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BMI, body mass index; CI, confidence interval; DXA, dual energy X-ray absorptiometry; FFM, fat-free 
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insulin-like growth factor 1; iPTH, intact parathyroid hormone; IQR, interquartile range; OPUS, 

acronym for ´Optimal well-being, development and health for Danish children through a healthy New 
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Abstract  1 

Background: Regulation of body composition during childhood is complex. Numerous hormones are 2 

potentially involved. Leptin has been proposed to restrain weight gain, but results are inconsistent. 3 

Objectives: We examined if baseline fasting levels of ghrelin, adiponectin, leptin, insulin, insulin-like 4 

growth factor I (IGF-1), osteocalcin and intact parathyroid hormone (iPTH) were associated with body 5 

composition cross-sectionally and longitudinally in 633 8-11-year-olds. 6 

Design: Data on hormones and body composition by Dual-energy X-ray absorptiometry from OPUS 7 

School Meal Study were used. We looked at baseline hormones as predictors of baseline fat mass index 8 

(FMI) or fat-free mass index (FFMI), and also subsequent changes (three and six months) in FMI or 9 

FFMI using models with hormones individually or combined.  10 

Results: Cross-sectionally, baseline leptin was positively associated with FMI in girls (0.211 kg/m
2
 pr. 11 

μg/ml (0.186; 0.236), p<0.001) and boys (0.231 kg/m
2
 pr. μg/ml (0.200; 0.261), p<0.001). IGF-1 in both 12 

genders and iPTH in boys were positively associated with FMI. An inverse association between 13 

adiponectin and FFMI in boys and a positive association between IGF-1 and FFMI in girls were found. 14 

In longitudinal models, baseline leptin was inversely associated with subsequent changes in FMI (-0.018 15 

kg/m
2
 pr. μg/ml (-0.034; -0.002), p=0.028) and FFMI (-0.014 kg/m

2
 pr. μg/ml (-0.024; -0.003), p=0.006) 16 

in girls.  17 

Conclusions: Cross-sectional findings support that leptin is produced in proportion to body fat mass, but 18 

the longitudinal observations support that leptin inhibits gains in FMI and FFMI in girls, a finding which 19 

may reflect preserved leptin sensitivity in this predominantly normal weight population.    20 
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Introduction                                                                                                                                            21 

Regulation of growth and body composition during childhood is complex and the interrelationship 22 

between the numerous hormones involved has to be taken into account when studying the impact of 23 

individual hormones. Growth hormone (GH) is the dominant stimulator of linear growth in childhood 24 

and it also important for gain in muscle mass (1;2). Its effects are mainly mediated through the insulin-25 

like growth factor (IGF) system. Insulin-like growth factor I (IGF-I) is associated with obesity in early 26 

life, but the relation is complex and differs with age (3). Thus, a high level of IGF-I in infancy is 27 

associated with lower levels of IGF-I in childhood and adolescence (3). The insulin system and the 28 

GH/IGF system share a common evolutionary origin, but diverged in higher animal species so that 29 

insulin primarily has metabolic functions while the GH/IGF system plays a critical role in growth and 30 

development (4). A longitudinal study on children suggests insulin to be a promoter of weight or body 31 

fat gain over time (5;6), a plausible finding considering its peripheral effects on body fat storage and 32 

oxidation (7). Insulin may also stimulate growth in fat-free mass (FFM) (6).  33 

 34 

Several hormones have purported effects on the regulation of appetite and body composition, such as 35 

leptin, ghrelin, adiponectin and insulin. However, evidence regarding the relationship between these 36 

hormones and growth and body composition in children is still limited. The best studied of these 37 

hormones is leptin, which, according to rare monogenic human cases and animal experimental studies, 38 

should act as a satiating factor that restrains weight gain. In contrast, most prospective studies in school-39 

aged children point towards a positive relationship between circulating leptin levels and subsequent 40 

gains in body fat mass (FM) (8-13). However, most of those studies were in obese populations, and in 41 

contrast to these studies Ahmed et al. found that among girls low levels of leptin at the beginning of 42 

puberty predicted larger gains in body fat percentage during puberty (14), and Byrnes et al. also showed 43 

that leptin levels were inversely associated with weight gain in prepubertal children (15). These two 44 
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studies finding inverse associations between leptin and gain in fat or weight gain both were based on a 45 

relatively low number of children (Ahmed et al. n=40 and Byrnes et al. n=52). Circulating levels of 46 

adiponectin, an anti-inflammatory and insulin-sensitizing adipocytokine, decrease with increasing 47 

amount of body fat (16). Whether, in turn, adiponectin influences changes in body composition over 48 

time is less clear (10;17-19). One study reported that adiponectin levels were inversely associated with 49 

subsequent one-year gains in FFM in boys (17).  50 

 51 

There is also increasing evidence for a bidirectional relationship between bone growth and energy 52 

metabolism (20-22). Hormones coupled to the mineralization or demineralization of bones, like the bone 53 

formation marker osteocalcin, and the calcium-mobilizing parathyroid hormone (PTH), have been 54 

linked with energy metabolism and body fat deposition (23-26), but more knowledge is needed for 55 

children.  56 

 57 

Thus, the role of hormones produced by FM or involved in energy metabolism or bone growth in 58 

regulation of body composition in childhood is unclear. Large longitudinal studies are needed that can 59 

take into account the possible interrelationship of these hormones.   60 

 61 

The aim of the present paper is to examine whether baseline fasting blood concentrations of ghrelin, 62 

adiponectin, leptin, insulin, insulin-like growth factor I (IGF-1), osteocalcin, and intact parathyroid 63 

hormone (iPTH) are cross-sectionally and longitudinally associated with body composition over a six 64 

months period in children participating in the OPUS (Optimal well-being, development and health for 65 

