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Summary

The main results of my work contribute to the mathematical study of microscopic non-

equilibrium systems that were first introduced in order to derive macroscopic physical

laws such as Fourier’s law. In particular the main objective is to determine the scaling

of the spectral gap, i.e. the relaxation rate, in terms of the number of the particles for a

paradigmatic model describing heat transport, the chain of oscillators. The mathematical

study of this model started at the end of 90s and it is challenging due to the degeneracy of

the dynamics as the noise is not assumed to act to all the degrees of freedom, leading to lack

of ellipticity and coercivity. We give bounds on the spectral gap for weak nonlinearities of

the chain, i.e. perturbations around linear homogeneous chains and also a complete answer

for the linear, homogeneous and disordered, chain of oscillators as well as d-dimensional

grids of oscillators. The methods range from hypocoercivity inspired techniques, in the

sense of Villani, to spectral analysis of discrete Schrödinger operators. Moreover we study

heat conduction in gases addressing, with both analytic and probabilistic techniques,

the question of the existence, and properties, of a non-equilibrium steady state for the

nonlinear BGK model, introduced by Bhatnagar, Gross and Krook, with diffusive boundary

conditions. The case that we address concerns large boundary temperatures away from

the equilibrium case. Furthermore, besides non-equilibrium phenomena in many particle

systems, this thesis deals with the question of deriving nonlinear diffusion equations from

microscopic stochastic processes. We present a new, quantitative, unified method to show

that the particle densities of one-dimensional processes on a periodic lattice, including the

zero-range and simple exclusion jump processes as well as diffusion processes of Ginzburg-

Landau type, converge to the solution of a nonlinear diffusion equation with an explicit,

uniform in time, convergence rate. We discuss how we can extend the result to all the

dimensions. Finally a study of the scaling of the spectral gap for all the mean field O(n)

models of Ginzburg-Landau type using semiclassical tools, is included in this thesis. This

concerns the spectral gap as a function of the number of particles, spins, for the dynamics

below and at the critical temperature, with and without an external magnetic field.
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ΑΝΑΤΟΛΗ ΗΛΙΟΥ

Έιταν η ώρα που επρόκειτο να ανάψουνε οι φανοστάτες. Δεν έιχε καμιά αμφιβολ́ια, το

‘ξερε πως όπου νά ναι θα ανάβανε, όπως και κάθε βράδυ άλλωστε. Πήγε και στάθηκε στη

διασταύρωση, για την ακρ́ιβεια στη νησ́ιδα ασφαλέιας, για να δει τούς φανοστάτες να ανάβουν

ταυτόχρονα, τόσο στον κάθετο, όσο και στον οριζόντιο δρόμο.

Με το κεφάλι ασάλευτο, έστριψε το δεξ́ι του μάτι δεξιά, το αριστερό του αριστερά.

Περ́ιμενε, μα οι φανοστάτες δεν ανάβανε. Τα μάτια του κουράστηκαν, άρχισαν να πονάνε,

σ’εκέινη την άβολη στάση. Σε λ́ιγο δεν άντεξε και έφυγε. Ωστόσο, το επόμενο σούρουπο,

πιστός στο καθήκον, πήγε και ξαναστάθηκε στη νησ́ιδα του. Οι φανοστάτες και πάλι δεν

ανάψανε, ούτε εκέινο το βράδι, ούτε τις άλλες νύχτες, μα τα μάτια του συνήθιζαν λ́ιγο λ́ιγο,

δεν κουράζονταν πια, δεν πονούσαν.

Και κάποτε, εκέι που στεκόταν και περ́ιμενε, χάραξε εντελώς ξαφνικά. Εντελώς ξαφνικά,

έιδε τον ήλιο να ανατέλει, ταυτόχρονα, απ’τον κάθετο δρόμο και απ’ τον άλλον, τον οριζόντιο. . .

Αρης Αλεξάνδρου,

Παρ́ισι, 1971
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Chapter 1

Introduction

The aim of this thesis is to study problems in mathematical physics motivated by kinetic

theory and non-equilibrium statistical mechanics. The main motivation is to understand

the scaling of certain quantities in many-particle systems in terms of the number of the

particles or other physical parameters of interest. In particular, in many cases we are

interested in making precise how the spectral gap of the associated dynamics (the speed of

the convergence to the steady state) scales. This contributes towards an answer to one of

the most important open problems in statistical physics which is the rigorous derivation

of Fourier’s law in an appropriate regime or a mathematical proof of its breakdown.

Fourier’s law was proposed by Fourier in 1808 and it is a physical macroscopic law that

relates the local thermal flux J(t, x) to small variations of temperature ∇T (t, x) through

a proportionality constant κ(T ) known as thermal conductivity :

J(t, x) = −κ(T )∇T (t, x). (0.1)

Given that Fourier’s law (0.1) holds, one can deduce the following diffusion equation

for the temperature

c(T )∂tT (t, x) = ∇ · [κ(T )∇T (t, x)] (0.2)

where c(T ) is the specific heat of the system per unit volume. Apart from Fourier’s law

discussed here, there are other similar laws in physics discovered during the nineteenth

century, including Ohm’s law for electric currents or Fick’s law.

At the microscopic scale, matter is made out of particles assumed to evolve according to

the classical laws of mechanics, and one of the goals of statistical physics is to model heat

conductivity through a system of interacting atoms and to achieve a rigorous derivation of

constitutive laws such as Fourier’s law [BLRB00, FB19, Lep16, Dha08]. Understanding

macroscopic laws of matter when starting from a microscopic system of interacting atoms
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is a challenge addressed to mathematicians by Hilbert in his 6th problem [Hil02]:

“6. Mathematical Treatment of the Axioms of Physics. The investigations on the

foundations of geometry suggest the problem: To treat in the same manner, by means of

axioms, those physical sciences in which already today mathematics plays an important

part; in the first rank are the theory of probabilities and mechanics.”

In a further explanation Hilbert proposed two specific problems: first, an axiomatic

treatment of probability with limit theorems for the foundation of statistical physics and

second, the rigorous theory of limiting processes “which lead from the atomistic view to

the laws of motion of continua.”

A paradigmatic set up where Fourier’s law is observed to hold with high precision is

when one considers a fluid in a cylindrical slab of height h and uniform cross sectional area

A, coupled at the two boundaries, the top and the bottom of the cylinder, to two heat

reservoirs at different temperatures. This is known as the Benard experiment [BLRB00].

The two heat reservoirs keep the system out of equilibrium and produce a stationary heat

flow. If there is a non-equilibrium steady state (NESS) that is described by a phase-space

measure, one would like to prove that the following limit exists:

0 < κ(N) := lim
N→∞

〈JN(t, x)〉
(A(∆T/N))

<∞ (0.3)

where N is the microscopic length of the cylinder,

∆T

N
=
T2 − T1

N

is the effective temperature gradient, 〈JN(t, x)〉 is the expectation of the heat flux with

respect to the non equilibrium steady state and where we write JN(t, x) to stress the

dependence of J on N . The above limit allows us to define the thermal conductivity and

the very existence of the limit is a formulation of Fourier’s law.

Our main objective is to investigate how certain quantities, such as the relaxation rates

to the NESS of such systems (the spectral gap of the associated dynamics), scale with the

system size, since these are crucial to making sure that the thermal conductivity has a

thermodynamic limit.

A subclass of models describing thermal transport are one dimensional chain of atoms

[LLP03, Dha08]. These models have been the subject of many studies from a mathematical

and a numerical point of view, mainly after the end of 90s. Deriving Fourier’s law from this

model however turned out to be particularly challenging since the thermal conductivity of

one-dimensional chains does not have a well-defined thermodynamical limit as the number

of the particles goes to infinity. Nevertheless, interestingly, these caricatural systems are

18



in fact physically relevant when one looks at promising new (one-dimensional or two-

dimensional) materials like carbon nanotubes or graphene sheets. It was experimentally

observed that the thermal conductivity diverges in actual sufficiently clean experimental

samples of such materials [ZOC+20], as predicted by numerical simulations. This is also

discussed in the introduction of [IOS21].

The introduction that follows provides the mathematical tools and framework for the

articles contained in the following chapters. In Section 1.1, I briefly recall some classical

features of the microscopic description of Hamiltonian systems. I introduce general Markov

processes and semigroups, describe their evolution laws, I briefly recall their properties

and finish with some examples from both equilibrium and non-equilibrium mechanics

of elliptic and hypoelliptic type. In Section 1.2, I review the main results about the

long-time behaviour of dynamics described by both elliptic and hypoelliptic operators,

focusing mainly on the examples that I introduced just before in section 1.1. I introduce

the notion of an invariant measure, I state the conditions for its existence and uniqueness

and introduce the notion of non-equilibrium stationary states. I present some existing

methodologies to study quantitatively the long time behavior of the systems. Next, in

Section 1.3 I discuss about some hydrodynamic limits, i.e. limits as the number of the

particles goes to infinity, connecting stochastic interacting particle systems to macroscopic

partial differential equations and I review known results on the topic. In the last section

of this introduction there is a summary of the results presented in each of the following

Chapters.

1.1 Evolution of Microscopic Interacting Particle Sys-

tems

1.1.1 Hamiltonian dynamics

The state of a microscopic system that consists of N point-like particles in d-dimensions,

d ≥ 1, is determined by the values of the coordinates (q1, . . . , qNd) ∈ XN , where the

dimension of XN is dN , and the momenta (p1, . . . , pNd) ∈ RdN . The phase space is then

ΩN = XN × RNd.

The total internal energy of the system is the sum of its total kinetic energy and its

potential energy. The energy is described by a Hamilton function H : ΩN → R,

H(p, q) =
1

2
pT diag(m−1

1 Idd, . . . ,m
−1
N Idd)p+ U(q), q ∈ XN , p ∈ RdN (1.4)

where mi > 0, i = 1, . . . , N are the masses.

The microscopic dynamics is governed by the following classical Hamiltonian equations:

19



dq(t) = ∇pH(p, q)dt = diag(m−1
1 Idd, . . . ,m

−1
N Idd) p(t)dt = M−1p(t)dt

dp(t) = (−∇qH(p, q))dt = −∇qU(q)dt

(p(0), q(0)) = (p0, q0), q ∈ XN , p ∈ RdN .

(1.5)

We consider the Hamiltonian flow of the dynamics φt, which is a semigroup, i.e.

φt+s = φt ◦ φs for all t, s ∈ R, and is so that

φt(p0, q0) = (pt, qt). (1.6)

Let f ∈ C1(XN × RdN) and compute the time-derivative of t 7→ f(φt(p0, q0)):

d

dt
f(pt, qt) =

d

dt
f(φt(p0, q0)) = pT diag(m−1

1 Idd, . . . ,m
−1
N Idd)∇qf −∇qU(q)T ∇pf

=: Lf.
(1.7)

We then say that the differential operator L is the infinitesimal generator of the Hamiltonian

dynamics so that when f ∈ C1(ΩN) as before,

f(pt, qt) = (etLf)(p0, q0) = (f ◦ φt)(p0, q0).

1.1.2 Stochastic dynamics

In this subsection we consider first the SDE of the following form

dzt = b(zt)dt+ σ(zt)dWt, zt ∈ Ω (1.8)

where Wt are d-dimensional Wiener processes, b : Ω → Rn is the drift vector and

σ : Ω→ Rn×d is the diffusion matrix. The solution to (1.8) forms a Markov process and

so we define the transition probabilities for all z ∈ Ω,

P ∗t (z, dy) = P(zt ∈ dy|z0 = z) with

∫
Ω

P ∗t (z, dy) = 1

where z is the initial condition and P ∗t satisfies the Chapman-Kolmogorov relation

P ∗t+s(z, dy) =

∫
w∈Ω

P ∗t (z, dw)P ∗s (w, dy) (1.9)
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which is the semigroup property. Thus we consider a semigroup {P ∗t , t ≥ 0}1 on the space

of Borel probability measures on the space Ω such that

(P ∗t µ)(B) =

∫
Ω

P ∗t (x,B)dµ(x), B ∈ B(Ω).

Now, one can similarly consider the dual semigroup {Pt, t ≥ 0} acting on observables.2

For any measurable function f : Ω→ R we define

Ptf(z) =

∫
Ω

f(y)Pt(z, dy) = Ez(f(zt))

where zt = (pt, qt) solves (1.1) and Ez
(
f(zt)

)
is the expectation taking over all the

realizations of the Brownian motion starting from z ∈ Ω.

It is clear now that Pt is indeed a semigroup because of the relation (1.9). The

Markov semigroup Pt preserves mass, positivity and it is bounded (hence it is a contractive

semigroup), i.e.

Pt(1) = 1, Pt(f) ≥ 0, for 0 ≤ f ∈ L1 and ‖Ptf‖L∞(Ω) =

∣∣∣∣∫
Ω

f(y)Pt(x, dy)

∣∣∣∣ ≤ ‖f‖L∞(Ω).

These properties allow to make sense of the following definition of the generator of the

semigroup {Pt}t≥0 (which is due to the so-called Hille-Yosida Theorem, see for instance

[Paz83] or [BGL14, Section 1.4] and references therein):

Lf := lim
t→0+

Ptf − f
t

(1.10)

for every f ∈ C∞c (Ω). An application of Ito’s formula then gives that the generator L on

f(zt) when zt is solution to the process (1.8), is

L = b · ∇+
1

2
σσT : ∇2 (1.11)

where the symbol : denotes the Frobenius inner product, i.e.

Lf = b · ∇f +
1

2

∑
i,j,l

σi,lσj,l∂xixjf.

Regarding the existence and uniqueness of solutions to the SDE (1.8) it is well-known

[Ok03, RB06a] that if the fields b, σ are locally Lipschitz and either

(i) |b(x)|+ |σ(x)| . c(1 + |x|) for all x ∈ Ω, i.e. existence of a linear bound

1The semigroup interprets how a probability measure µ propagates in time, i.e. P ∗t µ is the distribution
at time t if the initial probability distribution is µ.

2An observable is a bounded and continuous function of the microscopic state f(q, p).
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or

(ii) there exists a Lyapunov function W with W ≥ 1 and lim|x|→∞W (x) = ∞ with

LW (x) ≤ cW (x), for c > 0,

we have a unique global in time solution.

1.1.3 Examples

Here we expose the main examples of our interest and on which we will work on later

chapters.

• (i) Equilibrium mechanics: Langevin dynamics. A paradigmatic example of

equilibrium dynamics in the form of the SDE (1.8) is the Langevin dynamics, namely

dqt = M−1ptdt

dpt =
(
−∇U(qt)− γM−1pt

)
dt+

√
2γ

β
dWt, qt ∈ XN , pt ∈ RdN

(1.12)

where M = diag(m−1
1 Idd, . . . ,m

−1
N Idd), so that the state space is Ω = XN × RdN of

dimension 2dN , γ > 0 is a positive friction constant, Wt a dN -dimensional Wiener process

and β the inverse temperature of the system.

As discussed in [LRS10, Section 2.2.4] one can consider the limit γ → ∞ under the

time rescaling t 7→ γt, to recover the so-called overdamped Langevin dynamics :

dqt = −∇U(qt)dt+

√
2γ

β
dWt. (1.13)

This limiting process (1.13) can be also obtained when M = mId, as the limit m→ 0.

The explicit expression of the generator of the Langevin dynamics is then given by

L = M−1p · ∇q −∇qU(q) · ∇p + γ
(
β−1∆p −M−1p · ∇p

)
(1.14)

for inhomogeneous dynamics and

L = −∇qU(q) · ∇q + β−1∆p (1.15)

for overdampled Langevin dynamics.

The Langevin dynamics (and generalized Langevin dynamics3) have been studied

extensively in [IOS19, Iac17, PSV21] and references therein, where questions of existence

3In general generalized Langevin dynamics (GLE) is a non-Markovian stochastic integro-differential
equation more complicated to study than the Langevin and overdamped Langevin equations. This is
why in many mathematical works quasi-Markovian approximation are studied instead, see [PSV21] and
references therein.
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and uniqueness of invariant measures and rates of convergence towards the stationary

measure are tackled, as well as analytical and numerical results on how several parameters

of physical interest, such as friction coefficients for example, affect the convergence rates.

Before we present the second example, let us make a brief introduction. Apart from

the example regarding Langevin dynamics from equilibrium dynamics, in this thesis we are

mainly interested in non-equilibrium perturbations of equilibrium dynamics. We study the

effects of some external forcings on the system, so that that they perturb the equilibrium

dynamics and keep the system in a non-equilibrium state. From a physical viewpoint,

the irreversibility of the evolution is characterised by the existence of non-zero currents,

which represent the response of the system to the perturbation. Typically, the external

action can be either an external force, like a potential force, or it can be caused by letting

different parts of the system interact with heat baths at different temperatures, which is a

localized forcing.

Here we will focus on a family of heat-conducting systems. We consider a classical

system of N particles, each of which in d dimensions. As before, we denote by qi the position

and by pi the momentum of each particle i ∈ {1, . . . , N}. The phase space is denoted by

Ω. The two usual cases, depending on the domain of qi, that have been considered in the

literature are (for more details we refer to the thesis [Cun16] and references therein):

• Oscillators: Ω = RdN × RdN . That is, qi, pi ∈ Rd.

• Rotors: Ω = TdN × RdN . We then have that the qi’s are on the torus and pi ∈ RdN .

In this case one sees each particle as a rotor, i.e. rotating disk.

We consider a rod (typically an electrical insulator) in contact at two ends with heat

reservoirs at different temperatures TL > TR. The motivation of considering this model

is the derivation of Fourier’s law, according to which we expect to see a heat flux along

the rod moving from left to right, which is proportional to the temperature difference

TL − TR (which has been experimentally tested when the temperature difference is small),

and inversely proportional to the length of the rod. A model of a heat-conducting medium

is typically a network of interacting sites, which can be thought of as atoms, coupled to

some reservoirs (heat baths). We will focus on the case of oscillators such that at the

bulk of the system they undergo Hamiltonian dynamics. Regarding the reservoirs (heat

baths), there are several ways to model the thermostats, see the review [BLRB00, section

4]. Here we will model the coupling through Langevin thermostats, which is the simplest

coupling for our purposes, as we will see below. Lastly, we will consider nearest neighbor

interaction among the oscillators and the geometry of our network will be either a line

(one-dimensional) or d-dimensional grids.
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• (ii) Non-Equilibrium mechanics: Hamiltonian systems in contact with

Langevin thermostats.

We consider a chain (or network) of oscillators, the energy of which is described by a

Hamilton function H : T ∗RdN → R, where T ∗RdN is the cotangent bundle phase space

and can, of course, be identified with R2dN ,

H(q, p) =
〈p,m−1

N p〉
2

+ V (q) where V (q) =
N∑
i=1

V1(qi) +
∑
i∼j

V2(qi − qj) (1.16)

where ∼ indicates nearest neighbors on the {1, . . . , N} ⊂ Z lattice. The above form of

the potential describes particles that are fixed by a pinning potential V1(q) and interact

through an interaction potential V2(qi − qj) for i, j such that ‖i − j‖∞ = 1, i.e. the

neighboring particles. For simplicity we assume that the masses mi are all equal and

normalized to 1.

The dynamics of this model is such that the particles at the boundary are coupled

to heat baths at (possibly) different temperatures β−1
i , i ∈ F are subject to friction.

F ⊂ {1, . . . , N} here is the subset of the particles on which we impose friction and noise

and we also denote by γi > 0 the friction strength at the i-th particle. The time evolution

is then for particles i ∈ {1, . . . , N} described by a coupled system of SDEs:

dqi(t) = (∇piH)dt and

dpi(t) =
(
−∇qiH − γipiδi∈F

)
dt+ δi∈F

√
2γi
βi

dWi

(1.17)

where βi is the inverse temperature at the boundary of the chain of oscillators, Wi with

i ∈ F are independent identically distributed Wiener processes, γi > 0 a friction parameter,

and F ⊂ {1, . . . , N} the set of the particles subject to friction. Let us consider for this

example here the case F = {1, N}, i.e. where the noise and the friction are imposed only

on the particles on the boundary of the chain (the first and the last particle).

The generator of the dynamics in this case is given by

L =
N∑
j=1

pj · ∇qj − [∇qjV (q)] · ∇pj + γ1p1 · ∇p1 − γNpN · ∇pN + γ1TL∆p1 + γNTR∆pN

(1.18)

where TL, TR are the (possibly) different temperatures at the left and right boundary

of the network of oscillators. One remark about our choice of Langevin thermostats,

comparatively with works-stations on this problem, as [EPRB99a, EPRB99b, RBT02] is

the following: The authors there considered ‘infinite’ Hamiltonian heat baths. That is

each heat bath was an infinite dimensional linear Hamiltonian system, where it was chosen
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as the classical field theory associated with linear wave equations. The initial assumption

was that the initial states of the reservoirs are distributed according to Gibbs distribution

with given (possibly) different temperatures. Integrating the variables of the heat baths

then, would lead to a system of random integro-differential equations, the generalized

Langevin equations (GLE). Eve though this way of modeling the thermostats would not

give immediately Markov solutions, it is shown that the resulting process can become

Markovian under a specific interaction between the chain and the fields. In particular one

can introduce a finite number of auxiliary variables in such a way that the evolution of

the chain, together with these variables, is described by a system of Markovian stochastic

differential equations.

Nevertheless, even in this more complicated scenario, the equation (1.17) can be recovered

by taking some appropriate limit as discussed in [RBT02] (see comments above the equation

(10)) and [FKM65].

1.2 Long Time behaviour

1.2.1 Elliptic case

Here we briefly review the long time analysis of the dynamics for the elliptic case, an

example of which is the overdamped Langevin dynamics, introduced in the example (i) in

subsection 1.1.3. We start by giving the definitions of certain functional inequalities that

are useful for establishing convergence to the invariant measure (i.e. equilibrium measure).

Definition 2.1 (Entropy, Log-Sobolev Inequalities and Poincaré Inequalities). Given a

probability measure µ on some Borel space Ω the entropy Entµ(F ) of a positive measurable

function F : Ω→ R≥0 is defined as

Entµ(F ) :=

∫
Ω

F (x) log

(
F (x)

/∫
Ω

F (y) dµ(y)

)
dµ(x) ∈ [0,∞]. (2.19)

We say that µ satisfies a logarithmic Sobolev inequality with constant k, denoted LSI(k),

iff

Entµ(f 2) ≤ 2
k
‖∇f‖2

L2(dµ) (2.20)

for all smooth functions f . The LSI(k) implies [Led99, Prop. 2.1] that µ satisfies a spectral

gap inequality with constant k, denoted SGI(k), also called Poincaré Inequality, iff

Varµ(f) ≤ 1
k
‖∇f‖2

L2(dµ) . (2.21)

Logarithmic Sobolev (and other functional) inequalities are very effective tools to study

the concentration of measure phenomenon and to quantify the relaxation rates, i.e. the
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mixing properties, of the dynamics of many-particle systems [Gro93, BE85, Led99, Led01,

GZ03, ABC+00]. This is since the spectral gap (the speed of relaxation) is known to be

determined by the constant in the Log-Sobolev inequalities. We define the spectral gap to

be the size of the gap between 0 and the rest of the spectrum of the associated generator

L. The gap then can be also characterized by

λS := inf
f∈L2(µ)\{0}

−〈Lf, f〉L2(dµ)

Varµ(f)

where Varµ is the variance relative to the equilibrium measure µ. The generator L and the

reference measure µ are specified for the dynamics of our interest, in the following chapters.

In what follows, we briefly discuss the fullfilment of some functional inequalities and

convergence to equilibrium for the overdamped Langevin dynamics. This is an example

where the generator is an elliptic operator, since the matrix β−1Id corresponding to the

second order derivatives, is positive definite.

Overdamped Langevin dynamics: In the case of the overdamped Langevin dynamics,

equation (1.15), the invariant measure

ρ(dq) = Z−1e−βU(q)dq, q ∈ XN (2.22)

is the solution to the stationary Fokker Planck equation L†ψ = 0, where L† is the L2-

adjoint and L is given by (1.15). Note that this generator in the weighted space L2(dρ) is

self-adjoint, see [BGL14, Section 3.3]and writing L∗ for the L2(dρ)-adjoint we have

L∗ = −β−1∇∗q∇q, where ∇∗q = −∇q + β∇qU(q) (2.23)

i.e. ∇∗q is the adjoint of ∇q in the weighted space L2(dρ). Also note that Ker(L) = span(1).

Regarding the long time behavior of this dynamics, i.e. the convergence to the invariant

measure, we consider the density f(t, q) with respect to the invariant measure ρ(dq), i.e.

f(t, q) = ψ(t, q)dq/ρ(dq) . Then we see that f(t, q) satisfies the Kolmogorov equation

∂tf(t, q) = L∗f(t, q), f(0, q) = f0(q)

with initial data f0 ∈ L1(dρ),
∫
X
f0(q)ρ(dq) = 1, and so ft(q) = etL

∗
f0(q). The convergence

to equilibrium then reads

etL
∗
(f0 − 1)→ 0, as t→∞. (2.24)

In order to state quantitative convergence results involving exponential rates, we exploit

functional inequalities such as the Poincaré and logarithmic Sobolev inequalities.
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1.2.1.1 Relaxation of the semigroup via Poincaré Inequality

For the overdamped generator (1.15) we have that

〈−Lφ, φ〉L2(dρ) = β−1‖∇qφ‖2
L2(dρ) (2.25)

so that if we have a Poincaré Inequality (2.21) and restrict to the functional space

L2
0(dρ) := {φ ∈ L2(dρ) :

∫
X
φ(q)dρ(q) = 0}, we have

〈−Lφ, φ〉L2(dρ) = β−1‖∇qφ‖2
L2(dρ) ≥ β−1k‖φ‖2

L2(dρ) for all φ ∈ L2
0(dρ). (2.26)

In other words, Poincaré Inequality implies the coercivity of the operator with respect to

the L2(dρ)-inner product.The Grönwall’s inequality then implies exponential relaxation of

the associated semigroup:

‖etLφ‖L2(dρ) ≤ e−
kβ−1t

2 ‖φ‖L2(dρ).

We can summarize this in the following statement.

Proposition 2.2. The semigroup etL satisfies

‖etL‖ ≤ e−
kβ−1t

2 , for all t ≥ 0

if and only if the reference measure ρ satisfies a Poincaré Inequality with constant k > 0,

SGI(k). This implies that L is invertible with L−1 = −
∫∞

0
etLdt and

‖L−1‖ ≤ βk−1.

One more important property of Spectral Gap Inequalities, is the tensorization. It will

prove to be particularly useful when we study the spectral gap for the O(n) model by

employing the renormalization group procedure. The following proposition holds.

Proposition 2.3 ([BGL14]). Given m probability measure ρ1, . . . , ρm which all satisfy the

Poincaré Inequality with constants ki, i = 1, . . . ,m, the product measure ρ1⊗ ρ2⊗ · · ·⊗ ρm
satisfies the Poincaré Inequality with constant k = min{k1, . . . , km}.

1.2.1.2 Relaxation of the semigroup via Log-Sobolev Inequality

This inequality was introduced by L. Gross in [Gro75] to prove the hypercontractivity

result of Nelson (see [Nel73]) for the Ornstein-Uhlenbeck semigroup. Even though we will

restrict ourselves here to the case of diffusions, this inequality is valid in more general

settings and in infinite dimensional situations.
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Consider two probability measures µ, ν, so that ν � µ and define

f 2 =
dν

dµ
,

then the entropy defined in 2.1 is

Entµ(f 2) =

∫
log f 2dν

which is the relative entropy of ν with respect to µ and it is denoted H(µ|ν) = Hν(µ).

Recalling now the definition of the Log-Sobolev Inequality in 2.1:

Entµ(f 2) ≤ 2
k
‖∇f‖2

L2(dµ) ,

we first observe that it is homogeneous so that without loss of generality we assume that∫
f 2dµ = 1 and then we can write dν = f 2 dµ := g dµ, so that the inequality takes the

form

H(ν|µ) ≤ 1

2k

∫
|∇g|2

g
dµ.

The quantity in the right-hand side Iµ(ν) :=
∫ |∇g|2

g
dµ is called the relative Fisher

Information of ν with respect to µ.

Note that the Log-Sobolev Inequality is stronger than the Poincaré inequality, so that

if a measure µ satisfies a LSI(k) then it satisfies a SGI with the constant k/2 > 0. As a

matter of fact Poincaré is a linearization of the LSI. To see this, it suffices to apply the

LSI to (1 + εf) and then let ε go to 0. For that and more details, see the book [BGL14,

Section 5]. Let us also mention [OV00] which draws connections with other functional

inequalities, such as the Talagrand Inequality.

We can now state the convergence result: If ψt(q) solves the Kolmogorov equation (or

the Fokker-Planck equation) ∂tψt(q) = L†ψt(q), i.e. ψt(q) = etL
†
ψ0(q), then we have the

following equivalence:

H(ψt|ρ) ≤ e−2ktβ−1

H(ψ0|ρ) for all t ≥ 0, if and only if

ρ satisfies a LSI(k)
(2.27)

for any initial state ψ0 such that
∫
X
ψ0(q)dq = 1 and H(ψ0|µ) < ∞. Once we have

established a convergence in relative entropy as above, by exploiting the Pinsker-Csiszár-

Kullback Inequality which in general reads: ‖µ− ν‖2
TV ≤ 2H(µ|ν), we have

‖ψt − ρ‖2
TV ≤ 2H(ψt|ρ) ≤ e−2ktβ−1

H(ψ0|ρ) for all t ≥ 0, (2.28)
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or equivalently if ψt has density ft with respect to the reference measure ρ, we write

‖ft − 1‖2
L1(ρ) ≤ 2 Entρ(f0)e−2ktβ−1

for all t ≥ 0. (2.29)

There are several ways to obtain Log-Sobolev Inequalities for measures of the form

of the canonical measure ρ, as in (2.22) for example. In the particular case of a measure

which is a product of m measures and each one satisfies a LSI, then the whole measure

satisfies a LSI with constant k = mini ki. Just like Poincaré Inequalities, the LSI has the

tensorization property as well (see [Gro75]).

1.2.1.3 Curvature-Dimension Inequalities

As in the works by Bakry-Emery [BE85], see also [ABC+00, Bak06, BGL14], one way

to get to the functional inequalities described above, and as a consequence to obtain

quantitative rates of convergence to the stationary state, is to study the local structure

of the generator and prove a so-called Curvature-Dimension Inequalities. Let A be an

algebra, included in the domain of the generator L of the semigroup, D(L). We introduce

the bilinear map Γ : A×A → A, called the Carré Du Champ Operator :

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) for all f, g ∈ A. (2.30)

We iterate this and in the same way that we defined Γ having as action the standard inner

product, now we define Γ2 on A×A having as action the action of Γ:

Γ2(f, g) =
1

2
(LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)) . (2.31)

We say that the operator L satisfies the curvature-dimension condition CD(λ, n) with

curvature λ ∈ R and dimension n ∈ [1,∞], if and only if for any function f ∈ A, we have

Γ2(f, f) ≥ λΓ(f, f) +
1

n
(Lf)2. (2.32)

It is well-known then that if CD(λ,∞) holds true with λ ∈ R, then this is equivalent to

having a Poincaré and a Log-Sobolev Inequality with constant proportional to λ, so that

the spectral gap is proportional to λ. We refer to [BGL14, ABC+00], [Bak06, Proposition

3.3].
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1.2.2 Hypoellipticity and Hypocoercivity

1.2.2.1 Hypoellipticity

We are also interested in degenerate dynamics such as the inhomogeneous Langevin

dynamics introduced in Example (i) in subsection 1.1.3, as well as dynamics describing

non-equilibrium transport phenomena as in the Example (ii) in subsection 1.1.3. In

contrast to the overdamped Langevin dynamics, the generators in such cases is not elliptic.

When L is elliptic, the regularization properties of the Laplacian imply that if Lf = g

with g ∈ Hm(W ) and W a bounded open subset of the state space, the solution f is in

Hm+2(W ). Now when the generator is not elliptic, as for the (inhomogenous) Langevin

dynamics where the second order derivatives are not acting on all the degrees of freedom,

we still can have regularizing properties, under certain conditions on the operator, thanks

to the theory of hypoellipticity. We start by presenting Hörmander’s condition, [H6̈7]. We

denote by [A,B] = AB −BA the commutator between two operators. We recall that a

differential operator A is called hypoelliptic if

sing suppu = sing suppLu for all u ∈ D′(X) (2.33)

where X is the state space, D′(X) is the space of distributions on the infinitely differential

functions with compact support and for u ∈ D′(X), sing suppu (i.e. the singular support

of u) is the set of points x ∈ X so that there is no open neighborhood of x where u

restricted in that region is C∞.

Let the operator L be of the form

L =
M∑
j=1

X2
j +X0,

where the Xi’s, i ∈ {1, . . . ,M} are C∞ vector fields.

Definition 2.4 (Hörmander’s condition). The family of vector fields {Xi}i satisfies

Hörmander’s condition if the Lie algebra spanned by {Xi}, i ∈ {1, . . . ,M} has rank dim

X at every point.

The celebrated Hörmander’s Theorem [H0̈7b, Theorem 22.2.1] that states that if an

operator L satisfies Definition 2.4, then L is hypoelliptic. In particular it can be shown,

[RB06c], that in this case the solution f to Lf = g with g ∈ Hm(W ) and W is a compact

subset of the state space X, is in Hm+ε(W ) for some ε > 0. In particular of course when

g ∈ C∞(X) then f ∈ C∞(X). Note that if L satisfies Hörmander’s condition, then one

may easily check that any of the following operators also satisfy it and are therefore

hypoelliptic: L,L†, ∂t − L, ∂t − L†.
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As immediate consequence we have that the transition probabilities of the associated

Markov process have a smooth density with respect to the Lebesgue measure. The latter

implies that if we assume that an invariant measure exists, then it should have a smooth

density.

As an example of how the generator of the Langevin dynamics satisfy the Hörmander’s

condition, we take X0 to be the first order part of the generator, i.e.

X0 = M−1p · ∇q −∇qU(q) · ∇p + γM−1p · ∇p

and

Xi =
√
γβ−1∂pi for i = 1 . . . , Nd.

Then the first commutator between X0 and Xi gives

[Xi, X0] = M−1
√
γβ−1(∂qi − ∂pi)

so that we can recover the vector field ∂qi by linear combination of Xi and [X0, Xi]. Hence,

by considering successive commutators, the family of vector fields {[Xi, [Xj, X0]}i,j has

maximum rank 2Nd. Similar discussion for the oscillator chains model in particular can

be found in Chapter 2.

Invariant measure. From the definition of the generator (1.10) and integrating both sides

with respect to the measure µ on the state space X, we get the following characterization

of the invariant measure µ: For all f ∈ C∞c (X),∫
X

Lfdµ = 0 (2.34)

where L is the generator of the dynamics. By duality the invariant measure can be also

obtained as a solution to the Fokker-Planck equation

L†ψ = 0

where L† is the L2-dual operator of L. In the weighted L2(µ) space, the adjoint is denoted

by L∗ and it satisfies ∫
X

φ1(Lφ2)dµ =

∫
X

(L∗φ1)φ2dµ.

Combining this with (2.34) for φ1 = 1, then µ is invariant measure iff L∗1 = 0.

Concerning the Langevin dynamics (1.12), it is easy to see that an invariant measure

is the Gibbs measure e−βH(p,q)dpdq .

The existence and uniqueness of invariant measures for a stochastic Markov processes

is guaranteed by [RB06c, HM11]:
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Proposition 2.5. Let (xt)t be a Markov stochastic process on the phase space X with

transition kernel Pt(x, dy) and with generator L. Then if

(a) X is a compact phase space with (xt)t being irreducible, i.e. there exists t∗ > 0 so

that Pt∗(x,A) > 0 for all x ∈ X and all open sets A ⊂ X, and Pt(x, dy) admits a

smooth density.

(b) X = R2dN and (i) (xt)t is irreducible, (ii) Pt(x, dy) admits a smooth density and (iii)

we have a Lyapunov condition: There exists a Lyapunov function W : X → [1,∞)

so that (LW )(x) ≤ −aW (x) + b, for all x ∈ X and some constants a > 0, b ≥ 0,

there exists a unique invariant measure µ for (xt)t.

Note that the first assumption (in both cases, compact and non-compact) about the

irreducibility ensures the ergodicity of the invariant measure, while the second assumption

implies hypoellipticity and therefore ensures us about the regularity of the invariant

measure. In order to have existence and uniqueness in the second (non-compact) case

which is the one we are interested in for our example of Langevin dynamics, we need the

Lyapunov condition to ensure stability. With this assumption we ensure that the process

(xt)t stays most of the time in a compact subset of X, where the Lyapunov function takes

small values.

Equilibrium and non-equilibrium invariant measures. Regarding non-equilibrium

invariant measures, the steady state is induced by external forcing. Examples of such

forcings are interactions with thermal reservoirs coupled to some particles of our system

as in the Example (ii) in subsection 1.1.2, or interactions with some externally generated

field. The steady state is then reached due to the dissipation mechanism which prevents

the external forcing to cause an uncontrolled growth of the energy of the system.

For the purpose of describing non-equilibrium steady states we do not make a distinction

here between non-equilibrium dynamics and non-reversible dynamics since the dynamics

perturbed by some external forcing are irreversible in the sense that the law of forward

trajectories is different from the law of backward trajectories. This is discussed in [LS16].

In contrast with equilibrium systems which can be characterized by the self-adjointness of

the generator L on the weighted Hilbert space L2(µ), where µ is the invariant measure,

which interprets the reversibility for such dynamics, in non-equilibrium systems such

property does not hold.

1.2.2.2 Convergence rates towards stationary measure in the hypoelliptic case

As explained above in the cases where our operator fails to be elliptic, i.e. the noise is

degenerate and it acts only on a subset of our degrees of freedom (in the overdamped
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Langevin case, it acts only on momentum variables), Hörmander’s theorem implies regular-

izing properties by taking advantage of the commutators and transferring the smoothing

to all the variables, i.e. hypoellipticity.

The main observation here is that similar phenomena arise when one wants to study the

convergence to the equilibrium as well for degenerate systems. In particular, in contrast

with the overdamped Langevin (elliptic) case, the operator corresponding to degenerate

dynamics is not coercive, and the lack of second-order derivatives, i.e. diffusion, in the

position variables leads to the non-coercivity of the operator.

In order to overcome this problem, we exploit the theory of hypocoercivity, which

is inspired by hypoellipticity and gives a way through commutators to retrieve some

dissipation in the position-variables. The idea is to introduce a modified scalar product

with additional correctors by mixed derivatives-terms in the momentum and position

variables, see the equation below, (2.35). This new inner product induces a norm different

but equivalent to the original norm. Through this norm, one is able to prove and estimate

coercivity of the operator which leads (as discussed above) to an exponentially fast

convergence to the invariant measure. The price to pay is that we have this convergence

in the modified norm, so that when we go back to the original norm (thanks to their

equivalence) we end up with a prefactor greater that 1 in front of the exponential.

The first idea of hypocoercivity goes back to Talay [Tal02] and it was generalized a

bit later by Villani [Vil09a]. Related methods were also employed by Hérau and Nier in

[HN04] earlier than Villani. Originally, Villani worked in the H1(µ) setting, where µ is

an invariant measure, and the modified scalar product he introduced was of the following

form

〈〈f, g〉〉 := 〈f, g〉+ a〈∇pf,∇pg〉+ b (〈∇pf,∇qg〉+ 〈∇qf,∇pg〉) + c〈∇qf,∇qg〉 (2.35)

where 〈·, ·〉 is the original L2(µ)-inner product and a, b, c ∈ R with a, c > 0, ac− b2 > 0.

The scalar product 〈〈·, ·〉〉 is equivalent to the original H1(µ) scalar product. It allows

us to prove coercivity in the space H1(µ) ∩ L2
0(µ), where L2

0(µ) is the weighted L2 space

with functions that have zero average. Provided that µ(dq) satisfies a Poincaré inequality,

it yields a convergence of the form

‖ft‖2
H1(µ) ≤ Ce−λt‖f0‖2

H1(µ) (2.36)

with explicit constants C and λ. This is the concept of the so-called H1-hypocoercivity.

Once we have a quantitative convergence result in H1(µ), we can combine it with an

independent regularity study (hypoelliptic regularization) applied on the initial data to get

also a convergence in L2(µ), see [H0́7a, HP08]. This is also discussed in [LS16, Vil09a].

Regarding hypocoercivity in L2, there is a more direct approach first proposed in
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[H0́6] and then extended in a series of papers [DMS15, BDM+20, CDH+] and references

therein. This approach is based on the introduction of a modified L2-scalar product

via a well-chosen regularization operator. Then the idea is to see hypocoercivity as a

combination of two effects: the microscopic coercivity and the macroscopic coercivity.

Alongside with the H1-hypocoercivity in Villani’s monograph, hypocoercivity in relative

entropy was also developed, where instead of the H1-norm, we have a combination of two

functionals: the relative entropy and the relative Fisher information. In order to have

entropic hypocoercivity we assume that the reference measure µ satisfies the stronger

Log-Sobolev Inequality instead of Poincaré Inequality.

Other ways to show hypocoercivity include Lyapunov techniques, probabilistic tech-

niques based on coupling methods or on Harris’ theorem or on Malliavin calculus. See

for instance the recent PhD thesis [Eva19], for more explanations and for an interesting

implementation of hypocoercivity through Malliavin calculus. Techniques from Γ calculus

can also be used to get quantitative rates of convergence [Bau17, Mon19]. In the following

we explain a bit more the hypocoercivity through Γ calculus, as this is applied in the

Chapter 2 to study the evolution of the microscopic system, the chain of oscillators, which

is a specific case of the Example (ii) in subsection 1.1.3.

Hypocoercivity through generalized Bakry-Emery criteria. Even though the

Bakry-Emery theory [BGL14] through Γ-calculus works very well in the elliptic setting,

since one can easily confirm that we have a curvature-dimension inequality CD(ρ,∞) and

then immediately get a SGI(ρ) and a LSI(ρ).

