case,
for large a� d we have j2

+ . 1 and j2
0 ≈ −1. This means that in the asymptotic weak

GR regime the binary is on a librating orbit, with jmax ≈ j+. This is unsurprising
since, as we saw in Chapter 3 with GR switched off, for 0 < Γ ≤ 1/5, circulating orbits
very rarely reach high eccentricity. However, once a decreases below adiv in this plot,
we see that j2

0 becomes positive (though still smaller than j2
+). Soon a reaches asep,

below which both j2
+ and j2

0 are greater than unity: the binary has transitioned onto
a Type 2 circulating orbit (Figure 5.1). We note that all of this happens well before
the binary reaches the moderate GR regime. This also is not so surprising because we
know that a family of high-eccentricity circulating orbits (i.e. Type 2) naturally arises
in the 0 < Γ ≤ 1/5 regime as soon as εGR exceeds 6(1 − 5Γ)Θ3/2 � εweak (Chapter
4). The binary stays on its Type 2 circulating orbit as a shrinks into the moderate GR
regime a < aweak and onwards to the strong GR regime.

A very similar story holds in panels (b)-(e). The only important difference is that as
we decrease Γ or cos imin, or both, the value of jmax ≈ j+ for asymptotically weak GR

7As might be expected from Chapters 3 and 4 this broad-brush picture can break down very close to
Γ = 1/5, but we ignore this complication here.
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(a� d) decreases. This means that librating orbits with high emax → 1 in the very weak

GR regime do not reach low8 emin (recall that we have assumed jmin � 1 in deriving our

expression for j2
+). Said differently, binaries that initially have e ∼ 0 do not tend to reach

e → 1, so this is typically not the type of situation in which we are interested.

Finally we mention that in all examples shown in Figure 5.3, for a sufficiently far from

adiv we again have |κ| ∼ O(1) or smaller, and κ varies only weakly with a.

♣

The phase space evolution described in this section is quite complex: the various

dynamical regimes are not typically well separated in semimajor axis (aweak ∼ asep ∼

adiv ∼ d), and the transitions between different regimes do not always happen in the

same order. However, to gain a qualitative understanding, in what follows we will

focus on three basic asymptotic regimes.

1. The asymptotic regime of weak GR, a� aweak, in which the orbit can be librating

or (Type 1) circulating but we always have jmin ≈ j− ∼ cos imin and |j2
+|, |j2

0 | ∼ 1.

Moreover, in this weak GR regime both |j2
+| and |j2

0 | scale weakly with a, as does κ.

2. The moderate GR regime in which crucially the binary is assumed to be on a Type

2 circulating orbit with jmin ≈ γj− � j−, jmax = −σj−, and we assume that a is

sufficiently small that |j2
+|, |j2

0 | ∼ (a/d)7/2 � 1, and |κ| is roughly constant and not

large compared to unity.

3. The third is the strong GR regime, a < astrong, in which the binary gets trapped at

high eccentricity, and its semimajor axis decays while p = a(1− e) is kept roughly

constant.

Again, we emphasise that in general the separation between these three specific regimes

is far from clean, and these are not the only three possibilities; but they will allow us to

make analytical progress, and will give us a qualitative understanding of the behaviour

of tsec, ∆a and a(t) throughout slow mergers, which is what we turn to next.

8This is essentially because the fixed points at ω = ±π/2, j = jf = (10ΓΘ/(1 + 5Γ))1/4, sit at too high
an eccentricity.
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5.3.3 The secular timescale, tsec

One crucial quantity in any study of tide-driven mergers is the period of secular eccentricity
oscillations, tsec, since this gives the time elapsed between each burst of GW emission.
The exact expression for tsec is

tsec = 2
∫ jmax

jmin

(dj
dt

)−1
dj, (5.41)

with dj/dt given in (4.12). The right hand side of (5.41) of course depends on semimajor
axis a. Here we want to derive a tractable approximation to tsec(a) which is valid in
the first two regimes mentioned above, namely for weak GR (librating or circulating)
and moderate GR (Type 2 circulating). In the third asymptotic regime, that of strong
GR, there are no secular oscillations.

Weak GR

In the case of weak GR we know that the explicit εGR terms in (4.12) only affect the very
high eccentricity behaviour. We also know from §4.4.4 that the effect of such terms is
simply to reduce the time spent in the high-eccentricity state (see equation (4.52)), which
is already a fraction jmin � 1 of the total secular period. Put differently, we can split
(5.41) into

∫ jmax
jmin

=
∫ kjmin
jmin

+
∫ jmax
kjmin

; then this argument suggests there exists k ∼ a few such
that the explicit εGR terms in (4.12) only to contribute to the first integral, and that the
value of this first integral is negligible compared to the second one. As a result, a good
approximation to the secular period for most orbits in the weak-to-moderate GR regime is
found by applying the results of Chapter 3. Defining ∆ ≡ max[j2

+, j
2
−, j

2
0 ]−min[j2

+, j
2
−, j

2
0 ],

and assuming k2j2
min � j2

max, we have from equations (3.33)-(3.34) that

tsec ≈
8

3A

√
G(m1 +m2)
|25Γ2 − 1| ×

1
a3/2
√

∆
K

(
jmax√

∆

)
. (5.42)

where K(x) ≡
∫ π/2
0 dα/

√
1− x2 sin2 α. This result is clearly insensitive to the precise

value of k. We emphasise however that GR is still implicitly present in equation (5.42)
because it affects the values of j±, j0, ∆, jmax that must be plugged into the right hand
side. Finally, Figure 5.4 shows that although K(x) diverges for x→ 1 (which corresponds
to the binary approaching a separatrix in the (ω, e) phase space), far away from x = 1
the function K(x) scales rather weakly with x.

Now, to evaluate (5.42) explicitly we need to know jmax and ∆, which in turn requires
knowledge of the Γ regime, whether the orbit librates or circulates, etc. — see Table 3.1.
We will not go through each case individually, but simply note that for weak GR we almost
always have either jmax ≈ j+ and

√
∆ ≈ |j0|, or jmax ≈ j0 and

√
∆ ≈ |j+|; and assuming
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Figure 5.4: Value of the elliptical integral K(x) normalised by K(0) ≡ π/2 as a function of x.
The scaling is weak except for x & 0.99.

a � d, both j+, j0 scale weakly with a (Figures 5.2-5.3). As a result, for most of the
semimajor axis range of the weak GR regime we expect from equation (5.42) a rough scaling

tsec ∝ a−3/2. (5.43)

Physically this scaling arises because the binary’s inner orbital period is proportional to
a3/2. It has been noted by many authors when estimating a LK-driven merger timescale
(e.g. Wen 2003; Thompson 2011; Randall & Xianyu 2018).

Moderate GR, Type 2 circulation

The validity of equation (5.42) breaks down when we consider Type 2 circulating orbits,
because in this case we cannot claim that the binary spends the great majority of its time
at j ∼ 1. Indeed, we know from §5.2.1 that for Type 2 circulating orbits in the moderate
GR regime we have jmax ≈ −σj− = −εGR/[3(5Γ− 1)j2

0 ], so that j3 − j2
0j can never be

assumed to dominate over the final term in the second square bracket in (4.12).
To get a formula for the secular timescale in this regime we assume that j � 1 is always

small compared to |j0| (§5.2.1). Also, moderate GR means that jmin ≈ γj− � j− and
thus we may ignore j2

− compared to j2. With these assumptions equation (4.12) becomes
dj
dt ≈ ±

6C
Lj

√
|25Γ2 − 1||j+j0|

√
(j − jmin)(jmax − j), (5.44)

where jmin ≈ γj− and jmax = −σj−. Plugging this into equation (5.41) and per-
forming the integral we get the secular timescale for Type 2 circulating orbits in the
moderate GR regime:

tsec ≈
Lπ(jmin + jmax)

6C
√
|25Γ2 − 1||j+j0|

≈ 8
3A

√
G(m1 +m2)
|25Γ2 − 1| ×

π

2a3/2
(1− κ)jmin
|j+j0|

. (5.45)
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where in the second line we used jmin + jmax ≈ γj− − σj− = (1 − κ)jmin (see equation
(5.13)). Assuming also that the terms in (a/d)7/2 dominate in the expressions for j2

+

and j2
0 (equations (5.28)-(5.30)), we find

tsec ≈
8

3A

√
G(m1 +m2)
|25Γ2 − 1| ×

π
√

25Γ2 − 1(1− κ)
20Γ

(2pmin)1/2a3/2

d7/2 . (5.46)

Further assuming that a is sufficiently small compared to adiv for κ to vary only weakly
with a (see Figures 5.2-5.3), we have in this regime rough scaling

tsec ∝ a3/2. (5.47)

According to (5.47), the secular timescale decreases as the semimajor axis shrinks, rather
than increasing like one would naively expect (and as was predicted for the weak GR
regime in equation (5.43)). This is because in the Type 2 circulating regime a smaller a
leads to a larger |j2

0 |, hence a smaller jmax (Figure 5.1). In turn, a smaller jmax means
that the binary spends more time at ‘high’ eccentricities. The cluster tide-driven secular
evolution is faster at high e than at9 e ∼ 0, which is how we end up with a shorter secular
timescale. We will further explicate these ideas in §5.4 and §5.A.

Note also that in this case the secular timescale (equation (5.46)) is significantly
shorter than in the weak GR case (equation (5.42)); the ratio of the former to the latter
is of the order (2pmin)1/2a3/d7/2 ∼ (a/d)7/2jmin � 1.

5.3.4 The decay in semimajor axis over one secular cycle, ∆a

Next we derive expressions for the decay in semimajor axis over one secular cycle, ∆a,
in terms of a, in the same asymptotic regimes as in §5.3.3. This expression can then be
plugged into the right hand side of (5.1) along with tsec (§5.3.3) to calculate a(t).

To begin, we integrate equation (5.15) over one secular cycle, approximating a as
constant to lowest order (which is valid since |∆a| � a by assumption for a slow
merger). The result is10

∆a ≈ −λ0
a3

∫
sec. cycle

dt
(1− e2)7/2

(
1 + 73

24e
2 + 37

96e
4
)
, (5.48)

where λ0 ≡ (64/5)G3c−5m1m2(m1 + m2) is independent of a. Assuming the binary
reaches very high maximum eccentricity emax → 1 we can approximate this as

∆a ≈ −2λ1
a3

∫ jmax

jmin

dj
j7

(dj
dt

)−1
, (5.49)

9This is true because even though the torque on a binary with, say, e = 0.1 is comparable to that on a
binary with e = 0.9, the angular momentum of the latter is significantly smaller, so the relative change in
angular momentum occurs over a much shorter timescale.

10Note that equation (5.48) is essentially identical to the first line in equation (55) of Randall & Xianyu
(2018) — see §5.A.
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where λ1 ≡ (1 + 73/24 + 37/96)λ0 = (170/3)G3c−5m1m2(m1 +m2). Of course, in general
dj/dt — given in equation (4.12) — is so complicated that even this approximate integral
is intractible. However, noting the very strong j−7 dependence in (5.49) we expect the
integral to be dominated by the contributions from very high eccentricity, i.e. j � j+, |j0|.
In this limit we can approximate dj/dt using equation (4.41); moreover, since we know
that the minimum jmin is a zero of the first square bracket in (4.41) we can write it as

dj
dt ≈ ±

3Aa3/2

4
√
G(m1 +m2)j3/2

√
(25Γ2 − 1)j2

+(−j2
0)(j − jmin)(j + |jα|)(jσ − j), (5.50)

where jα ≡ γj−[1 −
√

1 + 4γ−2]/2 < 0 is the other root of the first square bracket in
(4.41), and jσ ≡ −σj−. Using the results of §5.2 one can straightforwardly check that
the sign of the quantity inside the square root is positive. For instance, for Γ > 1/5 we
recall that Type 2 circulating orbits have j2

0 < 0 and jmax = −σj− = jσ, while Type
1 circulating orbits have j2

0 > 0, jσ < 0 and jmax ∼ 1.
We now take (5.50) and plug it into (5.49). Defining

xmax ≡ jmax/jmin, xα ≡ jα/jmin, xσ ≡ jσ/jmin, (5.51)

and using (5.22), the result is

∆a ≈− λ2 ×
ξ(xmax, xα, xσ)
a3/2|j+j0|

, (5.52)

where λ2 ≡ 1360G7/2m1m2(m1 +m2)3/2/[9c5A(2pmin)3√|25Γ2 − 1|] is independent of a,
and

ξ(xmax, xα, xσ) ≡
∫ xmax

1

dx
x11/2

√
(x− 1)(x+ |xα|)|xσ − x|

. (5.53)

To simplify these expressions further we need to specify the asymptotic regime of interest.

Weak GR

For weak GR we have jmin � jmax so that xmax � 1. We also have jσ < 0, so that
|xσ − x| = x + |xσ|. In this case the integral in (5.53) is completely dominated by the
contribution from x ≈ 1, and so we may take the upper limit of the integral to xmax →∞
with impunity. Finally, since jmin ≈ j− and γ � 1 in this limit we can simply replace
xσ with σ and xα → 1. An excellent approximation to the resulting integral (accurate
to within a few percent over several decades of |σ|) is then

ξ ≈ 8
15

1√
1 + |σ|

. (5.54)
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Figure 5.5: Plot of the function ξ as a function of |κ| according to (5.57), which is valid for Type
2 circulating orbits in the moderate GR regime.

From Figures 5.2 and 5.3 we know that for weak GR, σ . 1; thus ξ will also be O(1)
and scale weakly with a in the weak GR regime. Since j+ and j0 also scale weakly
with a in this regime, we find from (5.52) that

∆a ∝ a−3/2. (5.55)

Physically this just reflects the fact that the time spent in the high eccentricity state is
proportional to the secular timescale, and that in the weak GR regime this timescale is
proportional to a−3/2 (equation (5.43)). Indeed, one might have guessed the result (5.55)
a priori by noting from (5.15) that for j ≈ jmin we have (da/dt)GW ∝ a−3j−7

min. Since the
time spent at high eccentricity is tmin ∼ jmintsec (§4.4.4), we get ∆a ∼ (da/dt)GW×tmin ∝
a−3j−6

mintsec. Plugging in (5.22) for jmin we simply get ∆a ∝ tsec ∝ a−3/2.

Moderate GR, Type 2 circulation

Alternatively, for Type 2 circulating orbits in the moderate GR regime, assuming the
(d/a)7/2 terms dominate in equations (5.28), (5.30) we get from (5.52)

∆a ≈ − λ2ξ

d7/2

√
|25Γ2 − 1|

10Γ × a2. (5.56)

Moreover, in this regime it is easy to show that |xα| ≈ γ−2 � 1, so we can ignore
|xα| compared to x in (5.53). Also in this case xσ ≈ (−σj−)/(γj−) = −σ/γ ≡ −κ
(equation (4.56)) so that

ξ ≈
∫ |κ|

1

dx
x6

1√
(x− 1)(|κ| − 1)

. (5.57)

In Figure 5.5 we plot ξ as a function of |κ| according to (5.57); in particular we see that
ξ ∼ 1 except for very large |κ| � 1. Away from a ≈ adiv we know κ is almost never large
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compared to unity, and scales weakly with a (Figures 5.2-5.3), so we can treat ξ as an
order-unity constant for a rough analysis. As a result (5.56) predicts a scaling

∆a ∝ a2. (5.58)

We see from (5.58) that, unlike for weak GR (equation (5.55)), here the individual
decrements in semimajor axis ∆a get smaller as the semimajor axis a shrinks.

One can understand the result (5.58) qualitatively as follows. Like for weak GR, at
very high e we again have roughly (da/dt)GW ∝ a−3j−7

min, and again using (5.22) this is
∝ a1/2. This time, since the binary spends a large fraction of its secular period in the
vicinity of jmin, we get a rough estimate of ∆a by multiplying (da/dt)GW not by tmin,
but by tsec. Using the scaling (5.47) we get ∆a ∝ a1/2 × a3/2 ∝ a2. Loosely speaking, the
factor of ξ in equation (5.56) corrects for the fraction of time that the binary actually
spends in the vicinity of jmin during each secular cycle.

5.3.5 The time evolution of semimajor axis, a(t)

The above results for ∆a and tsec allow us to write down implicit formulae for a(t) valid
in the aforementioned asymptotic regimes, which can then be approximately solved to
get a(t) explicitly. We can also solve for a(t) explicitly in the strong GR regime.

Weak GR

In the weak GR regime, we take tsec from (5.42) and ∆a from (5.52) and (5.54); plugging
these into (5.1) we find

t− ti ≈ −
3c5(2pmin)3

170G3m1m2(m1 +m2)

∫ a(t)

ai
da |j+j0|

ξ
√

∆
K

(
jmax√

∆

)
. (5.59)

Unfortunately one cannot go further than this without explicit expressions for jmax, ∆
etc., which of course requires knowledge of the Γ regime and of whether the orbit librates
or circulates. On the other hand, as we have argued above everything in the integrand will
typically be O(1) and vary slowly with a in the weak GR regime. Thus, approximating
Q1 ≡ |j+j0|ξ

√
∆ K

(
jmax√

∆

)
∼ 1 as a constant, we find a roughly linear decay for a(t):

a(t) ≈ ai

(
1− t− ti

τ1

)
, (5.60)

where

τ1 ≈
3c5(2pmin)3

170G3m1m2(m1 +m2) ×Q1ai (5.61)

= 4.1 Gyr×
(

pmin
10−3AU

)3 ( m

1.4M�

)−3 (Q1
1

)(
ai

20AU

)
. (5.62)
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We stress that (5.60)-(5.61) is only a very rough prescription since we have ignored any
scaling of Q1 with a; nevertheless, a linear decay law for a(t) will turn out to be a
good approximation in the weak GR regime (§5.4). In addition, the result (5.60)-(5.61)
allows us to understand the origin of a frequently-used formula for the LK-driven merger
timescale — see the discussion in §5.5.1.

Moderate GR, Type 2 circulation

For Type 2 circulating orbits in the moderate GR regime, we take tsec from (5.45),
and plug this and (5.52) into (5.1) to find

t− ti ≈ −
3c5(2pmin)3

170G3m1m2(m1 +m2) ×
π

2

∫ a(t)

ai
da jmin + jmax

ξ
, (5.63)

with ξ given in (5.57). Note that we did not take ∆a from (5.56): instead we used the
more general equation (5.52), which allows us to take advantage of the cancellation of the
factors a3/2|j+j0| without having to assume the dominance of the (d/a)7/2 terms in j2

+, j2
0 .

(Similarly, ξ as given in equation (5.57) does not rely on this assumption). Again without
further approximation we can write jmin + jmax ≈ jmin(1− κ). If we finally assume that
Q2 ≡ π(1− κ)/2ξ is ∼ O(1) and roughly constant, then plugging equation (5.22) for jmin

into (5.63) and integrating we get a non-linear decay law for a(t):

a(t) ≈ ai

(
1− t− ti

τ2

)2
, (5.64)

where

τ2 ≈
3c5(2pmin)3

170G3m1m2(m1 +m2) × πQ2
√

2pminai (5.65)

= 180 Myr×
(

pmin
0.01AU

)7/2 ( m

1.4M�

)−3 (Q2
1

)(
ai

20AU

)1/2
. (5.66)

We emphasise once again that, perhaps even more so than in the weak regime, the
solution (5.64)-(5.65) is only a very approximate one. Indeed in practice, it is often the
case that the asymptotic regime considered here is barely established before the binary
enters the strong GR regime (see §5.4). Nevertheless, it is good enough for a qualitative
understanding and comparison to the weak GR result. Thus, caveats aside, we see that not
only is the decay as predicted by (5.64) quadratic rather than linear as it was for weak GR,
but the characteristic timescale of the decay is much shorter (compare (5.65) to (5.61)):

τ2 ∼
(2pmin

ai

)1/2
τ1 ∼ jmin(ti)τ1 � τ1. (5.67)

The fact that the decay of semimajor axis is much more rapid in this regime compared
to the weak GR regime will be verified numerically in §5.4.
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Strong GR

Of course, once the strong GR regime is reached equation (5.1) is no longer valid, because
the binary has decoupled from cluster tides and so no longer undergoes secular eccentricity
oscillations (§5.2.2). Instead the evolution of a, e is dictated purely by equations (5.15),
(5.16). Supposing the transition to the strong GR regime happens at some reference time
ti, we know from §5.3.1 that for t > ti the binary conserves its value of p = a(1−e) = pmin,
meaning j = (2pmin)1/2a−1/2. Thus from equation (5.15) we have

da
dt ≈ −

λ1
(2pmin)7/2a

1/2. (5.68)

Integrating this equation we find the following explicit solution for a(t) in the strong GR
regime:

a(t) ≈ ai

(
1− t− ti

τstrong

)2

, (5.69)

where

τstrong ≈
6c5(2pmin)7/2a

1/2
i

170G3m1m2(m1 +m2) = 2
πQ2

× τ2, (5.70)

and τ2 is given in equation (5.65). Thus the only difference between the evolution of
a(t) during Type 2 circulation in the moderate GR regime (equations (5.64), (5.65)) and
that during the strong GR regime (equations (5.69), (5.70)) is that the characteristic
decay rate is modified by an order-unity constant 2/(πQ2).

Finally, we can get a better feeling for how long the strong GR regime lasts before the
binary merges if we assume that the transition into the strong GR regime occurs precisely
at a = astrong (equation (5.40)). Setting ai = astrong and ti = tstrong in (5.69)-(5.70) we
get a merger at time t = tstrong + τstrong, where the time spent in the strong GR regime is

τstrong ≈ 96 Myr×
(1 + 5Γ

6

)−1/8 (A∗
0.5

)−1/8 ( M
106M�

)−1/8 ( b

pc

)3/8

×
(

m

1.4M�

)−11/4 ( pmin
10−2AU

)7/2
. (5.71)

Of course this will not be exactly correct, because (i) the transition into the asymptotic
strong GR regime (with completely negligible cluster tides) will not happen precisely at
a = astrong; and (ii) since j ∝ a−1/2, the assumption of very high eccentricity used to
derive our results will eventually break down when a is sufficiently small, so that the
constancy of pmin, imin will ultimately fail11. Nevertheless, for the mergers we have in
mind we will typically have τstrong � tstrong so these details do not make a substantial
difference to the overall merger timescale.

11See §5.4.2 for a detailed numerical example.
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5.4 Numerical examples

In this section we will verify the approximate theoretical results derived in §5.3. We
do this by direct numerical integration of the DA equations of motion, including both
GR precession and GW emission, for various binaries that undergo slow mergers. First
we give two Examples with Γ > 1/5 (§§5.4.1-5.4.2), the first of which exhibits all the
hallmark behaviour of a slow merger beginning in the weak GR regime, and the second
of which allows us to focus on the late-stage (moderate and strong GR) evolution. We
then provide one further Example, this time for a binary with 0 < Γ ≤ 1/5 (§5.4.3). Note
that we also provide one additional numerical example in the LK limit in Appendix 5.A,
when comparing our work with that of Randall & Xianyu (2018).

To be clear, we note that we have run many more numerical experiments of slow
mergers than those shown here. We have chosen to present here the minimal number of
examples that still capture qualitatively all the possible interesting evolutionary scenarios.
(There are of course non-interesting cases, such as binaries that are so tightly bound that
the cluster essentially plays no role in their evolution, but we neglect to include them here).

5.4.1 Example 1: Γ = 0.42 > 1/5. An initially librating orbit in the
weak GR regime

In Figure 5.6 we show the result of integrating the DA equations of motion for a binary with
constituent masses m1 = m2 = 10M�, orbiting inside aM = 106M� spherical Hernquist
cluster with Γ = 0.42 > 1/5. The other initial conditions (b, rp/b, ra/b, a0, e0, i0, ω0)
are given in the text at the top of the figure. Note that these parameters have been
chosen for pedagogical reasons, as the resulting dynamical evolution exhibits a clean
separation of asymptotic behaviours, allowing us to illustrate clearly the different analytic
results derived in §5 all in a single representative example. However, in reality they
may prove an unrealistic choice, in particular because the initial semimajor axis is large
(a0 = 250AU). In a real stellar cluster one would expect such a wide binary to experience
at least one hard encounter within the runtime of the integration (∼ 7 Gyr) — see
§3.9.3. We will ignore such caveats here, focusing only on illustrating the physics of
the ‘idealised’ secular problem considered in this Chapter.