Danish children through a healthy New Nordic Diet) School Meal Study , which involved 8-11-year-66 

olds from third and fourth grades at 9 schools (27). Most emphasis will be put on the longitudinal results 67 

as these are closest to a causal relationship going from hormones to body composition.  68 
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Materials and Methods  69 

The OPUS School Meal Study was a cluster-randomized, controlled, and unblinded cross-over study 70 

with the primary outcomes to investigate the impact of free school meals based on a so-called New 71 

Nordic Diet on concentration performance and a metabolic syndrome score. In this paper data from the 72 

study were used in an exploratory way not focusing on the effects of the dietary intervention.  73 

The study design has been described in detail previously (27). Briefly, children from third and fourth 74 

grades (8-11-year-olds) at 9 schools in Denmark were invited to participate in the study.  Each child 75 

participated in two 3-month periods: an intervention period with provision of meals based on the New 76 

Nordic Diet and a control period. Randomization to order of periods was performed in clusters 77 

corresponding to year group within school. The schools entered the study sequentially, one to three 78 

weeks apart. Measurements were carried out from August 2011 to June 2012. The study was conducted 79 

according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human 80 

subjects were approved by the Regional Committee on Biomedical Research Ethics of the Capital 81 

Region of Denmark (no. H-1-2010-124). Written informed consent was obtained from custody holders 82 

of the child. Exclusion criteria for the children were strong food allergies or food intolerances or 83 

concomitant participation in other scientific studies that involved radiation or blood sampling. The trial 84 

was registered in the Clinical Trials database (clinicaltrials.gov; no. NCT01457794).  85 

 86 

 87 

Measurements  88 

Anthropometric measurements  89 

Clinical examinations were performed at baseline, three months and six months. Height was measured 90 

to the nearest 0.1 cm using a mobile height measure (Tanita Leicester Portable Height Measure) and 91 

body weight measured to the nearest 0.1 kg using a digital weight (Tanita BWB 800 S). Measurements 92 
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were carried out after an overnight fast. Prevalence of underweight and of overweight including obesity 93 

were based on age- and sex-specific cut-offs defined to pass through body mass index (BMI) of 18.5 94 

and 25 kg/m
2
 at age 18 years according to Cole et al. (28;29).  95 

 96 

Total body composition of the children was measured by Dual Energy X-ray Absorptiometry (DXA) 97 

scanning (Lunar Prodigy; GE Medical Systems (Madison, Wisconsin) with Encore software version 98 

13.5). Most of the children had a standardized breakfast prior to the scan. Fat mass index (FMI) and fat-99 

free mass index (FFMI) were calculated as originally described by Van Itallie et al. (30):  100 

FMI (kg/m
2
) = (FM (kg)) / (height (m))

2
 101 

FFMI (kg/m
2
) = (lean mass (kg) + bone mineral content (kg)) / (height (m))

2
 102 

 103 

In a study on the reproducibility of whole body scans of 5-17 year old children using the GE Lunar, 104 

coefficients of variation of  1.94 %  (FM) and 0.48 % (FFM) were found for two repeated scans in thin 105 

mode (31).  106 

Anthropometric measures and scans were carried out by a team of investigators throughout the project 107 

period, but investigators were carefully trained using standard operating procedures. All scans were 108 

evaluated by two investigators who assessed if scans were usable, and also checked if the divisions of 109 

the body into different compartments automatically carried out by the device were correct.    110 

 111 

Pubertal status 112 

Baseline pubertal status (breast development in girls and emergence of pubertal hair in boys) was 113 

assessed by self-reported questionnaires on Tanner staging (32). Since very few children (6 %) 114 

categorized themselves as being at stage 3-5, the variable was recoded to a binary variable: not entered 115 

puberty (stage 1) or entered puberty (stage 2-5).    116 
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Blood analyses 117 

At each examination fasting blood samples were collected and plasma stored at -80°C until analysis. 118 

Families were provided with local anaesthetic patches (EMLA, Astra Zeneca). Leptin, adiponectin and 119 

total ghrelin were analyzed using ELISA (leptin and adiponectin: R&D Systems Europe, Ltd., 120 

Abingdon, UK and ghrelin: Millipore, Hellerup, Denmark). Inhibitors (Pefabloc, DPP-IV and Trasylol; 121 

Sigma-Aldrich, Gentofte, Denmark) were added to tubes used for the collection of blood for ghrelin 122 

analysis, and tubes were kept on ice throughout the process to avoid degradation of acylated ghrelin. 123 

