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Abstract
We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut
out as one explores a conformal loop-ensemble CLEκ ′ for κ ′ in (4, 8) that is drawn
on an independent γ -LQG surface for γ 2 = 16/κ ′. The results are similar in flavor
to the ones from our companion paper dealing with CLEκ for κ in (8/3, 4), where
the loops of the CLE are disjoint and simple. In particular, we encode the combined
structure of the LQG surface and the CLEκ ′ in terms of stable growth-fragmentation
trees or their variants, which also appear in the asymptotic study of peeling processes
on decorated planar maps. This has consequences for questions that do a priori not
involve LQG surfaces: In our paper entitled “CLE Percolations” described the law
of interfaces obtained when coloring the loops of a CLEκ ′ independently into two
colors with respective probabilities p and 1− p. This description was complete up to
one missing parameter ρ. The results of the present paper about CLE on LQG allow
us to determine its value in terms of p and κ ′. It shows in particular that CLEκ ′ and
CLE16/κ ′ are related via a continuum analog of the Edwards-Sokal coupling between
FKq percolation and the q-state Potts model (which makes sense even for non-integer
q between 1 and 4) if and only if q = 4 cos2(4π/κ ′). This provides further evidence
for the long-standing belief that CLEκ ′ and CLE16/κ ′ represent the scaling limits of
FKq percolation and the q-Potts model when q and κ ′ are related in this way. Another
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consequence of the formula for ρ(p, κ ′) is the value of half-plane arm exponents
for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a
somewhat different form than the usual critical exponents for two-dimensionalmodels.

Keywords Conformal loop ensembles · Liouville quantum gravity · Percolation ·
Gaussian free field · Schramm–Loewner evolutions · Growth–fragmentation trees

Mathematics Subject Classification 60J67 · 60K35 · 82B41 · 82B27 · 60G52 · 60G60 ·
60J80

1 Introduction

Most of this paper will be devoted to the study of the collection of quantum surfaces
that one obtains when drawing a non-simple conformal loop ensemble (CLE) on top
of an independent Liouville quantum gravity (LQG) surface. This study will imply
statements for CLE that do not involve LQG and that we choose to briefly present in
the first two sections of this introduction.

1.1 A divide-and-color exponent

In view of the fact that this paper is dedicated to the memory of Harry Kesten, it seems
fitting to start it with one very particular sub-instance of the results that will be derived
here which have direct consequences for a lattice-based model that is directly related
to Bernoulli percolation on the square grid.

Start with critical Bernoulli bond percolation on Z × N (i.e., where edges are
open or closed independently with probability 1/2). This defines a configuration on
edges, which in turn partitions the vertices into clusters. Next, we choose a parameter
p ∈ (0, 1), and we color the clusters independently in red and blue with probability p
and 1− p. We are now interested in the event ER = ER(p) that there exists a path of
red sites joining the origin to the semi-circle of radius R around the origin. The results
of the present paper will essentially imply that:

Statement 1.1 If critical Bernoulli percolation is conformally invariant in the scaling
limit, then P[ER(p)] = R−a(p)+o(1) as R → ∞, where

a(p) = 1
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We can make the following four comments at this early stage:

1. The appearance of the arctan(·) function in the above formula suggests that its
derivation will involve arguments somewhat different from those used to derive
the “usual” critical exponents, which are computed only using SLE martingales.
Indeed, as we shall explain in the present paper, these arctan type formulas appear
to be a by-product of the decomposition of LQG-type surfaces in terms of Lévy
trees.
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Non-simple conformal loop ensembles on Liouville... 671

2. This formula is part of a bigger picture. Similar statements hold when critical
Bernoulli percolation is replaced by a critical FKq random cluster model for q ∈
(0, 4) (so that we are now dealing with models known as fuzzy Potts models
[22,30]). For instance, for the FK2-Ising model, the formula for this one-arm half-
plane exponent is

a(p) = 1
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) (
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p

1 − p

)
. (1.1)

As we shall explain in the next section, these formulas follow from the detailed
description of the red/blue interfaces obtainedwhen one colors loops in a conformal
loop ensemble independently.

3. A similar statement can be formulated when one starts with site percolation on
the triangular lattice (and then colors the “cluster of edges” independently) instead
of Bernoulli percolation on the square lattice. This has the advantage that the
result is then unconditional (as this percolation model is known to be conformally
invariant) but it is then a little less natural (similarly, for the aforementioned Ising-
FK2 model, the result is also unconditional). We will not discuss the discrete to
continuum convergence here and leave it for some upcoming paper in which these
discrete divide-and-color exponents will be discussed further.

4. The exponent 1/3 that shows up in the p → 0+ limit for a(p) in Statement 1.1 is
the usual one-arm boundary exponent for critical percolation (which is what one
would expect when one looks at the limit of the exponents)—the same remark
applies for the exponent 1/2 that appears in the limit for the FK2 model.

1.2 The q(�′) formula for CLE percolation

CLEs are random families of loops in a simply connected domain (one can for instance
consider the unit disk D) that satisfy certain natural properties (conformal invariance
and some version of a spatial Markov property) that make them the natural candidates
for scaling limits of interfaces in critical two-dimensional models from statistical
physics with a second-order phase transition [43,45]. They are parameterized by a
real parameter κ ∈ (8/3, 8); each loop in a CLEκ is a loop-version of the Schramm-
Loewner evolution (SLEκ ) [42] and one can divide the CLEs into two regimes. In
the regime κ ∈ (8/3, 4], a CLEκ consists of a pairwise disjoint collection of simple
loops which do not intersect the domain boundary while in the regime κ ∈ (4, 8) a
CLEκ consists of a collection of non-simple loops which can touch each other and the
boundary of the domain. It is now customary (and we will use this notation throughout
the present paper) to denote the non-simple CLEs by CLEκ ′ for κ ′ ∈ (4, 8) (this will
prevent some confusion when discussing the “duality” statements). The collection of
loops are defined directly in the continuum with no reference to discrete models, but
it can be useful to have in mind some of the main conjectures relating discrete models
to CLE, as this can help to guide our intuition and our understanding of CLEs.
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672 J. Miller et al.

The following conjectures are particularly relevant to the results that wewill present
in this section (conjectures related to random planar maps will be behind the scenes
when we will discuss CLE on LQG):

– The collection of interfaces (which are all loops on a medial lattice) in a critical
FKq -percolationmodelwith free boundary conditions converges to aCLEκ ′ .When
q increases from 0+ to 4, the corresponding value of κ ′ should decrease from 8−
to 4. This convergence has been proved in the cases q = 0+ (the uniform spanning
tree) [28], q = 1 [7,46] (but only for site percolation on the triangular lattice,
which is not really a planar bond percolation model) and q = 2 [19,26,47] (which
is the case related to the Ising model). Note that by duality, the same is essentially
true when one considers an FKq model with wired boundary conditions.

– Consider a critical q-Potts model with uniform boundary conditions (say with
color 1 on the boundary) for q = 2, 3, 4, and consider the scaling limit of the
law of the cluster of color 1 that contains the boundary points. Its inner boundary
consists of a collection of closed disjoint loops. When the mesh of the lattice goes
to 0, this collection of loops should converge to the outermost loops in a CLEκ for
some value κ ∈ (8/3, 4] (the limit of the boundary-touching cluster would be the
set of points surrounded by no CLEκ loop, that is called the CLEκ carpet).

In the discrete setting, for integer q ≥ 2, the Potts model and the FKq percolation
models can be coupled as follows (see for instance [20]): When one chooses one of
the q colors uniformly at random and independently for each of the FKq clusters, then
one obtains the Potts model (which was the initial motivation to study FK-percolation
in [18]), and conversely, the FKq percolation can be viewed as “Bernoulli-bond perco-
lation” in each of the Potts clusters (i.e., edges joining two sites with different colors
are closed, and one tosses an independent biased coin for each of the other ones)—this
is sometimes referred to as the Edwards-Sokal coupling after [17].

This suggests that the conformal loop ensembles should have the following proper-
ties, which can be roughly stated without reference to any discrete model (and without
requiring q to be an integer). Suppose that κ ∈ (8/3, 4) and κ ′ = 16/κ ∈ (4, 6).

(a) A CLEκ ′ can be viewed as a model for critical Bernoulli percolation within a
CLEκ carpet.

(b) Conversely, suppose we start with a CLEκ ′ (in its nested version) and consider
its collection of clusters (corresponding to wired boundary conditions—we will
detail how to define them in the next paragraph). Then we color in blue each of its
clusters independently with some probability 1/q(κ ′), except that the outermost
cluster (which contains the boundary of the domain) is colored blue regardless.
Then the blue connected component touching the boundary is distributed like a
CLEκ carpet.

Let us briefly explain how to define the collection of clusters that are defined by
a CLEκ ′ . We say that a point is surrounded by a CLEκ ′ loop if the index of the loop
around the point is non-zero—we call i(L) the set of such points. By convention, we
will also view the domain boundary ∂D as one of the CLEκ ′ loops. We say that a loop
in the CLEκ ′ is an nth level loop if it is surrounded by exactly n other loops in the
CLEκ ′ (so ∂D is the only 0th level loop). For each nth level loop L in the CLEκ ′ such
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Non-simple conformal loop ensembles on Liouville... 673

that n ≥ 0 is even, we define the cluster K (L) surrounded by L to be the closure of
i(L) \ ∪L′ i(L′), where the union of L′ is taken over all (n + 1)st generation loops
surrounded by L. The boundary cluster K (∂D) in this CLEκ ′ will be the closure of
set of points z with the property that the index of any of the CLEκ ′ loop around z is
0—this is sometimes called the CLEκ ′ gasket, by analogy with the Sierpinski gasket.
(This definition of cluster mimics the definition of clusters associated to an FK-model
with wired boundary conditions.)

The two results (a) and (b) were actually established in [37], building on various
inputs and in particular on the imaginary geometry couplings [31] with the Gaussian
free field (GFF), but except for the case κ ′ = 16/3, the value q(κ ′)was not determined.
One outcome of the present paper is the following statement:

Theorem 1.2 (The q(κ ′) formula for CLE percolation) The value q(κ ′) in (b) is equal
to 4 cos2(4π/κ ′).

This therefore provides a direct derivation of the relation between q and κ ′, without
reference to any discrete model calculation and completes the solution to [43, Prob-
lem 8.10]. Note that as explained in [37], symmetry reasons implied that q(16/3) = 2
(which is consistent with the fact that the FK2 model that is related to the Ising model
converges to CLE16/3 while the Ising model converges to CLE3 [2]), but this was the
only value of κ ′ for which q(κ ′)was known. So for instance, the fact that q(κ ′) = 3 for
κ ′ = 24/5 (so that CLE10/3 carpets should describe the scaling limits of (q = 3)-Potts
clusters) is new. In particular, establishing the convergence of FK3 to CLE24/5 would
then automatically imply the joint convergence of FK3 and the coupled 3-state Potts
model to CLE24/5 with the coupled CLE10/3 obtained by the coloring procedure. We
see also that q = 4 is the maximal possible value, just out of continuum CLE consid-
erations (the threshold at q = 4 features also in the nature of the phase transition for
planar FKq models derived in [12,13]).

To our knowledge, the only other instance where the conjectural relation between
q and κ ′ has been derived from the continuum objects, is via CLE crossing events as
described in [40]. For a brief survey of other arguments that led to this conjecture, we
refer to [40].

It is actually shown in [37] that for any κ ′ ∈ (4, 8), if one uses any value p (for
p < 1) to color theCLEκ ′ clusters using the sameprocedure as before (p replaces 1/q),
then one obtains one of the so-called boundary conformal loop ensembles BCLEκ(ρ)

(where ρ is a parameter which is determined by p) for κ = 16/κ ′. The present paper
will show which BCLEκ(ρ) is obtained for each value of p. One consequence of this
fact is that it allows us to describe the “non-blue” clusters that appear in the holes of
the blue clusters in the above construction (another way of phrasing this result deals
with the so-called “full” SLEβ

κ ′(κ ′ −6) processes as defined in [37] and more precisely
with the identification of the law of their trunk).

An essentially equivalent way to formulate this result goes as follows: Consider a
CLEκ ′ in the upper half-plane, and look only at its outermost loops (the other ones
will not matter here). We fix p ∈ [0, 1] and color each of the loops (and their interior)
independently in red or blue with probability p and 1− p respectively. We now have a
coloring of the plane using two colors, and we can then look at the outer boundary of
the closure of the union of the red connected components that touch the negative half-
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674 J. Miller et al.