We will begin by describing how Figure 5.6 is organised, before moving on to a
discussion of its physical content. In panels (a)-(d) we plot the evolution of binary’s
semimajor axis a, eccentricity e, inclination i and pericentre distance p respectively as
functions of time with black lines, alongside various critical values shown with coloured
lines. Meanwhile panel (e) shows the corresponding run of εGR(t) as well as the two
critical GR strengths εweak and εstrong, defined in equations (4.44) and (4.25) respectively.
The reader will also notice three colour-shaded vertical stripes in each panel (a)-(e): one
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Figure 5.6: Example 1. The binary (m1 = m2 = 10M�, a0 = 250AU) orbits a M = 106M�
Hernquist cluster. Other parameters are given above panel (a); the resulting Γ value is 0.42. Panels
(a)-(e) show the time evolution of a, e, i, p and εGR respectively. Panels (f), (g) and (h) show the
phase space evolution during the time intervals shaded in blue, yellow and green respectively
in panels (a)-(e). Finally, panels (i) and (j) show with black dots the values of tsec and |∆a| as
functions of a. See §5.4.1 for a detailed discussion.
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blue, one yellow and one green. These three shaded stripes define three representative
time intervals, and in panels (f)-(h) we plot the trajectory of the binary in the (ω, e) phase
space (familiar from Chapter 4) during those respective time intervals12. The phase space
trajectory in each panel (f)-(h) is shown in black: it starts at the green dot and ends at
the red dot. Finally, in panels (i) and (j) we show with black dots the secular timescale
tsec and the decay in semimajor axis |∆a|, respectively, as functions of semimajor axis
a. The secular timescale was computed by finding the time elapsed between adjacent
eccentricity maxima in panel (b), while ∆a was computed by calculating the semimajor
axis before (abef) and after (aaft) each peak, and defining ∆a(abef) ≡ aaft − abef . Note
that both axes in panels (i) and (j) are logarithmic. The binary evolves from right to left
in these two panels, and to aid the reader’s comprehension we have again added coloured
vertical stripes, this time covering the semimajor axis range that corresponds to a given
time interval stripe in panel (a). There are also various critical values and scalings shown
with coloured lines in panels (i) and (j), which we will address in a moment.

Now that we are familiar with the structure of Figure 5.6 as a whole, we can discuss
the binary’s dynamical evolution. Let us first focus on the intial ∼ 3000 Myr. From panel
(a) we see that at t = 0 the binary has a = 250 AU, and that for the first ∼ 3000 Myr,
a(t) exceeds significantly each of the four critical calues aweak, asep, adiv, astrong, which
were defined in §5.3.2 and which we show with horizontal red lines (see legend). It follows
that during this time, the binary resides in the weak GR regime: and indeed, we see from
panel (e) that εGR is initially far smaller than εweak (red horizontal dotted line). Moreover,
panel (b) shows that the binary undergoes the expected secular eccentricity oscillations
(initially on a timescale of ∼ 30Myr), and reaches a very high maximum eccentricity of
1− emax ≈ 10−5. Concomitantly there are secular oscillations in inclination i (panel (c))
and pericentre distance p (panel (d)), though as predicted in §5.3.1 the values of cos imin

and pmin reached at the peak of each secular eccentricity cycle are very nearly conserved
(see the dashed blue horizontal lines in these panels). Similarly, from panel (b) we see that
the maximum eccentricity of the binary is well described by j2

min = 2pmin/a (equation
(5.22)), while its minimum is well described by jmax = j+. The latter fact implies that the
binary is initially on a librating phase space orbit (equation (5.10)), and this is confirmed
by panel (f), in which we show the phase space evolution during the time interval denoted
by the blue shaded stripe. The high eccentricity behaviour shown in panel (b) of course
leads to bursts of GW emission, which results in a decay of the semimajor axis: returning
to panel (a) we see that a(t) decays roughly linearly while the binary is in the weak GR
regime, which is exactly what we predicted in §5.3.5 (equation (5.60)).

12To draw the contours of constant H∗ in these panels we took Γ = 0.42 and took the values of Θ and
εGR at the midpoint of the corresponding coloured stripe. Note also that to keep the plots clean we refrain
from showing explicit separatrices.
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So, we have a binary on a librating orbit in the weak GR regime, whose semimajor axis
is slowly decaying with time. As we know from §5.3.2 there are two key things that happen
next to such a binary: one is that it enters the moderate GR regime, and the other is that
its (ω, e) phase space trajectory crosses the separatrix and becomes circulating (ultimately
a Type 2 circulating orbit). We also know from Figure 5.2 that these two occurences
can happen in any order. In this particular case the binary crosses the separatrix first:
we see from panel (a) that a intercepts asep around t = 4800 Myr, and from panel (b)
that around this time the minimum eccentricity gets very close to zero and then starts
to increase and ceases to be well described by jmax = j+. This inference is confirmed
in panel (g), in which we see explicitly the evolution from libration to circulation that
occurs during the time interval denoted by the yellow shaded stripe. Another interesting
observation is that around t = 5200 Myr the behaviour of the secular timescale undergoes
a qualitative change, as is obvious from inspection of panels (b)-(d): until around 5200
Myr we had tsec increasing with time, whereas afterwards it decreases with time. This is
consistent with what we predicted in §5.3.3, and we will say more about it momentarily.

Then, at around t = 7100 Myr, the binary’s dynamical evolution changes dramatically:
the semimajor axis a approaches aweak and its decay is accelerated, and the secular
timescale becomes very short. Furthermore we see that j2

min = 2pmin/a is still a good
approximation for the maximum eccentricity and, though we do not show it here, the
minimum eccentricity at this stage is fairly well-described by jmax = −σj− (we defer
a more careful, ‘zoomed in’ discussion of the late stages of a slow merger to Example
2 — see §5.4.2). These characteristics are the hallmark of Type 2 circulating orbits
in the moderate GR regime. To confirm this, we look at panel (h), which shows the
phase space evolution during the green striped time interval. We see clearly that the
binary is indeed now stuck on a high-eccentricity circulating trajectory, whereafter it
soon enters the strong GR regime and then merges.

To conclude our discussion of Example 1 we consider panels (i) and (j), which demon-
strate precisely the asymptotic behaviours expected from §5.3.3 and §5.3.4 respectively.
The critical semimajor axes shown with red vertical lines in these panels are the same
as those shown with horizontal red lines in panel (a). Now, for large a > asep we know
that the binary is on a librating orbit in the weak GR regime far from the separatrix,
and so it is unsurprising to find from panel (i) that tsec ∝ a−3/2 (equation (5.43)) and
from panel (j) that |∆a| ∝ a−3/2 (equation (5.55)), as we illustrate with blue dashed lines.
Next, as a decreases towards asep the secular timescale briefly undergoes a sharp increase
— which again is unsurprising as we know from Chapter 3 that tsec diverges on separatrices
— before decreasing again. Similarly, as a decreases towards aweak the value of ∆a reaches
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a maximum13, after which it decreases monotonically with time while a shrinks. Lastly,
once a has become significantly smaller than aweak and asep, we know that the binary
has transitioned to the moderate GR regime and is on a Type 2 circulating orbit. The
purple dashed lines in panels (i) and (j) confirm the predicted scalings for this regime,
namely tsec ∝ a3/2 (equation (5.47)) and |∆a| ∝ a2 (equation (5.58)).

5.4.2 Example 2: Γ = 0.42 > 1/5. A binary initially in the moderate
GR regime

In Figure 5.7 we show the evolution of a lower mass binary (m1 = m2 = 1.4M�), but
on the same outer orbit around the same cluster as in Example 1; thus we again have
Γ = 0.42. We choose different initial conditions for the inner orbit, in particular a0 = 49
AU. We see immediately from panel (a) that initially a < aweak, putting the binary just
inside the moderate GR regime (see also panel (e)). On the other hand, initially a > asep

so the phase space trajectory librates. This is fundamentally different to Example 1 since
in that case, by the time the binary reached the moderate GR regime, its phase space
orbit was already circulating. Thus with Example 2 we will not only be able to focus
on the ‘late-time’ behaviour of slow mergers, i.e. their evolution through the moderate
and strong GR regimes (as promised in §5.4.1), but also to see a phase space transition
from librating to circulating within the moderate GR regime.

Let us note here that the decay of a(t) shown in panel (a) is qualitatively very
similar to that in Example 1 (Figure 5.6a). Indeed, this turns out to be the case for all
slow mergers: their semimajor axes decay approximately linearly to begin with, then
more rapidly (roughly following the quadratic law of equation (5.64)) once they get
well into the Type 2 circulating regime, and then like equation (5.69) in the strong
GR regime. What we want to focus on here is the behaviour of e, p and i in these
latter stages of moderate and strong GR.

From panel (b) we see that while the binary is on a librating phase space orbit
(t . 4500 Myr) its maximum eccentricity is well described by jmax = j+ and its secular
period increases with time. Once it enters the circulating region its secular period begins
to decrease with time. Of course this was also the case in Example 1, though in that case
this transition occured in the weak GR regime. We note however from panel (a) that
the semimajor axis decay at this stage, and indeed up until t ∼ 10000 Myr, remains a
gentle, linear one, by virtue of the fact that the binary is on a Type 1 circulating orbit

13We should note that the peak in tsec is not centred precisely on asep, nor is the maximum of |∆a|
centred precisely on aweak. This is partly because the expressions (5.36)-(5.38) are only approximate,
derived in a particular high eccentricity limit and assuming exact conservation of pmin, imin. Also, and
perhaps more importantly, the transition between weak and moderate GR behaviours around aweak is
typically rather blurred, so in truth a = aweak rarely signifies a precise boundary between these different
dynamical regimes, as we see in all numerical examples in this section.
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Figure 5.7: Example 2. The potential and outer orbit are the same as in Example 1 (Figure 5.6),
so that again Γ = 0.42, but the binary consituent masses and inner orbit initial conditions are
different. In this case the binary begins in the moderate GR regime on a librating phase space
trajectory.
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Figure 5.8: Zoomed-in version of panels (a)-(d) from Figure 5.7, focusing on t > 6100 Myr.
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Figure 5.9: Further zoomed-in version of panels (a)-(d) from Figure 5.7, this time showing from
t = 9400 Myr to merger.
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(e.g. panel (f)) despite belonging to the moderate GR regime. The fast, nonlinear decay
in semimajor axis does not occur until t & 10000 Myr, because it is not until then that
the circulating orbit can be well-described as Type 2 (panel (g)).

In a moment we will zoom in further on this very late-stage evolution and look at
panels (a)-(d) more closely. For now, to conclude the discussion of Figure 5.7 we consider
panels (i) and (j). These show that the binary exhibits the expected asymptotic behaviour
for tsec(a) and |∆a(a)| at small semimajor axes (i.e. with a significantly smaller than aweak,
asep) — see the purple dashed lines. This is unsurprising since we know from panel (g) that
the binary has reached Type 2 circulation by this stage. The expected tsec ∝ a−3/2 scaling
in panel (i) is also manifest for a larger than asep, i.e. at the earliest times when the binary
is on a librating phase space orbit. On the other hand, the |∆a| ∝ a−3/2 behaviour at large
a is never realised, simply because the binary does not begin its life in the weak GR regime.

Let us now turn to Figure 5.8, in which we merely zoom in on panels (a)-(d) of
Figure 5.7, focusing on t > 6100 Myr. In panel (b) we no longer show the jmax = j+

solid blue line, since we know that for this time range the binary is certainly on a
circulating orbit. However, we have added a green dashed line that shows the minimum
eccentricity that would be obtained if the binary was on a Type 1 circulating orbit, i.e.
with jmax = j0 (equation (5.12)). We have also added a dashed cyan line showing the
Type 2 solution jmax = −σj− (equation (5.13)). We see that until around 8000 Myr
the evolution is best described as a Type 1 circulating orbit with jmax = j0. There is
then a transitional stage around t ≈ 9000 Myr wherein neither Type 1 nor Type 2 is a
good description (this corresponds to j2

0 approaching and then crossing zero from above
in Figures 5.1 and 5.2). After t ≈ 9400 Myr the evolution is quite well-described as a
Type 2 circulating orbit, jmax = −σj−. On the other hand there is small systematic
error in this prediction, which we will explain momentarily.

We finish our discussion of Example 2 by zooming in on this very latest stage of the
evolution, t > 9400 Myr, which we plot in Figure 5.9. It is clear from this figure that
at these late times the conservation of pmin (panel (d)) begins to fail, evolving from its
value on the blue dashed line (pmin(t = 0) ≈ 10−3.11) towards a slightly larger value. As
discussed in §3.3 of Wen (2003), this happens because the role of GR precession at peak
eccentricity is gradually becoming more pronounced, blocking the binary from reaching
quite the same small pmin value from one eccentricity peak to the next14. The magnitude
of the oscillations in p also diminish with time until, after around t = 10600 Myr, the
binary reaches the strong GR regime and there oscillations are quenched. As predicted in
§5.3.1 the value of p itself then remains effectively constant almost all the way to merger,

14There is a different way to think about this in the context of §5.3.1: as emax is diminished from one
secular cycle to the next, the approximation dp/da ≈ 0 — which was derived in the limit e→ 1 — gets
gradually worse.
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taking a value15 pstrong ≈ 10−2.86 ≈ 1.8pmin(t = 0). We see from panel (b) that the
resulting underestimate of pmin at these late times leads to a slight overestimate of both
the maximum and minimum eccentricities (the blue and cyan dashed lines each sit slightly
too low in this panel) — hence the systematic error in the prediction jmax = −σj− which
was computed using the pmin value from t = 0. Finally, we note that the conservation of
imin also fails in these latter stages of the evolution (panel (c)), with cos imin undergoing a
decrease from cos imin(t = 0) = 0.265 to roughly cos istrong ≈ 0.20. This change — which
occurs for the same reason as that in pmin, and i s also discussed in §3.3 of Wen (2003) —
does not make a significant difference to our analysis because the cos2 imin, sin2 imin terms
in e.g. equations (5.28)-(5.30) are already dominated by the (d/a)7/2 terms by this stage.

5.4.3 Example 3: Γ = 0.176 < 1/5.

In Figure 5.10 we provide one more Example, this time of a m1 = m2 = 10M� binary
orbiting a M = 107M� Hernquist cluster. We take new initial parameters for the
inner orbit, as well as a much smaller outer orbit (rp/b, ra/b) = (0.1, 0.5), resulting
in Γ = 0.176 < 1/5.

Clearly the binary begins its life squarely in the weak GR regime (a > aweak), and is
initially on a librating phase space orbit (a > asep). It moves into the circulating regime
(a < asep) at around t = 600 Myr and then into the moderate regime (a < aweak) at
around 720 Myr, and by around 860 Myr it has merged. By now it will come as no
surprise that the semimajor axis evolution is qualitatively very similar to that in Example
1 (for Γ > 1/5), with a roughly linear decrease in a(t) in the weak GR regime and a
steeper, nonlinear decay thereafter. Also unsurprisingly, the secular period increases
with time while the phase space orbit librates, and decreases with time once it begins
to circulate. What is notable in this case however, is that unlike in Examples 1 and 2
the phase space transition is very sharp. Indeed, at the beginning of the yellow shaded
time interval the binary is on a librating orbit (starting at the green dot in panel (g));
then at around 600 Myr it suddenly joins the family of circulating orbits; and by the
end of the yellow interval it is on a very high eccentricity circulating orbit (ending at the
red dot). In other words, at some point around the middle of the yellow time interval
the binary effectively ‘jumps’ from libration to Type 2 circulation. The reason for this
jump is that in this Γ regime, the minimum eccentricity is forced to be larger than that
of the saddle point at ω = 0, namely ef,0 — see equation (4.27). (Also, it is perhaps not

15Wen (2003) estimated that pstrong/pmin should lie in the approximate range (1, 3) — see her equation
(31) and the surrounding discussion. In fact, the following simple physical argument suggests the value
ought to be ≈ 2 (Ford & Rasio 2006). Since GW emission is very poor at dissipating angular momentum,
J ≡

√
µa(1− e2) =

√
µp(1 + e) is roughly constant during this phase. When p = pmin we have e ≈ 1,

whereas upon circulatisation we have p = pstrong and e ∼ 0; thus 2pmin ≈ pstrong, i.e. pstrong/pmin ≈ 2.
For all numerical examples presented in this Chapter, pstrong/pmin ∈ (1.4, 1.8).
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Figure 5.10: Example 3. Slow merger in the 0 < Γ ≤ 1/5 regime. The binary orbits an
M = 107M� Hernquist cluster. The outer orbit is much smaller than in Examples 1 and 2, giving
Γ = 0.176 < 1/5.
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surprising that Type 2 circulation is reached quickly given the lack of Type 1 solutions
for Γ < 1/5 shown in Figure 5.1). One result of this sharp transition is that the change
in minimum eccentricity behaviour (panel (b)) is very abrupt around 600 Myr, rather
than smooth as it was for Γ > 1/5. Thereafter the evolution matches the usual Type
2 behaviour as seen for Γ > 1/5, followed by a merger.

Finally, at the extremes of panels (i) and (j) we see the expected asymptotic behaviour
more or less taking shape. However the proper scalings are never fully developed either
at large a, simply because at t = 0 the binary is too close to the separatrix and to
adiv for j+, j0 etc. to be considered near-constant.

5.5 Discussion

In this Chapter, we have extended our theory of secular dynamics of binaries in stellar
clusters by accounting for the effect of GW emission. We have demonstrated that cluster
tides are capable of driving binaries to very high eccentricity, where they can emit GW
bursts, shrink in semimajor axis, and ultimately merge. Our results also encompass
— and in several aspects extend — the theory of LK-driven binary mergers, which is
of course recovered exactly in the limit Γ = 1.

We have focused throughout this Chapter on understanding the physics of ‘slow
mergers’, i.e. those mergers that require many secular periods, but would not have
occured within a Hubble time had the cluster tidal effect not been present. As in Chapters
2-4 we have worked in the DA, test-particle quadrupolar limit, ignoring octupole effects,
short timescale fluctuations, stellar flybys and the like. Yet even in this relatively simple
setting we have seen that the evolution of a binary from ‘birth’ to merger can be rather
complex and is, in general, analytically intractable. Key to making analytical progress
was our identification of three key asymptotic regimes: weak GR, Type 2 circulation with
moderate GR, and strong GR. We emphasise that the results derived in these regimes are
only approximations (often very rough ones), and that the three regimes themselves by no
means exhaust the possibilities of slow-merging binary dynamics. Indeed, in practice the
boundaries between these asymptotic regimes are blurry and poorly separated, especially
in a-space. Nevertheless, they have been sufficient for our purpose, which was to gain
analytical — and consequently, physical — insight into an important class of problems
that have traditionally been outsourced to a computer.

To conclude this Chapter, we first discuss in §5.5.1 the implications of our results for
the calculation of the total merger timescale (which will be important for our population
sythesis calculations of merger rates in Chapter 7). Finally in §5.5.2 we discuss our work
more broadly in the context of previous studies of LK-driven mergers.



5. The effect of gravitational wave emission 204

5.5.1 Merger timescale

Secular dynamics of binaries including GW emission is a problem that has been considered
many times in the LK context of hierarchical triple systems. Many LK studies that
include GW emission are focused upon resulting observable merger rate, i.e. the number
of binaries that merge per cubic Gpc per year in the local universe. To compute such a
rate — as we will do for cluster tide-driven compact object mergers in Chapter 7 — one
needs to know the time it takes for a given binary to merge as a function of its initial
conditions. There are effectively two ways to approach this problem. One can either
integrate the equations of motion (DA, SA or N-body) directly and read off the merger
time from the simulation, or one can seek an approximate (semi-)analytic formula that
parameterises the merger time in terms of those initial conditions. The latter approach
is obviously much faster when one is dealing with millions or billions of binary initial
conditions in a Monte-Carlo population synthesis. In principle one can check the accuracy
of such an analytic formula using direct numerical integration for a small number of cases.

For slow mergers, a rather general formula for the merger time tm is found by setting
ti = 0, t = tm and a(tm) = 0 in equation (5.1):

tm ≈
∫ 0

a(0)
da′ tsec(a′)

∆a(a′) . (5.72)

(see equation (57) of Randall & Xianyu (2018)). Of course, as it stands (5.72) is an
entirely impractical formula given the complexity of the general analytic expressions for
tsec(a) and ∆a(a) that must then be integrated over. Instead, the merger time formula
usually used in compact object merger calculations in the LK literature is tm ≈ Tm where

Tm ≡ T iso
m (a(0), emax(0))× (1− e2

max(0))−1/2

= 3c5a(0)4

85G3(m1 +m2)m1m2
(1− emax(0))3, (5.73)

and

T iso
m (a, e) = 3c5a4

85G3(m1 +m2)m1m2
(1− e)7/2, (5.74)

is simply the merger time of an isolated binary with initial semimajor axis a and very high
initial eccentricity e ≈ 1 (Peters 1964). The formula (5.73) is typically justified via the
following heuristic argument (Miller & Hamilton 2002; Thompson 2011; Liu & Lai 2018;
Randall & Xianyu 2018). First, one assumes that the GW emission is negligible except
around e ≈ emax, and so the total amount of time that needs to be spent at e ≈ emax

before the binary merges is ≈ T iso
m (emax). But the amount of time that the binary actually

spends in the vicinity of emax in each secular cycle is ≈ jmintsec ≡ (1− e2
max)1/2tsec; thus

the number of secular cycles required until the time spent around emax accumulates to



5. The effect of gravitational wave emission 205

T iso
m (emax) is T iso

m (emax)/[(1− e2
max)1/2tsec]. To get the total merger time we multiply this

by tsec. Finally, evaluating everything at t = 0 we get the formula (5.73).
Of course, this heuristic derivation can be criticised on several levels. First, it makes

no distinction between the values of emax, tsec at t = 0 and their values at later times,
even though we know (§5.3) that both of these quantities vary with a. Second, it does
not accurately treat the behaviour of e around emax, instead assuming that e is precisely
equal to emax within a discrete time window which lasts for (1− e2

max)1/2tsec, and that
GW emission is negligible outside that window. We also know from Chapter 4 that
the time spent in the vicinity of high eccentricity is not always well approximated by
(1 − e2

max)1/2tsec, especially for large values of σ and/or κ.
Despite these shortcomings, the formula (5.73) actually works well in practice (to

within a factor of order unity) when compared to direct numerical integration of the
(DA, test particule quadrupole) equations of motion for triple systems (Thompson 2011;
Liu & Lai 2018; Randall & Xianyu 2018). To see why this might be the case, we now
show that one can actually derive the formula (5.73) in a less hand-waving fashion using
the results of this Chapter. First we must assume that the majority of a slow merger
is spent in the weak GR regime, and that by ignoring the time spent in the moderate
and strong GR regimes we do not impart any major error. Then we expect a(t) to
undergo a linear decay following equation (5.60), and thus to merge after time tm ≈ τ1

(equation (5.61)). (Of course this is precisely equivalent to just evaluating the right hand
side of (5.72) in the weak GR limit and assuming j+, j0 are constants — see §5.3.5).
Since pmin(t) ≡ a(t)× (1− emax(t)) is conserved throughout a slow merger, we can then
substitute in equation (5.61) the expression

(2pmin)3 = 8(1− emax(0))3a(0)3 ≈ (1− e2
max(0))3a(0)3, (5.75)

where in the second equality we assumed emax(0) ≈ 1. Plugging (5.75) into (5.61) and
comparing the result to (5.73), we find that in this approximation the merger occurs at time

tm ≈ Tm ×
Q1
2 . (5.76)

Thus provided Q1 ∼ 1, we recover the standard estimate of the merger timescale (5.73)
to within a factor of order unity.