IGF-1 and osteocalcin were analyzed using a chemiluminescent immunoassay on an Immulite 1000 124 

(Siemens Healthcare Diagnostics, Ballerup, Denmark and Siemens Medical Solutions Diagnostics, 125 

Newark, Delaware). One osteocalcin sample was above the detection limit of 100 ng/ml and was 126 

excluded from the data set. Serum was stored at -80°C for analyses of insulin and iPTH. Serum insulin 127 

was measured by an automated chemiluminescent immunoassay on an ADVIA Centaur XP (Siemens 128 

Healthcare, Ballerup, Denmark) and expressed in pmol/l. Serum iPTH concentrations were determined 129 

using CLIA technique on ADVIA Centaur XP (Siemens Healthcare, Ballerup, Denmark). One iPTH 130 

value was below the detection limit of 0.265 pmol/l and was excluded from the analyses. The inter- and 131 

intra-assay coefficients of variation were: 9.2% and 3.7% (leptin), 9.0% and 3.7% (ghrelin); 11% and 132 

3.8% (adiponectin); 2.5% and 3.1% (insulin); 2.4% and 2.9% (IGF-1), 5.9% and 4.1% (osteocalcin), and 133 

7.4% and 7.9% (iPTH). For each analysis, all samples were run on the same device with the same 134 

reagent lot, all samples from each child were analyzed on the same day, and all samples from each 135 

school were analyzed in one assay. 136 

 137 

A total of 834 children had been enrolled in OPUS School Meal Study. Children were included in the 138 

present analyses if they had data on age and pubertal status at baseline, data on body weight, height and 139 

body composition at baseline plus minimum one post-baseline occasion (month 3 and/or month 6) and 140 
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data on all the seven hormones at baseline (n=656). One child with achondroplasia, 21 children who did 141 

not meet fasting for the examinations, and one child with a doubtful iPTH value (109 pmol/l and 142 

25(OH)D was 89.1 nmol/l) were excluded from the analyses. 143 

 144 

Statistical analyses   145 

Baseline characteristics for boys and girls were compared by Wilcoxon rank-sum test or Pearson´s chi-146 

squared test.  All further analyses were carried out for boys and girls separately due to their different 147 

body composition and different hormone levels.  148 

 149 

To be able to tell which hormones were related to each other and to what extent, Spearman 150 

correlation coefficients and corresponding p-values were calculated for correlation between the different 151 

hormones at baseline.  152 

 153 

Analyses of the cross-sectional associations between hormones and body composition at baseline were 154 

based on ANCOVA-type multiple linear regression and adjusted for age and pubertal status at baseline, 155 

and in case of FFMI also for FMI at baseline. Analyses of the longitudinal associations between baseline 156 

hormones and body composition at three months/six months were based on a one-level ANCOVA-type 157 

hierarchical linear mixed model with individual as random effect. Results were adjusted for time (three 158 

or six months), age and pubertal status at baseline and baseline value of FMI/FFMI, and analyses on 159 

FFMI were also adjusted for FMI at baseline and at three months or six months. We have not adjusted 160 

for the dietary intervention or order of dietary periods as the intervention did not influence FMI and 161 

FFMI (33). Both cross-sectional and longitudinal analyses tested two different models – firstly including 162 

only one hormone at a time, and secondly with all hormones in the same model. Bonferroni correction 163 

of p-values for multiple comparisons was done based on the gender subgroups (all p-values were 164 
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multiplied by two) and 97.5% confidence intervals (CIs) were presented to fit the corrected p-values. A 165 

Bonferroni corrected p-value of < 0.05 was used to denote statistical significance. To allow comparison 166 

of estimated effect sizes across different hormones measured in different units, we also expressed a 167 

multiplication of the regression coefficients and CIs with the size of the IQRs for the relevant hormones 168 

at baseline.  169 

 170 

For significant longitudinal associations between hormones and measures of body composition, we also 171 

tested the opposite theory; that the change in the hormone over three to six months could be predicted 172 

from body composition at baseline. The analysis used was similar to those longitudinal analyses 173 

described previously with the only difference being that hormone was the dependent variable and the 174 

measure of body composition was an independent variable.  175 

 176 

Analyses were carried out using STATA/IC 13.0 (Texas, USA).     177 

 178 

Results     179 

 180 

Baseline characteristics 181 

Of the 834 children enrolled in the OPUS School Meal Study 633 children (308 girls and 325 boys) 182 

were included in the present analyses. Of these 633 children 585 (~ 92 %) had data from both three 183 

months and six months, 35 (~ 6 %) had data from three months only and 13 (~ 2 %) had data from six 184 

months only. At baseline boys were older and had higher FFMI than girls (Table 1). More girls than 185 

boys had entered puberty and girls had higher FMI, leptin, leptin pr. kg body fat, insulin, IGF-1, 186 

osteocalcin and iPTH than the boys (Table 1). Height, ghrelin and adiponectin were not different 187 

between the genders (Table 1). Most of the children were normal weight, 14.3 % of girls and 12.6 % of 188 
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boys were overweight or obese, and 11.7 % of girls and 8.0 % of boys were underweight with no 189 