However in the hypoelliptic case the Γ and Γ2 bilinear forms, we see that it seems

impossible to bound from below Γ2 by Γ, and to get the desired inequality of the form

(2.31). For example, in the Langevin case (normalizing to 1 for now the constants: mass,

friction temperature), we get that

Γ(f, f) = ‖∇pf‖2 and

Γ2(f, f) = Γ(f, f) + ‖∇2
pf‖2 +∇qf · ∇pf.

(2.37)

It is clear then that we can not bound the term ∇qf · ∇p from below, and thus in this

case we don’t have immediately the curvature-dimension inequality.

Nevertheless, this method has been extended to hypoelliptic cases in a number of works

recently [Bau17, BG17, BB12, Mon19]. Instead of modifying the norm, we modify the

Γ-functional. We introduce a new bilinear form T that is different but equivalent to the

original gradient, so that the twisted form does not depend directly anymore on L. In

general it takes the form

T (f, g) :=
n∑

i,j=1

σij(x)
∂f

∂xi

∂g

∂xj
(2.38)
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where σij : Rn → R are smooth functions so that for every x ∈ Rn, (σij(x))1≤i,j≤n is

symmetric positive definite matrix. Then we analogously define

T2(f, f) :=
1

2
(LT (f, f)− 2T (Lf, f). (2.39)

Now once we have a ‘twisted’ curvature dimension inequality of the form T2(f, f) ≥
λT (f, f), for λ > 0, we can prove an exponential convergence in Wasserstein distances.

Mimicking also the basic ideas of Bakry-Emery, we can prove a Poincaré, SGI(λ) and

a Log-Sobolev Inequality, LSI(λ), which allows us to conclude convergence in relative

entropy as well.

1.3 Hydrodynamical behaviour for stochastic inter-

acting particle systems

Apart from looking at the long-time behavior of microscopic interacting particle systems,

a part of this thesis concerns the ‘hydrodynamic limit’ from stochastic interacting particle

systems to macroscopic PDEs, i.e. looking at the limit as the number of the particles N

goes to infinity.

The derivation of limit PDE from interacting particle systems has a long history

that can be traced back to the founders of the kinetic theory, J. C. Maxwell and L.

Boltzmann. We recall here that a rigorous derivation of the Boltzmann equation from

molecular dynamics on short time intervals was obtained by O.E. Lanford in [Lan75]. Also

‘formal’ derivations of the Euler system for compressible fluids from molecular dynamics

were discussed by C.B. Morrey in [Mor55] and later on, J. Fritz, S.R.S. Varadhan and

their collaborators considered stochastic variants of molecular gas dynamics and obtained

rigorous derivations of macroscopic PDE models from these variants: see for instance

[Var95] and the references therein.

In this thesis we present a quantitative version of such limits for the following stochas-

tic processes: the (jump) processes zero-range and simple exclusion processes and the

(diffusion) Ginzburg-Landau process.

We consider these processes on the discrete torus TdN = {1, . . . , N}d with state space

XN which will be either NTdN for jump processes and RTdN for diffusion processes. Let

η ∈ XN be a particle configuration with η(x) denoting the number of particles at each

site x ∈ TdN (or the value of the charge). Regarding the zero-range and simple exclusion

processes, the particles randomly jump to neighboring sites, with the restriction in the

simple-exclusion process that at most one particle per site is allowed.

The distribution of particle configurations for time t > 0 is a probability measure on
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XN , µNt ∈ P (XN). The evolution of the state µNt ∈ P (XN) solves

d

dt
〈µNt , f〉 = 〈µNt ,LN〉 for all f ∈ Cb(XN) (3.40)

where the generator LN : Cb(XN)→ Cb(XN) is given by

LNf(η) =
∑

x∼y∈TdN

c(x, y, η) (f(ηxy)− f(η)) , for all f ∈ Cb(XN) (3.41)

for jump processes, while for the Ginzburg-Landau process the operator is

LN :=
∑

x∼y∈TN

(
∂

∂η(x)
− ∂

∂η(y)

)2

−
∑

x∼y∈TN

(
∂V

∂η(x)
− ∂V

∂η(y)

)(
∂

∂η(x)
− ∂

∂η(y)

)
.

(3.42)

Here
∑

x∼y∈TN denotes the sum over all the neighboring sites to x, i.e. y ∈ TdN so that

|x − y| = 1 and c(x, y, ·) is the jump rate, and ηx,y is the configuration of the particle

system after one jump from x to y:

ηx,y(z) =


η(x)− 1 if z = x,

η(y) + 1 if z = y,

η(z) otherwise.

In the diffusion case, V : R→ R is a C2(R) potential.

We assume that the jump rate is not degenerate: g(n + 1) > g(n) for n > 0. This

monotonicity condition implies in the limit the ellipticity of the diffusion equation, in

the diffusive scaling. That means that the limit equation in the diffusive rescaling, has

regularizing properties.

We call a measure νN ∈ P (XN) invariant under the evolution of the process if

〈νN ,LNf〉 = 0 for all f ∈ Cb(XN).

For the three processes above, which we will present in more detail below, there exists

a family of invariant measures νNα indexed by some positive constant α > 0 (α ∈ [0, 1] for

the simple-exclusion process) that satisfy∫
LNfdνNα = 0,

∫
η(0)dνNα = α,

∫
τxf(η)dνNα (η) =

∫
f(η)dνNα (3.43)

where τx is the translation operator defined by τxf(η) = f(τxη) and τxη(y) = η(x + y).

Note that under the law νNα the η(x)’s are independent.
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Here we also introduce an example of a local equilibrium, we define a measure with a

slowly varying parameter instead of a constant parameter just as above.

Definition 3.1 (measure with slowly varying parameter). For every f0 smooth function,

we consider νNf0(·) to be the product measure on XN so that

νNf0(·)
(
{η : η(x) = k}

)
= νNf0(x/N)

(
{η : η(0) = k}

)
(3.44)

and under νNf0(·) the variables {η(x) : x ∈ TdN} are independent.

A specific formula for this measure in each process will be given in Chapter 5.

In order to get a continuum description via a PDE, we also need to embed the discrete

torus TdN into the continuous (macroscopic) torus Td = Rd/Zd by mapping x 7→ x/N ∈ Td

assuming the microscopic scale to be of order O(N−1).

We assume that the total number of particles N−d
∑

x∈TdN
η(x) is conserved and this

is our only conserved quantity, so the only information we expect to get in the limit as

N →∞ is the macroscopic particle density. The quantity we use in order to measure the

particle density is the empirical measure (associated with a configuration η)

αNη (du) = N−d
∑
x∈TdN

η(x)δ x
N

(du). (3.45)

With the empirical measure at hand we can mathematically formulate the convergence of

the microscopic particle densities as follows. Let φ ∈ C(Td) be a test function, then we

say that the empirical measure αNη converge in probability to a deterministic object ft if

for all δ > 0

lim
N→∞

PµNt
(∣∣〈αNη , φ〉 − 〈ft, φ〉∣∣ > δ

)
→ 0 (3.46)

where PµNt (A) is the probability that the event A will occur under the law µNt and where ft

solves a PDE of the form ∂tft = Lft for some differential operator L which is determined

from the scaling we do in time (it is either hyperbolic or parabolic/diffusive).

In particular, when our stochastic process is asymmetric, i.e. if p(·) are the transition

probabilities and we have that
∑

z zp(z) 6= 0, then we rescale time by N (the same as the

scaling we do in x, so we apply the hyperbolic scaling) and in the limit we get the solution

of the following conservation law

∂tft = γ · ∇σ(ft), where γ =
∑
z

zp(z).

When the stochastic process has mean zero, i.e. γ = 0, in order to see a limit we need to

rescale the time by N2 (and so we shall apply the diffusive scaling). In this case we have
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that the particle densities converge to the solution of

∂tft = ∆cσ(ft)

where ∆c is the weighted Laplacian ∆c =
∑

1≤i,j≤d cij∂ui∂uj and cij are the covariances

cij =
∑

i,j p(x)xixj.

The nonlinearity σ appearing in both cases, will be determined from the jump rates of

the stochastic processes.

1.3.1 Introduction of our basic examples

• Simple-Exclusion Process.

The simple exclusion process allows at most one particle per site. The jump is therefore

supressed if it leads to an already occupied site. The state space therefore in this case is

XN = {0, 1}TdN and the generator of the process is given by

LNf(η) =
∑
x,y∼x

p(y − x)(η(x)(1− η(y)) [f(ηx,y)− f(η)] (3.47)

for each fN ∈ Cb(XN), where ηx,y is the configuration of the particle system after one

particle has jumped from site x to a neighboring site y:

ηx,y(z) =


η(y) if z = x,

η(x) if z = y,

η(z) otherwise.

Given a density α ∈ (0, 1), the invariant measure is the Bernoulli product measures

with parameter α:

νNα (η) =
∏
x∈TdN

αη(x)(1− α)1−η(x).

Diffusive scaling. We assume that the mean γ =
∑

z zp(z) = 0 and we accelerate the

process (ηt)t by a factor N2, i.e. the microscopic x-variable scales with N , while the time

scales with N2. The generator then is for all f ∈ Cb(XN),

LNf(η) = N2
∑
x,y∼x

p(y − x)η(x)(1− η(y))
[
f(ηx,y)− f(η)

]
.

Under diffusive scaling and with initial decorrelation, the empirical measure of the simple

exclusion process converges to the solution ft to the diffusion equation

∂tft = ∆cft, where ∆c =
∑

1≤i,j≤d

ci,j∂ui∂uj (3.48)
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and the diffusion matrix is given by

ci,j :=
∑
x∈Zd

p(x)xixj.

Hydrodynamic limit under hyperbolic scaling. We accelerate the process (ηt)t by a factor

N , i.e. both the microscopic spatial variables and the time scale with N , and we assume

that the mean γ =
∑

z zp(z) 6= 0. The generator in this case is for all f ∈ Cb(XN),

LNf(η) = N
∑
x,y∼x

p(y − x)η(x)(1− η(y))
[
f(ηx,y)− f(η)

]
.

Under the hyperbolic scaling, the empirical measure of the process converges to the solution

ft to the conservation law

∂tft = γ · ∇σ(ft) (3.49)

where σ(ft) = ft(1 − ft). Due to the nonlinearity, the solution of (3.49) may develop

shocks and it is thus understood in the sense of distributions, after a finite time T , even

for smooth data [Daf16, Chapter 4]. Up to the time T of the appearance of the first shock,

the solution is smooth. Therefore, most techniques for the hydrodynamic limit under

Euler scaling, hold up to this time T since usually some regularity of the limit PDE is

required. The only proof of such limit for all times, by exploiting the notion of entropy

and measure-valued entropy solutions, was done by Rezakhanlou in [Rez91].

• Zero-Range process. Here there is no restriction on the number of the particles per site,

so that XN = NTdN . The generator is given by,for all f ∈ Cb(XN),

LNf(η) =
∑
x,y∼x

p(y − x)g(η(x)) [f(ηx,y)− f(η)] (3.50)

where g is the jump rate and ηx,y is the configuration of the particle system after one

particle has jumped from site x to a neighboring site y:

ηx,y(z) =


η(x)− 1 if z = x,

η(y) + 1 if z = y,

η(z) otherwise.

We assume that g(k) = 0 if and only if k = 0, meaning that the rate at which particles

leave a site is zero if and only if the site is empty. The process is called zero-range as the

hopping rate only depends on the particles at the same site. The jump rate g : N→ [0,∞)

can be thought of as describing the interactions of particles occupying the same site. In
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order for our process to be well-defined we also assume that g satisfies for some g∗ > 0:

for all n ≥ 0, 0 ≤ |g(n+ 1)− g(n)| ≤ g∗ < +∞.

A special case is the case of linear g, g(n) = n, where the particles perform independent

random walks on the lattice.

An important family of invariant measures is given by the grand-canonical or Gibbs

measures, given ρ ≥ 0:

νNρ (η) =
∏
x∈TdN

σ(ρ)η(x)

g(η(x))! Z(σ(ρ))
, (3.51)

where Z is the partition function of the zero range process given by,

Z(φ) =
∞∑
n=0

φn

g(n)!
(3.52)

with g(n)! := g(1) · g(2) · · · g(n) and g(0)! := 1. The function σ(ρ) is then chosen uniquely

such that

〈νNρ , η(0)〉 = ρ.

We shall elaborate on the construction of σ in Chapter 5. Since the number of particles

is conserved and the process has no other conserved quantities, another important set of

invariant measure is given by the canonical measures : given K ∈ N,

νN,K(η) = νNρ
(
η
∣∣ ∑

x η(x) = K
)
, (3.53)

which are the grand-canonical measures conditioned on hyperplanes of constant number of

particles.

In order to get a hydrodynamic limit we add two more assumptions on g: attractivity

and spectral gap. We assume that g is monotoneously increasing,

for all n ∈ N g(n+ 1) ≥ g(n)

and that there exists n0 > 0 and δ > 0 such that

for all j ∈ N, n ≥ j + n0 g(n)− g(j) ≥ δ.

The fact that g(·) is increasing is a sufficient and necessary condition for zero-range

processes to be attractive4, [KL99, Theorem 5.2]. The attractivity assumption helps in

defining a coupling between two copies of this process: this is a property used in the

4An interacting particle system is said to be attractive if its semigroup preserves the partial order, i.e.
if µN

0,1 ≤ µN
0,2 then µN

t,1 ≤ µN
t,2.
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proof in subsection 5.4.2 of Chapter 5. The spectral gap condition ensures that the limit

equation is elliptic.

Diffusive scaling. We accelerate the zero-range process (ηt)t by a factor N2, i.e. the

microscopic spatial variables scale with N and time with N2, and we assume that the

mean γ = 0. The generator in this case is

LNf(η) = N2
∑
x,y∼x

p(y − x)g(η(x)) [f(ηx,y)− f(η)] .

Under diffusive scaling, the empirical measure of the zero range process converges to the

solution ft to the nonlinear diffusion equation

∂tft =
∑

1≤i,j≤d

ci,j∂ui∂ujσ(ft) (3.54)

where the diffusion matrix is given by

ci,j :=
∑
x∈Zd

p(x)xixj

and the nonlinearity σ : [0,∞)→ [0,∞) appears in (3.51) and more specifically it satisfies

〈νNρ , g(η(x))〉 = σ(ρ) (see details in the Chapter 5).

Hydrodynamic limit under hyperbolic scaling. We accelerate the zero-range process (ηt)t by

a factor N , i.e. both the microscopic spatial variables and the time scale like N , and we

assume that the mean γ =
∑

z zp(z) 6= 0. The generator in this case is, for all f ∈ Cb(XN ),

LNf(η) = N
∑
x,y∼x

p(y − x)g(η(x))
[
f(ηx,y)− f(η)

]
.

Under the hyperbolic scaling, the empirical measure of the zero-range process converges

to the solution ft to the conservation law

∂tft = γ · ∇σ(ft) (3.55)

where σ is given by 〈νNρ , g(η(x))〉 = σ(ρ).

• Process of Ginzburg-Landau type. Let TN = Z/(NZ) the one-dimensional periodic integer

lattice. To each lattice site x ∈ TN we associate the continuous variable η(x) ∈ R which

represents a charge at this site and η = (η(x))x∈TN ∈ RTN is then a field configuration.

After time t > 0 the configuration is ηt = (ηt(x))x∈TN . The charges are relocated among

adjacent sites randomly according to a diffusion law. In this model we apply only the

diffusive scaling, i.e. speed up the time by N2 and shrink the space between charges by N

so that we obtain a system of spins (charges) located at points x/N with x = 1, . . . , N of
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the circle S = R/Z.

The Ginzburg-Landau dynamics for η is described by the set of stochastic differential

equations, for all x ∈ TN ,

dηt(x) =
N2

2

[
V ′(η(x+ 1))− 2V ′(η(x)) + V ′(η(x− 1))

]
dt+N

[
dWt(x)−dWt(x+ 1)

]
,

x ∈ TN
(3.56)

where Wt(i), i = 1, . . . , N are independent Brownian motions and V : R→ R is a C2(R)

function for which we assume the following.

Assumption 1. (A1)
∫
R e
−V (u)du = 1,

(A2) There is C1, C2, R > 0 so that ∀ u ∈ R, |u| > R, V ′′(u) > C2 and V ′′(u) ≤ C1,

(A3) for all λ ∈ R, M(λ) :=
∫
R e

λu−V (u)du <∞.

The attractivity here corresponds to V being a convex potential, at least away from

the origin. The infinitesimal generator of the diffusion process η(x) is

LN :=
N2

2

∑
x∼y∈TN

(
∂

∂η(x)
− ∂

∂η(y)

)2

− N2

2

∑
x∼y∈TN

(
∂V

∂η(x)
− ∂V

∂η(y)

)(
∂

∂η(x)
− ∂

∂η(y)

)
.

(3.57)

The generator LN is symmetric with respect to the invariant (Gibbs) product measure

dνN(η) :=
∏
i∈TN

e−V (η(xi))dη(xi) on RN .

Consider a function fN0 and a law ψN0 (η) := fN0 dν
N(η). At later time t > 0, the law

ψNt system will have a density fNt relative to dνN satisfying the equation

∂tf
N
t = L∗NfNt .

Associated with the charge configuration η we define as before the empirical measure

αNη =
1

N

∑
x

η(x)δ x
N

on S.

In order to describe the hydrodynamical equation in this case, let us introduce some

notation. Let M(λ) the function defined in assumption (A3) above and consider

p(λ) = logM(λ), h(y) := sup
λ∈R

(
λy − p(λ)

)
.
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Then h and p are a pair of conjugate convex functions and

h′(y) = λ iff y = p′(λ)

where

p′(λ) =
M ′(λ)

M(λ)
=

∫
R ue

λu−V (u)du

M(λ)

i.e. h′ and p′ are inverse of each other. Moreover h′ and p′ are smooth and strictly

increasing functions. The empirical density of the Ginzburg-Landau dynamics has a

macroscopic profile ft that solves the diffusion equation

∂tft(u) = ∂uuh
′(ft(u)), (t, u) ∈ (0,∞)× S. (3.58)

1.3.2 In the literature

Regarding the state of the art of this problem, the qualitative behavior of these hydro-

dynamic limits is well-known and was first proven by by Fritz in [Fri89]. This was done

for the Ginzburg-Landau model for which another method was invented later by Guo-

Papanicolaou-Varadhan in [GPV88], called the entropy method, as it involved estimates

on the entropy and Fischer information. The entropy method has been generalized to

prove the hydrodynamic limit for several other models, including jump processes such as

zero-range and exclusion processes, in [KL99]. Apart from this method, further results

include the relative entropy method due to H.-T. Yau [Yau91] which shows convergence of

the relative entropy with respect to local equilibrium states. Both of these methods are not

quantitative, so there is no explicit rate of the convergence to the limit PDE and from their

techniques there is no reason to expect the convergence in N to be uniform in time. The

method in [GPV88] is based on compactness while the method in [Yau91] is closer to being

quantitative, apart from one step. Also, as the key estimate in relative entropy method

is a Grönwall estimate, the error in terms of the time is growing exponentially in time.

However both the many-particle systems and the limit systems are dissipative, therefore

ergodicity and relaxation should win over stochastic fluctuations at the level of the laws:

As t→∞, the system relaxes to an invariant measure, for which the hydrodynamic limit

holds, as shown in the figure below, so that we expect the limit in N to be uniform in

time t.

fNt ∈ P(XN)

t→∞
��

N→∞ // ft ∈ L∞(Td)

t→∞
��

νNσ(ρ) ∈ P(XN) N→∞ // f∞
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In terms of quantitative results, the first result was obtained for the Ginzburg-Landau

model by Grunewald, Otto, Villani, and Westdickenberg, in [GOVW09]. The method is

based on a coarse-graining of the state-space. The results there however are not fully

quantitative. For this specific model, recently a fully quantitative result was obtain in

[DMOWa], by a modification of the method that was applied in [GOVW09]. This result

holds for Ginzburg Landau models with Kawasaki dynamics, including potentials that are

non-convex, like the double well potential. On the negative side, their result does not hold

uniform in time and it is not clear how to extend the method to get the result for jump

processes as well.

Our contribution to the theory is a new approach to quantify the rate of convergence

for several processes, both jump and diffusion, and make it uniform in time, in the diffusive

case where it is expected to be.

1.4 List of the works and perspectives

In this section I am presenting the main results of each chapter while explaining the main

tools and ideas.

• Quantitative Rates of Convergence to Non-Equilibrium Steady State for a

Weakly Anharmonic Chain of Oscillators.

This work is the article [Men20] and has been published in Journal of Statistical Physics.

It is presented in Chapter 2.

The main objective is to find estimates on the speed of the convergence to a stationary

state for a heat conducting system. The model consists of a one-dimensional chain

of N interacting oscillators on the phase space R2N , where the variables are qi, pi for

i = 1, . . . , N : the displacements of the particles from their equilibrium positions and their

momenta, respectively. Each particle has its own pinning potential and it interacts with

its nearest neighbors through an interaction potential. We call H the Hamiltonian energy.

The two ends of the chain {1, N}, are in contact with heat baths, modeled by Langevin

(Ornstein–Uhlenbeck) processes at two (possibly) different inverse temperatures β−1
1 , β−1

N .

The dynamics therefore is described by a coupled system of SDEs (1.17): for i ∈ {1, .., N},

dqi(t) = (∇piH)dt and

dpi(t) =
(
−∇qiH − γipiδi∈{1,N}

)
dt+ δi∈{1,N}

√
2γi
βi

dWi

(4.59)

where γi, i ∈ {1, N} are the friction coefficients.

The non-equilibrium steady state for the purely harmonic chain, i.e. when both

potentials are quadratic (harmonic), was made precise in [RLL67]. Anharmonic chains
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were studied in various works [JP98, EPRB99a, EPRB99b, Car07, RBT02, CEHRB18],

where existence, uniqueness of a non-equilibrium steady state and exponential convergence

towards it were proven in certain cases. More specifically the existence, uniqueness

of a steady state and exponential convergence, hold under the assumptions that both

the interaction and pinning potentials behave as polynomials near infinity and that the

interaction is stronger than the pinning potential. The last assumption is important as

there are some works which exhibit cases where the relaxation rate is not exponential,

i.e. where there is lack of spectral gap [Hai09, HM09]. The existing results are however

not quantitative, i.e. they do not give information on the scaling of these rates in terms

of N , since compactness arguments are employed. Quantitative results for the spectral

gap are therefore missing and even in the simplest case of the linear (harmonic) chain,

the dependence on the dimension of the spectral gap was not known. Attempts have

been made through hypocoercive techniques to get N -dependent estimates under certain

conditions on the potentials: see the discussion in [Vil09a, Section 9.2] where this question

was first raised. The techniques discussed in Villani’s monograph however only yield

non-optimal estimates.

The Chapter 2 gives a partial answer to this question by Villani: we prove explicit

rates of convergence to the non-equilibrium steady state (with optimal lower bound) in a

weakly anharmonic scenario, i.e. when both potentials are N -dependent perturbations of

the harmonic ones. The proof relies on (i) an application of a generalized version of the

Γ2-calculus of Bakry-Emery [BE85] for elliptic operators recently generalized by Baudoin

for hypoelliptic operators [Bau17], as explained in the Section 1.2.2.2, and (2) a careful

analysis of a high-dimensional matrix equation.

We first prove the following contraction property in Wasserstein-2 distance. First

we recall the definition of the Kantorovich-Rubinstein-Wasserstein L2-distance W2(µ, ν)

between two probability measures µ, ν:

W2(µ, ν)2 = inf

∫
RN×RN

|x− y|2dπ(x, y)

where the infimum is taken over the set of all the couplings, i.e. the joint measures π on

RN × RN with left and right marginals µ and ν respectively.

Theorem 4.1 (Theorem 1.4 in Chapter 2). We consider a 1-dimensional chain of coupled

oscillators with rigidly fixed edges so that the dynamics are described by the system (4.59)

with

H(p, q) =
N∑
i=1

(
p2
i

2
+ a

q2
i

2
+ UN

pin(qi)

)
+

N−1∑
i=1

(
c
(qi+1 − qi)2

2
+ UN

int(qi+1 − qi)
)

+

+ c
q2

1

2
+ c

q2
N

2

(4.60)
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for a ≥ 0, c > 0 and under the assumption that

sup
qi

‖∇2UN
pin(qi)‖2, sup

ri

‖∇2UN
int(ri)‖2 ≤ CN (4.61)

where ri = qi+1 − qi and CN . N−9/2. 5 For a fixed number of particles N , there is a

unique stationary state, in particular, for initial data f 1
0 , f

2
0 we have:

W2(P ∗t f
1
0 , P

∗
t f

2
0 ) ≤ Ca,cN

3
2 e−

λ0
N3 t W2(f 1

0 , f
2
0 ) (4.62)

for Ca,c, λ0 dimensionless constants.

After having proved a Log-Sobolev inequality for the invariant measure, we also give a

convergence to the stationary measure in relative entropy as in [Vil09a, Section 6]. We

first recall the definitions of the following functionals:

For two probability measures µ and ν on R2N with ν � µ, we define the Boltzmann

H functional

Hµ(ν) =

∫
R2N

h log h dµ, ν = hµ (4.63)

and the relative Fisher information

Iµ(ν) =

∫
R2N

|∇h|2

h
dµ, ν = hµ. (4.64)

Theorem 4.2 (Theorem 1.6 in Chapter 2). We consider a weakly anharmonic 1-dimensional

chain of coupled oscillators with rigidly fixed edges whose dynamics are described by the

system (4.59) under the same assumptions as in the Theorem 4.1 above. For a fixed

number of particles N , assuming that (i) µ is the invariant measure for Pt and (ii) that it

satisfies a Log-Sobolev inequality with constant CN > 0, for all 0 < f ∈ L1(µ) with

E(f) <∞, and

∫
fdµ = 1,

we have a convergence to the non-equilibrium steady state in the following sense:

Hµ(Ptfµ) + Iµ(Ptfµ) ≤ λa,cN
3e−λ0N

−3t
(
Hµ(fµ) + Iµ(fµ)

)
(4.65)

for dimensionless constants λa,c, λ0.

Theorem 4.1 implies exponential relaxation with rate bigger than N−3 for the weakly

anharmonic chain (4.59) with energy (4.60) and (4.61). In the purely harmonic case, we

have that the convergence rate is between C1N
−3 and C2N

−1 for some constants C1, C2

that are independent of N .

5This is what we call a weakly anharmonic chain of oscillators.
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• The optimal spectral gap for regular and disordered harmonic networks of

oscillators.

This work has been done in collaboration with Simon Becker and it is submitted

for publication, see [BM22] in the bibliography. It is presented in Chapter 3 and it is a

continuation of the work in Chapter 2. We explore the behavior of the spectral gap for

purely harmonic chains in higher dimensions and different settings.

We study the spectral gap for purely harmonic chains and d-dimensional grids of oscil-

lators, and proved the optimal lower and upper bounds. We also treat non-homogeneous

scenarios where the coefficients of the pinning potentials are not identical. In particular

we look at chains of oscillators with an impurity (so that the particle in the middle of the

chain has pinning potential significantly weaker than the pinning potential of all the other

particles) as well as at disordered chains of oscillators. As regards the d-dimensional grids,

the spectral gap depends on which particles are exposed to friction. These are explained

in the statement below. Our setting is the following, we look at the system (1.17) with

F ⊂ {1, . . . , N}d and

H(q, p) =
〈p,m−1

[N ]d
p〉

2
+ Va,c(q) where Va,c(q) =

∑
i∈[N ]d

ai|qi|2 +
∑
i∼j

cij|qi − qj|2. (4.66)

Our method of proof relies on a new approach for studying non-symmetric spectral

problems that reduces the problem to spectral analysis of discrete Schrödinger operators.

Using a Wigner matrix representation we reduce the study of this high dimensional spectral

analysis to the study of resolvents involving only the heat bath sites.

In general, if the friction parameters do not grow faster than the number of boundary

particles, i.e. supi∈F⊂∂[N ]d γi ≤ O(Nd−1), where ∂[N ]d denoted the boundary of the grid,

the spectral gap of the chain of oscillators always decays as a function of N and the rate

is at least of order O(1/N).

Our main results give sharper and usually optimal bounds in each specific case. They

are summarized in the following statement:

Theorem 4.3 (Theorem 1.1 in Chapter 3). Let the positive masses mi and interaction

strengths ci of all oscillators coincide, Nd be the number of oscillators, placed in a square

grid with N oscillators on each side, and d the dimension of the network.

• (Homogeneous chain): Let the pinning strength ai be the same for all oscillators,

then

1. if two particles located at the corners (1, . . . , 1), (N, . . . , N), see Fig. 3.6, are

exposed to the same non-zero friction and non-zero diffusion, the spectral gap
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of the generator decays at the optimal rate N−3d:

λS = O(N−3d).

In particular for the one-dimensional chain of oscillators λS = O(N−3).

2. if the same non-zero friction and non-zero diffusion for particles located at the

center of two opposite edges of the network

(1, dN/2e, . . . , dN/2e), (N, dN/2e, . . . , dN/2e),

see Fig. 3.7, the spectral gap of the generator decays at the optimal rate

N−3−(d−1): λS = O(N−3−(d−1)).

3. if d = 2 and the particles exposed to the same non-zero friction are located at

opposite edges of the network, the spectral gap satisfies λS ≤ O(N−5/2).

• (Chain with impurity): Let N be even. We assume that all masses and interaction

parameters are positive and coincide and the friction parameters γi of the boundary

particles

∂[N ]d := {i ∈ [N ]d;∃in : in ∈ {1, N}} of [N ]d := {1, .., N}d

satisfy supi∈∂[N ]d γi ∈ (0, c)where c is independent of N and the friction is non-zero

on at least one boundary edge. Then, if the pinning strength acd(N) at the center point

cd(N) = (N/2, .., N/2) of the network is sufficiently small compared to the pinning

strength of all other oscillators, the spectral gap λS of the generator decays at least

exponentially fast in N , for all d ≥ 1.

In dimension 1 this rate is the optimal one.

• (Disordered chain): We assume that all masses and interaction parameters are

positive and coincide and the friction parameters γi of the particles at the boundary

∂[±N ]d := {i ∈ [±N ]d; ‖i‖∞ = N} of the network [±N ]d := {−N, ..., N}d

satisfy supi∈∂[±N ]d γi ∈ (0, c) where c is independent of N and the friction is non-zero

on at least one boundary edge. Then, if the pinning strengths are iid random variables

distributed according to some compactly supported density ρ ∈ Cc(0,∞), the spectral

gap λS of the generator decays exponentially fast in N , for all d ≥ 1 for all but

finitely many N .

Existence of a Non-Equilibrium Steady State for the non-linear BGK equation
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on an interval.

This work has been done in collaboration with Josephine Evans and it is published in

Pure and Applied Analysis, see [EM21] in the bibliography. It is exposed in Chapter 4.

In this article we study a non-equilibrium system that describes heat conduction in

gases, through the so-called BGK equation. Historically the first examples of microscopic

description of heat conduction goes back to Clausius, Maxwell and Boltzmann [Max67,

Bol03] who obtained formally (0.1), through a ‘kinetic theory’ analysis, see [BLRB00,

Section 2] for more details.

For the stationary Boltzmann equation, the rigorous proof of (0.1), was given in

[ELM94, ELM95] in the slab geometry, and when the temperature difference of the two

reservoirs is small. In [EGKM13], solutions to the 3-dim steady problem were constructed,

with sufficiently small difference of the temperatures as well (in the kinetic regime). In these

works, the coupling with the reservoirs is ensured by the “diffusive boundary conditions”,

i.e. when a particle hits one of the boundary walls it gets reflected with a new velocity

drawn from the Maxwellian

Mi(v) :=
1

(2πTi)d/2
exp

(
−|v|

2

2Ti

)
, i = 1, 2,

where d is the dimension.

Motivated by the series of papers [CLM15, CEL+18, CEL+19] as well as [EGKM13],

we study the non-linear BGK equation on an interval with diffusive boundary conditions.

The BGK model was introduced by Bhatnagar, Gross and Krook in [BGK54] as a toy

model for Boltzmann flows (as a simplified Boltzmann equation). In particular we consider

a gas of particles in (0, 1) with the distribution function f(x, v) in position x and velocity

v ∈ R. The Knudsen number Kn > 0 is defined as the ratio between the mean free path

(this is the average distance a particle travels between collisions in a gas) and the typical

observation length.

The collisions then are described by the right-hand side of the following equation

∂tf + v∂xf =
1

Kn

(
ρfMTf − f

)
. (4.67)

We are interested in the stationary boundary value problem:

v∂xf =
1

Kn

(
ρfMTf − f

)
, (4.68)

f(0, v) =M1(v)

∫
v′<0

|v′|f(0, v′)dv′, v > 0, (4.69)

f(1, v) =M2(v)

∫
v′>0

|v′|f(1, v′)dv′, v < 0, (4.70)
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where ρf (x), Tf (x) are the spatial density and the local temperature corresponding to f :

ρf (x) =

∫ ∞
−∞

f(x, v)dv, ρf (x)Tf (x) =

∫ ∞
−∞

v2f(x, v)dv. (4.71)

We denote by MTf (v) the Maxwellian with temperature Tf ,

MTf (v) =
1

(2πTf )1/2
exp

(
− 1

2Tf
v2

)
which is the non-linear term of the system, and by M1,M2 the Maxwellians at the

boundary temperatures T1, T2 respectively. We show existence of a non-equilibrium steady

state when the boundary temperatures are large and their difference is not small, in the

kinetic regime, when the Knudsen number is kept fixed.

Our proof differs from the previous perturbative techniques as we do not assume the

temperature difference to be small. It relies on a fixed point argument that relates the

non-linear BGK model to the linear BGK model, which is

v∂xf =
1

Kn
(ρ(x)MT (x) − f) (4.72)

with the same boundary conditions (4.69)-(4.70) and for temperature profile T (x) ∈ [T1, T2].

In particular, (i) we show existence and uniqueness of a solution f to (4.72)-(4.69)-(4.70)

by purely probabilistic techniques. Then the existence of a solution to (4.68)-(4.69)-(4.70)

is implied by a fixed point of the mapping F(T ) = τ , where τ(x) is the temperature profile

of the non-equilibrium steady state of (4.72).

The main result with all the details is:

Theorem 4.4 (Theorem 3.1 in Chapter 4). For every two fixed temperatures T1, T2

satisfying

(C1) (Kn)2T1 > γ2 and

(C2)
√
T2 −

√
T1 ≥ γ1(Kn)1/2T

1/4
2

for γ1, γ2 positive constants, there exists a steady state which satisfies equation (4.68) with

boundary conditions (1.2) and (1.3). Furthermore, this steady state has the following

properties:

• It has zero momentum uniformly in x ∈ (0, 1).

• It has constant density ρf (x) and the pressure Pf (x) is equal to
√
T1T2 asymptotically
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with T1. More specifically, for all x ∈ (0, 1),

1− γ0
1

(Kn)1/2

1

T
1/4
1

≤ρf (x) ≤ 1 + γ1
1

(Kn)1/2

1

T
1/4
1√

T1T2 .Pf (x) .
√
T1T2.

• Its temperature profile is 1/2-Hölder continuous and also it is asymptotically equal to
√
T1T2 with the deviation from

√
T1T2 decreasing as T1 increases: for all x ∈ (0, 1),

√
T1T2

(
1− γ1

1

(Kn)1/2

1

T
1/4
1

)
. Tf (x) .

√
T1T2

(
1 + γ0

1

(Kn)1/2

1

T
1/4
1

)
,

for some constants γ0, γ1 and (Kn) the constant in front of the collisional operator

in (4.68).

Quantitative Scaling limits for interacting particle systems.

This work in progress is a joint work with Daniel Marahrens and Clément Mouhot.

We intend to submit it for publication in the near future with additional results. The

exposition of the results we have so far is in Chapter 5.

The objective of this work is the rigorous derivation of macroscopic PDEs when one

starts from microscopic interacting particle systems and we present an abstract quantitative

method to prove the hydrodynamic limit, with a rate uniform in time (in the diffusive

scaling) and unified in the sense that it can be applied to several models, introduced in

Section 1.3. The method is also simpler compared with the existing literature.

It is inspired by the approach of F. Rezakhanlou in [Rez91] who proved the hydrody-

namic limit under hyperbolic scaling for the simple exclusion/zero-range process, and by

the approach of H.-T. Yau in [Yau91], who proved convergence in relative entropy with

respect to the local Gibbs measure for the Ginzburg-Landau process.

In particular, instead of working with the relative entropy as Yau did, we work with the

Wasserstein-1 distance with cost being the microscopic `1 distance among two processes:

Let µNt,1, µ
N
t,2 be two measures describing the state of the particle process at time t, we

define

W1(µNt,1, µ
N
t,2) := N−d

∑
x∈TdN

inf

∫∫
X2
N

|η(x)− ζ(x)|dµ̃Nt (η, ζ) (4.73)

where the infimum is taken over all the set of coupling measures on X2
N .

Due to the attractivity assumption we can properly define a coupling between two

copies of the same process, let us say with generator L̃. To fix ideas on the coupling, let

us consider just the zero-range process. For two copies of a zero-range process then, we
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define [Lig85], see also [Rez91, KL99], a coupling with generator L̃ : Cb(X
2
N)→ Cb(X

2
N)

given by

L̃Nf(η, ζ) := N2
∑
x,y

p(y − x)g(η(x)) ∧ g(ζ(x))(f(ηxy, ζxy)− f(η, ζ))

+N2
∑
x,y

p(y − x)
(
g(η(x))− g(η(x)) ∧ g(ζ(x))

)
(f(ηxy, ζ)− f(η, ζ))

+N2
∑
x,y

p(y − x)
(
g(ζ(x))− g(η(x)) ∧ g(ζ(x))

)
(f(η, ζxy)− f(η, ζ)).

(4.74)

The intuition behind this coupling is that the η-particles and the ζ-particles try to jump

together as much as possible (this is called the basic coupling or Wasserstein coupling).

The idea is to compare the law of our original process (simple-exclusion, zero-range or

Ginzburg-Landau process) with an ‘artefact’, which is chosen to be the local Gibbs state.

This comparison will take place through an appropriate coupling that will allows us to

employ the W1- distance as defined in (4.73). Let ft be a solution to our limit PDE:

∂tft = Lft (4.75)

for a differential operator L.

We call

ψNt =
dνNft(·)
dνNα

the density of the local Gibbs measure as was defined in Definition 3.1 (i.e. the Gibbs

measure with slowly varying parameter associated to ft) relative to a reference measure

with parameter α > 0.

The density ψNt can be shown to satisfy ∂tψ
N
t (ζ)−L∗NψNt (ζ) = EN (t, ζ)→ 0 as N diverges.

In other words, the local Gibbs state does not satisfy of course the Kolmogorov equation,

but it is a good approximation of the solution.

Then we consider the coupled density GN (η, ζ) on X2
N between the law of the stochastic

process fNt := dµNt /dν
N
α and the artificial process. This solves the equation

∂tG
N
t (η, ζ)− L̃∗NGN

t (η, ζ) = SN(t, η, ζ) :=
dνNα
dνNα

(η)⊗ EN(t, ζ) (4.76)

with initial data GN
0 (η, ζ) to be the optimal coupling between fN0 := dµN0 /dν

N
α and the

local Gibbs density ψN0 .

Having this set up, here are the key steps:

First step: Consistency Estimate. First we prove an estimate of the following form,

which we call a consistency estimate and it should be satisfied by the ‘artificial’ density
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ψNt : There exists a rate EN → 0 as N goes to infinity so that for all α ≥ 0,∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|(∂t − L∗)ψNt (ζ)dνNα (η)dνNα (ζ) . EN max
k∈{1,...,4}

‖Dk(ft − f∞)‖H

(4.77)

where (H, ‖ · ‖H) is the space of our solutions to the limit PDE, like H = L∞(Td) and

f∞ = limt→∞ ft.

Second step: Microscopic Stability Estimate. We adapt parts of the proof of [Rez91,

Theorem 3.1] to prove the pointwise estimate

L̃

(
N−d

∑
x

|η(x)− ζ(x)|

)
≤ 0 (4.78)

where L̃ is the generator of the coupled process. We call the density of our coupled process

GN acting on X2
N .

Third step: Macroscopic Stability Estimate. In the last step we prove stability

estimates on the limit PDE, which we call macroscopic stability. This concerns estimates

on the derivatives in an appropriate space of solutions for the limit PDE. More specifically

we would like to have that there exists K > 0, T ∈ (0,∞], so that

‖Dkft‖H ≤ K, for all t ∈ [0, T ] (4.79)

and multi-indices k so that |k| ≤ 4. When T =∞, there is R(t)
t→∞−→ 0 so that

‖Dk(ft − f∞)‖H .‖f0‖H R(t), and R(t) ∈ L1((0,∞))

for f∞ ∈ H.

The abstract theorem reads:

Theorem 4.5 (Theorem 1.1 in Chapter 5). Let d = 1, F ∈ Lip(R) and φ ∈ C∞c (Td).

Let f0 be the initial data to the hydrodynamical equation (4.75) and µN0 be the initial

distribution of the stochastic process. We also consider the density of the local Gibbs

measure that we call ψNt := dνNft(·)/dν
N
λ for some λ ≥ 0 and then the coupling GN

t between

ψNt and fNt := dµNt /dν
N
λ . We assume that for C0 < ∞ independent of N there exists a

rate RN → 0 as N →∞ so that∫
XN

∣∣∣∣∣N−d∑
x

η(x)φ
( x
N

)
−
∫
f0(u)φ(u)du

∣∣∣∣∣ dµN0 (η) ≤ C0RN ,∫
X2
N

∑
x

|η(x)− ζ(x)|GN
0 (dη, dζ) ≤ C0RN .

(4.80)

Then, assuming (4.77)-(4.78)-(4.79), for t > 0, there exists constant 0 < C1, C2 < ∞
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independent of N, t and r(t) which is in L1((0,∞)) if T = ∞ and r(t) = tK if T < ∞,

such that∣∣∣∣∣∣
∫
XN

F

N−d ∑
x∈TdN

η(x)φ
( x
N

)− F (∫
Td
ft(u)φ(u)du

)
dµNt (η)

∣∣∣∣∣∣ ≤ C1r(t)EN +RN + C2N
−d/(d+2)

where ft(·) solves the hydrodynamical equation

∂tf(t, u) = Lf(t, u), f(0, ·) = f0(u). (4.81)

We then prove (4.77)-(4.78)-(4.79) for the zero-range, simple exclusion and Ginzburg-

Landau type processes, so that we can apply the abstract Theorem to obtain a rate.