If anything, one might expect that Tm will be an overestimate of the ‘true’ merger
time (even if one calculates this ‘true’ time by integrating the DA quadrupolar equations,
i.e. ignoring SA effects, octupolar terms, and so on). That is because, as we saw
in §5.3.3 and §5.4, the decay of a(t) speeds up substantially once the binary reaches
its Type 2 circulating phase in the moderate GR regime (see equation (5.64)). Thus,
approximating the entire decay using the weak GR equation (5.60)) may seem overly
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conservative. It is therefore surprising to note Figure 8 of Thompson (2011) and Figure
5 of Randall & Xianyu (2018), both of which suggest that Tm typically underestimates
the true (DA) merger time by a factor ∼ 2 for compact object binaries in hierarchical
triple systems. In future work it might be interesting to understand more deeply the
reason for this trend. It may also be profitable to try to use the results of this Chapter
to calibrate a merger timescale formula that is more accurate than (5.73) — even a
result that was typically in error at the level of only a few tens of percent would be a
significant improvement. On the other hand, for practical calculations such a formula
may be of limited interest, since the true merger time can be greatly shortened when
one includes sub-secular (e.g. ‘singly-averaged’) effects, octupolar terms, and so on —
see e.g. Antonini, Murray, et al. (2014) and Grishin et al. (2018).

5.5.2 Relation to studies of LK-driven mergers

As mentioned in §5.5.1, most LK studies ‘solve’ the problem of GW-assisted mergers
either by direct numerical integration or by stating and then evaluating the merger time
formula (5.73) after calculating emax from simple theory. There does not exist much in the
literature that lies in between these extremes, in which an attempt is made to understand
in detail the physics of each stage of the merger or to derive analytic results in specific
asymptotic regimes as we have done here. Nevertheless, many of the key individual ideas
covered in this Chapter have been considered by other authors, as we now describe.

A central result of §5.3 was the approximate conservation of pmin and imin during slow
mergers: this was ultimately what allowed us to express various important quantities
(jmin, tsec, etc.) as functions of a. These conservation laws (as well as their breakdown in
the latter stages of a slow merger) seem to have first been described in the LK limit by
Wen (2003). The behaviour of p during slow mergers has subsequently been appreciated
as an important diagnostic of different regimes; for instance, Antonini has followed the p
evolution in order to distinguish between ‘LK dominated’ and ‘GW dominated’ regimes
(Antonini & Perets 2012; Antonini, Murray, et al. 2014; Antonini, Toonen, et al. 2017).
Some basic scalings of jmin, tsec, etc. with a were also written down by e.g. Miller &
Hamilton (2002), Wen (2003), and Thompson (2011), although none of these authors
venture beyond the weak GR regime in their analytical efforts, and so did not derive the
peculiar results in the moderate GR regime that we have found here (particularly for
Type 2 circulating orbits). What is more, nobody has progressed beyond simple scaling
relations to write down explicit formulae like we did in §5.3.

One other important achievement of the present Chapter has been to understand
the interplay between the time-evolution of key dynamical quanties like (a, e), and the
underlying phase space structure. The fact that a binary initially on a librating phase
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space trajectory necessarily transitions into the circulating regime as it shrinks was first
mentioned by Blaes et al. (2002) (although they did not note the accompanying qualitative
change in tsec behaviour). Of course, since LK theory corresponds to Γ = 1 > 1/5, no
previous authors have noticed the new behaviour that arises in the 0 < Γ ≤ 1/5 regime.

The only LK study we know of to have written down a formula for the decay in
semimajor axis ∆a over one secular cycle is Randall & Xianyu (2018) — see their
equation (55). These authors also wrote down an expression (their equation (57)) that
is essentially the same as our equation (5.1), pertaining to the slow evolution of a. In
addition, Randall & Xianyu (2018) also seem to be the only authors who have previously
mentioned the fact that tsec can occasionally decrease as a shrinks, even though every
author who has integrated the equations of motion numerically will have encountered
this phenomenon. In Appendix 5.A we compare in detail our results with those of
Randall & Xianyu (2018). As we show there, Randall & Xianyu (2018)’s analytical
theory implicitly assumed weak GR. To our knowledge no authors have derived explicit
results in the moderate GR regime until now.

5.6 Summary

In this Chapter we studied the (2.5pN) GW-driven orbital decay and subsequent merger of
binary systems which are torqued to high eccentricity by cluster tides on secular timescales.
We worked in the DA, quadrupole approximation and included the effect of (1pN) GR
precession in our calculations. Our results may be summarised as follows.

• Fundamentally, cluster tides are indeed capable of torquing binaries to sufficiently
high eccentricity that they emit bursts of GWs and ultimately merge. Cluster
tide-driven eccentricity excitation is therefore a viable mechanism for producing
LIGO/Virgo mergers, similar to LK-driven mergers that have been widely explored
in the past. Indeed, in the DA, test-particle quadrupole limit, LK mergers are
simply a special case of the tide-driven mergers considered here.

• For slow mergers (those that take place over many secular periods) there are two
approximate conservation laws that hold as the semimajor axis a decays, namely
conservation of the minimum pericentre distance pmin = a(1−emax) and conservation
of the minimum inclination reached imin. The evolution of a decaying binary through
phase space can be understood in terms of these conserved quantities.

• We uncovered three basic asymptotic regimes in which analytic progress was possible
provided the binary’s phase space trajectory was not close to any separatrices. These
were weak GR, moderate GR (wherein the binary undergoes ‘Type 2’ circulation
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in phase space), and strong GR. These different regimes each exhibit their own
characteristic behaviour of secular timescale tsec(a), decay in semimajor axis per
cycle ∆a(a), and consequently time evolution of semimajor axis a(t), as we confirmed
numerically.

• We derived a formula for the merger timescale that has been much used in LK
theory, and gave a more detailed justification for it than those that have been offered
previously.

The insights from this Chapter will inform future studies of LK-driven and cluster
tide-driven binary mergers. In addition, some of the ideas developed here may provide
qualitative insight into other problems where secular forcing, apsidal precession and
short-range dissipation compete over the dynamics of a two-body system. One such
problem might be the LK-driven formation of short period binaries and hot Jupiters
in triple systems, wherein the dissipation is not due to GW emission but instead due
to internal fluid tidal friction in the star(s) and/or planet (Fabrycky & Tremaine 2007;
Anderson, Storch, et al. 2016; Vick et al. 2019).
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Appendices

5.A Relation to Randall & Xianyu (2018)

We have mentioned several times the work of Randall & Xianyu (2018), whose paper largely
inspired the present Chapter. These authors are among the few who have attempted
to gain a more analytical understanding of LK-driven slow mergers (and indeed it is
from their paper that we have taken the terminology ‘slow merger’). In partiuclar,
to our knowledge Randall & Xianyu (2018) were the first authors to (i) calculate ∆a
explicitly, and (ii) mention explicitly the decrease in tsec as the binary shrinks and offer
an explanation thereof. On the other hand, we feel that both (i) and (ii) as presented
in Randall & Xianyu (2018) could be improved. Here we explain how our calculations
differ from those of Randall & Xianyu (2018).

5.A.1 Calculation of ∆a

Randall & Xianyu (2018) begin their calculation of ∆a by writing down their equation
(55), the first two lines of which are essentially identical to our equation (5.48) when
we evaluate the final bracket at e = emax. One is then faced with the computation
of an integral, ∆a ∝

∫
dt(1 − e2(t))−7/2, over one complete secular cycle. To compute

this integral in §5.3.4 we changed variables from t → j ∈ (jmin, jmax) and hence wrote
down equation (5.49). On the other hand, Randall & Xianyu (2018) chose to compute
the integral by first approximating e(t) as a quadratic in time (see their equation (53)).
In particular, using our notation and letting the maximum eccentricity occur at t = 0
without loss of generality, their equation (52) reads

e(t) = emax + 1
2

(
d2e

dt2

)
t=0

t2. (5.77)

Randall & Xianyu (2018) then plugged this into
∫

dt(1− e2(t))−7/2 and integrated over
t ∈ (−∞,∞) to get ∆a. The result is their second equation (55), which in our notation
and evaluating at emax ≈ 1 reads

∆aRX18 ≈ −
544G3m1m2(m1 +m2)

9c5a3j6
min

×
∣∣∣∣∣d2e

dt2

∣∣∣∣∣
−1/2

t=0
. (5.78)

Randall & Xianyu (2018) then evaluate ë|)t = 0 using their equation (53).
There are a few issues with this calculation, however. First, the assumption that

e(t) is quadratic for small t is equivalent to the assumption that j(t) is quadratic for
small t. We know from §4.4.4 (see also §4.C) that for this quadratic ansatz to be a
good one, it must be the case that εGR � εweak (i.e. weak GR) and σ � 1. This is
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certainly true for many binaries of interest, but it is not always true, and in particular it
is not true for the example given in Figure 3 of Randall & Xianyu (2018) which begins
in the moderate GR regime (see our Figure 5.11). Second, the equation that Randall
& Xianyu (2018) quote for ë|t=0 — namely their equation (53) — is not a good one
in general. To see this we compute it directly by differentiating e = (1 − j2)1/2 twice,
using equations (4.9)-(4.10) and demanding that at t = 0, j = jmin, dj/dt = 0 and
ω = ±π/2. Without any approximations we find(

d2e

dt2

)
t=0

= −60ΓC
L

(j2
min −Θ)emax

jmin

(dω
dt

)
t=0

. (5.79)

For this to coincide with equation (53) of Randall & Xianyu (2018) in the LK limit, one
must have (j2

min − Θ) ≈ j2
min = (1 − e2

max), which is only true if16

j2
min � Θ, i.e. cos2 imin � 1. (5.80)

As we have seen in §5.4 this is certainly not true in general. In fact, we know from
§5.2.1 that if a binary starts in the weak GR regime it has j2

min ∼ Θ and this relation
holds all the way into the moderate GR regime and beyond. The condition (5.80) does
happen to be true in the specific numerical example shown in Randall & Xianyu (2018)’s
Figure 3, but that is because their example is rather a peculiar one and begins in the
moderate GR regime, which contradicts the weak GR assumption they have implicity
made when approximating e(t) as a quadratic.

Nevertheless, let us follow the Randall & Xianyu (2018) method and compute ∆a via
equations (5.78) and (5.79), evaluating dω/dt at maximum eccentricity using (4.9), and
compare the result to our equation (5.52). (We will not make the assumption (5.80)).
Using j2

min = 2pmin/a and after some algebra we arrive at

∆aRX18
∆a = 8

15

√
|25Γ2 − 1|

10Γ
|j+j0|
ξ

j2
min√

j2
min −Θ

(
10ΓΘ− (1 + 5Γ)j4

min + εGRjmin
6

)−1/2
.

(5.81)

We can make sense of (5.81) by evaluating the right hand side in the weak and moderate GR
regimes.

In the weak GR regime we have εGRjmin � Θ (equation (5.7)). If we also assume
j4
min � Θ (see 4.C) and ignore the a-dependent terms in (5.28), (5.30), we get

∆aRX18
∆a ≈ 8

15ξ , (5.82)

16It is easy to show that the conditon (5.80) is also required to make equation (54) of Randall & Xianyu
(2018) agree with our (4.9) at maximum eccentricity.
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with ξ given in (5.54). Note that for σ = 0 we get exactly ∆aRX18/∆a = 1 . Thus we
recover precisely the formula that Randall & Xianyu (2018) derived when we make the
approximations that they (implicitly) did, namely weak GR and σ � 1.

In the moderate GR regime we assume that the εGR term dominates the final bracket
in (5.81), and that the a-dependent terms dominate equations (5.28), (5.30). With
these assumptions we get

∆aRX18
∆a = 8

√
60Γ

15

(
d

a

)7/2 1
ξ

j2
min√

j2
min −Θ

√
6

εGRjmin

∼
√

10Γ
ξ

(
d

a

)7/2 jmin
εGR

, (5.83)

with ξ given in equation (5.57) (and plotted in Figure 5.5). All three fractions in
(5.83) are O(1) or (often significantly) larger. Thus we typically have ∆aRX18/∆a� 1,
meaning that the method of Randall & Xianyu (2018) drastically overestimates the
value of ∆a in this regime.

5.A.2 Decrease in tsec with time

As we mentioned in §5.1, the decrease in tsec with time during a slow merger was already
pointed out in the LK (Γ = 1) limit by Randall & Xianyu (2018) in their §3.1, when
discussing their Figure 3. In Figure 5.11 we reproduce exactly this numerical example
from Randall & Xianyu (2018), using the same layout of panels as we did in §5.4. We
see that the binary initially sits in the moderate GR regime on a circulating orbit,
and that the secular timescale does indeed decrease as the binary shrinks, before it
finally mergers at around t = 7000 yr.

When interpreting the scaling of tsec(a) physically, Randall & Xianyu (2018) noted
that smaller a (larger εGR) promotes faster apsidal precession, which is obviously true.
However, they then claimed that this faster precession directly leads to a shorter secular
period, as well as the corresponding increase in maximum eccentricity with time and
decrease in minimum eccentricity with time. This interpretation is not quite right (and
also does not explain why in the librating regime tsec increases with shrinking a). In
reality, in the weak-to-moderate regime, GR precession is unimportant except during an
extremely high eccentricity episode, and typically that extreme eccentricity episode is
over very quickly. In other words, for most phase space orbits the second (GR) term in
equation (56) of Randall & Xianyu (2018) is completely negligible during the majority of
the evolution, so barely affects tsec. What GR precession does do, when coupled with GW
emission, is to alter the phase space morphology, and to periodically nudge the binary
onto a new phase space trajectory every time it reaches high eccentricity (note how closely
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Figure 5.11: Reproducing Figure 3 of Randall & Xianyu (2018). In this case a binary with
m1 = m2 = 10M� orbits a supermassive black hole (i.e. Kepler potential) of mass M =
4 × 106M�. The outer orbit has semimajor axis ag = (ra + rp)/2 = 150 AU and eccentricity
eg = (ra − rp)/(ra + rp) = 0.1. See §5.A for discussion.
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the contours of H∗ are bunched at these high eccentricities). As a is decreased and εGR

is increased, the binary gets pushed further away from the separatrix between librating
and circulating orbits, towards the Type 2 circulating region where (5.46) applies. As
long as this process continues the binary gets pushed to higher minimum eccentricity
(smaller and smaller jmax), even though its emax is getting smaller. On average the binary
spends more and more time at ‘high’ (say e & 0.9) eccentricities where cluster tide-driven
secular evolution is fast. We emphasise that this last statement is true regardless of GR
precession: indeed, the binary typically does not care about GR precession directly when,
say, e = 0.9. In fact, whereas Randall & Xianyu (2018) attributed the evolution of tsec

and emin/max to fast GR-aided ω precession, both of these phenomena are present even in
the weak GR regime where apsidal precession is nearly always negligible — see Figure 5.6.
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6.1 Introduction

As discussed at length at the beginning of this thesis, decades of effort have gone into
understanding in detail the secular evolution of tidally perturbed binaries. Much recent
research in this field has been motivated by the discovery of exotic astrophysical systems
— black hole mergers, blue stragglers, hot Jupiters, and so on — which were likely formed

214
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through high eccentricity migration. In each case, the body that perturbs the ‘binary’
might simply be a tertiary point mass, it might be the Galactic tide, or it might be
the mean field potential of a stellar cluster in which the binary orbits. Regardless of
the particular system under consideration, the same two key questions almost always
arise: (i) under what circumstances can a binary reach extremely high eccentricity on
an astrophysically relevant timescale? and (ii) how does the binary behave when it
reaches such extreme eccentricities?

Question (i) is straightforward to answer using secular theories, the simplest of which
involve truncating the perturbing potential at quadrupole order, taking the ‘test particle’
approximation and then ‘double-averaging’ (DA). In Chapters 2-4 we developed the most
comprehensive such theory to date, capable of describing the secular evolution of any binary
perturbed by any fixed axisymmetric potential (in the test particle, quadruple limit). In
this theory, the binary’s maximum eccentricity emax can be calculated (semi-)analytically
as a function of initial conditions — see e.g. §4.3.4. As a result one can easily determine the
region of parameter space that leads to extremely high emax. Crucially, one always finds
that emax is limited by the initial relative inclination i0 between the inner and outer orbits:

emax ≤ elim ≡ (1−Θ)1/2, where Θ ≡ (1− e2
0) cos2 i0, (6.1)

and e0 is the initial eccentricity. Hence, as we have seen repeatedly thus far, a necessary
(but not always sufficient) part of the answer to question (i) is that Θ � 1.

However, DA theories often do not provide an accurate answer to question (ii). That
is because DA theory ignores a component of the torque that fluctuates on the timescale
of the outer orbit, and washes out to zero upon averaging over that timescale. This
becomes problematic at extremely high eccentricity, when the relative changes in the
binary’s (very small) angular momentum due to this fluctuating torque can become O(1)
— as a result, the DA theory fails to capture the dynamics in detail. A more accurate
description is provided by the singly-averaged (SA) theory, i.e. the theory governed by
the SA Hamiltonian that we wrote down in §2.3.1. As its name suggests, the SA theory
only involves one average, namely over the binary’s inner Keplerian orbit, and hence
captures fully the fluctuations in the orbital elements on the outer orbital timescale. In
particular, these short-timescale fluctuations (sometimes called ‘SA fluctuations’) can
increase a binary’s maximum eccentricity beyond emax. Because of this they can be of
great significance when predicting LK-driven merger rates of black hole (BH) or neutron
star (NS) binaries, blue straggler formation rates, white dwarf collision rates, and so
on (e.g. Antonini, Murray, et al. 2014; Grishin et al. 2018).

Faced with this assessment, one might decide simply to abandon DA theory altogether
and only work with the SA equations of motion. Alternatively one might choose to
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forego all averaging, and instead to integrate the ‘N-body’ equations of motion directly
(like in §3.7). There are three main objections to these approaches. First, numerical
integration of the SA or N-body equations is prohibitively expensive if one wants to
evolve millions of binary initial conditions, as we shall in Chapter 7. Second, SA and
N-body approaches necessarily demand more initial data, inflating the parameter space.
Third, whatever one gains though brute-force computation, one also often sacrifices in
terms of analytical and physical insight. Instead, our approach will be to understand
the SA problem at high eccentricity in an approximate analytical fashion, guided by the
DA theory and by numerical integrations where appropriate.

Short-timescale fluctuations1 have been a major focus of LK studies (e.g. Ivanov et al.
2005; Katz & Dong 2012; Antonini & Perets 2012; Bode & Wegg 2014; Antonini, Murray,
et al. 2014; Antognini et al. 2014; Luo et al. 2016; Grishin et al. 2018; Lei et al. 2018;
Lei 2019). However, they have not yet been explored in the more general case of binaries
perturbed by arbitrary axisymmetric potentials, e.g. that of a host globular cluster,
nuclear cluster or galaxy in which the binary orbits. The primary aim of this Chapter is to
extend the well-known LK results to these more general systems, and to expand upon them.
Finally, as we know from §4.C, even in the DA approximation the quantities j, ω, Ω can
exhibit O(1) fractional changes on timescales much shorter than tsec at high eccentricity.
We will see that if this short timescale is comparable to Tφ, and GR precession is switched
on, then we get a new effect which we dub ‘relativistic phase space diffusion’ (RPSD).
In RPSD the coincidence of very high eccentricity secular behaviour, short-timescale
fluctuations and GR precession conspire to shift the binary to a qualitatively new phase
space orbit. This happens even in the LK limit, but has not been shown before.

This Chapter is structured as follows. In §6.2 we very briefly recap some central results
from earlier Chapters and establish some notation. In §6.3 we provide several numerical
examples that illustrate the phenomenology of short-timescale fluctuations when GR is
not included, particularly with regard to high eccentricity behaviour. We then proceed to
explain the observed behaviour quantitatively, and derive an approximate expression for
the magnitude of angular momentum fluctuations at high e. In §6.4 we switch on GR
precession and give several numerical examples of systems exhibiting phase space diffusion.
We then analyse this phenomenon more quantitatively and offer a physical explanation for
it. In §6.5 we consider the astrophysical importance of the new effect we have uncovered,
and discuss our results in the context of the existing LK literature. We summarise in §6.6.

1Throughout this Chapter, we use the term ‘short-timescale fluctuations’ in the sense defined in the
previous paragraphs — i.e. those fluctuations that arise in SA theory when compared with DA theory.
We do not consider other fluctuations that might occur on short timescales, e.g. flyby encounters with
passing stars.
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6.2 Dynamical framework

Let us briefly recap some results from earlier Chapters that we will need here. The
perturbing Hamiltonian that encodes the effect of quadrupole-order cluster tides upon a
binary was derived in Chapter 2 and is given in equation (2.9). When we average (2.9)
over the shortest timescale in the problem, i.e. over the inner orbit’s mean anomaly
M , the resulting ‘singly-averaged’ (SA) Hamiltonian is2

H1,SA = 1
2
∑
αβ

Φαβ〈rαrβ〉M . (6.2)

The averages 〈rαrβ〉M are given explicitly in terms of orbital elements in §2.A. Since
we have eliminated the angle M the conjugate action L = √µa is conserved, and so
the binary’s semi-major axis a is constant. The singly-averaged Hamiltonian H1,SA

is a function of the variables J, Jz, ω,Ω and the time t through the time-dependent
coefficients Φαβ(Rg(t)). The equations of motion that result from differentiation of
(6.2) are called the SA equations, and are given explicitly in Appendix 6.A (equations
(6.33)-(6.36)). When we further average the Hamiltonian (6.2) over the outer orbital
motion Rg(t) (i.e. over the orbital torus or annulus — see Chapter 2), the resulting
doubly-averaged (DA) perturbing Hamiltonian is

H1,DA = 1
2
∑
αβ

Φαβ〈rαrβ〉M = 1
2Φxx〈x2 + y2〉M + 1

2Φzz〈z2〉M

= C × 1
L2J2

[
(J2 − 3ΓJ2

z )(5L2 − 3J2)− 15Γ(J2 − J2
z )(L2 − J2) cos 2ω

]
. (6.3)

The DA equations of motion arising from (6.3) are given in equations (4.9)-(4.11). Whether
we use SA or DA theory, if we wish to include GR precession then we must add to
our Hamiltonian a term

HGR = −CLεGR
J2 . (6.4)

This obviously affects the equation of motion for dω/dt by adding an extra term CLεGR/J
2

(equation (4.1)). We will ignore GW emission throughout this Chapter.
Following this, we know from Chapter 4 that in the DA approximation, i.e. under

the dynamics prescribed by the total DA Hamiltonian HDA ≡ H1,DA +HGR, there are
two independent integrals of motion. For the purposes of this Chapter, it will be most
useful to take these to be jz ≡ Jz/L and D, defined as (see equation (4.16)):

D ≡ e2
(

1 + 10Γ
1− 5Γ sin2 i sin2 ω

)
− εGR

3(1− 5Γ)
√

1− e2
. (6.5)

2In Chapters 2 and 3 we referred to H1,SA as 〈H1〉M . We will stick to the H1,SA notation in what
follows. An analagous statement holds for the upcoming H1,DA and HGR.
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In the SA approximation, i.e. under the dynamics prescribed by the total SA Hamiltonian
HSA ≡ H1,SA +HGR, the quantities jz(t), D(t) are not precise integrals of motion: instead
they are time-dependent (the latter is found by evaluating the right hand side of (6.5)
using the SA orbital elements). However, they can typically be treated as constants
when averaged over several outer orbital periods, which means they are still useful for
characterising the ‘underlying’ secular behaviour. Indeed, a binary that is described by
SA dynamics with near-constant jz and D will simply fluctuate around the underlying
DA solution corresponding to one of the level curves in the characteristic (ω, e) phase
space — see Chapter 3. This is what allows us to consider short-timescale fluctuations as
a perturbation on top of a dominant secular effect (Ivanov et al. 2005; Luo et al. 2016).
On the other hand, in §6.4 we will see that for non-zero εGR and very high eccentricities,
this perturbative assumption can break down — even the time-averaged value of D can
change dramatically and abruptly, reflective of phase space diffusion.

6.3 Short-timescale fluctuations and high eccentricity be-
haviour

In this section we provide several numerical examples that demonstrate the phenomenology
of short-timescale fluctuations, and discuss them qualitatively, first in the Hernquist
potential (§6.3.1) and then in the Plummer potential (§6.3.2). Crucially, for simplicity and
in order to cleanly separate certain physical effects, we do not include GR precession in any
of these examples (GR precession will be added in §6.4). In §6.3.3 we provide a quantitative
analysis of the behaviour we have uncovered. Finally in §6.3.4 we derive an approximate
expression for the magnitude of angular momentum fluctuations at highest eccentricity.

