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Many-body descriptors are widely used to represent atomic environments in the construction of
machine-learned interatomic potentials and more broadly for fitting, classification, and embedding tasks on
atomic structures. There is a widespread belief in the community that three-body correlations are likely to
provide an overcomplete description of the environment of an atom. We produce several counterexamples
to this belief, with the consequence that any classifier, regression, or embedding model for atom-centered
properties that uses three- (or four)-body features will incorrectly give identical results for different
configurations. Writing global properties (such as total energies) as a sum of many atom-centered
contributions mitigates the impact of this fundamental deficiency—explaining the success of current
“machine-learning” force fields. We anticipate the issues that will arise as the desired accuracy increases,
and suggest potential solutions.
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Over the past decade tremendous progress has been
made in the use of statistical regression to sidestep
computationally demanding electronic structure calcula-
tions, and obtain “machine-learning” models of materials
and molecules, that use as inputs only the chemical nature
and coordinates of the atoms [1–10]. A crucial driver of this
progress has been the introduction of representations of
atomic structures: A property associated with the ith atom
can be written as Fi ¼ F ðX iÞ, where X i ¼ frijgj≠i
describes the neighbor environment of the ith atom. To
preserve symmetries of the target property, the representa-
tion of X i should be equivariant [11,12] (often simply
invariant [1,2,13–15]) with respect to translations, rota-
tions, labeling of identical atoms, and often also reflections.
Most of the invariant representations [1,2,13,16,17] can be
seen as projections onto different bases of many-body
correlation functions of the atom density [18]. To stress that
our results apply equally to all these frameworks, we use

the abstract notation jρ⊗ν
i i to indicate the (νþ 1)-body

correlation, which is centered on the ith atom [18]. For

instance, the two-body correlation jρ⊗1
i i corresponds to the

histogram of interatomic distances rij—equivalent to the
radial distribution function or the two-body symmetry
functions G2 of Ref. [1]. The three-body correlation

jρ⊗2
i i is equivalent to the histogram of triangles, repre-

sented by the 3-tuples ðrij; rij0 ;ωijj0 ¼ r̂ij · r̂ij0 Þ—and to the
power spectrum [2], or to the three-body symmetry

functions, G3 [1]. Linear regression based on these features
is equivalent to a body-ordered expansion of the target
property [7,18–22]. Given that computing higher-order
terms is increasingly costly, the representation is typically
truncated at three or four body correlations.
Employing nonlinear functions of low-order invariants,

e.g., Fi ¼ F̃ ðjρ⊗2
i iÞ, incorporates information on higher-

order correlations, and there is a widespread belief in the
community [7,23,24], supported by numerical evidence
[13], that the three-body correlations likely provide an
overcomplete description of an atomic environment. The
completeness (injectivity) of the structure-representation
map would guarantee that any atom-centered property can
be described by F̃, which extends to any atom-centered
decomposition of extensive properties, such as the total
energy [7]. In this Letter, we present several counter-
examples to this widely held belief, discuss the implica-
tions for machine-learning atomistic properties, and
suggest directions towards the construction of complete
representations.
Figure 1(a) exhibits a simple example of a pair of

environments, Xþ and X−, with four neighboring atoms
of the same species positioned on a circle around the central
atom. The two structures cannot be superimposed by
rotations and mirror symmetry, but they have the same
list of distances and angles and hence cannot be distin-
guished by their three-body correlations. To elucidate this
example, and more generally understand the difficulty of
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reconstructing an atomic environment from a body order
representations, consider the Gram matrix Gjj0 ¼ rij · rij0 ,
which contains sufficient information to reconstruct a
configuration up to an arbitrary rotation or reflection. If
all the distances rij, or the chemical identity of the
neighbors, are distinct, one can unequivocally assign
distances and angles to a specific atom, and reconstruct
the Gram matrix from the unordered list fðrij; rij0 ;ωijj0 Þg.
If some of the distances are the same, however, it becomes
possible to swap some entries of G, yielding two or more
degenerate environments that are different, but have the
same three-body invariants.
As shown in Fig. 1(b), one can generalize the con-

struction to obtain a manifold of degenerate environment
pairs parametrized by seven continuous variables. The total
dimensionality of the configuration space of four neighbors
is 4 × 3 − 3 ¼ 9. Thus, the degenerate manifold has a
dimension of seven and a codimension of two. When going
from theþ to the − structure in the pair, the elements of the
Gram matrix between C-type and B-type points are
swapped, leading to nonequivalent structures that have
the same three-body description. This construction can be
extended by adding further A- or C-type points (increasing
the codimension of the degenerate manifold by one) or
pairs of B-type points (each pair increasing the codimen-
sion by three). Other counterexamples can be found,
involving triplets of degenerate structures (see
Supplemental Material [25]). Tight bounds on the codi-
mension of degenerate manifolds and on the multiplicity of
degenerate structures is a key aspect in understanding the
success of incomplete environment descriptors, but is
beyond the scope of the present work. However, the
example of Fig. 1(b) is sharp in the sense that (i) for three
or fewer neighbors the three-body correlation suffices to