significant differences between the genders (Table 1).    190 

 191 

Inter-correlations between hormones at baseline  192 

Leptin, insulin and IGF-I values were all positively inter-related in both genders (Table 2). The 193 

strongest association was between insulin and leptin with correlation coefficients of 0.60 and 0.54, for 194 

girls and boys, respectively. In contrast, ghrelin was inversely associated with all these three hormones 195 

with correlation coefficients between -0.22 and -0.31.   196 

 197 

Relationship of baseline hormones with fat mass index  198 

In cross-sectional analyses, leptin and IGF-1 in both genders and iPTH in boys showed independent 199 

positive associations with FMI (Table 3a) whereas cross-sectional associations between ghrelin and 200 

insulin and FMI disappeared after adjustment for other hormones (Table 3a). In longitudinal analyses, 201 

the only hormone independently associated with FMI was leptin; only among girls baseline leptin was 202 

inversely associated with subsequent change in FMI (Table 3b), which was directionally discordant 203 

with the cross-sectional association. Additional adjustment for FFMI at baseline and at three/six months 204 

did not change the results (results not shown). In support of a possible bi-directional relationship 205 

between leptin and FMI in an additional longitudinal model, baseline FMI was positively associated 206 

with subsequent change in leptin (β: 2.28 ug/ml (97.5 % CI: 1.87 to 2.70), p<0.001). 207 

 208 

 Relationship of hormones with fat free mass index  209 

In the cross-sectional analyses, adiponectin was inversely associated with FFMI in boys, while IGF-1 210 

was positively associated with FFMI in girls; both associations remained significant after adjustment for 211 

other hormones (Table 4a). In longitudinal analyses, leptin was inversely associated with subsequent 212 
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change in FFMI in girls (Table 4b). None of the other hormones were associated with FFMI in 213 

longitudinal analyses (Table 4b). In an additional longitudinal model, baseline FFMI was not associated 214 

with subsequent change in leptin (-0.23 ug/ml (-0.94 to 0.48), p=0.92). 215 

Discussion 216 

 217 

Our main findings were that baseline leptin is a negative predictor of subsequent gain in FMI and FFMI 218 

in girls and that ghrelin, adiponectin, insulin, IGF-1, osteocalcin and iPTH do not seem to be involved in 219 

regulation of body composition in 8-11 year old children.  220 

 221 

The results on leptin are consistent with the well-known physiological role of leptin as a signal of 222 

energy repletion leading to satiety and decreased energy intake, but they are opposite to the reports of 223 

many similar studies on leptin and changes in adiposity over time in children and adolescents (8;10-224 

13;34). However, the majority of those other studies on school-aged children that found a positive 225 

association between leptin and either weight or body fat gain over time were based on overweight 226 

populations or populations with a high prevalence of overweight and therefore likely leptin resistance 227 

(8;9;11-13), which was not the case for the two studies finding an inverse association (14;15). Our 228 

results may thus reflect the low prevalence of overweight in this child population and therefore probable 229 

leptin sensitivity. However, in a study on the impact of leptin during early growth Boeke et al. found 230 

that maternal leptin and cord blood leptin were negative predictors of 3-year adiposity, while 3-year 231 

leptin was associated with greater weight gain and adiposity through age 7(35). The authors suggested 232 

that the latter results were due to the development of leptin resistance within the first three years of life 233 

across the whole BMI spectrum (no modifying effect of BMI on the positive relation between leptin at 234 

three years and adiposity at 7 years) (35). Like our findings, Ahmed et al. also found an inverse 235 

association between leptin and fat-free mass (FFM) when adjusting for body fat mass (FM) in 8-16 236 
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year-old girls (14). If leptin does indeed lower appetite in the present population, this would naturally 237 

also limit the increase in FFM. The inverse associations between baseline leptin and subsequent gains in 238 

both FMI and FFMI were only significant in girls. We wonder if this is due to the higher levels of leptin 239 

in girls due to larger FM, the role of leptin in female pubertal development (36) or has something to do 240 

with gender differences in leptin sensitivity. Leptin sensitivity is often judged from the concentration of 241 

leptin for a given size of FM, and based on this approach females are considered less leptin sensitive 242 

than males (37). Also our girls exhibit higher concentrations of leptin pr. kilo body fat at baseline, but 243 

still the longitudinal inverse association between leptin and FMI is only significant in girls.  244 

 245 

Our results cannot be used to establish a causal relationship between the hormones examined and 246 

changes in body composition. However, longitudinal results on ghrelin, adiponectin, insulin and PTH 247 

could indicate that these hormones do not play an important role in regulation of body composition, at 248 

least not in this age group and/or in a population with relatively low prevalence of overweight and 249 

obesity. The cross-sectional associations between ghrelin, insulin and FMI disappeared after adjusting 250 

for other hormones, and thus their initial associations with FMI may reflect their correlations with IGF-1 251 

and leptin as demonstrated in table 2. The positive association between PTH and FMI in boys may very 252 

well be due to body fat influencing on PTH rather than the opposite. PTH has been claimed to be an 253 

independent predictor of obesity (23). However, based on a weight loss trial Reinehr et al. concluded 254 