We note that in all numerical examples presented in this Chapter, we checked that
the numerical method for integrating the SA equations had converged. In particular
we integrated the outer orbit using a timestep ∆t which was small enough that further
shortening of the timestep did not affect the SA results (typically Tφ/∆t ∼ 103).

6.3.1 Two examples in the Hernquist potential

(A) Fiducial example in the Hernquist potential, i0 = 90.3◦

In Figure 6.1A we give an example of a binary that undergoes significant short-timescale
fluctuations at high eccentricity. This figure is very rich in information and exhibits
several interesting features that we wish to explore throughout the Chapter. We will also
see several other figures with this or similar structure. It is therefore worth describing
the structure of Figure 6.1A in detail.

At the very top of the figure (top line of text) we provide the values of 6 input
parameters (Φ,M, b, rp, ra, φ0) that define the perturbing potential as well as the
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outer orbit’s initial conditions. In this case we are considering a binary in a Hernquist
potential (see equation (2.52)) with total mass M = 107M� and scale radius b = 1pc.
Since the potential is spherical, the outer orbit can be specified with three numbers:
its pericentre rp = 0.7b, its apocentre ra = 1.4b, and its initial azimuthal coordinate
φ0 = 0◦, where φ is the outer orbit’s azimuthal angle relative to the X axis (see Chapter
2). Unless otherwise stated, in this Chapter we always initiate the outer orbit at t = 0
from (R,φ) = (ra, φ0) with φ̇ > 0.

In the second line of text we list 7 input parameters (m1, m2, a0, e0, i0, ω0, Ω0) that
concern the binary’s inner orbit; the subscript ‘0’ denotes initial values. In this example
we are considering a NS-NS binary (m1 = m2 = 1.4M�) with initial semimajor axis
a0 = 50AU. Note also that the initial inclination i0 is chosen close to 90◦, which is
necessary to achieve very large eccentricities (Θ � 1).

In the third and final line of text at the top of the figure, we list 6 important
quantities that follow from the choices of 13 input parameters above: Γ,Θ, the inner
orbital period Tin = 2π

√
µ/a3, the outer orbit’s radial period TR, its azimuthal period

Tφ, and the strength of GR precession εGR. In this instance we have a Γ value of 0.326
and Θ = 2.1× 10−5, which allows emax to become extremely high. Lastly, we emphasise
that we have artificially switched off GR precession in this example. Thus, even though
we provide the value of εGR for the binary in question, in practice this quantity is set
to zero in the equations of motion and in evaluating D. This choice is also indicated
in the third line of text. GR precession will be incorporated in §6.4, allowing for direct
comparison with the results of this section.

Now we move on to the figure proper. In panels (a) and (b) we display the trajectory
of the outer orbit through the (X,Y ) plane, integrated using GALPY (Bovy 2015). In
both panels we show the trajectory from t = 0 to t = TR (cyan line), and from t = TR

to t = 2TR (yellow line). In black we show the entire trajectory traced up to time
t = 0.1tsec (panel (a)) and t = 0.5tsec (panel (b)), where tsec is the period of secular
oscillations, computed using equation (3.33).

In total we integrated the outer orbit Rg(t) until t = 4.5tsec. We then fed the resulting
Φαβ(Rg(t)) timeseries into the SA equations of motion (6.33)-(6.36) and integrated them
numerically. In panels (c), (d) and (e) we compare the numerical integrations of the SA
equations of motion for e, ω, Ω (green curves) against the prediction of DA theory (blue
curves). We also show the results of direct ‘N-body’ integration3 (red dotted curves). In
panel (c) we see that the binary reaches extremely high eccentricity, with the DA result
1− eDA reaching values as low as ∼ 10−5. In this panel we already see that the maximum

3The ‘N-body’ integration involves directly integrating the exact binary equations of motion in the
presence of the full, smooth time-dependent field Φ(Rg(t)) using REBOUND (Rein & Liu 2012).
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eccentricity reached in the SA approximation can be rather different from the DA value,
and changes from one eccentricity peak to the next. Also striking from panels (d) and (e)
are the step-like jumps in ω and Ω that occur near maximum eccentricity in both SA and
DA integrations — note that these are just what we expect from our investigation in §4.C.

In panels (f) and (g) we show the evolution of the quantities D (equation (6.5)) and
jz (equation (3.7)). We emphasise again that although the definition (6.5) of D involves
εGR (and we report a finite εGR value in the third line at the top of the figure), we do not
include GR at all in this example, i.e. we set εGR ≡ 0 for the purposes of calculating D.

In the DA approximation, D and jz are integrals of motion — hence the blue DA
result is simply a straight horizontal line. We see that the SA result more or less oscillates
around the constant DA value in both cases, with an envelope that has period tsec for jz
and tsec/2 for D. In panel (f) there is a small offset between DDA and the mean value of
DSA, which is due to an initial phase offset of the outer orbit (Luo et al. 2016; Grishin
et al. 2018). We also notice a characteristic behaviour which is that fluctuations in D are
minimised around the eccentricity peak, while fluctuations in jz are maximised there.

In the right hand column, in panels (i)-(m) we simply reproduce panels (c)-(g), except
we zoom in on the sharp eccentricity peak at around 10.3 Myr. At the top of this column
we have panel (h), which shows the outer orbital radius R(t) during this high-eccentricity
episode. In addition, in each panel (h)-(m) we shade in light blue the region

|t− t(jmin)| < tmin. (6.6)

Here t(jmin) is the time corresponding to the minimum of jDA (i.e. peak DA eccentricity),
namely when jDA = jmin, and tmin is the time taken for jDA to change from jmin to

√
2jmin

— see equation (4.35). In panel (h) we also indicate the value of the ratio 2tmin/Tφ, which
will turn out to be very important when we switch on GR in §6.4. In this particular case
we see that 2tmin/Tφ = 0.41, so that most of the interesting (very highest eccentricity)
behaviour happens on a timescale shorter than an outer azimuthal period.

From panels (h)-(m) we see that the N-body and SA integrations agree very well
even at extreme eccentricities, giving us confidence that the SA approximation is a
good one4. However, the SA prediction differs markedly from the DA prediction at
very high eccentricity. In particular, from panel (i) we see that 1 − eDA becomes ≈
10−4.6 at its minimum, while 1− eSA reaches a significantly smaller value still, ≈ 10−5.2.
Panels (j) and (k) reveal that the large jumps in ω and Ω both happen on a timescale
∼ 2tmin. In panels (l) and (m) we show how the integrals of motion jz and D fluctuate
around the maximum eccentricity.

4The SA approximation can itself break down at extremely high eccentricity — see §6.5.2 for discussion.
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In panels (n)-(q) we again show the timeseries of R and 1 − e around the second
eccentricity peak (although over a wider timespan), as well as the differences

δj(t) ≡ jSA(t)− jDA(t), δω(t) ≡ ωSA(t)− ωDA(t), (6.7)

between the results of SA and DA integration. The vertical dotted magenta line in panels
(o) and (p) corresponds to t = t0.99, which is the time when eDA first reaches 0.99. From
panel (p) we see that δj fluctuates in a complex but near-periodic manner, with period
∼ 5TR. The fluctuations themselves are not perfectly centred around zero; before the
eccentricity peak, 〈δj〉 is slightly negative, whereas afterwards it is slightly positive. The
blue and cyan bars in panel (p) correspond to simple approximations to the amplitude
of δj at peak eccentricity — see §6.3.4. Meanwhile, from panel (q) we see that the
fluctuation δω is negligible until the very highest eccentricities are reached, where there is
a sharp pulse before it decays to zero again. This pulse is approximately antisymmetric
in time around t = t(jmin). The pulse episode lasts for ∼ 2TR.

(B) Changing the initial inclination to i0 = 93.3◦

In Figure 6.1B we run the same calculation as in Figure 6.1A, except we take i0 = 93.3◦

rather than 90.3◦. The main effect of this choice is to reduce the maximum eccentricity
significantly, so that 1 − emax ≈ 10−2.7. As a result, DA evolution near maximum
eccentricity is slower than in Figure 6.1A, while the outer orbit is unchanged; hence we
find 2tmin/Tφ = 4.55 in this case. The qualitiative fluctuating behaviour of D, jz and δj
is quite similar between the two figures, although in Figure 6.1B many more fluctuations
fit into the ‘blue stripe’ surrounding maximum eccentricity. The fluctuations δω are very
different: the brief ‘pulse’ that lasted for only ∼ 2TR in Figure 6.1Aq has been replaced
with a much broader signal with a significantly smaller amplitude.

6.3.2 Two examples in the Plummer potential

The phenomenology reported above is rather characteristic of binaries orbiting in cusped
potentials, and will be analysed more quantitatively in §6.4.4. First, however, we perform
the same calculation except this time with a cored potential, namely the Plummer sphere.

(A) Fiducial example in the Plummer potential

In Figure 6.2A we provide an example of a binary exhibiting short-timescale fluctuations in
a cored potential. All input parameters are the same as in Figure 6.1A except we change the
potential from Hernquist to Plummer (2.51). The change of potential means that we now
have Γ = 0.194 < 1/5, which leads to a rather large DDA value of around 17.6 (equation
(6.5)). Once again, SA and N-body results agree very nicely even at extreme eccentricities.
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Noteworthy in this case is the morphology of the fluctuations of jz,SA near highest

eccentricity, around the DA value jz,DA = −
√

Θ = −0.0045 (panel (g)). In this case,

small fluctuations of amplitude on the timescale ∼ TR are superimposed upon a larger

‘carrier signal’ oscillation, which has amplitude ∼ 0.006 and its own period ∼ 4TR. A

similar morphology is exhibited by the δj timeseries (panel (p)). Again the fluctuations

δω (panel (q)) are negligible until the very highest eccentricities are reached, where

there is a sharp, negative pulse of maximum amplitude ∼ 0.2π, that lasts for ∼ 2TR
in total before decaying back to zero.

(B) Shifting the initial nodal angle Ω0 by 45◦

We give one final example in Figure 6.2B. The initial conditions this time are exactly

the same as in Figure 6.2A, except we make an initial phase shift by putting Ω0 = 0◦

rather than Ω0 = 45◦. This choice of phase feeds into the SA equations of motion

(6.33)-(6.36), but does not affect the DA equations. In the right hand column we zoom

in on the same secular eccentricity peak as in Figure 6.2A. We see that the SA results

at very high e are rather different between the two figures. In particular, eSA reaches

a different maximum value, and does so at a different time. Also, deviations of ω, Ω

from the DA result are not so severe in Figure 6.2B as in Figure 6.2A. Overall though,

the fluctuating behaviour in Figures 6.2A and 6.2B is qualitatively similar despite the

applied phase shift. In fact this is a rather generic result, holding for various choices

of initial conditions, potentials, etc. — phase shifts produce a quantitatively different,

but qualitatively similar, fluctuating behaviour at high eccentricity when GR precession

is switched off. However, phase dependence can become much more important when

GR precession is included, as we explore in §6.C.

6.3.3 Analysis of fluctuating behaviour

We now wish to explain more quantitatively the behaviour that we observed in the previous

two subsections. Precisely, we aim to understand the characteristic behaviours of δj and

δω around the eccentricity peak and to understand the envelopes of D and jz fluctuations

over secular timescales. That is what we will accomplish in this subsection. For more

practical purposes we also wish to derive and test an approximate expression for the

amplitude of fluctuations δj around the peak eccentricity — that will be done in §6.3.4.
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Notation and approximation

To achieve these aims we must first introduce a clean, precise notation to describe
fluctuations. Let us define the vector w ≡ [ω, J,Ω, Jz]. Then the ‘SA solution’

wSA(t) ≡ [ωSA(t), JSA(t),ΩSA(t), Jz,SA(t)], (6.8)

is found by self-consistently integrating the SA equations (6.33)-(6.36), which are the
Hamilton equations resulting from HSA(ωSA, JSA,ΩSA, Jz,SA, t) ≡ HSA(wSA, t). Mean-
while the ‘DA solution’

wDA(t) ≡ [ωDA(t), JDA(t),ΩDA(t), Jz,DA], (6.9)

is found by self-consistently integrating the DA equations of motion (e.g. (4.9)-(4.11)),
which are the Hamilton equations for HDA(ωDA, JDA, Jz,DA) ≡ HDA(wDA). Consistent
with equation (6.7) we formally define:

δw(t) ≡ wSA(t)−wDA(t). (6.10)

Next, we will also find it useful to define a ‘fluctuating Hamiltonian’:

∆H(w, t) ≡ HSA(w, t)−HDA(w), (6.11)

which is written explicitly in Appendix 6.B — see equation 6.37. Using the fluctuating
Hamiltonian we can define four new quantities

∆w(w, t) ≡ [∆ω(w, t),∆J(w, t),∆Ω(w, t),∆Jz(w, t)] (6.12)

as the solution to the equations of motion

d∆w(w, t)
dt ≡

[
∂∆H(w, t)

∂J
,−∂∆H(w, t)

∂ω
,
∂∆H(w, t)

∂Jz
,−∂∆H(w, t)

∂Ω

]
. (6.13)

As an example, the partial derivative ∂∆H/∂ω is given explicitly for spherical poten-
tials in equation (6.42).

Now, we must bear in mind that in general,

δw(t) 6= ∆w(wSA, t) 6= ∆w(wDA, t). (6.14)

In other words, we cannot simply feed a numerical result w(t) = wSA(t) into equation
(6.13) and expect to reproduce the ‘SA minus DA’ solution (6.10) by integrating forwards
in time; for example:

δω(t) ≡ ωSA(t)− ωDA(t) 6= ∆ω(wSA, t) ≡
∫ t

0
dt′∂∆H(wSA(t′), t′)

∂JSA
. (6.15)
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Figure 6.3: Justifying the approximation δw(t) ≈ ∆w(wSA, t) ≈ ∆w(wDA, t). The data used
here is taken from the first secular period of the evolution shown in Figure 6.1B.

Similarly, δJ 6= ∆J and δΩ 6= ∆Ω. The exception is Jz, for which there is no DA
evolution, so that δJz(t) = ∆Jz(wSA, t). Figure 6.3 demonstrates this explicitly. The
data in this figure is taken from the first secular period of evolution of the system
shown in Figure 6.1B. In blue we show ∆w(wDA(t), t), i.e. the result of feeding the
DA solution to equations (6.13) and integrating forwards in time. Analagously, in
green we plot ∆w(wSA(t), t). Finally, overplotted in black we show δw(t) = wSA(t) −
wDA(t). Panels (a)-(d) correspond to fluctuations in ω, j,Ω, jz respectively. We see in
each panel that the blue and green curves agree nicely, so that we may approximate
∆w(wDA(t), t) ≈ ∆w(wSA(t), t). Furthermore, panel (d) shows that for jz fluctuations,
all three curves agree very precisely, as expected. On the other hand, in panels (a)-(c)
there is a visible offset between the blue/green curves and the black curves. This is
particularly true for fluctuations in ω (panel (a)). However, the differences are small
enough — particularly for fluctuations in j (panel (b)), which are what we care about
most — to justify the approximation

δw(t) ≈ ∆w(wSA(t), t) ≈ ∆w(wDA(t), t). (6.16)

This approximate equality in (6.16) is useful because we have explicit expressions for
d∆w/dt, via equations (6.13) and the Hamiltonian (6.37).

Scaling of fluctuations at high eccentricity in spherical potentials

Having established the approximation (6.16), we can use the equations of motion (6.13) to
gain a better understanding of the behaviour of fluctuating quantities in Figures 6.1-6.2. To
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do this we take derivatives of (6.41) (which is valid for spherical potentials only) and then
take the high eccentricity limit L2 � J2 → J2

z . As a result we find the following scalings:
d
dtδj ∝ J

0,
d
dtδjz ∝ J

0,
d
dtδω ∝ J

−1,
d
dtδΩ ∝ J

−1. (6.17)

Thus, we expect the fluctuations δj, δjz to be independent of j as e → 1, i.e. as
j2 → j2

z → 0. In other words, we do not expect any sharp peak in δj or δjz as we
approach maximum eccentricity. On the contrary we do expect a spike in δω and δΩ
as we approach the highest eccentricities. Such behaviour is precisely what we found
in Figure 6.3 and in panels (m), (p) and (q) of Figures 6.1-6.2.

Envelope of D, jz fluctuations

When discussing the numerical examples above we saw that the envelopes of fluctuations
in jz,SA and DSA had periodic amplitudes, with periods of tsec and tsec/2 respectively.
We now explain each of these behaviours in turn.

First, we consider the envelope of jz fluctuations. It is clear from the numerical
examples that the amplitude of this envelope is minimised at the midpoint of each
secular cycle, as ω/π gradually moves through ∼ 0.5, and maximised when ω/π gets
close to its extrema. Evaluating the torque formula djz,SA/dt at these different values
of ω using equation (6.43), we find that the envelope of jz fluctuations reflects nothing
more than the amplitude of this fluctuating torque5.

Second, we address the fluctuations in DSA. In this case the amplitude of the envelope
exhibits minima at times corresponding to both jDA = jmax and jDA = jmin, and maxima
in-between. To see why, we differentiate (6.5):

dDSA
dt = − 2Dj

1− j2
dj
dt + 10Γe2

1− 5Γ

(
sin 2i sin2 ω

di
dt + sin 2ω sin2 i

dω
dt

)
, (6.18)

where, strictly, all quantities should have the ‘SA’ suffix. Consider the first term on the
right hand side of (6.18). For j → jmin � 1 it is proportional to j (see equation (6.17)),
and so is negligible. For j → jmax ∼ 1 it is finite but small, because the (1− j2)−1 factor
cancels on the (J2 − L2) prefactor in the SA torque formula (equation (6.42)). Now
take the second term on the right hand side of (6.18). Near minimum eccentricity, e2

is small, and i ≈ imax ≈ 90◦, so both sin 2i and sin2 i are very small. Near maximum
eccentricity ω approaches π/2, so sin2 ω and sin 2ω are both minimised; also the evolution
of ω slows down dramatically, so that dω/dt is small and negative6. These arguments
no longer hold away from the extrema of j, so that the DSA envelope is minimised at
those extrema and maximised in-between.

5There is also the rapid ‘swing’ between extreme values of ω that occurs around maximum eccentricity,
during which ω/π again passes through 0.5. However this swing happens too quickly for the envelope of
jz fluctuations to be significantly affected.

6Except, again, for the extremely rapid but brief swing in ω at high eccentricity — see the previous
footnote.



6. Short-timescale fluctuations 228

6.3.4 Characteristic amplitude of δj fluctuations

Perhaps the most important consequence of short-timescale fluctuations is that they

enhance the value of emax when e gets very large, which can lead to e.g. more rapid compact

object binary mergers (Grishin et al. 2018). With this in mind, we wish to estimate (δj)max,

which we define to be the absolute value of the maximum fluctuation δj in the vicinity of

maximum eccentricity. Unfortunately, it is immediately obvious from Figures 6.1-6.2 that

a binary can have a different value of (δj)max from one secular eccentricity peak to the

next. Nevertheless, our goal in this section will be to estimate the characteristic size of

such fluctuations and then demonstrate numerically that our estimate is a reasonable one.

For simplicitly we will assume that Φ is spherically symmetric. Then to evaluate

the torque at high eccentricity we can use (6.42), which by (6.13) and (6.16) is a good

approximation to−dδj/dt if we evaluate it using DA quantities. The maximum eccentricity

as predicted by the DA theory is eDA = emax ≈ 1, and it always occurs either at

ωDA = ±π/2 or at ωDA = 0. Let the corresponding minimum inclination be imin.

Evaluating (6.42) at these (assumed fixed) DA values, we find

dδJ
dt

∣∣∣∣
ω=±π/2

=5
4a

2 cos imin × 2f−(R) sin[2(φ− Ω)], (6.19)

or the same thing with an additional minus sign if evaluating at ω = 0. Note that the

function f−(R), defined in equation (6.38), depends on the instantaneous value of the outer

orbital radius R(t). Finally, one can check that for a Keplerian potential Φ = −GM/R

we recover from (6.19) equation (B4) of Ivanov et al. (2005).

Next, we use the fact that a and cos imin are constants and we assume that Ω is

stationary on the timescale Tφ. Placing the maximum DA eccentricity at t = 0 without

loss of generality, we set Ω = Ω(0) (although as with stationarity of ω and e, this can be

a poor assumption, as we know from §4.C). Then the only time dependence in equation

(6.19) comes from R(t) and φ(t). Furthermore, f−(R) < 0 for all R in sensible cluster

potentials7. As a result, the sign of the torque at highest eccentricity (equation (6.19)) is

dictated entirely by the instantaneous value of the phase angle 2(φ− Ω). The fluctuation

7To see this, suppose the cluster has density profile ρ(r). From Poisson’s equation ∇2Φ = 4πGρ it is
straightforward to show that

∂2Φ
∂R2 −

1
R

∂Φ
∂R

= R
∂

∂R

(
GM(R)
R3

)
, (6.20)

where M(R) =
∫ R

0 4πr2drρ(r) is the mass enclosed inside a sphere of radius R. For any any model in
which density is a non-increasing function of radius, the expression (6.20) is negative for all R.
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(δj)max is therefore accumulated over a quarter period in azimuth, say from φ(t1)−Ω = 0 to
φ(t2)−Ω = π/2, after which the torque changes sign. Integrating (6.19) over time we find

(δj)max =5
4

[
a3

G(m1 +m2)

]1/2

cos imin F (rp, ra) (6.21)

=10−4 ×
(√

Θ/jmin
1

)(
m1 +m2
M�

)−1/2 ( a

10AU

)3/2

×
(
F ∗

0.8

)(
M

105M�

)1/2 ( b

pc

)−3/2
, (6.22)

where all the details of the potential and outer orbit have been absorbed by the function

F (rp, ra) =
∫ t2

t1
dt
∣∣∣∣∣∂2Φ
∂R2 −

1
R

∂Φ
∂R

∣∣∣∣∣ sin[2(φ− Ω(0))], (6.23)

and in the numerical estimate (6.22) we defined the dimensionless number

F ∗ ≡ (GM/b3)−1/2F. (6.24)

The problem with equations (6.21) and (6.23) as they stand is that we do not know
precisely which quarter-period in φ will provide the dominant fluctuation, because this
would require knowledge of R(t) and φ(t). Thus, we cannot evaluate (6.23) directly for an
arbitrary outer orbit — and even if we could, we would not expect the resulting (δj)max

to be exactly correct because of the non-stationarity of ω, j,Ω.

Circular approximation

The simplest (and practically speaking, only) way to proceed is to estimate F by imagining
that the binary is on a circular outer orbit with radius R. Then F = Fcirc(R) where

Fcirc(R) =
∣∣∣∣∣∂2Φ
∂R2 −

1
R

∂Φ
∂R

∣∣∣∣∣
/√

1
R

∂Φ
∂R

. (6.25)

In Figure 6.4 we plot the dimensionless number F ∗circ ≡ (GM/b3)−1/2Fcirc as a function
of R/b for circular outer orbits in various spherically symmetric cluster potentials. For
reference we also plot F ∗circ for the Kepler potential Φ = −GM/r (the scale radius b
is arbitrary in that case). We see that in the cored (Plummer and isochrone) models
F ∗circ has a maximum value of order unity which is realised when R ∼ b, and that it
falls sharply to zero towards the centre of the cluster. For centrally cusped potentials
(Hernquist and NFW) we again have F ∗circ ∼ 1 at intermediate radii R ∼ b, but F ∗circ

diverges towards the centre as ∼ R−1/2, typically reaching F ∗circ ∼ 10 at the smallest
sensible radii. At very large radii R� b, the isochrone, Plummer and Hernquist potentials
tend toward Keplerian behaviour, F ∗circ ∼ R−3/2. (The logarithm in the NFW potential
(2.53) means it never quite becomes Keplerian at these radii).
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Figure 6.4: Plot of the dimensionless function F ∗
circ ≡ Fcirc(R)/(GM/b3)1/2, where F is defined

in equation (6.25), for the four spherical potentials (2.50)-(2.53) as well as the Kepler potential
Φ = −GM/r.