(a) (b) (c)

FIG. 1. (a) Two structures with the same histogram of triangles;
(angles: 45°, 45°, 90°, 135°, 135°, 180°). (b) A manifold of
degenerate pairs of environments: In addition to three points A, B,
B0 a fourth point Cþ or C− is added leading to two degenerate
environments, Xþ and X−. (c) Degeneracies induce a trans-
formation of feature space so that structures that should be far
apart are brought close together.

(a)

(b)

(c)

(e) (f)

(d)

FIG. 2. (a) principal component analysis (PCA) projection of

jXþ; ρ⊗2
i i and jX−; ρ⊗2

i i for a continuous manifold of CH4

environments Xþ and X−, parametrized by q (that moves along
the degenerate set, represented by a black line) and s (that
breaks the degeneracy). (b) Energy (top) and 13C chemical
shieldings (bottom) of a CH4 molecule that follows such
manifolds; the zero of the two quantities is set to the values
for the ideal geometry. (c) PCA projection of the bispectrum

jρ⊗3
i i space manifold. (d) Correlation plot of the distances

between two points k and k0 along both manifolds, computed

based on the power spectrum (dð2Þkk0 ) or the bispectrum (dð3Þkk0 ).
(e) Construction of a pair of environments that are mirror images

but share identical chiral jρ⊗3
i i features. A points lie in the xz

plane, along a circle centered on the origin. C� points lie along
the y axis, symmetric about the origin. (f) A pair of inequivalent

structures with the same inversion invariant jρ⊗3
i i features. B

and B0 points lie on circles centered on the origin, and shifted by
the same amount above and below the xz plane. One of the sets
of points is twisted around y by an angle ψ .
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reconstruct the environment and (ii) for four or more
neighbors one can construct a manifold of codimension
2 which must contain all degenerate environments. These
results, which build on those in Ref. [26], are detailed in the
Supplemental Material [25]. It is unclear to us whether the
increase of the codimension when neighbors are added in
the example of Fig. 1(b) is specific to our construction, or
reflects a general result.
Following the procedure in Fig. 1(b), one can produce a

pair of degenerate tetrahedral environments, that we label
Xþ and X−, corresponding to a CH4 molecule. Figure 2(a)
shows a portion of the two manifolds (blue and red
surfaces, parametrized by two variables q and s) built as
a principal component projection of the power spectrum
space (details given in the Supplemental Material [25]).
Structures within the two surfaces correspond to configu-
rations that are different from each other, but those along
the black line (corresponding to s ¼ 0) have identical two-
and three-body invariants, which therefore cannot distin-
guish Xþ and X−, and the two manifolds intersect each
other. As shown in Fig. 2(b), however, both atom-centered
properties such as the 13C NMR chemical shift, and
extensive properties such as molecular energy, are very
different as they cannot be described fully by three-body
correlations around the central atom. Higher body-order
features can differentiate betweenXþ and X−. As shown in
Fig. 2(c), the feature-space degeneracy is lifted by the four-

body correlation (bispectrum) jρ⊗3
i i, which corresponds to

the unordered list of tetrahedra formed by the central atom
and three of its neighbors. The presence of a degeneracy
can be revealed by comparing environment distances
dð2Þ; dð3Þ computed, respectively, from power spectrum

coordinates jρ⊗2
i i and bispectrum coordinates jρ⊗3

i i. One
then observes that pairs of environments that are close in
dð2Þ remain well separated by dð3Þ [Fig. 2(d)]. However, the
bispectrum is not complete either. While it does differ-
entiate between the tetrahedral CH4 environments in
Fig. 2(a), one can build pairs of inequivalent environments
that have the same four-body correlations. The environ-
ments in Fig. 2(e) are chiral (mirror) images of each other,
but the bispectrum does not distinguish them because the
tetrahedra it is composed of are not chiral [27]. Figure 2(f)
extends this construction to a pair of environments that
have the same four-body correlations (ν ¼ 3) and are not
chiral images of each other.
A Gaussian process regression model based on a non-

linear kernel built on the SOAP power spectrum (equivalent
to the three-body correlation jρ⊗2

i i, see Supplemental
Material [25]) results in large errors, not just along the s ¼
0 line of degeneracy, but also for structures that are not
exactly indistinguishable according to the power spectrum
(top panels in Fig. 3). This underscores the fact that the
existence of manifolds of degenerate structures introduces a
distortion of the feature space [Fig. 1(c)], and hinders the