Fig. 1 Top: Simulation of the
interface (in green) of the
clusters of red CLE6 loops
touching the left half-circle and
the clusters of blue CLE6 loops
touching the right half-circle for
p = 1/4. Bottom: All of the
boundary touching interfaces are
shown (color figure online)

line. It turns out (see [37]) that it consists of the negative half-line together with some
simple curve η from 0 to ∞, which is also on the outer boundary of the union of the
blue connected components that touch the positive half-line (see Fig. 1 for a simulation
in the unit disk). It is furthermore shown in [37] that there exists ρ ∈ [−2, κ −4] such
that the law of η is that of an SLEκ(ρ; κ − 6 − ρ) process. The present paper will
provide the explicit formula for ρ as a function of κ ′ and p, and therefore complete
the identification of the law of η (which was only known for p = 0, p = 1/2 and
p = 1):

Theorem 1.3 (The interfaces for CLEκ ′ percolation processes) The relation between
p ∈ [0, 1] and ρ ∈ [−2, κ − 4] when κ ′ ∈ (4, 8) is given by

p = sin(π(ρ + 2)/2)

sin(π(ρ + 2)/2) + sin(π((κ − 6 − ρ) + 2)/2)
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or equivalently

ρ + 2 = 2

π
arctan

(
sin(πκ/2)

1 + cos(πκ/2) − (1/p)

)
.

We wrote the right-hand side in this slightly strange form in order to stress the
ρ ↔ κ − 6 − ρ symmetry, and so that the sin(·) terms take positive values and the
angles belong to [0, π ]. The fact that Theorem 1.3 implies Theorem 1.2 is a direct
consequence of Theorem 7.10 of [37].

To relate this formula with Sect. 1.1, one can recall that the dimension of the
intersection of an SLEκ(κ − 6− ρ) process with the real axis has been shown in [41]
to be

d(κ, ρ) = 1 − (κ − 2 − (ρ + 2))(κ/2 − (ρ + 2))

κ
.

Hence, this will be the dimension of the intersection of clusters of CLEκ ′ loops (where
each CLEκ ′ loop is selected with probability p ∈ (0, 1)) in the upper half-plane with
the real line where ρ+2 ∈ (0, κ −2) is given by Theorem 1.3. One can note that when
p → 0, then ρ + 2 → 0, and one gets in the limit the dimension 2− κ/2 = 2− 8/κ ′
of the intersection of one boundary-touching CLEκ ′ loop with the boundary i.e., of
the intersection of an SLEκ ′ with the boundary, as one would expect. Statement 1.1
is then obtained by taking κ ′ = 6 (i.e., κ = 8/3) – the exponent a being 1 − d, and
the formula for the FK2-Ising model is obtained for κ = 3. We stress again that the
formulas for exponents for those boundary critical exponents for these divide-and-
color type models (also known as fuzzy Potts models [22,30]) in the discrete setting
depend on p in a very different way than one is accustomed to (as they here typically
involve the arctan function), and that we presently know of no other way to derive such
formulas than the one involving the LQG ideas that we will describe in this paper.

Together with [39], the results of the present paper therefore completes the proofs
of the statements announced in Section 7.4 of [37].

1.3 Poissonian structure of CLE�′ explorations on LQG surfaces

The previous results will be obtained by understanding the Lévy-type structures that
emerge when one explores certain CLEκ ′ decorated LQG surfaces for κ ′ ∈ (4, 8).
Many aspects of the argumentswillmirror those of our paper forCLEκ -decoratedLQG
surfaces [39] (for κ ∈ (8/3, 4)), that we will also directly refer to for an introduction
and background. Just as in [39], all our arguments take place in the continuum and
do not build on any considerations about random decorated planar maps, but the
results do mirror some of the results that appear when one studies O(N )-models or
FK-percolation models on planar maps via enumerative techniques, such as in [4–
6,8,10]. The Markovian structure that we unveil in the present paper can be viewed
as the continuum counterpart on the peeling algorithms and their properties for these
discrete models. This suggests of course a roadmap to identify their scaling limits in
terms of CLE on LQG, using topologies related to these exploration mechanisms.
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676 J. Miller et al.

Fig. 2 The interface from the
top of Fig. 1 together with loops
which touch the interface at
different times. The discovered
loops create an infinite chain of
“pockets” through which the
interface traverses

The main philosophy of our results is the following: We consider a certain LQG
surface (recall that this is a randomly chosen equivalence class of domains equipped
with an area measure, boundary length measure, and metric, under an equivalence
relation given by simple rules when applying conformal transformations—the choice
of this LQG surface involves a parameter γ ∈ (0, 2)), and on this LQG surface, one
samples an independent CLEκ ′ for κ ′ = 16/γ 2, and we color its loops independently
into red and blue with respective probabilities p and 1− p. One chooses two boundary
points, and then explores the red/blue interface that runs from one point to another.
In other words, one follows the interface described in the previous paragraphs that is
drawn on top of the independent LQG structure. Together with this interface, one also
discovers the encountered CLEκ ′ loops that this interface meets (see Fig. 2), and one
keeps track of (some aspects of) the connectivity properties of the remaining to be
discovered surface. In the particular cases where p = 1 and p = 0, one just moves
along the boundary of the surface and discovers the boundary-touching CLEκ ′ loops.
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Then, our main statements (Theorems 4.1 and 5.1) will be that if one starts with a
well-chosen quantum surface (a so-called generalized quantum disk or a generalized
quantum half-plane), this discovery process has a natural Markovian structure. Let
us illustrate this with the very special case p = 1: Consider a so-called γ -quantum
half-plane (the type of quantum surface which describes the local behavior of an LQG
surface with boundary near a quantum typical boundary point) that we represent in
the upper half-plane. Define an independent CLEκ ′ for κ ′ = 16/γ 2 in the upper half-
plane and consider the bi-infinite ordered family of CLEκ ′ loops (Lu)u∈U that touch
the boundary, ordered according to their left-most intersection point xu with the real
line. Each Lu then encircles a certain quantum surface Du (with a marked boundary
point xu). One consequence of our results will be that this bi-infinite ordered family
of quantum surfaces is distributed like a Poisson point process of quantum surfaces
(that we will refer to as generalized quantum disks). These Poisson point processes
will be naturally related to stable processes, the properties of which will enable us to
derive results such as Theorem 1.3.

It is worthwhile explaining already the differences between the results and proofs
of the present paper and those of [39]:

– On the one hand, the exploration mechanisms, the Lévy processes and the Lévy
trees that will be discussed in the present paper are in some sense simpler to
understand in comparison to the ones appearing in [39]. Roughly speaking, this
corresponds to the fact that we will here be dealing with objects that are directly
related to stable processes with index smaller than 1 for which no Lévy compen-
sation mechanism is needed (whereas in [39], the index is in (1, 2)). This is also
related to the fact that one can explore a CLEκ ′ by discovering all boundary touch-
ing CLEκ ′ loops in the order in which one encounters them when one moves along
the boundary, whereas this is not possible in the CLEκ case. More generally, as
shown in [37], the CLEκ ′ explorations are deterministic functions of the colored
CLEκ ′ that follow simple rules, while this is not the case for the CLEκ explorations
when κ < 4 (see [38]). So, in this respect, the essence of the arguments in the
present paper will be simpler than in [39].

– On the other hand, the LQG representation of these Lévy trees is somewhat more
complex. Themain issue is to have a clear definition and understanding of the LQG
surfaces that we are dealing with. The ones that do show up in the present paper
are not simply connected domains, as opposed to the ones that appeared in [39].
Roughly speaking, the type of quantum surfaces that appear naturally and that we
will work in are the ones that correspond to the “interior of a CLEκ ′ loop”. When
κ ≤ 4, the interior of a CLEκ loop is a simply connected domain, whereas the
interior of a CLEκ ′ loop for κ ′ ∈ (4, 8) has infinitely many connected components
(but we keep track of how they are connected within the loop, which corresponds
to an additional tree-like structure)—see Fig. 3. This gives rise to what we will
call generalized quantum disks and generalized quantum half-planes (these objects
have been referred to as forested disks or wedges in [14]). The reason for which
such objects appear naturally in this setting is already clear from Fig. 2, with its
infinite chain of pockets in front of the interface.
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Fig. 3 Top: CLE6 gasket.
Bottom: Loop which contains
the origin in a CLE6. The
bubbles have a natural tree
structure which we will show is
described by a stable looptree in
the context of LQG. Its outer
boundary is an SLE8/3-type
loop

Outline

The present paper is structured as follows:

– In Sect. 2, we first recall the definitions of the quantum surfaces that will be of
interest in this paper (generalized disks and half-planes) and the results from the
paper [14] that we will use in this paper.

– In Sect. 3, we study the case where one explores the boundary-touching CLEκ ′
drawn on a quantum half-plane (this corresponds to the case p = 1 mentioned
above), and see how (4/κ ′)-stable Lévy processes and Poisson point processes
of quantum disks show up naturally when one explores a generalized quantum
half-plane.

– In Sect. 4, we study the case p ∈ [0, 1], and derive the first main result of the
present paper (Theorem 4.1), about CLE explorations of generalized quantum
half-planes.

– Then, in Sect. 5, following ideas that were already developed in [39]:
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(i) We will explain what happens when one explores a colored CLEκ ′ drawn on
a generalized quantum disk (instead of a generalized quantum half-plane),
deriving Theorem 5.1 (which is the counterpart of Theorem 4.1 in that case),
and how this relates to a fragmentation Lévy tree.

(ii) We complete the proof of Theorem 1.3.
(iii) Finally, we will mention how the description in (i) allows us to define the

“natural LQG measure” in the CLEκ ′ gasket.

2 LQG preliminaries

We review some features and results about LQG surfaces that we will use. We first
discuss the “usual” quantum surfaces (disks and wedges), then the “generalized ones”
(a.k.a. forested surfaces), andwe recall some of the “slicing/welding” results from [14]
that will be instrumental in the present paper. In order to make this part digestible, we
chose not to give the precise definitions of the various objects that will be discussed
(quantum disks, quantum wedges, SLEκ(ρ1; ρ2) processes); instead, we discuss the
actual properties that will be of use in the present paper and refer to other papers for
the actual definitions.

2.1 Quantum surfaces

Unless otherwise specified, in the remainder of the paper, κ ′ ∈ (4, 8). The values κ ,
γ , α and α′ are related to κ ′ by:

κ = 16

κ ′ , γ = √
κ, α = 4

κ
, α′ = 4

κ ′ . (2.1)

In particular, α ∈ (1, 2) and α′ ∈ (1/2, 1) (and α′ stable subordinators exist while
α-stable subordinators do not exist). All the LQG surfaces that we will consider will
be γ -LQG surfaces, i.e., they correspond to the exponential of γ h, where h is a variant
of the GFF (i.e., typically, the GFF plus some harmonic function). The corresponding
area and boundary length measures exist for all γ ∈ (0, 2] and can be rigorously
defined via a regularization procedure [15,23,25]. The metric has also been defined
for γ = √

8/3 in [34–36] and for all γ ∈ (0, 2) in [11,21]. We also recall that an LQG
surface (with or without marked points) can be viewed (and this is the perspective
we will use in the present paper) as an equivalence class of domains (equipped with
such an area measure, or equivalently with an instance of a variant of the Gaussian
free field) under conformal maps. That is, two domain field pairs (D, h), (D̃, h̃) are
said to be equivalent as quantum surfaces if there exists a conformal transformation
ϕ : D → D̃ such that h = h̃ ◦ ϕ + Q log |ϕ′| where Q = 2/γ + γ /2. This definition
naturally generalizes to the setting in which one keeps track of extra marked points.

Let us first recall a few facts about the usual LQG surfaces that also appeared in
[39]:

(i) The first fundamental building block is the standard quantum disk (we will from
now on drop the reference to γ ). Recall that (in some sensemade precise in [39]),
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they correspond to the quantum surfaces that are encircled by a CLEκ loop in an
ambient (infinite volume) GFF. These quantum disks also come equipped with
a boundary length measure (that is a function of its area measure), and have a
finite total boundary length l as well as a finite total area A. We will denote by
Pl the probability measure on quantum disks with a prescribed length l.
One can obtain a quantumdiskwith one (resp. two)marked boundary point (resp.
points) by choosing this point (resp. these points) uniformly (resp. uniformly and
independently) with respect to its boundary measure. In particular, we note that
the law of a marked quantum disk is invariant under shifting the marked point
by some fixed amount of boundary quantum length.