From Figure 6.4 we learn that (i) the magnitude of short-timescale angular momentum
fluctuations is roughly independent of potential type for R & b, (ii) short-timescale
fluctuations are significantly larger in cusped potentials than in cored potentials for R < b,
and (iii) very large values of F ∗ can be reached at small radii in the Kepler potential.
We also learn that in cusped potentials, the dominant short-timescale fluctuation in the
angular momentum at very high eccentricity is likely to coincide with the outer orbit’s
pericentre passage (despite the fact that binaries spend more time at apocentre than
pericentre). In other words, for binaries orbiting cusped potentials we should evaluate
Fcirc (equation (6.25)) at R = rp. In cored potentials this is no longer true because of
the turnover in F ∗circ at R ∼ b. Then, for example, for orbits with ra . b the dominant j
fluctuations arise around apocentre passage. However, outer orbits in cored potentials with
ra . b tend to have Γ < 1/5 (Figure 2.5), so they tend not to reach such high eccentricities
anyway8, and besides, the values of F ∗circ never exceeds ∼ 1 regardless of R for these
potentials. Hence, for an order of magnitude estimate we may choose simply to evaluate
(δj)max using equation (6.25) with R = rp, regardless of the potential or outer orbit.

In panel (p) of Figures 6.1-6.2 we show as ‘error bars’ the values of ±(δj)p (cyan)
and ±(δj)a (yellow), which are calculated by evaluating ±(δj)max (equation (6.21))
using the circular approximation (6.25) at R = rp and R = ra respectively. We see
that the circular approximation gives a decent rough estimate of the amplitude of
fluctuations δj. In the LK case, the result (6.21) with the circular approximation (6.25)
was first used by Ivanov et al. (2005).

8Of course the Γ < 1/5 numerical examples shown in this section do reach very high e, but that is
because we have purposely chosen a rather special set of initial conditions in order to make this so.
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One important caveat here is that while the δj(t) behaviour is often rather regular
up to eDA . 0.99, it often becomes very irregular in the immediate vicinity of the
eccentricity peak, as can be seen in Figures 6.1-6.2. This is because of the rapid evolution
of ω and Ω when j ≈ jmin (see the light blue shaded bands in panels (j) and (k) of
each of those Figures) which introduces a significant phase dependence into the detailed
fluctuation behaviour. Of course, since (6.21) was derived by assuming stationary ω,Ω, j,
it necessarily fails to capture this irregular behaviour.

6.4 The effect of GR precession

In the previous section we gained a lot of insight into how fluctuations in the cluster tidal
torque affect high eccentricity behaviour, but if we are to investigate many real systems —
e.g. binary black hole mergers — then it is vital that we also account for GR precession.
As we will see in this section, including GR can change the picture significantly. To begin
with, in §§6.4.1-§6.4.2 we rerun the numerical calculations from §§6.3.1-6.3.2 except this
time with GR precession switched on, and simply describe the altered phenomenology.
In §6.4.3 we compare the GR and non-GR calculations in the special case of the LK
problem. The main new result that arises in each of these subsections is the diffusion of
the binary integral of motion D in the SA approximation. In §6.4.4 we offer a physical
explanation for this new phenomenon and attempt to analyse it quantitatively.

6.4.1 Two examples in the Hernquist potential

(A) Fiducial Hernquist example including GR precession

In Figure 6.5A we rerun the calculation from Figure 6.1A, except we switch on the GR
precession term (with strength εGR = 0.00107) in the SA and DA equations of motion.
We now discuss Figure 6.5A in some detail.

The structure of panels (a)-(m) is identical to those of Figure 6.1A, except that we
have dispensed with N-body integration since it is prohibitively computationally expensive,
and that in panels (h)-(m) we have chosen to zoom in on the first secular eccentricity
peak rather than the second. Comparing panels (a)-(m) with those of Figure 6.1A we
immediately notice several qualitative differences. Whereas in Figure 6.1A the DA and SA
predictions for log10(1− e) agreed almost perfectly except at extremely high eccentricity,
now in Figure 6.5A (GR precession on) they disagree manifestly after the first eccentricity
maximum. Moreover, while the period of secular oscillations is fixed in the DA case, the
SA secular period changes from one eccentricity peak to the next. By the time of the
fourth eccentricity peak the DA and SA curves in panels (c)-(e) are completely out of sync.

Furthermore, from panel (f) we see that DSA no longer fluctuates around DDA

indefinitely like it did in Figure 6.1Af, but rather exhibits discrete jumps during very
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high eccentricity episodes. In panel (l) we zoom in on the DSA behaviour around the

first eccentricity peak. We see that DSA jumps from ≈ −1.05 to ≈ −1.1 and that this

jump happens essentially within the ‘blue stripe’ (equation (6.6)), i.e. on the timescale

∼ 2tmin. Meanwhile, we observe in panels (g) and (m) that jz,SA does not perform any

discrete jumps at high-eccentricity, but rather exhibits a very similar behaviour to the

non-GR case (Figure 6.1Ag,m). Jumping to a new D value while keeping jz fixed means

a new value of H∗, i.e. the binary now traces a different contour in the DA (ω, e) phase

space (Chapters 3-4). Since this behaviour depends crucially on the presence of finite GR

precession we choose to call it ‘relativistic phase space diffusion’ (RPSD). Finally, each

phase space contour has its own secular period. Hence it is unsurprising that a jump in

DSA leads to a modified SA secular period compared to the fixed DA period9.

To investigate the RPSD behaviour further, we next ran the integration for a much

longer time10, 20tsec. In panels (n) and (o) of Figure 6.5A we plot 1−e and D respectively

as functions of time over this entire duration. The same picture holds in that DSA is

roughly static between eccentricity peaks, but often makes a discernible jump during

a peak. These jumps seem to have no preferred sign.

(B) Changing the initial inclination to 93.3◦

The diffusion of DSA at eccentricity peaks is not present in Figure 6.5B, in which we

keep all conditions exactly the same as Figure 6.5A except that we change i0 from 90.3◦

to 93.3◦. (In other words, we rerun the same calculation as in Figure 6.1B except with

GR switched on). Note that this case has 2tmin/Tφ = 4.55 & 1.

6.4.2 Two examples in the Plummer potential

(A) Fiducial Plummer example including GR precession

In Figure 6.6A we give another example of RSPD, this time in the Plummer potential.

This example is identical to that in Figure 6.2A except that we switched on GR precession,

and zoomed in on the first eccentricity reak in the right column rather than the second.

A major jump in DSA can be seen in panel (o), around 39 Myr, which entirely shifts

the SA evolution away from the original DA prediction.

9For instance, in Figure 6.5A, making D more negative while keeping jz — and therefore Θ — fixed
moves the binary further to the left of the separatrix in (D,Θ) phase space (see Figure 3.3), which accounts
for the decrease in the period of the subsequent secular oscillation.

10Note that tsec is not the exact DA secular period when we include GR precession, as it is calculated
assuming no GR (equation (3.33)), but for εGR � 3(1 + 5Γ) it is a very good approximation (Chapter 4).
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(B) Shifting the initial nodal angle Ω0 by 45◦

We give another example in Figure 6.6B, which uses the same initial conditions as Figure

6.2B except with GR switched on. In other words, this example is identical to Figure

6.6A except for an initial orbital phase change, taking Ω0 = 0◦. The result is a completely

different SA evolution, with no discernible RPSD for the first three eccentricity peaks

followed by a large kick at the fourth, around 24Myr (panel (a)). We see here that the

effect of an initial orbital phase offset is far more dramatic with GR precession than

without: said differently, RPSD dramatically amplifies small differences in the initial

conditions, often producing entirely divergent secular behaviour from one case to the

next. This phase dependence is illustrated further in §6.C.

6.4.3 An example in the Lidov-Kozai limit

The main phenomenological result we have found in this section is that when GR precession

is switched on and a binary reaches very high eccentricity, short-timescale fluctuations

may cause it to be ‘kicked’ to a qualitatively new phase space trajectory. It is important

to note that this behaviour is not exclusive to the non-Keplerian potentials that we have

investigated so far, but is present in the Lidov-Kozai problem as well (though to our

knowledge, nobody has mentioned it explicitly). To demonstrate this we provide Figure 6.7.

(A) LK example without GR precession

In Figure 6.7A we run a calculation with exactly the same initial condition as in Figure

6.1A, except that we change the potential to the Keplerian one, Φ = −GM/
√
R2 + Z2.

In other words, we are now investigating the classic test particle quadrupole Lidov-Kozai

problem, relevant to e.g. a NS-NS binary orbiting a SMBH (e.g. Antonini & Perets

2012; Hamers 2018a; Bub & Petrovich 2020), except that we have GR switched off. In

panels (a) and (b) we simply see the outer orbital ellipse, which has semimajor axis

ag = (ra + rp)/2 = 1.05b and eccentricity eg = (ra − rp)/(ra + rp) = 0.33. Panels

(c)-(m) show quite similar behaviour to that of Figure 6.1A (although note that this

time we have chosen to zoom in on the first eccentricity peak in the right hand panels,

rather than the second). Since 2tmin/Tφ = 0.15, the highest eccentricity episode lasts

for significantly less than one outer orbital period. Despite this, the SA result tracks

the secular (DA) result indefinitely, and the N-body integration again confirms that

the SA approximation is a good one.
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(B) LK example including GR precession

In Figure 6.7B we perform the same calculation with GR precession switched on. Again,
this causes significant and repeated diffusion of DSA around the secular eccentricity peaks,
meaning the binary ultimately follows a completely different trajectory to the one we
would have predicted had we only used DA theory. This confirms that RPSD is present
as a phenomenon in LK theory at the test-particle quadrupole level as long as 1pN GR
precession is included, despite not having been discussed before in the literature.

6.4.4 Physical interpretation and quantitative analysis

By examining the phenomenology of several numerical experiments, we have uncovered
a new effect, namely the ‘jump’ behaviour of DSA at high eccentricity, which we have
termed RPSD. However, we still lack a quantitative description of when and why it
occurs. The aim of this section is to provide some physical understanding and to attempt
a rough quantitative analysis of RPSD.

Physical interpretation of RPSD, and the necessary conditions for its occurence

Why does RPSD happen? We take note of three pieces of evidence which will help
us answer this question.

First, we have also seen empirically that when GR precession is switched off, there is no
RPSD. Second, we have seen in Figures 6.5-6.7 that RPSD can occur when 2tmin/Tφ . 1
but never occurs when 2tmin/Tφ & 1 (and we confirmed this in several additional numerical
experiments not shown here). Third, we notice that there is no diffusion in the time-
averaged value of jz,SA to accompany the diffusion of DSA (recall that jz and D are both
integrals of motion in the DA approximation). Taking these different strands of evidence
together, the physical mechanism behind RPSD soon becomes clear, as we now explain.

Whether we consider SA or DA dynamics, at eccentricities far from unity, significant
changes in the orbital elements occur only on secular timescales, i.e. timescales much
longer than Tφ. Of course D (equation (6.5)) is a function of these orbital elements.
Thus at eccentricities far from unity, DSA(t) invariably exhibits relatively small and rapid
(timescale ∼ Tφ) oscillations around the constant value DDA. However, at the highest
eccentricities e→ 1, significant changes in orbital elements can occur on much shorter
timescales. This is true even in DA theory: indeed, in §4.C we saw several numerical
examples of binaries whose ωDA value is turned through ∼ 90◦ or more on the timescale
2tmin. Now, when 2tmin/Tφ & 1 this is still slow from the point of view of the outer orbit,
since the relevant timescale is still much longer than any orbital period. But in the regime
2tmin/Tφ . 1, the DA theory essentially predicts its own demise: O(1) relative changes in
the orbital elements occur on the timescale of the outer orbit, contrary to the fundamental
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assumption of the secular approximation (Chapter 2). In that case, it is possible that the
fluctuations of SA theory may no longer be considered small, and would no longer oscillate
rapidly around the DA orbital elements while those DA elements change significantly.

For an example, consider e.g. Figure 6.5Aj, for which 2tmin/Tφ = 0.42. In this case
ωDA undergoes a large ‘swing’ in the time range shaded in blue, which is centred on
peak DA eccentricity. This time range is so short that ωSA does not have a chance to
perform any full oscillation during it. By contrast, consider Figure 6.5Bj, for which
2tmin/Tφ = 4.55. In this instance ωDA undergoes a swing of very similar magnitude
but on a much longer timescale, allowing ωSA to perform many small oscillations while
the swing is in progress (i.e. within the blue range).

How does this lack of timescale separation between tmin and Tφ affect jz,SA and
DSA? Well, when GR is switched off, they are not affected very significantly. This is a
consequence of the fact that without GR, djz,SA/dt and dDSA/dt scale rather weakly
with j at very high eccentricity11, and so do not respond vigorously to the rapid changes
in the various orbital elements — instead they just oscillate around the constants jz,DA

and DDA indefinitely. However, when we do include GR precession, dDSA/dt gets an
additional contribution: we must add to the right hand side of (6.18) the time derivative
of the last term in equation (6.5):(dDSA

dt

)
GR

= εGR
3(1− 5Γ)

1
j2

dj
dt , (6.26)

where strictly we should evaluate all quantities at their SA values. Now, we know that
djSA/dt does not vary with j when we approach very high eccentricity (the doubly-
averaged part of j is stationary at maximum DA ecentricity by definition, while the
fluctuating part δj satisfies equation (6.17)). As a result dDSA/dt ∝ εGRj

−2 as j → 0. If
εGRj

−2
min is sufficiently large, this can lead to a fluctuation in D around peak eccentricity

that is far larger than the ones we saw when GR was switched off. In this case, the
relative fluctuations in DSA can be so large, and DSA can have so little time to oscillate
back and forth around its ‘parent’ DDA value before the DA orbital elements change, that
upon emerging from the high-eccentricity blue stripe it ‘settles’ on a new parent DDA

value (see e.g. Figure 6.5Al). Equivalently, the binary ‘jumps’ to a new (ω, e) phase space
contour while at high e (still at fixed Γ, Θ and εGR), aided by the fact that contours at
high e are bunched so closely together (e.g. Figure 4.6). On the other hand, dJz/dt ∝ J0

is unaffected by GR precession, so these conclusions do not apply to jz,SA.
Let us attempt to be somewhat more quantitative. Suppose we tried to calculate

the ‘jump’ that DSA sustains across the eccentricity peak. First, we know dDSA/dt is
11We already argued this for DSA in §6.3.3; as for djz,SA/dt, we simply need to note that dJz,SA/dt ∝ J0

as J → Jz → 0 (see equation (6.17)).
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driven by the GR term (6.26) at high eccentricity, and that we can ignore the other
contributions. If we assume that far from the eccentricity peaks the fluctuations in DSA

are small, then we can choose the time coordinate to coincide with12 jDA(0) = jmin

and calculate Djump by integrating (6.26):

Djump ≈ εGR
3(1− 5Γ)

∫ ∞
−∞

dt 1
j2
SA(t)

(djSA
dt

)
wSA(t),Rg(t)

, (6.27)

where we are justified in taking the limits of the integral to ±∞ since for |t| � tmin the
integrand decays as ∼ t−2. The notation here is to remind us that SA torque djSA/dt (see
equation (6.34)) is to be evaluated using the SA solution wSA(t) and the instantaneous
outer orbital position Rg(t). Note that we cannot simply write the integral (6.27) as
2
∫
j−2
SAdjSA because in general there is no one-to-one correspondence between jSA and t

like there is between jDA and t. Now, if SA fluctuations were identically zero then we could
replace wSA → wDA and in particular jSA → jDA, resulting in Djump = 0, as expected.
This simply reflects the anti-symmetry of the resulting integrand j−2

DAdjDA/dt around
t = 0. To get a non-zero Djump we need to break this anti-symmetry. Let us use the
definition (6.16) and the approximation (6.16); then we can write the above equation as

Djump ≈ εGR
3(1− 5Γ)

∫ ∞
−∞

dt 1
[jDA(t) + ∆j(wDA(t), t)]2

(djSA
dt

)
wDA(t),Rg(t)

(6.28)

If 2tmin/Tφ � 1 then the SA fluctuations are small13: |∆j| � jDA at all times. They are
also rapid, so that djSA/dt oscillates many times while jDA is in the vicinity of jmin. In
this case the fluctuations naturally wash out to zero, giving a negligible Djump — see
Figure 6.6B. On the other hand, if 2tmin/Tφ & 1 then the integrand in (6.28) is no longer
close to anti-symmetric in time. Moreover, the value of this integrand can be boosted
significantly if jDA + ∆j conspires to come very close to 0 around the eccentricity peak
(though in practice this depends very sensitively on orbital phase information). Under
these circumstances we get a value for Djump that is significantly different from zero.

This analysis tells us that RPSD truly requires three key ingredients. (i) We require
εGR > 0, so that the term (6.26) is switched on. (ii) We need very high eccentricity
DA behaviour leading to rapid changes in all orbital elements around jmin; this requires
εGR � εstrong (Chapter 4). (iii) We need the short-timescale fluctuations to be significant
so that the the integral in (6.28) does not wash out to zero; this requires 2tmin/Tφ . 1,

12Again we have centred the DA eccentricity peak at t = 0 without loss of generality.
13To see this, we look at equation (6.21). Very roughly speaking, using cos imin ∼ jmin and F ∼ T−1

φ , we
can say that δj ∼ jminTin/Tφ (though the true value is very strongly phase-dependent). Coupling this with
tmin ∼ jmintsec and tsec ∼ T 2

φ/Tin (Chapter 3) we have δj/jmin ∼ jminTφ/tmin. Clearly for 2tmin/Tφ � 1
this quantity is very small.
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which, using tmin ∼ jmintsec, tsec ∼ T 2
φ/Tin (Chapter 3) and assuming weak GR so that

jmin ∼ Θ1/2, may be rewritten as:

Θ .

(
Tin
Tφ

)2

(6.29)

. 5× 10−5 ×
(
m1 +m2
2.8M�

)−1 ( a

50AU

)3 ( M
107M�

)1 ( R

1pc

)−3
. (6.30)

To get the second line here we took a binary on a circular outer orbit of radius R in
a spherical cluster of mass M, and put T 2

φ ∼ GM/R3. For binaries that do not start
off at very high eccentricities we have Θ ≈ cos2 i0, implying that RPSD operates in
the inclination window:

| cos i0| . 0.007×
(
m1 +m2
2.8M�

)−1/2 ( a

50AU

)3/2 ( M
107M�

)1/2 ( R

1pc

)−3/2
. (6.31)

Throughout this Chapter we have considered clusters with mass 107M�, binaries with
the mass of a NS-NS binary, m1 = m2 = 1.4M�, and outer orbits with semimajor axis
ag = 1pc. Putting R ∼ ag with these numbers into equation (6.31) gives | cos i0| < 0.007,
which corresponds approximately to i0 ∈ (89.6◦, 90.4◦). This is concomitant with what
we found numerically; all examples that exhibited RPSD had i0 = 90.3◦, while the
example for which there was no RPSD (Figure 6.6B) had i0 = 93.3◦. We discuss the
astrophysical implications of the result (6.31) in §6.5.1.

Finally, let us clear up one potential misconception. It is not the case that rapid
GR-induced advance of ω at high eccentricity is the culprit for pushing the binary to a
new phase space contour, and hence for RPSD — at least not directly. Indeed, even in
the absence of GR, the rapid ‘swing’ in ωDA is always present at very high eccentricity, as
we have seen in Figures 6.1, 6.2, 6.7A. Instead, it is the addition to dDSA/dt of the term
(6.26), which crucially diverges as j → 0 and requires non-zero εGR, that drives the phase
space diffusion. The susceptibility of D to small fluctuations at very high eccentricity
is due to the fact that D is proportional to the DA perturbing Hamiltonian (equation
(4.16)), and the level curves of this Hamiltonian are bunched very tightly together as
e→ 1 (e.g. Figure 4.6). Overall, the remarkable and non-intuitive truth is that in the
weak GR regime, GR has essentially no effect on the DA dynamics, and yet modifies the
SA dynamics — and hence the real binary evolution — fundamentally.

Statistical analysis of phase space diffusion

We know from §6.C that the erratic high eccentricity behaviour when GR is switched
on is highly phase dependent. Since predicting the behaviour of DSA for a given set
of initial conditions is very difficult, a natural next step is to investigate the statistics
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of jumps in DSA, by creating an ensemble Djump values for the same binary set off
with different orbital phases.

To do this, it is necessary to first define more precisely the quantity we are interested
in studying. This immediately raises some technical issues: (i) the value of DSA is never
actually fixed, and (ii) a steady-state approximation of DSA clearly breaks down as eSA

approaches unity. We therefore choose to study time-averages of DSA before and after
the eccentricity peak, taken over time intervals that stay sufficiently far from the peak
for the averaged value to be meaningful14, i.e. for 〈DSA〉 to correspond accurately to
the ‘parent’ value DDA. We are then interested in the quantity

Djump ≡ 〈DSA〉after − 〈DSA〉before. (6.32)

To probe this quantity, we considered a system with exactly the same setup and
initial conditions of Figure 6.5A except for the value of Ω0. We ran N = 300 numerical
integrations of the SA equations, using the initial phase angles Ω0 = 0, 2π/N, ..., 2π(N −
1)/N . We stopped each integration at t ≈ tsec. By this time the binary had reached one
eccentricity maximum and come out the other side, followed by enough time for the value
of 〈DSA〉after to roughly achieve steady state. Thus, Djump was well-established according
to equation (6.32). In Figure 6.8a we plot the resulting Djump values against the minimum
jSA value achieved during the corresponding eccentricity peak. The dark red dots are for
Ω0 = 0, and they progress towards yellow and then green as Ω0 approaches 2π. In Figure
6.8b we show a histogram of the magnitude of those Djump values. We see that the Djump

behaviour is very strongly phase dependent and sadly there is no simple dependence
of Djump on jSA,min. In fact, we plotted several such figures for several different sets
of initial conditions, cluster potential, and so on, tried increasing N substantially, and
experimented with different ways of binning the values of Djump — unfortunately there
was never any real order to be found within the chaos.

Perhaps this is due to the fact that, by keeping R0 fixed, we have not sampled the
full range of outer orbital phases? To test this idea, we next ran exactly the same
calculation except this time for N = 104 pairs of initial radial and azimuthal phases,
drawn randomly from the appropriately weighted distributions as described in §6.C. In
Figure 6.9 we show the histogram of log10 |Djump/DDA| that results, where apart from
the initial orbital phases we have used the same initial conditions as in Figures 6.5. We
have also separated the Djump/DDA ≥ 0 (red) and Djump/DDA < 0 (blue) jumps. Yet
again, there do not seem to be any clear patterns to the histograms of Djump values.
We see that red and blue histograms do not even overlap. Testing various other initial

14In practice, it is sufficient to average D over a several outer orbital periods during a time range
corresponding to eSA /∈ (0.99, 1).
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Figure 6.8: Rerun of the first secular period from Figure 6.5A, except for 300 different values of
the initial Ω0. Panel (a) shows the magnitude of Djump values from each run against the minimum
j value achieved in the SA calculation. Panel (b) shows a histogram of the |Djump| values from
panel (a).
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Figure 6.9: Histogram of |Djump/DDA| values. Red is for positive Djump/DDA, blue for negative.
We rerun the calculations from Figure 6.5A for N = 104 randomized values of the initial radial
and azimuthal phase.

conditions, potentials, etc. (not shown here) reveals that there is no consistent symmetry
between positive and negative jumps, nor does the distribution of jumps ever seem to
converge towards any simple (e.g. lognormal) form. Overall, the statistics of Djump

values do not immediately reveal any striking insights.