that the higher PTH levels observed in the obese children was a consequence rather than a cause of 255 

overweight (25). With regards to insulin and ghrelin, it might be more relevant to study postprandial 256 

levels, but it was not possible in this study. No associations between osteocalcin and FMI and FFMI 257 

were found. In cross-sectional studies in obese children Lenders et al. found inverse associations 258 

between osteocalcin and both visceral adipose tissue and BMI, but not with FM (26); and Wang et al. 259 

found negative associations between osteocalcin and both fat percentage and visceral fat area and 260 
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positive associations of osteocalcin with FFMI (24). It may be that any possible association between 261 

osteocalcin and body composition is more pronounced in more obese child populations. We have no 262 

measures of visceral fat in the present study.    263 

 264 

We chose to express FM as FMI although FMI does correlate positively with height. If we were to 265 

minimize the correlation with height in this data material, FM should be divided with height raised to 266 

the fifth (4.47 in girls and 6.24 in boys), which is in line with results by Wells et. al. (38). However, we 267 

are not convinced that minimizing the correlation with height is necessarily the most correct approach. 268 

Children with a large FM have faster prepubertal growth, and therefore must be expected to be taller 269 

than children with less body fat within this age range (39). FFMI did not show residual correlation with 270 

height. 271 

 272 

When studying hormonal regulation of body composition it is difficult to distinguish the effects of 273 

individual hormones from each other or explain the causal direction. We chose a relatively simple 274 

analysis strategy allowing for comparison of cross-sectional and longitudinal results, and comparison of 275 

results for hormones when they are studied one at a time or together with other hormones. The 276 

hormones regulate the secretion and sensitivity of each other and are confounded by the same factors 277 

(eg. level of testosterone or oestrogen). Adjustment for pubertal status is important because of the 278 

simultaneous influence of puberty on the body composition and hormonal profile. For logistical reasons 279 

pubertal status was assessed at baseline only and children may have changed their pubertal status during 280 

this six month period.  281 

 282 

Using data from both three months and six months as the dependent variable in the longitudinal analyses 283 

has strengths as well as limitations. There may be differences in the “effects” of the hormones whether 284 
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or not the length of the follow-up is three months or six months. With our models we do not capture 285 

such differences, and the resulting regression coefficients were not expressed relative to time. On the 286 

other hand our models allow for adjustment for individual as random effect with three data time points 287 

available for most of the individuals. Among the major strengths of the present study are the 288 

longitudinal design, the large number of children, the repeated measurements of both FM and FFM by 289 

DXA scanning, and not at least the large number of hormones measured whereby their interrelationship 290 

could be taken into account.  291 

The children in the present study consisted of a representative sample of Danish school children of 292 

similar age range, which can be considered both a strength and a limitation. Thus, we did not exclude 293 

children based on dieting behavior, level of physical activity (high/low)  or due to use of medication that 294 

may have influenced body composition e.g. Ritalin.  295 

 296 

In conclusion, these cross-sectional findings support that leptin is produced in proportion to the size of 297 

body FM, but the longitudinal observations support that leptin appeared to inhibit subsequent gains in 298 

FMI and FFMI over time in girls, a finding which may reflect preserved leptin sensitivity in this 299 

predominantly normal weight childhood population. Our findings demonstrate the importance of 300 

longitudinal study designs with repeated body composition and hormonal data.   301 

  302 
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Table 1. Baseline characteristics
*
 of the study population (n=633).  

 Girls (n=308) Boys (n=325) p
†
 

Age (yrs) 9.9 (9.4; 10.4) 10.1 (9.5; 10.5) 0.001 

Pubertal status  (% entered puberty) 45.8 24.9 <0.001 

Height (cm) 142.4 (137.7; 146.6) 142.9 (138.1; 147.6) 0.27 

Weight (kg) 33.9  (29.7; 38.3) 34.3 (30.2; 39.7) 0.31 

BMI (kg/m
2
) 16.8 (15.4; 18.2) 16.8 (15.7; 18.4) 0.40 

Prevalence (%)
‡
    

       Overweight (incl. obese)                                 14.3 12.6 0.54 

       Underweight 11.7 8.0 0.12 

FMI (kg/m
2
) 4.13 (2.88; 5.73) 3.14 (2.20; 4.76) <0.001 

FFMI (kg/m
2
) 12.44 (11.83; 13.02) 13.49 (12.80; 14.09) <0.001 

Plasma leptin (μg/ml) 5.14 (2.84; 9.77) 2.80 (1.75; 5.64) <0.001 

Plasma leptin pr. kg body fat (μg/ml pr. kg) 0.65 (0.48; 0.89) 0.47 (0.36; 0.67) <0.001 

Plasma ghrelin (pg/ml) 954 (738; 1208) 977 (792; 1276) 0.16 

Plasma adiponectin (μg/ml) 11.28 (8.29; 14.77) 10.47 (7.69; 14.12) 0.09 

Serum insulin (pmol/l) 46.3 (34.9; 63.1) 38.9 (30.3; 53.9) <0.001 

Plasma IGF-1 (ng/ml) 211 (177; 268) 180 (140; 210) <0.001 

Plasma osteocalcin (ng/ml) 30.4 (24.1; 38.4) 24.7 (20.8; 31.5) <0.001 

Serum iPTH (pmol/l) 3.3 (2.4; 4.2) 3.0 (2.2; 3.9) 0.010 

Abbreviations: BMI, body mass index; FFMI, fat free mass index; FMI, fat mass index; IGF-1, insulin-like growth factor I; 

iPTH, intact parathyroid hormone.     
*
Median (interquartile range) or percentages are presented.  