(ii) The so-called thin quantum wedge of weight WD := γ 2 − 2 can be viewed as
an infinite ordered family of doubly marked quantum disks, that is defined as a
Poisson point process (Cti , ati .bti ) with intensity dt ⊗ (

∫
R+ l−αPldl) on [0,∞).

One way to think about it is as an infinite chain of beads (each diskCti being one
bead attached to the rest of the chain via their marked points). One can define
the quantum boundary measure on the boundary of this wedge by adding up
the quantum boundary measures of the disks, and one can note that the total
boundary length of the disks Cti with ti < t is almost surely finite.

(iii) When one looks at LQG surfaces with two marked boundary points, the more
general class of surfaces that appear are the quantum wedges. For each W ≥
γ 2/2, a (thick) quantumwedge ofweightW is an equivalence class of quadruples
(D, h, a, b), where a and b are now two boundary points (one of which is the
apex of the wedge, and the other one is the “point at infinity”). Again, one can
define a boundary length measure on ∂D, which is locally finite, except in the
neighborhood of “infinity”. The weightW = 2 plays a very special role, and we
will refer to it as the quantum half-plane. This is the case where the apex is in fact
a “boundary-typical” point: If a′ is obtained from a by moving a fixed amount
of boundary length to the right or to the left, then the new quantum surface
(D, h, a′, b) is still a quantum half-plane. One way to explain this feature is
that the half-plane is what one observes when one zooms into the infinitesimal
neighborhood of a boundary-typical point of any type of quantum surface.
When W ∈ (0, γ 2/2), the natural object to consider is a so-called thin wedge
of weight W . Just as in the case where W = WD above, it is an infinite chain
formed by a Poisson point process of quantum surfaces (called the beads of the
thin wedge) with finite boundary length and two marked boundary points. The
Poisson point process of the boundary lengths of the beads of a thin wedge of
weight W has intensity dl/l2−2W/γ 2

.

One definition of quantum wedges uses an encoding via excursions of Bessel pro-
cesses away from 0, or equivalently, excursions away from −∞ of drifted Brownian
motion. The weight W is then related to the dimension of the Bessel process or to
the drift of the Brownian motion (the difference between thick and thin wedges cor-
responds then to the sign of the drift).

We are now ready to state [14, Theorem 1.4] that we will use here. We assume
here that γ ∈ (

√
2, 2) and that κ ∈ (2, 4). Here (and throughout this paper), an
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SLEκ(ρ1; ρ2) will denote a process with two marked points immediately to the left
and right sides of the starting point of the curve.

Theorem 2.1 Fix W > 0 and suppose that W is a quantum wedge of weight W > 0.
Let ρ1, ρ2 > −2 be such that W = W1 + W2, where W1 = ρ1 + 2 and W2 = ρ2 + 2.
Let η be an independent SLEκ(ρ1; ρ2) process from the origin point to the infinity
point in W (if W is a thin wedge, it is the concatenation of such processes in each of
the beads). Then the surfaces W1 and W2 which respectively correspond to the part
ofW which is to the left and right of η are independent quantum wedges with weights
W1 and W2 (again, these can be thin wedges if η hits the boundaries ofW).

In some sense, to understand the arguments in the present paper, this “additiv-
ity/divisibility” property is the only feature that one needs to have in mind (together
with the scaling property of boundary lengths of beads mentioned just above). An
additional fact proved in [14] but that we will not use here, is that η andW are almost
surely determined by W1 and W2 (this means that “welding two wedges of weight
W1 and W2 provides a wedge of weight W1 + W2”).

One simple instance of the theorem is when W = 4 and η is a SLEκ (i.e., ρ1 =
ρ2 = 0). Then, η dividesW into two independent quantum half-planes (i.e., quantum
wedges of weight 2). Actually, it is known (this is the original quantum zipper result
from [44]) that if η is parameterized according to its quantum length, then for each t ,
the domain (W \ η[0, t], h, η(t),∞) is wedge of weight 4.

2.2 Forested wedges, generalized quantum disks and half-planes

Let us now provide some background on the generalized quantum disks and their
variants, which are referred to as forested wedges in [14]. A major role will be played
in the present paper by these generalized quantum disks that (as wewill actually show)
can in some sense be viewed as the surface that is “inside” of an SLEκ ′ loop in an
ambient LQG surface.

Remark 2.2 We will use the following terminology to clearly make the difference
between the LQG structures that have the topology of the disk (or the sphere), and the
ones with bottlenecks: For a given γ ∈ (0, 2), the natural quantum length of an SLEκ ′ -
type (non-simple) curve drawnon aγ -LQGsurfacewill be referred to as itsgeneralized
LQG length. Similarly, the LQG surfaces with special symmetries that we will define
in this section and that correspond to surfaces with SLEκ ′ outer perimeter, will be
called generalized quantumdisks and half-planes. TheseLQGsurfaceswill then have a
generalized quantum boundary length. These surfaces with bottlenecks have appeared
in the literature under various names (forested surfaces, pinched surfaces, beaded
surfaces, surfaces with baby universe, touching random surfaces, KPZ with the other
gravitational dressing, etc., see for instance [24,27]).

Recall that the boundaries of the bounded connected components of the complement
of an SLEκ ′ loop are SLEκ -type loops, so that if we view the loop as drawn on a
γ -LQG surface, each one of these bounded components Oj will be (similar to) a
standard quantum disk. The generalized quantum disk loosely speaking corresponds
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to the collection of all these quantum surfaces Oj together with the knowledge of
how they are “connected” within the SLEκ ′ loop (this connectivity equips naturally
the family of these connected components with a tree structure).

To properly define these generalized disks, one first defines the measure that deter-
mines the tree structure: This is the measure on α-stable looptrees defined in [9] (we
refer to this paper for a detailed description of these structures). The looptree is defined
out of the excursion of an α-stable Lévy process with no negative jumps (which is
defined under an infinite measure). The idea is then to associate to this excursion the
usual tree structure as introduced by Le Gall and Le Jan [29], except that the nodes of
the tree (which in the usual stable tree correspond to the jumps of the Lévy excursion)
will be given a circular structure with length given by the jump size. More precisely,
if X : [0, T ] → R+ is the excursion, one defines an equivalence relation on the graph
{(t, X(t)) : t ∈ [0, T ]} of X by saying that s ∼ t if and only if X(s) = X(t) and the
horizontal chord connecting (s, X(s)) and (t, X(t)) lies below the graph of X |[s,t]. If
t is a jump time of X , then we also declare that (t, X(t)) and (t, X(t−)) are equivalent
(which produces the circular structure, i.e., each jump of X therefore corresponds to
a topological circle in the quotient T ). We note that T is naturally rooted via the
projection ρ of the origin (0, 0).

The way to think about it is that the looptree will encapsulate the information on
the boundary lengths of the various Oj ’s and how they are connected towards the root.

Some features of looptrees:

– When a and b are two points on the looptree, we have a unique chain of loops
that connects them. The sum of the lengths of these loops is finite, and so is the
shortest path joining these points. So, one has a natural measure on the boundary
of this chain, and a distance on the looptree.

– There is also a natural notion of boundary length of the entire looptree. It is very
simple to see that the sum of the lengths of the loops in a looptree is infinite
(as the sum of the jumps which occur in any non-empty open interval of time
of an α-stable Lévy process with α ∈ (1, 2) is infinite). However, one can make
sense of the natural (and finite) measure living on the boundary of the generalized
disk, for instance by taking the image of the Lebesgue measure on [0, T ] in the
construction above (this also corresponds to the fact that the Hausdorff dimension
of the looptree with respect to the aforementioned distance is α as shown in [9]).
We will refer to this measure as the generalized boundary length measure of the
looptree.

– It turns out that the root of the looptree is a boundary-typical point, in the sense that
if one resamples the root uniformly on the boundary according to this generalized
boundary length, one does not change the law of the looptree (this was established
by Curien-Kortchemski [9] as a byproduct of their discrete to continuum scaling
limit result, see also Duquesne–Le Gall [16] as well as Archer [1] for a continuum
proof).

A (marked) generalized quantum disk is then obtained from an α-stable looptree
by assigning a conformal structure to each of the loops using a (standard) independent
quantum disk (with α, γ matched as in (2.1)) with boundary length given by the length
of the loop, and that is marked at the point connected to the root.
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A consequence of the rerooting property of the looptree is that the measure on
marked generalized disks is also invariant under re-rooting. Indeed, in terms of the
quantum disk structure, the rerooting operation for the generalized disk corresponds
to shifting the marked points of each disk so that they fall along the branch on the disk
to the root.

Remark 2.3 If we consider a generalized quantum disk with generalized boundary
length �, then its total quantum area A� has a finite expectation, and its law is equal
to that of �2/αA1. If we instead consider a (usual) quantum disk with (usual) quantum
boundary length �, then its total quantum area A� has finite expectation and its law is
equal to that of �2A1.

If we choose two points according to the generalized boundary length measure,
then one has a forested spine decomposition with a PPP of other looptrees glued to
the spine with respect to the aforementioned boundary measure on the spine.

If we replace the spine by an infinite Point process of loops with boundary lengths
intensity dl/lα onR+ and then associate with each loop the conformal structure given
by that of a quantum disk then one obtains a thin quantum wedge WD . If we then add
a PPP of generalized quantum disks on the left and right sides of the boundary, then
we get the structure that we will call the generalized quantum half-plane.

One useful way to think about the generalized half-plane (and that can be made
precise) is that it is the structure that one obtains when zooming in the neighborhood
of a boundary-typical point of a generalized disk, chosen according to the generalized
boundary length measure. Again, the generalized boundary length of a quantum half-
plane is locally finite. Moreover, it follows from the root invariance of the generalized
quantum disk that the generalized quantum half-plane is invariant under the operation
of shifting the root by a fixed amount of generalized boundary length.

Remark 2.4 The natural infinite measure on quantum disks (that corresponds to the
jump measure of the stable subordinator) is l−α−1Pldl, where Pl is the probability
measure on disks with boundary length l. The reason why in the spine decompositions
of generalized half-planes, the measure dll−αPl shows up instead (see for instance
already in the definition of the quantum wedge of weight WD in the previous section)
can be interpreted by the fact that being on the spine provides a size-biased PPP with
an additional factor proportional to the boundary length.

The operation of gluing an independent Poisson point process of generalized quan-
tum disks on the boundary of a (usual) quantum surface is referred to as foresting in
[14]. In particular, it is possible to forest quantum wedges of other weights than WD .

Remark 2.5 Suppose that one considers a usual quantum surface of boundary length
l, and that one attaches to its boundary a Poisson point processes of generalized disks.
Then, the sum of the generalized boundary lengths of these disks will be the value of
an α′-stable subordinator at time l, which has the law of l1/α

′
times the value of this

subordinator at time 1.
In particular, this implies that if we consider a thin wedge of weight W , and then

take its forested version and denote by �ti the total generalized boundary lengths of
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the generalized disks attached to each bead Bti , then (�ti ) is a Poisson point process

of intensity d�/�1+(1−2W/γ 2)α′ = d�/�1+α′−W/2. For instance, for W = γ 2 − 2, we
get d�/�2−α′

.

The counterpart of Theorem 2.1 for forested wedges uses SLEκ ′(ρ′
1; ρ′

2) and can
be stated as follows:

Theorem 2.6 Let W be a forested wedge of weight W ≥ 2 − γ 2/2. Suppose that
W1,W2 ≥ 0 with W1 + W2 + (2 − γ 2/2) = W. We then define ρ′

1, ρ
′
2 so that

Wi = γ 2 − 2 + γ 2ρ′
i/4 for i = 1, 2, and let η′ be an independent SLEκ ′(ρ′

1; ρ′
2)

process from the point at infinity to the origin of the wedge (when the wedge is thin,
then it is a concatenation of such processes – one in each bead of the spine of W).
Then the generalized quantum surfacesW1 andW2 which consists of the components
of H \ η′ which are to the left (resp. right) of η′ (when viewed from the origin) are
independent forested quantum wedges of weight W1 and W2.