Spectral gap for the mean field O(n) models.

This paper is a joint work with Simon Becker and it has been published in Communica-

tions in Mathematical Physics, see [BM20] in the bibliography. It is presented in Chapter

6.

We study the spectral gap for the overdamped Langevin operator on a sphere or the

Ginzburg-Landau model. Here we write n for the spatial dimension and N for the number

of spins. We consider N spins interacting with each other on an n-dimensional sphere

Sn−1, through the mean-field Laplacian

(∆MFσ)(x) :=
1

N

∑
y∈{1,...,N}

[
σ(y)− σ(x)

]
(4.82)

where σ : {1, . . . , N} → Sn−1 is the spin configurations. The energy function is given by

the Curie-Weiss Hamiltonian6

H(σ) =
1

2

∑
x∈{1,...,N}

σ(x)(−∆MFσ)(x)− β−1
∑

x∈{1,...,N}

〈h, σ(x)〉 (4.83)

where the constant vector h ∈ Rn represents an external magnetic field, while β is the

inverse temperature. The O(n) model is the Ising model when n = 1, and it is also called

the rotator model when n = 2 and the classical Heisenberg model for n = 3, [BBS19]. The

critical temperature for the O(n)-models is when β = n.

We estimate the dependence in N of the spectral gap of the Langevin dynamics, i.e.

∂tf =
∑
x∈[N ]

〈
∇(x)

Sn−1 , β
−1∇(x)

Sn−1f + f∇(x)

Sn−1H
〉
Rn (4.84)

6We refer to the book [BBS19, Section 1.4] and the references therein.
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for all the mean-field O(n) models with n ≥ 1 and β ≥ n, i.e. both in the critical and

in the supercritical regimes (i.e. low temperature regime) and we include the case of

an external magnetic field h. We extend the results in [BB19] where Bauerschmidt and

Bodineau prove uniform in N spectral gap for sufficiently high temperatures.

The invariant distribution is the Gibbs measure

dρ(σ) := Z−1e−βH(σ) dS⊗NSn−1(σ)

with Z the normalizing constant and dSSn−1 is the normalized surface measure on the

n-sphere.

Note that the operators 〈f,−∆
(x)

Sn−1f〉 := 〈∇(x)

Sn−1f,∇(x)

Sn−1f〉 and ∇(x)

Sn−1 are the standard

Laplace-Beltrami and gradient operator on Sn−1 acting on spin x, while for a function

F : S0 → R the gradient is given by

(∇S0F )(σ) = F (σ)− F (−σ).

For the proof, we apply one step of renormalization [BBS19, Section 1.4] decomposing

the stationary measure dρ on (Sn−1)N into two measures, which we call the renormalized

measure and the fluctuation measure. The fluctuation measure dµϕ(σ) is a measure on

(Sn−1)N but on simpler form than the original O(n) measure and the renormalized measure

dνN(ϕ) is a measure on Rn such that

Eρ(F ) = EνN (Eµϕ(F )).

We skip in this part their specific form and we refer either to Chapter 6 or to [BBS19,

Lemma 1.4.3]. The fluctuation measure satisfies a Log-Sobolev inequality with a uniform in

N constant, [ABC+00, Led01, SC97, ZQM11], it suffices therefore to study the renormalized

measure.

Before I present the exact Theorems, let me explain with words our findings. Our

results for β > n can be summarized as follows. For n = 1 (Ising model), for a weak

magnetic field : a direct analysis shows an exponentially fast decaying of the spectral gap

in N , which is the optimal order. In contrast to that, for a magnetic field with strength

over its critical value, an asymptotic analysis of the eigenvalues of a Schrödinger operator

[Sim83] associated to the renormalized measure, yields uniformly bounded spectral gap in

N whereas for a magnetic field with strength exactly at its critical value the decay of the

spectral gap is no faster than a polynomially in N .

For n ≥ 2, similar analysis as in [Sim83] shows that: when h = 0 the gap decays as N−1

which is the optimal rate, while when h 6= 0 it is bounded uniformly in N .

Finally for the critical case β = n, we see a different behavior of the spectral gap:
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namely zero magnetic fields it decays at a polynomial rate N−1/2, which is optimal, while

for all h 6= 0 it remains uniformly bounded.

The specific statements with all the details and the exact parameters are as follows:

The first statement is about the Ising model case (n = 1).

Theorem 4.6 (Theorem 1.1 in Chapter 6, Supercritical Mean-field Ising models, β > 1).

Let N be the number of spins and n the number of components.

For the supercritical mean-field Ising model (n = 1, β > 1), the spectral gap λN of the

generator

• for the case of small magnetic fields |h| < hc, decays as N →∞ exponentially fast,

λN = e−N∆small(V )(1+O(1)), which is the optimal rate. In particular, for magnetic fields

h ∈ [0, hc)

∆small(V ) :=

∫ γ2(β)

γ1(β)

β (ϕ− tanh(βϕ+ h)) dϕ

where γ1(β) ≤ γ2(β) ∈ R are the two smallest numbers satisfying the condition

γ(β) = tanh(γ(β) β + h).

• For critical magnetic fields |h| = hc, the spectral gap does not decay faster than

O(N−1/3): λN & N−1/3.

• Finally, for strong magnetic fields |h| > hc, it is bounded away from zero uniformly

in N .

Where hc is defined as hc =
√
β(β − 1)− arccosh(

√
β).7

Theorem 4.7 (Theorem 1.2 in Chapter 6, Supercritical Mean-fieldO(n)-models, β > n ≥ 2).

Let N be the number of spins and n the number of components.

For the supercritical mean-field O(n)-models(n ≥ 2, β > n), the spectral gap λN of the

generator

• decays at the optimal rate N−1: λN = O(N−1), if there is no external magnetic field

h = 0.

• is bounded away from zero uniformly in N for all h ∈ Rn\{0}.

Theorem 4.8 (Theorem 1.3 in Chapter 6, Critical Mean-field O(n) models, β = n). For

all critical, β = n, h = 0 mean-field O(n)-models the spectral gap decays at the optimal rate

7We define the critical magnetic field strength hc in the Ising model hc(β) :=
√
β(β − 1)−arccosh(

√
β)

for temperatures β ≥ 1 as the supremum of all h > 0 such that x = tanh(βx + h) has three distinct
solutions for x ∈ [−1, 1].

56



N−1/2: λN = O(N−1/2). In particular, the rate N−1/2 is attained for the magnetization

M(σ) = N−1/2
∑
x∈[N ]

σ(x).

We emphasize that at the critical points (β = n, h = 0), the gap does no longer decay

once a non-zero magnetic field is present and in this case it stays uniformly bounded from

below:

Theorem 4.9 (Theorem 1.4 in Chapter 6, Mean-field O(n) models, β = n, h 6= 0 ). For

all, β = n and h 6= 0, the spectral gap of all mean-field O(n)-models uniformly bounded.
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Chapter 2

Quantitative Rates of Convergence to

Non-Equilibrium Steady State for a

Weakly Anharmonic Chain of

Oscillators

This chapter is published in the Journal of Statistical Physics [Men20].

We study a 1-dimensional chain of N weakly anharmonic classical oscillators coupled

at its ends to heat baths at different temperatures. Each oscillator is subject to pinning

potential and it also interacts with its nearest neighbors. In our set up both potentials are

homogeneous and bounded (with N dependent bounds) perturbations of the harmonic

ones. We show how a generalised version of Bakry-Emery theory can be adapted to this

case of a hypoelliptic generator which is inspired by F. Baudoin (2017). By that we

prove exponential convergence to non-equilibrium steady state in Wasserstein-Kantorovich

distance and in relative entropy with quantitative rates. We estimate the constants in the

rate by solving a Lyapunov-type matrix equation and we obtain that the exponential rate,

for the homogeneous chain, has order bigger than N−3. For the purely harmonic chain the

order of the rate is in [N−3, N−1]. This shows that, in this set up, the spectral gap decays

at most polynomially with N .

2.1 Introduction
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2.1.1 Description of the model

We consider a model for heat conduction consisting of a one-dimensional chain of N

coupled oscillators. The evolution is a Hamiltonian dynamics with Hamiltonian

H(p, q) =
∑

1≤i≤N

(
p2
i

2
+ Upin(qi)

)
+

N∑
i=0

Uint(qi+1 − qi),

where (p, q) belong in the phase space R2N and q0, qN+1 describe the boundaries which

here are considered to be fixed: q0 = qN+1 = 0. We denote by q = (q1, . . . , qN) ∈ RN the

displacements of the atoms from their equilibrium positions and by p = (p1, . . . , pN ) ∈ RN

the momenta. Each particle has its own pinning potential Upin and it also interacts with

its nearest neighbors through an interaction potential Uint. Notice that here all the masses

are equal and we take them mi = 1. So we consider a homogeneous chain, where both

the masses and the potentials that act on each oscillator, are the same. The classical

Hamiltonian dynamics is perturbed by noise and friction in the following way: the two

ends of the chain are in contact with heat Langevin baths at two different temperatures

TL, TR > 0. So our dynamics is described by the following system of SDEs:

dqi(t) = pi(t)dt for i = 1, . . . , N,

dpi(t) = (−∂qiH)dt for i = 2, . . . , N − 1,

dp1(t) = (−∂q1H − γ1p1)dt+
√

2γ1TLdW1(t),

dpN(t) = (−∂qNH − γNpN)dt+
√

2γNTRdWN(t)

(1.1)

where γi are the friction constants, Ti are the two temperatures and W1,WN are two

independent normalised Wiener processes.

The dynamics (1.1) is equivalently described by the following Liouville equation on the

law of the process

∂tf = L∗f with f(0, p, q) = f0(p, q) (1.2)

where L is the second order differential operator

L =
N∑
i=1

(pi∂qi − ∂qiH∂pi)− γ1p1∂p1 − γNpN∂pN + γ1TL∂
2
p1

+ γNTR∂
2
pN

(1.3)

which is the generator of the semigroup Pt acting on the space C2
b (R2N) of bounded

real-valued, C2 functions on the phase space. We denote by L∗ the generator of the dual

semigroup that acts on probability measures.
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2.1.1.1 State of the art

The model described by the SDEs (1.1), was first used to describe heat diffusion and

derive rigorously Fourier’s law (for an overview see [BLRB00], [Lep16, Dha08] and [FB19]).

Since then, it has been the subject of many studies, both from a numerical and from a

theoretical perspective. First, the purely harmonic case with several idealised reservoirs at

different temperatures has been solved explicitly in [RLL67]. In this paper the authors

found exactly how the non-equilibrium stationary state looks like: it is Gaussian in the

positions and momenta of the system. For the anharmonic chain there are no explicit

results in general. However it has been studied numerically for many different potentials

and many kinds of heat baths, including the Langevin heat baths that we consider here.

See for instance [ALS06] [GLPV00, LLP03] and references therein.

There are two facts in this model that make its rigorous study very challenging: first

of all, we do not know explicitly the form of the invariant measure of (1.1) and also

our generator is highly degenerate, having the dissipation and noise acting only on two

variables of momenta at the end of the chain. It is not difficult to see, though, that in

the equilibrium case, i.e. when the two temperatures are equal TL = TR = T = β−1,

the stationary measure is the Gibbs-Boltzmann measure dµ(p, q) = exp(−βH(p, q))dpdq:

after explicit calculations we have L∗e−βH(p,q) = 0 .

Since we are interested in the theoretical aspects of the model, we refer to [EPRB99a,

EPRB99b], which is the first rigorous study of the anharmonic case. The existence of a

steady state has only been obtained in some cases where the potentials act like polynomials

near infinity. In particular under the following assumptions on the potentials:

lim
λ→∞

λ−kU(λq) = ak|q|k and lim
λ→∞

λ1−kU ′(λq) = kak|q|k−1sign(q)

for constants ak > 0, where for the interaction: k ≥ 2 and for the pinning k ≥ 1 (the

exponent k for the pinning was improved in [Car07]) and assuming that the interaction

potential is at least as strong as the pinning, the existence and uniqueness of an invariant

measure was first proved in [EPRB99a] using functional analytic methods. In particular it

was proved that the resolvent of the generator of (1.1) is compact in a suitable weighted

L2 space. Later it was proved in [RBT02] that the rate of convergence to the steady state

is exponential using probabilistic tools. Note that in the above-mentioned papers, the

coupling of the chain with the heat baths is slightly different and a bit more complicated

than considering Langevin thermostats, with physical interpretation: the model of the

reservoirs is the classical field theory given by linear wave equations with initial conditions

distributed with respect to appropriate Gibbs measures at different temperatures, see also
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[RB06b, Section 2]. Later, an adaptation of a very similar probabilistic proof was provided

in [Car07] for the Langevin thermostats. The difference with the Langevin heat baths

is that the dissipation and the noise act on the momenta only indirectly through some

auxiliary variables. Finally let us mention that the relaxation rates have been studied for

short chains of rotors with Langevin thermostats in [CP17, CEP15].

Regarding the existence, uniqueness of a non-equilibrium stationary state and exponen-

tial convergence towards it in more complicated networks of oscillators (multi-dimensional

cases) see [CEHRB18]. The proofs there are inspired by the above-mentioned works in

the 1-dimensional chains.

There are also cases where there is no convergence to equilibrium, when for instance

l > k, i.e. when the pinning is stronger than the coupling potential, see for example

[Hai09, HM09]. In [HM09] the resolvent of the generator fails to be compact or/and there

is lack of spectral gap, under some scenarios included in l > k. In particular, when the

interaction is harmonic, 0 belongs in the essential spectrum of the generator as soon as

the pinning potential is of the form |q|k for k > 3. The conjecture is that this is true as

soon as k > 2n
2n−1

if n is the center of the chain.

2.1.2 Notation

{ei}ni=1 denote the elements of the canonical basis in Rn and |·| to denote the Euclidean norm

on Rn, from the usual inner product 〈·, ·〉. For a square matrix A = (aij)1≤i,j≤n ∈ Rn×n,

we write ‖A‖2 for the operator (spectral) norm, induced by the Euclidean norm for vectors

:

‖A‖2 = max
x∈Rn

|Ax|2
|x|2

= (maximum eigenvalue of ATA)1/2.

We also write A1/2 for the square root of a (positive definite) matrix A, i.e. the matrix

such that A1/2A1/2 = A, for A1/2 a positive definite matrix as well. Moreover, by C∞b (Rn)

we denote the space of the smooth and bounded functions, by ∇z we denote the gradient

on z-variables in a metric space X with respect to the Euclidean metric. We write P2(Rn)

for the space of the probability measures on Rn that have second moment finite, i.e.

P2(Rn) =
{
ρ ∈ P(Rn) :

∫
Rn
|x|2dρ(x) <∞

}
.

[N ] denotes the set {1, 2, . . . , N} and we use the notation g(x) . O
(
f(x)

)
to indicate that

there is a dimensionless constant C > 0 so that |g(x)| ≤ C|f(x)|.
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2.1.3 Set up and main results

Let us state two assumptions: one on the boundary conditions of the chain and one on

the potentials.

• (H1) Regarding the boundary conditions, we consider the oscillators chain with

rigidly fixed edges : the left boundary of the chain is an oscillator labelled 0 and the

right is an oscillator labelled N + 1 under the hypothesis that q0 = qN+1 = 0. The

first and the last particle are pinned with additional harmonic forces, corresponding

to their attachment to a wall.

Note that these boundary conditions and heat baths modelled by two Ornstein-

Uhlenbeck processes at both ends as explained above, is the same model as in

[RLL67] and is known as the Casher-Lebowitz model, since it is also one of the models

considered in [CL71] 1.

• (H2) The chain is weakly anharmonic: both pinning and interaction potentials differ

from the quadratic ones by perturbing potentials UN
pin, U

N
int ∈ C2(R) with bounded

Hessians in the following sense:

sup
qi∈R,

i=1,...,N

‖Hess UN
pin(qi)‖2 ≤ CN

pin and sup
ri∈R,

i=1,...,N

‖Hess UN
int(ri)‖2 ≤ CN

int (1.4)

where ri := qi+1 − qi, i = 1, . . . , N . The positive constants CN
pin, CN

int scale with the

dimension like

CN
pin + CN

int ≤ C0N
−9/2 (1.5)

and C0 is a dimensionless constant.

Under Assumptions (H1) and (H2) for a ≥ 0, c > 0, the Hamiltonian takes the form

H(p, q) =
N∑
i=1

(
p2
i

2
+ a

q2
i

2
+ UN

pin(qi)

)
+

N−1∑
i=1

(
c
(qi+1 − qi)2

2
+ UN

int(qi+1 − qi)
)

+ (1.6)

+
cq2

1

2
+
cq2
N

2

and denoting by L the infinitesimal generator, we look at the Liouville equation

1The other one considered for studying the N -dependence of the energy flux was first introduced
by Rubin-Greer, [RG71], where the heat baths are semi-infinite chains distributed according to Gibbs
equilibrium measures of temperatures TL, TR (free boundaries). In both [CL71] and [RG71] the purpose
was to study the heat flux behaviour in disordered harmonic chains
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∂tf = L∗f , where the generator of the dynamics now is

L = p · ∇q−q ·B∇p −
N∑
i=1

(UN
pin)′(qi)∂pi − γp1∂p1 − γpN∂pN + γTL∂

2
p1

+ γTR∂
2
pN
−

−
N∑
i=1

(
(UN

int)
′(qi+1 − qi)∂pi − (UN

int)
′(qi − qi−1)∂pi

)
where we take all the friction constants equal γ1 = γN = γ, for the two temperatures

TL, TR we assume that they satisfy TL = T + ∆T , TR = T −∆T , for some temperature

difference ∆T > 0. Also, B is the symmetric tridiagonal (Jacobi) matrix

B :=



(a+ 2c) −c 0 0 . . . 0 0 0

−c (a+ 2c) −c 0 · · · 0 0 0

0 −c (a+ 2c) −c . . . 0 0 0
...

...
...

...
. . . . . . . . .

0 0 0 0 −c (a+ 2c) −c
0 0 0 0 . . . 0 −c (a+ 2c)


. (1.7)

It is convenient to see the above form of the generator in the following block-matrix

form:

L = −zTM∇z −∇qΦ(q) · ∇p +∇p · FΘ∇p (1.8)

where z = (p, q)T ∈ R2N , Φ(q) corresponds to the perturbing potentials so that

Φ(q) =
N∑
i=1

UN
pin(qi) +

N∑
i=1

UN
int(qi+1 − qi) + UN

int(q1) + UN
int(−qN),

the matrix F is the friction matrix

F = diag(γ, 0, . . . , 0, γ)

the matrix Θ is the temperature matrix

Θ = diag(TL, 0, . . . , 0, TR)

and M in blocks is the following

M =

[
F −I
B 0

]
(1.9)
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where I is the identity matrix, so that it corresponds to the transport part of the operator,

while B and F correspond to the harmonic part of the potentials and the drift from both

ends, respectively.

Motivation. This study is motivated by a discussion opened in C. Villani’s memoir on

hypocoercivity, see Section 9.2 in [Vil09a], concerning open questions on the heat con-

duction model as defined above, and how to approach them by hypocoercive techniques.

This chain of coupled oscillators corresponds to a hypocoercive situation, where the diffu-

sion only at the ends of the chain leads to a convergence to the stationary distribution

exponentially fast, under the following assumptions on the potentials: strict convexity

on the interaction potential (being stronger than the pinning one) and bounded Hessians

for both potentials. In particular, he points out that it might be possible to recover the

previous results of exponential convergence in the weighted H1(µ)-norm for this different

class of potentials (than the potentials assumed in [EPRB99b] for instance) by applying a

generalised version of Theorem 24 in [Vil09a]. For that, one needs to know some properties

of the, non-explicit, non-equilibrium steady state µ: for instance, if it satisfies a Poincaré

inequality or if the Hessian of the logarithm of its density is bounded.

Finally we note that entropic hypocoercivity has been applied in [LO17] in order to develop

estimates and to get quantitative convergence results to the limit equation, for anharmonic

chains but with thermostats in contact with all the particles along the chain.

Main results. Here, considering a perturbation of the harmonic chain (homogeneous case),

instead we follow an approach that combines hypocoercivity techniques and the Bakry-

Émery theory of Γ calculus and curvature conditions as in [BE85]. We prove the validity

of the Bakry-Émery criterion in a modified setting. This is explained in more details and

is implemented in Section 3. The whole idea was inspired by F. Baudoin in [Bau17]: using

this combination, Baudoin proved exponential convergence to equilibrium for the Kinetic

Fokker-Planck equation in H1-norm and in Kantorovich-Wasserstein distance.

Thus we show, for the dynamics (1.1) as well, exponential convergence to the stationary

state in Kantorovich-Wasserstein distance and in relative entropy and we get quantitative

rates of convergence in these distances, i.e. we obtain information on the N -dependence of

the rate. In particular our estimates show that the convergence rate in the harmonic chain

approach 0 as N tends to infinity at a polynomial rate with order between C1/N
3 and

C2/N and that the scaling of the rate is bigger than C3N
−3 in the weakly anharmonic chain.

In order to quantify the above rates, we estimate ‖bN‖2, where bN is a block matrix

defined in Section 3 as a solution of a matrix equation, (1.10). Since ‖bN‖2 appears in the

rates in the Theorems 1.4, 1.6 and the Proposition 1.2, we start by stating this result:
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Proposition 1.1. Let ΠN = diag(2TL, 1, . . . , 1, 2TR, 1, 1, . . . , 1, 1) ∈ R2N×2N and M ∈
R2N×2N given by (1.9), with pinning and interaction coefficients a ≥ 0, c > 0. For all

N ∈ N, there exists a unique symmetric positive definite block matrix bN ∈ R2N×2N such

that

bNM +MT bN = ΠN . (1.10)

Moreover there exists Ca,c > 0, that depends only on the coefficients a, c, such that for all

N ∈ N, ‖bN‖2 ≤ Ca,cN
3 and ‖b−1

N ‖ ≤ Ca,c.

Second, we state the following Proposition, that is restricted to the harmonic chain,

and provides us with a lower bound on the spectral gap (given the estimates on ‖bN‖2 by

Proposition 1.1):

Proposition 1.2 (Lower bound on the spectral gap of the harmonic chain). For the

spectral gap ρ of the chain described by the generator (1.8) without the perturbing potentials

(the harmonic chain), which is given by the relation

min{ρ > 0 : (z − L)−1 is invertible with bounded inverse, for − ρ ≤ Re(z) < 0},

we have the following property: there exists κ > 0 such that for all N ∈ N,

ρ ≥ κN−3.

This lower bound is in fact the optimal rate in the case of the harmonic homogeneous

chain. In the work [BM22, Proposition 9.1] an upper bound is provided as well and thus

the scaling of ρ is exactly N−3. This is done by exploiting the form of the matrix M ,

(1.9), and more specifically using information on the spectrum of the discrete Laplacian.

In [BM22] we study also the case of disordered chains by considering different pinning

coefficients for each oscillator. Compared to the homogeneous case, as in this paper, where

the decay is polynomial, in a disordered chain the spectral gap decays at an exponential

rate in terms of N . Regarding the adaptation of the generalised Bakry-Emery theory

presented in this paper to a non-homogeneous scenario, we can prove existence of a

spectral gap for the weakly anharmonic chain as soon as the matrix M has a spectral

gap (and this is the case as soon as all the interaction coefficients ci 6= 0). The difficulty

in a non-homogeneous scenario will be the second part (as described in the Section 2):

to solve the high-dimensional matrix equation (1.10) in order to estimate the spectral norm.

Remark 1.3. We expect the bound on the ‖bN‖2, from Proposition 1.1, to be optimal,

since from the proof of Proposition 1.2 combined with [BM22, Proposition 9.1]: there exist
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c1 > 0, such that

c1N
−3 ≥ ρ ≥ 1

‖bN‖2

.

In the following, we consider bN as given by Proposition 1.1. Before we state the

first main Theorem, we recall the definition of the Kantorovich-Rubinstein-Wasserstein

L2-distance W2(µ, ν) between two probability measures µ, ν:

W2(µ, ν)2 = inf

∫
RN×RN

|x− y|2dπ(x, y)

where the infimum is taken over the set of all the couplings, i.e. the joint measures π on

RN × RN with left and right marginals µ and ν respectively.

It is easy to see that W2 is indeed a metric. We restrict ourselves on the subspace

P2(R2N), where µ and ν have second moments finite, so that their distance W2(µ, ν) will

be finite. For more information on this distance we refer the reader for instance to [Vil09b]

and references therein.

Theorem 1.4. We consider a chain of coupled oscillators whose dynamics are described by

the system (1.1) under Assumptions (H1) and (H2). For a fixed number of particles N ,

there is a unique stationary state f∞, in particular, for initial data f 1
0 , f

2
0 of the evolution

equation, we have the following contraction property:

W2(P ∗t f
1
0 , P

∗
t f

2
0 ) ≤ Ca,cN

3
2 e−

λ0
N3 t W2(f 1

0 , f
2
0 ) (1.11)

for Ca,c, λ0 dimensionless constants.

Moreover, in the set up of Theorem 1.4, we get some qualitative information about the

non-equilibrium steady distribution, like the validity of a Poincaré inequality and even

better, a Log-Sobolev inequality:

Proposition 1.5 (Log-Sobolev inequality). Let T be the quadratic form

T (f, g) = ∇zf
T bN∇zg +∇zg

T bN∇zf.

Under Assumption (H2), the unique invariant measure µ = f∞ from the Theorem 1.4

satisfies a Log-Sobolev inequality (LSI(CN)) :∫
R2N

f log f dµ−
∫
R2N

f dµ log

(∫
R2N

f dµ

)
≤ CN

∫
R2N

T (f, f)

f
dµ. (1.12)

where

CN :=
γTL‖b−1

N ‖2

2
(

min(1, 2TR)‖bN‖−1
2 − (CN

pin + CN
int)‖bN‖

1/2
2 ‖b−1

N ‖
1/2
2

) ≤ γTLCa,cλ
−1
0 N3
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where γ, TL, Ca,c, λ0 := λ0(C0) are all dimensionless constants with the prefactor in (1.5),

C0, to satisfy C0 < min(1, 2TR)C−2
a,c .

Consequently we have convergence to the non-equilibrium steady state in Entropy.

Let us first define the following information-theoretical functionals. For two probability

measures µ and ν on R2N with ν � µ, we define the Boltzmann H functional

Hµ(ν) =

∫
R2N

h log h dµ, ν = hµ (1.13)

and the relative Fisher information

Iµ(ν) =

∫
R2N

|∇h|2

h
dµ, ν = hµ. (1.14)

We have entropic convergence in the following sense, as in [Vil09a, Section 6]:

Theorem 1.6. We consider a chain of coupled oscillators whose dynamics are described by

the system (1.1) under Assumptions (H1) and (H2). For a fixed number of particles N ,

assuming that (i) µ is the invariant measure for Pt and (ii) that it satisfies a Log-Sobolev

inequality with constant CN > 0, for all f > 0 with

E(f) <∞, and

∫
fdµ = 1,

we have a convergence to the non-equilibrium steady state in the following sense:

Hµ(Ptfµ) + Iµ(Ptfµ) ≤ λa,cN
3e−λ0N

−3t
(
Hµ(fµ) + Iµ(fµ)

)
(1.15)

for dimensionless constants λa,c, λ0.

From Theorem 1.4 we get an exponential rate of order bigger than N−3 for the weakly

anharmonic chain. In the purely harmonic case, we have that the convergence rate is

between C1N
−3 and C2N

−1 for some constants C1, C2 that are independent of N .

Remark 1.7. Note that a generalised version of Γ calculus has been applied for a toy model

of the dynamics (1.1) by P. Monmarché, [Mon19]: working with the unpinned, non-kinetic

version, with convex interaction and given that the center of the mass is fixed, he proves

the same kind of convergences and ends up with explicit and optimal N-dependent rates,

of order O(N−2), for the overdamped dynamics.

2.1.4 Plan of the Chapter

Sections 2 to 5 concern the proofs of the convergence to the steady state by hypocoercive

arguments (applying the generalized Bakry-Emery criterion) while Section 6 is devoted to
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estimating the spectral norm of bN , which is crucial in the final estimate for the scaling of

the spectral gap. In particular, Section 2 contains an introduction to Bakry-Emery theory

and an explanation of the method that is used. In Section 3 we obtain the estimates

that lead to the proof of Proposition 1.5. In Section 5 and Section 4 we give the proof of

Theorem 1.6 and Theorem 1.4 respectively. Finally in Section 6 we prove Propositions 1.1

and 1.2.

2.2 Carré du Champ operators and curvature condi-

tion

2.2.1 Introduction to Carré du Champ operators

Consider a Markov semigroup Pt with at least one invariant measure µ and infinitesimal

generator L : D(L) ⊂ L2(µ) → L2(µ). Here we restrict ourselves to the case of the

diffusion operators and we associate with the operator L, a bilinear quadratic differential

form Γ, the so-called Carré du Champ operator, which is defined as follows: for every pair

of functions (f, g) in C∞ × C∞

Γ(f, g) :=
1

2

(
L(fg)− fLg − gLf

)
. (2.16)

In other words Γ measures the default of the distributivity of L. Then we define its iteration

Γ2, where instead of the multiplication we use the action of Γ:

Γ2(f, g) :=
1

2

(
L(Γ(f, g))− Γ(f, Lg)− Γ(g, Lf)

)
. (2.17)

From the theory of Γ-calculus we have that a curvature condition of the form

Γ2(f, f) ≥ λΓ(f, f) (2.18)

for all f in a suitable algebra A dense in the L2(µ)-domain of L and λ > 0 is equivalent

to the following gradient estimate

Γ
(
Ptf, Ptf

)
≤ e−2λtPt(Γ(f, f)), t ≥ 0

where Pt is the semigroup generated by L. The uniqueness of the invariant measure then

follows from the contraction property in W2 distance (which is equivalent to the gradient

estimate above thanks to Kuwada’s duality, see [Kuw10] or Theorem 4.1 later on). This

also implies a Log-Sobolev inequality (and thus a Poincaré inequality), see [BE85] or

[Bak06, Section 3].
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Attempt to apply the classical Γ theory to the generator L given by (1.8): For

the generator of the dynamics (1.1), given by (1.8), we can not bound Γ2 by Γ from below.

Explicit calculations give

Γ(f, f) = 2γ1TL(∂p1f)2 + 2γNTR(∂pNf)2

while

Γ2(f, f) = 2(γ1TL)2(∂2
p1
f)2 + 2(γNTR)2(∂2

pN
f)2 + 2TLγ

2
1(∂p1f)(∂q1f)+

+2TRγ
2
N(∂pNf)(∂qNf) + Γ(f, f).

Since we can not control the terms ∂pif∂qif, we can not bound Γ2 from below by Γ. In

cases like this, we say that the particle system has −∞ Bakry-Emery curvature.

2.2.2 Description of the method

In order to overcome this problem, we are doing the following:

(1) First we modify the classical Γ theory: we define a new quadratic form, different,

but equivalent, to the |∇zf |2 that will play the role of the Γ functional. This will spread

the noise from p1 and pN to all the other degrees of freedom as well. The general idea

comes from Baudoin [Bau17]. We make a suitable choice of a positive definite matrix,

bN ∈ R2N×2N , to define a new quadratic form that will replace the Γ functional, so that we

obtain a ’twisted’ curvature condition: an estimate of the form (2.18). This implies also a

modified gradient estimate, and thus a Poincaré and Log-Sobolev inequality. We choose

this matrix to be the unique solution of a Lyapunov equation with positive definite r.h.s.:

bNM +MT bN = ΠN > 0.

In general in order to deal with a hypocoercive situation in H1- setting, one can

perturb the norm to an equivalent norm, so that exponential convergence results can be

deduced with this new norm. The idea is originally due to Talay in [Tal02] and it was

later generalised by Villani in [Vil09a]. Then one can have convergence in the usual norm

thanks to their equivalence. Here, instead of the norm, we modify the gradient and thus

the Γ Carré du Champ, and work with a generalised Γ- theory.

The idea of working with the matrix that solves the above-mentioned Lyapunov equation

came from the fact that (i) we need to control from below the quantity bNM +MT bN and
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(ii) in the linear chain, the covariance matrix b0 ∈ R2N×2N solves

b0M +MT b0 = diag (2TL, 0, . . . , 2TR, 0, . . . , 0) (2.19)

and determines the stationary solution of the corresponding Liouville equation. Therefore,

tackling the hypoellipticity problem, i.e. spreading the dissipation to all the degrees of

freedom, corresponds to working with a Lyapunov equation with positive definite r.h.s. A

way to think of it is as a sequence of Lyapunov equations:

b0M +MT b0 = diag (2TL, 0, . . . , 2TR, 0, . . . , 0)

b1M +MT b1 = diag (2TL, 0, . . . , 0, 2TR, 1, 0, . . . , 0, 1) := Π1

b2M +MT b2 = diag (2TL, 1, 0, . . . , 0, 1, 2TR, 1, 1, 0, . . . , 0, 1, 1) := Π2

...

bNM +MT bN = diag(2TL, 1, . . . , 1, 2TR, 1, 1, . . . , 1, 1) := ΠN

so that in each step we add a positive entry in the diagonal of the r.h.s. from both sides.

This corresponds to spreading the noise and dissipation to the next oscillator from both

ends until the center of the chain, like the commutators would do in a classical hypoelliptic

setting, see also Figure 2.1. So in the last step we have ΠN > 0 which corresponds to

having spread the noise everywhere in the space. This allows us to prove the validity of

the generalised Bakry-Emery criterion (3.23), which is the key estimate in order to have

exponential convergence to the non-equilibrium steady state.

(2) In order to make our estimates quantitative, we estimate the spectral norm of

the matrix bN and its inverse. Regarding the bound on the norm of bN , we estimate its

entries using that it solves the Lyapunov equation, while for the norm of b−1
N , we compare

it to the norm of b−1
0 which is uniformly bounded in N . This corresponds to the proof of

Proposition 1.1 which is the subject of Section 6.

For those familiar with Hörmander’s method we describe briefly here the similarity with

the spreading of dissipation-mechanism: in Hörmander’s theory the smoothing mechanism is

the one transferred through the interacting particles inductively by the use of commutators:

the generator has the form

L = X0 +X2
1 +X2

N

where

X0 = p · ∇q −∇qH · ∇p − γp1∂p1 − γpN∂pN and Xi =
√
Ti∂pi .
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p1

��

p2

��

· · · · · · pN−1

��

pN

��
q1

>>

q2

==

· · · · · · qN−1

cc

qN

cc

Figure 2.1: Spreading of dissipation by commutators as in Hörmander’s hypoellipticity
theory.

Then [∂p1 , X0] = −∂p1 +∂q1 . Now commuting ∂q1 with the first order terms of the generator:

[∂q1 , X0] = ∂q1q1H∂p1 − ∂q1q2H∂p2 . Given that ∂q1q2H is non-vanishing we have ’spread the

smoothing mechanism’ to p2. Continuing like that, commuting the ’new’ variable with the

first order terms of L, inductively we cover all the particles of the chain.

2.3 Functional inequalities in the modified setting

In order to apply a ’twisted’ Bakry-Emery machinery, introduced by Baudoin in Section

2.6 of [Bau17], we work with the positive definite matrix bN chosen to be the solution

of the Lyapunov equation (1.10). The following Proposition gives us existence of such a

solution.

Proposition 3.1. There exists a positive solution to (1.10) if and only if the r.h.s. of it,

is positive definite and all the eigenvalues of M have positive real parts.

Proof. It is a matrix reformulation of a well known and classical result of Lyapunov that

can be found for instance in [Gan59, page 224] or [Lia47, Section 20].

The eigenvalues of M have strictly positive real part ([JPS17, Lemma 5.1]) and the

right hand side of (1.10) is positive definite. Therefore there exists a positive solution of

(1.10). Also, we can easily see that the solution is given by the formula

bN =

∫ ∞
0

e−tM
T

ΠNe
−tMdt.

We define the following quadratic quantity for f, g ∈ C∞(R2N),

T (f, g) := ∇zf
T bN∇zg +∇zg

T bN∇zf (3.20)

so that

T (f, f) = 2∇zf
T bN∇zf.
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Then we consider the functional

T2(f, f) =
1

2

(
LT (f, f)− 2T (f,Lf)

)
.

Here T (f, f) is always positive since bN ≥ 0 (and in fact positive definite since bN > 0:

this is proven in the last part of the proof of Proposition 1.1). In contrast with the original

operator Γ, our modified quadratic form T is related to L only indirectly through the

different steps of commutators.

We have an equivalence of the following form between T and |∇z|2:

1

‖b−1
N ‖2

|∇zf |2 ≤ T (f, f) ≤ ‖bN‖2|∇zf |2. (3.21)

Combining this with the conclusion of Proposition 1.1, we write

C−1
a,c |∇f |2 ≤ T (f, f) ≤ Ca,cN

3|∇f |2.

Proposition 3.2. With the above notation, under Assumption (H2), for all N ∈ N there

exists constant

λN = min(1, 2TR)‖bN‖−1
2 − (CN

pin + CN
int)‖bN‖

1/2
2 ‖b−1

N ‖
1/2
2 (3.22)

such that for f ∈ C∞(R2N),

T2(f, f) ≥ λNT (f, f). (3.23)

Proof. We use the form of the generator L as in (1.8):

L = −zTM∇z −∇qΦ(q) · ∇p + γTL∂
2
p1

+ γTR∂
2
pN

where Φ is the function that corresponds to the perturbing potentials. We write

2T2(f, f) = LT (f, f)− 2T (f,Lf) = LT (f, f)− 2∇zf
T bN∇zLf − 2∇zLfT bN∇zf.

About the (−zTM∇z) -part of L, the last equation of the above formula gives

2∇zf
T bNM ∇zf + 2∇zf

TMT bN ∇zf.

Similarly, concerning the (−∇qΦ(q) · ∇p) -part of L we get

∇zf
T bNHess(Φ)T ∇zf +∇zf

THess(Φ)bN ∇zf
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and finally regarding the second order terms of the generator we end up with

4γTL ∇z∂p1f
T bN ∇z∂p1f + 2γTL∇z∂

2
p1
fT bN ∇zf + 2γTL∇zf

T bN ∇z∂
2
p1
f

− 2γTL∇zf
T bN ∇z∂

2
p1
f − 2γTL∇z∂

2
p1
fT bN ∇zf

+ 4γTR ∇z∂pNf
T bN ∇z∂pNf + 2γTR∇z∂

2
pN
fT bN ∇zf + 2γTR∇zf

T bN ∂2
pN
∇zf

− 2γTR∇zf
T bN ∇z∂

2
pN
f − 2γTR∇z∂

2
pN
fT bN ∇zf.

We eventually write

T2(f, f) = ∇zf
T bNM ∇zf +∇zf

TMT bN ∇zf +∇zf
T bNHess(Φ)T ∇zf

+∇zf
THess(Φ)bN ∇zf + 2γTLT (∂p1f, ∂p1f) + 2γTRT (∂pNf, ∂pNf)

≥ ∇zf
T (bNM +MT bN)∇zf +∇zf

T bN
(
Hess(UN

pin) + Hess(UN
int)
)
∇zf

+∇zf
T
(
Hess(UN

pin) + Hess(UN
int)
)T
bN∇zf

= ∇zf
T (bNM +MT bN)∇zf +∇zf

T (bNHess(UN
pin) + Hess(UN

pin)T bN)∇zf

+∇zf
T
(
bNHess(UN

int) + Hess(UN
int)

T bN
)
∇zf

where for the second inequality we used that the terms T (∂pif, ∂pif) for i = 1, N , are

positive. We write the second and third term of the last equation as

∇zf
T (bNHess(UN

pin))∇zf = ∇zf
T b

1/2
N b

1/2
N Hess(UN

pin)b
−1/2
N b

1/2
N ∇zf

= (b
1/2
N ∇zf)T (b

1/2
N Hess(UN

pin)b
−1/2
N (b

1/2
N ∇zf)

and then from the boundedness assumption on the operator norms of the Hessians for

both perturbing potentials and the Lyapunov equation (1.10), we get the following

T2(f, f) ≥ ∇zfπN∇zf
T − ‖b1/2

N Hess(UN
pin)b

−1/2
N ‖2T (f, f)− ‖b1/2

N Hess(UN
int)b

−1/2
N ‖2T (f, f)

≥ min(1, 2TL, 2TR)|∇zf |2 − sup
z
‖Hess(UN

pin)(z)‖2‖bN‖1/2
2 ‖b−1

N ‖
1/2
2 T (f, f)−

− sup
z
‖Hess(UN

int)(z)‖2‖bN‖1/2
2 ‖b−1

N ‖
1/2
2 T (f, f)

≥ min(1, 2TR)‖bN‖−1
2 T (f, f)− (CN

pin + CN
int)‖bN‖

1/2
2 ‖b−1

N ‖
1/2
2 T (f, f).

We conclude by gathering the terms.

The assumption (H2) combined with the conclusion of the Proposition 1.1 ensures us

that λN is positive, by choosing suitable pre-factors, as we do in the proofs of the main

Theorems 1.4 and 1.6. We state now the following lemma that gives the ’twisted’ gradient

bound.

Lemma 3.3 (Gradient bound). Under Assumption (H2), for all N ∈ N, t ≥ 0, (p, q) ∈
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R2N and f ∈ C∞c (R2N), we have the following twisted gradient estimate

T (Ptf, Ptf)(p, q) ≤ e−2λN tPt(T (f, f))(p, q) (3.24)

for λN given by Proposition 3.2.

Proof. We shall first present a formal derivation of the estimate (3.24). If T (Ptf, Ptf) is

compactly supported we consider the functional, for fixed t > 0, (p, q) ∈ R2N ,

Ψ(s) = Ps
(
T (Pt−sf, Pt−sf)

)
(p, q), s ∈ [0, t]

for f ∈ C∞c (R2N). Since from the semigroup property we have

d

ds
Ps = LPs = PsL,

by differentiating and using the above inequality we get

d

ds
Ψ(s) = 2Ps

(
T2(Pt−sf, Pt−sf)

)
≥ 2λNPs

(
T (Pt−sf, Pt−sf)

)
= 2λNΨ(s)

and since Ψ(0) = T (Ptf, Ptf), Ψ(t) = Pt(T (f, f)), by Grönwall’s lemma we get the desired

inequality for every smooth and bounded function f .