†
Differences between sexes were determined by Wilcoxon rank-sum test or Pearson's chi-squared test.   
‡
Based on age- and sex-specific cut-offs defined to pass through BMI of 18.5 and 25 kg/m

2
 at age 18 years, as according to 

Cole et al. (28;29).  
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Table 2. Spearman’s rank correlations between hormones at baseline  

 Plasma 

leptin 

Plasma 

ghrelin 

Plasma 

adiponectin 

Serum 

insulin 

Plasma 

IGF-1 

Plasma 

osteocalcin 

Serum  

iPTH 

Plasma 

leptin 
1.00 

 
      

Plasma 

ghrelin 

Girls 

-0.30 

(p<0.001) 

Boys 

-0.30 

(p<0.001) 

 

1.00      

Plasma 

adiponectin 

Girls 

-0.08 

(p=0.18) 

Boys 

0.04 

(p=0.48) 

 

Girls 

0.15 

(p=0.010) 

Boys 

0.04 

(p=0.50) 

 

1.00     

Serum 

insulin 

Girls 

0.60 

(p<0.001) 

Boys 

0.54 

(p<0.001) 

 

Girls 

-0.29 

(p<0.001) 

Boys 

-0.31 

(p<0.001) 

 

Girls 

-0.19 

(p=0.001) 

Boys 

0.05 

(p=0.36) 

 

1.00    

Plasma 

IGF-1 

Girls 

0.33 

(p<0.001) 

Boys 

0.37 

(p<0.001) 

 

Girls 

-0.27 

(p<0.001) 

Boys 

-0.22 

(p<0.001) 

 

Girls 

-0.17 

(p=0.003) 

Boys 

-0.06 

(p=0.28) 

 

Girls 

0.48 

(p<0.001) 

Boys 

0.42 

(p<0.001) 

 

1.00   

Plasma 

osteocalcin 

Girls 

-0.05 

(p=0.38) 

Boys 

0.05 

(p=0.36) 

 

Girls 

-0.14 

(p=0.014) 

Boys 

0.04 

(p=0.46) 

 

Girls 

-0.08 

(p=0.15) 

Boys 

-0.08 

(p=0.15) 

 

Girls 

0.12 

(p=0.038) 

Boys 

0.004 

(p=0.94) 

 

Girls 

0.31 

(p<0.001) 

Boys 

0.04 

(p=0.46) 

 

1.00  

Serum  

iPTH 

Girls 

-0.11 

(p=0.06) 

Boys 

0.01 

(p=0.87) 

 

Girls 

0.02 

(p=0.78) 

Boys 

-0.02 

(p=0.77) 

 

Girls 

-0.13 

(p=0.025) 

Boys 

-0.08 

(p=0.148) 

 

Girls 

-0.08 

(p=0.169) 

Boys 

-0.17 

(p=0.002) 

 

Girls 

0.12 

(p=0.037) 

Boys 

0.003 

(p=0.96) 

 

Girls 

0.19 

(p=0.001) 

Boys 

0.20 

(p<0.001) 

 

1.00 

IGF-1, insulin-like growth factor 1; iPTH, intact parathyroid hormone.  
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Table 3. Baseline hormone levels associated with a) cross-sectional fat mass index (FMI); b) longitudinal change in FMI 

  FMI (kg/m
2
) 

 
  One hormone at a time All hormones in one model 

a) Cross-sectional
*
 β (97.5 % CI)

 †
 IQR

‡
 (β (97.5 % CI)) p β (97.5 % CI)

 †
 IQR

‡
 (β (97.5 % CI))  p 

Plasma leptin  (μg/ml) 
Girls 0.220 (0.198; 0.241) 1.524 (1.375; 1.673) <0.001 0.211 (0.186; 0.236) 1.463 (1.288; 1.638) <0.001 

Boys 0.250 (0.223; 0.278) 0.975 (0.868; 1.083) <0.001 0.231 (0.200; 0.261) 0.900 (0.781; 1.018) <0.001 

Plasma ghrelin (pg/ml) 
Girls -0.001 (-0.002; -0.001) -0.602 (-0.891; -0.314) <0.001 -3x10

-4
 (-7x10

-4
; 1x10

-4
)  0.18 

Boys -0.001 (-0.002; -0.001) -0.569 (-0.831; -0.306) <0.001 -4x10
-4

 (-8x10
-4

; 1x10
-5

)  0.06 

Plasma adiponectin (μg/ml) 
Girls -0.029 (-0.073; 0.015)  0.27 0.006 (-0.021; 0.034)  1.00 