Remark 2.7 In general, when one considers an SLEκ(ρ1; ρ2) process, the convention
is that ρ1 and ρ2 respectively correspond to the intensity of the drift due to the marked
points that are to the left and to the right of the tip of the curve (viewed from this tip).
However, in the special case where we are looking at an SLEκ ′(ρ′

1; ρ′
2) started at the

point at infinity (like in Theorem 2.6), we will use the convention that ρ′
1 corresponds

to the force point located “to the right” of the curve when viewed from the tip of the
curve, so that this becomes the left when viewed from the target point. For instance,
when ρ′

1 gets very close to−2, this process will tend to come down from infinity along
the negative real axis.

At various instances in the present paper, we will similarly use the following ter-
minology for left and right boundaries. In the imaginary geometry context, when one
is looking at an SLEκ ′ -type curve η′ from a to b, then it is natural to describe its
outer boundaries as SLEκ -type curves from b to a. We will refer to the left and right
boundaries of η′ as the curves that lie to its left and to its right respectively, when
viewed from b to a.

All these conventions are for instance already used in earlier work in the imaginary
geometry framework – see for instance [41, Figure 2.5], that also illustrates why such
a “side-switching convention” is useful.

Again, it is in fact possible to reconstruct η′ and W fromW1 and W2.
A special case of Theorem 2.6 is when W = 2 and η′ is an SLEκ ′(κ ′ − 6). In that

case, the two surfaces W1 and W2 are forested wedges with weights 2 − γ 2/2 and
γ 2 − 2 – in particular, W2 is a generalized quantum half-plane.

One way interpret and actually derive Theorem 2.6 is to view it as a decomposition
of the (non-forested) wedge of weightW into three non-forested independent wedges
of weight W1, 2− γ 2/2 and W2 that are separated by the left-boundary ηL and by the
right-boundary ηR of η′ (in the sense explained in Remark 2.7).

Indeed, the imaginary geometry coupling interpretation of the curves η′, ηR and ηL

viewed as flow lines/counterflow lines of an auxiliary GFF show that [31, Section 7]

Lemma 2.8 Suppose that η′ is an SLEκ ′(ρ′
1; ρ′

2) in the upper half-plane from ∞ to 0.
Then:
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(i) The law of its left boundary ηL is that of an SLEκ(κ − 4+ (κρ′
1/4); (κ/2)− 2+

(κρ′
2/4)) from 0 to ∞.

(ii) The conditional lawof its right boundaryηR givenηL is that of anSLEκ(−κ/2; κ−
4 + (κρ′

2/4)) in the domain to the right of ηL .
(iii) The conditional law of η′ given (ηR, ηL) is an SLEκ ′(κ ′/2−4; κ ′/2−4) process

in the beads squeezed between ηR and ηL .

Theorem 2.6 is then obtained by successively applying Theorem 2.1 to ηL in W ,
then to ηR in the quantum wedge that lies to the right of ηR , and then finally applying
the following result to η′ in the middle thin wedge of weight 2−γ 2/2 that lies between
ηR and ηL [14, Theorem 1.15]:

Theorem 2.9 Suppose that W is a quantum wedge of weight 2 − γ 2/2 and that η′′
consists of a concatenation of independent SLEκ ′(κ ′/2− 4; κ ′/2− 4) processes, one
for each bead of W . Then the bubbles which are to the left (resp. right) of η′′ (when
parameterized via the quantum natural length of η′′) are two independent Poisson
point processes of generalized quantum disks.

3 The case p = 1

For presentation purposes, we choose to first present some of the results and proofs
for the totally asymmetric case where p = 1. In this case, the interface η follows the
boundary of the domain so that determining its law is not an issue, but the identification
of the stable processes requires some non-trivial input. This will allow us to explain
some of the ideas that will then be used again in the general case p ∈ [0, 1].

3.1 The setup and the first main statement

Let us consider a generalized quantum half-plane H, where x(0) is its marked
boundary-typical point.We letW be the usual quantumwedge ofweightWD = γ 2−2
consisting of a chain of quantum disks from x(0) to infinity inH. As explained above,
if we condition on W , the remaining surfaces in H \ W can be viewed as a Pois-
son point process of generalized disks glued to the boundary of W according to its
boundary length measure.

For each fixed u > 0, we define x(u) to be the boundary point of W that lies at u
units of quantum boundary length from x(0) on the counterclockwise boundary arc
of W starting at x(0). We can note that for a given u > 0, x(u) will almost surely lie
on the boundary of a quantum disk ofW , that we denote by D(u) (see Fig. 4).

For each given u, we define u0 = u0(u) and u1 = u1(u) so that x(u0) and x(u1)
are the first and last point of ∂ := {x(v), v ∈ [0,∞)} that lie on the boundary of
the quantum disk D(u). Let ∂u := {x(v) : v ∈ [u0(u), u1(u)]}. We call W+(u)

the ordered collection of disks in W that are “between” D(u) and infinity (D(u) not
included, so this is the family of all D(v) for all rational times v > u1). It is easy to
see from this definition that W+(u) (with marked point at x(u1)) is also a wedge of
weight WD .
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Fig. 4 A representation of the quantum wedge W of weight WD as a chain of Euclidean half-disks—the
generalized half-plane is obtained by foresting the dash-dotted boundaries

We will denote by C the set of times u corresponding to points “in between” the
beads. This is the fractal set obtained by removing from R+ all intervals of the type
(u0(u), u1(u)) for rational times u.

We now sample a CLEκ ′ in W , i.e., an independent CLEκ ′ inside each of the
disks forming W . We fix u > 0, and for what will immediately follow, only the
CLEκ ′ loops in D(u) will matter. We now define D0(u) from D(u) as follows: We
first remove from D(u) all the CLEκ ′ loops (and their interiors) that intersect the set
∂−
u := {x(v), v ∈ [u0, u]}. In the remaining set, we look at the ordered chain of
connected components whose boundary intersects ∂+

u := {x(v), v ∈ [u, u1]} and we
view this chain as a chain of quantum surfaces—each with a pair of marked points on
∂u . We denote this chain by W0(u).

To illustrate what follows, we can already state the following (which is in fact a
consequence of Proposition 3.2 that we will state and prove below).

Proposition 3.1 The concatenationW(u) of the two chainsW0(u) andW+(u), with
marked point at x(u), is also a quantum wedge of weight WD.

In fact, we will exhibit a generalized quantum half-plane H(u), that will contain
this wedge W(u) as its spine-wedge. We are going to define H(u) in several steps:

(1) First, we endow the set of connected components that form D0(u) with a tree
structure. For this, we use the connectivity structure of the “outside” of theCLEκ ′ loops
that one has removed from D(u) to define D0(u). We can then use the LQG structure
of each of the connected components of D0(u), and view D0(u) as a tree of LQG
surfaces. Note also that the boundary of each of these components carries a quantum
length measure, so that we can in fact view it as a loop-tree of LQG surfaces. This
tree will contain the chain of components that form W0(u). On part of the boundary
of W0(u), the trees created by the fjords of the CLEκ ′ loops are grafted.

We nowdefine the loop-tree of quantum surfacesH(u) that is obtained by extending
D0(u) using the following three additional grafting/foresting operations:

(2) On ∂D(u) \ ∂u , one also adds the same generalized disks as inH.
(3) On ∂+

u , one adds the same Poisson point process of generalized disks as inH.
(4) At x(u1), one adds the generalized half-plane H+(u) (defined to be the structure

obtained by adding on the wedge W+(u) the generalized disks from H that are
glued to it).

123



Non-simple conformal loop ensembles on Liouville... 687

Fig. 5 A representation of situation at time u: the generalized half-planeH(u) is obtained by foresting the
dash-dotted boundaries of the non-shaded region (and adding them to the non-shaded region). The wedge
W(u) is the union of the white connected components that have subintervals of [x(u), ∞) on their boundary
(i.e., one cuts off the fjords of the non-shaded region)

In this way, one obtains a loop-tree structure of LQG surfaces, that we call H(u)

(see Fig. 5). Given the definition, it is clear that when u′ > u, then H(u′) is (in some
natural appropriate sense) “embedded” inH(u), thatH(u) can be viewed as aMarkov
process. Its evolution can be described as follows:

We note that when u increases, thenH(u) will make a “jump” at time v when one
of the following three possibilities occur (see Figs. 6 and 7):

(i) If x(v) is a boundary point ofW(0) where a generalized disk ofH was attached
(in the foresting operation that constructedH out ofW(0)), then this generalized
disk “disappears” fromH(u) at time v.

(ii) When x(v) is the right endpoint of some D(u′) for u′ < v or is a point of an
already discovered CLEκ ′ loop that is isolated from the left on R+ (so that x(v)

is the endpoint of a bead ofW(u′′) for u′′ < v), then a loop-tree of LQG surfaces
disappears fromH(u) at time v. This tree now lies “to the left” of x(v) inH(v−).

(iii) When x(v) is the first encountered boundary point of a CLEκ ′ loop. In that case,
one removes the interior of that loop from D0(u).

We see that in all three cases, the jumps correspond to some loop-trees ofLQGsurfaces:
The ones that disappear as in (i) and (ii), and the ones that correspond to the interior of
the CLEκ ′ loops that one removes. They also all comemarked with the boundary point
x(v). For each time u, we denote byFu the σ -algebra generated by these marked loop-
tree structures of LQG surfaces (mind that we do not record how they are embedded
in the plane) up to time u.

The first key proposition can now be stated as follows:

Proposition 3.2 For each u > 0, H(u) (with marked points x(u) and ∞) is a gener-
alized quantum half-plane that is independent of Fu.

Let us make a few comments:

(i) Proposition 3.2 indeed implies Proposition 3.1.
(ii) The generalized disks that are glued to the boundary [x(u),∞) of W(u) are

anyway independent of the rest of the construction, so we do not really need to
bother about those as they will clearly be a Poisson point process of generalized
disks.
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Fig. 6 Positive jumps of the boundary length: discovering a new boundary-touching CLE loop (darker red
shaded) creates an additional boundary length (the dash-dotted boundary pieces are to-be-forested to obtain
H(u)) (color figure online)

Fig. 7 Negative jumps for the boundary length. Top: The generic case, where the darker green shaded region
disappears fromH(u), when x(u) is the “endpoint” of a bead ofW(v) for some v ∈ (0, u) (the dash-dotted
boundary pieces are to-be-forested to obtainH(u)). Bottom: The darker green shaded region disappearing
fromH(u) when x(u) is the rightmost point of a bead ofW(0) (color figure online)

(iii) Some of the generalized disks glued to the other side of the wedge W(u) will
be coming from those already present in H, some will be due to fjords created
by discovered CLEκ ′ loops, and some will correspond to the concatenation of a
fjord-tree created by a CLEκ ′ loop within W(0) with generalized disks already
grafted to W(0) (to formH).

Before moving to the proof of Proposition 3.2 in the next section, let us state and
prove a first consequence. Suppose that v is some very large fixed constant. When
u ∈ [0, v], we can consider the generalized boundary length lu(x(u), x(v)) of the
counterclockwise boundary of H(u) between x(u) and x(v). We can note that the
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fluctuation process Rv
u := u �→ lu(x(u), x(v)) − l0(x(u), x(v)) does in fact not

depend on v, in the sense that for all u ≤ v ≤ v′, Rv
u = Rv′

u . This therefore defines
a process Ru for all u ≥ 0. We note that this process will make a negative jump at
each u0 such that there is a generalized disk glued to x(u0) inH (and in fact, we will
explain in the next paragraph that −R is a stable subordinator).

Similarly, one can define the fluctuation of the generalized length L of the clockwise
boundary of H(u) starting from x(u). This process will have negative jumps (for
instance at the endpoints of the beads ofW) just like R, but it also has positive jumps
(when a CLEκ ′ loop is being discovered for the first time, then L will have a positive
jump given by the generalized boundary length of this loop).

Corollary 3.3 The process (−Ru)u≥0 is anα′-stable subordinator, the process (Lu)u≥0
is an α′-stable process, and these two processes are independent.