In general we need T (Ptf, Ptf) to belong in L∞(R2N) because then we know that

Ps
(
T (Pt−sf, Pt−sf)

)
is well defined. So we do the following:

First we take W (p, q) = 1 + |p|2 + |q|2 as a Lyapunov structure that satisfies the

following conditions: W > 1, LW ≤ CW , the sets {W ≤ m} are compact for each m, and

T (W ) ≤ CW 2. This W satisfy the conditions thanks to the bounded-Hessians assumption,

i.e. |∇(UN
int + UN

pin)| will be Lipschitz. In particular, for the inequality LW ≤ CW using

Cauchy-Schwarz and Young’s inequalities, we write

LW = 2p · q − 2q ·Bp− 2p · ∇qΦ− 2γ1p
2
1 − 2γNp

2
N + 2TLγ1 + 2TRγN

≤ 2|p||q|+ 2|Bq||p|+ 2|∇qΦ||p|+ 2TLγ1 + 2TRγN

≤ |p|2 + |q|2 + CClip,‖B‖2(|p|
2 + |q|2) + 2TLγ1 + 2TRγN

≤ max
{

max(1, CClip,‖B‖2), 2TLγ1 + 2TRγN
}

(1 + |p|2 + |q|2) = C1W

while the inequality T (W ) ≤ C2W
2 obviously holds. So we end up with the same constant

by choosing C := max{C1, C2}.

Now using the function W combined with a localization argument as in the work
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by F.Y. Wang [Wan, Lemma 2.1] or [Bau, Theorem 2.2] we prove the boundedness of

T (Ptf, Ptf). For this we approximate the generator Ln with truncated operators so that

the approximating diffusion processes remain in compact sets. Consider h ∈ C∞c ([0,∞))

decreasing such that h|[0,1] = 1 and h|[2,∞) = 0 and define

hn = h(W/n) and Ln = h2
nL.

Then Ln has compact support in Kn := {W ≤ 2n}, in the sense that it is 0 outside of it,

due to the definition of hn. Let P n
t be the semigroup generated by Ln, which is given as

the unique bounded solution of

LnP n
t f = ∂tP

n
t f for f ∈ L∞(R2N).

Then we also have that for every bounded f ∈ L∞(R2N), pointwise

P n
t f

n→∞→ Ptf.

We do the ’interpolation semigroup argument’ as before for Ln and for f ∈ C∞c (R2N)

supported in {W ≤ n}. Define

Ψn(s) = P n
s (T (P n

t−sf, P
n
t−sf))(p, q), s ∈ [0, t]

for fixed t > 0, n ≥ 1 applied to a fixed point (p, q) in the support inside the set {W ≤ n}.
It is true, due to the properties of W , that T (P n

t f, P
n
t f) ≤ Cf,t with Cf,t independent of

n and so we have a bound on T (P n
t f, P

n
t f) uniformly on the set {W ≤ n}. Indeed

Ψ′n(s) = P n
s (LnT (P n

t−sf, P
n
t−sf)− 2T (LnP n

t−sf, P
n
t−sf))

= P n
s (2h2

nT2(P n
t−sf, P

n
t−sf)− 4hnLP n

t−sfT (hn, P
n
t−sf))

≥ P n
s (2h2

nλNT (P n
t−sf, P

n
t−sf)− 4hnLP n

t−sfT (hn, P
n
t−sf))

≥ P n
s (2h2

nλNT (P n
t−sf, P

n
t−sf)− 4P n

t−sLnfT (log hn, P
n
t−sf))

≥ P n
s

(
2h2

nλNT (P n
t−sf, P

n
t−sf)− 4‖Lf‖∞

√
T (log hn, log hn)

√
T (P n

t−sf, P
n
t−sf)

)
Young’s ineq.

≥ P n
s

(
− (2|λN |+ 2)T (P n

t−sf, P
n
t−sf)− C1T (log hn, log hn)

)
with C1 constant independent of n. About the last term:

T (log hn, log hn) = − 1

n2h2
n

h′(W/n)2T (W ) ≤ C

h2
n

76



with C independent of n. Now calculate

Ln
(

1

h2
n

)
= −2h′(W/n)LW

nhn
− 2h′′(W/n)Γ(W )

n2hn
+

6h′(W/n)2Γ(W )

n2h2
n

≤ C2

h2
n

with C2 > 0 some constant again independent of n (from the assumptions on the Lyapunov

functional W ). Therefore

P n
s

(
1

h2
n

)
≤ esc2

h2
n

.

Combining this last estimate with the above bounds we end up with the differential

inequality

Ψ′n(s) ≥ −(2|λN |+ 2)Ψn(s)− C3

and C3 = C3(f, t) is again independent of n. We multiply both sides with e(2|λN |+2)s so

that the above inequality implies

(e(2|λN |+2)sΨn(s))′ ≥ −C3e
(2|λN |+2)s

or equivalently, after integrating both sides in time from 0 to t, that

Ψn(0) ≤ e(2|λN |+2)tΨn(t) + C̄3(f, t) ≤ e(2|λN |+2)t‖T (f, f)‖∞ + C̄3(f, t)

which gives the boundedness of T (P n
t f, P

n
t f) = Ψn(0) uniformly in n, on the set {W ≤ n}.

Now if d′ is the intrinsic distance induced by T

d′(x, y) = sup
T (f,f)≤1

|f(x)− f(y)|,

from the above bound we have that

|P n
t f(x)− P n

t f(y)| ≤ Cd′(x, y)

for n large enough with x, y ∈ {W ≤ n} and f ∈ C∞c (R2N) with support in {W ≤ n}.
This comes from the formula

P n
t f(y)− P n

t f(x) =

∫ 1

0

∇P n
t f(x+ t(y − x)) · (y − x)dt.

Now C does not depend on n (from before), so passing to the limit we have

|Ptf(x)− Ptf(y)| ≤ Cd′(x, y)

and so T (Ptf, Ptf) is also bounded. Now we can repeat the standard Bakry-Emery

calculations as in the beginning of the proof.

77



Remark 3.4. Note that using the equivalence of T and |∇z|2:

1

‖b−1
N ‖2

|∇zf |2 ≤ T (f, f) ≤ ‖bN‖2|∇zf |2,

we get the following L2- gradient estimate

|∇zPtf |2 ≤ ‖bN‖2‖b−1
N ‖2 e

−2λN tPt
(
|∇zf |2

)
(3.25)

Once we have a curvature condition of the form (3.23) we are also able to show that

the stationary measure satisfies a Poincaré inequality.

Proposition 3.5. Let L be the generator of the dynamics described by the SDEs (1.1)

and T the perturbed quadratic form defined in (3.20). Under Assumption (H2), for all

N ∈ N, if f ∈ C∞(R2N), invariant measure µ satisfies a Poincaré inequality

Varµ(f) ≤ CN

∫
R2N

T (f, f)dµ.

where CN =
γTL‖b−1

N ‖2
λN

, with λN defined in Proposition 3.2.

Proof. For f ∈ C∞(R2N), we consider the functional

Ψ(s) = Ps((Pt−sf)2), s ∈ [0, t].

We denote by Γ the Carré du Champ operator defined in (2.16). By differentiating we

have

Ψ′(s) = LPs((Pt−sf)2)− 2Ps(Pt−sfLPt−sf) = 2Ps
(
Γ(Pt−sf, Pt−sf)

)
.

Now by integrating from 0 to t

Pt(f
2)−(Ptf)2 = 2

∫ t

0

Ps(Γ(Pt−sf, Pt−sf))ds ≤ 2γTL

∫ t

0

Ps(|∇Pt−sf |2)ds

≤ 2γTL‖b−1
N ‖2

∫ t

0

Ps(T (Pt−sf, Pt−sf))ds

≤ 2γTL‖b−1
N ‖2

∫ t

0

Ps(e
−2λN (t−s)Pt−sT (f, f))ds

= 2γTL‖b−1
N ‖2 e

−2λN tPtT (f, f)

∫ t

0

e2λNsds

= 2γTL‖b−1
N ‖2 e

−2λN tPtT (f, f)

(
e2λN t − 1

2λN

)
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where in the first inequality we used that

Γ(f, f) = γTL(∂p1f)2 + γTR(∂pNf)2 ≤ γTL|∇f |2,

for the second we used the gradient bound from Lemma 3.3 and just right after that, the

semigroup property. The last line can be rewritten like

Pt(f
2)− (Ptf)2 = γTL‖b−1

N ‖2
1− e−2λN t

λN
PtT (f, f).

Now letting t to go to ∞, thanks to the ergodicity, we have the desired inequality.

In fact it is possible to show a stronger pointwise gradient bound, that we exploit for

the proof of a Log-Sobolev inequality for the invariant measure of the dynamics.

Proposition 3.6 (Strong gradient bound). For f ∈ C∞c (R2N), ∀ t ≥ 0 and (p, q) ∈ R2N

T (Ptf, Ptf)(p, q) ≤
(
Pt(
√
T (f, f))

)2

(p, q)e−2λN t. (3.26)

Remark 3.7. This is a better estimate than (3.24) in Lemma 3.3 because of Cauchy-

Schwarz inequality.

Proof. The rigorous justification, i.e. boundedness of
√
T (Pt−sf, Pt−sf)), of the following

formal calculations is exactly like in the proof of Lemma 3.3.

Here for f ∈ C∞c (R2N), and for fixed t ≥ 0, (p, q) ∈ R2N , instead we define

Φ(s) = Ps

(√
T (Pt−sf, Pt−sf)

)
(p, q), s ∈ [0, t].
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We denote by g = Pt−sf , we differentiate and perform the standard calculations we have

Φ′(s) = Ps

(
L(
√
T (g, g))− ∇Lg

T bN∇g +∇gT bN∇Lg
2
√
T (g, g)

)
=Ps

(
L(
√
T (g, g)) +

2T2(g, g)− LT (g, g)

2
√
T (g, g)

)
=Ps

(
1√
T (g, g)

(
− Γ

(√
T (g, g),

√
T (g, g)

)
+ T2(g, g)

))

=Ps

(
1√
T (g, g)

(
T2(g, g)− 2γTL(T (∂p1g, ∂p1g))2 + 2γTR(T (∂pNg, ∂pNg))2

4T (g, g)

))

≥Ps

(
1

4T (g, g)3/2

(
4λN(T (g, g))2 + 4γTL

(
T (∂p1g)

)2

+ 4γTR
(
T (∂pNg)

)2 − 2γTL
(
∂p1T (g, g)

)2 − 2γTR
(
∂pNT (g, g)

)2
))

≥ Ps

(
4λN(T (g, g))2

4T (g, g)3/2

)
= λNΦ(s)

where in the first equality we used that

L(g) =
L(g2)

2g
− Γ(g, g)

g
.

In the first inequality we used the formula

T2(f, f) ≥ λNT (f, f) + γTLT (∂p1f, ∂p1f) + γTRT (∂pNf, ∂pNf)

from the proof of Proposition 3.2, that

Γ(f, g) = γTL(∂p1f)(∂p1g) + γTR(∂pNf)(∂pNg)

where Γ is the Carré du Champ operator defined in (2.16), and that T and ∂p1 obviously

commute. Now from Grönwall’s lemma we get

Φ(t) ≥ eλN tΦ(0) ⇒ T (Ptf, Ptf) ≤ e−2λN t
(
Pt(
√
T (f, f))

)2

.

This pointwise, strong gradient bound implies a Log-Sobolev inequality.

Proof of Proposition 1.5. For f ∈ C∞c (R2N), we introduce the functional

H(s) = Ps

(
Pt−sf logPt−sf

)
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for fixed s ∈ [0, t] evaluated at a fixed point in the phase space. We denote by Γ the Carré

du Champ operator defined in (2.16) and following again Bakry’s recipes, we get

H ′(s) = Ps

(
L(Pt−sf logPt−sf)− LPt−sf logPt−sf − L(Pt−sf)

)
= Ps

(
Γ(Pt−sf, logPt−sf)

)
= Ps

(
γTL(∂p1Pt−sf)2

Pt−sf
+
γTR(∂pNPt−sf)2

Pt−sf

)
= Ps

(
Γ(Pt−sf, Pt−sf)

Pt−sf

)
≤ γTL‖b−1

N ‖2Ps

(
T (Pt−sf, Pt−sf)

Pt−sf

)
≤ γTL‖b−1

N ‖2Ps

(
e−2λN (t−s) (Pt−s(

√
T (f, f)))2

Pt−sf

)

≤ γTL‖b−1
N ‖2Pt

(
T (f, f)

f

)
e−2λN (t−s)

where for the second inequality we used the bound from Proposition 3.6, while for the

last inequality we applied Jensen’s and the fact that the function y2/x is convex for x, y

positive. Now integrating from 0 to t, we get

H(t)−H(0) ≤ γTL‖b−1
N ‖2

2λN
(1− e−2λN t)Pt

(
T (f, f)

f

)
≤ γTL‖b−1

N ‖2‖bN‖2

2λN
(1− e−2λN t)Pt

(
|∇zf |2

f

)
Letting t→∞ and thanks to the ergodicity of the semigroup, we get the LSI with constant
γTL‖b−1

N ‖2‖bN‖2
2λN

corresponding to the constant with the non-perturbed Fischer information.

Therefore, applying the estimates from Proposition 1.1 we have

γTL‖b−1
N ‖2

2λN
=

γTL‖b−1
N ‖2

2
(

min(1, 2TR)‖bN‖−1
2 − (CN

pin + CN
int)‖bN‖

1/2
2 ‖b−1

N ‖
1/2
2

)
≤ γTLCa,c

N−3
(
min(1, 2TR)C−1

a,c − C0Ca,c
) := λ−1

0 γTLCa,cN
3

where C0 is the constant in (1.5) which we choose small enough, i.e. to satisfy

C0 < min(1, 2TR)C−2
a,c ,

so that λ0 > 0.
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2.4 Convergence to equilibrium in Kantorovich-Wasserstein

distance

We use that the gradient estimate (3.25) is equivalent to an estimate in Wasserstein

distance (Kuwada’s duality, [Kuw10]). More specifically, we have the following Theorem,

here stated only in the Euclidean space with the Lebesgue measure (R2N , | · |, λ) and only

for the Wasserstein-2 distance:

Theorem 4.1 (Theorem 2.2 of [Kuw10]). Let a Markov semigroup P on R2N , that has

a continuous density with respect to the Lebesgue measure. For c > 0, the following are

equivalent:

(i) For all probability measures µ, ν we have,

W2(P ∗t µ, P
∗
t ν) ≤ cW2(µ, ν).

(ii) For all bounded and Lipschitz functions f and z ∈ R2N ,

|∇Ptf |(z) ≤ cPt
(
|∇f |2

)
(z)1/2

where this estimate is associated with the Lipschitz norm defined just above.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. The convergence follows if we apply Kuwada’s duality from The-

orem 4.1 since we have the estimate (3.25) with c = ‖b−1
N ‖

1/2
2 ‖bN‖

1/2
2 . Therefore the

contraction reads

W2(P ∗t f
1
0 , P

∗
t f

2
0 ) ≤ ‖bN‖1/2

2 ‖b−1
N ‖

1/2
2 e−λN tW2(f 1

0 , f
2
0 ). (4.27)

Since λN , as defined in (3.22), is:

λN = min(1, 2TR)‖bN‖−1
2 − (CN

pin + CN
int)‖bN‖

1/2
2 ‖b−1

N ‖
1/2
2 ,

by exploiting the estimates on ‖bN‖2 and ‖b−1
N ‖2 from the Proposition 1.1 we quantify the

rate:

λN ≥ min(1, 2TR)C−1
a,cN

−3 − C0N
−9/2Ca,cN

3/2 = (min(1, 2TR)C−1
a,c − C0Ca,c)N

−3 := λ0N
−3

Choosing C0 < min(1, 2TR)C−2
a,c gives us λN > 0 for all N . This gives us the statement of
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the Theorem:

W2(P ∗t f
1
0 , P

∗
t f

2
0 ) ≤ Ca,cN

3
2 e−

λ0
N3 t W2(f 1

0 , f
2
0 ). (4.28)

Finally, for the uniqueness of the stationary solution f∞, we see that all the solutions ft

will converge towards it if we make the choice f 2
0 = f∞.

2.5 Entropic Convergence to equilibrium

If µ is the invariant measure of the system, we prove here convergence to the stationary

state in Entropy as stated in Theorem 1.6: first with respect to the functional

E(f) :=

∫
R2N

f log f + fT (log f, log f)dµ

and then using the equivalence of T (f, f) with |∇f |2.

Proof of Theorem 1.6. We consider the functional

Λ(s) = Ps

(
Pt−sf logPt−sf

)
+ Ps

(
Pt−sfT (logPt−sf, logPt−sf)

)
and by differentiating and repeating similarly the steps from the Propositions 3.6 and 1.5

we end up with

Λ′(s) = Ps

(
Γ(Pt−sf, logPt−sf)

)
+ PsL

(
Pt−sfT (logPt−sf, logPt−sf)

)
− 2Ps

(
Pt−sfT

(
logPt−sf,

LPt−sf
Pt−sf

))
− Ps

(
LPt−sfT (logPt−sf, logPt−sf)

)
≥ Ps

(
Pt−sfLT (logPt−sf)

)
+ 2Ps

(
Γ(Pt−sf, T (logPt−sf, logPt−sf))

)
− 2Ps

(
Pt−sfT

(
logPt−sf,Γ(logPt−sf, logPt−sf) + L(logPt−sf)

))
= 2Ps

(
Pt−sfT2(logPt−sf, logPt−sf)

)
≥ 2λNPs

(
Pt−sfT (logPt−sf, logPt−sf)

)
where we have used that for the second inequality

Γ(Pt−sf, logPt−sf) ≥ 0, L(logPt−sf) =
LPt−sf
Pt−sf

− Γ(logPt−sf, logPt−sf) and

T
(

logPt−sf,Γ(logPt−sf, logPt−sf)
)

= Γ
(

logPt−sf, T (logPt−sf, logPt−sf)
)

and in the last inequality we used the bound (3.23). We introduce a constant η on which

we will optimize later, we integrate against the invariant measure µ and we apply the
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Log-Sobolev inequality from Proposition 1.5:∫
R2N

Λ′(s)dµ ≥ 2η
λN
CN

∫
R2N

Ps

(
Pt−sf logPt−sf

)
dµ

+ 2(1− η)λN

∫
R2N

Ps

(
T (logPt−sf, logPt−sf)Pt−sf

)
dµ

≥ 2λNmin

(
η

CN
, 1− η

)∫
R2N

Λ(s)dµ

since
∫
R2N Ps

(
Pt−sf logPt−sf

)
dµ =

∫
R2N Ps

(
Pt−sf logPt−sf −Pt−sf + 1

)
dµ which is non-

negative. For η := CN
1+CN

we have∫
R2N

Λ′(s)dµ ≥ 2λN
CN

1 + CN

∫
R2N

Λ(s)dµ.

Finally, from Grönwall’s inequality we have∫
Λ(0)dµ ≤ e

−2λN
CN

1+CN
t
∫

Λ(t)dµ

or equivalently the desired convergence, thanks to the invariance of the measure. Since

limN→∞ λN
CN

1+CN
= limN→∞ λN , we have that the exponential rate is indeed of order λN

(as in the convergence in Theorem 1.4):

E(Ptf) ≤ e−λN tE(f) (5.29)

Since T and |∇z|2 are equivalent, see (3.21), we get the above convergence in the non-

perturbed setting with equivalence-constant max
(
1, ‖b−1

N ‖2

)
‖bN‖2.

In particular, both the Boltzmann entropy Hµ(Ptfµ), given by (1.13), and the Fisher

information Iµ(Ptfµ), given by (1.14), decay:

Hµ(Ptfµ) + Iµ(Ptfµ) ≤ max(1, ‖bN‖2)

min
(
1, ‖b−1

N ‖
−1
2

)e−λN t(Hµ(fµ) + Iµ(fµ)
)

(5.30)

Thus, combining with the conclusion of Proposition 1.1, the denominator is of order 1 with

the dimension, and, as in the proof of Theorem 1.4, λN ≥ λ0N
−3 and we conclude.

Remark 5.1. (i) The rate of the convergence to the stationary state, λN , does not

depend on the difference of the temperatures ∆T : under the assumption (H2) we

get existence of spectral gap for all ∆T , since the twisted curvature condition from

Proposition 3.2 sees only the first order terms of the generator. The scaling of λN

relies on the result of the Proposition 1.1 and we can see through its proof that it is

not affected by ∆T . Therefore, the same scaling holds in the equilibrium case ∆T = 0

as well.
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(ii) Regarding the boundary conditions: Assumption (H1) is not necessary in order to

obtain existence of a spectral gap with a lower bound N−3 when the chain is pinned.

In fact, we have spectral gap as soon as there is a solution to the matrix equation

(1.10). This requires (see Proposition 3.1) M to be positively stable. Therefore, the

proof of Proposition 1.1 still holds, with minor differences, when we consider the

following b.c. as well (free in a sense): q0 = q1, qN = qN+1 with a > 0. See also in

the next chapter the first item of Prop. 2.2.

(iii) A comment on the choice of ΠN : We have the curvature condition from Proposition

3.2 by considering any positive definite r.h.s. of (1.10). We choose specifically πN ,

since then we can compare bN to b0 that solves (2.19) (b0 is the covariance matrix

for the harmonic chain) and then we bound ‖b−1
N ‖2. See the end of proof of the

Proposition 1.1.

(iv) A convergence to equilibrium in total variation norm for a similar small perturbation

of the harmonic oscillator chain, has been shown recently in [Raq19]. There, a

version of Harris’ ergodic Theorem was applied making it possible to treat more

general cases of the oscillator chain with different kind of noises, as well. However,

this is a non-quantitative version of Harris’ Theorem, which provides no information

on the dependency of the convergence rate in N .

2.6 Estimates on the spectral norm of bN

First, let us state the following Proposition on the optimal exponential rate of convergence

for the purely harmonic chain.

Proposition 6.1 (Proposition 7.1 and 7.2 (3) in [BM22]). We write λHN for the spectral gap

of the dynamics which evolution is described by the generator (1.8), without the perturbing

potentials, i.e. dynamics of the linear chain, and ρ := inf{Re(µ) : µ ∈ σ(M)}. We have

lim
N→∞

λHN
ρ
∈ R.

Moreover the spectral gap approaches 0 as N goes to infinity as follows:

ρ ≤ C

2N
(6.31)

for some constant C independent of N .

Proof. We exploit the results by Arnold and Erb in [AE] or by Monmarché in [Mon19,
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Proposition 13]: working with an operator of the form

Lf(x) = −(MTx) · ∇xf(x) + div(FΘ∇xf)(x)

under the conditions that (i) no non-trivial subspace of Ker(FΘ) is invariant under M and

(ii) the matrix M is positively stable, i.e. all the eigenvalues have real part greater than 0,

then the associated semigroup has a unique invariant measure and if ρ > 0, then for the

exponential rate λHN of the above Ornstein-Uhlenbeck process we have

ρ− ε ≤ λHN ≤ ρ

for every ε ∈ (0, ρ). Fix such an ε > 0 and conclude the first statement of the Proposition.

In particular, when m is the maximal dimension of the Jordan block of M corresponding

to the eigenvalue λ such that Re(λ) = ρ, the quantity (1 + t2(m−1))e−2ρt is the optimal one

regarding the long time behaviour, [Mon19]. This implies that the spectral gap of the

generator is ρ− ε, whereas the constant in front of the exponential is

c(ε,m) := sup
t

(1 + t2(m−1))e−2εt.

The harmonic chain satisfies the conditions (i) and (ii): the first condition is equivalent

to the hypoellipticity of the operator L, [H6̈7, Section 1], and our generator (1.8) is indeed

hypoelliptic: it is proven, [EPRB99b, Section 3, page 667] and [Car07, Section 3], for more

general classes of potentials than the quadratic ones, that the generator satisfies the rank

condition of Hörmander’s hypoellipticity Theorem, [H0̈7b, Theorem 22.2.1]. Also the ma-

trix M is stable for every N , i.e. Re(λ) > 0 for all the eigenvalues λ, see [JPS17, Lemma 5.1].

For the second conclusion of the Proposition, we recall that the matrix M is given by

(1.9) and we write,

2γ = Tr(F) = Re(Tr(F)) = Re(Tr(M)) =
∑

λ∈σ(M)

Re(λ).

In the r.h.s. we have a sum of 2N (counting multiplicity) positive terms, since inf{Re(λ)}
is strictly positive, [JPS17, Lemma 5.1(2)]. Now note that the Tr(F) does not depend on

the number of oscillators, so the r.h.s. of the above displayed equation should be uniformly

bounded in N . Since ∑
λ∈σ(M)

Re(λ) ≥ 2N inf{Re(λ) : λ ∈ σ(M)}

we have that 2N inf{Re(λ) : λ ∈ σ(M)} is bounded asymptotically with N , which implies
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the second part of the statement.

Remark 6.2. B can be seen as the Schrödinger operator : B = −c ∆N +
∑N

i=1 aδi where

c > 0, ∆N is the Dirichlet Laplacian on l2({1, . . . , N}) and δi the projection on the i-th

coordinate. We give the following definition for the (discrete) Laplacian on l2({1, . . . , N})
with Dirichlet boundary conditions:

−∆N :=
N−1∑
i=1

Li,i+1

where Li,i+1 are uniquely determined by the quadratic form

〈u, Li,i+1u〉 = (u(i)− u(i+ 1))2 with

u(0) = u(N + 1) = 0 Dirichlet b.c.

We will use this information in the last part of the proof of Proposition 1.1, to bound the

spectral norm of the inverse, ‖b−1
N ‖2.

The rest of this section is devoted to the study of the solution of the matrix equation

(1.10). Note that [RLL67, RS19] are two other cases where a Lyapunov equation is

explicitly solved in order to study the thermal transport in atom harmonic chains. The

right hand side of the equation in the two above-mentioned cases is much simpler though,

therefore it is easier to provide an analytical formula which represents the unique solution

as in [RS19].

Here we split the 2N × 2N dimensional problem into 4 equal-sized blocks of dimension

N ×N . Then we exploit all the information we get about each block from the following

Lemma (6.3). In order to ease the readability of the proof we split it into several lemmas

until the end of the section.

2.6.1 Matrix equations on Lyapunov equation

Lemma 6.3. For 0 ≤ m ≤ N , we have the following equations for the blocks xm, ym and

zm of the matrix bm:

−zm = zTm + J̃m (6.32)

xm = Bym + Fzm (6.33)

−Bzm + zmB−BJ̃m = J (∆T )
m − xmF− Fxm (6.34)

ymB −Bym = F + zmF + Fzm for m ≥ 1 (6.35)

ymB −Bym = zmF + Fzm for m = 0 (6.36)
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Here J̃m = diag(1, 1, . . . , 1, 0, . . . , 0, 1, 1, . . . , 1) where the 0’s start at (m+ 1,m+ 1)-entry

and stop at (N − (m+ 1), N − (m+ 1))-entry, and

J
(∆T )
m = diag(2TL, 1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 2TR) where the 0’s start at (m+2,m+2)-entry

and stop at (N − (m+ 2), N − (m+ 2))-entry.

Proof. We consider m s.t. 0 ≤ m ≤ N , where bm solves

bmM +MT bm = Πm (6.37)

and where

Πm =

[
J

(∆T )
m 0

0 J̃m

]
.

From (6.37) and considering that xm and ym are symmetric matrices, we get[
xmF + Fxm + zmB +BzTm −xm + Fzm +Bym

−xm + zTmF + ymB −zTm − zm

]
=

[
J

(∆T )
m 0

0 J̃m

]
.

From that we get (6.32) and (6.33) directly, and also that:

BzTm + zmB = J (∆T )
m − xmF− Fxm (6.38)

and by applying (6.32) to (6.38) we get (6.34).

Also, using that xm and ym are required to be symmetric matrices, from the transposed

version of (6.33), we get the equation

xm = ymB − zmF− J̃mF

which, combined with (6.33), gives (6.35) for m ≥ 1 and (6.36) for m = 0.

From now on, we perform all the calculations when the dimension of the block ma-

trices, N , is odd. The same calculations with minor differences hold when N is even as well.

2.6.2 Calculations for m = 0, 1, 2

Before we start analyzing the form of the block zN , we first present in this subsection how

each unit in the right hand side of the Lyapunov equation (6.37) for 0 ≤ m ≤ N (that

corresponds to the spread of noise on the system), affects the zm block of the solution bm.

This subsection is only to make it easier for the reader to follow on how perturbing the

r.h.s. of the Lyapunov equation affects the solution in each sequential step. Then in the

next subsection we analyse the zN block (m = N) which is what we are interested in.
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Thus, the reader who is interested only in the proofs, and not in the motivation behind

them, might skip this subsection.

For m = 0: The unique solution b0 of

b0M +MT b0 = diag(2TL, 0, . . . , 2TR, 0, . . . , 0)

has been computed in [RLL67], where they found exactly the elements of z0 := (z
(0)
ij )1≤i,j≤N

when a = 0, c = 1, to be

z
(0)
1,j =

sinh((N − j)α)

sinh(Nα)
(6.39)

for α constant such that cosh(α) = 1 + 1
2γ

. (It was done in the same manner with [Wan45,

Section 11] but there the case was ∆T = 0). Here we describe briefly the steps: first we

notice that z0 is antisymmetric since in (6.32) J
(0)
0 = 0, and second, by (6.34) we get that

it has a Toeplitz -form

z0 =



0 z
(0)
1,2 z

(0)
1,3 z

(0)
1,4 · · · z

(0)
1,N−1 z

(0)
1,N

−z(0)
1,2 0 z

(0)
1,2 z

(0)
1,3 · · · z

(0)
1,N−2 z

(0)
1,N−1

−z(0)
1,3 −z(0)

1,2 0 z
(0)
1,2 · · · · · ·

. . .

−z(0)
1,N−1 −z

(0)
1,N−2 0 z

(0)
1,2

−z(0)
1,N −z(0)

1,N−1 −z(0)
1,2 0


: (6.40)

Indeed note that the r.h.s of (6.34) forms a bordered matrix

∗ ∗ · · · ∗ ∗
∗ 0 0 ∗
...

. . .
...

∗ 0 0 ∗
∗ ∗ · · · ∗ ∗


i.e. only the bordered elements are non zero and so the l.h.s of (6.34) should also have this

bordered form. Due to the tridiagonal form of B we get a Toeplitz matrix: in particular
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using that B = −c∆N + aI, the l.h.s of (6.34) is

z0(−c∆N + aI)− (−c∆N + aI)z0 = c(∆Nz0 − z0∆N) =



∗ ∗ · · · ∗ ∗
∗ 0 0 ∗
...

. . .
...

∗ 0 0 ∗
∗ ∗ · · · ∗ ∗


(6.41)

and equating the non-boundary entries, due to the symmetry of ∆N and the antisymmetry

of z0, we have that the elements of z0 will be constant along the diagonals: indeed, for

1 < i < N , for the diagonal’s entries of the equation (6.41) we have

−cz(0)
i−1,i − cz

(0)
i+1,i + 2cz

(0)
i,i − 2cz

(0)
i,i + cz

(0)
i,i−1 + cz

(0)
i,i+1 = 0

or 2cz
(0)
i,i+1 − 2cz

(0)
i−1,i = 0 and so z

(0)
i,i+1 = z

(0)
i−1,i.

For the superdiagonal’s entries of the equation (6.41)

−cz(0)
i−1,i+1 + 2cz

(0)
i,i+1 − cz

(0)
i+1,i+1 + cz

(0)
ii − 2cz

(0)
i,i+1 + cz

(0)
i,i+2 = 0

or − cz(0)
i−1,i+1 + cz

(0)
i,i+2 = 0 and so z

(0)
i−1,i+1 = z

(0)
i,i+2.

We repeat these calculations through all the non-boundary entries of the matrix, and using

the information we get from each one calculation, we end up with the Toeplitz form of z0

in (6.40).

We can now see that a solution to (6.36) is a symmetric Hankel matrix which is antisym-

metric about the cross diagonal and such that (y
(0)
1,j )

N−1
j=1 = z

(0)
1,j+1. Then we apply (6.33) to

get a formula for the entries of x0 and from the bordered entries of x0 from (6.34), we end

up with the linear equation

K0 · z0 = e1.

Here z0, e1 ∈ CN−1 are the vectors z0 = (z
(0)
1,1 , . . . , z

(0)
1,N−1)T , e1 = (1, 0, . . . , 0)T and K0 is a

(N − 1)× (N − 1) symmetric Jacobi matrix whose entries depend on the (dimensionless)

friction constant γ and interaction constant c:

K0 = cB + γ−1I.

We solve the above equation using for example Cramer’s rule and we find an explicit

formula for the z
(0)
1,j ’s: the recurrence formula of the determinant of K0 is the same formula

of the Chebyshev polynomials of the second kind, so using properties of these polynomials

and imposing appropriate initial conditions we end up with the form (6.39).
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For m ≥ 1 we use again the equation (6.34). In the first step we get that:

For m = 1, i.e. for the form of the z1-block in b1, the elements z
(1)
1,1 , z

(1)
N,N in the main

diagonal are −1/2. The difference with the m = 0 step is that z1 is not antisymmetric

anymore, since 1/2 is added in the first entry of the diagonal (due to the form of J̃1). So

from (6.32) we write

−z(1)
i,i = z

(1)
i,i + 1 or z

(1)
i,i = −1/2 for i = 1, N.

But we still have the bordered form in the r.h.s. of (6.34), so we still have a Toeplitz -form

for z1.

In the next Lemma we give the form of the z2 block of b2.

Lemma 6.4 (For m = 2, form of z2). For the z2-block of b2 : There exists an antisymmetric

matrix zanti2 : z2 = zanti2 − J̃2 and
z

(2)
1,1 = z

(2)
2,2 = z

(2)
N,N = z

(2)
N−1,N−1 = −1/2 and z

(2)
i,i = 0 otherwise

z
(2)
1,2 + z

(2)
N,N−1 = 21+a+2c

4c
, z

(2)
N,N−2 + z

(2)
1,3 = 1

z
(2)
N−k,N = z

(2)
1,k+1 for 3 ≤ k ≤ N − 3.

The last property is that the Toeplitz form is not perturbed in more than 2 diagonals away

from the centre.

So we denote by µa,c := 1+a+2c
4c

and we write:

z2 =



−1
2

z
(2)
1,2 z

(2)
1,3 z

(2)
1,4 · · · · · · z

(2)
1,N−1 z

(2)
1,N

−z(2)
1,2 −1

2
z

(2)
1,2 − µa,c z

(2)
1,3 + 1

2
z

(2)
1,4 · · · z

(2)
1,N−2 z

(2)
1,N−1

−z(2)
1,3 −z

(2)
1,2 + µa,c 0 z

(2)
1,2 − µa,c · · · · · · z

(2)
1,N−2

...
. . .

...
. . .

... 0 −z(2)
N,N−1 + µa,c −z(2)

N,N−2

z
(2)
N,2 z

(2)
N,3 . . . z

(2)
N,N−1 − µa,c −1

2
−z(2)

N,N−1

z
(2)
N,1 z

(2)
N,2 . . . z

(2)
N,N−2 z

(2)
N,N−1 −1

2


.

Proof of Lemma 6.4. z2 is not antisymmetric but from (6.32) we immediately have that

z2 = zanti2 − J̃2, where zanti2 is antisymmetric. So we work with zanti2 and due to the

antisymmetry we look only at the upper diagonal part of the matrix.

Here, besides that z2 is not antisymmetric, the r.h.s of (6.34) is not a bordered matrix

anymore and also the matrix BJ̃2 affects non boundary entries as well, in particular it

adds the (3 × 2) top-left and bottom-right submatrices of B to the (3 × 2) respective
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submatrices of z2:

c(∆Nz2 − z2∆N) + (c∆N − aI)diag

(
1

2
,
1

2
, 0, . . . , 0,

1

2
,
1

2

)
=



∗ ∗ ∗ · · · ∗ ∗ ∗
∗ 1/2 0 0 0 ∗
∗ 0 0 0 0 ∗
...

. . .
...

∗ 0 0 0 0 ∗
∗ 0 0 0 1/2 ∗
∗ ∗ ∗ · · · ∗ ∗ ∗


.

(6.42)

Equating the entries that correspond to the zero-submatrix as drawn above we will have

the same calculations as in the step m = 0.

From (6.32) we have z
(2)
1,1 = z

(2)
2,2 = z

(2)
N,N = z

(2)
N−1,N−1 = −1/2 and z

(2)
i,i = 0 for N−1 > i > 2.

Looking at the (2, 2)-entry and the (2, 3)-entry of the equation (6.42) we have respectively

−cz(2)
2,1 + 2cz

(2)
2,2 − cz

(2)
2,3 + cz

(2)
1,2 − 2cz

(2)
2,2 + cz

(2)
3,2 −

(a+ 2c)

2
=

1

2

−cz(2)
2,2 + 2cz

(2)
2,3 − cz

(2)
2,4+cz

(2)
1,3 − 2cz

(2)
2,3 + cz

(2)
3,3 = 0

and since z
(2)
i,j = −z(2)

j,i for j 6= i from (6.32), and also z
(2)
2,2 = −1/2, z

(2)
3,3 = 0, we get

z
(2)
2,3 = z

(2)
1,2 − µa,c and z

(2)
2,4 = z

(2)
1,3 + 1/2.

Now looking at the entries (i, i) for 3 ≤ i ≤ N − 2 of equation (6.42), we write (as in the

0-step):

−cz(2)
i,i−1 + 2cz

(2)
i,i − czi,i+1 + cz

(2)
i−1,i − 2cz

(2)
i,i + cz

(2)
i+1,i = 0

which gives

z
(2)
i−1,i = z

(2)
i,i+1, 3 ≤ i ≤ N − 2.

In particular

z
(2)
i,i+1 = z

(2)
1,2 − µa,c = −z(2)

N,N−1 + µa,c and

z
(2)
i,i+2 = z

(2)
1,3 +

1

2
= −z(2)

N,N−2 −
1

2

where the second equations in both lines are proved by looking at the reversed direction

(bottom-right to top-left side of the matrix). Also for k ≥ 2 and 1 ≤ i ≤ N − k, look at

(i, i+ k) entry of the equation (6.42) and get

z
(2)
i,i+k+1 = z

(2)
i−1,i+k.
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This corresponds to the Toeplitz property that holds for all the diagonals apart from the 5

central ones. Remember that for m = 0 we end up with a Toeplitz matrix.

In the m-th step of the sequence of these matrix equations, for the zm- block of bm,

the central (4m− 3) diagonals have a perturbed Toeplitz form: the elements across these

diagonals on each line are changed by constants that depend on the coefficients a, c. The

resulting matrix zm is described in the following way, where µa,c := 1+a+2c
4c

:



z
(m)
1,j + z

(m)
N,N−(j−1) = mµa,c, for j even, j ≤ m

z
(m)
1,j + z

(m)
N,N−(j−1) = −m, for j odd, j ≤ m

z
(m)
N−j,N = z

(m)
1,j+1, for m < j < N − 2, (Toeplitz form)

z
(m)
i,i = −1/2, for 1 ≤ m and i ≥ N −m
z

(m)
i,i = 0, for m < i < N −m.

The explanation is the same as in the step m = 2 but this holds for an arbitrary m ≤ N .

2.6.3 Preliminaries: compute the blocks zN , yN , xN of bN

Lemma 6.5 (Form of zN block). The matrix zN := (z
(N)
i,j )1≤i,j≤N is a real N ×N matrix

of the form

zN = zantiN − 1

2
I

where zantiN = [z
(N),anti
i,j ] is an antisymmetric matrix. We denote by µa,c := 1+a+2c

2c
. zN has

the following perturbed Toeplitz form: for 2 ≤ i ≤ N − k and 1 ≤ k ≤ N − 2,{
z

(N),anti
i,i+k − z(N),anti

i−1,i+k−1 = −µa,c, for k odd

z
(N),anti
i,i+k − z(N),anti

i−1,i+k−1 = 1, for k even
(6.43)

and for the second and second-to-last line respectively:{
z

(N),anti
2,k − z(N),anti

1,k−1 = −µa,c, z
(N),anti
N−1,k − z

(N),anti
N,k+1 = −µa,c, for k odd

z
(N),anti
2,k − z(N),anti

1,k−1 = 1, z
(N),anti
N−1,k − z

(N),anti
N,k+1 = 1 for k even

(6.44)

Regarding the ’cross-diagonal’ we have, for 1 ≤ k ≤ N − 2,{
z

(N),anti
i,i+k − z(N),anti

N−k−(i−1),N−(i−1) = (N − k − 2i+ 1)µa,c, for k odd, 1 ≤ i ≤ N−k
2

z
(N),anti
i,i+k − z(N),anti

N−k−(i−1),N−(i−1) = k −N + 2i− 1, for k even, 1 ≤ i ≤ N−(k+1)
2

.

(6.45)
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In particular, {
z

(N),anti
1,1+k + z

(N),anti
N,N−k = (N − (k + 1))µa,c, for k odd

z
(N),anti
1,1+k + z

(N),anti
N,N−k = k −N + 1, for k even.

(6.46)

This corresponds to the relation of the first row with the last row of the matrix.

From the above Lemma we conclude that zN can be written in the general form

zN = −1

2
I +

N−1∑
k=1
k odd

(
z

(N)
N,N−k(J

k − Jk) +
N∑

j=k+1

(N − j)µa,c(ιj + ι−j)

)
(6.47)

+
N−1∑
k=1
k even

(
z

(N)
N,N−k(J

k − Jk)−
N∑

j=k+1

(N − j)(ιj + ι−j)

)

where we write J for the square matrix with 1’s in the superdiagonal and J for the matrix

with 1’s in the subdiagonal.

Also ιk for the matrix with 1 in the (k, k + 1)- entry and ι−k for the matrix with −1 in

the (k + 1, k)-entry. So for example

ι2 + ι−2 =



0 0 0 0

0 0 1 0

0 −1 0 0
. . .