Boys 0.002 (-0.036; 0.040)  1.00 -0.003 (-0.028; 0.022)  1.00 

Serum insulin (mIU/l) 
Girls 0.031 (0.023; 0.039) 0.867 (0.640; 1.094) <0.001 -5x10-7 (-0.007; 0.007)  1.00 

Boys 0.036 (0.026; 0.046) 0.855 (0.622; 1.088) <0.001 0.002 (-0.007; 0.011)  1.00 

Plasma IGF-1 (ng/ml) 
Girls 0.006  (0.003; 0.010) 0.587 (0.285; 0.889) <0.001 0.003 (0.001; 0.005) 0.263 (0.055; 0.472) 0.005 

Boys 0.011 (0.008; 0.015) 0.805 (0.527; 1.083) <0.001 0.005 (0.002; 0.008) 0.355 (0.172; 0.538) <0.001 

Plasma osteocalcin (ng/ml) 
Girls -0.014 (-0.036; 0.007)  0.27 -0.004 (-0.018; 0.010)  1.00 

Boys 0.013 (-0.014; 0.041)  0.53 0.009 (-0.009; 0.028)  0.52 

Serum iPTH (pmol/l) 
Girls -0.079 (-0.216; 0.058)  0.39 0.008 (-0.075; 0.092)  1.00 

Boys 0.160 (0.004; 0.316) 0.272 (0.007; 0.538) 0.043 0.185 (0.077; 0.293) 0.314 (0.131; 0.498) <0.001 

        
b) Longitudinal

§
       

Plasma leptin  (μg/ml) 
Girls -0.019 (-0.034; -0.003) -0.129 (-0.235; -0.023) 0.012 -0.018 (-0.034; -0.002) -0.122 (-0.233; -0.011) 0.028 

Boys -0.013 (-0.030; 0.005)  0.20 -0.013 (-0.031; 0.006)  0.24 

Plasma ghrelin (pg/ml) 
Girls -1x10

-4
 (-3x10

-4
; 2x10

-5
)  0.11 -1x10

-4
 (-3x10

-4
;1x10

-5
)  0.08 

Boys -3x10
-5

 (-2x10
-4

;1x10
-4

)  1.00 -2x10
-5

 (-2x10
-4

;1x10
-4

)  1.00 

Plasma adiponectin (μg/ml) 
Girls 0.002 (-0.009; 0.012)  1.00 0.001 (-0.009; 0.012)  1.00 

Boys 0.006 (-0.004; 0.016)  0.40 0.007 (-0.004; 0.017)  0.29 

Serum insulin (mIU/l) 
Girls -0.001 (-0.004; 0.001)  0.50 -0.001 (-0.004; 0.002)  0.81 

Boys 1x10
-4

 (-0.003; 0.003)  1.00 0.001 (-0.003; 0.004)  1.00 

Plasma IGF-1 (ng/ml) 
Girls 4x10

-4
 (-0.001; 0.001)  0.71 4x10

-4
(-5x10

-4
; 0.001)  0.70 

Boys 0.001 (-0.001; 0.002)  0.43 0.001 (-0.001; 0.002)  0.67 

Plasma osteocalcin (ng/ml) 
Girls -0.001 (-0.006; 0.004)  1.00 -0.002 (-0.008; 0.003)  0.72 

Boys 0.005 (-0.002; 0.012)  0.25 0.004 (-0.003; 0.012)  0.40 

Serum iPTH (pmol/l) 
Girls -0.001 (-0.034; 0.032)  1.00 -0.002 (-0.035; 0.031)  1.00 

Boys 0.013 (-0.031; 0.056)  1.00 0.006 (-0.039; 0.051)  1.00 
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CI, confidence interval; FMI, fat mass index; IGF-1, insulin-like growth factor 1; iPTH; intact parathyroid hormone;  IQR, interquartile range.  
*
 Analyses of the cross-sectional associations between the hormones and FMI at baseline were based on ANCOVA-type multiple linear regression including 

adjustment for age and pubertal status at baseline.  
†
 P-values were Bonferroni corrected due to the gender sub-groups (=multiplied with 2) and 97.5 % CIs were used to match these corrected p-values.

 

‡
 For significant associations the regression coefficients and CIs were multiplied with the size of the IQR for the hormone at baseline, to better be able to compare the 

strengths of the associations across hormones. 
§ 
Analyses of the longitudinal associations between the hormones and FMI were based on a one-level ANCOVA-type linear mixed model with individual as random 

effect. Analyses were adjusted for age, pubertal status and FMI at baseline.  
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Table 4. Baseline hormone levels associated with a) cross-sectional fat-free mass index (FFMI); b) longitudinal change in FFMI 417 

  FFMI (kg/m
2
) 

 
  One hormone at a time All hormones in one model 

a) Cross-sectional
*
 β (97.5 % CI)

 †
 IQR

‡
 (β (97.5 % CI)) p β (97.5 % CI)

 †
 IQR

‡
 (β (97.5 % CI)) p 

Plasma leptin  (μg/ml) 
Girls -0.001 (-0.029; 0.028)  1.00 0.009 (-0.020; 0.038)  0.93 