Proof Proposition 3.2 shows immediately that the processes R and L are both Lévy
processes, and by construction R has no positive jumps. Furthermore, R is a function
of the Poisson point process of disks attached to [0,∞) so that it is clearly independent
of L (that is a function of the CLEκ ′ in the weight WD = γ 2 − 2 wedge and of the
disks attached to the other side of its boundary). The scaling properties of generalized
quantum length in the generalized quantum disks (recall Remark 2.3) then implies
that L and R are in fact both stable processes with index α′ (recall that α′ = 4/κ ′ ∈
(1/2, 1)). ��

Let us now also explain the type of arguments that then allows us to describe the
relative intensities of positive and negative jumps of the stable process L (we will use
the same ideas in the general case p ∈ [0, 1]).
Proposition 3.4 The ratio between the intensity of positive and negative jumps of L is
−2 cos(πα′).

Proof A first observation is that by construction, the times u at which Lu attains its
running infimum correspond exactly to the times in C, where the process is “in between
beads” of the wedge W . Indeed, in all other cases, the process L(u) ≥ L(u0) where
u0 is the left extremity of ∂u .

Now, it is a known feature of stable processes that the range of values of−L(u) such
that L(u) = min{L(v), v ≤ u} is a stable subordinator of a certain index 1/α′′ that
can be expressed explicitly in terms of α′ and of the ratio UL between the intensities
of positive and negative jumps of L . More specifically (see [3, Chapter VIII, Lemma
1], where α′′ is equal to α′ times the so-called positivity parameter of the process),
one has the relation

UL = sin(π(α′ − α′′))/ sin(πα′′).

On the other hand, the negative jumps of L# will have the same scaling properties as
the generalized boundary lengths of the forested beads of W which is given by the
final expression in Remark 2.5. We therefore get that 1 + α′′ = 2 − α′. Plugging this
into the previous expression for UL gives the result. ��
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Remark 3.5 It would be possible to try to show directly at this point that the rate of
negative jumps of L and the rate of negative jumps of R actually coincide (which in
turns determines the law of the pair (R, L) up to a multiplicative constant), but we
will derive this fact later in the general case.

3.2 CLE exploration tree and proof of Proposition 3.2

The definition (and conformal invariance) of the conformal loop-ensembles CLEκ ′ for
κ ′ ∈ (4, 8) is based on the reversibility properties of SLEκ ′(κ ′−6) processes, that have
been derived using the “imaginary geometry” couplings of SLE-type processes with
the GFF in [32,33]. The properties that we will now recall and use can be viewed either
as a consequence of the existence and properties ofCLEκ ′ or of the imaginary geometry
coupling. We will first give the construction without reference to imaginary geometry,
and then explain (in Remark 3.7) how this can be described in this framework.

Let us recall how to define the collection of boundary-touching CLEκ ′ loops in a
simply connected domain with a marked boundary point via the corresponding SLE
branching tree. For convenience, we first choose this domain to be the upper half-
plane with marked point at infinity. Using their target-invariance property, one can
define a branching-tree of SLEκ ′(κ ′ −6) processes starting from infinity, aiming at all
boundary points x ∈ R (with marked point “immediately to the left of infinity” i.e.
at +∞ on the real line). In this way, for each x ∈ R, η′

x is an SLEκ ′(κ ′ − 6) process
from ∞ to x . And when x �= y, the two processes η′

x and η′
y coincide until the first

time at which they disconnect x from y, and after this time, they evolve independently
towards their respective target points.

One can construct the collection of boundary touching loops out of this tree of
processes η′

x as follows. The idea is that in the end, for each given x ∈ R, η′
x (viewed

as going from x to ∞) will be the right side of the union of all CLEκ ′ loops that touch
the half-line (−∞, x]. Let us first consider η′

0 (from ∞ to 0). Each excursion that η′
0

makes fromR− will then correspond to part of a boundary touching loop. Suppose that
we have such an excursion η′

0|[s,t]. Then η′
0(s), η

′
0(t) ∈ R− with η′

0(s) < η′
0(t). If we

condition on η′
0, the CLEκ ′ loop containing η′

0|[s,t] is then completed by concatenating
η′
0|[s,t] with the part of η′

y+ for y = η′
0(s) which is in the component of H \ η′

0([s, t])
that has [y, η′

0(t)] on its boundary (more precisely, if we have fixed a countable dense
set (xn) ofR and (xn j ) is a subsequence of (xn)which decreases to y, then the rest of the
loop is given by the limit as n → ∞ of the part of η′

xn which is in the aforementioned
component). This gives the boundary intersecting loops of the CLEκ ′ part of which
are drawn by η′

0. By considering the same construction with all of the η′
xn we can

construct all of the boundary touching loops.

Remark 3.6 The BCLEκ ′(ρ′) processes defined in [37] are constructed in exactly the
same way, except that one considers the branching tree of SLEκ ′(κ ′ − 6 − ρ′; ρ′)
processes (for ρ′ �= 0 this time) instead of SLEκ ′(κ ′ − 6) (these processes are also
target-independent, so that it is possible to construct such a branching tree). We will
use these BCLEκ ′(ρ′) processes in the study of the general case p ∈ [0, 1], where
they show up naturally.
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Fig. 8 A simulation (mapped onto the unit disk, and for κ ′ = 6) of the situation at time 0: In blue and
yellow, are the CLEκ ′ loops that touch the left-hand semi-circle (corresponding to the image of the negative
half-line). The boundary of the connected component of the complement of these loops that touches the
right-hand semi-circle is drawn in red. This is a simple curve from −i to i . The pieces to the right of this
red curve form the beads of the wedge W(0). The CLEκ ′ loops that touch the left half-circle are drawn in
blue or yellow depending if they contribute to the red curve of not. The right-hand part of the fjord structure
in the yellow loops corresponds to the foresting of the left boundary of the wedgeW(0) that give rise toH
(once one also adds the foresting on the right half-circle) (color figure online)

Remark 3.7 As mentioned above, one way to understand (and to actually prove some
of its features) the above constructions is to use the imaginary geometry framework,
and to construct all these loops out of a GFF. For the CLEκ ′ , one can start with a
GFF hIG on H with boundary conditions given by λ′ − πχ on the real line, where
λ′ = π/

√
κ ′ and χ = 2/

√
κ − √

κ/2. Then, for each x , one defines η′
x to be the

counterflow line of h from ∞ to x ; it turns out (using the results of [31]), that the
joint law of these curves have all the properties described above. For the BCLEκ ′(ρ′)
variant, one uses the same construction but with a GFF hIG with boundary conditions
λ′(1 + ρ′) − πχ on R. This type of GFF-based construction was one of the starting
points of [37].

Let us now condition on η′
0, and consider the connected components of the com-

plement of H \ η′
0 that touch the positive real half-line (i.e., that contain sub-intervals

of the positive real half-line). In the previous construction of the boundary-touching
CLEκ ′ via the tree of η′

x processes, the path η′
0 traces the “outer right” part of the

union of the clusters that touch the negative half-line. Hence, conditionally on η′
0, the

remaining parts of the CLEκ ′ in the connected components that lie between η′
0 and the

positive half-line consist of independent CLEκ ′ processes in those domains. It follows
that, conditionally on η′

0, the remaining parts of the paths η′
x for x > 0 after they split

from η′
0 will trace the loops of a CLEκ ′ that touch [0,∞) in these domains.

Let us now combine this exploration-tree setup with the LQG surface setup, i.e.,
we endow H with an independent quantum half-plane structure W = (H, h, 0,∞).
We will also forest this half-plane using a Poisson point process of generalized disks
on its boundary.
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Fig. 9 The pieces underneath the right of η′
0 form H (the dashed-dotted half-line being forested) and

similarly, the pieces underneath the right of η′
x(u)

formH(u). One can view η′
x \η′

0 (in dashed) as the upper
boundary of the CLEκ ′ loops in H(0) that touch [0, x]

A first main observation is that (see the remark after Theorem 2.6) the quantum
surface corresponding to the domain that lies to the right of η′

0 is a generalized half-
plane—we denote it by H (the marked point being 0), see Fig. 8.

When u > 0, we define x(u) in R+ to be so that the quantum length of [0, x(u)]
is equal to u. By translation invariance of the half-plane, (H, h, x(u),∞) is also a
quantum half-plane, and consequently, the quantum surface H(u) corresponding to
the domain that lies to the right of η′

x(u) is also a generalized quantum half-plane that
we will denote by H(u), see Fig. 9.

Let us condition on η′
0. As explained above, the remainder of all the η′

x for x > 0 can
be interpreted as the discovery of all loops that touch R+ in a CLEκ ′ in the connected
components of the wedge of weight WD = γ 2 − 2 that forms the spine of H(0).

We have therefore a simple way of defining all the structures that appear in Propo-
sition 3.2: The forested quantum half-plane together with η′

0 defines the generalized
half-plane H and the remainder of all the η′

x for x > 0 then defines the CLEκ ′ loops
that are used to define H(u). In particular, we can note that η′

x(u) \ η′
0 traces exactly

the (generalized) boundary of D0(u) that is not part of the boundary of D(u). We can
then conclude that the generalized LQG surface H(u) in Proposition 3.2 is indeed a
generalized quantum half-plane.

To complete the proof, it then suffices to note that the σ -algebra Fu is independent
of W(u), because the (forested) quantum wedge that lies to “the other side” of η′

x(u)

is independent from H(u), and that the random surfaces cut out before time u can
be constructed by sampling appropriate and independent SLE-type curves within this
quantum surface.

3.3 Jumps correspond to generalized quantum disks

Recall that we have noted that one can associate to each jump of the process H(u)

(i.e., to each jump of R and L) a loop-tree structure of LQG surfaces.
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Proposition 3.8 In the setup of Proposition 3.2, one has three independent Poisson
point processes of generalized disks (corresponding respectively to the positive jumps
of L, the negative jumps of L and the negative jumps of R).

Remark 3.9 We are now going to use some of the ideas that were already instrumental
in [37]. One consequence of the imaginary geometry setup described in Remark 3.7 is
that it allows us to describe also the joint distribution of all the paths η′

x with their outer
boundaries. If ηL and ηR respectively denote the flow lines of the GFF hIG starting
at 0 with respective angles π/2 and −π/2, then these paths will be the outer-left
and outer-right boundaries of η′

0. Furthermore: (a) the law of ηL and ηR is that of an
SLEκ(−κ/2; κ/2− 2) and an SLEκ(2− κ; κ − 4) process inH from 0 to ∞. (b) The
conditional law of η′

0 given ηL is that of an SLEκ ′(κ ′/2− 4) process in the domain to
the right of ηL , the conditional law of η′

0 given ηR is that of an SLEκ ′(κ ′ −6; κ ′/2−4)
process in the domain to the left of ηR . (c) The conditional law of η′

0 given both ηL

and ηR is that of an SLEκ ′(κ ′/2−4; κ ′/2−4) process in each of the domains between
ηR and ηL .

Proof Let us first note that the fact that the downward jumps of R correspond to a
Poisson point process of generalized quantum disks that is independent of the jumps of
L (and the corresponding surfaces) is a direct consequence of the construction: These
are the generalized disks that had been forested to the positive half line ofW(0), and
that are indeed independent of the rest. It therefore remains to look at the surfaces
corresponding to the jumps of L .

In order to understand the intensity measures of the Poisson point processes of
surfaces that are cut out of the generalized half-planesH(u), we can focus on the law
of these cut-out surfaces during the time-interval [0, u] and take u → 0.

Let us now work in the same LQG setup as in the proof of Proposition 3.2. We first
look at the positive jumps of L , i.e., that correspond to the discovery of a boundary-
touching CLEκ ′ loop. Fix δ small and positive (we will eventually let δ → 0 as well).
We first fix u > 0 and let x = x(u). Let E = Eu be the event that there exists a
boundary-touching CLEκ ′ loop L that disconnects x from infinity, such that the left-
most point of IL := L∩R is in [0, x(u)], that the outer part o(L) of the loop L (going
clockwise from the left-most point of IL to its rightmost point) is traced by η′

x and
has quantum length at least δ. Scaling and root-invariance of the quantum half-plane
shows that the probability of Eu decays like c(δ) × u as u → 0.

The following observation will also be useful: Suppose that E ′
u denotes the same

event as Eu , except that we do not impose the condition that the loop is traced by η′
x

(this means that we allow the possibility that this loop is “hidden” underneath η′
x ).

Then P[Eu | E ′
u] → 1 as u → 0. Indeed, if it was not the case, then Proposition 3.2

would imply that with positive probability, two macroscopic CLEκ ′ loops happen to
have the same left-most boundary point, which we know can not happen.