6.5 Discussion

6.5.1 Astrophysical relevance of RPSD

Since we have uncovered a new effect in this Chapter the obvious question is: how
relevant is it to astrophysical systems? With a view to considering compact object binary
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mergers in Chapter 7, we will use that as a test case. Let us assume that our compact
object binary satisfies εGR � εweak and hence reaches very high eccentricity jmin ∼ Θ1/2.
Assume also that its initial eccentricity is not so large. Then the important necessary
condition for significant RPSD to occur is equation (6.31). In Chapter 7, when considering
binary neutron star mergers in globular and nuclear clusters, 107M� will be the upper
limit on sensible cluster masses; m1 = m2 = 1.4M� will be the lower limit on compact
object mergers; and 50AU will be the upper limit on any sensible distribution of (still
rather soft) NS-NS binaries. Since cos i0 is distributed uniformly ∈ (0, 1) for an isotropic
distribution of binaries, we conclude that RPSD will affect much less than 1% of our
sample. Moreover, this fraction will be even smaller when we consider e.g. BH-BH binaries
with m1 = m2 = 30M�. Thus, we do not expect RPSD to be important for the bulk
populations of binary mergers that we consider in Chapter 7, and so we will ignore it there.

We speculate that RPSD may be important for certain exotic phenomena that involve
even more extreme eccentricities, such as head-on collisions of white dwarfs in triple
systems (Katz & Dong 2012). Note that RPSD occurs even for circular outer orbits and
for equal mass binaries, i.e. in triples where the octupole contributions to the potential
are very small, which are not usually considered promising for producing high merger
rates. Further analysis of this possibility is left to future work.

6.5.2 Breakdown of the SA approximation

In this Chapter we have considered the SA dynamics of binaries driven by cluster tides,
particularly at very high eccentricity. We have implicitly assumed that these equations
are accurate. It is worth noting, however, that even the SA approximation can itself
break down, in situations where any of (J, ω, Jz,Ω) evolve significantly on the timescale
of the inner orbital period (Antonini, Murray, et al. 2014). Such a situation is shown in
Figure 6.10. In this figure we consider a binary that reaches 1− e ∼ 10−4 in the Hernquist
potential (we assume no GR precession in this example). We ran the integrations with
very high resolution; in particular we used a very large number of timesteps for the outer
orbit integration, Tφ/∆t = 5000. Nevertheless, by the time of the 7th eccentricity peak,
the N-body and SA results differ significantly15, with 1− e differing at worst by ∼ 0.5
dex. We see that ω and Ω change very rapidly near peak eccentricity, especially in the
SA and N-body integrations. For instance, ω changes by ∼ π on a timescale of ∼ 5000 yr.
Given Tin ≈ 600 yr, this corresponds to a rate ω̇ ∼ 22◦ per inner orbital period. Thus,
given the cos 2ω dependence of quadrupole-order terms in the SA equations of motion,
it is not surprising that even the SA approximation breaks down here.

15Note that the binary component masses are equal in this example, m1 = m2, so any octupole terms in
the tidal force ought to be zero, meaning any corrections are of hexadecapole or higher order. Nevertheless,
we checked that the disagreement is really due to a breakdown in the orbit-averaging approximation,
rather than these higher order terms, by running an N-body simulation with only the quadrupole potential
included. The agreement with the full N-body simulation was excellent.
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Figure 6.10: Example of SA and N-body integrations disagreeing at high eccentricity. In the
right column we zoom in to the seventh eccentricity peak, where the two approaches for calculating
1− e disagree by as much as ∼ 0.5 dex. Here we took Tφ/∆t = 5000 to be sure the results had
converged.
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6.5.3 Relation to LK literature

The question of how short-timescale fluctuations affect high eccentricity evolution in LK
theory was first addressed by Ivanov et al. (2005), who derived the size of the angular
momentum fluctuations experienced near maximum eccentricity by a binary undergoing
LK oscillations. In their case the outer orbit was assumed circular, though a generalisation
to eccentric outer orbits was derived by Haim & Katz (2018). Ivanov et al. (2005)’s
result and other results very similar to it have since been used extensively for modelling
hierarchical triples (e.g. Katz & Dong 2012; Bode & Wegg 2014; Antognini et al. 2014;
Silsbee & Tremaine 2017; Grishin et al. 2018).

More recently, Luo et al. (2016) took a perturbative approach to the LK problem
for arbitrary inner and outer eccentricities. Taking (implicitly) the limit 2tmin/Tφ � 1,
they showed that short-timescale fluctuations captured by the SA equations of motion
can accumulate over many secular periods, resulting in secular evolution that does not
resemble the original DA prediction. In other words, the time-averaged SA solution
does not agree with the DA solution, but rather diverges from it16. Grishin et al. (2018)
applied the formalism of Luo et al. (2016) to high eccentricity behaviour. Assuming
a circular outer orbit they calculated the new maximum eccentricity arising from Luo
et al. (2016)’s ‘corrected’ secular theory, as well as the magnitude of angular momentum
fluctuations at highest eccentricity. Though we have not done so here, in the special case
of circular outer orbits the results of Luo et al. (2016) and Grishin et al. (2018) could be
trivially extended to arbitrary axisymmetric cluster potentials of the sort considered in
this thesis. Unfortunately, for non-circular outer orbits we lack an analytic prescription
for Rg(t) (Chapter 2), which renders the calculation intractable.

However, in the papers mentioned above (Ivanov et al. 2005; Luo et al. 2016; Grishin
et al. 2018), GR precession was not directly included when calculating the fluctuating
behaviour at high eccentricity. Those authors also all assumed the timescale separation
tmin/Tφ � 1, allowing them to freeze (ω, J,Ω, Jz) on the timescale Tφ. Our work extends
these results by including GR precession and investigating systems with 2tmin/Tφ . 1.
In this case, the RPSD effect that we have uncovered means that SA dynamics do not
converge to the original DA prediction on average, just as was found by Luo et al. (2016)
in the non-GR LK theory. However, unlike Luo et al. (2016)’s discovery, RPSD depends
critically on the strength of GR precession and also happens essentially instantaneously
(on a timescale tmin . Tφ) rather than accumulating over many secular periods.

Finally, we have considered only quadrupole terms in the tidal potential. The octupole
terms are very small in most cases we consider, since a/R is very small. In fact, in all our

16Strictly, Luo et al. (2016) only considered the accumulated error due to the quadrupole-level SA
dynamics. Their approach was generalised to arbitrary (octupole, hexadecapole, ...) order by Lei et al.
(2018). The method was further extended to include fluctuations on the timescale ∼ Tin by Lei (2019).
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numerical examples the octupole terms are identically zero because of the equal masses of
the binary components, m1 = m2. In LK theory, octupole and higher-order terms are
expected to become important when the outer orbit is significantly eccentric and the
component masses are not equal, and can lead to e.g. spin flips and dynamical chaos
(Li et al. 2015). We have shown that chaotic phase space behaviour can arise even at
the pure quadrupole level provided 1PN GR precession is included.

6.6 Summary

In this Chapter we have investigated the role of short-timescale fluctuations of the
orbital elements of a secularly evolving binary system, particularly with regard to high
eccentricity behaviour. Our results can be summarised as follows.

• We investigated the pure test particle quadrupole problem without GR precession.
Our findings here are a generalisation of those already found by others for the LK
problem. In particular we derived a useful expression for the magnitude of angular
momentum fluctuations at high eccentricity.

• We reran the same calculations with GR switched on, and observed somewhat
similar behaviour except for a much stronger phase dependence. Related to this
we uncovered a new effect, relativistic phase space diffusion (RPSD). RPSD kicks
the binary to a new phase space contour, potentially leading to chaotic evolution
and extreme eccentricities. A necessary, though insufficient, condition for RSPD to
occur is that Θ . (Tin/Tφ)2.
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Appendices

6.A Singly-averaged equations of motion

The full SA Hamiltonian is HSA = H1,SA +HGR where HGR is given by (6.4) and H1,SA

is given by (6.2). The corresponding SA equations of motion are
dω
dt =∂H1,SA

∂J
+ ∂HGR

∂J
=[L2/(8J4µ2)]×{

(Φxx + Φyy)
[
− J5(3 + 5 cos 2ω)− 5JJ2

zL
2(1− cos 2ω)

]
+ (Φxx − Φyy)

[
− J5(3 + 5 cos 2ω) cos 2Ω + 5JJ2

zL
2(1− cos 2ω) cos 2Ω

+ 5J2Jz(J2 + L2) sin 2Ω sin 2ω
]

+ Φzz

[
− 6J5 + 10JJ2

zL
2 + 10(J5 − JJ2

zL
2) cos 2ω

]
+ Φxy

[
− 10J2Jz(J2 + L2) cos 2Ω sin 2ω − J5 sin 2Ω(6 + 10 cos 2ω)

+ 10JJ2
zL

2 sin 2Ω(1− cos 2ω)
]

+ Φxz(1− J2
z /J

2)−1/2
[
Jz(6J4 + 10J2L2 − 20J2

zL
2) sin Ω

+ J(−20J4 + 10J2J2
z + 10J2

zL
2) sin 2ω cos Ω

+ Jz(−10J4 − 10J2L2 + 20J2
zL

2) cos 2ω sin Ω
]

+ Φyz(1− J2
z /J

2)−1/2
[
− Jz(6J4 + 10J2L2 − 20J2

zL
2) cos Ω

+ J(−20J4 + 10J2J2
z + 10J2

zL
2) sin 2ω sin Ω

− Jz(−10J4 − 10J2L2 + 20J2
zL

2) cos 2ω cos Ω
]}

+ CLεGR
J2 , (6.33)

dJ
dt =− ∂H1,SA

∂ω
=[5L2/(2J2µ2)](J2 − L2)×{
− 0.25(Φxx + Φyy)

[
(J2 − J2

z ) sin 2ω
]

− 0.25(Φxx − Φyy)
[
(J2 + J2

z ) cos 2Ω sin 2ω + 2JJz cos 2ω sin 2Ω
]

+ Φzz

[
0.5(J2 − J2

z ) sin 2ω
]

+ Φxy

[
JJz cos 2ω cos 2Ω− 0.5(J2 + J2

z ) sin 2ω sin 2Ω
]

+ Φxz

[
J
√

1− J2
z /J

2(J cos 2ω cos Ω− Jz sin 2ω sin Ω)
]

+ Φyz

[
J
√

1− J2
z /J

2(J cos 2ω sin Ω + Jz sin 2ω cos Ω)
]}
, (6.34)
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dΩ
dt =∂H1,SA

∂Jz
=[L2/(4J3µ2)]×{

(Φxx + Φyy)
[
0.5JJz(−3J2 + 5L2 + 5(J2 − L2) cos 2ω)

]
+ (Φxx − Φyy)

[
− 0.5JJz cos 2Ω(−3J2 + 5L2 + 5(J2 − L2) cos 2ω)

+ 5J2(J2 − L2) sin 2ω sin 2Ω]
]

− Φzz

[
JJz(−3J2 + 5L2 + 5(J2 − L2) cos 2ω)

]
− Φxy

[
J [5J(J2 − L2) cos 2Ω sin 2ω + Jz(−3J2 + 5L2 + 5(J2 − L2) cos 2ω) sin 2Ω]

]
+ Φxz(1− J2

z /J
2)−1/2

[
5JJz(J2 − L2) sin 2ω cos Ω

+ [3J4 + 10J2
zL

2 + J2(−6J2
z − 5L2) + (−5J4 − 10J2

zL
2 + J2(10J2

z + 5L2)) cos 2ω] sin Ω
]

+ Φyz(1− J2
z /J

2)−1/2
[
5JJz(J2 − L2) sin 2ω sin Ω

− [3J4 + 10J2
zL

2 + J2(−6J2
z − 5L2)

+ (−5J4 − 10J2
zL

2 + J2(10J2
z + 5L2)) cos 2ω] cos Ω

]}
, (6.35)

dJz
dt =− ∂H1,SA

∂Ω
=− [L2/(4J2µ2)]×{

(Φxx − Φyy)
[
5JJz(J2 − L2) cos 2Ω sin 2ω + 0.5((J2 − J2

z )(3J2 − 5L2)

+ 5(J2 + J2
z )(J2 − L2) cos 2ω) sin 2Ω

]
+ Φxy

[
((−J2 + J2

z )(3J2 − 5L2)− 5(J2 + J2
z )(J2 − L2) cos 2ω) cos 2Ω

+ 10JJz(J2 − L2) sin 2ω sin 2Ω
]

− Φxz

[
J
√

1− J2
z /J

2(−5J(J2 − L2) sin Ω sin 2ω

+ Jz(−3J2 + 5L2 + 5(J2 − L2) cos 2ω) cos Ω)
]

− Φyz

[
J
√

1− J2
z /J

2(5J(J2 − L2) cos Ω sin 2ω

+ Jz(−3J2 + 5L2 + 5(J2 − L2) cos 2ω) sin Ω)
]}
. (6.36)

It is straightforward to recover the DA equations from the SA equations (6.34)-(6.35)

by replacing the time-dependent quantities Φαβ with their time-averages Φαβ , and using

the identities Φxx = Φyy and Φxy = Φxz = Φyz = 0.
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6.B Fluctuating Hamiltonian

By subtracting the DA Hamiltonian from the SA Hamiltonian, assuming them to be
functions of the same variables (J, ω, ...), and using Φxx = Φyy and Φxy = Φxz = Φyz = 0,
we get an expression for the ‘fluctuating Hamiltonian’ (equation (6.11)):

∆H ≡HSA(J, ω, ...)−HDA(J, ω, ...)

=1
2
∑
αβ

(Φαβ(t)− Φαβ)〈rαrβ〉M

=1
2

{
(Φxx − Φxx)〈x2〉M + (Φyy − Φxx)〈y2〉M + (Φzz − Φzz)〈z2〉M

+ Φxy〈xy〉M + Φxz〈xz〉M + Φyz〈yz〉M

}
. (6.37)

(Note that the term involving εGR has disappeared, since it is the same in SA and DA
theory). Equation (6.37) holds for binaries in arbitrary axisymmetric potentials.

We can simplify matters significantly if we restrict ourselves to spherical potentials
Φ(r) = Φ(

√
R2 + Z2). Let us define

f±(Rg(t)) ≡ 1
2

(∂2Φ
∂R2

)
Rg

±
( 1
R

∂Φ
∂R

)
Rg

 , (6.38)

and assume without loss of generality that Rg is confined to Z = 0. Then it is easy
to show (see equations (2.26)-(2.31)) that:

Φxx = f+ + f− cos 2φ, Φyy = f+ − f− cos 2φ, Φzz = f+ − f−, (6.39)

Φxy = f− sin 2φ, Φxz = Φyz = 0. (6.40)

(Note that we have dropped the ‘g’ subscript for ease of notation). If we also define
∆f± ≡ f±−f± where f± is the torus-averaged value of f± then the fluctuating Hamiltonian
can be written concisely as

∆H =1
2
[
∆f+〈x2 + y2 + z2〉M −∆f−〈z2〉M + f−

(
〈x2 − y2〉M cos 2φ+ 2〈xy〉M sin 2φ

)]
.

= L2

8J2µ2

{
(3J2 − 5L2)

[
(∆f− − 2∆f+)J2 −∆f−J2

z + f−(−J2 + J2
z ) cos[2(Ω− φ)]

]
− 5(J2 − L2) cos 2ω

[
∆f−(J2 − J2

z ) + f−(J2 + J2
z ) cos[2(Ω− φ)]

]
+ 10f−JJz(J2 − L2) sin 2ω sin[2(Ω− φ)]

}
. (6.41)
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As explained in §6.3.3, equations of motion can be derived from the fluctuating Hamiltonian
∆H(J, ω, ..) by taking its partial derivatives (equation (6.13)). In particular, we have

∂∆H
∂ω

= 5
4
L2

J2µ2 (J2 − L2)
{

sin 2ω(J2 − J2
z )∆f− + f−

(
(J2 + J2

z ) sin 2ω cos[2(φ− Ω)]

− 2JJz cos 2ω sin[2(φ− Ω)]
)}
. (6.42)

Assuming this to be a good approximation to −dj/dt at high e, as we do in §6.3.4,
it constitutes a generalisation of equation (B4) of Ivanov et al. (2005). The result
of Ivanov et al. (2005) is recovered if one assumes the outer orbit to be circular (so
∆f± = 0), the perturbing potential to be Keplerian, and evaluates (6.42) at ω = ±π/2
and e → 1. We also have

∂∆H
∂Ω = L2

4J2µ2 f−

{
10JJz(J2 − L2) sin 2ω cos[2(φ− Ω)]

− ((J2 − J2
z )(3J2 − 5L2) + 5(J2 + J2

z )(J2 − L2) cos 2ω) sin[2(φ− Ω)]
}
, (6.43)

which coincides precisely with (minus) the right hand side of (6.36) if one assumes Φ to be
spherical.

6.C Phase dependence of fluctuating behaviour

As mentioned several times in this Chapter, a very striking example of the difference
between the GR and non-GR scenarios comes from examining the phase dependence of
binary dynamical evolution. Let us now illustrate this further.

For simplicity let us consider binaries in spherical potentials only. For such potentials,
to determine uniquely the SA evolution of a binary one must stipulate, on top of all the
quantities needed for the DA equations, two key phases. These are the initial outer orbital
radius R0 and the initial difference φ0 − Ω0 between the outer azimuthal angle and the
inner nodal angle. Without loss of generality we may fix φ0 = 0; then the two numbers
we must stipulate are R0,Ω0. Of course, if one wishes to study a representative sample of
binaries, then R0 must be drawn randomly from a distribution that correctly weights the
time spent at each radius, i.e. dN ∝ dR0/vR. Meanwhile Ω0 can be drawn from a uniform
distribution in (0, 2π). We saw already in §6.3.2 that a simple offset of 45◦ between Ω0

values — keeping R0 = ra fixed — can lead to vastly different high eccentricity behaviour.
In Figure 6.11A we rerun the first secular period of SA evolution from Figure 6.1A (i.e.

with GR switched off), except using many different values of the initial radial phase17,
17In practice we achieve this simply by performing the outer orbit integration first from R0 = ra, and

then shifting the initial time of the SA integration by the appropriate amount in (0, TR).
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Figure 6.11: (A) We rerun the first secular period of the calculation from Figure 6.5A, except
for various different values of the initial radial phase. Panels (a) and (c) show the beginning and
end of the calculation, respectively, while panel (b) focuses on the eccentricity peak. The DA
solution (independent of radial phase) is shown with a blue dashed line. (B) The same calculation
with GR precession switched on.

keeping Ω0 = 45◦ fixed. We show log10(1− e) for each run (different coloured lines) at
three stages of the evolution: (a) the very earliest stages near t = 0, (b) around the
eccentricity peak, and (c) the latest stages near t = tsec. The thick dashed blue line in each
panel is the familiar DA solution from panel (n) of Figure 6.1A. While the trajectories are
very close (at least in log space) in panels (a) and (c), we see that around the eccentricity
peak in panel (b) the behaviour is strongly phase dependent. Some binaries do not even
reach the DA maximum eccentricity log10(1−emax) ≈ −4.75, while the binary represented
by the cyan line peaks at an extremely high eccentricity, log10(1 − emax) < −6.

Now we turn to Figure 6.11B, in which we perform exactly the same calculation
except with GR switched on — in other words, we are rerunning panel (n) of Figure
6.5A for many different initial radial phases. The thick dashed blue line in each panel
is the DA solution from Figure 6.5An. Comparing Figures 6.11Ab and 6.11Bb, we see
that the maximum eccentricity reached by a given binary is slightly diminished by the
inclusion of GR, as we would expect given that the binary resides in the weak GR regime.
Regardless of this, by the time the eccentricity is returning to its minimum around 6.8
Myr (panel (c)) the various trajectories have diverged significantly. This did not happen
when GR was switched off, and is a reflection of RPSD in action.
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The strong phase dependence demonstrated here has not been mentioned in analogous
LK calculations in the literature. Moreover, adding in the extra degree of freedom
that we have not altered here — the azimuthal phase — would compound the phase
dependence still further.
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7.1 Introduction

In the preceding Chapters we have shown that the smooth tidal potential of a host

star cluster can drive wide binaries to perform LK-like secular eccentricity oscillations

on timescales relevant for the production of LIGO/Virgo mergers. In particular, in

Chapter 5 we added GW emission to our theory and demonstrated explicitly that this

mechanism is capable of producing compact object binary mergers in less than a Hubble

time. In the present Chapter we bring together results from all preceding Chapters,

in order to explore the consequences of our mechanism for the merger rate of compact

object binaries in the local Universe.
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Throughout this short Chapter we make the simplifying assumption that binaries
orbit spherical star clusters, and that the binary dynamical evolution is driven only by
the smooth, time-independent cluster potential, truncated at quadrupole order in the
tidal expansion. Thus we neglect the effects of flyby encounters, dynamical friction,
evolution of the cluster, octupolar tides, and so on. Several of these are important effects
that should be incorporated into future work; they are discussed further in §7.5 and
§8.2. Thus, given the simplicity of the models used here, this Chapter should really
be considered a ‘proof of concept’. It demonstrates that cluster tides can be important
and should be taken seriously in merger calculations, but does not quantify precisely
their impact relative to other key effects.

The Chapter is organised as follows. In §7.2 we recap some results for binaries in
spherical clusters and outline the key assumptions of our model. Then in §7.3 we describe
the approximate method we use to compute the binary merger fraction. We present the
results of our merger fraction calculations in §7.3.3 and use them to calculate compact
object merger rates in §7.4. We discuss our work and compare it to that of others in §7.5.

7.2 Dynamical framework

We consider a compact object binary with component masses m1, m2 orbiting in a fixed
smooth background potential Φ of a spherically symmetric star cluster (globular or nuclear).
Spherical symmetry implies that the binary’s ‘outer’ barycentric orbit is confined to a
plane, and typically densely fills an axisymmetric annulus in this plane with inner and outer
radii (rp, ra). These two radii uniquely label an orbit in a given spherical potential Φ(r).

In our upcoming merger rate calculation, a key role will be played by the cluster
tide-driven secular timescale. We know from Chapter 3 that this timescale is set by the
parameter A; roughly speaking, tsec ∼ nK/A, where nK is the Keplerian mean motion. The
value of A is fully determined by stipulating the cluster potential Φ and the peri/apocentre
(rp, ra) of the binary’s outer orbit. In Figure 7.1b we plot A∗(R) ≡ A/(GM/b3) assuming
a circular outer orbit1 of radius R in Plummer (cored) and Hernquist (cusped, with
density ρ ∝ r−1 for r → 0) potentials

ΦPlum(r) = − GM√
b2Plum + r2

, ΦHern(r) = − GM
bHern + r

, (7.1)

where M is the total mass of the cluster and bPlum/Hern are the corresponding scale
radii. These are the two potentials that we will use throughout the Chapter; we
will also fix bPlum = 1pc and bHern = 0.544pc so that both potentials have the same
half mass radius rh = 1.31pc.

1Note that the circular assumption is only used for illustration here; when we come to calculate the
merger fraction we will not assume the outer orbit to be circular.
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Figure 7.1: Plots of the important parameters Γ and A∗ assuming the binary is on a circular
outer orbit of radius R in Plummer (red) and Hernquist (green) potentials, each with scale scale
radius chosen so that the half-mass radius is 1.31pc. For initial inclinations close to 90◦, high
eccentricity excitation is readily achieved when Γ > 1/5, but is much rarer when Γ < 1/5 (shaded
region in panel (a)).

The second key parameter characteristing clusters and the binary’s outer orbit within
them is Γ. For binaries in realistic spherical clusters we always have 0 < Γ ≤ 1; Figure 7.1a
shows the profiles of Γ(R) in the same Plummer and Hernquist potentials described above.

Compact object binaries are fairly simple in comparison with stellar binaries in that
most short-range forces, such as tidal bulges, can be ignored entirely. However, one short-
range effect that is almost always important in the present context is 1PN GR precession.
Thus, to compute merger rates due to cluster tides we will rely heavily on the results of
Chapter 4. In particular, we will compute a binary’s DA maximum eccentricity using the
prescription given in §4.3.4, essentially by setting the right hand side of equation (4.12) to
zero. Furthermore, we know from Chapter 4 that GR precession will quench the cluster
tide-driven eccentricity oscillations if initially we have2 εGR & εstrong ≡ 3(1 + 5Γ). In
practice for spherical clusters this means that that one should not expect high eccentricity
oscillations to occur whenever εGR & 10. This requirement severely constrains the
parameter space of initial conditions that can lead to cluster tide-driven mergers.