0 0


.

For a visualisation:

zN =



−1
2

−z(N)
N,N−1 + (N − 2)µa,c −z(N)

N,N−2 − (N − 3) · · · −z(N)
N,2 + µa,c −z(N)

N,1

z
(N)
N,N−1 − (N − 2)µa,c −1

2
−z(N)

N,N−1 + (N − 3)µa,c · · · −z(N)
N,3 − 1 z

(N)
1,N−1 − µa,c

z
(N)
N,N−2 + (N − 3) z

(N)
N,N−1 − (N − 3)µa,c −1

2
· · · −z(N)

N,4 + µa,c z
(N)
1,N−2 + 2

...
...

...
. . .

...
...

z
(N)
N,2 − µa,c −z(N)

1,N−2 − 1 −z(N)
1,N−3 + 2µa,c · · · −1

2
z

(N)
1,2 − (N − 2)µa,c

−z(N)
1,N −z(N)

1,N−1 + µa,c −z(N)
1,N−2 − 2 · · · −z(N)

1,2 + (N − 2)µa,c −1
2



Proof of Lemma 6.5. From (6.32) we have

zN = zantiN − 1

2
I,

where zantiN is antisymmetric matrix. So in order to find the form of zN we only need to

study zantiN and due to its antisymmetry, we only need to study its upper triagonal part.
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We look at the non-bordered entries of the upper triagonal part of (6.34). That is the

equation

c(−∆NzantiN + zantiN ∆N)−B =



∗ ∗ ∗ · · · ∗ ∗
∗ 1 0 0 ∗
∗ 0 1 0 ∗
...

. . .
...

∗ 0 0 1 ∗
∗ ∗ ∗ · · · ∗ ∗


. (6.48)

Looking at the diagonal’s entries (i, i) for 1 < i < N of the above equation (6.48), we write

−cz(N),anti
i,i−1 + 2cz

(N),anti
i,i − cz(N),anti

i,i+1 + cz
(N),anti
i−1,i − 2cz

(N),anti
i,i + cz

(N),anti
i+1,i − (2c+ a) = 1

and using the antisymmetry of the elements of zantiN , it gives

z
(N),anti
i,i+1 = z

(N),anti
i−1,i − µa,c = z

(N),anti
i−2,i−1 − 2µa,c

= · · · = z
(N),anti
1,2 − (i− 1)µa,c.

Therefore, inductively we get

z
(N),anti
i,i+1 = z

(N),anti
1,2 − (i− 1)µa,c. (6.49)

At the same time, looking from bottom-right to top-left, we can write

z
(N),anti
i−1,i = z

(N),anti
i,i+1 + µa,c = z

(N),anti
i+1,i+2 + 2µa,c

= · · · = z
(N),anti
N,N−1 + (i− 1)µa,c.

Then, looking at the super-diagonal’s entries, i.e. the (i, i+ 1)-entry, for 1 < i < N − 1,

of equation (6.48), we write

−cz(N),anti
i,i + 2cz

(N),anti
i,i+1 − cz(N),anti

i,i+2 + cz
(N),anti
i−1,i+1 − 2cz

(N),anti
i,i+1 + cz

(N),anti
i+1,i+1 + c = 0

and that gives

z
(N),anti
i,i+2 = z

(N),anti
i−1,i+1 + 1 = · · · = z

(N),anti
1,3 + (i− 1)

and at the same time (reversed direction, i.e. from bottom right to top left)

z
(N),anti
i−1,i+1 = −z(N),anti

i+2,i − 1 = · · · = −z(N),anti
N,N−2 − (N − (i+ 1)).
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Similarly, looking at the entries (i, i+ 2) for 1 < i < N − 2:

cz
(N),anti
i−1,i+2 − 2cz

(N),anti
i,i+2 + cz

(N),anti
i+1,i+2 − cz

(N),anti
i,i+1 + 2cz

(N),anti
i,i+2 − cz(N),anti

i,i+3 = 0.

Apply (6.49) twice: z
(N),anti
i+1,i+2 = z

(N),anti
1,2 − iµa,c and −z(N),anti

i,i+1 = −z(N),anti
1,2 + (i− 1)µa,c and

get

z
(N),anti
i−1,i+2 − µa,c = z

(N),anti
i,i+3 .

So inductively,

z
(N),anti
i,i+3 = z

(N),anti
1,4 − (i− 1)µa,c. (6.50)

Also, from the reversed direction we get inductively

z
(N),anti
i,i+3 = z

(N),anti
N,N−3 − (N − 3− i).

For the general case, as stated in the Lemma, we prove it by induction in k. For k = 1, 2, 3

is true from the above calculations. We do it for k odd. Let it hold for k − 2, we look at

the (i, i+ k − 1)-entry of equation (6.48) : for 1 < i < N − (k − 1),

cz
(N),anti
i−1,i+k−1 − 2cz

(N),anti
i,i+k−1 + cz

(N),anti
i+1,i+k−1 − cz

(N),anti
i,i+(k−2) + 2cz

(N),anti
i,i+k−1 − cz

(N),anti
i,i+k = 0 or

z
(N),anti
i−1,i+k−1 − z

(N),anti
i,i+k + (z

(N),anti
i+1,i+1+(k−2) − z

(N),anti
i,i+(k−2)) = 0.

Then from the induction hypothesis we end up with the (6.43). The case k even follows

similarly.

Now generalise the previous induction formulas for k odd for example and write:

z
(N),anti
i,i+k = z

(N),anti
1,k+1 − (i− 1)µa,c

and from the reversed direction

z
(N),anti
i,i+k = (N − k − i)µa,c + z

(N),anti
N−k,N .

From these two equations we have the specific case (6.46). k even is proven similarly. For
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(6.45) we write for k odd:

z
(N),anti
i,i+k − z(N),anti

N−k−(i−1),N−(i−1) = z
(N),anti
i−1,i+k−1 − µa,c − (z

(N),anti
N−k−i,N−i + µa,c)

= z
(N),anti
i−1,i+k−1 − z

(N),anti
N−k−i,N−i − 2µa,c

= · · · = z
(N),anti
1,k+1 − z(N),anti

N−k,N − 2(i− 1)µa,c

= (N − k − 2i+ 1)µa,c.

where in the last line we applied (6.46). The case k even is proven in the same way.

The above discussion shows that in order to understand the entries of zN , we need only

to understand the vector zN = (z
(N)
1,2 , z

(N)
1,3 , . . . , z

(N)
1,N ).

We state now a Lemma that shows the relation between the elements of zN and the

entries of the first row and the last column of xN = [x
(N)
i,j ], concluding a relation between

x
(N)
1,j and x

(N)
i,N about the ’cross diagonal’.

Lemma 6.6. For 3 ≤ k ≤ N ,{
z

(N),anti
1,k = 1 + γ

c
x

(N)
1,k−1 = −γ

c
x

(N)
N,N−k+2 − (N − k + 1), for k odd

z
(N),anti
1,k = −µa,c + γ

c
x

(N)
1,k−1 = −γ

c
x

(N)
N,N−k+2 + (N − k + 1)µa,c, for k even

(6.51)

and z
(N),anti
1,2 = γ

c
x

(N)
1,1 − TL+a+2c

2c
and so for 3 ≤ k ≤ N{

x
(N)
1,k−1 = −x(N)

N,N−k+2 − c
γ
(N − k + 2), for k odd

x
(N)
1,k−1 = −x(N)

N,N−k+2 + c
γ
(N − k + 2)µa,c, for k even.

(6.52)

Also x
(N)
1,N = c

2γ
µa,c, where µa,c := 1+a+2c

2c
.

Proof. We look at the bordered entries of equation (6.34). Let us first look at (N, j)-entry

for j even:

−cz(N),anti
N,j−1 + 2cz

(N),anti
N,j − cz(N),anti

N,j+1 + cz
(N),anti
N−1,j − 2cz

(N),anti
N,j = −γx(N)

N,j .

Using Lemma 6.5 we write

cz
(N),anti
1,N−j+2 + (j − 2)c+ cz

(N),anti
1,N−j + jc− cz(N),anti

1,N−j − (j − 1)c = −γx(N)
N,j

and after the obvious cancellations we have for j even

x
(N)
N,j = − c

γ
z

(N),anti
1,N−j+2 − (j − 1)

c

γ
. (6.53)
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Similarly for j odd we have

x
(N)
N,j = − c

γ
z

(N),anti
1,N−j+2 + (j − 1)

c

γ
µa,c. (6.54)

Moreover, with exactly the same calculations, but looking at the (1, j)-entry of equation

(6.34) we get, for 2 ≤ j ≤ N − 1,

x
(N)
1,j =

c

γ
z

(N),anti
1,j+1 − c

γ
for j even and x

(N)
1,j =

c

γ
z

(N),anti
1,j+1 +

c

γ
µa,c for j odd. (6.55)

Now for k := N − j + 2 then 3 ≤ k ≤ N . Since N is odd, whenever j is odd, k is even

and the opposite. Solving the equations (6.54) and (6.53) for z
(N),anti
1,k , we get the second

equations in (6.51), whereas solving (6.55) for λ := j + 1, for z
(N),anti
1,λ , we get the first

equations in (6.51) as well. We conclude with (6.52) just by combining the above relations

in both cases.

Finally to get this specific value for x
(N)
1,N we look at the (1, N)-entry of equation (6.34)

and perform the same calculations as above.

Considering the above Lemma we can write the matrix zN also as follows:

zN =



−1
2

γ
c
x

(N)
1,1 − κL 1 + γ

c
x

(N)
1,2 · · · −µa,c + γ

c
x

(N)
1,N−2 1 + γ

c
x

(N)
1,N−1

−γ
c
x

(N)
1,1 + κL −1

2
γ
c
x

(N)
1,1 − κL − µa,c · · · γ

c
x

(N)
1,N−3 + 2 γ

c
x

(N)
1,N−2 − 2µa,c

...
...

. . .

· · · γ
c
x

(N)
N,N − κR − µa,c −1

2
γ
c
x

(N)
1,1 − κL − (N − 2)µa,c

· · · γ
c
x

(N)
N,N − κR −1

2



where κL := TL+a+2c
2c

and κR := TR+a+2c
2c

.

In the following we state a Lemma about the symmetries that hold in yN -block

of bN , concluding that all the entries of yN can be written in terms of the vectors

yN := (y
(N)
1,N , y

(N)
1,N−1, . . . , y

(N)
1,1 ) and zN .

Lemma 6.7. For 2 ≤ i ≤ N − (k + 1) and 1 ≤ k ≤ N − 3,

y
(N)
i−1,i+k − y

(N)
i,i+k−1 + (y

(N)
i+1,i+k − y

(N)
i,i+k+1) = 0 (6.56)

y
(N)
2,k = y

(N)
1,k−1 + y

(N)
1,k+1 +

γ

c
z

(N)
1,k , for 2 ≤ k ≤ N − 1, (6.57)

and y
(N)
2,N = y

(N)
1,N−1 +

2γ

c
z

(N)
1,N

y
(N)
k,N =

γ

c
(z

(N)
k−1,N + z

(N)
1,N−(k−2)) + y

(N)
1,N−(k−1), for 2 ≤ k ≤ N (6.58)
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Proof. Due to symmetry of yN is enough to look at the upper-triagonal part. We look at

the entries (i, i+ k) of equation (6.35). For k = 1 we have

−y(N)
i,i − y

(N)
i,i+2 + y

(N)
i−1,i+1 + y

(N)
i+1,i+1 = 0

which is the equation (6.56). For 1 < k < N − 1 we prove it by induction in k, like in the

proof of Lemma (6.5). Let us now look at the (1, N)- entry of (6.35):

−cy(N)
1,N−1 + 2cy

(N)
1,N − 2cy

(N)
1,N + cy

(N)
2,N = 2γz

(N),anti
1,N

which gives y
(N)
2,N = y

(N)
1,N−1 + 2γ

c
z

(N)
1,N . For (6.57) we look at (1, k)- entry:

−cy(N)
1,k−1 + 2cy

(N)
1,k − cy

(N)
1,k+1 − 2cy

(N)
1,k + cy

(N)
2,k = γz

(N),anti
1,k

which is

−y(N)
1,k−1 − y

(N)
1,k+1 + y

(N)
2,k =

γ

c
z

(N),anti
1,k

and this is the desired equation. For (6.58), we look at (k − 1, N)- entry of (6.35) for

k ≥ 3. Performing the same calculations as above we get

y
(N)
k,N =

γ

c
z

(N),anti
k−1,N − y(N)

k−2,N + y
(N)
k−1,N−1.

Then using the relations (6.56) and (6.57) for each of the terms above, we get the stated

relation.

With the result of the following Lemma we relate the entries of yN with the entries of

zN .

Lemma 6.8. Let B be the matrix (1.7). We have

yN = B−1z̃N (6.59)

where z̃N is the vector

z̃N =



γz
(N)
1,N + c

2γ
µa,c

c
γ
z

(N)
1,N − c

γ
c
γ
z

(N)
1,N−1 + c

γ
µa,c

...
c
γ
z

(N)
1,N−i + c

γ
µa,c

c
γ
z

(N)
1,N−(i+1) −

c
γ

...
c
γ
z

(N)
1,3 − c

γ
c
γ
z

(N)
1,2 + TL+a+2c

2γ
+ γ

2


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where µa,c := 1+a+2c
2c

. In particular:

‖yN‖2 . ‖zN‖2 +N1/2. (6.60)

Proof. We combine the information for x1i’s we get from two equations: first from (6.33),

we remind that equation (6.33) is

xN = ByN + FzN

and second from the bordered entries of (6.34), which is

−BzN + zNB −B = J
(∆T )
N − xNF− FxN .

We look at the element x
(N)
1,N and we write:

x
(N)
1,N = (a+ 2c)y

(N)
1,N − cy

(N)
2,N + γz

(N),anti
1,N = (a+ 2c)y

(N)
1,N − cy

(N)
1,N−1 − 2γz

(N),anti
1,N + γz

(N),anti
1,N

= (a+ 2c)y
(N)
1,N − cy

(N)
1,N−1 − γz

(N),anti
1,N

and

x
(N)
1,N =

c

2γ
µa,c

which give

(a+ 2c)y
(N)
1,N − cy

(N)
1,N−1 = γz

(N),anti
1,N +

c

2γ
µa,c.

Moreover

x
(N)
1,N−1 = (a+ 2c)y

(N)
1,N−1 − cy

(N)
2,N−1 + γz

(N),anti
1,N−1

= (a+ 2c)y
(N)
1,N−1 − cy

(N)
1,N−2 − cy

(N)
1,N − γz

(N),anti
1,N−1 + γz

(N),anti
1,N−1

= (a+ 2c)y
(N)
1,N−1 − cy

(N)
1,N−2 − cy

(N)
1,N

and from the proof of Lemma (6.6), see relation (6.55), we have

x
(N)
1,N−1 =

c

γ
z

(N),anti
1,N − c

γ
.

Both of them give

(a+ 2c)y
(N)
1,N−1 − cy

(N)
1,N−2 − cy

(N)
1,N =

c

γ
z

(N),anti
1,N − c

γ
.
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In general using again Lemma 6.7 and relation (6.55), we have

(a+ 2c)y
(N)
1,N−i − cy

(N)
1,N−(i+1) − cy

(N)
1,N−(i−1) =

{
c
γ
z

(N),anti
1,N−(i−1) −

c
γ
, if i odd

c
γ
z

(N),anti
1,N−(i−1) + c

γ
µa,c, if i even.

For x
(N)
1,1 we use that

x
(N)
1,1 =

c

γ
z

(N),anti
1,2 +

c(TL + a+ 2c)

2γc

from Lemma 6.6, and from (6.33),

x
(N)
1,1 = (a+ 2c)y

(N)
1,1 − cy

(N)
1,2 −

γ

2
.

Putting the above relations in a more compact form we have

ByN = z̃N .

We end up with (6.60) considering that ‖B−1‖2 is uniformly (in N) bounded, since B has

bounded spectral gap.

The following Lemma shows, through its proof, that there is one unique solution to the

Lyapunov matrix equation (since one can explicitly find the entries of zN , that determine

all the rest) and eventually gives the scaling in N of the entries of zN . For 1 ≤ k ≤ N − 2,

using all the information we have from the block equations in Lemma 6.3, we write all the

z
(N),anti
1,N−k in terms of z

(N),anti
1,N , which we then calculate explicitly. This is presented in the

following Lemma.

Lemma 6.9. For 1 ≤ k ≤ N − 2, the order of the entries of zN is given by z
(N),anti
1,N−k = O

(
Rkz

(N),anti
1,N + k

2
µa,c

)
, for k odd

z
(N),anti
1,N−k = O

(
Rkz

(N),anti
1,N − k

2

)
, for k even

(6.61)

and z
(N),anti
1,N = O

(
R1−N

(
κR−κL

2γ

))
, where R := c

γ2
+ a+2c

c
and µa,c := 1+a+2c

2c
. Therefore

|z(N),anti
1,i | . O

(
(∆T )R−i+1 + (N − i)

)
, for 2 ≤ i ≤ N

where ∆T is the temperature difference at the ends of the chain.

Proof. We look at the equations around x
(N)
k,N for 2 ≤ k ≤ N . First we look at x

(N)
2,N and

from (6.53) we have

x
(N)
2,N = − c

γ
z

(N),anti
1,N − c

γ
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while from the (2, N)-entry of (6.33) we have

x
(N)
2,N = −cy(N)

1,N + (a+ 2c)y
(N)
2,N − cy

(N)
3,N

= −cy(N)
1,N + (a+ 2c)y

(N)
1,N−1 +

2γ(a+ 2c)

c
z

(N),anti
1,N − γ(z

(N),anti
2,N + z

(N),anti
1,N−1 )− cy(N)

1,N−2

= x
(N)
1,N−1 +

2γ(a+ 2c)

c
z

(N),anti
1,N − 2γz

(N),anti
1,N−1 + γµa,c

=
c

γ
z

(N),anti
1,N − c

γ
+

2γ(a+ 2c)

c
z

(N),anti
1,N − 2γz

(N),anti
1,N−1 + γµa,c.

Combine them and get

z
(N),anti
1,N−1 = Rz

(N),anti
1,N +

µa,c
2
. (6.62)

Then we look at x
(N)
3,N : from (6.54) we have

− c
γ
z

(N),anti
1,N−1 + 2

cµa,c
γ

while from the (3, N)-entry of (6.33) we have similarly

x
(N)
3,N = −cy(N)

2,N + (a+ 2c)y
(N)
3,N − cy

(N)
4,N

= x
(N)
1,N−2 − 2γz

(N),anti
1,N +

2γ(a+ 2c)

c
z

(N),anti
1,N−1 − 2γz

(N),anti
1,N−2 −

γ(a+ 2c)µa,c
c

− 2γ.

Combine them and get

Rz
(N),anti
1,N−1 = z

(N),anti
1,N + z

(N),anti
1,N−2 +R

µa,c
2

+ 1.

Then considering (6.62) as well, we have

z
(N),anti
1,N−2 = (R2 − 1)z

(N),anti
1,N − 1. (6.63)

In the same manner, but looking around x
(N)
4,N and x

(N)
5N , we get

z
(N),anti
1,N−3 = (R3 − 2R)z

(N),anti
1,N +

3µa,c
2

, z
(N),anti
1,N−4 = (R4 − 3R2 + 1)z

(N),anti
1,N − 2. (6.64)

respectively. Inductively, we have a way to write all the elements of zN in terms of z
(N),anti
1,N ,

and looking at the leading order in terms of N we have the general formula (6.61) for

1 ≤ k ≤ N − 2. In particular, for k = N − 3 (is even by assumption on N) and k = N − 2
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(odd) :

z
(N),anti
1,3 ∼ RN−3z

(N),anti
1,N − N − 3

2
, z

(N),anti
1,2 ∼ RN−2z

(N),anti
1,N +

(N − 2)µa,c
2

. (6.65)

respectively. Moreover, by looking at x
(N)
N,N combining (6.33) and (6.34) we have

Rz
(N),anti
1,2 = R

(N − 2)µa,c
2

− (3−N)

2
+

(κR − κL)

2γ
+ z

(N),anti
1,3 .

Plugging in the above equation the relations from (6.65), we write

(RN−1 +RN−3)z
(N),anti
1,N +

R(N − 2)µa,c
2

∼ R(N − 2)µa,c
2

− (3−N)

2
+

(κR − κL)

2γ
− (N − 3)

2

which is z
(N),anti
1,N ∼ R1−N

(
κR − κL

2γ

)
.

We conclude the last statement by combining the above estimate on z
(N),anti
1,N with (6.61).

Now we estimate the entries yN : from (6.60) and Lemma 6.9,

‖yN‖2 .

(
N∑
i=1

|z1,i|2
)1/2

+N1/2 . N3/2 +N1/2 . N3/2.

This gives that

|y(N)
1,j | . O(N) (6.66)

and then also, since y
(N)
k,N = γ

c
(z

(N)
k−1,N + z

(N)
1,N−(k−2)) + y

(N)
1,N−(k−1),

|y(N)
j,N | . O(N). (6.67)

Lemma 6.10 (Estimate on the spectral norm of yN). For the spectral norm of yN we

have that

‖yN‖2 . O(N3).

Proof. Let v = (v1, v2, . . . , vN) ∈ CN . We write Li for the i-th row of the matrix yN and
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then calculate

|yNv|22 = |L1 · v|2 + · · ·+ |LN · v|2

≤N

(
|y(N)

1,1 v1|2 + |y(N)
1,2 v2|2 + · · ·+ |y(N)

1,N vN |
2 + (from L1 · v)

+ |y(N)
1,2 v2|2 + |y(N)

2,2 v2|2 + · · ·+ |y(N)
2,N vN |

2 + (from L2 · v)

...

+|y(N)

1,bN
2
c+1
v1|2 + · · ·+ |y(N)

bN
2
c+1,bN

2
c+1
vbN

2
c+1|2 + · · ·+ |y(N)

N,bN
2
c+1
vN |2 +

(
from LbN

2
c+1 · v

)
...

+ |y(N)
1,N v1|2 + |y(N)

2,N v2|2 + · · ·+ |y(N)
N,NvN |

2

)
(from LN · v)

We estimate the terms due to the first half of the matrix, i.e. the terms until LbN
2
c+1 · v:

from Lemma 6.7 we write all the y
(N)
i,j ’s in terms of the entries of yN and zN that, due to

the observations above, scale at most like N . In particular for the second line

y
(N)
2,k = y

(N)
1,k−1 + y

(N)
1,k+1 +

γ

c
z

(N),anti
1,k

and more generally

y
(N)
i,i+k = y

(N)
1,1+k + y

(N)
1,3+k + · · ·+ y

(N)
1,2i+k−1 +

γ

c

(
z

(N),anti
1,2+k + · · ·+ z

(N),anti
1,2i+k−2

)
.

Then, from (6.66):

|L1 · v|2 + · · ·+
∣∣∣LbN

2
c+1 · v

∣∣∣2 . N

(
N2|v1|2 + · · ·+N2|vN |2+ (6.68)

+N2|v1|2 + 32N2|v2|2 + · · ·+ 32N2|vN−1|2 +N2|vN |2+

+N2|v1|2 + 32N2|v2|2 + 52N2|v3|2 + 52N2|v4|2 + · · ·+ 52N2|vN−2|2 + 32|vN−1|2 +N2|vN |2

...

+N2|v1|2 + 32N2|v2|2 + · · ·+
(

2
⌊N

2

⌋
+ 1

)2

N2
∣∣∣vbN

2
c+1

∣∣∣2 +

(
2
⌊N

2

⌋
− 1

)2

N2
∣∣∣vbN

2
c+2

∣∣∣2 +

· · ·+N2|vN |2
)
.
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So the highest order is due to
∣∣∣LbN

2
c+1 · v

∣∣∣2 for which we estimate

∣∣∣LbN
2
c+1 · v

∣∣∣2 . (2N2

bN
2
c+1∑

i=1

(2i− 1)2

)
|v|22.

The terms (2i− 1) in the sum above, denote the number of the entries of yN , zN that each

y
(N)
i,j is given by.

Regarding the terms due to the second half of the matrix, we use again Lemma 6.7,

equations (6.56). This way we write the elements y
(N)
i,j ’s in terms of y

(N)
N,j ’s and then from

relation (6.58), we have all the y
(N)
i,j ’s in terms of the entries of yN and zN , that scale at

most like N . So in the end we have

|yNv|22 . N

(
N3N2

)
|v|22 = N6|v|22.

Then
|yNv|2
|v|2

. O(N3) and so ‖yN‖2 . O(N3).

Before we finish the proof, we give more details on the estimates (6.68) above:

For the first inequality we apply iteratively Lemma 6.7. Regarding the row L2:

y
(N)
2,2 = y

(N)
1,3 + y

(N)
1,1 +

γ

c
z

(N),anti
1,2 .

So y
(N)
2,2 is given by the sum of 3 terms whose absolute value is of order not more than

O(N). The same holds (from Lemma 6.7) for each y
(N)
2,j for j ≤ N − 2, i.e. until we reach

the ’cross-diagonal’. After the ’cross-diagonal’: y
(N)
2,N = y

(N)
1,N−1 + 2γ

c
z

(N)
1,N , and |y(N)

1,N−1|, |z
(N)
1,N |

have order less than N .

Regarding the row L3:

y
(N)
3,2 = y

(N)
1,2 + y

(N)
1,4 +

γ

c
z

(N),anti
1,3

is given by the sum of 3 terms whose absolute value has order less than N , while for y
(N)
3,3 ,

by applying Lemma 6.7 twice, i.e. until we end up only with elements of yN and zN , we

get

y
(N)
3,3 = y

(N)
1,3 + y

(N)
1,1 + y

(N)
1,5 +

γ

c

(
z

(N),anti
1,2 + z

(N),anti
1,4

)
.

So y
(N)
3,3 is given by the sum of 5 terms whose absolute value has order less than N . For

y
(N)
3,j , j ≤ N − 2 (until the ’cross-diagonal’), apply Lemma 6.7 twice: the value of y

(N)
3,j is
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given by the sum of 5 such terms, while for N − 1 ≤ j ≤ N ,

y
(N)
3,N−1 = y

(N)
1,N−3 + y

(N)
1,N−1 +

γ

c
z

(N),anti
1,N−2

y
(N)
3,N =

γ

c

(
z

(N)
2,N + z

(N)
1,N−1

)
+ y

(N)
1,N−2 =

2γ

c
z

(N)
1,N−1 −

γµa,c
c

+ y
(N)
1,N−2

and so they are given by 3 terms with absolute value of order at most N .

In general, the same holds for the row Li, i ≤ bN2 c + 1 from applications of Lemma

6.7 inductively. For all y
(N)
i,j we apply Lemma 6.7 until we have written each y

(N)
i,j only in

terms of entries of yN and zN .

For j ≤ i, i.e. until the main diagonal, y
(N)
i,j is given by the sum of ν terms, whose order is

less than N , and

ν = 1, 3, 5, · · · , (2i− 1) for y
(N)
i,1 , y

(N)
i,2 , · · · , y

(N)
i,i , respectively.

For that we apply Lemma 6.7 and write

y
(N)
i,j = y

(N)
j,i = y

(N)
1,i−j+1 + y

(N)
1,i−j+3 + · · ·+ y

(N)
1,j+i−1 +

γ

c

(
z

(N),anti
1,i−j+2 + · · ·+ z

(N),anti
1,i+j−2

)
.

This formula gives that y
(N)
i,j is the sum of (2j − 1) terms whose absolute value has order

less than O(N).

The same holds for j > N − (i − 1), i.e. after the ’cross-diagonal’, considering also

(6.67). As for the rest terms in Li, for i ≤ j ≤ N − (i− 1): y
(N)
i,j is given by the sum of

(2i− 1) terms whose order is less than O(N).

Now, from (6.33) we can see that the entries of xN can be written in terms of entries of

zN as well:

x
(N)
i,j =

N∑
k=1

βi,ky
(N)
k,j + γ

∑
k

(δ(i=1,k=1) + δ(i=N,k=N))z
(N)
k,j

=
N∑
k=1,

k+j≤N

βi,kz
(N)
1,j+k +

N∑
k=1,

k+j>N

βi,kz
(N)
N,j+k−N−1 + γ

∑
k

(δ(i=1,k=1) + δ(i=N,k=N))z
(N)
k,j

where βij are the elements of the matrix B, (1.7), and the entries of yN are split into two

sums regarding their position about the cross diagonal.

We write

‖xN‖2 ≤ ‖B‖2‖yN‖2 + ‖FazN‖2 . ‖yN‖2 +N . N3.

Proof of Proposition 1.1. We are ready now to bound from above ‖bN‖2. We write for
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some positive constant C1
a,c

‖bN‖2 ≤ ‖xN‖2 + ‖yN‖2 ≤ C1
a,cN

3

where for the first inequality: since bN is positive definite, decomposing bN in its square

root matrices:

bN =

[
χ ζ

ζT ψ

][
χ ζ

ζT ψ

]
=

[
χ 0

ζT 0

][
χ ζ

0 0

]
+

[
0 ζ

0 ψ

][
0 0

ζT ψ

]
=: X∗X + Y ∗Y.

And since X∗X and XX∗ are unitarily congruent and the same holds for Y ∗Y and Y Y ∗

(from polar decomposition for example), there are unitary matrices U , V ∈ CN×N so that:

bN = X∗X + Y ∗Y = UXX∗U∗ + V Y Y ∗V ∗ = U

[
xN 0

0 0

]
U∗ + V

[
0 0

0 yN

]
V ∗.

Then it is clear that for the spectral norm (which is unitarily invariant):∥∥∥∥∥
[
xN zN

zTN yN

]∥∥∥∥∥
2

≤ ‖xN‖2 + ‖yN‖2.

Regarding the last part of the statement that ‖b−1
N ‖2 is bounded from above: Let us

first state some facts about the spectrum of the matrix b0 that solves

b0M +MT b0 = diag (2TL, 0, . . . , 2TR, 0, . . . , 0) := Θ̃.

It is known that b0 is the covariance matrix that determines the stationary solution of the

Liouville equation in the harmonic chain (and it has been found explicitly in [RLL67], see

a description of their approach in the beginning of the proof of Lemma 6.5). From [JPS17,

Lemma 5.1], we know that b0 is bounded below and above:

TR

[
I 0

0 B−1

]
≤ b0 ≤ TL

[
I 0

0 B−1

]
.

Thus ‖b0‖2 and ‖b−1
0 ‖2 are uniformly bounded in terms of N : from Remark 6.2 we

write B = −c ∆N +
∑N

i=1 αδi. Even though here we will only use that ‖b−1
0 ‖2 is finite, in

fact when a > 0, B possesses a spectral gap uniformly in N . Moreover, bN ≥ b0: since

ΠN > Θ̃, for every t > 0,

e−tM
T

ΠN e−tM > e−tM
T

Θ̃ e−tM
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and since −M is stable (all the characteristic roots have negative real part) we have

bN =

∫ ∞
0

e−tM
T

ΠNe
−tMdt >

∫ ∞
0

e−tM
T

Θ̃e−tMdt = b0.

So b−1
N ≤ b−1

0 and so ‖b−1
N ‖2 ≤ ‖b−1

0 ‖2 which is less than a finite constant (because of the

spectrum of the discrete Laplacian). Therefore there exists positive and finite constant

C2
a,c so that ‖b−1

N ‖2 ≤ C2
a,c. Conclude the Proposition by taking Ca,c := min(C1

a,c, C
2
a,c).

To sum up: for the homogeneous weakly anharmonic chain, the method described in

Section 3 with the modified Bakry-Emery criterion, gives a lower bound on the spectral

gap that is of order N−3 (see the exponential rate in the main Theorems). For the purely

harmonic chain, since we know that it always decays with N from Proposition 6.1, this

lower bound shows that the spectral gap in this case can not decay at an exponential rate

in N , it is at most polynomial.

In the next Proposition, exploiting the estimates on ‖bN‖2 from the above matrix

analysis, we get alternatively the lower bound on the spectral gap of the harmonic chain.

Proof of Proposition 1.2. We remind that ‖bN‖2 ≤ Ca,cN
3 by Proposition 1.1 and that

the spectral gap divided by inf{Re(µ) : µ ∈ σ(M)} is bounded below and above in terms

of N , by Proposition 6.1. From [Ves03, Inequality (13)], [GKK], we have an estimate for

the decay of e−Mt:

‖e−Mt‖2 ≤ ‖bN‖‖b−1
N ‖e

−t/‖bN‖

So, for u be the (normalised) eigenvector corresponding to an eigenvalue of M , µ > 0, we

write

e−2Re(µ)t = ‖e−2Re(µ)tu‖2 = ‖e−Mtu‖2 ≤ ‖bN‖‖b−1
N ‖e

−t/‖bN‖

and therefore we write −2Re(µ) ≤ − 1
‖bN‖

which means

Re(µ) ≥ 1

2‖bN‖
.

Taking the infimum over the real parts of the eigenvalues of M , we conclude that

inf{Re(µ) : µ ∈ σ(M)} ≥ C−1
a,cN

−3.

Eventually, from the whole procedure in this note we have that the scaling of the spectral

gap of the homogeneous harmonic chain is in between N−3 and N−1. In [BM22, Proposi-

tion 9.1] it is proven that this lower bound is the sharp one, i.e. an upper bound of order
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N−3 is provided.

From a simple numerical simulation in Matlab on the spectral gap of the matrix M , the

true value is indeed N−3. In particular calculating the real part of the smallest eigenvalue

of the matrix M and multiplying the result by N3 we get the following behaviour in Figure

2.2, which shows that then the spectral gap converges for large N :

N
3
ρ

chain length N

Figure 2.2: Scaled spectral gap as a function of the chain size for pinning coefficient a = 0,
interaction coefficient c = 1 and friction constant γ = 1. We denote by ρ the spectral gap
of the harmonic chain.
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Chapter 3

The optimal spectral gap for regular

and disordered harmonic networks of

oscillators

This chapter is the article published in [BM22] and it is a joint work with Simon Becker.

We consider one-dimensional chains and multi-dimensional networks of harmonic

oscillators coupled to two Langevin heat reservoirs at different temperatures. Each particle

interacts with its nearest neighbors by harmonic potentials and all individual particles

are confined by harmonic potentials, too. In this article, we provide, for the first time,

the sharp N dependence of the spectral gap of the associated generator under various

physical assumptions and for different spatial dimensions. Our method of proof relies

on a new approach to analyze a non self-adjoint eigenvalue problem involving low-rank

non-hermitian perturbations of auxiliary discrete Schrödinger operators.
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3.1 Introduction

We analyze the dependence of the L2-spectral gap of the full Fokker-Planck operator for a

classical heat conduction model from non-equilibrium statistical mechanics by using novel

ideas from scattering [SZ89] and random matrix theory [FKS97] to reduce it to a non

self-adjoint eigenvalue problem involving discrete Schrödinger operators. Even though non

self-adjoint eigenvalue problems are often subtle to analyze using perturbative methods,

we show that the low-rank nature of the non self-adjoint perturbation allows us to exhibit

precise estimates on the behaviour of the spectral gap.

3.1.1 Description of the model

In this article we study the so-called chain of oscillators, which is a multi-dimensional

model1 describing heat transport through a configuration of Nd interacting particles, where

d is the spatial dimension.

We consider particles labelled according to the sites of a d-dimensional square lattice

[N ]d, where [N ] := {1, .., N}, with quadratic nearest neighbour interaction and pin-

ning potentials confining the particles of mass mi to a lattice structure. Let m[N ]d :=

diag(m1, ...,mNd) be the mass matrix, containing the masses mi of particles i ∈ [N ]d

on the diagonal, and let qi be the displacement of each particle with respect to their

equilibrium position and pi its momentum. The energy of the oscillator chain is described

by a Hamilton function H : T ∗RdNd → R, where T ∗RdNd
is the cotangent bundle denoting

physical phase space and can, of course, be identified with R2dNd
,

H(q,p) =
〈p,m−1

[N ]d
p〉

2
+ Vη,ξ(q) where

Vη,ξ(q) =
∑
i∈[N ]d

ηi|qi|2 +
∑
i∼j

ξij|qi − qj|2.
(1.1)

By the symbol ∼, we indicate nearest neighbors on the [N ]d ⊂ Zd lattice and ηi, ξij >

0. The above form of the potential describes particles that are fixed by a quadratic

pinning potential Upin,i(q) = ηi|qi|2 and interact through a quadratic interaction potential

Uint,i∼j(q) = ξij|qi − qj|2 for i, j such that ‖i− j‖∞ = 1. The quadratic potential models

the leading order interaction that pushes the particle back to its equilibrium position.

Constants ηi and ξij then correspond to twice the spring constant in our normalization.

The dynamics of this model is such that (some) particles at the boundary on [N ]d are

coupled to heat baths at (possibly) different temperatures β−1. Moreover, some particles

1although in higher dimensions the model is no longer a chain of oscillators, but rather a network, we
shall still use the expression chain of oscillators to refer to the model as it was first considered in one
dimension and the name chain of oscillators has been used pars pro toto.
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i ∈ F ⊂ ∂{1, .., N}d are subject to friction and we denote by γi > 0, the friction strength

at the i-th particle. However, at least for the mathematical analysis of this model, these

particles do not have to coincide with the particles that are in contact with the heat bath.

The time evolution is then for particles i ∈ {1, .., N}d described by a coupled system

of SDEs:

dqi(t) = ∇piH dt and

dpi(t) = (−∇qiH − γipiδi∈F) dt+ δi∈F

√
2miγiβ

−1
i dWi

(1.2)

where βi is the inverse temperature at the boundary of the network of oscillators, Wi with

i ∈ F are iid Wiener processes, γi > 0 a friction parameter, and F ⊂ {1, .., N}d the set of

the particles subject to friction.

For the analysis of one-dimensional chains, we mainly consider friction at both terminal

ends, i.e. F = {1, N}, in which case β1 and βN correspond to actual physical inverse

temperatures. Our analysis also allows us to study a chain with zero friction at a single

end of the chain, this is a scenario that has been considered by Hairer in [Hai09]. In this

case, the frictionless end is interpreted to be in contact with an environment at infinite

temperature. Thus, the inverse temperature at the frictionless end no longer corresponds

to a physical temperature.

The solution to the above system of SDEs (1.2) forms a Markov process, and can

thus be equivalently described by a strongly continuous semigroup Ptf(z) := Ez
(
f(pt, qt)

)
where (pt, qt) ∈ R2Nd

solve the system of SDEs (1.2). Its generator is given by

Lf(z) = −〈z,M[N ]d∇zf(z)〉+ 〈∇p,Γm[N ]dϑ∇pf(z)〉 (1.3)

where M[N ]d ∈ C2Nd×2Nd
, the matrix in the drift part of the above generator, and Γ ∈

RNd×Nd
, the matrix containing the friction parameters, are matrices of the form

M[N ]d :=

(
Γ −m−1

[N ]d

B[N ]d 0

)
and

Γ = diag(γ(1,..,1)δ(1,..,1)∈F , γ(2,1,..,1)δ(2,1,..,1)∈F , . . . , γ(N,..,N)δ(N,..,N)∈F).

The matrix ϑ containing the temperatures is of the form

ϑ = diag(β−1
(1,..,1)δ(1,..,1)∈F , . . . , β

−1
(N,..,N)δ(N,..,N)∈F).

Defining for i, j ∈ [N ]d self-adjoint operators 〈u, Li,ju〉`2([N ]d;C) := |u(i) − u(j)|2 that
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decompose the negative weighted Neumann Laplacian on `2([N ]d;C) as

−∆[N ]d =
∑
i∼j

ξijLi,j,

we can identify the matrix B[N ]d ∈ RNd×Nd
appearing in M[N ]d with a Schrödinger operator

B[N ]d = −∆[N ]d +
∑
i∈[N ]d

ηiδi (1.4)

where (δi(u))(j) = u(i)δij. The operator B[N ]d reduces in one dimension, i.e. d = 1, to the

Jacobi (tridiagonal) matrix

(B[N ]f)n = −ξn,n+1fn+1 − ξn−1,nfn−1 + (ηn + ξn,n+1 + ξn−1,n)fn.

with the convention that ξ0,1 = ξN,N+1 = 0.

3.1.2 State of the art and motivation

The (multi-dimensional) chain of oscillators is a non-equilibrium statistical mechanics

model initially introduced to study heat transport in media. It was first introduced

for the rigorous derivation of Fourier’s law, or a rigorous proof of its breakdown: this

is well described in several overview articles on the subject: [BLRB00], [Lep16, Dha08]

and [FB19]. The linear (harmonic) case was the first to be studied in [RLL67], where

the non equilibrium steady state (NESS) was explicitly constructed and the behavior

of the heat flux analyzed as well, leading (as expected) to the breakdown of Fourier’s

law. For results regarding on chains with anharmonic potentials, we refer the reader to

[EPRB99a, EPRB99b, EH00] where existence and uniqueness of stationary states was

studied and to [RBT02, Car07] where exponential convergence towards the NESS has

been proved. Regarding the existence, uniqueness of a NESS and exponential convergence

towards it in more complicated anharmonic d-dimensional networks of oscillators (not

only for square lattices) see [CEHRB18]. In [Raq19, Men20] bounded perturbations of

the harmonic chain are discussed. Note also that short chains of rotors with Langevin

thermostats have been studied in [CP17, CEP15]. In the articles [HM09, Hai09] some

negative results are presented, i.e. lack of spectral gap, in cases where the pinning potential

is stronger than the coupling one.

The main motivation of this article is to find the exact scaling of the spectral gap of

the associated generator of the dynamics as defined above, in terms of the number of

the particles. Quantitative results in this sense are missing from the literature and even

in the simplest cases for the chain of oscillators, i.e. the linear (harmonic) chains, the

dependence on the dimension of the spectral gap has been open. Attempts have been made
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through hypocoercive techniques to get N -dependent estimates under certain assumptions

on the potentials: see the discussion in [Vil09a, Section 9.2] where this question was first

raised. The techniques discussed in Villani’s monograph however only yield rather far

from optimal estimates on the spectral gap in terms of the system size. To the authors’

knowledge, the only relevant result so far that gives a polynomial lower bound on the

spectral gap for the same model (homogeneous with a weak N -dependent anharmonicity)

is [Men20]. Hypocoercive techniques used in that article provide a polynomial lower bound

on the spectral gap and upper bounds on the prefactors in front of the exponential that

determine the exponential rate of the convergence.