Let ηx,L be the left boundary of η′
x (viewed as a path from x to∞).We now have the

following features: (a) By Theorem 2.1, the domain to the right of ηx,L (i.e., where η′
x

is) is a quantum wedgeW1 of weight γ 2/2 and the domain to its left is an independent
wedgeW2 of weight 2 − γ 2/2. (b) The conditional law of η′

x given ηx,L is that of an
SLEκ ′(κ ′/2 − 4) in this first wedgeW1. In particular, the excursions away from ηx,L
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Fig. 10 The curve ηx,L and η′
x when Eu occurs (the large excursion of η′

x away from ηx,L in dark green)
(color figure online)

Fig. 11 Completing the large CLEκ ′ loop that intersects [0, x(u)]

traced by η′
x within W1 form a Poisson point process of generalized quantum disks

that is independent ofW2.
Each excursion of η′

x away from (−∞, x] traces the outer piece of a CLEκ ′ loop,
and it is obtained by concatenating all the excursions that η′

x makes away from an
excursion of ηx,L away from (−∞, x], see Fig. 10. Note that these excursions of ηx,L
correspond to the beads of W2. To complete that CLEκ ′ loop, one has to draw the
little missing piece of the loop, which lies below ηx,L , i.e, within a bead of W2—see
Fig. 11.

When u is very small, one can wonder whether ηx,L will do something exceptional
when one conditions on Eu . Simple scaling considerations show that it does not, i.e,
that the conditional boundary lengths of the beads of ηx,L containing some piece
of [0, x(u)] on their boundary remains comparable to u (the ratio remains tight). In
particular, the quantum length of the piece of the loop under ηx,L will be typically
very small and the area of the entire bead will be very small as well.

On the other hand, conditionally on Eu , η′
x will typically make one very large

excursion away from ηx,L (the interior of which is a generalized disk), while all other
excursions will be very small as well (this is simply due to the standard fact that
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conditioning a subordinator to take a very large value at a given time is essentially
equivalent to conditioning on the existence of a very large jump).

So, for very small u, we see that conditionally on Eu , the inside of the discovered
large CLEκ ′ loop will consist of the generalized quantum disk of boundary length
greater than δ, to which one attaches a quantum surface of very small quantum area at
a boundary-typical point. Letting u → 0, one readily concludes that conditionally on
Eu , the law of the cut-out surface is that of a generalized quantum disk with boundary
length at least δ (and renormalized to be a probability measure).

Let us now look at the downward jumps of L . This time, we use η′
0 and its right-

boundary η0,R . We note that when u is very small, L will make a large negative jump
before time u when η′ makes a large excursion away from some point in [0, x(u)]
to some other point. This excursion will then form the “upper boundary” of the cut
out surface, and the lower boundary will then be completed by an SLE-type process
in the corresponding bead under η0,R . The above arguments for the positive jumps
can be readily adapted to see that those cut out surfaces are also a point process of
generalized quantum disks. ��

4 Results for general p

4.1 Main statement

Wenow explain the results for general p ∈ [0, 1]. Suppose that we have the same setup
as in Propositions 3.2 and 3.8 : We start with a generalized quantum half-planeH that
is obtained by adding the Poisson point process of generalized disks to the boundary
of a weightWD = γ 2 − 2 wedgeW . We consider a CLEκ ′ inW (i.e., an independent
one in each of the quantum disks that form W) and we this time color each CLEκ ′
loop red (resp. blue) independently with probability p (resp. 1− p). We then define in
W the interface η between the red clusters that touch the clockwise boundary arc of
W from x0 to infinity, and the blue clusters that touch the counterclockwise boundary
arc.

By [37], we know that for each p ∈ [0, 1] there exists ρ ∈ [−2, κ − 4] so that
this interface is an SLEκ(ρ; κ − 6 − ρ) process. More precisely, this path is the
union/concatenation of the corresponding interfaces in each of the quantum disks
of W (from one of the marked points to the other). When p = 0 (resp. p = 1),
this interface obviously follows the left (resp. right) boundary respectively and this
corresponds to ρ = −2 (resp. ρ = κ − 4). By symmetry, we also know that when
p = 1/2, ρ = (κ − 6)/2.

The continuous path η′ obtained by following the interface η and tracing each
encounteredCLEκ ′ loop (clockwise or counterclockwise, depending on its color) at the
first time atwhich the trunk encounters it, is called the fullSLEβ

κ ′ (or full SLE
β

κ ′(κ ′−6))
for β = 2p − 1 ∈ [−1, 1] in [37], but we will not really use this terminology here, as
in the present paper, we will rather want to interpret the discovery of CLEκ ′ loops as
jumps.
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Fig. 12 Sketch: η discovers a CLEκ ′ loop at time t (depicted is η up to time t , a portion of the boundary of
H(t−) and the discovered loop). One chooses the “side” of the boundary point η(t) according to the color
of the discovered CLEκ ′ loop

We now choose to parameterize the interface η according to its quantum length.
Let us now explain how to define the quantum surfaces H(t) and W(t) (we opt for a
somewhat heuristic description of the definition here, that put together with the figures
is hopefully more enlightening than the dry formal definition). One main difference
with the p = 0 and p = 1 cases is that when p ∈ (0, 1), η will touch both sides of the
disks ofW that it traverses (when it goes from onemarked boundary point to the other,
it will hit both the clockwise and the counterclockwise boundary arcs joining these
two points infinitely many times). We letD(t) denote the bead of the initial wedgeW
in which η(t) is (for each given positive t , this is indeed almost surely well-defined).
Our rules will be that whenever η hits the boundary of the disks or hits already traced
CLEκ ′ loops, then it cuts away the disconnected pieces (that lie on the other side of
the direction in which η is then heading). These pieces then fall off from H(t) and
W(t). On the other hand, when a newly discovered CLEκ ′ loop appears, one removes
only the inside of this loop, but keeps its “fjords” in W(t) (they will be part of the
generalized surfaces in H(t)). We note that at these times, η(t) will in fact almost
surely be at the end of a chain of such fjords (at these times, we also interpret η(t) to
be on the “side” that corresponds to the color of the discovered loop, so that η will
continue leaving the red loops on its left and the blue loops on its right, see Fig. 12).

In this way, one obtains for each time t , two quantum surfacesW(t) andH(t) with
one marked boundary point η(t) (and the other boundary point at infinity), see Fig. 13
for a sketch.

We can then define the two processes (Rt )t≥0 and (Lt )t≥0 in a similar manner as
for p = 1. We note that this time, R and L will both have positive and negative jumps.
The positive jumps of R correspond to the times at which the interface discovers a new
CLEκ ′ loop that lies to its right (i.e., a blue loop), and the negative jumps correspond
to times at which the interface disconnects some piece to its right (by either hitting the
right boundary of the wedge, or an already discovered blue loop). By symmetry, all
the analogous statements hold for the jumps of L . This defines four point processes
of quantum surfaces, corresponding respectively to the inside of the blue loops giving
rise to a positive jump of R, the inside of the red loops giving rise to a positive jump
of L , the surfaces that are cut out by the trunk to its right and that are cut out by the
trunk to its left. All these surfaces have η(t) as a marked boundary point. Finally, we
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Fig. 13 Sketch of H(0) and H(t) (non-shaded regions)

let Ft be the σ -algebra generated by these four point processes of quantum surfaces
up to time t .

We can now state what can be viewed as the main key result of the present paper
(recall that κ ′ ∈ (4, 8) and α′ = 4/κ ′):

Theorem 4.1 When p ∈ (0, 1), the following statements hold:

(i) For each t ≥ 0, the quantum surface H(t) is a generalized quantum half-plane
that is independent of Ft .

(ii) The two processes L and R are independent α′-stable Lévy processes.
(iii) The ratio between the rates of positive jumps of R and the rates of positive jumps

of L is p/(1 − p).
(iv) The ratioUL (resp. UR) of the intensity of upward to downward jumps of L (resp.

R) is given by

UL = sin(−πρ/2)

sin(πρ/2 − πα′)
and UR = sin(2πα′ − πρ/2)

sin(πρ/2 − πα′)
.

(v) The jumps of R and L correspond to four independent Poisson point processes
of quantum disks.

Remark 4.2 The picture will be completed in Sect. 5.1, where it will be explained why
the rate of negative jumps of R and the rate of negative jumps of L are the same.
This will in particular show that p/(1 − p) = UR/UL which then gives the relation
between p and ρ (i.e., Theorem 1.3).

Remark 4.3 We will state and prove the counterpart of this result for explorations of
generalized quantum disks as Theorem 5.1 later (and the proof will build on the result
in half-planes). This will be the result that then can be used to fully explore LQG
surfaces via CLE exploration mechanisms.
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Remark 4.4 One approach to prove Theorem 4.1 is to build on Propositions 3.2 and
3.8 for p = 0 and p = 1, and to use the following approximation of the interface η

for general p:
Fix δ > 0; toss an independent coin which is heads (resp. tails) with probability

p (resp. 1 − p) and depending on its outcome we let ηδ evolve along the left (resp.
right) boundary, up until it has traced boundary quantum length δ. We also attach to
this path the CLEκ ′ loops that it has encountered. Then, by Proposition 3.2, we still
have to explore a quantum half-planeH(u) (or rather, the wedgeW(u)). We then toss
a second independent p v.s. 1 − p coin to decide whether the second stretch of the
exploration will follow the left or right boundary of the wedge W(u). Note that if
the outcome of the second coin disagrees with that of the first one, then this interface
will start moving in the interior of the initial wedge W . We then continue iteratively,
tossing a new independent coin at each time which is a multiple of δ.

Then, for each given ε and K , as δ gets smaller and smaller, the probability that
during at least one of the first K/δ stretches, one discovers twoCLEκ ′ loops of diameter
greater than ε goes to 0. Together with the fact that the clusters of loops of diameter
greater than ε converge to the clusters of loops (this is a non-trivial fact, shown in
[37]), this shows that the interface ηδ indeed converges (in distribution) to the actual
interface η (it is actually also possible to couple ηδ with η by deciding to color the
largest CLEκ ′ loop encountered by ηδ at the kth iteration (on [kδ, (k + 1)δ] quantum
time) according to the coin-toss performed at time kδ).

Hence, we see that this side-swapping interface ηδ indeed converges to the real
interface η as δ → 0, and that the collection of discovered CLE loops converge as
well. Given the results that we have derived for p = 0 and for p = 1, this suggests
that the Poissonian structure of the appearing/disappearing surfaces should still hold,
and that the only difference will lie in the fact that the positive jumps will be jumps
of L with probability p and jumps of R with probability 1 − p.

However, to make this type of proof rigorous, some arguments are needed to justify
the fact that the boundary lengths (of the cut-out domains for instance) of the approx-
imations converge to those discovered by η. We will instead follow another route to
prove this, similar to the one that we used to prove Propositions 3.2 and 3.8.

4.2 The BCLE decomposition

We now briefly recall the BCLE description of the CLEκ ′ from [37]: Suppose that
κ ′ ∈ (4, 8) and ρ′ ∈ (κ ′/2− 4, κ ′/2− 2). Recall from Remark 3.6 that a BCLEκ ′(ρ′)
is constructed via the branching tree of SLEκ ′(ρ′; κ ′ − 6 − ρ′) processes. In the
particular case where ρ′ = 0 (or symmetrically, when ρ′ = κ ′ − 6), this is exactly the
picture one obtains when one discovers the boundary-touching CLEκ ′ loops.

When I is a subinterval of R, we can define the collection of BCLEκ ′ loops that
do touch I . By conformal invariance, we can define also BCLEκ ′(ρ′) in any simply
connected domain in the plane.

Suppose that one draws a colored CLEκ ′ in the upper half-plane and that one traces
the entire interface η from 0 to ∞. As we have already mentioned several times, it
is shown in [37] that the law of η is that of an SLEκ(ρ; κ − 6 − ρ). A further result
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of [37] is the description of the conditional law of η′ given η that we now recall. We
call HL and HR the two domains that lie respectively to the left and to the right of η

(each of them is the union of disjoint simply connected domains). The CLEκ ′ loops
that touch η from the left (i.e., that are in HL ) are by construction red, while the ones
that touch η from the right are blue.