ability to perform regression regardless of whether strictly
degenerate pairs are included in the training. Because they
are ultimately based on the same unordered sets of
triangles, Behler-Parrinello “atom-centered symmetry
functions” [1], the FCHL descriptors of von Lilienfeld
and co-workers [28], the Many Body Tensor
Representation descriptor of Rupp [29], and the smooth
version of the DeepMD framework [30] will also suffer
from the same problem. The fact that a large manifold of
CH4 environments is unlearnable using two- and three-
body features is a shortcoming that fundamentally limits
the reliability of machine-learned models of atom-centered
properties based on these descriptors.
When learning the decomposition of a global property,

such as the total energy, one can hope to lift the degeneracy
by using features centered on other atoms in the structure.
For the construction in Fig. 1(b), there is always at least one
atom outside the bisecting A plane that breaks the indis-
tinguishability of Xþ and X−. Indeed, a model that
combines C- and H-centered nonlinear kernels can approxi-
mate the molecular energy to excellent accuracy, also along
the degenerate manifold (see Fig. 3, middle panels). In
general, however, such a mechanism does not guarantee
that efficient models can be constructed based on incom-
plete atom-centered features. For the sake of simplicity, we

demonstrate this for the case of two-body descriptors jρ⊗1
i i.

FIG. 3. Error in the prediction of the molecular energy for CH4

configurations along the manifold depicted in Figs. 2(c) and 2(d),
using a GPR model based on a nonlinear kernel built on the C-
centered SOAP power spectrum (top, root mean square error
(RMSE): 12 kcal=mol), a combination of C− and H-centered
power spectra (middle, RMSE: 0.027 kcal=mol), and the C-
centered bispectrum (bottom, RMSE: 0.011 kcal=mol).
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It is well known that the list of distances from the center of
an environment, or even the list of distances in a structure
[26], are not complete representations. It has, however,
been speculated [23] that simultaneous knowledge of all
atom-centered lists of distances in a structure would
provide a complete representation of the configuration,
and that one could use this representation to predict
arbitrary potentials using an additive model based on

nonlinear functions of jρ⊗1
i i. Both conjectures are false.

We present a counterexample to the first conjecture in the
Supplemental Material [25]. The counterexample to the
second statement, cf. Fig. 4(a), is far more concerning,
though: even if, in a training set, all configurations can be
uniquely identified by the collection of the atom-centered
two-body histograms, it does not follow that a total energy
represented in terms of these histograms can be learned.
The breakdown of the purely two-body models in these
limiting cases has practical implications, as they translate
into instability and data inefficiency in real-life scenarios—
which is the ultimate reason why models based on purely
radial information have been superseded by those incor-
porating three-body features.
Proving the existence of similar counterexamples for the

learning of global properties using jρ⊗2
i i is more challeng-

ing. It is possible, however, to numerically demonstrate
how a model based on three-body features suffers from a
degradation of learning efficiency, provided that one pushes
it to sufficiently high accuracy. Figures 4(b) and 4(c) show
results for a data set of about 3 × 106 CH4 configurations
obtained by randomly distributing the atoms and discarding
structures with too close contacts [31]. The distance-
distance correlations [panel 4(b)] show that there are
configurations that approach the degenerate manifolds,
but there are no fully degenerate pairs. We then built an
additive model that includes contributions from both the C

and the H atoms, converging the discretization of jρ⊗2
i i and

using a neural network to ensure maximal flexibility in the
feature-property mapping. The learning curves [Fig. 4(c)]
exhibit clear signs of saturation—usually considered
indicative of lack of information in the features or model
[32–34]—suggesting that even though each pair of envi-
ronments (and therefore structures) in the data set can be

distinguished based on jρ⊗2
i i, the presence of near degen-

eracies affects the stability and efficiency of the regression.
Using the higher-body-order features to differentiate

between Xþ and X− does indeed lead to a more efficient
model (Fig. 3, bottom panel), that predicts the energy along
the degenerate manifold with an error that is roughly a third
of that obtained by a multicenter, power-spectrum-based
model. Substantial improvements are also seen for the
random CH4 configurations. A neural network based on