Here we give the sharp upper and lower bounds on the scaling of the spectral gap. In this

article we not only cover homogeneous networks of oscillators, but also randomly perturbed

pinning potentials or pinning potentials perturbed by single impurities. In addition, our

techniques also apply to other scenarios apart from the classical one-dimensional model,

in particular it gives scalings for d-dimensional square network cases. These results seem

to be the first of their kind.

Microscopic properties and heat transport. Before stating our main results, we want

to mention results on the macroscopic heat transport of the chain of oscillators, e.g. heat

conductivity, and how such properties are determined from microscopic properties of the

system. In particular, we would like to highlight which microscopic properties affect the

heat transport and which determine the asymptotic behaviour of the spectral gap.

It has been suggested by [CL71] that, for an infinite one-dimensional chain the absolutely

continuous part of the spectrum of the Schrödinger operator (1.4), i.e. the metallic part of

the spectrum, leads to infinite conductivity. In the specific example of the homogeneous

chain, where there is only absolutely continuous spectrum in the limit, it is well-known

that the conductivity is infinite (Fourier’s law doesn’t hold) [RLL67]. Note also that the

behavior of the flux does not depend on the dimensionality of the system, see [R.H71] for

2 dimensions. However, in disordered harmonic chains (DHC) with random masses, where

all eigenstates of the discrete Schrödinger operator are localized, the heat flux vanishes as

N →∞ almost surely, see [CL71, RG71, OL74].

First studies of the behaviour of the heat currents in a one-dimensional DHC were done

in [CL71, RG71]. In particular, in [RG71] the heat baths are semi infinite harmonic chains

distributed according to their equilibrium Gibbs measures at temperatures TL, TR (free

boundaries). In this case, E(JN) & N−1/2, where E(·) denotes the expectation over the

masses. That E(JN ) ∼ N−1/2 was proved a bit later in [Ver79], showing that Fourier’s law

does not hold in this model of DHC. Results regarding heat baths coupled at both ends

with Ornstein-Uhlenbeck terms with fixed boundaries, i.e. q0 = qN+1 = 0, was first done

in [CL71]. A rigorous proof of E(JN) ∼ (∆T )N−3/2 was given in [AH11]. The limiting
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behaviour of the heat flux in both of these models is also discussed in [Dha01]. Localization

effects of the discrete Schrödinger operator enter also in the study of mean-field limits for

the harmonic chain [BHO19].

Our new approach shows that the spectral gap of the generator to (1.2) is determined by

the decay rate of eigenstates of the discrete Schrödinger operator (1.4), under a constraint

on the level-spacing between its eigenvalues. The Schrödinger operator is given as

(B[N ]df)i = (−∆[N ]df)i + ηifi, where f = (fi)i∈[N ]d ,

and fully defined in terms of masses and the potential strengths. In particular, our results

indicate that the presence of exponentially localized eigenstates in the discrete Schrödiger

operator, i.e. the insulating part of the spectrum, causes an exponentially fast closing

of the spectral gap. In contrast to this, if the discrete Schrödinger operator possesses

only extended states, the spectral gap again decays to 0 as N tends to infinity but this

time only at a polynomial rate. Both results only hold under a pressure condition on the

eigenvalues.

The above results show that single impurities which correspond to rank one perturba-

tions in the discrete Schrödinger operator should not affect the heat conductivity but do

affect the spectral gap. Put differently, heat transport is an effect that is governed by all

the modes of the system whereas the spectral gap is -in general- only determined by a

single extremizing mode of the Schrödinger operator.

3.1.3 Main results

We study the spectral gap for three scenarios describing fundamentally different physical

settings:

• For a homogeneous model with the same physical parameters for every particle (the

associated Schrödinger operator possesses only extended states in the limit N →∞),

Fig. 3.1,

• for a model with a sufficiently strong impurity in the pinning potential of a sin-

gle particle (the Schrödinger operator possesses both extended and exponentially

localized states in the limit N →∞), Fig. 3.2, and

• for a model with disordered pinning potential (the Schrödinger operator has only

exponentially localized eigenstates in the limit N → ∞ for d = 1, this is also

conjectured to be true for d = 2, and is conjectured to have both exponentially

localized and extended states in dimensions d ≥ 3), Fig. 3.3. In this article, however,

we only use the existence of some localized states.
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Figure 3.1: Homogeneous chain: Spectral gap O(N−3).

Figure 3.2: Chain with impurity: Spectral gap O(e−cN).

Figure 3.3: Disordered chain: Spectral gap O(e−cN).

Figure 3.4: The one-dimensional chain of oscillators connected to heat baths (big discs)
and with various pinning potentials (differently coloured discs indicate different pinning
strengths).

Our main results on the N -dependence of the spectral gap of the d-dimensional

harmonic chain are summarized in the following theorem:

Theorem 1.1. Let the positive masses and interaction strengths of all oscillators coincide,

Nd be the number of oscillators, placed in a square grid with N oscillations on each side,

and d the dimension of the network. If all the friction parameters for all oscillators does

not grow faster than the number of boundary particles, i.e. supi∈F⊂∂[N ]d γi ≤ O(Nd−1), the

spectral gap of the chain of oscillators decays always as a function of N . In particular,

• (Homogeneous chain): Let the pinning strength be the same for all oscillators, then

1. if two particles located at the corners (1, . . . , 1), (N, . . . , N), see Fig. 3.6, are

exposed to the same non-zero friction and non-zero diffusion, the spectral gap

of the generator satisfies

λS = O(N−3d).

In particular for the one-dimensional chain of oscillators λS = O(N−3).

2. if the same non-zero friction and non-zero diffusion for particles located at the

center of two opposite edges of the network

(1, dN/2e, . . . , dN/2e), (N, dN/2e, . . . , dN/2e),

see Fig. 3.7, the spectral gap of the generator satisfies λS = O(N−3−(d−1)).

3. if d = 2 and the particles exposed to the same non-zero friction are located at

opposite edges of the network, the spectral gap satisfies λS = O(N−5/2).

• (Chain with impurity): Let N be even. We assume that all masses and interaction

parameters are positive and coincide and the friction parameters γi of the boundary
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articles

∂[N ]d := {i ∈ [N ]d;∃in : in ∈ {1, N}} of [N ]d := {1, .., N}d

satisfy supi∈∂[N ]d γi ∈ (0, c)where c is independent of N and the friction is non-zero

on at least one boundary edge. Then, if the pinning strength ηcd(N) at the center

point cd(N) = (N/2, .., N/2) of the network is sufficiently small compared to the

pinning strength of all other oscillators, then the spectral gap λS of the generator

closes exponentially fast in the number of oscillators, for all d ≥ 1.

• (Disordered chain): We assume that all masses and interaction parameters are

positive and coincide and the friction parameters γi of the particles at the boundary

∂[±N ]d := {i ∈ [±N ]d; ‖i‖∞ = N} of the network [±N ]d := {−N, ..., N}d

satisfy supi∈∂[±N ]d γi ∈ (0, c) where c is independent of N and the friction is non-zero

on at least one boundary edge. Then, if the pinning strengths are iid random variables

according to some compactly supported density ρ ∈ Cc(0,∞), the spectral gap λS of

the generator decays exponentially fast in the number of oscillators, for all d ≥ 1 for

all but finitely many N .

Our findings in Theorem 1.1 are illustrated in one spatial dimension in Figure 3.5.

Open questions.

• While we fully settle the scaling of the spectral gap for one-dimensional oscillator

chains, and for many grid-type configurations in higher dimensions, the scaling of

the spectral gap for many physically relevant configurations in higher dimensions

remains open. Although our method of proof still applies to such configurations

as well, the necessary estimates seem to become rather intricate, cf. the discussion

below Proposition 3.6.

• It would be interesting to study the behavior of the spectral gap in terms of the

dimension of the system in the oscillator chains for more general classes of pinning

and interaction potentials, i.e. for example for potentials, as studied in [EH00, Ass.

1 and 2]. As a first step, one might consider quartic corrections to the potential in

(1.1). While this analysis cannot be reduced to a Schrödinger operator in that case,

we still believe the connection between decay properties of (generalized) eigenstates

of the symmetric part of the operator and the scaling of the spectral gap to persist.

• Moreover, apart from considering different kinds of potentials, one can study different

kind of noises as well, [Raq19, NR], where quantitative rates of convergence are not

available, so far.
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Figure 3.5: Log-log plot of the spectral gap for the one-dimensional chain of oscillators for
all three cases considered in Theorem 1.1. The impurity is modeled by choosing a pinning
strength ηi = 10 for all oscillators i apart from the one in the center for which we choose
ηN/2 = 5. The disorder potential is of the form Vω(n) = 1 +Xn where Xn ∼ U(0, 1) are
i.i.d. uniformly distributed.

• It would also be interesting to extend our analysis to more complicated geometries

such as different lattice structures. We expect comparable bounds to the integer

lattice, but due to the non-explicit structure of the spectral decomposition of the

Laplacian, the analysis of such geometries is presumably more intricate.

Notation. We write f(z) ≤ O(g(z)) to indicate that there is C > 0 such that |f(z)| ≤
C |g(z)| and f(z) = O(g(z)) for z → z0 if there is for any ε > 0 a neighbourhood Uε of z0

such that |f(z)| ≤ ε |g(z)| . Instead of writing f(z) ≤ O(g(z)), we sometimes also write

f(z) . g(z). Finally, we introduce the notation [N ] := {1, ..., N} and

∂[N ]d :=

{
i = (i1, .., id) ∈ [N ]d; ‖i‖∞ = N or min

n∈[d]
in = 1

}
.

The eigenvalues of a self-adjoint matrix A shall be denoted by λ1(A) ≤ ... ≤ λN(A). We

also employ the Kronecker delta where δn∈I = 1 if n ∈ I and zero otherwise. The inner

product of two vectors x, y ∈ Rm is denoted by 〈x, y〉.
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3.2 Mathematical preliminaries

For our purposes, it is sometimes favorable to consider also another form, which we obtain

upon performing the following change of variables

p̃ = m
−1/2

[N ]d
p, q̃ :=

√
B[N ]dq.

This is an isomorphic change of variables if and only if all masses and interaction strength

are strictly positive. In the new coordinates, the generator becomes

L = 〈p̃,m−1/2

[N ]d
B

1/2

[N ]d
∇q̃〉 − 〈q̃, B1/2

[N ]d
m
−1/2

[N ]d
∇p̃〉 − 〈p̃,Γ∇p̃〉+ 〈∇p̃,ΓΘ∇p̃〉

= −〈z̃,Ω[N ]d∇z̃〉+ 〈∇p̃,ΓΘ∇p̃〉
(2.5)

where

Ω[N ]d :=

(
Γ −m

−1/2

[N ]d
B

1/2

[N ]d

B
1/2

[N ]d
m
−1/2

[N ]d
0

)
. (2.6)

The following Proposition identifies the optimal exponential rate of convergence, and

thus the spectral gap, to the NESS for Ornstein–Uhlenbeck operators. This result was

first proved, to our knowledge by [MPP02]. Here we state a version given in [AE, Mon19]:

Proposition 2.1 (Proposition 13 in [Mon19], Theorems 4.6 and 6.1 in [AE], Theorem

2.16 in [AAS15]). Let the generator of an Ornstein-Uhlenbeck process given by

Lf(z) = −〈(Bz),∇zf(z)〉+ div(D∇zf)(z), z ∈ Rd (2.7)

under the assumptions that

1. There is no non-trivial subspace of kerD that is invariant under BT

2. All eigenvalues of the matrix B have positive real part (B is positively stable).

Let ρ := inf{Re(λ) : λ ∈ Spec(B)} > 0 and let m, that possibly depends on N , be the

maximal dimension of the Jordan block of B that corresponds to an eigenvalue λ of B such

that Re(λ) = ρ.

Then there is a unique invariant measure µ and constant c > 0 so that, regarding the long

time behaviour of the process with generator (2.7),

c−1(1 + t2(m−1))e−2ρt ≤ ‖Pt − µ‖2 ≤ ceρ(1 + t2(m−1))e−2ρt, t ≥ 1

where ‖Pt − µ‖ := sup‖f‖L2(µ)=1
‖(Pt − µ)f‖L2(µ).

Therefore, both the exponential rate given by ρ is and the power (1 + t2(m−1)) are

120



optimal. Now if we define for every ε ∈ (0, ρ),

Cε,N := sup
t>0

e−2εt(1 + t2(m−1))

we have

(1 + t2(m−1))e−2ρt ≤ Cε,Ne
−2(ρ−ε)t.

Note that since m can depend on N , Cε,N depends on N , too. The exponential rate

and more generally the estimates of the relaxation time, is due to the drift part of the

operator, whereas the hypoellipticity condition is used to ensure us for the existence of

a unique invariant measure µ (in [AE, Lemma 3.2] it is established that the invariant

measure is in general a non-isotropic Gaussian measure. See also [RLL67] where they find

an explicit form of this stationary measure having as motivation to study properties of the

NESS of the harmonic oscillators chains.)

We finally would like to mention that such a result holds in relative entropy as well

[Mon19].

The above Proposition 2.1 applies to the chain of oscillators as well, where B is just

ΩT
[N ]d

in (2.5). Conditions (1) and (2) are satisfied, once we assume there is diffusion

and friction, i.e. F 6= ∅, since this condition is equivalent to the hypoellipticity of ∂t − L
[H6̈7, §1]. Also Ω[N ]d satisfies condition (ii), see [JPS17, Lemma 5.1], for more details see

the Appendix 3.A. Since we don’t know if our matrix Ω[N ]d is diagonalizable, Cε,N here

depends possibly on N and when considering the worst case we have a dependence of

order t2(N−1) on the right hand side. Then applying Proposition 2.1 in our case we get

2c−1e−2ρt ≤ ‖Pt − µ‖2 ≤ ceρ(1 + t2(Nd−1))e−2ρt.

To summarize the discussion of this Section: The spectral gap λS of the generator of

the N -particle dynamics (2.5) is precisely given by

λS := inf{Re(λ) : λ ∈ Spec(Ω[N ]d)} = inf{Re(λ) : λ ∈ Spec(M[N ]d)}.

We record some simple observations about the behaviour of the spectral gap in the

following Proposition:

Proposition 2.2. For the harmonic network of oscillators the following properties hold:

1. The characteristic polynomial of M[N ]d satisfies det(M[N ]d − λ id) = det(λ2 − λΓ +

m−1
[N ]d

B[N ]d) = 0. In particular, the matrix M[N ]d is invertible if and only if B[N ]d is

invertible.
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2. If there is the same non-zero friction at every oscillator, i.e. Γ = γ id[N ]d, F = [Nd],

and infN∈N infλ∈Spec(m−1

[N ]d
B

[N ]d
) λ > 0 then the chain of oscillators has a spectral gap

that is uniform in the number of oscillators. In particular, if all masses and coupling

strength η, ξ coincide and are non-zero, then we have infN∈N infλ∈Spec(m−1

[N ]d
B

[N ]d
) λ > 0.

3. The spectral gap of the generator (1.3) decays at least with rate O(N−1) if the

friction parameters at particles on the boundary ∂[N ]d of the particle configuration

[N ]d does not grow faster than the number of boundary particles, i.e. supi∈F⊂∂[N ]d γi ≤
O(Nd−1).

4. Let 1 ∈ F ⊂ {1, N} be the left terminal end of a one-dimensional chain, i.e.

d = 1, with universal (independent of the size of the chain) friction parameters

γ1 > 0, γN ≥ 0. If all oscillators have the same mass and there are constants

c1, c2 > 0 such that c1 < ξi,j, ηi < c2 for all N , then the spectral gap of (1.3) does

not decay faster than e−cN for some c > 0.

Proof. (1): The determinant formula follows from general properties of block matrices.

By setting λ = 0 it follows that M[N ]d is invertible if and only if m−1
[N ]d

B[N ]d is invertible.

(2): If F = [Nd] and Γ = γI then det(λ2 − γλ+ m−1
[N ]d

B[N ]d) = 0 is equivalent to solving

λ2 − γλ+ µ = 0 where µ ∈ Spec(m−1
[N ]d

B[N ]d). Now as the product of two positive definite

matrices, m−1
[N ]d

B[N ]d has again positive eigenvalues. Thus, all solution to this equation

have their real part bounded away from zero.

(3): is a consequence of the identity∑
λ∈Spec(M

[N ]d
)

Re(λ) = tr(M[N ]d) = tr(Γ).

Since we have 2Nd (counting multiplicity) positive terms that all satisfy Re(λ) ≥ 0 where

λ ∈ Spec(M[N ]d), and by assumption tr(Γ) ≤ O(Nd−1), we conclude that λS ≤ O(N−1):

Indeed we write∑
λ∈Spec(M

[N ]d
)

Re(λ) ≥ (2Nd) inf{Re(λ) : λ ∈ Spec(M[N ]d)} = O(Nd−1)

and thus

λS = inf{Re(λ) : λ ∈ Spec(M[N ]d)} ≤ O(N−1).

(4): We introduce the transfer matrix [Tes00, (1.29)]

Aj(λ) =

(
λ2−(ξi,i+1+ξi+1,i+2+ηi+1)

ξi+1,i+2
− ξi,i+1

ξi+1,i+2

1 0

)
. (2.8)
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Thanks to the tridiagonal and symmetric form of BN , the transfer matrix (2.8) allows us

to write the solution to (BN + λ2)u = 0 inductively as(
ui+1

ui

)
=

1∏
j=i−1

Aj(λ)

(
u2

u1

)
.

This way,
∥∥∥(ui+1, ui)

T
∥∥∥ ≤ Ci−1

∥∥∥(u2, u1)T
∥∥∥ with boundary conditions

u2 =
η1 + ξ1,2 − λ2

ξ1,2

u1 and uN−1 =
ηN + ξN−1,N − λ2

ξN−1,N

uN .

and where C = supj ‖Aj‖ . The boundary conditions can be obtained from solving

(BNu)(1) + λ2u(1) = 0 and (BNu)(N) + λ2u(N) = 0.

Let λ ∈ Spec(M[N ]) with Re(λ) = λS, then there is u normalized such that

(m−1
N BN + λ2)u = λΓu.

Then, by taking the inner-product with u again:

〈(m−1
N BN + λ2)u, u〉 = λ〈Γu, u〉. (2.9)

We can assume without loss of generality that =(λ) 6= 0, as

〈m−1
N BNu, u〉 ≥ m−1c1 > 0,

where m is the mass of the particles. Thus, there can be no real solution λ = O(e−cN ) for

N sufficiently large to (2.9). Now, since the real and the imaginary parts on both sides

should be the same, we write for the imaginary part =(λ2) = =(λ)
∑

i∈F γi|ui|2. Writing

then λ = λS + i=(λ) yields

λS =
∑
i∈F

γi
|ui|2

2
≥ γ1|u1|2

2
. (2.10)

Since u is normalized this implies, using also (2.10), that

1 =
N∑
i=1

|ui|2 ≤ C2N
1 |u1|2 ≤ 2

C2N
1

γ1

λS

which implies the claim as we assumed that there is friction at the first particle.

Remark 2.3. The artificial case (2), in which we assume friction at every particle, and

the result in (3) show that it is the sub-dimensionality of the particles experiencing friction
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that causes the spectral gap to close for almost all configurations of the chain of oscillators.

3.3 Proofs of the main results

3.3.1 Reduction method from scattering theory

In a preliminary step, we harness the low-rank character of the perturbation and reduce

the study of the spectral gap to an auxiliary problem.

The following Lemma reduces the dimension of the spectral analysis of Ω[N ]d ∈
C2Nd×2Nd

, which determines the spectral gap of the generator (2.5), to an equivalent

problem for a low-dimensional Wigner matrix WF ∈ C|F|×|F| and connects the low-

dimensional Wigner matrix to the eigenvectors of the off-diagonal blocks of ΩN . For more

background on this method, that originates from scattering theory, we refer to [SZ89].

We apply it here to study the spectra of low-rank perturbations, due to friction at the

boundary oscillators, of the Hamiltonian system.

Lemma 3.1 (Low-rank perturbations). Let B be a self-adjoint matrix on CNd
with

eigenvalues λj and eigenvectors vj and consider the matrix A = iΩ = A0 + iΓ̂ with

Γ̂ := diag(Γ, 0CNd×Nd ) where A0 =

(
0 −iB
iB 0

)
. We then have that for λ ∈ R \Spec(B)∪

Spec(−B),

λ ∈ Spec(A) if and only if − i ∈ Spec(WF(λ))

with

WF(λ) =
∑

µ∈±Spec(B)

(λ− µ)−1
∑

i1,i2∈F

αi1,i2(µ)π
|F|
i1,i2

(3.11)

for rank one operators π
|F|
i1,i2

:= e
|F|
i1
⊗ e|F|i2

and matrix-elements

αi1,i2(µ = ±λj) :=
√
γi1γi2〈V ±j , e2Nd

i1
〉〈e2Nd

i2
, V ±j 〉,

with V ±j = 1√
2
(vj,±ivj)T .

Proof. We introduce matrices AF =
{√

γae
2Nd

a (i)
}
i∈[2Nd],a∈F

∈ C2Nd×|F| and then have

that the friction matrix is given by Γ̂ = AFA
∗
F .

The Wigner WF -matrix is defined, for λ /∈ ± Spec(B), as

WF(λ) := A∗F(λ−A0)−1AF ∈ C|F|×|F|.

We then obtain from properties of the determinant, and Sylvester’s determinant identity,
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applied in the second line, that

det
(
id|F|−iWF(λ)

)
= det

(
id|F|−iA∗F(λ−A0)−1AF

)
= det

(
idC2Nd −i(λ−A0)−1Γ̂

)
= det

(
(λ−A0)−1(λ−A0 − iΓ̂)

)
= det

(
(λ−A0)−1

)
det (λ−A) .

Rearranging this identity shows that

0 = det(λ−A) = det(λ−A0) det
(
id|F|−iWF(λ)

)
. (3.12)

Thus, all eigenvalues λ of the high-dimensional matrix A coincide with values λ for which

−i ∈ Spec(WF(λ)). The eigenvectors of A0 are given by V ±j = 1√
2
(vj,±ivj)T where vj are

eigenvectors of B to eigenvalues λj. From spectral decomposition then we write

WF(λ) =
∑
±

Nd∑
j=1

(λ∓ λj)−1
∑

i1,i2∈F

√
γi1γi2〈V ±j , e2Nd

i1
〉〈e2Nd

i2
, V ±j 〉e

|F|
i1
⊗ e|F|i2

.

This expression coincides with the one given in the statement of the Lemma for WF .

Remark 3.2 (Normalization of masses). In the sequel we assume in our statements that

the masses do all coincide and to simplify the notation, we just take them to be equal to

one.

3.3.2 One-dimensional homogeneous chain

We first study the behaviour of a one-dimensional chain of oscillators that consists of

particles with the same physical properties. The limiting discrete Schrödinger operator

B∞ possesses only absolutely continuous spectrum, by standard properties of the discrete

Laplacian, and we find a polynomially fast rate for the closing of the spectral gap:

Proposition 3.3 (One-dimensional Homogeneous chain). Let all pinning and interaction

parameters ηi > 0, ξij > 0 of the potentials, and masses mi coincide, respectively and

assume that there is at least one particle with non-zero friction γ > 0 and diffusion at at

least one of the terminal ends of the chain. The spectral gap of the harmonic chain of

oscillators satisfies λS = O(N−3).

Proof. The eigenvectors to the root of the discrete Schrödinger operator
√
BN , defined in
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(1.4), coincide with the eigenvectors to the discrete Laplacian and are just given by

vi(j) =


N−

1
2 , i = 1√

2
N

cos

(
π(i−1)

(
j−1

2

)
N

)
, otherwise

(3.13)

with eigenvalues

λj(
√
BN) =

√
4ξ sin2

(
π(j − 1)

2N

)
+ η, for j ∈ [N ]

of
√
BN . We also define the quantities λ−j(

√
BN ) := −λj(

√
BN ) and vectors v−j := vj for

j ∈ [N ].

Step 1-Eigenvalue estimates. To start with, we define the differences of all the

eigenvalues λj(
√
BN) from the largest N -th eigenvalue λN(

√
BN):

µj := λj(
√
BN)− λN(

√
BN), j ∈ ±[N ]

and we show that the differences µj are lower bounded. Indeed we observe that by Taylor

expansion we have

|
√

4ξ + η − λj(
√
BN)| . |λN(

√
BN)− λj(

√
BN)| (3.14)

for j ≤ N − 1, such that by using this estimate in the second line:

µ−1
j =

∣∣λj(√BN) + λN(
√
BN)

∣∣∣∣λj(√BN)2 − λN(
√
BN)2

∣∣ . |λj(√BN)2 − λN(
√
BN)2|−1

. |λj(
√
BN)2 − (4ξ + η)|−1.

(3.15)

This yields by combining (3.15) with the explicit expression of the eigenvalues (3.13)

µ−1
j .

∣∣∣∣sgn(j)4ξ sin2

(
π(j − 1)

2N

)
− 4ξ

∣∣∣∣−1

.

∣∣∣∣cos

(
π(j − 1)

2N

)∣∣∣∣−2

. O(N2) (3.16)

where the last equality comes from the leading order in Taylor expansion.

Step 2-Wigner matrix. Next, we consider the translated Wigner matrix R that we

centre at λN ≡ λN(
√
BN), defined in terms of WF as in (3.11):

RF(λ) := WF(λ+ λN).
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Since cos(πk − x) = (−1)k cos(x), we observe that also vj(1) = (−1)j−1vj(N) as

cos
(
π(j−1)

2N

)
= cos

(
π(j − 1)− π(j−1)(N−1

2
)

N

)
= (−1)j−1 cos

(
π(j−1)(N−1

2
)

N

)
.

To make the sums on the right of (3.11) more transparent, we define matrices

Γ{1}(j) := 1 and Γ{1,N}(j) := γ

(
1 (−1)j−1

(−1)j−1 1

)
. (3.17)

These matrices allow us to rewrite the translated Wigner R-matrix in the more concise

form

RF(λ) =
∑

j∈±[N ]

(
λ− µj

)−1|vj(1)|2ΓF(j). (3.18)

Let us now restrict to the case F = {1, N}, so that we have friction imposed only on

the first and the last particle.

Our aim is to reduce RF ∈ C2×2 to a scalar equation2. In order to do so, we find that the

vectors uo = (1,1)T√
2
, ue = (1,−1)T√

2
are eigenvectors to the matrices ΓF satisfying

Γ{1,N}(j)(δj∈2Z+1uo + δj∈2Zue) = 2γ
(
δj∈2Z+1uo + δj∈2Zue

)
.

In particular, uo ∈ ker(Γ{1,N}(j)) for j ∈ 2Z and ue ∈ ker(Γ{1,N}(j)) for j ∈ 2Z + 1. Step

3-Scalar reduction. Without loss of generality, let N be odd, in which case, we choose

u = uo. It follows from the explicit form of the eigenvectors (3.13) and Taylor expansion

that 2|vN(1)|2 = O(N−3). We now use the expansion

(λ− µ)−1 = −µ−1

∞∑
n=0

(
λµ−1

)n
= −µ−1 − µ−2λ− µ−2λ2(µ− λ)−1 (3.19)

to rewrite the equation (RF(λ) + i)u = 0 in terms of the following scalar functions

f(λ) = νλ with ν := i− 2γ
∑

j∈±[N ]∩2Z+1\{N}

|vj(1)|2

µj
and

g(λ) = 2γ

|vN(1)|2 −
∑

j∈±[N ]∩2Z+1\{N}

|vj(1)|2λ2

µ2
j

−
∑

j∈±[N ]∩2Z+1\{N}

|vj(1)|2

µ2
j

λ3

µj − λ

 .

(3.20)

2if there is friction at one end only, the Wigner R-matrix RF is already scalar which is why we consider
the case of friction at two ends
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Indeed, since

(RF(λ) + i)u =

2γ
∑

j∈±[N ]∩2Z+1\{N}

(λ− µj)−1|vj(1)|2 + i

u (3.21)

it follows by expanding (λ− µj)−1, as in (3.19), and multiplying by λ that

λ(RF(λ) + i)u = (f(λ) + g(λ))u

and thus we reduce our problem to a scalar one, since

RF(λ)u = −iu if and only if f(λ) + g(λ) = 0. (3.22)

Step 4-Estimation of f, g. Let us now fix a ball

K := B(0, rN) for some rN to be determined. (3.23)

We then find that for λ ∈ ∂K we have for f

rN = |iλ| ≤ |f(λ)| = O(rN). (3.24)

Using (3.16) for µ−2
j and also the explicit form of the eigenvectors (3.13), yields that

∑
j∈±[N ]\{N}

|vj(1)|2

µj
.

2

N

∑
j∈±[N ]\{N}

∣∣∣∣cos

(
π(j − 1)

2N

)∣∣∣∣2 ∣∣∣∣cos

(
π(j − 1)

2N

)∣∣∣∣−2

= O(1). (3.25)

We also record that again by (3.16) and (3.13)

∑
j∈±[N ]\{N}

|vj(1)|2

µ2
j

.
1

N

∑
j∈±[N ]\{N}

∣∣∣∣cos

(
π(j − 1)

2N

)∣∣∣∣2 ∣∣∣∣cos

(
π(j − 1)

2N

)∣∣∣∣−4

.
∣∣∣cos

(π
2
− π

N

)∣∣∣−2

= O(N2)

(3.26)

where the last estimate follows by Taylor expanding around π/2.

Equation (3.26) implies that for λ ∈ ∂K we have for the second term in g(λ), as in

(3.20), that

|λ|2
∣∣∣∣∣
N−1∑
j=1

|vj(1)|2
µ2j

∣∣∣∣∣ = O(N2r2
N).

Moreover, if we choose rN = O(N−3), the the third term of g(λ), as in (3.20), can also
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be estimated, using (3.26), by∣∣∣∣∣∣
∑

j∈±[N ]\{N}

|vj(1)|2

µ2
j

λ3

µj − λ

∣∣∣∣∣∣ = |λ|2
∣∣∣∣∣∣

∑
j∈±[N ]\{N}

|vj(1)|2

µ2
j

1
µj
λ
− 1

∣∣∣∣∣∣ . r2
NN

2N−1 = O(N−5).

(3.27)

since
µj
λ
& N−2

N−3 = O(N) and so λ
µj−λ = O(N−1) .

Combining (3.25),(3.26), and (3.27), this implies that for λ ∈ ∂K we have

2γ |vN(1)|2 −O(Nr2
N)−O(N2r2

N) ≤ |g(λ)| and

2γ |vN(1)|2 +O(Nr2
N) +O(N2r2

N) ≥ |g(λ)|.
(3.28)

Step 5-Upper bound. Thus, we choose in (3.23) rN := α
2
|vN(1)|2 with α large

enough, (but independent of N) such that together with (3.24) and the upper bound in

(3.28), they imply that on ∂K

|g(λ)| . 2γN−3 +
α2N−5

4
+
α2N−4

4
= O(rN) = O(|f(λ)|)

which is the case if

2γN−3 +
α2N−5

4
+
α2N−4

4
≤ α

2
N−3 or 2γ +

α2

4
(N−2 +N−1) ≤ α

2
.

where for large enough α, the last inequality holds true.

Therefore asymptotically with N ,

|f(λ)| > |g(λ)| on ∂K.

By Rouché’s Theorem, f and f + g have the same amount of zeros inside K. Since f has

precisely one root in K at λ = 0 so does f + g.

This implies by the equivalence (3.22) that R(λ)u = −iu has one solution λ with

λ ≤ O(N−3) and so λS ≤ O(N−3) which yields the upper bound on the spectral gap.

Step 6-Lower bound. The lower bound follows analogously. Assuming the modulus

of λ would decay faster than O(N−3), i.e. |λ|/|vN(1)|2 = O(1) then we can select rN =

|vN (1)|2O(1) in (3.23). This way, g(λ) does not have a root in K := B(0, rN ) by the lower

bound in (3.28), as |g(λ)| is lower-bounded by a leading-order term 2γ |vN(1)|2. Moreover,

by the same lower bound in (3.28) and upper bound in (3.24) we find that on ∂K we have

for this choice of rN

|g(λ)| > |f(λ)| on ∂K.
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Thus, since g does not have a root inside K, there is also no root to f + g inside K and

thus by (3.22) we necessarily have that N−3 . λS. Now, it could hypothetically happen

that it is just the real part of λ, where λ is the solution O(N−3) that causes λ /∈ K, but

we argue that the imaginary part in fact decays much faster. In other words, we want to

exclude =(λ) = Re(λ)O(1).

In order to exclude this scenario, we analyze the imaginary part of f(λ) + g(λ) = 0.

This equation reads

−=(λ)2γ
∑

j∈±[N ]∩2Z+1\{N}

|vj(1)|2

µj
+ =(g(λ)) = −Re(λ).

Since by (3.26) and (3.27), we have =(g(λ)) = O(N−4) and 2γ
∑

j∈±[N ]∩2Z+1\{N}
|vj(1)|2
µj

=

O(1), we have by the standing assumption =(λ) = Re(λ)O(1), a contradiction since the

left hand side is smaller than the right hand side in absolute value.

Remark 3.4 (Dependence of λS on the friction). We stress that our proof shows that the

spectral gap depends on the friction constant γ, of the two terminal particles. In particular,

by carefully analyzing this dependence in the proof, we see that there are constants c1, c2 > 0

so that

c1

(
γ

1 + γ

)
N−3 ≤ λS ≤ c2γN

−3.

3.3.3 Higher-dimensional homogeneous networks

We now turn to the d-dimensional homogeneous network of oscillators, on a square network

for d ≥ 1. We will show how we can extend ideas from the one-dimensional setting to the

multi-dimensional case, in order to compute the spectral gap, by exploiting the separability

of the Neumann Laplacian.

Assuming η and ξ to be constants allows us to perform an analogous reduction of the

high-dimensional spectral problem to a scalar problem, as in the one-dimensional case.

We have a Schrödinger operator on CNd
associated to the dynamics, as the first order

part of the generator is expressed through the 2Nd × 2Nd -dimensional matrix Ω[N ]d . The

multi-dimensional Schrödinger operator has then the following spectral decomposition

√
B[N ]d =

N∑
j1=1

· · ·
N∑
jd=1

λj1···jd(
√
B[N ]d)v

⊗d
j1···jd (3.29)

where λj1···jd(
√
B[N ]d) =

(
η +

∑d
k=1 λjk

)1/2

with λj = 4ξ sin2
(
π(j−1)

2N

)
. The eigenvectors
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Figure 3.6: Spectral gap Θ(N−6). Figure 3.7: Spectral gap Θ(N−4).

Figure 3.8: The Z2-subnetwork with friction at the blue particles

vj1···jd are the product states

vj1···jd(i1, i2, . . . , id) = vj1(i1) · · · vjd(id) (3.30)

such that

vj(i) =


N−

1
2 , j= 1√

2
N

cos

(
π(j−1)

(
i−1

2

)
N

)
, otherwise.

(3.31)

Two-particle friction on the d-dimensional network. As a first step we consider

friction at two distinguished boundary particles out of the Nd. We now show how the

method presented above applies if we consider friction at the two corners of the network,

Fig. 3.6, or at the centres of two opposite edges above and below, Fig. 3.7.

We remind the high dimensional version of Lemma 3.1. We consider the matrix

iΩ[N ]d =

(
0 −iB[N ]d

iB[N ]d 0

)
+ i diag(Γ, 0CNd×Nd ) (3.32)

and reduce the high dimensional spectral problem for Ω[N ]d to a lower dimensional spectral

problem for the Wigner WF -matrix in C2×2. From this lemma we get the following

representation of the WF -matrix:

WF(λ) =
∑
±

Nd∑
j=1

(λ∓ λj)−1
∑

i1,i2∈F

√
γi1γi2〈V ±j , e2Nd

i1
〉〈e2Nd

i2
, V ±j 〉e

|F|
i1
⊗ e|F|i2

(3.33)

where V ±j = 1√
2
(vj,±ivj)T are of the product form (3.30) with vj being the eigenvectors

of B[N ]d .

Proposition 3.5 (Two-particle friction in homogeneous networks). Let the dimension of

the network be d ≥ 1 and all ηi > 0, ξij > 0, and masses mi coincide, respectively. We

131



consider two different scenarios:

• First, we assume that the two particles located at (1, . . . , 1), (N, . . . , N) are subject

to non-zero friction γ > 0 and diffusion. The spectral gap of the harmonic network

of oscillators satisfies

λS = O(N−3d).

• Second, we assume the friction with constant γ > 0 and diffusion acts on the particles

located in the centre of two opposite edges of the network at

(1, dN/2e, . . . , dN/2e), (N, dN/2e, . . . , dN/2e).

Then the spectral gap of the network of oscillators satisfies

λS = O(N−3−(d−1)).

Proof. To keep the notation simple, we restrict us to stating the proof for d = 2. We write

that the eigenvalues λi,j(
√
BN2) = (λi + λj)

1/2 for i, j ∈ [N ] and that the eigenvectors vi,j

are the product states vi,j(k, l) = vi(k)vj(l). Here again regarding the couple (i, j) ∈ [N ]2,

we define λ−i,−j(
√
BN2) := − (λi + λj)

1/2 and v−i,−j(k, l) := vi,j(k, l) = vi(k)vj(l) when

i, j ∈ [N ].

As in the one-dimensional case, we compute first the differences of all the eigenvalues

λi,j(
√
BN2) from the largest eigenvalue λN,N(

√
BN2):

|λN,N(
√
BN2)− λi,j(

√
BN2)| & |(8ξ + 2η)1/2 − λi,j(

√
BN2)|, (3.34)

we define µij := λi,j(
√
BN2)− λN,N(

√
BN2) for (i, j) ∈ ±[N ]2 so that explicit calculations

give

µ−1
ij . |λ2

N,N − sgn(i)λ2
i,j|−1 . |(8ξ + 2η)− λ2

i,j|−1

.

∣∣∣∣8ξ − 4ξ

(
sin2

(
π(j − 1)

2N

)
+ sin2

(
π(i− 1)

2N

))∣∣∣∣−1

.

∣∣∣∣cos2

(
π(j − 1)

2N

)
+ cos2

(
π(i− 1)

2N

)∣∣∣∣−1

.

∣∣∣∣cos2

(
π(N − 2)

2N

)∣∣∣∣−1

. O(N2)

(3.35)

where in the last line we Taylor expanded around π/2.
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Next, we translate the Wigner matrix RF(λ) = WF(λ+ λN,N) and write

RF(λ) :=
∑

(i,j)∈±[N ]2

(λ− µij)−1|vi,j(1, 1)|2ΓF ∈ C2×2 (3.36)

where

ΓF :=

(
γ (−1)i+j−2γ

(−1)i+j−2γ γ

)
since vi,j(1, 1) = (−1)i+j−2vi,j(N,N). Note that for i+j = even, the vector u = 2−1/2(1, 1)T

is an eigenvector to ΓF in the following sense:

ΓFu = 2γδi+j∈2Zu,

where we use the same notation as in the proof for the one dimension. With the above

formula and by expanding the term (λ − µij)
−1 we are able to rewrite the equation

(RF(λ) + i)u = 0 in terms of two scalar functions f, g. In particular denoting by A the set

of indices A := {(i, j) ∈ ±[N ]2 \ (N,N)|i+ j ∈ 2Z}, we have λ(RF(λ) + i)u = f(λ) + g(λ)

with

f(λ) = iλ− 2γ
∑

(i,j)∈A

λ
|vi,j(1, 1)|2

µij
and

g(λ) = 2γ

|vN,N(1, 1)|2 −
∑

(i,j)∈A

|vi,j(1, 1)|2λ2

µ2
ij

−
∑

(i,j)∈A

|vi,j(1, 1)|2

µ2
ij

λ3

µij − λ

 .

(3.37)

We fix a ball K := B(0, rN ) and we estimate the following terms on the boundary ∂K:∣∣∣∣∣∣
∑

(i,j)∈A

λ|vi,j(1, 1)|2

µij

∣∣∣∣∣∣ = |λ|

∣∣∣∣∣∣
∑

(i,j)∈A

|vi(1)|2|vj(1)|2

µij

∣∣∣∣∣∣ (3.38)

.
∑

(i,j)∈A

N−2
rN

∣∣∣cos
(
π(i−1)

2N

)∣∣∣2 ∣∣∣cos
(
π(j−1)

2N

)∣∣∣2∣∣∣cos
(
π(i−1)

2N

)∣∣∣2 = O(rN) (3.39)

after Taylor expansions to estimate the norm of the eigenvectors. Also

|λ|2
∣∣∣∣∣∣
∑

(i,j)∈A

|vi,j(1, 1)|2

µ2
ij

∣∣∣∣∣∣ . |λ|2
∑

(i,j)∈A

N−2

∣∣∣cos
(
π(j−1)

2N

)∣∣∣2∣∣∣cos
(
π(i−1)

2N

)∣∣∣2 . O(N2r2
N) (3.40)
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and ∣∣∣∣∣∣
∑

(i,j)∈A

|vi,j(1, 1)|2

µ2
ij

λ3

µij − λ

∣∣∣∣∣∣ = |λ|2
∣∣∣∣∣∣
∑

(i,j)∈A

|vi,j(1, 1)|2

µ2
ij

1
µij
λ
− 1

∣∣∣∣∣∣ . O(N4r3
N) (3.41)

since
µij
λ

& N−2r−1
N . Therefore we collect the following bounds for f, g:

|f(λ)| . O(rN), |g(λ)| & (γ11 + γN,N)|vN,N(1, 1)|2 −O(N2r2
N)−O(N4r3

N) (3.42)

|g(λ)| . (γ11 + γN,N)|vN,N(1, 1)|2 +O(N2r2
N) +O(N4r3

N) (3.43)

Choosing rN = α
2
|vN,N (1, 1)|2 . O(N−6) gives the upper bound for the spectral gap, as at

the end of the proof of Proposition 3.3.

The lower bound follows then from choosing rN = O(1) in which case

‖g(λ)‖ > ‖f(λ)‖ on ∂B(0, rN).