Boys -0.033 (-0.067; 0.002)  0.07 -0.032 (-0.068; 0.005)  0.10 

Plasma ghrelin (pg/ml) 
Girls 2x10

-5
 (-3x10

-4
;3x10

-4
)  1.00 1x10

-4
 (-2x10

-4
;4x10

-4
)  0.65 

Boys 3x10
-5

 (-3x10
-4

; 3x10
-4

)  1.00 5x10
-5

 (-3x10
-4

;4x10
-4

)  1.00 

Plasma adiponectin (μg/ml) 
Girls -0.019 (-0.039; 0.001)  0.06 -0.017 (-0.036; 0.003)  0.11 

Boys -0.029 (-0.049; -0.008) -0.186 (-0.318; -0.053) 0.003 -0.027 (-0.048; -0.007) -0.175 (-0.307; -0.043) 0.006 

Serum insulin (mIU/l) 
Girls 4x10

-4
 (-0.004; 0.005)  1.00 -0.003 (-0.008; 0.002)  0.26 

Boys 4x10
-4

 (-0.006; 0.007)  1.00 0.003 (-0.004; 0.010)  0.76 

Plasma IGF-1 (ng/ml) 
Girls 0.003 (0.001; 0.004) 0.261 (0.122; 0.400) <0.001 0.003 (0.001; 0.005) 0.272 (0.120; 0.424) <0.001 

Boys 1x10
-4

(-0.002; 0.003)  1.00 -5x10
-5

 (-0.003; 0.002)  1.00 

Plasma osteocalcin (ng/ml) 
Girls 0.008 (-0.001; 0.018)  0.10 0.003 (-0.007; 0.013)  0.90 

Boys 0.001 (-0.014; 0.016)  1.00 -0.002 (-0.017; 0.013)  1.00 

Serum iPTH (pmol/l) 
Girls 0.061 (-0.001; 0.122)  0.05 0.044 (-0.016; 0.105)  0.20 

Boys 0.057 (-0.031; 0.144)  0.29 0.049 (-0.040; 0.139)  0.44 

        
b) Longitudinal

§
       

Plasma leptin  (μg/ml) 
Girls -0.012 (-0.022; -0.002) -0.083 (-0.151; -0.015)    0.013 -0.014(-0.024; -0.003) -0.095 (-0.167; -0.023) 0.006 

Boys -0.008 (-0.018; 0.003)  0.21 -0.006 (-0.017; 0.005)  0.40 

Plasma ghrelin (pg/ml) 
Girls -2x10

-5
(-1x10

-4
;9x10

-5
)  1.00 3x10

-6
 (-1x10

-4
; 1x10

-4
)  1.00 

Boys -3x10
-5

 (-1x10
-4

; 6x10
-5

)  0.99 -2x10
-5

 (-1x10
-4

;7x10
-5

)  1.00 

Plasma adiponectin (μg/ml) 
Girls -0.001 (-0.008; 0.006)  1.00 -2x10

-4
 (-0.007; 0.007)  1.00 

Boys -0.006 (-0.012; 4x10
-4

)  0.08 -0.005 (-0.012; 0.001)  0.09 

Serum insulin (mIU/l) 
Girls 0.001 (-0.001; 0.003)  0.32 0.001 (-4x10

-4
; 0.003)  0.18 

Boys 1x10
-5

 (-0.002; 0.002)  1.00 1x10
-5

 (-0.002; 0.002)  1.00 

Plasma IGF-1 (ng/ml) 
Girls 5x10

-4
 (-8x10

-5
; 0.001)  0.11 3x10

-4
 (-4x10

-4
;9x10

-4
)  0.68 

Boys 4x10
-4 

(-3x10
-4

; 0.001)  0.36 4x10
-4

(-4x10
-4

; 0.001)  0.51 

Plasma osteocalcin (ng/ml) 
Girls 0.002 (-0.001; 0.005)  0.38 0.001 (-0.003; 0.004)  1.00 

Boys 0.003 (-0.001; 0.008)  0.21 0.003 (-0.002; 0.007)  0.41 

Serum iPTH (pmol/l) 
Girls 0.011 (-0.010; 0.033)  0.46 0.007 (-0.014; 0.029)  0.89 

Boys 0.009 (-0.017; 0.035)  0.89 0.004 (-0.023; 0.031)  1.00 
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CI, confidence interval; FFMI, fat-free mass index; IGF-1, insulin-like growth factor 1; iPTH; intact parathyroid hormone;  IQR, interquartile range.  
*
 Analyses of the cross-sectional associations between the hormones and FFMI at baseline were based on ANCOVA-type multiple linear regression including 

adjustment for age, pubertal status and fat mass index at baseline.
 

†
 P-values were Bonferroni corrected due to the gender sub-groups (=multiplied with 2) and 97.5 % CIs were used to match these corrected p-values.

 

‡
 For significant associations the regression coefficients and CIs were multiplied with the size of the IQR for the hormone at baseline, to better be able to compare the 

strengths of the associations across hormones. 
§ 
Analyses of the longitudinal associations between the hormones and FFMI were based on a one-level ANCOVA-type linear mixed model with individual as random 

effect. Analyses were adjusted for age, pubertal status and FMI and FFMI at baseline and also FMI at three months/six months. 