In Chapter 5 we coupled the DA equations of motion (including GR precession) to
GW emission, and observed the resulting orbital decay — and ultimate merger — of

2We say ‘initially’ because of course, as a binary’s semimajor axis shrinks, its value of εGR increases
indefinitely. It is the initial semimajor axis, and therefore the initial εGR, that we care about here.
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compact object binaries. We saw that the assosciated tsec(a) and a(t) behaviour was
not universal; instead it depended on the binary’s phase space orbit family (librating
or circulating), the value of Γ (greater than or less than 1/5), the relative strength of
GR precession (weak, moderate or strong), and so on. We were able to predict the
tsec(a) and a(t) behaviour analytically, but only in certain asymptotic regimes. In future
work one might attempt to stitch together these various asymptotic results and thereby
derive an accurate semi-analytic formula for the total time taken for the binary to
merge given its initial conditions. Here, however, we will skip over these details and
use a much simpler formula that only relies on the results of Chapter 4. This formula
(described in §7.3.1) is effectively a generalisation of the much-used result from the theory
of LK-driven mergers that we discussed in §5.5.1.

Finally, from Chapter 6 we know that fluctuations in the tidal torque felt by the binary
on the timescale of its outer orbital period (which are ignored by double-averaging) can
increase its maximum eccentricity. Roughly (§6.3.4), one can think of these fluctuations as
modifying the maximum eccentricity reached by the binary from emax to ẽmax = emax +δe,
δe > 0. These short-timescale fluctuations will therefore enhance the merger rate, and
we will take this effect into account in our approximate merger time formula. However,
we will not take into account the other key finding of Chapter 6, namely phase space
diffusion (RPSD). This is justified because, as we argued in §6.5.1, RPSD operates in
such a narrow inclination window that it is likely to affect only a very small fraction
of the binaries sampled here. Given that the estimates we must make in this Chapter
already come with large error bars, omitting RPSD is insignificant in practice. Thus SA
effects are taken into account purely in the form of fluctuations on top of the underlying
smooth, and perfectly periodic, DA evolution.

7.3 Calculation of the merger fractions

The main goal of this Chapter is to compute the present day merger rate induced by cluster
tides. Its calculation in §7.4 relies on knowledge of the time evolution of the merger fraction
fm(t), which is found by taking a large ensemble of binaries and computing how many of
them merge in a time Tm < t. Here we outline the details of the calculation, namely, our
merger time prescription (§7.3.1), the method used (§7.3.2), and the results (§7.3.3).

7.3.1 Merger time Tm

As discussed in Chapter 1 and §5.5.1, a heuristic argument that allows us to approximate
the total merger time is as follows. An isolated binary (in the absence of cluster tides)
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with initial semi-major axis a0 and eccentricity e0 ≈ 1 would merge due to GW emission
in a time (Peters 1964):

T iso
m (e0) = 3c5a4

0
85G3(m1 +m2)m1m2

(1− e2
0)7/2. (7.2)

However, the torque from the cluster potential causes the binary’s eccentricity to vary
in a cyclic fashion on a secular timescale tsec, with e→ 1 under favorable circumstances.
Because of the steep dependence of T iso

m on 1 − e, GW emission occurs in the form of
discrete bursts around the sharp eccentricity maxima. Such high-e episodes last for about
∆tmax ≈ tsec(1− e2

max)1/2, where emax is the maximum eccentricity obtained in the DA
theory (see §4.4). This prolongs the time to merger (estimated using equation (7.2) at
peak eccentricity) by a factor ≈ tsec/∆tmax = (1− e2

max)−1/2 — see equation (7.3).
Moreover, as e passes through its peak value it also experiences short-timescale

fluctuations. These variations periodically take e to its peak singly-averaged value ẽmax,
which is higher than the DA value emax. Again, because of the sharp dependence
of GW emission on 1 − e, GW losses mainly occur when e ≈ ẽmax. For this reason,
to approximately account for the singly-averaged effects we set the peak eccentricity
determining the intensity of GW emission to ẽmax (rather than emax) and obtain the
following estimate of the merger time:

Tm ≈ T iso
m (ẽmax)× (1− e2

max)−1/2 (7.3)

= 3c5a4
0

85G3(m1 +m2)m1m2
ψ(emax, ẽmax) (7.4)

= 1.0 Gyr
(

m

1.4M�

)−3 ( a0
10 AU

)4 ψ(emax, ẽmax)
10−12

= 0.5 Gyr
(

m

30M�

)−3 ( a0
30 AU

)4 ψ(emax, ẽmax)
10−12 ,

where ψ(emax, ẽmax) = (1− ẽ2
max)7/2(1− e2

max)−1/2. In the numerical estimates we used
typical values for NS-NS and BH-BH binaries with m1 = m2 = m. Equation (7.4) is
what we use in this Chapter for Tm (although see the end of §7.3.2).

7.3.2 Method

To compute the merger fraction fm(t), it is necessary that we are first able to calculate
emax and ẽmax for any binary. For a given cluster potential, both emax and ẽmax are
functions of the eight parameters that describe the inner (a, e, i, ω) and outer (rp, ra)
orbits of the binary at t = 0 and the binary component masses, e.g.

emax = emax(rp, ra, a0, e0, i0, ω0,m1,m2). (7.5)
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We obtain emax from our secular (DA) theory by following the method prescribed in
Chapter 4, essentially by setting the right hand side of equation (4.12) to zero. and
solving for jmin =

√
1− e2

max. We approximate ẽmax =
√

1− j̃2
min by writing j̃2

min =
jmin − (δj)p, where (δj)p is the approximate fluctuation calculated in §6.3.4. (That
calculation pretends that the outer orbit is circular with radius rp, which is unrealistic
but good enough for a rough estimate).

Then at each time t, for a given a0,m1,m2 there exists a critical region in (emax, ẽmax)
space for which Tm < t (equation (7.3)). All systems in the critical region can be
considered ‘merged’ at time t. With a suitable Monte Carlo sampling of the eight
parameters listed in (7.5) one can therefore compute the cumulative fraction fm(t) of
systems that have merged as a function of time. To carry out the Monte Carlo procedure
we draw a large number3 N = 106 of binaries with initial parameters randomly chosen
from appropriate distributions described as follows.

Our compact object binaries come in three flavours: NS-NS, NS-BH and BH-BH.
For the component masses m1,m2 we always use 1.4M� (NS) and 30M� (BH). We use
three cluster masses: M = 105, 106, 107M�. We consider two cluster potentials, the same
as in Figure 7.1: the Plummer potential ΦPlum to mimic cored potentials of globular
clusters and the Hernquist potential ΦHern to approximate cusped nuclear clusters. Each
of them is scaled to have half mass radius rh = 1.31pc.

We randomly sample rp and ra (which characterize the binary’s outer orbit) from a
self-consistent distribution function (DF) constructed as follows. We take the isotropic
self-consistent DF g(Ẽ(rp/b, ra/b), b) that generates the underlying cluster potential with
massM and scale radius b, where Ẽ ≡ E/(GM/b) and E is the specific energy of an orbit in
that potential. Thus, g(Ẽ , bPlum) ∝ b−3/2

Plum(−Ẽ)7/2 for the Plummer potential, while for the
Hernquist potential g(Ẽ , bHern) is given by equation (4.51) of Binney & Tremaine (2008).
We then draw the orbits of our binaries from a DF ∝ g(Ẽ(rp/b

′, ra/b
′), b′), where the new

scale radius b′ is a parameter that we vary to account for the possibility of the massive
compact object binaries being more centrally concentrated than the underlying stellar
population (we leave the scale radius b of the cluster potential unchanged). We choose
three values of b′ such that the corresponding central over-concentration c ≡ ρ(0, b′)/ρ(0, b)
— ratio of the central densities computed from the DFs g(Ẽ , b′) and g(Ẽ , b) — is equal to
1, 10 and 100. Hence for c = 1 the binaries are essentially tracer particles drawn from the
underlying stellar population, while for c� 1 they are much more centrally concentrated.
In the Plummer case this requires b′/bPlum = 1, 10−1/3 and 10−2/3, while for the Hernquist
sphere we must take b′/bHern = 1, 10−1/2 and 10−1. Variation of c helps to alleviate the
observational uncertainty in the radial distribution of compact object binaries in clusters.

3We checked that a ‘higher resolution’ calculation which sampled N = 107 binaries gave essentially
identical results.
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We assume Opik’s law for the distribution of binary semi-major axes (dN/da0 ∝ a−1
0 ),

sampling it in the range a0 ∈ (amin, amax). Here amin is the semi-major axis below which
GR precession will suppress cluster tide-driven evolution; we estimate amin by solving
equation (4.6) for a with εGR = 10 and A∗ = 1.0. We take amax = 50 AU, 100 AU, 100 AU
for NS-NS, NS-BH and BH-BH binaries respectively, expecting that wider binaries would
be quickly disrupted by stellar encounters. Initial binary eccentricities are drawn from
a thermal distribution (uniform in e2

0) in the range e0 ∈ (0.01, 0.995).
We assume random orientation of the binaries, implying that the initial pericentre

angles ω0 and initial cosines of inclination cos i0 are uniformly distributed in (−π, π) and
(0, 1) respectively. However, the symmetry of the problem means that we may restrict
the random sampling of ω0 to the range (0, π), allowing us to speed up the calculation.
Moreover, only binaries with initial inclinations i0 close to 90◦ are able to merge within
a Hubble time, as follows from the conservation of (1 − e2)1/2 cos i and the fact that
very high eccentricities (emax → 1) are required to enhance GW emission. Hence it is
sufficient to sample cos i0 from a uniform distribution not in (0, 1) but (0,Ξ), where we
took Ξ = 0.05, 0.08, 0.1 for NS-NS, NS-BH and BH-BH binaries, respectively4.

When calculating merger fractions fm we account for the aforementioned truncation
of the ranges of a0, e0, ω0, cos i0. In particular we assume that the overall population of
binaries has a minimum semi-major axis 0.2 AU (whereas it is only sampled down to
amin) while the maximum semi-major axis is still amax, and weight the number of merged
binaries accordingly5. Similarly, in reality cos i0 ∈ (0, 1), but binaries in (Ξ, 1) never
merge. The values of fm(t) we quote always reflect the fraction of the total population
that has merged in time t, not just of the initial N sampled binaries.

Implicit in the derivation of the merger time Tm is the assumption that the binary
undergoes at least one secular cycle by time t. However, equation (7.4) sometimes predicts
merger times that are short compared to the secular timescale tsec. In particular, if ever
(δj)p > jmin we interpret this as an ‘instantaneous’ merger (taking place in much less
than one secular timescale). Since binaries must first reach their maximum eccentricity
before they can actually merge, which on average takes ≈ tsec/2, we account for these
‘fast’ mergers by taking the actual merger time to be max(Tm, tsec/2).

7.3.3 Merger fraction results

In Figure 7.2 we plot the cumulative merger fractions fm(t) for t ∈ (1 Myr, 12 Gyr),
calculated using the method of §7.3.2. We consider NS-NS (left column), NS-BH (middle

4The Ξ values are calculated by putting a0 = amin, Tm = 12 Gyr and 1− e2
max ∼ cos2 i0 in equation

(7.4) and solving for cos i0.
5Note that the lower limit we take for the semimajor axis distribution, 0.2AU, is roughly the maximum

semimajor axis for which an isolated, circular m1 = m2 = 30M� BH-BH binary will merge in a Hubble
time in the absence of external perturbations. For NS-BH and NS-NS binaries that value is even smaller.
Thus, by making this choice we are essentially excluding from our sample any binaries that would have
merged on their own within a Hubble time, i.e. without any assistance from cluster tides.
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Figure 7.2: Cumulative merger fraction fm(t) over the domain t ∈ (1 Myr, 12 Gyr) for NS-NS,
NS-BH and BH-BH binaries, each for cluster massesM/M� = 105, 106, 107 and binary central
concentrations c = 1, 10, 100 in the Plummer and Hernquist potentials (see legend).

column), and BH-BH (right column) binaries, each forM = 105M� (green),M = 106M�

(red) andM = 107M� (blue) clusters and concentrations c = 1, 10, 100 (solid, dot-dashed
and dashed lines respectively), for the two potentials (7.1).

Cored (Plummer) models

Starting with the Plummer models (top row of Figure 7.2), we see that fm is largest
for the most massive clusters (M = 107M�, blue lines) because the secular evolution is
fastest in such clusters and therefore large eccentricity oscillations are less easily quenched
by GR precession. For NS-NS binaries with central concentration c = 1, the final merger
fraction is fm(12 Gyr) ∼ 10−3 in M = 107M� clusters. The corresponding result for
NS-BH and BH-BH binaries is a factor of a few smaller because of the stronger GR
precession barrier for these more massive systems. InM = 106M� clusters (red lines),
we again find a non-negligible final NS-NS merger fraction, fm(12 Gyr) ∼ 10−4; however,
we find no NS-BH and BH-BH mergers, because for those (heavy) binaries the cluster
tides are no longer strong enough to beat the GR precession. For the same reason, fm is
negligible in cored (Plummer)M = 105M� clusters across all binary flavours.

In all three panels, increasing the central concentration c reduces the merger fraction
because strongly centrally concentrated binaries in cored potentials fall into the Γ < 1/5
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regime (see Figure 7.1) for which high eccentricity excitation is suppressed (see Chapters 3
and 4). Mass segregation of a population of heavy binaries would act to steadily increase
c(t) over the age of the cluster. In cored clusters this would lead to a lower merger
fraction at late times compared to an unsegregated population.

Cusped (Hernquist) models

Cusped clusters represented by a Hernquist potential (bottom row of Figure 7.2) exhibit
substantially higher fm values than in the Plummer case. Indeed, even 105M� clusters
(green curves) — which produced zero mergers in the Plummer potential — now have
fm(12 Gyr) of at least a few × 10−5 and often as large as ∼ 10−3, depending on c and
the binary type. Moreover, increasing c in these potentials increases fm, which is the
opposite trend to the Plummer case. As a result, mass segregation in cusped clusters
would tend to additionally increase fm at late times.

Both effects are due to the ubiquity of the Γ > 1/5 regime (promoting high e

excitation) in the Hernquist potential, even near the cluster centre (Figure 7.1) — unlike
in the Plummer case, there is little disadvantage to binaries being centrally concentrated.
Moreover, secular evolution is fast near the centre of the Hernquist sphere (tsec ∝ A−1

and the ‘tidal strength’ A diverges, see Figure 7.1), and short-timescale fluctuations there
are strong. As a result, increasing c drives more binaries to merge within a Hubble
time. Many binaries that orbit near the centres of cuspy clusters have tsec < 106yr —
hence, several curves show nonzero fm(106 yr).

Also, fm shows a weaker dependence on cluster massM than in the Plummer case.
This is because of the large A values in the Hernquist case (see Fig. 7.1b), which act
to suppress the effect of GR precession: equation (4.5) then yields εGR → 0, a limit
in which emax is independent of M (equation (4.45)).

7.4 Merger rates

Our results on merger fractions fm(t) allow us to calculate the specific merger rate R,
which is the rate of compact object binary mergers of a given flavour per unit volume in
the local universe, given the birth history of binaries of that type. The latter is described
by the formation rate of such binaries per unit cluster mass W (t), such that in the interval
(t, t+ δt), a total of W (t)δt systems are produced per unit cluster mass. The cumulative
number of mergers from that binary type per unit cluster mass after time t is then

C(t) ≡
∫ t

0
dt′W (t′)fm(t− t′), (7.6)

and the corresponding contribution to the specific merger rate at time t is R = ρcldC(t)/dt,
where ρcl is the cluster mass density in the local universe.
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We consider two simple histories of compact object binary formation. The first takes
the form of a burst, so that at t = 0 each cluster instantaneously forms a population
of binaries. If Xborn compact object binaries are born per unit cluster mass, then
W (t) = Xbornδ(t) so that C(t) = Xbornfm(t) and

R(t) = Xbornρcl
dfm(t)

dt . (7.7)

The second model assumes a constant compact object binary formation rate W (t) =
Yform per unit cluster mass. Then the cumulative merger number from that cluster is
C(t) = Yform

∫ t
0 dt′fm(t− t′) = Yform

∫ t
0 dx fm(x), resulting in the specific merger rate

R(t) = Yformρclfm(t). (7.8)

The results obtained for these two binary formation histories give an idea of the
outcomes of more sophisticated models.

7.4.1 Merger rates from globular clusters

Globular clusters have cored density profiles, so to represent them we use fm results for
Plummer spheres (§7.3.3). Since globulars have a range of masses and fm is a function
ofM, appropriate averaging of the rates (7.7)-(7.8) over the cluster mass spectrum is
needed. Following Rodriguez, Morscher, et al. (2015) we use a log-normal mass function
for the number density of globulars (Harris et al. 2014):

dngc
d log10(M/M�) =

ntot
gc√

2πσM
× exp

[
−(log10(M/M�)− µ)2

2σ2
M

]
, (7.9)

where ntot
gc is the total number density of globular clusters in the local universe integrated

over M, and σM = 0.52, µ = 5.54. The number density ntot
gc is an uncertain quantity

(Portegies Zwart & McMillan 2000; Rodriguez, Morscher, et al. 2015; Rodriguez, Chatter-
jee, et al. 2016). In this Chapter, guided by existing estimates, we adopt ntot

gc = 3 Mpc−3.
For simplicity, we do the averaging in an approximate fashion by splitting the cluster

population into 3 mass bins Mmin
i < M < Mmax

i , i = 1, 2, 3, where Mmin
i = 5 ×

103+iM� and Mmax
i = 5 × 104+iM�. The mass density in clusters in each mass bin

is then ρgc,i =
∫Mmax

i

Mmin
i
Mdngc = (3.9, 14.1, 3.3) × 105(ntot

gc /3 Mpc−3)M� Mpc−3. We
assign to each bin the value of fm computed for Plummer models with M = Mi =
104+iM� (within the i-th bin). Then averaging of the merger rate over the distribution
of M amounts to replacing ρclfm with

Fm(t) =
3∑
i=1

ρgc,ifm(t;Mi). (7.10)

We now compute the present day rate R for the two aforementioned binary birth histo-
ries.
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Merger rates from globular clusters: a single burst of compact object binary for-
mation

Globular clusters experience a large starburst at their formation. Compact objects get
produced in supernova explosions shortly thereafter. If they remain bound and assemble
into binaries on a timescale short compared to the Hubble time, then the single burst
approximation (7.7) should characterize the current merger rate R reasonably well.

Motivated by the calculations of Löckmann et al. (2010), in this Chapter we adopt
Xborn = 10−3M−1

� for the specific birth rate of all compact binary species, similar to the
value obtained in Rodriguez, Chatterjee, et al. (2016). We calculate the total merger rate
using equation (7.7), averaging it over cluster mass via equation (7.10):

R = Xborn
dFm
dt (7.11)

= 3× 10−3 Gpc−3yr−1 ×
(

Xborn

10−3M−1
�

) (
dFm/dt|12 Gyr

3 M� Mpc−3Gyr−1

)

where in the numerical estimate we assumed that the formation burst happened 12 Gyr
ago, and took a value of dFm/dt characteristic of Plummer models (§7.3.3).

Merger rates from globular clusters: a constant rate of compact object binary
formation

An alternative birth history is the one in which the assembly of compact objects into
binaries in globulars occured at a steady (slow) rate Yform over the last 12 Gyr. Here we
adopt Yform = 10−4M−1

� Gyr−1 so that upon integration over a Hubble time we reproduce
roughly the specific compact binary occurrence rate Xborn assumed in §7.4.1 (i.e. Yform×10
Gyr = Xborn). Then from equation (7.8) the merger rate is

R = YformFm (7.12)

= 0.3 Gpc−3yr−1 ×
(

Yform

10−4M−1
� Gyr−1

)(
Fm(12 Gyr)

3× 103 M� Mpc−3

)

and again we took Fm(12 Gyr) values characteristic of Plummer models (§7.3.3).

7.4.2 Merger rates from nuclear clusters

In the case of nuclear clusters we expect compact object binaries to be created at a
relatively steady rate due to continuous star formation over long times (Figer et al. (2004);
dynamical assembly due to 3-body processes is not as important here, although see Muno
et al. (2005)). Thus, the constant formation rate assumption is more appropriate for
nuclear clusters, and we again assume Yform = 10−4M−1

� Gyr−1 for these systems.
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Figure 7.3: Merger rates R of compact object binaries driven by the tidal fields of (spherical)
globular and nuclear clusters. For each binary type we consider two values of the central
concentration c. For globular clusters, modeled as cored (Plummer) systems, we look at two
binary birth histories: single burst (blue) and constant formation rate (red). For nuclear clusters
we calculate rates assuming either cored (Plummer, yellow) or cusped (Hernquist, green) profiles,
considering only the constant binary formation history. Grey regions show the LIGO/Virgo merger
rate estimates. See text for details.

For simplicity, we take all nuclear clusters to have massMnc = 107M� and assume
nnc = 0.02 Mpc−3 for their number density (Petrovich & Antonini 2017; Hamers, Bar-Or,
et al. 2018a). Then ρclfm =Mncnncfm(Mnc) and the merger rate becomes (equation (7.8))

R = YformMncnncfm(Mnc) (7.13)

= 0.2 Gpc−3yr−1 ×
(

Yform

10−4M−1
� Gyr−1

)(
nnc

0.02Mpc−3

)(
fm(12 Gyr;Mnc)

10−2

)
, (7.14)

where for fm(12 Gyr;Mnc) we adopted a value characteristic of cusped (Hernquist)
models — see §7.3.3. Cored nuclear clusters have fm(12 Gyr;Mnc) an order of mag-
nitude lower, see §7.3.3.

7.5 Discussion

In Figure 7.3 we show present day compact binary merger rates due to cluster tides in
globular and nuclear clusters. Rates for globulars use the results we obtained for Plummer
models (for two birth histories, §§7.4.1-7.4.1), while for nuclear clusters we consider both
Hernquist and Plummer models and a flat binary formation history (§7.4.2). For NS-NS
binaries we consider only moderate concentrations c = 1, 10, while for (significantly heavier)
NS-BH and BH-BH binaries we assumed a higher degree of central segregation, c = 10, 100.
The grey regions in Figure 7.3 show the LIGO/Virgo rate estimates after O2 (The LIGO
Scientific Collaboration et al. 2019): 110 − 3840 Gpc−3 yr−1 and 9.7 − 101 Gpc−3 yr−1

for NS-NS and BH-BH mergers in the local universe respectively, while the upper limit
on the NS-BH merger rate is 610 Gpc−3 yr−1.
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Focusing first on globular clusters, one can see that their merger rates fall short
of providing a substantial contribution to the observed rates. We find R ∼ 0.01 −
0.07 Gpc−3yr−1 for NS-NS binaries and . 0.02 Gpc−3yr−1 for each of NS-BH and BH-BH
binaries in globulars (Figure 7.3). The primary reason for fewer NS-BH and BH-BH
mergers compared to NS-NS mergers is that the heavier binaries (i) suffer from stronger
GR precession which cannot be overcome in a cored potential even at the cluster center, (ii)
have higher central concentrations which brings them into the Γ < 1/5 regime, where high
eccentricity excitation is suppressed (higher c always leads to lower R in globulars). Also, a
constant binary formation rate results in higher R because many binaries merge soon after
their birth: fm(t) curves rise substantially faster during the first 107−108 yr, see Figure 7.2.

As for nuclear star clusters, if we assume a cusped density profile (Hernquist model)
then R ∼ 0.1− 0.2 Gpc−3yr−1 for NS-NS, NS-BH and BH-BH binaries. The NS-BH and
BH-BH binaries merge slightly more often than NS-NS binaries because near the centre
of cusped clusters the Γ < 1/5 regime is rare, and the tidal field is strong which helps to
overcome GR precession. As a consequence, higher central concentration is advantageous
(although not dramatically). However, in cored nuclear clusters the situation is more
similar to that in globulars and R drops appreciably with increasing c.

Overall, we see that NS-BH and BH-BH merger rates are very similar, assuming they
are formed in equal numbers. Cusped nuclear clusters dominate the cluster tide-driven
merger rate compared to globulars for all binary species. Whereas cluster tides acting
alone are unlikely to produce many NS-NS mergers, they can still contribute at the level of
several per cent to the observed NS-BH and BH-BH merger rates, given our assumptions.