jρ⊗3
i i reduces the full-train-set error by 40%, down to ≈0.5

kcal/mol. Similar to what was observed for jρ⊗2
i i-based

models that combine multiple cutoff distances [34], there is
a data-complexity tradeoff. For small training set sizes a
simpler power-spectrum model can outperform one based
on the bispectrum, and linear regression outperforms a deep
neural network. The best balance between data efficiency,
computational cost, and ultimate accuracy might involve a
combination of different kinds of features, as demonstrated
by the hybrid model in Fig. 4. Approaches such as the
moment tensor potentials [22], permutationally invariant
polynomials [35,36], and the atomic cluster expansion [20]
allow, if necessary, to further resolve degeneracies by
including arbitrary body orders of correlation. We show
in the Supplemental Material [25] that similar consider-
ations apply also to a database of bulk silicon structures
[37]. The cutoff distance, however, complicates the picture,
because the number of neighbors included in the environ-
ments influences the proximity of structures to the degen-
erate manifold, and because the model accuracy is also
affected by the truncation of long-range interactions [38].
Descriptors such as eigenspectra of matrices constructed
from the atomic configuration (distance matrix, Laplacian,
orbital overlap, etc.) [39,40] also contain information on
high-body-order correlations, and as such are not expected
to be degenerate for the present examples. Their complete-
ness properties are not understood at present.
Overall, the results we have shown indicate that despite

the remarkable success of machine learning (ML) models
that describe atomic structures in terms of n-body corre-
lations features, there is still work to do to understand fully
how the configuration space of a set of atoms is mapped
onto symmetry-adapted representations. The problem is to
construct a representation which is (i) complete; (ii) smooth
with smooth inverse; (iii) and invariant under isometries
and permutations. An obvious, but ineffective, solution is to
use the union of all n-point correlations [20,22].
Pragmatically, one can proceed as we do here for the

(a) (c)

(b)

FIG. 4. (a) Four configurations distinguishable by the set of
their atom-centered two-body histograms. Only three different
site energies occur in these configurations, hence fitting four total
energies leads to overdetermined regression. (b) Correlation plot
of power-spectrum and bispectrum distances between C envi-
ronments in a database of random CH4 configurations. (c) Learn-
ing curves for the atomization energy of random CH4

configurations.
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CH4 dataset, increasing the correlation order until all
configurations in a given training set are distinguishable,
possibly reducing the cost of computing high-order features
using a sparsification procedure along the lines of [41,42].
It is, however, desirable to know a priori which features are
required to guarantee (i)–(iii). For example, we may ask
whether there is a fixed finite n such that all higher-order n-
point correlations can be recovered from the n̄-point
correlation. There are at least two perspectives from which
to pursue questions of this kind: signal processing and
invariant theory.
In the signal processing literature it has long been known

that the power spectrum is insufficient to reconstruct most
signals, while the bispectrum uniquely identifies trans-
lation-invariant and compact signals [43–45]. On the other
hand, Ref. [43] provides a range of elementary examples
establishing that no correlation order suffices to reconstruct
all periodic signals. Nevertheless, stable bispectrum inver-
sion has been shown to work well in practice due to the fact
the most signals can be reconstructed from it; see, e.g.,
[46,47] and references therein. These results have a striking
parallel to our own observations regarding the recon-
struction of an atomic environment and in particular
suggest that in theory no n̄-point correlation may suffice
to reconstruct the environment.
Still, since atomic environments can be thought of as a

very restrictive class of signals, the invariant theory
perspective may shed additional light on our questions.
The perspective of Boutin and Kemper [26] appears to be
particularly useful, establishing conditions under which a
points cloud can be reconstructed from the histogram of
distances. The problem we tackle here is closely related:
degeneracy of two centered environments with respect to n-
body correlations implies degeneracy of the point clouds
consisting of the neighbors with respect to n − 1 body
correlations. For example, Fig. 1(a), implies that the length-
histogram of the neighbors lying on the circle are degen-
erate (indeed, this is the example given in Fig. 4 in Ref. [26]
and in Fig 2 of [23]). Similarly, Fig. 2(f), shows environ-
ments that are degenerate with respect to the four-body
correlation (tetrahedron histograms) are also degenerate
with respect to the three-body correlations (triangle histo-
grams) of the entire structure. A similar approach may
therefore help determine tight bounds on the codimension
of the degenerate manifold although, as far as we are aware,
there are no rigorous results in this direction.
The problem of formulating a complete feature map is

of fundamental importance—particularly when consider-
ing the use for generative models that require inverting the
relation between a representation and the underlying
structure—and has practical implications, particularly
when one wants to achieve high accuracy with the
minimum amount of data. The presence of many neigh-
bors or of different species (that provide distinct “labels”
to associate groups of distances and angles to specific

atoms), and the possibility of using representations
centered on nearby atoms to lift the degeneracy of
environments reduces the detrimental effects of the lack
of uniqueness of the power spectrum when learning
extensive properties such as the energy. We show, how-
ever, that the learning rate of this kind of model reduces
dramatically in the high accuracy regime, revealing the
limitations of a description based on three-body features.
Diagnostic tools such as the joint distance histogram that
we introduce here can help identify problematic parts of
datasets, give more confidence in the reliability of simple-
to-compute low-order invariants, and guide the choice of a
small number of higher-order features to improve the
accuracy and efficiency of models.
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