Proposition 4.5 (Theorem 7.2 from [37]) If one conditions on the whole of the inter-
face η, then the collection of CLEκ ′ loops that touch η from the left is conditionally
independent from the collection of CLEκ ′ loops that touch η from the right. Fur-
thermore, the conditional law of the CLEκ ′ loops that touch the right side of η is
obtained by taking independent BCLEκ ′(ρ′

R)’s in each connected component of HR

for ρ′
R = −κ ′(ρ + 2)/4 , and to keep only those loops that touch η.

Wewon’t use the explicit value of ρ′
R in terms of ρ here (but of course, determining

the value of ρ is actually one of our goals). The symmetric statement holds for the
loops that touch η from the left, changing ρ into κ − 6− ρ to get the formula for ρ′

L .
Similarly, [37] contains a description of the conditional law of the CLEκ ′ loops

when one conditions on η up to a stopping time τ . In that case, the loops touching η

from the left and from the right are not conditionally independent anymore (to start
with, they have to remain disjoint), but the previous proposition provides a recipe to
construct them: First sample the rest of η, and then apply Proposition 4.5. Using the
imaginary geometry setup, one can then directly view the joint law of these interface-
touching loops without tracing the rest of η. We will use this description at some point
in our proof (the precise result from [37] will be easier to state then).

We are now ready to prove Theorem 4.1: The next three sections will be devoted
to the proofs of (i), (ii)–(iv) and (v), respectively.

4.3 Proof of stationarity

We are going to follow a similar strategy than for our proof when p = 1. It is this
time convenient (we hope it will become immediately clear why) to start off with a
weight 4 quantum wedge V = (H, h, 0,∞). We let η be an independent SLEκ on
H from 0 to ∞. We can view η as the zero angle flow line of a GFF hIG on H with
boundary conditions given by λ = π/

√
κ on R+ and −λ on R−. Then we know that

the law of V is invariant under the operation of cutting along η for a given amount of
quantum length and then conformally mapping back to H (this is the ρ1 = ρ2 = 0
case of Theorem 2.1, which is also the basic quantum zipper result from the earlier
paper [44])—see Fig. 14 for a sketch.

The idea is now to construct theweightWD = γ 2−2wedgeW (and the generalized
half-plane H) within V in such a way that η will be the SLEκ(ρ; κ − 6 − ρ) process
that slices through its beads.

This is naturally done in the imaginary geometry framework of [31] (we will use
the notation χ = 2/γ − γ /2 and Q = 2/γ + γ /2) as follows: Define

θ0 = 2π(γ 2 − 2)

4 − γ 2 = 2π(κ − 2)

4 − κ
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Fig. 14 Both V and
Vt = V \ η[0, t] (to the right of
the drawn paths) are wedges of
weight 4 (it would be more
natural to view V as the
complement of a path, but for
representation purposes, we
draw it more like a wedge)

and choose θ ∈ (0, θ0) (note that θ0 > 0 since κ ′ ∈ (4, 8) so that γ ∈ (
√
2, 2)). Let

ηL (resp. ηR) be the flow line of hIG with respective angles θ and θ − θ0.
Since θ − θ0 < 0 < θ , the imaginary geometry results from [31] show that η is

squeezed in between ηR and ηL , and that ηR and ηL intersect. Moreover (see Fig. 15)
conditionally on ηL and ηR , the path η turns out to be an SLEκ(ρ; κ − 6− ρ) process
slicing through the connected components that are in between ηL and ηR (which is
why we chose θ0 like this), where

ρ = θχ

λ
− 2 = θ

π

(
2 − κ

2

)
− 2.

We can note that when θ varies from 0 to θ0, then ρ spans through all of the values
between −2 and κ − 4.

We can furthermore consider the counterflow line η′
L of hIG + (θ + π/2)χ from

∞ to 0. This is the counterflow line chosen so that its right boundary is ηL (indeed, it
is the flow line of hIG + (θ + π/2)χ with angle −π/2). Similarly, the left boundary
of the counterflow line η′

R of hIG + (θ − θ0 − π/2)χ is equal to ηR .
We can now combine these curves with the independent LQG structure of V . Our

choice of parameters (that ensure that the joint law of ηR and ηL , i.e., the angle
difference θ0, is the right one for this) and Theorem 2.1 show that the quantum surface
parameterized by the bubbles which are between ηR and ηL is a quantum wedge of
weight

W = θ0

π
χγ = γ 2 − 2

(see [14, Table 1.1] for this relationship between wedge weight and imaginary geom-
etry angle). This will be our quantum wedge W .

Furthermore, the quantum surface in-between η′
L and η′

R (see Theorem 2.6 and the
remarks after that) is then a doubly-forested wedge of weight WD = γ 2 − 2 – this
will be our generalized quantum half-plane H, see Fig. 16.

We now parameterize η according to its quantum length, and fix some positive t .
Then, as we have already pointed out, (H \ η([0, t]), h, η(t),∞) is again a quantum
wedge of weight 4. We let ft : H \ η([0, t]) → H be the centered Loewner map.
Then the quantum surface (H, ht , 0,∞) with ht = h ◦ f −1

t + Q log |( f −1
t )′| is a

weight-4 quantum wedge. On the other hand, ĥIGt = hIG ◦ f −1
t − χ arg(( f −1

t )′) has
the same law as hIG. We then define η̂′

L,t (resp. η̂′
R,t ) from ĥIGt in the same way in
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Fig. 15 The conditional law of η given ηL and ηR is an SLEκ (ρ; κ − 6 − ρ) in the wedge W between
these two curves

Fig. 16 The part between η′
L and η′

R is the generalized half-plane H

which η′
L and η′

R are defined from hIG (i.e., they are the counterflow line from ∞ to
0 of ĥIGt + (θ + π/2)χ and ĥIGt + (θ − θ0 − π/2)χ ).

In the sameway as for t = 0, the quantum surface parameterized by the components
ofH\ (̂η′

L,t ∪ η̂′
R,t )which are between the right boundary of η̂

′
L,t and the left boundary

of η̂′
R,t form a quantum wedge Ŵ(t) of weight γ 2 − 2, and if we include the forested

lines corresponding to the loops of η̂′
L,t (resp. η̂′

R,t ) on the right (resp. left), then

we get a generalized quantum half-plane Ĥ(t) as before. We can map these surfaces
forward via f −1

t (so the change-of-domain formula gives again the field h) to obtain
representatives of this generalized quantum half-plane and this generalized quantum
wedge – we denote them by H̃(t) and D̃(t).

We nowwant to argue that H̃(t) has the same law asH(t) as defined in the theorem,
i.e., by first samplingW andH, then sampling a CLEκ ′ inW , and exploring along its
interface up to the quantum natural time t and attaching all discovered CLEκ ′ loops .
Both H(t) and H̃(t) are obtained by cutting out pieces from H that are independent
of h, so it suffices to focus on the geometry of these pieces. Let us now define η̃′

L,t =
f −1
t (η′

L,t ) and η̃′
R,t = f −1

t (η′
R,t ). Then η̃′

L,t agrees with η′
L until it first hits the left

side of η([0, t]) after which it branches toward η(t). Likewise, η̃′
R,t agrees with η′

R
until it first hits the right side of η([0, t]) after which it branches towards η(t), see
Fig. 17.

So, we can interpret the parts of these paths before these branching times as defining
the boundaries of the initial generalized half-plane H up until (and including) that of
the “currently explored disk” D(t) (in which η(t) is).
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Fig. 17 The paths η̃′
L,t and η̃′

R,t agree with η′
L and η′

R up until they hit η[0, t]. They define a quantum

half-plane in Vt in the same way in which η′
L and η′

R defined the generalized half-plane H in V

Fig. 18 The paths η̃′
L,t \ η′

L and η̃′
R,t \ η′

R can be interpreted as the contours of the colored CLEκ ′ loops
inW that contribute to the boundary of W(t) (color figure online)

If we sample a colored CLEκ ′ in this disk, we know that η can be viewed as the
interface from one of its marked points to the other. Now is the time where we will
use the imaginary geometry type description from [37] of the conditional distribution
of the CLEκ ′ loops that touch η up to some finite time. Indeed, it precisely says (see
[37, Figure 9.2] and the surrounding text), that conditionally on η up to a stopping
time (and here t can be viewed as a stopping time as it involves the conditionally
independent field h), the outermost pieces of CLEκ ′ -loops attached to it have exactly
the same joint law of the parts of η̃L,t and η̃R,t after the splitting (see Fig. 18). This
proves exactly that the conditional law ofH(t) is that of H̃(t). Indeed, η̃′

L,t (resp. η̃
′
R,t )

is the counterflow line of hIG + cL (resp. hIG + cR) in D(t) \ η([0, t]) starting from
the first point on D(t) visited by η and targeted at η(t) where

cL = λ′ − λ + θχ = (θ − π/2)χ

and cR = λ − λ′ + (θ − θ0)χ = (θ − θ0 + π/2)χ

(The reason that cL = (θ −π/2)χ and not (θ +π/2)χ is that in the above it is growing
from the bottom ofD(t) rather than the top, which corresponds to a change of angle of
π in the clockwise direction. Recall that a change of angle π in the clockwise direction
corresponds to a lowering of field heights by πχ . This also explains the value of cR .)

Finally, to see that W(t) is independent of Ft , one proceeds as in the case p = 1,
noting that on the one hand, H̃(t) and the two quantum surfaces that lie on the other
“sides” of H̃(t) of η′

R,t and of η′
L,t are three independent surfaces, and using the
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BCLEκ ′(ρ′) construction of [37] that shows that the cut out domains can be constructed
by drawing appropriate SLE-type curves (to complete the BCLE branching trees) in
those two other quantum surfaces. ��

4.4 Lévy processes and their jumps

We now prove the statements (ii)–(iv) of Theorem 4.1.
Just as in the case p = 1, statement (i) implies that L and R are both α′-stable

Lévy processes. Let us now explain why they are independent: In the previous setup,
when one first samples all of η in the wedge V of weight 4, then it splits it into two
independent wedges of weight 2. The processes R and L can then be read off from
what happens on either side of η by drawing independent BCLE processes on each of
the sides (this is one of the main results of [37]; we will come back to this description
in the next section), so that they are necessarily independent as well.

We can note that up until the interface hits a certain CLEκ ′ loop, it is actually
independent of the color of that loop. That loop will therefore correspond to a positive
jump of L or of R with respective probabilities p and 1 − p. This indicates that the
ratio between the rate of positive jumps of L and the rate of positive jumps of R is
p/(1 − p).

We now turn to the ratio UR between the rates of positive and negative jumps of
R (by symmetry, the corresponding ratio for L is then obtained by changing ρ into
κ − 6 − ρ). We use the same idea as in the case p = 1: We know that R is an α′-
stable process, and it is then a standard result (see [3, Chapter VIII, Lemma 1]) for
such processes that if we set R#

t := infs≤t Rs , then the set R := {−R#
t , t ≥ 0} can

be viewed as the range of a stable subordinator, whose index 1/α′′ can be explicitly
written in terms of α′ and UR . In particular,

UR = sin(π(α′ − α′′))
sin(πα′′)

(as above, this is a slight reformulation of [3, Chapter VIII, Lemma 1], with α′′ given
by α′ times the positivity parameter of −R).

But here, we have another way to express this jump distribution via the weight of
the wedges that are obtained by slicing the wedgeW by the interface η. We know that
the wedgeWR to the right of η has weight W = κ − 4− ρ. By Remark 2.5, we get a
Poisson point process of generalized boundary lengths of intensity

dy/y2+(ρ/2)−(4/κ ′)+1.

Just as in the case p = 1 (and this is the main observation here!), we note that the
minimum of R is reached only at the times at which η touches the right-hand boundary
of W , and these points correspond exactly to the point “between” the beads of WR .
Furthermore, the corresponding jumps will have the same scaling property as the
generalized boundary lengths of these beads. Hence, we get that

α′′ = 2 + ρ

2
− α′.
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Plugging this relation into the expression for UR , we finally get

UR = sin(2πα′ − πρ/2)

sin(πρ/2 − πα′)
.

��
In what follows, we will denote by A+ = A+(p) and A− = A−(p) the rates

of positive jumps and the rates of negative jumps (when compared to a standard
stable subordinator) of the α′-stable process R + L . We will also denote by A+,R(p),
A−,R(p), A+,L(p) and A−,L(p) the rates of positive and negative jumps of R and L
respectively. We then have (either from the definition or from Theorem 4.1(ii)–(iv))
that A+,L(p) = pA+(p), A+,R(p) = (1 − p)A+(p), A+,R(p)/A−,R(p) = UR ,
A+,L(p)/A−,L(p) = UL and A−,R(p) + A−,L(p) = A−(p).