7.5.1 Relation to existing literature

There are a number of existing estimates of compact object binary merger rates in
globular and nuclear clusters (Antonini, Murray, et al. 2014; Stephan et al. 2016; Antonini,
Chatterjee, et al. 2016; Fragione & Bromberg 2019). The studies which bear closest
resemblance to our work consider binaries orbiting SMBHs at the centres of nuclear
clusters and undergoing LK-driven evolution (Antonini & Perets 2012; Prodan et al. 2015;
Petrovich & Antonini 2017; Hoang et al. 2018; Bub & Petrovich 2020; Arca Sedda 2020).
However, apart from the last two, none of these studies accounted for the direct tidal
torque on the inner orbit due to the cluster potential as we do here6. Additionally, in
these studies the distribution of binary outer orbits is typically truncated at radii of
. 0.1pc from the cluster centre. We do not rely on the presence of a central black hole
and still find mergers (out to much larger radii) by including a cluster potential.

6The work by Bub & Petrovich (2020) and Arca Sedda (2020) is discussed further in §8.2.
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In nuclear clusters our BH-BH merger rate R ∼ 0.1− 0.2 Gpc−3yr−1 is comparable
to (but typically slightly smaller than) those of others, e.g. Antonini & Rasio (2016)
(R ∼ 1 Gpc−3yr−1 from nuclear clusters without a SMBH), Petrovich & Antonini (2017)
(R ∼ 0.6 − 15 Gpc−3yr−1 from non-spherical nuclear clusters with a SMBH, but they
use higher Yform). In globulars our BH-BH rate R . 0.02 Gpc−3yr−1 is significantly
smaller than those of e.g. Rodriguez, Chatterjee, et al. (2016) (R ∼ 2 − 20 Gpc−3yr−1

from hardening of dynamically formed binaries), see §7.4.1.
For NS-BH and NS-NS binaries in (cusped) nuclear clusters our rates, R ∼ 0.1 −

0.2 Gpc−3yr−1, are comparable to or greater than those of Petrovich & Antonini (2017)
(R ∼ 0.02 − 0.4 Gpc−3yr−1 and R . 0.02 Gpc−3yr−1 respectively). Our results are
also comparable to those of Hamers, Bar-Or, et al. (2018a) who found a combined
merger rate for all compact object binary flavours in nuclear clusters with SMBHs
of R ∼ 0.02 − 0.4 Gpc−3yr−1.

Like most other dynamical merger channels, the rates produced by our mechanism
fall short of those observed by LIGO by at least one order of magnitude.

7.5.2 Further refinements

Since the purpose of this Chapter is simply to demonstrate that cluster-tide driven mergers
can contribute to the LIGOmerger rate at a significant level, we defer a careful investigation
of the parameter space to a more comprehensive future study (see §8.2). Apart from some
technical simplifications used in this study (e.g. our approximation of Tm using equation
(7.4), simple analytical estimate for the fluctuation δe, etc.), we have also deliberately
omitted certain physical ingredients to focus on mergers arising due to secular effects alone.

Perhaps most crucially, we ignored the impact of flyby encounters on the binary’s
inner orbital elements (Heggie & Rasio 1996; Hamers 2018b). This is an important effect
that can influence our results in non-trivial ways. Recently, Samsing et al. (2019) found
that numerous distant flybys can systematically increase the number of binary mergers in
stellar clusters (although they did not account for secular tide-driven evolution). Heisler
& Tremaine (1986), in their study of Oort comet dynamics, found that stellar flybys
contribute a significant portion of the torque at high eccentricity — in fact, the Oort comets
exhibit a coupled behavior in which their orbital elements roughly follow a smooth, secular
(Galactic tide-driven) trajectory on average, while simultaneously exhibiting a random
walk in phase-space because of stochastic flyby encounters. We expect a similar behaviour
to hold in our case, and will explore it in future work — see §8.2 for further discussion.

We also neglected time-dependence of the cluster properties, e.g. due to core collapse
or disk shocking, and ignored the relaxation of the binary’s outer orbit e.g. due to
vector resonant relaxation (VanLandingham et al. 2016; Hamers, Bar-Or, et al. 2018a) or
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dynamical friction (Arca Sedda 2020). In particular, mass segregation of heavy binaries
would boost the central concentration c, which can increase or decrease merger fractions
depending on the cluster potential and the level of concentration (§7.3). However, we
note that our merger rates are often only mildly affected by variation of c (Figure 7.3).
In addition we neglected the time-dependence of the number density of globular clusters
in the local Universe. For instance, it is likely that our Galaxy used to contain 10-100
times as many globular clusters as it does now (Gnedin et al. 2014), and they have since
been previously disrupted. Applying this argument to external galaxies might lead to
a higher effective value for ntot

gc , increasing the predicted merger rates, particularly at
redshifts larger than 1 (Fragione & Kocsis 2018; Rodriguez & Loeb 2018).

Furthermore, to focus on the tidal effect of the smooth cluster mass distribution
alone, in this Chapter we ignored the possibility of a central SMBH which could reside in
nuclear clusters. Similarly, we assumed each cluster to be perfectly spherically symmetric,
omitting the effects of possible oblateness on the outer orbit (Petrovich & Antonini 2017;
Bub & Petrovich 2020). Again, to make our model realistic it is crucial to account
for these effects and others (8.2).

7.5.3 Summary

In this Chapter we explored a new channel for producing compact object mergers in
dense stellar clusters which relies on the secular evolution of binaries driven by the
cluster’s tidal gravitational field (a field which is unavoidably present in any merger
model involving clusters). To summarise:

• We computed merger rates due to this mechanism by focusing on conditions in
which the binary can be driven to such high eccentricity that GW emission becomes
important, while fully accounting for the detrimental effect of GR precession.

• We showed that stellar systems with cored potentials (e.g. globular clusters) do not
produce many mergers, owing to the inefficiency of high-eccentricity excitation in
the cluster cores.

• Cusped nuclear clusters (even in the absence of a central SMBH) are significantly
more effective and lead to observationally interesting merger rates.

• Our results are consistent with the (very poorly constrained) LIGO estimate for the
NS-BH merger rate. Otherwise, our merger rates come closest to meeting current
LIGO estimates for BH-BH binaries but still fall short by more than an order of
magnitude.
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On the other hand, we note that all current rate estimates — including ours — have
(systematic) error bars of at least an order of magnitude. In a future study we shall
explore the sensitivity of our results to variation of the underlying assumptions; in
particular we will study the impact of the presence of a central SMBH on the merger
rates in nuclear clusters (§8.2).
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In this thesis we have concerned ourselves with the secular dynamics of binaries in
stellar clusters. We said in §1.2 that the thesis would be focused on three questions.
Below, we reproduce these questions and summarise the answers that we have arrived
at throughout the preceding chapters (§8.1). Finally, to conclude the thesis we consider
directions for future work (§8.2).

8.1 Summary

The first question we asked in §1.2 was:

• what happens to (idealised, point-mass, Newtonian) binary systems when they are
perturbed weakly by an external body (e.g. tertiary companion, cluster, or galaxy)
to which they are gravitationally bound?

This question can be of great importance when considering the origin of various exotic
objects harboured by stellar clusters and galaxies. Chapters 2 and 3 were dedicated to
providing the most general and comprehensive answer to this question to date.

269
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In Chapter 2 we formulated the most general possible theory of tide-driven secular
evolution of two bound point masses in arbitrary axisymmetric host systems (‘clusters’).
We showed that the dynamical evolution of a given binary is governed by a secular, or
‘doubly-averaged’ (DA), Hamiltonian; here DA refers to time-averaging over both the
inner Keplerian orbit of the binary and its outer orbit around the cluster. All information
about the background cluster potential and the binary’s orbit within it is encapsulated in
just two parameters, A and Γ, the first of which merely sets the secular timescale. The
famous Lidov-Kozai (LK) problem is a special case of the theory corresponding to Γ = 1.

In Chapter 3 we explored in detail the dynamics arising from the DA Hamiltonian,
for different values of Γ. For Γ > 1/5 we found that the phase-space structure and
binary dynamics are qualitatively similar to LK theory, but that the behaviour changes
dramatically outside of this regime because of bifurcations at Γ = 1/5, 0,−1/5. We
calculated the important dynamical characteristics such as the secular evolution timescale,
the maximum eccentricity, etc. for binaries in each Γ regime, and verified our theoretical
results using numerical simulations.

Overall, these two Chapters provide the analytical bedrock upon which the remainder
of the thesis is built.

♣

The second question posed in §1.2 was:

• how is the resulting dynamical evolution impacted by non-Newtonian and non-
secular effects, such as GR precession, GW emission and short-timescale fluctuations
in the torque?

The three additional effects mentioned here — GR precession, GW emission and short-
timescale fluctuations — were the focus of Chapters 4, 5 and 6 respectively. A recurrent
theme in these three chapters was the uncovering of new results about LK theory that had
not been appreciated before despite decades of work and hundreds of papers on the topic.

In Chapter 4 we generalised the DA secular theory to include GR pericentre precession
of the binary’s inner orbit. We characterised the strength of GR using a dimensionless
parameter εGR, and then studied the secular dynamics for arbitrary εGR, delineating
several different dynamical regimes. In so doing we uncovered new and unintuitive
phase space morphologies. We also derived several general results valid in the high
eccentricity (e→ 1) limit, including an analytic solution to the DA equations of motion
for all orbital elements. Despite its analytic simplicity such a solution had not been
derived before, even in LK theory.
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In Chapter 5, with one eye on an ultimate application to compact object merger
physics, we added GW emission to our DA theory. Via a combination of analytical theory
and numerical experiments we gained insight into the physics of cluster tide-driven decay
of binary orbits (which ultimately led to ‘slow mergers’). While the results of this Chapter
hold for arbitrary Γ > 0, they also shed important new light on LK-driven (Γ = 1) mergers,
as many of the details had not been appreciated before even in this well-studied special case.

In Chapter 6 we finally broke the DA assumption and considered the impact of
fluctuations in the torque on the timescale of the binary’s outer orbit. We derived an
expression for the approximate magnitude of the resulting eccentricity fluctuations valid
at e→ 1. We also chanced upon a new effect, relativistic phase space diffusion (RPSD),
by which a very high-eccentricity binary can be ‘kicked’ from one ‘parent’ DA evolutionary
track to another by sub-secular fluctuations. Once again this process occurs in classical
three-body dynamics, but had not been pointed out before.

♣

The third and final question posed in §1.2 read as follows:

• can tide-driven eccentricity excitation account for (some of) the compact object
mergers currently being detected by LIGO/Virgo?

Of course, this question was already answered in the affirmative — at least qualitatively
— in Chapter 5. To make that answer quantitative, in Chapter 7 we finally performed the
calculation hinted at from the start of the thesis, namely the cluster-tide driven merger
rate of compact object binaries. We computed merger rates for BH-BH, NS-BH and
NS-NS binaries for various cluster potentials and binary concentrations, assuming all
clusters to be spherical. We found that this dynamical channel can produce a significant
number of mergers out to cluster-centric distances of several parsecs, and can contribute
to the observed LIGO/Virgo rate at the level of several per cent.

8.2 Future work

The investigation undertaken in this thesis has unveiled some important — and previously
neglected — aspects of binary dynamical evolution and compact object merger physics.
However, it is far from whole story. There are many ways in which the theory presented
here should be improved and extended (and already has been by some authors, as we
mention below). Let us now comment on some of the most important and timely
directions for future research.
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Figure 8.1: An example of a chaotic three-body interaction, taken from the classic paper by Hut
& Bahcall (1983). A binary (stars 1 and 2) encounters a perturber (star 3) in a strong encounter
with very small impact parameter. The schematic diagram on the top left illustrates the different
configurations that the system goes through before it finally ‘ejects’ star 2.

8.2.1 Flyby encounters

Throughout this work we have assumed that the cluster potential that perturbs the binary
is perfectly smooth — in other words, we have ignored the effect of any granularity in the
potential, in particular due to passing stars. The most glaring omission from this thesis is
therefore a proper accounting for the effect of stellar flybys on the binary evolution. These
flybys are unavoidable in dense stellar systems, and can themselves modify sporadically
a binary’s eccentricity, semimajor axis, etc., as we now discuss.

As already mentioned in §3.9.3, flyby encounters can be categorised into ‘strong’ and
‘weak’ encounters. Strong encounters have impact parameters (relative to the binary’s
barycentre) that are comparable to the binary semimajor axis, a. The majority of these
will fly past on nearly parabolic orbits and will ‘kick’ the binary impulsively (i.e. on a
timescale much shorter than the inner orbital period), changing a and e as well as the
other orbital elements (Heggie & Rasio 1996). However, some strong encounters, if they
occur with a small enough impact parameter and relative velocity, can lead to a chaotic
three-body interaction like the one illustrated in Figure 8.1. Of course, any such encounter
would totally ‘reset’ the binary initial conditions and render our secular theory entirely
inaccurate. In §3.9.3 we calculated the characteristic timescale that one has to wait for a
given binary to undergo a strong encounter in a stellar cluster to be (equation (3.62)):

tenc ≈ 5 Gyr× 1
1 + ξGF

(
n

104 pc−3

)−1 ( σ

10 kms−1

)−1 ( a

10AU

)−2
, (8.1)
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where n is the cluster number density, σ is the typical speed of a passing star, and ξGF is
related to the Safronov number which measures gravitational focusing. Equation (8.1)
suggests that strong encounters should not be totally ignored in e.g. our merger rate
calculation (Chapter 7), in which many binaries merged only after undergoing secular
evolution for several Gyr (Figure 7.2). A more comprehensive calculation ought to
account for such ‘resets’.

Perhaps more importantly, on the long secular timescales studied in this thesis one
must take into considration the effect of multiple ‘weak’ encounters on the binary evolution.
Weak encounters are flybys with impact parameters � a. In this case, the flyby ‘duration’
(the time over which the perturber affects the binary significantly) is usually much longer
than the binary’s inner orbital period, so these encounters are often termed ‘slow’ or
‘adiabatic’. Slow encounters do not change the binary’s semimajor axis but do cause a
diffusion in the other orbital elements, including the eccentricity, as has been considered
in detail by Heggie & Rasio (1996), Hamers (2018a), Hamers & Samsing (2019a), and
Hamers & Samsing (2019b). Another way to think about weak encounters is to compare
them to the RPSD phenomenon we found in Chapter 6. Recall that D and jz are the
primary integrals of motion for a binary undergoing secular evolution1, and that RPSD
led to diffusion of D, but only at high eccentricity and only when GR precession was
included. On the contrary, a succession of weak flybys will lead to phase space diffusion
in both D and jz. It will occur at all binary eccentricities, and will not depend on the
presence of GR; and rather than the violent jumps in D that we saw in the RPSD case, a
succession of weak encounters will instead produce gentler kicks to D and jz, resulting
in something like a random walk in the (D, jz) space.

Therefore, in the context of our work, it is clearly important to understand the
‘competition’ between the effect of numerous weak encounters upon a binary and the
secular evolution of that binary driven by cluster tides. A small step in this direction was
taken recently by Batygin et al. (2020) for a binary on a circular outer orbit in a Plummer
cluster, but the general problem has yet to be studied in any detail. In future work, one
ought to devise a general theory of binary dynamical evolution that would account for
both of these effects simultaneously. More precisely, one could derive a Fokker-Planck-style
kinetic theory for the phase space distribution function of an ensemble of binaries. This
theory would allow for both secular forcing and diffusion due to stochastic kicks. It could
be tested using a combination of precise few-body simulations and Monte-Carlo methods,
for instance by integrating a BH-BH binary in a smooth cluster potential but including
flybys from passing stars at random intervals (e.g. Hamers 2017).

1If we ignore GW emission, that is.
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8.2.2 Asphericity of clusters, central supermassive black holes, and
relaxation of the outer orbit

The DA theory developed in this thesis is valid for any binary orbiting in any axisymmetric
host system. This includes spherical systems as a special case but necessarily excludes
triaxial systems. However, in our calculation of merger rates in Chapter 7, we assumed
that all clusters were spherical. Of course in reality clusters are rarely spherical — globular
clusters are typically flattened at the ∼ 10% level (Mackey & Van Den Bergh 2005), while
nuclear clusters are often triaxial (Neumayer et al. 2020). Allowing our clusters to be
axisymmetric as opposed to spherical will drive nodal precession of the outer orbit, which
could render the theory invalid if the outer orbit does not ‘fill its torus’ (Chapter 2) on a
timescale much shorter than the secular period. Moreover, if the cluster is fully triaxial
then there is a significant chance that the outer orbit will be chaotic (Binney & Tremaine
2008; Merritt 2013) and not amenable to any kind of outer orbit averaging. In either of
these cases one must revert to the singly-averaged theory, which is valid for any potential,
axisymmetric or otherwise. In future work it be good to drop the spherical assumption, for
instance by making the cluster slightly flattened. One could then investigate systematically
the effect that the chosen degree of flattening has on merger rates.

In Chapter 7 we also ignored the possibility that, when considering nuclear star
clusters, there is very likely a central supermassive black hole (SMBH) present (Neumayer
et al. 2020). This SMBH can drive LK oscillations in a nearby binary even in the absence
of any cluster potential (Antonini & Perets 2012). Additionally, if we allow a sufficiently
massive SMBH to exist at the centre of our spherical clusters, then we expect the resulting
merger rates to be increased significantly, for three main reasons:

1. A central finding of this thesis is that for a given binary to reach extreme eccentricities
e→ 1, and hence potentially merge, nearly always requires Γ > 1/5. As illustrated
in Figure 8.2a the SMBH’s presence allows many more binaries to remain above the
Γ = 1/5 barrier.

2. As illustrated in Figure 8.2b, the presence of a central SMBH means that most
binaries will have higher A∗, leading to faster secular evolution and a smaller value
of εGR (so GR precession is less likely to quench eccentricity oscillations).

3. As illustrated in Figure 8.2c, the central SMBH can boost the value of F ∗circ, which
roughly sets the size of the angular momentum fluctuations at highest eccentricity
(§6.3.4). Larger fluctuations reduce the merger time (Chapter 7).
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Figure 8.2: Plots of the important parameters (a) Γ, (b) A∗ ≡ A/(GM/b3), and (c) F ∗
circ ≡

Fcirc/(GM/b3)1/2. We assume the binary is on a circular outer orbit of radius R in a spherical
cluster with scale radius b and massM. Solid lines correspond to binaries in Plummer (red) and
Hernquist (green) potentials, each scaled to have half-mass radius 1.31pc. We also show the results
of adding a central point massM• (see legend). Note that the inclusion of the point mass can lift
many binaries above the Γ = 1/5 barrier, below which high eccentricity excitation is very rare.

Thus, adding a central SMBH will likely lead to many more mergers, particularly in
the more centrally concentrated models. Indeed, Arca Sedda (2020) has considered
the problem of BH-BH binaries in spherical nuclear clusters with a central SMBH. He
included the torquing effects of both the SMBH and the cluster potential upon the binary’s
eccentricity evolution, although he assumed that the outer orbit was circular. He found
that the BH-BH merger rate from this mechanism could account for perhaps ∼ 10% of that
measured by LIGO/Virgo, a significant boost compared to what we found in Chapter 7

In fact, a combination of cluster asphericity and a central SMBH can enhance merger
rates even further. First of all, Petrovich & Antonini (2017) showed that in an aspherical
nuclear cluster, if the outer orbit’s nodal precession timescale is comparable to the secular
timescale for LK oscillations driven by a central SMBH, then the binary’s phase space
evolution becomes chaotic. This can boost the merger rate significantly compared to
the case of a spherical cluster with or without a SMBH. However, Petrovich & Antonini
(2017) did not include the direct effect of the cluster potential on the inner orbit. Since
then, Bub & Petrovich (2020) have combined the results of this thesis with those of
Petrovich & Antonini (2017). They considered compact object binaries in triaxial nuclear
clusters with and without a central point mass, and included the full effect of the cluster
potential on both the binary’s inner and outer orbit. Under these conditions they found
that the resulting BH-BH merger rate could be boosted by 1-2 orders of magnitude
compared to what we found in Chapter 7.

Unfortunately, the studies by Bub & Petrovich (2020) and Arca Sedda (2020) were both
severely limited in scope for computational reasons. The former authors approached the
problem by simultaneously integrating the singly-averaged equations of motion of the inner
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binary and the outer orbital motion in the combined SMBH-cluster potential. The latter
used direct N-body simulations of the hierarchical triple (binary plus SMBH) system with
extra terms added to the force to account for the cluster potential. When performing a
population synthesis calculation, both approaches prove highly computationally expensive,
and so neither study was able to cover a wide parameter space. Given our great ignorance
of the masses and the density profiles of nuclear clusters, the masses of their central
SMBHs, and of the semimajor axis and eccentricity distributions of compact object
binaries in clusters, this is a significant drawback. In future it would be beneficial
to develop a semi-analytical approach to this problem, which would not incur such a
computational penalty, allowing us to investigate millions of binary initial conditons
and study a wide parameter space.

Both asphericity and the presence of a SMBH modify the outer orbit, because they
change the mean cluster potential. Additionally however, there can be modifications to
the outer orbit that occur even though the mean potential of the system is fixed. For
instance, vector resonant relaxation (Rauch & Tremaine 1996; Meiron & Kocsis 2018)
can efficiently shuffle the orientation (i.e. direction of angular momentum unit vector)
of orbits in spherical systems. This effect has been shown to increase LK-driven merger
rates in galactic nuclei (Hamers, Bar-Or, et al. 2018a), but the analagous calculation
has not yet been done for binaries in globular clusters2. Also, heavy objects in galactic
nuclei can experience a form of resonant dynamical friction that rapidly aligns them
with a stellar disk (Szölgyén et al. 2021).

If the heavy object is a black hole binary then the binary might settle into the disk
and consequently exprience an enhanced rate of dynamical interactions with other stars,
potentially hastening mergers. Circling back to something mentioned at the very start
of this thesis (§1.1.1), if the heavy object is a single black hole then this dynamical
friction mechanism might increase the prevalence of black holes found in AGN disks. The
resulting high density of black holes can lead to the formation of black hole binaries;
and those binaries can then be torqued by the central SMBH and/or cluster tides, or
perturbed by other disk members. In summary, one wide-open avenue for future work
is to consider the cluster tide-driven evolution of binaries whose outer orbits are slowly
changing with time, even in fixed cluster potentials.

2Hamers, Bar-Or, et al. (2018a) showed that the merger rate of compact object binaries in the
Galactic centre is enhanced most efficiently if the typical timescale for outer orbit reorientation by VRR
is comparable to the LK secular timescale driven by the central SMBH. Applying the same argument
to cluster tide-driven binary evolution, we must balance the VRR timescale ∼

√
NTφ where N is the

number of stars in the cluster (Rauch & Tremaine 1996; Meiron & Kocsis 2018) with the secular period
tsec ∼ T 2

φ/Tb. This implies Tφ/Tb ∼
√
N , which is quite easily satisfied in a typical globular cluster. For

instance, taking N = 106 and Tφ = 105yr, we find that VRR will be most effective for Tb ∼ 100yr, which
is typical of, say, a m1 = m2 = 30M� BH-BH binary with a ∼ 40AU.
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8.2.3 Population synthesis tools

Finally, there is the potential to bring all of the aforementioned effects together, and
in so doing develop much more comprehensive numerical tools for population synthesis
calculations. Precisely, one could combine the theoretical results of this thesis into a
full semi-analytical model of compact object binary formation, evolution and mergers
in stellar clusters, tracking populations of binaries from ‘birth’ to ‘death’ (i.e. merger
or disruption) and including all important physical processes: cluster tides, flybys, GR
precession, GW emission, compact object formation, etc. An ideal numerical toolkit would
allow a user to input an ensemble of stars and compact objects with a given mass spectrum,
binary fraction, etc., to focus on a particular environment (say, globular clusters), and
would output predictions for observables like the merger rate, spin distribution of merger
progenitors, and so on. Indeed, with small tweaks such a toolkit could be very useful
not only for understanding compact object merger physics but also for attacking many
related problems involving a ‘binary’ in a dense environment. For instance, it might
be used to probe the formation of blue stragglers in globular clusters, or to understand
the dynamics of comets around the Sun.
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