Then, we study the anti-symmetric part of T (λ) := f(λ) + g(λ) , i.e. 〈T−T ∗
2i

u, u〉 = 0,

where u ∈ ker(T (λ)) normalized. Writing this out we see that as in the one-dimensional

case that =(λ) = Re(λ)O(1) cannot hold. This implies the bound on the spectral gap.

As regards the second part of the statement, i.e. when the particles subject to friction

are located in the centre of the bordered edges, i.e. F = {(1, dN/2e), (N, dN/2e)}, of the

network rather than at the corners. The proof follows exactly in the same way as in the

first scenario, apart from the last part of it when we fix the radius rN of the ball K in

order to apply Rouché’s Theorem. In this case, taking

rN =
α

2
|vN,N(1, dN/2e)|2 . O(N−3N−1)

immediately implies the result.

2N-particles exposed to friction on two opposite edges. We consider now a scenario

that is perhaps more realistic for two-dimensional systems: We assume the friction to be

imposed to all the particles located on the top edge of the network and on the bottom

edge as well, cf. Fig. 3.9. We use the same techniques and notation as above and we will

show how the same method applies to give an upper bound on the spectral gap. Thus here

F = {(1, 1), . . . , (1, N), (N, 1), . . . , (N,N)} and |F| = 2N

and the translated (centred at λNd = λNd(
√
B[N ]d)) Wigner RF -matrix in C2N×2N will be
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Figure 3.9: The Z2-subnetwork with friction at the blue particles on opposite edges.

RF(λ) =
∑

µ∈±
√

Spec(B
[N ]d

)+λ
Nd

(λ− µ)−1
∑

i1,i2∈F

αi1,i2(µ)π2N
i1,i2

, (3.44)

where

αi1,i2(µ = ±λj + λNd) =
√
γi1γi2〈V ±j , e2Nd

i1
〉〈e2Nd

i2
, V ±j 〉, and π2N

i1,i2
:= e2N

i1
⊗ e2N

i2

with V ±j = 2−1/2(vj,±ivj)T and vj are the eigenvectors of
√
BNd .

Note that since in this case the Wigner matrix is still high-dimensional 2N × 2N we

shall support our analytical findings by some numerics too. In particular we have the

following analytical result:

Proposition 3.6 (2N -particle friction in homogeneous networks). Let the two-dimensional

square network graph with particles on the N2 vertices, and all ηi > 0, ξij > 0, and masses

mi coincide, respectively. We assume that the 2N particles located at

{(1, 1), . . . , (1, N), (N, 1), . . . , (N,N)}

are subject to non-zero friction and diffusion. The spectral gap of the harmonic network of

oscillators then satisfies

λS . N−5/2.

Proof. We introduce λj = λj1,j2(
√
BN2) = (λj1 + λj2)

1/2 for j ∈ [N ]2 and we define λ−j :=

−λj . The eigenvectors vj are the product states such that v−j(k, l) := vj(k, l) := vj1(k)vj2(l)

when j ∈ [N ]2.

Using the equivalence of Lemma 3.1, we shall study solutions to the equation

det(F (λ) +G(λ)) = 0 (3.45)
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where F and G are defined below in terms of the vectors V ±i,j = 1√
2
(vi,j,±ivi,j)T and

µj = λj − λN,N for j ∈ ±[N ]2, where µ−1
j = O(N2) as before in the estimates (3.35). Note

that we do not reduce our problem to a scalar one as in the two-particle friction cases

above and thus we work with the matrix valued version of Rouché’s Theorem stated in

Lemma 2.1. The matrices F (λ), G(λ) are defined, using the notation of Lemma 3.1, as

follows:

F (λ) := iλ− λ
∑

j∈±[N ]2\(N,N)

∑
i1,i2∈F

αi1,i2(λj)

µj
π2N
i1,i2

(3.46)

and

G(λ) :=
∑

i1,i2∈F

αi1,i2(λN,N)π2N
i1,i2︸ ︷︷ ︸

=:(I)

−λ2
∑

j∈±[N ]2\(N,N)

∑
i1,i2∈F

αi1,i2(λj)

µ2
j

π2N
i1,i2︸ ︷︷ ︸

=:(II)

−λ3
∑

j∈±[N ]2\(N,N)

∑
i1,i2∈F

αi1,i2(λj)

µ2
j(µj − λ)

π2N
i1,i2︸ ︷︷ ︸

=:(III)

(3.47)

so that a solution to (3.45) corresponds to the desired eigenvalue. Before we fix a ball

K = B(0, rN), we want to find an upper bound for the norm ‖ρN‖, where

ρN :=
∑

i1,i2∈F

αi1,i2(λN,N)π2N
i1,i2

(3.48)

i.e. is the first term, (I), of G. We will define then, this bound to be the radius rN of the

ball K and we will proceed as in the previous proofs. To understand the dependence of

‖ρN‖ on N we make the following observation:

Due to the symmetries of the eigenvectors, e.g. that vi,j(1, 1) = (−1)i+j−2vi,j(N,N), it

suffices to check the scaling of the entries at the columns 1, . . . , dN/2e and only above the

main diagonal of the matrix. We estimate them by Taylor expanding, in a similar manner

as in the previous proofs. For example for the 3 entries in the corners of the territory that

we examine we have

|vN,N(1, 1)|2 . N−6, |vN,N(1, dN/2e)|2 . N−4,

vN,N(1, dN/2e)vN,N(1, 1) . N−6 +N−4 = O(N−4)

by Young’s inequality. So all the entries scale at least like N−4 which implies that

‖ρN‖ ≤ N1/2‖ρN‖∞ . N1/2NN−4 = O(N−5/2).

We now fix a ball K = B(0, rN) and choose the radius rN := α
2
N−5/2. Therefore
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it suffices to find a root of (3.45) inside the ball K and conclude the existence of an

eigenvalue by Rouché’s theorem. We easily see that for all v 6= 0, on ∂K, ‖F (λ)v‖ ≥
|λ|‖v‖ = rN‖v‖ = α

2
N−5/2‖v‖ since the second term of the right hand side of (3.46) is

symmetric. We also collect the estimates for (II)

|λ|2
∣∣∣∣∣∣
∑

(i,j)∈B

|vi,j(1, 1)|2

µ2
ij

∣∣∣∣∣∣ . r2
N = O(N−5), |λ|2

∣∣∣∣∣∣
∑

(i,j)∈B

|vi,j (1, dN/2e) |2

µ2
ij

∣∣∣∣∣∣ . r2
N = O(N−5)

|λ|2
∣∣∣∣∣∣
∑

(i,j)∈B

vi,j(1, 1)vi,j(1, dN/2e)
µ2
ij

∣∣∣∣∣∣ = O(N−5).

Moreover, since λ
µij−λ = O(N−1), for (III):

∣∣∣∣∣∣
∑

(i,j)∈B

|vi,j(1, 1)|2

µ2
ij

λ3

µij − λ

∣∣∣∣∣∣ = O(N−5−1),

∣∣∣∣∣∣
∑

(i,j)∈B

|vi,j (1, dN/2e) |2

µ2
ij

λ3

µij − λ

∣∣∣∣∣∣ = O(N−5−1),

∣∣∣∣∣∣
∑

(i,j)∈B

vi,j(1, 1)vi,j(1, dN/2e)
µ2
ij

λ3

µij − λ

∣∣∣∣∣∣ = O(N−5−1).

So we can see that all the entries in (II) and (III) of G are bounded by O(N−5) and

O(N−6) respectively. Thus, we find the following estimate on the operator norm of terms

(II) and (III)

‖(II)‖ ≤ N1/2‖(II)‖∞ . N1/2NN−5 = N1/2N−4 = O(N−7/2) (3.49)

and

‖(III)‖ ≤ N1/2‖(III)‖∞ . N1/2NN−6 = O(N−9/2). (3.50)

We conclude that

‖G‖ . N−5/2 +N−7/2 +N−9/2 = O(N−5/2). (3.51)

We choose α large enough so that we have ‖F (λ)v‖ > ‖G(λ)v‖ on ∂K, for all v 6= 0. Since

F (λ) is not invertible exactly at 0 inside K, we have that there is one point inside K so

that F (λ) +G(λ) is not invertible or in other words there is one root of (RF(λ) + i)u = 0

with λ . N−5/2.

Proposition 3.6 provides only an upper bound on the spectral gap. In order to obtain

sharp estimates on the spectral gap, one should identify first more precise asymptotics on

the scaling of the operator norm, ‖ρN‖, in (3.48). By numerically calculating the operator
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Figure 3.10: Log-log plot of operator norm ‖ρN‖ and reference curve N−3.

norm of ‖ρN‖, we see that the true scaling is O(N−3) instead of O(N−5/2) as provided in

the proof of Proposition 3.6.

3.3.4 Single impurities in the chain

An impurity in the chain of oscillators refers to a particle with different physical properties

from all the remaining particles. Since certain local impurities such as perturbations of

the potential strength for a single particle, are finite-rank perturbations of the discrete

Schrödinger operator, they do not effect the essential spectrum, but can lead to additional

discrete spectrum in the limiting operator B[∞]d .

To understand the eigenstates associated to certain points in the discrete spectrum

better, we recall a classical result due to Combes and Thomas:

Theorem 3.7. Let V ∈ `∞(Zd). Assume there is u ∈ `2(Zd) such that

(−∆[∞]d + V )u = λu

with λ /∈ [0, 4d] =: Spec(−∆[∞]d). If lim sup|n|→∞ |V (n)| < infµ∈Spec(−∆
[∞]d

) |µ − λ|, then

there is ν > 0 such that

u ∈

{
ϕ ∈ `2(Zd) :

∑
n∈Zd

exp
(
2ν(1 + |n|2)1/2

)
|ϕ(n)|2 <∞

}
.

The above theorem implies that these eigenstates are exponentially localized in space

and -as we show- will cause an exponentially fast closing of the spectral gap. This is in
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particular what happens if the pinning strength η of a single particle is significantly weaker

than the pinning strength of all the other particles (the ”flying away” particle). Note that

in contrast to a weak pinning potential, a locally vanishing interaction potential would

just decouple the chain into two independent pieces.

Let Im0 := ×di=1

{
m0 − bN−1

2
cei, ...,m0 + dN−1

2
eei
}

be a set of size Nd centred at m0.

To identify sequences in R[N ]d with sequences in `2(Zd), we define the inclusion map

ι : R[N ]d → `2(Zd) by

(ιx) (i) :=

{
x(i), for i ∈ Im0

0, otherwise

and define the restriction of the Schrödinger operator by

BIm0
x := B[∞]d(ιx).

Lemma 3.8. For some m0 ∈ Zd, let BIm0
be a finite [N ]d-size truncation of a bounded

discrete Schrödinger operator B[∞]d on `2(Zd). Let ϕ be an eigenfunction to B[∞]d with

eigenvalue λ∞ and assume that ϕ is exponentially localized to a point m0 ∈ Zd such that

|ϕ(n)| ≤ O(e−D|n−m0|) for all n ∈ Zd. (3.52)

We then define the finite [N ]d-size restriction

ϕIm0
:=

ϕ|Im0

‖ϕ|Im0
‖
.

Furthermore, assume that the operator B[N ]d has a unique eigenvalue λN , with associated

eigenvector ψN , such that infλ∈Spec(B
[N ]d

) |λ∞ − λ| = d(λ∞, λN) and a spectral gap of size

αN > 0 such that

Spec(B[N ]d) ∩ (λN − αN , λN + αN) = {λN},

then

‖ψN − ϕIm0
‖ ≤ O(e−DNα−1

N ).

Proof. We first record that (3.52) implies the following exponential tail bound√ ∑
|m−m0|≥N/2

|ϕ(m)|2 ≤ O
(
e−DN

)
. (3.53)

We also define the infinite matrix B̂Im0
given as the direct sum of operators

B̂Im0
:= BIm0

⊕ 0
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with respect to the decomposition `2(Zd) ' `2(Im0)⊕ `2(Zd\Im0). Thus, we have

‖(B̂Im0
− λ∞)ι(ϕ|Im0

)‖
‖ι(ϕ|Im0

)‖
≤
‖(B̂Im0

−B[∞]d)ι(ϕ|Im0
)‖

‖ι(ϕ|Im0
)‖

+
‖(B[∞]d − λ∞I)ι(ϕ|Im0

)‖
‖ι(ϕ|Im0

)‖

≤
‖(B[∞]d − λ∞I)(ι(ϕ|Im0

)− ϕ)‖
‖ι(ϕ|Im0

)‖
+
‖(B[∞]d − λ∞I)ϕ‖
‖ι(ϕ|Im0

)‖

≤ O(e−DN)

where the first term on the right-hand side of the first line vanishes, up to exponentially

small boundary terms, and in the last line we used the estimate (3.53) that holds for the

eigenfunctions of B∞. Thus, the above bounds show that

‖(BIm0
− λ∞)ϕ|Im0

‖
‖ϕ|Im0

‖
≤ O(e−DN) (3.54)

and this implies by self-adjointness that also

inf
λ∈Spec(BIm0

)
|λ− λ∞| = O(e−DN). (3.55)

That ϕIm0
:=

ϕ|Im0

‖ϕ|Im0
‖ ∈ RNd

is exponentially close to an eigenvector ψN with eigenvalue

λN of BIm0
follows then by the spectral decomposition of BIm0

: In particular, let (ψi) be

an ONB of BIm0
with eigenvalues λi then we find by (3.54) that

‖(BIm0
− λ∞)ϕIm0

‖ =

√√√√ Nd∑
i=1

|〈ψi, ϕIm0
〉|2|λi − λ∞|2 ≤ O(e−DN) =: ε.

This implies that for any ν > 0√ ∑
i∈[Nd]:|λi−λ∞|≥νε

|〈ψi, ϕIm0
〉|2 ≤ ν−1. (3.56)

Now, using that λN is a distance αN apart from the rest of the spectrum of BIm0
and λ∞

is exponentially close to λN by (3.55) with some eigenvector ψN of BIm0
, we have from

(3.56) by setting ν := ε−1cαN that the coefficients of ϕIm0
in the ONB with respect to all

other eigenvectors of BIm0
are exponentially small. Thus, we find that

‖ψN − ϕIm0
‖ = O(ν−1) ≤ O(e−DNα−1

N )

such that the two vectors are exponentially close to each other.
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Proposition 3.9 (Impurity). Without loss of generality, let N be an even number and

consider a chain of oscillators with equal masses and unit coupling strength ξij = 1. In

addition, we assume that there is always at least one edge of the grid experiencing friction

at the boundary and that the friction of particles is uniformly bounded in N . We define

the centre point cd(N) = (N/2, .., N/2) and assume that

ηcd(N) + 2d+ ε ≤ ηi uniformly in [N ]d

for some ε > 0 and all i 6= cd(N). Then, the spectral gap of the harmonic chain of

oscillators described by the operator (2.5) with an impurity as above, decays exponentially

fast.

Proof. First we show that the above assumptions imply the existence of an exponentially

localized groundstate of B[N ]d :

Let V[N ]d := (ηi)i∈[N ]d , the min-max principle implies for the discrete Schrödinger

operator (1.4) that

λ1(B[N ]d) ≤ λ1(V[N ]d) + 〈ecd(N), (−∆[N ]d)ecd(N)〉 = λ1(V[N ]d) + 2d

where ecd(N) is the unit vector that vanishes at every point different from cd(N). On the

other hand, Weyl’s inequalities and the assumptions on the coefficients of the pinning

potential, imply that

λ1(B[N ]d) ≤ ‖∆[N ]d‖+ λ1(V[N ]d) ≤ ηi 6=cd(N) − ε = λ2(V[N ]d)− ε ≤ λ2(B[N ]d)− ε

where ‖∆[N ]d‖ ≤ 2d is the operator norm of the discrete Laplacian. Hence, B[N ]d , and thus√
B[N ]d has a spectral gap uniformly in N since

λ1(B[N ]d) + ε ≤ λ2(B[N ]d) uniformly in N.

Now this implies that for some universal c > 0 we have |v1(1)|2, |v1(N)|2 . e−cN : from

Theorem 3.7, cf. also [Tes00, Lemma 2.5], we have that the ground state eigenfunction u

of the limiting operator B[∞]d is exponentially localized since the operators B[N ]d possess a

uniform spectral gap of size at least αN := ε and λ1(B[N ]d) /∈ Specess(B[∞]d).

The previous Lemma 3.8 then implies with m0 = cd(N) that there is an eigenstate v1

to B[N ]d

‖v1 − u|ϕ
[N ]d
‖ ≤ O(e−DN/2ε−1).

To conclude the existence of an eigenvalue converging exponentially fast to zero, we

shall restrict us again to the case d = 2 to keep the notation simple while at the same time
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dealing with all technicalities of the multi-dimensional setting.

Using the equivalence of Lemma 3.1, we study the equation

det(F (λ) +G(λ)) = 0 (3.57)

in terms of the vectors V ±j = 1√
2
(vj,±ivj)T and µj = λj−λ1, where vj are the eigenvectors

of the Schrödinger operator −∆[N ]d + V[N ]d with eigenvalue λj and λ1 := λ1(
√
B[N ]d).

Setting v−j := vj and λ−j := −λj, the matrices F (λ), G(λ) are then defined as follows,

using the notation of Lemma 3.1,

F (λ) := iλ− λ
∑

j∈±[Nd]\{1}

∑
i1,i2∈F

αi1,i2(λj)

µj
π
|F|
i1,i2

(3.58)

and

G(λ) :=
∑

i1,i2∈F

αi1,i2(λ1)π
|F|
i1,i2︸ ︷︷ ︸

=:(I)

−λ2
∑

j∈±[Nd]\{1}

∑
i1,i2∈I

αi1,i2(λj)π
|F|
i1,i2

µ2
j︸ ︷︷ ︸

=:(II)

−λ3
∑

j∈±[Nd]\{1}

∑
i1,i2∈F

αi1,i2(λj)π
|F|
i1,i2

µ2
j(µj − λ)︸ ︷︷ ︸

=:(III)

(3.59)

so that a solution to (3.57) corresponds to the desired eigenvalue. Before we fix a ball

K = B(0, rN), we want to find an upper bound on ‖ρN‖, where

ρN :=
∑
±

∑
i1,i2∈F

αi1,i2(µ)π
|F|
i1,i2

(3.60)

is the first term, (I), of G. From the exponential decay of the eigenstate V ±1 it follows that

for some c > 0 we have

‖ρN‖ = O(Ne−cN).

We now fix a ball K = B(0, rN) and choose the radius rN := O(Ne−cN). Therefore

it suffices to find a root of (3.45) inside the ball K and conclude the existence of an

eigenvalue by Rouché’s theorem. We easily see that for all v 6= 0, and λ ∈ ∂K, ‖F (λ)v‖ ≥
|λ|‖v‖ = rN‖v‖ since the second term of the right hand side of (3.63) is symmetric. On

the other hand,

‖(II)‖ ≤ O(N2e−2cN) and ‖(III)‖ ≤ O(N2e−3cN).

Thus, we have ‖F (λ)v‖ > ‖G(λ)v‖ on ∂K, for all v 6= 0. Since F (λ) is not invertible
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exactly at 0 inside K, we have from Lemma 2.1 that there is one point inside K so that

F (λ) +G(λ) is not invertible or in other words there is one root of (RF(λ) + i)u = 0 with

λ . Ne−cN .

3.3.5 Disordered chains

We now study the case of a disordered pinning potential, i.e. we assume that ηi > 0 are

independent identically distributed (i.i.d.) random variables drawn from some bounded

density distribution

ηi ∼ ρ ∈ Cc(0,∞).

Note that additional disorder in the interaction strengths leads to the-somewhat analogous

study of random Jacobi operators which is for example discussed in [Tes00, Ch. 5].

In particular, localization for off-diagonal disorder in discrete Schrödinger operators,

corresponding to random interactions in the chain of oscillators, is studied in [DKS83,

DSS87].

Note that disordered harmonic chains have been studied before [OL74, CL71], even though

in these works the randomness is posed in the masses of the particles, rather than the

coefficients of the pinning potentials. However, the effect of localization does extend to that

setting as well and can be studied- up to some technicalities- along the lines of the proof

presented here. We illustrate in Fig. 3.11 that all types of disorder yield an exponentially

fast closing of the spectral gap.

The generator of the dynamics is the operator L given by (2.5). Considering friction

and diffusion at at least one end of the chain, cf. Proposition 2.1, the spectral gap is still

given as

λS := inf{Re(λ) : λ ∈ Spec(Ω[N ]d)}.

For more details we refer to the Appendix 3.A. From general results stated in Lemma 3.1,

studying the spectrum of the matrix Ω[N ]d is equivalent to studying the points at which

the lower dimensional Wigner WF -matrix is not invertible. The matrix B[N ]d , appearing

in the matrix entries of Ω[N ]d (2.5), is the restriction to a finite domain of size Nd of the

one-dimensional discrete Anderson model. This is explained below.

In the analysis of the disordered case it makes the analysis slightly simpler by labelling

particles instead of [N ]d rather by a set

[±N ]d := {−N,−N + 1, ..., N − 1, N}d,

i.e. we study the scaling of the spectral gap for (2N + 1)d particles as a function of N

where we assume the chain to grow in all directions.
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Figure 3.11: Log-log plot of the spectral gap for the one-dimensional chain of oscillators
and different types of disorder: Random masses mi = 1

1+Xi
, random interaction ξij = 1+Xi

and random pinning potential ηi = 1 +Xi where Xi ∼ U [0, 1] are uniform iid.

For disorder in the pinning potential, the limiting discrete Schrödinger operator B[∞]d is

the multi-dimensional discrete Anderson model : the discrete Anderson model is a discrete

Schrödinger operator with random single-site potential introduced by Anderson [And58] to

describe the absence of diffusion in disordered quantum systems. It is the random discrete

Schrödinger operator on `2(Zd)

H [∞]d

ω = −∆[∞]d + λVω

acting on `2(Zd) where ∆[∞]d is the discrete Laplacian on Zd, λ > 0 the coupling constant,

and Vω a random potential Vω = {Vω(n) : n ∈ Zd} consisting of i.i.d. variables with

common probability distribution with, for our purposes, bounded density µ on (0,∞).

Here, ω is an element of the product probability space Ω = (supp(µ))Z
d

endowed with

the σ- algebra generated by the cylinder sets and the product measure µZd consisting

of the common probability distribution with compact support. The random potential

Vω : Zd → R is defined as projections Ω 3 ω 7→ Vω(n) = ωn for n ∈ Zd.
We also consider H

[±N ]d

ω the restriction to finite domains of size (2N + 1)d, of the operator

H
[∞]d

ω , with Neumann boundary conditions.

So the spectral gap of the d-dimensional disordered network of Nd oscillators coupled

at two heat baths at different temperatures, as described above, is given by one of the
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Figure 3.12: Log-log plot of the spectral gap for the one-dimensional chain of oscillators
for different disorder strengths when ηi ∼ 1 + λU [0, 1].

points where the Wigner WF -matrix is not invertible. Since this lower-dimensional matrix

is defined in terms of the eigenvalues and eigenvectors of the matrix B[±N ]d , see Lemma

3.1, we are interested in the spectrum of B[±N ]d which can be identified with H
[±N ]d

ω .

In one dimension, the Anderson model has a.s dense pure point spectrum with expo-

nentially localized eigenstates [FS83, vDK89]. In higher dimensions, d ≥ 2 this is only

known to be true for sufficiently large disorder or low energies and was already shown in

[FS83]. From the case of a single impurity we know already that exponentially localized

eigenstates should lead to an exponentially fast closing of the spectral gap. However, we

have to deal with three additional obstructions in the disordered case:

• The eigenvalues of the Anderson model are not uniformly (in N) bounded away from

each other.

• The eigenfunctions of the Anderson model do not obey a rich symmetry as before

and can (in general) not be chosen to be even or odd.

• We are studying finite approximations B[±N ]d rather than the Anderson model

B[∞]d = H
[∞]d

ω itself.

The next Lemma shows that in general eigenvalues will not get any closer than a

distance N−2d−2.

Lemma 3.10. Let AN(s([N ]d)) be the event that for the (2N + 1)d-size Anderson model

B[±N ]d, there exists an interval of size s([±N ]d) that contains (at least) two eigenvalues.

145



For the choice s([±N ]d) = N−2d−2 we have P(AN (s([±N ]d))) = 0 for all but finitely many

N.

Proof. The spectrum of B[±N ]d is contained in an interval of order one. Thus, we can cover

Spec(B[±N ]d) by O(1/s([±N ]d)) many intervals (I
[±N ]d

n )n∈[O(1/s([±N ]d))] of size 2s([±N ]d)

such that the overlap of each interval I
[±N ]d

n with its nearest neighbors is another interval

of size s([±N ]d). This construction implies that if there exists an interval of size s([±N ]d)

that contains two eigenvalues, these two eigenvalues are also contained in one of the I
[±N ]d

n .

We will now use Minami’s estimate which bounds from above the probability of two

eigenvalues of the finite volume operator being close, see [KM06, (7), App. 2]. More

specifically that is

P
(
| Spec(B[±N ]d) ∩ J | ≥ 2

)
≤ π2‖ρ‖2

∞N
2d|J |2,

we write

P
(
AN(s([±N ]d))

)
≤

∑
n∈[O(1/s([±N ]d))]

P
(
|I [±N ]d

n ∩ Spec(B[±N ]d)| ≥ 2
)

≤
∑

n∈[O(1/s([±N ]d))]

π2‖ρ‖2
∞N

2d4s([±N ]d)2

= O(N2ds([±N ]d)) <∞.

(3.61)

We now choose s([±N ]d) = N−2d−2, such that by the Borel-Cantelli lemma AN (s([±N ]d))

happens at most finitely many times a.s. and otherwise eigenvalues of B[±N ]d are a.s. at

least N−2d−2 apart.

With this Lemma at hand, we can now give the proof of the exponential decay of the

spectral gap.

Proposition 3.11. Consider the network of oscillators with equal masses, unit interaction

strength. In addition, we assume that there is always at least one edge subject to friction at

the boundary and that the friction of particles is uniformly bounded in N . Let the pinning

constants be iid η ∼ ρ ∈ Cc(0,∞). Then the spectral gap of the chain of oscillators decays,

for almost every realization of the disorder in the pinning potential, exponentially fast3.

Proof. For almost every realization of disorder we can find by general results on the

Anderson model [FS83, vDK89] an eigenfunction ϕ of the operator B[∞]d , corresponding

to an eigenvalue λ∞ such that

sup
i;∈‖i‖∞=N

|ϕ(i)| ≤ O(e−DN) and
∑

m/∈[±N ]d

|ϕ(m)|2 ≤ O(e−DN).

3The decay of the spectral gap will in general depend on the disorder but is a.s. exponentially fast.

146



By using Lemma 3.8 with m0 = 0 and Lemma 3.10 it follows that for all but finitely

many N the distance between any two eigenvalues is at least αN := N−2(d+1) and we find

an eigenvector ψ[±N ]d to B[±N ]d with eigenvalue λ1 that approximates ϕ with eigenvalue

λ∞. Thus, for all but finitely many N

‖ψ[±N ]d − ϕ|[±N ]d‖ ≤ O(e−DNN2(d+1)).

As before, we shall restrict us again to the case d = 2 for simplicity and study solutions

of the equivalent problem equation

det(F (λ) +G(λ)) = 0 (3.62)

that will be defined in terms of the eigenvectors vj and eigenvalues λj for j ∈ [(2N + 1)2]

of B[±N ]2 with λ1 as above. Then, we define µj = λj − λ1 and setting v−j := vj and

λ−j := −λj, the matrices F (λ), G(λ) are then defined as follows

F (λ) := iλ− λ
∑

j∈±[(2N+1)2]\{1}

∑
i1,i2∈F

αi1,i2(λj)

µj
π
|F|
i1,i2

(3.63)

and

G(λ) :=
∑

i1,i2∈F

αi1,i2(λ1)Fπ
|F|
i1,i2︸ ︷︷ ︸

=:(I)

−λ2
∑

j∈±[(2N+1)2]\{1}

∑
i1,i2∈I

αi1,i2(λj)π
|F|
i1,i2

µ2
j︸ ︷︷ ︸

=:(II)

−λ3
∑

j∈±[(2N+1)2]\{1}

∑
i1,i2∈F

αi1,i2(λj)π
|F|
i1,i2

µ2
j(µj − λ)︸ ︷︷ ︸

=:(III)

(3.64)

so that a solution to (3.62) corresponds to the desired eigenvalue. Before we fix a ball

K = B(0, rN), we again want to find an upper bound for the ‖ρN‖, where

ρN :=
∑

i1,i2∈F

αi1,i2(λ1)Fπ
|F|
i1,i2

(3.65)

i.e. is the first term, (I), of G. Using exponential decay of the eigenstate v1 it follows that

for c > 0 we have

‖ρN‖ ≤ O(Ne−cN).

We now fix a ball K = B(0, rN) and choose the radius rN := O(Ne−cN). Therefore

it suffices to find a root of (3.45) inside the ball K and conclude the existence of an

eigenvalue by Rouché’s theorem. We easily see that for all v 6= 0, and λ ∈ ∂K, ‖F (λ)v‖ ≥
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|λ|‖v‖ = rN‖v‖ since the second term of the right hand side of (3.63) is symmetric. On

the other hand, by Lemma 3.10 we can estimate µj ≥ cN−2(2+1) for all but finitely many

N and some c > 0. Using this lower bound, we have for λ ∈ ∂K

‖(II)‖ ≤ O(N2(2+2)e−2cN) and ‖(III)‖ ≤ O(N2(2+2)e−3cN).

Thus, we have ‖F (λ)v‖ > ‖G(λ)v‖ on ∂K, for all v 6= 0 for almost all sufficiently large

N . Since F (λ) is not invertible exactly at 0 inside K, we have from Lemma 2.1 that there

is one point inside K so that F (λ) +G(λ) is not invertible or in other words there is one

root of (RF(λ) + i)u = 0 with λ . Ne−cN .

Remark 3.12 (Sharpness of the estimate in d = 1). Note that when d = 1 and the friction-

sites are F ⊂ {1, N}, with γ1, γN bounded uniformly in N , then we can conclude from item

(4) in Proposition 2.2 a lower bounded on the spectral gap (both in the impurity and the

disorder case) that is exponentially small in N . In these cases then indeed λS = O(e−cN).
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Appendix

3.A Proposition 2.1 on the chain of oscillators (2.5)

First we show that Ω[N ]d given in (2.6) is positively stable. Indeed, as was done in [JPS17],

we write

Ω[N ]d − Ω∗[N ]d =

(
0 −(m

−1/2

[N ]d
B

1/2

[N ]d
+B

1/2

[N ]d
m
−1/2

[N ]d
)

m
−1/2

[N ]d
B

1/2

[N ]d
+B

1/2

[N ]d
m
−1/2

[N ]d
0

)

1

2
(Ω[N ]d + Ω∗[N ]d) = diag(Γ, 0).

We denote by Γ̂ = diag(Γ, 0) and ϑ̂ = diag(ϑ, 0). Let λ ∈ Spec(Ω[N ]d) and u be a

non-zero corresponding eigenvector. Hence,〈
1

2
(Ω[N ]d + Ω∗[N ]d)u, u

〉
= Re(λ)|u|2 = |Γ̂1/2u|2 (1.66)

which implies that Re(λ) ≥ 0. If Re(λ) = 0 then this implies that u must vanish where Γ̂

is supported. In other words, if u is an eigenvector to Ω[N ]d with eigenvalue λ ∈ iR, then

it is also, by squaring Ω[N ]d without the Γ̂ term, an eigenfunction to

S =

(
−m−1

[N ]d
B[N ]d 0

0 −m−1
[N ]d

B[N ]d

)
.

with eigenvalues −λ2 ∈ R and vanishes in addition at the support of Γ̂. Thus, writing

u = (u1, u2), both u1, u2 have to be eigenfunctions of the Schrödinger operator m−1
[N ]d

B[N ]d

with eigenvalue λ2 vanishing where Γ̂ is supported.

In the homogeneous case, the eigenfunctions are explicit (3.30) and one can verify

directly that they do not vanish anywhere on the boundary. Therefore, as long as there

is a particle experiencing friction somewhere on the boundary, there does not exist an

eigenfunction to the Schrödinger operator that vanishes there.

In the case of the disordered network or the network with an impurity, it suffices to

apply a simple unique continuation argument. First observe that the vanishing of an
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eigenfunction on an edge implies by directly analyzing (B[N ]d + λ2)u = 0 (as in the proof

of the item (4) of Prop. 2.2), at the oscillators of the edge, that the eigenfunction also has

to vanish on the nearest edge to the boundary edge of oscillators that exhibits friction.

Iterating this argument shows that such an eigenfunction has to vanish everywhere.

We also have shown in the last parts of the proofs of the Propositions (3.3), (3.5),

by proving an explicit lower bound, that the spectral gap cannot be 0, i.e. Re(λ) > 0.

Note that another argument that shows that Re(λ) 6= 0 can be done by contradiction as

then Γ̂1/2u = 0 and so Ω∗
[N ]d

u = −Ω[N ]du = −λu. Inductively we would have Γ̂1/2Ω∗ n
[N ]d

u =

(−λ)−nΓ̂1/2u = 0 for all n ≥ 0. As soon as the interaction coefficient c > 0, we have that⋂
n≥0

Ker
(

Γ̂1/2Ω∗ n[N ]d

)
= {0}.

This is for example a consequence of the fact that the pair (Ω[N ]d , Γ̂
1/2) satisfies the Kalman

condition when c > 0 [Raq19, Lemma 3.2], see also [JPS17, Lemma 5.1 (2)].

Secondly, regarding the condition (1) of Proposition (2.1), the fact that there is no

non-trivial subspace of Ker(Γϑ) that is Ω[N ]d-invariant is equivalent to the hypoellipticity

of the operator L (this is discussed in the first section in [H6̈7]).

For the hypoellipticity, it is sufficient to show that the generator can be written as

L = X0 +
∑

i∈F X
2
i and that the Lie algebra A generated by the vector fields

{X0}, {[Xi, Xj]}0≤i,j≤2dNd , {[Xi, [Xj, Xk]]}i,j,k≥0, . . .

satisfies Hörmander’s hypoellipticity condition, i.e. A has full rank. This is true as long as

c > 0, since for j = 1, . . . , d: [∂
p
(j)
1
, X0] = −1

2
∂
p
(j)
1

+ ∂
q
(j)
1

i.e. ∂
q
(j)
1
∈ A. Then calculating

[∂
q
(j)
1
, X0] we get ∂

p
(j)
2
∈ A when the interaction potential is strictly convex. By the use of

successive commutators it is clear that we recover Hörmander’s hypoellipticity condition

indeed.

3.B Matrix-valued Rouché’s theorem

Lemma 2.1 (Matrix-valued Rouché’s theorem). Let A,B : K → Cn×n be two holomorphic

functions inside some region K with ‖B(z)v‖ < ‖A(z)v‖ for all v 6= 0 and z ∈ ∂K. Then,

both A and A+B are invertible at an equal number of points inside K.

Proof. By the argument principle the number of singular points of A(z) + tB(z) in K

with t ∈ [0, 1] is given by

N(t) :=
1

2πi

∫
∂K

∂z log(det(A(z) + tB(z))) dz
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and independent of t by continuity of t 7→ N(t).
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Chapter 4

Existence of a Non-Equilibrium

Steady State for the non-linear BGK

equation on an interval

This chapter is a joint work with Josephine Evans and it is published in [EM21].

We show existence of a non-equilibrium steady state for the one-dimensional, non-linear

BGK model on an interval with diffusive boundary conditions. These boundary conditions

represent the coupling of the system with two heat reservoirs at different temperatures.

The result holds when the boundary temperatures at the two ends are away from the

equilibrium case, as our analysis is not perturbative around the equilibrium. We employ

a fixed point argument to reduce the study of the model with non-linear collisional

interactions to the linear BGK.
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4.1 Introduction

This work is a contribution to the study of non-equilibrium steady states for non-linear

kinetic equations. We study the existence of non-equilibrium steady states for the non-

linear BGK equation on bounded domains with diffusive boundary conditions. In this

paper we look at the 1d case where the velocity variable is in R and the x variable is in an

interval with boundary conditions at different temperatures at each side. We show the

existence of a non-equilibrium steady state and explore its properties.

The BGK model of the Boltzmann’s equation is a simple kinetic relaxation model

introduced by Bhatnagar, Gross and Krook in [BGK54] as a toy model for Boltzmann

flows. The evolution problem for the BGK model was first studied in [Per89] and later in

[GP89] where global existence was proved and in [PP93] where existence and uniqueness

was proved for the initial-value problem in bounded domains.

Here we are interested in non-equilibrium phenomena, that is to say equations with

steady states which are not Gibb’s states and are induced by effects external to the system

of study. In our case these external effects are present as diffusive boundary conditions.

We show results which are not derived by perturbations models which have equilibrium

states or by models which are close to the hydrodynamic regime. That is to say we work

in the regime where the Knudsen number is not considered to be small.

We describe our model in the following subsection.

4.1.1 Description of the model

We consider a gas of particles in the domain (0, 1) where the collisions among the particles

are described by the nonlinear BGK operator. The distribution function f(t, x, v) of the

gas is the density of the particles at the position x ∈ (0, 1) with velocity v ∈ R at time

t > 0. We denote by κ the Knudsen number 1 and we study the existence of stationary

solutions f(x, v) to the following equation

∂tf + v∂xf =
1

κ

(
ρfMTf − f

)
, (1.1)

f(0, v) = M̃1(v)

∫
v′<0

|v′|f(0, v′)dv′, v > 0, (1.2)

f(1, v) = M̃2(v)

∫
v′>0

|v′|f(1, v′)dv′, v < 0. (1.3)

1The Knudsen number κ is defined as the ratio between the mean free path and the typical observation
length.
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Here the spatial density ρf (x) and the pressure Pf (x) := ρf (x)Tf (x) are given respectively

by

ρf (x) =

∫ ∞
−∞

f(x, v)dv, ρf (x)Tf (x) =

∫ ∞
−∞

v2f(x, v)dv (1.4)

and then the local temperature corresponding to f is Tf . We denote by MTf (v) the

Maxwellian with temperature Tf i.e.

MTf (v) = (2πTf )
−1/2 exp

(
− 1

2Tf
v2

)
.

Furthermore, M̃1,M̃2 are Maxwellians at the boundary temperatures T1, T2 respectively

and they are considered to be renormalised so that, for i = 1, 2,∫ ∞
0

vM̃i(v)dv = 1. (1.5)

This means that

M̃i(v) :=
1

Ti
exp

(
− 1

2Ti
v2

)
.

In other words we study the steady states of a gas which is coupled to two temperature

reservoirs at the two boundaries of the domain (0, 1) and this coupling is implemented

through the so-called diffusive boundary conditions or Maxwell boundary conditions. So

that when particles hit one of the boundaries {0, 1}, they get reflected and re-enter

the domain with new velocities drawn from the Maxwelians M̃i(v) corresponding to

temperatures T1, T2 at the two ends.

4.1.2 State of the Art

This paper is motivated by [CEL+18, CEL+19], where they study the non-linear BGK

equation on the periodic torus in the presence of scatterers at two different temperatures.

There it is straightforward to find one steady state and these papers show that this state is

unique under certain conditions. There the non-equilibrium forcing is the same throughout

the space. Also for the non-linear BGK equation there is a paper of Ukai [Uka92], about

the existence of steady states with prescribed boundary conditions which is a situation

similar to that studied here. The boundary conditions we consider here are different, since

the paper of Ukai prescribes the density at either side of the interval, whereas in our paper

we prescribe diffusive boundary conditions. The techniques are also different.

The majority of the papers investigating non-equilibrium steady states of kinetic

equations are in the setting of the Boltzmann equation. We mention first the paper [AN00]

which also deals with a non-perturbative setting to show the existence of non-equilibrium
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steady states to the Boltzmann equation in the slab. This paper crucially uses the entropy

distribution of the equation. There are also a number of papers about similar problems in

a perturbative setting either when the difference of the temperatures is small [EGKM13],

or when the Knudsen number is small and a hydrodynamic approximation can be used

[Ark00, AEMN10, AEMN12]. There have also been works in a spatially homogeneous

setting in the presence of scatterers [CLM15] for the Boltzmann equation and [Eva16]

for Kac’s toy model for the Boltzmann equation. We also mention the preprint [Ber19]

which shows exponential convergence towards non-equilibrium steady states for the free

transport equation in a domain with Maxwell boundary conditions.

One of the main motivations to study non-equilibrium phenomena, like the one appear-

ing in the model of this note due to non-isothermal boundaries, is the better understanding

of the Fourier’s law, which from a mathematical point of view is a very challenging problem.

The Fourier’s law, which is well tested for several materials, relates the macroscopic thermal

flux J(t, x) to the small variations of the gradient of the temperature ∇T (t, x):

J(t, x) = −K(T )∇T (t, x) (1.6)

where 0 < K(T ) <∞ is the thermal conductivity of the material. It is not diffucult to see

that (1.6) implies the following diffusion equation for the temperature:

c(T )∂tT = ∇(K(T )∇T )

where c(T ) is the specific heat of the system per unit volume.

Concerning heat conduction in gases: (1.6) was rigorously proven in [ELM94, ELM95]

for the stationary Boltzmann equation in a slab for small Knudsen numbers and when the

temperature difference is small. We also refer here again to [EGKM13] where the authors

construct solutions to the 3d steady problem with the Boltzmann hard spheres collision

operator and diffusive boundaries with different temperatures at the two walls that do not

oscillate too much. There the authors work with small temperature difference and they

can see mathematically that the Fourier’s law does not hold, since they are in the kinetic

regime, by combining their result with pre-existing numerical simulations in [OAY89].

The abovementioned works are specific answers to the more general question in

Statistical Physics: the mathematically rigorous derivation of Fourier’s law or a proof of

its breakdown, from microscopic, purely deterministic or stochastic, models. For several

overviews on this topic we refer the reader to [BLRB00, Lep16, Dha08, FB19].