4.5 Cut-out domains are quantum disks

We now turn to prove part (v) of Theorem 4.1.
We start with proving a general statement onBCLEs on quantum half-planes, which

is the BCLEκ ′(ρ′) analog of Proposition 3.8. It can also be viewed as the analog for
non-simple BCLEs of the corresponding result [39, Proposition 4.4] (though in [39]
it is stated for a quantum disk, but the result also holds in the setting of the quantum
half-plane).

Suppose that κ ′ ∈ (4, 8) and ρ′ ∈ (κ ′/2 − 4, κ ′/2 − 2). We now draw such a
BCLEκ ′(ρ′) on top of a quantum half-plane H, and we then define the discovery
process of the BCLEκ ′(ρ′) loops in exactly the same way as the CLEκ ′ discovery (in
the p = 1 case). For each u ≥ 0, we define the quantum surfaceH(u) that is “outside”
the union of all BCLE loops that are touching (−∞, x(u)].We then define L̃ in exactly
the same way in which L was defined out of a CLEκ ′ in Sect. 3.1. The positive jumps
of L̃ correspond to the discovery of a boundary-touching BCLE loop.

Proposition 4.6 The quantum surfaces that are cut out at the positive and negative
jumps of L̃ are two independent Poisson point processes of generalized quantum disks.

Proof We can use the representation of the BCLE in terms of counterflow lines η′
x of

a GFF hIG on H with boundary conditions given by −λ′(1 + ρ′) + πχ . The proof
of the result then follows in exactly the same manner as the proof of Proposition 3.8.
Indeed, if for any x ∈ R we condition on the flow lines of hIG from x to ∞ with
angles ±π/2 the conditional law of η′ between the two flow lines is an SLEκ ′(κ ′/
2 − 4; κ ′/2 − 4). ��

We can now deduce part (v) of Theorem 4.1 using Proposition 4.5. In the context
of the proof of part (i) of Theorem 4.1 given above, the SLEκ process η that we started
with drawn on top of an independent quantum wedge W of weight 4 divides it into
independent wedgesW1,W2 of weight 2 (i.e., quantum half-planes). The counterflow
line exploration on the left and right sides of η described in the proof of part (i) of
Theorem 4.1 corresponds to drawing a BCLEκ ′(ρ′

L) and an independent BCLEκ ′(ρ′
R)

respectively inW1 andW2 – the actual values of ρ′
L and ρ′

R in terms of ρ do not really
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matter for our purpose here. This already shows that the Poisson point processes of
quantum surfaces associated to the jumps of R is independent from the Poisson point
processes of quantum surfaces associated to the jumps of L . The jumps of L and the
jumps of R then correspond to the jumps of the discovery process of those BCLE, and
we can therefore apply Proposition 4.6 to conclude. ��

5 Explorations of generalized quantum disks and consequences

The proofs of the statements in this section are almost identical to the corresponding
ones in [39] for simple CLEs on LQG.We will therefore only quickly browse through
the results, referring the reader to [39] for the proofs.

5.1 New jump rates and branching tree structure

We now consider a generalized quantum disk D with a generalized boundary-typical
marked point x0 (chosen uniformly according to the generalized boundary length
measure). We sample an independent colored CLEκ ′ inside each of its beads, and
we start exploring the interface between red and blue loops starting from x0. This
interface η is defined in the same way as for the exploration of a generalized quantum
half-plane, that one again chooses to parameterize according to its quantum length.
One discovers in the same way the CLEκ ′ loops that η intersects, and defines in the
same way the decreasing family of quantum surfaces D(t), except that one has to
make the following branching rule (to replace the marked target point at infinity of
the generalized quantum half-plane): Whenever the trunk disconnects the remaining
to be discovered domain into two pieces, the process chooses to go into the direction
of the piece with largest generalized boundary length.

In this way, one has a curve η(t) defined up to some stopping time T (corresponding
to the time at which the boundary length of the remaining to be discovered domain
vanishes). At time t , the generalized boundary length of the remaining to be discovered
domainD(t) will be denoted by Λt . This process will make a positive jump whenever
η discovers a blue or a red loop, and it will make a negative jump whenever it “dis-
connects”D(t) into two pieces (in the same way as for the exploration of generalized
half-planes).

The results for such explorations can be summarized as follows.

Theorem 5.1 The following hold for this exploration of colored CLEκ ′ on an indepen-
dent generalized quantum disk.

– For each t ≥ 0, conditionally on (Λs)s≤t , all cut out domains, the interior of
the discovered loops and the quantum surface D(t) are independent generalized
quantum disks (with lengths respectively given by the corresponding jumps of Λ

and by Λt ).
– The process (Λt )t≥0 is a pure jump-process with rates of jumps (with respect to
Lebesgue measure) when Λt = � given by ν�(l)dl on R, where for all l ≥ 0,
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ν�(l) := ν(�, � + l) := A+(p)
�α′+1

lα′+1(� + l)α′+1

and

ν�(−l) := ν(�, � − l) := A−(p)
�α′+11l<�/2

lα′+1(� − l)α′+1
.

The proof, which is essentially identical to that of the corresponding statements in
[39] is based on the local absolute continuity between generalized quantumhalf-planes
and generalized quantum disks, as well as on the scaling properties of the generalized
boundary length, and of course on Theorem 4.1.

Themain intermediate step is to first consider the following setup: Suppose that one
starts the exploration at a boundary-typical point x(0) of a generalized quantum disk
of boundary length �̃0, and that y is the boundary point that lies at counterclockwise
generalized boundary length r0 from x(0). We then define the interface η in the same
way, except that the branching rule when the trunk disconnects the remaining to be
discovered domain into two pieces is now that the process chooses to go in the direction
of y. At each time t smaller than the total quantum length T of η, we can then define
the generalized boundary lengths L̃ t and R̃t of the clockwise and counterclockwise
boundary arcs joining η(t) to y in the remaining to be explored generalized LQG
surface. Then, it turns out that on the event Et = {t < T }, the law of (R̃s − R̃0, L̃s −
L̃0)s≤t is absolutely continuous with respect to the law of (Rs, Ls)s≤t described in
Theorem4.1,withRadon-Nikodymderivative givenby �̃α′+1

0 /�̃α′+1
t with �̃t = R̃r+L̃ t .

We omit the details of the proof of this fact and refer to [39].
One outcome is then the fact that the rates of negative jumps for R̃ (from r̃ to r̃ −h)

when L̃ = l̃ for this “targeted process” are (we write here �̃ = l̃ + r̃ )

ν̃((̃r , l̃), (̃r − h, l̃)) = A−,R(p)
�̃α′+11h<r̃

hα′+1(�̃ − h)α
′+1

.

Similarly, one has the similar formula for the rates of negative jumps of L̃ ,

ν̃((̃r , l̃), (̃r , l̃ − h)) = A−,L(p)
�̃α′+11h<̃l

hα′+1(�̃ − h)α
′+1

,

and also for the rates of positive jumps—for instance for those of R̃ –

ν̃((̃r , l̃), (̃r + h, l̃)) = A+,R(p)
�̃α′+1

hα′+1(�̃ + h)α
′+1

.

We can note that due to the target-invariance of the exploration mechanism of the
generalized disk, the processes targeting two boundary points y and y′ will coincide
up until the (negative) jump corresponding to the time at which it splits y and y′. The
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rate of occurrence of negative jumps corresponding to such a splitting time should be
the same for the process targeting y and the one targeting y′; in other words, when
r̃ < r̃ ′ and r̃ + l̃ = r̃ ′ + l̃ ′, one should have

ν̃((̃r , l̃), (̃r , h)) = ν̃((̃r ′, l̃ ′), (̃r ′ − r̃ − h, l̃ ′))

for all h < r̃ ′ − r̃ . This implies immediately that A−,R(p) = A−,L(p).
To then deduce Theorem 5.1, one proceeds like in [39], by updating the target point

after each times that are multiple of ε to be the “antipodal” point of the exploration
in the generalized disk that remains to be explored, and to then let ε → 0. Again, we
refer to [39] for details.

Note also that the fact that A−,L(p) = A−,R(p) allows us to conclude the proof
of Theorem 1.3: When p ∈ (0, 1), we get that UL/UR = A+,L(p)/A+,R(p), which
we know is equal to p/(1− p). Plugging in our formulas forUR andUL gives indeed
Theorem 1.3

Remark 5.2 When one discovers a generalized quantum disk of length 1 according
to the CLEκ ′ exploration procedure described in Theorem 4.1, then the conditional
expectation of the total quantum areaA1 given the information gathered at time t is a
martingale. Since the quantum area of the curves η and of the CLEκ ′ loops is clearly
0, it follows that this conditional expectation is equal to

E[A1] ×
(

Λ2α′
t +

∑
s<t

(Λs − Λs−)2α
′
)

.

Letting t → 0, one gets that the “expected total area variation” induced by the jumps
is equal to 0, i.e.,

∫ ∞
0

ν(1, 1 + l)[(1 + l)2α
′ + l2α

′ − 1]dl +
∫ 1/2

0
ν(1, 1 − l)[(1 − l)2α

′ + l2α
′ − 1]dl = 0,

i.e.,

A+(p)
∫ ∞

0

(1 + l)2α
′ + l2α

′ − 1

lα′+1(1 + l)α′+1
dl + A−(p)

∫ 1/2

0

(1 − l)2α
′ + l2α

′ − 1

lα′+1(1 − l)α′+1
dl = 0,

(5.1)

We note that this identity determines uniquely the ratio A+(p)/A−(p), which shows
that this quantity is independent of p.

This provides a simple way to do some sanity check on our formulas. One could
for instance check from our expressions forUR andUL that indeed A+(p)/A−(p) =
(UR +UL)/2 = − cos(α′π). Alternatively, we knew anyway that at p = 1/2, UR =
UL = UR+L . On the other hand, the value of UR at p = 1/2 is already known from
Theorem 4.1 to be − cos(α′π) (recall that by symmetry, in that case ρ = (κ − 6)/2).
We can therefore conclude from (5.1) that UR+L = − cos(α′π) for all p ∈ (0, 1).
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It is also possible to see directly from (5.1) that the ratio A+(p)/A−(p) is equal to
− cos(πα′), which provides a further computational sanity check for our formulas for
UR and UL and indicates the type of computations that are anyway behind the scenes
and give rise to trigonometric functions (one first notes that the integral from 0 to 1/2
in (5.1) is one half of the integral from 0 to 1 of the same expression, and one can
then reformulate (5.1) in terms of Beta functions using some analytical continuation
tricks, and one concludes using the relation with the Gamma function).

5.2 The natural LQGmeasure in the CLE gasket

Exactly as in [39], Theorem 4.1 can then be iteratively used in order to describe also
the entire exploration tree (obtainedwhen one also continues exploring into the cut-out
disks) obtained when one explores a LQG-generalized disk on which one has drawn
a nested CLEκ ′ (the coloring is then not so crucial here). In particular, depending on
whether one explores the entire generalized quantum disk or only the CLEκ ′ -gasket
(the set of points in the generalized disk that are surrounded by no CLEκ ′ loop), one
obtains two branching tree structures T̃ and T just as in [39]. Again, just as in [39],
building on fine properties of the usual branching processes martingales in the latter
case, one can derive (in exactly the same way as in [39]) the following fact:

Proposition 5.3 One can define a natural LQG measure μ in the CLEκ ′ -gasket with
the property that for a wide class of open sets O (that generates the Borel σ -algebra
in D), μ(O) is the limit in probability as ε → 0 of εα′+1/2Nε(O), where Nε(O) is
the number of outermost CLEκ ′ loops of generalized boundary length in [ε, 2ε] that
are in O.

Thismeasure is also the one that appears as the naturalmeasure on the boundary ofT
when defined by branching process martingale methods, such as in [4]. Proposition 5.3
then shows that this measure is actually independent of the coloring of the CLEκ ′
used to define the exploration tree out of the CLEκ ′ . Note that (as opposed to the
corresponding statement in [39]), this could have been also shown directly. We refer
to [39] for more details and background.
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