An example of such a microscopic heat conduction model, a model of heat reservoirs is

the so-called chain of oscillators. For more information on this model we refer to [RLL67,

EPRB99b, RBT02, Car07, CEHRB18] where questions of existence and uniqueness of a

NESS and exponential approach towards it are addressed, as well as to [Hai09, HM09]

156



for interesting features of the model: for example cases where there is no spectral gap of

the generator of the associated process. Quantitative results concerning the scaling of the

spectral gap in terms of the number of the particles, for special cases of the chain, can be

found in [Men20, BM22].

4.2 Mathematical Preliminaries

First note that the normalisation (1.5) is chosen so that the equation conserves mass,

indeed we record this observation in the following Lemma:

Lemma 2.1. The equation (1.1) at least formally conserves mass.

Proof. We write

d

dt

∫
f(x, v)dxdv =−

∫
v∂xfdxdv +

1

κ

(∫
ρ(x)MT (v)dvdx−

∫
f

)
=−

∫
v∂xf =

∫
vf(1, v)dv −

∫
vf(0, v)dv.

Then we show that each of the boundary terms is zero:∫
vf(1, v)dv =

∫ 0

−∞
vf(1, v)dv +

∫ ∞
0

vf(1, v)dv

=

∫ ∞
0

|v′|f(1, v′)dv′
∫ 0

−∞
M̃2(v)vdv +

∫ ∞
0

vf(1, v)dv

=0.

Similarly we show that the other boundary term is 0 as well, which concludes the proof.

4.2.1 Notation

We write f(x) ≤ O(g(x)) to denote that there is a constant C > 0 such that |f(x)| ≤
C |g(x)|. We occasionally write A . B in order to say that A ≤ CB for some constant C

that only depends on the two temperatures T1, T2. We denote by B(A) the Borel σ-algebra

on A and by nx the outward unit vector at x ∈ {0, 1}. We also write C∞c (X) for the space

of the compactly supported smooth functions on X.

4.2.2 Plan of the paper

We introduce the main results in the next Section. In Section 4 we present the proofs of

the main results. This is split into subsections showing the different criteria needed to be

fulfilled in order to apply the Schauder fixed point Theorem. In particular in subsection
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4.3 we present the asymptotic behaviour of the moments in order to get an L∞ bound on

the temperature profile, and then to prove Hölder continuity of it in 4.4. In 4.5 we prove

the continuity of the mapping to which we apply Schauder’s Theorem in 4.6. Finally, we

conclude with Section 5 with a discussion of the results and possible avenues for future

research.

4.3 Main Results

We introduce the following condition, under which our main Theorem holds.

Condition 1. We say that the pair of temperatures T1, T2 satisfy this condition when

(C1) κ2T1 > γ2 and

(C2)
√
T2 −

√
T1 ≥ γ1κ

1/2T
1/4
2

where γ1, γ2 are positive constants and κ > 0 is the time renormalizing constant in front

of the collision operator in equation (1.1), i.e. the Knudsen number.

Our main results on the steady state of the nonlinear BGK operator with diffusive

boundary conditions are summarized in the following Theorem.

Theorem 3.1. For every two fixed temperatures T1, T2 satisfying Condition 1, there exists

a steady state which satisfies equation (1.1) with boundary conditions (1.2) and (1.3).

Furthermore, this steady state has the following properties:

• It has zero momentum uniformly in x ∈ (0, 1).

• It has constant density and pressure equal to
√
T1T2, asymptotically with T1. In

particular, for all x ∈ (0, 1),

1− γ0κ
−1/2T

−1/4
1 ≤ρf (x) ≤ 1 + γ1κ

−1/2T
−1/4
1√

T1T2 .Pf (x) .
√
T1T2.

• Its temperature profile is 1/2-Hölder continuous and also it is asymptotically equal to
√
T1T2 with the deviation from

√
T1T2 decreasing as T1 increases: for all x ∈ (0, 1),√

T1T2(1− γ1κ
−1/2T

−1/4
1 ) . Tf (x) .

√
T1T2(1 + γ0κ

−1/2T
−1/4
1 ),

for some constants γ0, γ1 and κ the constant in front of the collisional operator in

(1.1).
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Remark 3.2. The fact that the steady state of this equation has zero momentum uniformly

in x, implies it is also a solution to the similar time independent equation,

v∂xf = ρf (x)Muf ,Tf (v)− f,

with the boundary conditions (1.2) and (1.3). Here,

Muf ,Tf (v) = (2πTf )
−1/2e−(v−uf )2/Tf ,

and

ρfuf :=

∫
R
f(x, v)vdv.

4.4 Proofs

4.4.1 Strategy of Proof

In order to prove the existence of a steady state when T1, T2 satisfy condition 1, we perform

a fixed point argument. We look at the following linear equation with the same spatially

variable diffusive boundary conditions for given temperature profile T (x):

∂tf + v∂xf = ρ(x)MT (x) − f, (4.7)

f(0, v) = M̃1(v)

∫
v′<0

|v′|f(0, v′)dv′, v > 0, (4.8)

f(1, v) = M̃2(v)

∫
v′>0

|v′|f(1, v′)dv′, v < 0. (4.9)

where MT (x) is the Maxwelian with temperature T (x).

Remark 4.1. This differs from equation (1.1) since we use a fixed temperature profile in

the Maxwellian on the right hand side rather than the temperature profile coming from f .

We prove the two following facts:

• The PDE (4.7)-(4.8)-(4.9) is the equation on the law of a stochastic process and this

stochastic process has a unique equilibrium state. This equilibrium steady state has

a temperature profile which we call τ(x).

• If T1 ≤ T (x) ≤ T2 and T1, T2 satisfy condition 1 then we have that T1 ≤ τ(x) ≤ T2

and τ(x) is 1/2-Hölder continuous with modulus of continuity depending on T1, T2.

We define the map F(T ) = τ which is a map between continuous functions on (0, 1)

and thanks to the first fact above, it is well-defined. Then we apply the Schauder fixed

point theorem using the second fact above to show that F has a fixed point. From the
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definition of the mapping F we get that a fixed point implies that the temperature profiles

of the nonlinear and the linear model will coincide. Therefore, for T being this fixed

point, corresponding to the two temperature profiles, a steady state of the linear model

(4.7)-(4.8)-(4.9), will also be a steady state of the nonlinear model (1.1)-(1.2)-(1.3). In the

following sections we make it precise how to define the map F(T ), then give bounds on

F(T ) which allow us to prove point 2. Finally, we use these to apply the Schauder fixed

point theorem.

Note that a similar idea to apply Brouwer fixed point theorem for a finite system of

anharmonic crystals coupled to external and self-consistent internal Langevin heat baths

can be found in [BLLO09] in order to prove the existence of a stationary self-consistent

temperature profile.

4.4.2 Definition of the map F(T ).

In this section we work in the case κ = 1 in order not to track too many constants and to

simplify the presentation, since quantitative bounds in this section do not have impact

on our final result. In order to properly define the map F(T ) we need a well defined way

of selecting a steady state of the PDE (4.7)-(4.8)-(4.9). In order to do this we define a

stochastic process and show that this stochastic process has a unique steady state the law

of which is a weak solution to the steady state version of (4.7)-(4.8)-(4.9). First we define

what we mean for a weak measure valued solution of (4.7)-(4.8)-(4.9).

Definition 4.2. A weak solution in the sense of measures to the PDE (4.7)-(4.8)-(4.9) is

a triple µ1,t, µ2,t, µt with µi satisfying that for every test function supported on Ri = R+

for i = 1 or Ri = R− for i = 2∫
Ri

Φ(v)µi(dv) =

∫
R−Ri
|v′|µi(dv′)

∫
Ri
vM̃i(v)Φ(ξ, v)dv

where ξ = 0, 1, the left boundary for i = 1 and the right boundary for i = 2. Furthermore∫ ∞
0

∫∫
(0,1)×R

(
∂tΦ(t, x, v) + v∂xΦ(t, x, v) +

∫
R

Φ(t, x, v′)MT (x)(v
′)dv′ − Φ(t, x, v)

)
µt(dx, dv)dt

+

∫∫
(0,1)×R

Φ(0, x, v)µ0(dxdv) =

∫ ∞
0

∫
R

Φ(t, 1, v)µ2(dv)dt−
∫ ∞

0

∫
R

Φ(t, 0, v)µ1(dv)dt.

Existence and uniqueness for the linear BGK equation with diffusive boundary

conditions. For our purposes we give a probabilistic interpretation of the evolution of

the process for the linear BGK. Note also that similar techniques for the free transport

equation with diffusive and specular reflective boundary conditions for higher dimensions

have been applied in [BF19]. We work on the level of stochastic processes because there
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is the possibility of some non-uniqueness occuring at what is known as the ‘grazing set’

which in our case is the two points (0, 0), (1, 0). Defining a stochastic process allows us to

set values at these points.

Proposition 4.3. For every given continuous function T (x) there exists a well defined

way in which we can select a triple of measures µ1, µ2, µ which is a stationary solution in

a weak sense to the linear PDE (4.7)-(4.8)-(4.9).

We split the proof into two lemmas. We first construct a stochastic process and show

that it is well defined and then show that the law of this is a desired weak solution.

Definition 4.4 (Construction of the stochastic process). Let (R1
i )i≥1, (R

2
i )i≥1, be two

sequences of random variables with R1
i having law vM̃1 and R2

i having law |v|M̃2. Fur-

thermore let Ni be a set of N(0, 1) random variables and Si be a sequence of exponential

random variables with rate 1. Now we define the deterministic map

ζ(x, v) = inf{s > 0, x+ vs ∈ {0, 1}}

which is our first collision with one of the boundaries. Then we define recursively

Tk+1 = Tk + min{Sk+1, ζ(XTk , VTk)}.

Then for t ∈ [Tk, Tk+1) we have

Xt = XTk + (t− Tk)VTk , Vt = VTk .

We jump at the times Tk so that

VTk+1
= 1Tk+1−Tk=Sk+1

√
T (XTk)Nk+1 + 1XTk+1

=0R
1
k+1 + 1XTk+1

=1R
2
k+1

where here T (XTk) is the temperature at the position XTk .

Lemma 4.5 (Non-explosion of the process). This stochastic process defined in 4.4 is well

defined and exists for all t > 0.

Proof. We would like to show that this process is non-explosive i.e. Ti →∞ almost surely.

Lets look at the event

Ak = {R1
2k+1 < 1, R1

2k+2 < 1, R2
2k+1 < 1, R2

2k+2, S2k+1 > 1, S2k+2 > 1}.

The Ak’s are independent events and P(Ak) = P(A1) = p > 0. Therefore by Borel-Cantelli

Ak happens infinitely often almost surely. On Ak we can see that T2k+2 − T2k > 1. This

is because Ak ensures that T2k+1 − T2k > 1 or ζ(XT2k , VT2k) < 1, and in the second case
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we know that XT2k+1
∈ {0, 1} so the next jump time is defined by R1

2k+1, R
2
2k+2 and S2k+2

which are all chosen so that T2k+2 − T2k+1 > 1 if XT2k+1
∈ {0, 1}.

Lemma 4.6. The law of this stochastic process is a weak solution to the SDE.

Proof. Here we follow [BF19]. We begin by showing how we can represent the boundary

measures: for a set A ∈ B((0,∞)×{0, 1}×Σ±) with Σ± := {(x, v) ∈ {0, 1}×R : ±v ·nx <
0}, we introduce the measures

µi−(A) = E
(
1(Ti,XTi ,VTi )∈A1Ti=ζ(XTi−1

,VTi−1
)

)
,

µi+(A) = E
(
1(Ti,XTi ,VTi−)∈A1Ti=ζ(XTi−1

,VTi−1
)

)
i.e. µi− is the law of the triple (Ti, XTi , VTi), i.e. after the collision with a boundary, and

µi+ is the law of the triple (Ti, XTi , VTi−), i.e. exactly before the collision with a boundary.

Then we have

µ+(A) =
∑
i

µi+(A) for A ∈ B((0,∞)× Σ−),

µ−(A) =
∑
i

µi−(A) for A ∈ B((0,∞)× Σ+).

These boundary measures satisfy the desired boundary condition. Indeed, we investigate

the relationship between these two measures:

µi−(A) =E
(
1(Ti,XTi ,VTi )∈A1Ti=ζ(XTi−1

,VTi−1
)

)
=E

(
1XTi=01(Ti,XTi ,R

1
i )∈A + 1XTi=11(Ti,XTi ,R

2
i )∈A

)
=

∫
E
(
1XTi=01(Ti,XTi ,v)∈A

)
vM̃1(v)dv +

∫
E
(
1XTi=11(Ti,XTi ,v)∈A

)
vM̃2(v)dv.

Therefore,

µi−(A) =

∫∫
(0,T )×(0,∞)

∫ 0

−∞

(
1(t,0,w)∈A

)
wM̃1(w)dwµi+(dt, dv)

+

∫∫
(0,T )×(0,∞)

∫ ∞
0

(
1(t,1,w)∈A

)
wM̃2(w)dwµi+(dt, dv).

Testing against a test function Φ ∈ C∞c (R±) we recover the boundary conditions as in the

Definition 4.2. Now we would like to show that the tripple will be a weak solution to the

PDE. For

µ1 = 1{x=0}(µ+ + µ−), µ2 = 1{x=1}(µ+ + µ−),
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and Φ ∈ C∞c ((0,∞)× (0, 1)× R), we Taylor expand around (t,Xt, Vt) and we write

E (Φ(t+ s,Xt+s, Vt+s)− Φ(t,Xt, Vt)) =

E
(
(Φ(t+ s,Xt+s, Vt+s)− Φ(t,Xt, Vt))1{Xt+sVt∈(0,1)}

)
+

+ E
(
(Φ(t+ s,Xt+s, Vt+s)− Φ(t,Xt, Vt))1{Xt+sVt /∈(0,1)}

)
=

E

(s∂tΦ(t,Xt, Vt) + sVt∂xΦ(t,Xt, Vt))1{0 jumps in
(t, t+ s)

}

+ E

∫ ∞
−∞

(Φ(t,Xt, w)− Φ(t,Xt, Vt)) (2πT (Xt))
−1/2 exp

(
− w2

2T (Xt)

)
dw1{

1 jump in

(t, t+ s)
}
+O(s)

+ E
(∫ ∞

0

Φ(t,Xt, w)wM̃1(w)dw1{Xt+sVt<0}1
{

0 jumps in (t, t+ s)
})

+ E
(∫ 0

−∞
Φ(t,Xt, w)wM̃2(w)dw1{Xt+sVt>1}1

{
0 jumps in (t, t+ s)

}) .
Letting s to go to 0, this gives us that∫

(∂tΦ(t, x, v) + v∂xΦ(t, x, v))µt(dx, dv) +

∫ ∫
w

(Φ(t, x, w)− Φ(t, x, v))MT (x)(w)dwµt(dx, dv)

+

∫ ∫
(Φ(t, 0, w)− Φ(t, 0, v))wM̃1(w)µ1(dv)

+

∫ ∫
(Φ(t, 1, w)− Φ(t, 1, v))wM̃2(w)µ2(dv) = 0.

Therefore, µt is a weak solution to the PDE according to the Definition 4.2.

In order to prove the existence and uniqueness of a steady state for this stochastic

process we use Doeblin’s Theorem (we can find this in [Hai16] for example). Which is as

follows

Condition 2 (Doeblin’s condition). If P is a stochastic semigroup acting on probability

measures over a set Ω then P satisfies Doeblin’s condition if there exists α ∈ (0, 1) and

ν ∈ P(Ω), a probability measure on Ω such that for every z ∈ Ω we have

Pδz ≥ αν.

Theorem 4.7 (Doeblin’s Theorem). If P satisfies Doeblin’s condition then it has a unique

steady state.

Lemma 4.8. Let Pt be the stochastic semigroup corresponding to the evolution of the

stochastic process defined in 4.4, then there exist a time t∗ such that Pt∗ satisfies Doeblin’s

condition 2. In particular, the stochastic process has a unique steady state.

163



Proof. We wish to find a lower bound for Doeblin’s condition. We apply Duhamel’s

formula to find that

x− vt ∈ (0, 1), f(t, x, v) = e−tf (0, x− vt, v) +

∫ t

0

e−(t−s)ρ(x− v(t− s))MT (x−v(t−s)(v)ds.

(4.10)

Similarly,

x− vt ≤ 0, f(t, x, v) = e−x/vf
(
t− x

v
, 0, v

)
+

∫ x/v

0

e−(x/v−s)ρ(vs)MT (vs)(v)ds, and

(4.11)

x− vt ≥ 1, f(t, x, v) = e
(1−x)
|v| f

(
t− (1− x)

|v|
, 1, v

)
+

∫ (1−x)
|v|

0

e−(−(1−x)
|v| −s)ρ(1− vs)MT (1−vs)(v)ds.

(4.12)

In light of this, we define

R(t, x, v) :=



x/v, for x/v ≤ t

t, for x/v > t, v > 0

t, for v = 0

t, for (1− x)/|v| > t, v < 0

(1− x)/|v|, for − (1− x)/v ≤ t

and

πf(x, v) := ρf (x)MT (x)(v).

Then we have the following lower bound

f(t, x, v) ≥
∫ R

0

e−R(πf)(s, x− v(R− s), v)ds. (4.13)

Regarding the boundary conditions, we substitute in the first term from (4.10):

f(t, 0, v) = M̃1(v)

∫ 0

−∞
|u|f(t, 0, u)du ≥ M̃1(v)

∫ 0

−1/t

e−t|u|f(0,−ut, u)du

and

f(t, 1, v) = M̃2(v)

∫ ∞
0

|u|f(t, 1, u)du ≥ M̃2(v)

∫ 1/t

0

e−t|u|f(0, 1− ut, u)du.
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Now if we consider the initial condition f(0, x, v) = δx0(x)δv0(v), we have

f(t, 0, v) ≥ e−tM̃1(v)|v0|δx0(−v0t)1t|v0|≤1 and

f(t, 1, v) ≥ e−tM̃2(v)|v0|δx0(1− v0t)1t|v0|≤1.

Then we have

x− vt ≤ 0, f(t, x, v) ≥ e−tM̃1(v)|v0|δx0
(
−v0

(
t− x

v

)
≤ 1
)
.

We need to know the local density and integrate in v. This gives us when v0 < 0,

ρ(t, x) ≥
∫ x/(t−1/|v0|)+

x/t

e−tM̃1(v)|v0|δx0
(
−v0

(
t− x

v

))
dv

≥
∫ min(|v0|t,1)

0

e−t|v0|
1

x|v0|

(
xv0

y + v0t

)2

M̃1

(
xv0

y + v0t

)
δx0(y)dy

≥1x0+v0t≤0 e
−t xv2

0

(x0 + v0t)2
M̃1

(
xv0

x0 + v0t

)
.

Also when v0 > 0, we have

ρ(t, x) ≥
∫ (1−x)/|v|

−∞
e−tM̃2(v)|v0|δx0

(
1− v0

(
t− 1− x

|v|

))
dv

≥e−t|v0|
(1− x)v0

(x0 − 1 + v0t)2
M̃2

(
(1− x)v0

1− v0t− x0

)
1x0+v0t≥1.

Now in the simplest case where x0 + v0t ∈ (0, 1) we have

ρ(t, x) = δx0+v0t(x).

Now we are going to focus on the case where x− vt ∈ (0, 1) in which case

f(t, x, v) ≥
∫ t

0

e−(t−s)ρ(s, x− v(t− s))MT (x−v(t−s))(v)ds.

We have

MT (x)(v) ≥ 1√
2πT2

e−v
2/2T1 ≥

√
T1

T2

MT1(v) := αG(v).

Using this we can write

f(t, x, v) ≥ αG(v)

∫ t

0

e−(t−s)ρ(s, x− v(t− s))ds.

For a fixed ε > 0, we consider the following three cases

165



1. v0 < 0, x0/|v0| ≤ ε,

2. v0 > 0, (1− x0)/v0 ≤ ε,

3. Neither of these holds.

We observe that in case (1) we know that t ≥ ε implies that x0 + v0t ≤ 0 and in case (2):

if t ≥ ε then x0 + v0t ≥ 1.

For the case (1), we have

ρ(t, x) ≥ e−t1t≥ε
xv2

0

(x0 + v0t)2
M̃1

(
xv0

x0 + v0t

)
≥ e−t1t≥ε

x

T1t2
e−1/2T1ε2 .

Now we can substitute this into (4.13) again to get that

f(t, x, v) ≥ αe−tG(v)
1

T1t2
e−1/2T1ε2

∫ t

ε

(x− v(t− s))ds

=
αe−t

T1t2
G(v)e−1/2T1ε2(t− ε)

(
x− v

2
(t− ε)

)
1t≥ε.

If we set t∗ = 2ε then we have

f(t∗, x, v) ≥ αe−2εG(v)
1

T1ε2
e−1/2T1ε2ε21x−vε∈(ε,1−ε).

For the case (2), we work essentially the same as in case (1) to get that

f(t, x, v) ≥ αe−t

T2t2
G(v)e−1/2T2ε2(t− ε)

(
1− x+

v

2
(t− ε)

)
.

Setting t∗ = 2ε we have

f(t∗, x, v) ≥ αe−2εG(v)
1

T2ε2
e−1/2T2ε2ε21x−vε∈(ε,1−ε).

Finally for the third case, we will need further iterations. Initially, we get that

ρ(t, x) ≥ e−tδx0+tv0(x)1t≤ε.

We substitute this once into (4.13) to get

f(t, x, v) ≥ e−tα

∫ t

0

δx0+sv0(x− v(t− s))G(v)1t≤εds.

Integrating in v this, gives

ρ(t, x) ≥ e−t1t≤εα

∫ t

0

∫ ∞
−∞

δx0+sv0(x− v(t− s))G(v)dvds.
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After a change of variables, this is bounded below by

ρ(t, x) ≥ e−t1t≤ε
α

t

∫ t

0

G

(
x− x0 − v0s

t− s

)
ds ≥ e−t1t≤ε

α

t

∫ t

0

G

(
1

t− s

)
ds.

We subsititute this back into (4.13) to get

f(t, x, v) ≥e−tα
2

t
G(v)

∫ t

0

1s≤ε

∫ s

0

G

(
1

s− r

)
drds

≥e−tα
2

t
G(v)G(2/ε)

∫ t

ε

∫ ε

0

drds

≥e−tα
2ε(t− ε)

2t
G(v)G(2/ε).

Setting t∗ = 2ε we have,

f(t∗, x, v) ≥ e−2εα
2ε2

2ε
G(v)G(2/ε)1x−2vε∈(0,1).

Now let us set

β = αe−2ε min

{
αε

2
G

(
2

ε

)
,

1

T1

e−1/2T1ε2 ,
1

T2

e−1/2T2ε2
}
.

Then in every case we have that

f(t∗, x, v) ≥ β1x−2εv∈(ε,1−ε).

4.4.3 L∞ Bounds on F(T ).

As we have uniqueness of a steady state for (4.7)-(4.8)-(4.9), thanks to Lemma 4.8, for f

being this solution with temperature profile T , we define the mapping

F : C((0, 1))→ C((0, 1)), T 7−→
∫
f(x, v)|v|2dv∫
f(x, v)dv

.

In this subsection we first represent the solution to (4.7)- (4.8)- (4.9) in terms of the

moments appearing in the boundary conditions. Then we check their asymptotic behaviour

concerning the boundary temperatures T1, T2 so that we establish the conditions required

on these temperatures in order to bound the F(T )(x) uniformly in x. The goal is to prove

the proposition,
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Proposition 4.9. If T1, T2 satisfy condition 1, then we have that

T1 ≤ τT (x) ≤ T2

uniformly in x.

We begin with the following Lemma.

Lemma 4.10. For f a solution to (4.7)-(4.8)-(4.9) we have the following representation

f(x, v) =e−x/κ|v|f(0, v) +

∫ x

0

e−(x−y)/κ|v| 1

κ|v|
ρ(y)MT (y)dy v > 0, (4.14)

f(x, v) =e−(1−x)/κ|v|f(1, v) +

∫ 1

x

e−(y−x)/κ|v| 1

κ|v|
ρ(y)MT (y)dy v < 0. (4.15)

Proof. We will use Duhamel’s formula to get an exponential formulation for the equation:

let v > 0

∂t
(
et/κf(vt, v)

)
=

1

κ
et/κρ(vt)MT (vt)(v).

Integrating this gives that

et/κf(vt, v) = f(0, v) +
1

κ

∫ t

0

es/κρ(vs)MT (vs)(v)ds.

Now we write x = vt and in the integral we make the change of variables y = vs, dy = vds.

This gives

ex/κvf(x, v) = f(0, v) +

∫ x

0

ey/κv
1

κv
ρ(y)MT (y)(v)dy.

Similarly, if v < 0 we can write

∂t
(
et/κf(1 + vt, v)

)
=

1

κ
et/κρ(1 + vt)MT (1+vt)(v),

again integrating this yields,

et/κf(1 + vt, v) = f(1, v) +
1

κ

∫ t

0

es/κρ(1 + vs)MT (1+vs)(v)ds.

Now we make the change of variables x = 1 + vt, y = 1 + vs this gives

e(1−x)/κ|v|f(x, v) = f(1, v) +

∫ 1

x

e(1−y)/κ|v| 1

κ|v|
ρ(y)MT (y)(v)dy.

The above lemma will give us a close form for the moments appearing in the boundary
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conditions. We start with the following definitions.

Definition 4.11. We define the following moments

C− =
1

κ

∫ 1

0

∫
v<0

e−y/κ|v|ρ(y)MT (y)(v)dvdy, (4.16)

C+ =
1

κ

∫ 1

0

∫
v>0

e−(1−y)/κ|v|ρ(y)MT (y)(v)dvdy, (4.17)

C1 =

∫
v>0

|v|e−1/κ|v|M̃1(v)dv < 1, (4.18)

C2 =

∫
v<0

|v|e−1/κ|v|M̃2(v)dv < 1. (4.19)

Lemma 4.12. The moments appearing in the boundary conditions can be written as∫
v<0

|v|f(0, v)dv =
1

1− C1C2

(C− + C2C+) ,∫
v>0

|v|f(1, v)dv =
1

1− C1C2

(C+ + C1C−) ,

where the quantities C1, C2, C−, C+ are as in the definition 4.11.

Proof. We use the previous lemma iteratively to get∫
v<0

|v|f(0, v)dv =

∫
v<0

|v|
(
e−1/κ|v|f(1, v) +

∫ 1

0

1

κ|v|
e−y/κ|v|ρ(y)MT (y)(v)dy

)
dv (4.20)

=

∫
v<0

|v|e−1/κ|v|f(1, v)dv + C−

=

∫
v<0

|v|e−1/κ|v|M̃2(v)dv

∫
v′>0

|v′|f(1, v′)dv′ + C−

=C2

∫
v>0

|v|f(1, v)dv + C−.

Similarly∫
v>0

|v|f(1, v)dv =

∫
v>0

(
|v|e−1/κ|v|f(0, v) +

1

κ

∫ 1

0

e−(1−y)/κ|v|ρ(y)MT (y)(v)dy

)
dv

(4.21)

=

∫
v>0

|v|e−1/κ|v|f(0, v)dv + C+

=

∫
v>0

|v|e−1/κ|v|M̃1(v)dv

∫
v′<0

|v′|f(0, v′)dv′ + C+

=C1

∫
v<0

|v|f(0, v)dv + C+.

Substituting (4.21) into (4.20) gives the result.
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Combining the previous two Lemmas we get easily the following representation of the

solution as stated in the following Lemma.

Lemma 4.13.

f(x, v) =e−x/κ|v|M̃1(v)
C− + C2C+

1− C1C2

+

∫ x

0

1

κ|v|
e−(x−y)/κ|v|ρ(y)MT (y)(v)dy v > 0,

(4.22)

f(x, v) =e−(1−x)/κ|v|M̃2(v)
C+ + C1C−
1− C1C2

+

∫ 1

x

1

κ|v|
e−(y−x)/κ|v|ρ(y)MT (y)(v)dy v < 0.

(4.23)

We remind here that we are aiming for estimates on F(T ) which is defined as following:

if f is a solution to (4.7)-(4.8)-(4.9) with profile T then

F(T )(x) =

∫
f(x, v)|v|2dv∫
f(x, v)dv

.

In particular, using the following definitions for the hydrodynamic moments

ρT (x) =

∫
f(x, v)dv,

ρT (x)uT (x) =

∫
f(x, v)vdv

ρT (x)(τT (x) + uT (x)2) =PT (x) =

∫
f(x, v)v2dv,

we would like to show that if T (x) ∈ [T1, T2] then τT (x) ∈ [T1, T2].

Therefore we are interested in the scalings of the different quantities ρT , PT , τT in terms

of the temperatures T1, T2, T (y)→∞. These asymptotic behaviours are presented in the

following series of Lemmas.

Lemma 4.14. As T1, T2 →∞ we have

1

1− C1C2

∼
√

2

π

κ
√
T1T2√

T1 +
√
T2

.

Proof. Let us write D1 = 1− C1 and compute that

C1 =

√
2π

T1

∫ ∞
0

ve−1/κv(2πT1)−1/2e−|v|
2/2T1dv =

∫ ∞
0

ue−1/(κ
√
T1u)e−u

2/2du.

Therefore,

D1 =

∫ ∞
0

u
(

1− e−1/(κ
√
T1u)
)
e−u

2/2du.
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We can straightforwardly bound this above to get

D1 ≤
∫ ∞

0

1

κ
√
T1

e−u
2/2du =

1

κ

√
π

2T1

.

In order to bound D1 below, first Taylor expanding gives us:

e−1/(κ
√
T1u) ≤ max

{
1, 1− 1

κ
√
T1u

+
1

2κ2T1u2

}
.

Therefore,

u
(

1− e−1/(κ
√
T1u)
)
≥ 1

κ
√
T1

max

{
0, 1− 1

2κ
√
T1u

}
.

So that for any α ∈ (0, 1)

D1 ≥
1

κ
√
T1

∫ ∞
0

max

{
0, 1− 1

2κ
√
T1u

}
e−u

2/2du =
1

κ
√
T1

∫ ∞
1

2κ
√
T1

(
1− 1

2κ
√
T1u

)
e−u

2/2du

≥ 1

κ
√
T1

∫ ∞
1/(2κ

√
T1α)

(
1− 1

2κ
√
T1u

)
e−u

2/2

≥ 1

κ
√
T1

(1− α)

(
2
√
π − 1

2ακ
√
T1

)
=2

1

κ

√
π

T1

− 1

2ακ2T1

− 2α
1

κ

√
π

T1

+
1

2κ2T1

.

Optimising over α, for κ2T1 > 1/2π, gives

D1 ≥ 2
1

κ

√
π

T1

+
1

2κ2T1

− 2

(
π

κ6T 3
1

)1/4

.

Symmetrically we find that for T2 > 1/2π,

2
1

κ

√
π

T2

+
1

2κ2T2

− 2

(
π

κ6T 3
2

)1/4

≤ D2 ≤
√

π

2κ2T2

.

We can rewrite

1− C1C2 = D1 +D2 −D1D2.

Lets write

Ei := −1

κ

1√
2πTi

+

(
8

πκ2Ti

)1/4

∼ Aκ−1/2T
−1/4
i

Therefore our upper and lower bounds give

1− C1C2 ≤
√
π

2

(
1

κ
√
T1

+
1

κ
√
T2

−
√

π

2κ4T1T2

(1− E1)(1− E2)

)
.
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and

1− C1C2 ≥
√
π

2

(
1

κ
√
T1

(1− E1) +
1

κ
√
T2

(1− E2)−
√

π

2κ4T1T2

)
.

Therefore we have

1−K1 ≤
1− C1C2√

π
2

(
1

κ
√
T1

+ 1
κ
√
T2

) ≤ 1,

where

K1 =
κ
√
T2E1 + κ

√
T1E2 + 1

κ
√
T1 + κ

√
T2

≤ E1 + E2 +
1

κ(
√
T1 +

√
T2)

.

So we end up with√
2

π

κ
√
T1T2√

T1 +
√
T2

≤ 1

1− C1C2

≤
√

2

π

κ
√
T1T2√

T1 +
√
T2

1

1− E1 − E2 − 1/(κ(
√
T1 +

√
T2))

.

We can also straightforwardly check that if κ2T1 ≥ γ2, for some constant γ2 > 0, then we

can use the approximation 1/(1− z) ≤ 1 + z to get that

1

1− E1 − E2 − 1/κ(
√
T1 +

√
T2)
≤ 1 + 2

(
8

πκ2T1

)1/4

+ 2

(
8

πκ2T2

)1/4

.

Lemma 4.15. If T1 ≤ T (y) then we have that

1

κ

(
1− 2

(
2

πκ2T1

)1/4
)
≤ 2C−, 2C+ ≤

1

κ
.

Proof. We just show this for C−, the proof for C+ is almost identical.

κC− =

∫ 1

0

ρ(y)

∫
v<0

e−y/κ|v|MT (y)(v)dvdy.

The bound e−y/κ|v| ≤ 1 gives us the upper bound immediately.

For the lower bound we look at D(y) = 1− C−, and wish to bound this above.

D =

∫ 1

0

ρ(y)

∫
v<0

(1− e−y/κ|v|)MT (y)(v)dvdy.

We look at the integral first in v and change variables∫
v<0

(1− e−y/κ|v|)MT (y)(v)dv =

∫ ∞
0

(
1− e−y/(κ

√
T (y)v)

)
M1(v)dv.
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For any α ∈ (0, 1) we use the bounds

1− e−y/(κ
√
T (y)v) ≤ 1, |v| ≤ y

ακ
√
T (y)

,

and

1− e−y/(κ
√
T (y)v) ≤ α, |v| > y

ακ
√
T (y)

.

This gives us ∫
v<0

(1− e−y/κ|v|)MT (y)(v)dv ≤ y

α
√

2πκT (y)
+
α

2
.

We optimise over α to get∫
v<0

(1− e−y/κ|v|)MT (y)(v)dv ≤ 2

(
2y2

πκ2T (y)

)1/4

≤ 2

(
2

πκ2T1

)1/4

.

We then use the fact that ρ integrates to one to conclude.

Combining the above two lemmas gives us the scaling of the quantity appearing in

the first term of the representation (4.22). Note that similar calculations will give same

scaling regarding (4.23).

Lemma 4.16. We have

F1(T1, T2)

√
2

π

√
T1T2√

T1 +
√
T2

≤ C− + C2C+

1− C1C2

≤ F2(T1, T2)

√
2

π

√
T1T2√

T1 +
√
T2

where

F1(T1, T2) := 1 +

(
π

2κ6T 3
1

)1/4

− 2

(
2

πκ2T1

)1/4

− 1

2

√
π

2κ2T1

(4.24)

and

F2(T1, T2) := 1 +
1

4κ2T2

−
√

π

κ2T2

−
(

π

κ6T 3
2

)1/4

. (4.25)

Proof. We just put together the previous two Lemmas.

We would now like to get a sense of the different quantities using these results. Let us

start with the pressure PT .

Lemma 4.17. We have for all x ∈ (0, 1),

G1(T1, T2)
√
T1T2 ≤ PT (x) ≤ G2(T1, T2)

√
T1T2, (4.26)
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where

G1(T1, T2) = F1(T1, T2)

(
1−

√
2

π

1

κ(
√
T1 +

√
T2)

)
,

G2(T1, T2) = F2(T1, T2) +

√
1

2πκ2T1

and F1, F2 are functions of the temperatures T1, T2 and they are defined in Lemma 4.16.

In particular, √
T1T2 . PT (x) .

√
T1T2.

Proof. Let us first note that the pressure is constant in x. Indeed, from the equation we

can easilty see that

∂x(ρ(x)uT (x)) = 0

and from the boundary conditions we have

ρ(0)uT (0) = ρ(1)uT (1) = 0,

hence uT (x) = 0. Since we have that ∂xPT (x) = − 1
κ
ρ(x)u(x) = 0, we know that PT (x) is

constant.

Now in order to quantify it in terms of the temperatures, we need two further quantities:∫
v>0

|v|2M̃i(v)dv =

√
πTi
2
,

which is straightforward to compute. We also show that√
T1

2π
− 1

2κ
≤
∫ 1

0

ρ(y)

∫ ∞
0

|v|e−y/κ|v|MT (y)(v)dvdy ≤
√
T2

2π
.

The upper bound comes from bounding e−y/κ|v| by one, the lower bound comes from

bounding it below by 1− y/κ|v|.
More precisely, for v positive, using the representation of the solution in (4.22) for the

upper bound we write∫ ∞
0

|v|2f(x, v)dv =

∫ ∞
0

v2e−x/κvM̃1(v)dv

(
C− + C2C+

1− C1C2

)
+

1

κ

∫ ∞
0

∫ x

0

ρ(y)|v|e−(x−y)/κvMT (y)(v)dydv

and since the pressure is constant, for x = 1, the above quantity is bounded above by∫ ∞
0

|v|2f(1, v)dv ≤
√
T1

√
T1T2√

T1 +
√
T2

F2(T1, T2) +

√
T2

2π
.
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while the lower bound similarly is found to be(√
πT1

2
− 1

)√
2

π

κ
√
T1T2√

T1 +
√
T2

F1(T1, T2)

For v negative, using the representation (4.23), we have∫ 0

−∞
|v|2f(1, v)dv =

∫ 0

−∞
|v|2M̃2(v)

C+ + C1C−
1− C1C2

dv.

Therefore we can bound it above by,

√
T2

√
T1T2√

T1 +
√
T2

F2(T1, T2)

and below by, √
T2

√
T1T2√

T1 +
√
T2

F1(T1, T2).

Summing over positive and negative velocities gives us that

PT (x) = PT (1) ≤
√
T1T2

(
F2(T1, T2) +

√
1

2πκ2T1

)
.

Similarly, we get the lower bound,

PT (x) = PT (1) ≥
√
T1T2F1(T1, T2)

(
1−

√
2

π

1

κ(
√
T1 +

√
T2)

)

The following Lemma concerns the asymptotics of the density ρ.

Lemma 4.18. We have, uniformly in x,

1− γ0κ
−1/2T

−1/4
1 ≤ ρT (x) ≤ 1 + γ1κ

−1/2T
−1/4
1 .

for some constants γ0, γ1.

Proof. Looking at the formulae (4.22) and (4.23), we have∫ ∞
0

f(x, v)dv =

∫
v>0

e−x/κvM̃1(v)
C− + C2C+

1− C1C2

+

∫ x

0

ρ(y)

∫ ∞
0

1

κv
e−(x−y)/κvMT (y)(v)dvdy

≤ F2(T1, T2)

√
T1T2√

T1 +
√
T2

∫
v>0

M̃1(v)dv +

∫ x

0

ρ(y)

∫ ∞
0

1

κv
e−(x−y)/κvMT (y)(v)dvdy

:= I1 + I2
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where we remind that F2 is given by (4.25). For I1 applying the above estimates we get

I1 ≤ F2(T1, T2)

√
π

2

√
T2√

T1 +
√
T2

.

For the second term I2: first we notice that

1

z
e−(x−y)/z ≤ max

{
e−1

x− y
,
1

z

}
.

Therefore∫ ∞
0

1

κv
e−(x−y)/κvMT (y)(v)dv =

∫ ∞
0

1

κ
√
T (y)v

e−(x−y)/κ
√
T (y)vM1(v)dv

≤
∫ a

0

e−1 1

x− y
M1(v)dv +

∫ ∞
a

1

aκ
√
T (y)

M1(v)dv

≤ a

e1(x− y)
√

2π
+

1

2aκ
√
T (y)

.

Optimising over a gives that∫ ∞
0

1

κv
e−(x−y)/κvMT (y)(v)dv ≤ e−1/2

(
2

πκ2T (y)

)1/4√
1

x− y
.

Therefore,

I2 =

∫ x

0

ρ(y)

∫ ∞
0

1

v
e−(x−y)/vMT (y)(v)dvdy ≤ 2e−1/2

(
2

πκ2T1

)1/4

‖ρ‖∞

We can do the same thing for negative v and put it together to get that

‖ρ‖∞ ≤ 2e−1/2

(
2

πκ2T1

)1/4

‖ρ‖∞ + F2.

Rearranging gives

‖ρ‖∞
(

1− γ1κ
−1/2T

−1/4
1

)
≤ F2.

Hence,

‖ρ‖∞ ≤ F2(1− γ1κ
−1/2T

−1/4
1 )−1.

For a lower bound on ρ we can completely ignore the term where we integrate in y in

the formula (4.22). So we just need to bound below terms like∫ ∞
0

e−1/κvM̃1(v)dv.
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We have already treated terms of this type we bound the integrand below by 1− α for

v ≥ 1/α
√
T1 and optimise over α to get

∫ ∞
0

e−1/κvM̃1(v)dv ≥
√

π

2κ2T1

(
1− 2

(
2

πκ2T1

)1/4
)
.

Therefore, we write

∫
v>0

f(x, v)dv &

√
π

2κ2T1

(
1− 2

(
2

πκ2T1

)1/4
) √

T1T2√
T1 +

√
T2

F1(T1, T2)

Summing over positive and negative v gives

ρ(x) ≥ 1− γ0κ
−1/2T

−1/4
1 .

Now given the scalings in terms of the temperatures for PT (x) and ρT (x) and the fact

that PT (x) = ρT (x)τT (x) for every x we have that

Lemma 4.19. We have that for all x ∈ (0, 1), asymptotically with T1,√
T1T2(1− γ1κ

−1/2T
−1/4
1 ) . τT (x) .

√
T1T2(1 + γ0κ

−1/2T
−1/4
1 ).

Proof. This is simply a matter of piecing together the previous lemmas.

Proof of Proposition 4.9. This follows immediately from the previous lemma, since from

the the second item of condition 1, (C2), we indeed have that√
T1T2(1 + γ0κ

−1/2T
−1/4
1 ) ≤ T2

and √
T1T2(1− γ1κ

−1/2T
−1/4
1 ) ≥ T1.

4.4.4 Hölder continuity of F(T )(x).

In this Section we show Hölder continuity of order 1/2 for the map F(T ) = τ . This will

allow us to use Schauder fixed point theorem, see Theorem 4.22, to get the desired fixed

point for F . Again in this section the precise constants do not matter for the final result

so we work with κ = 1.
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Proposition 4.20. If T (x) ∈ [T1, T2] then there exists a constant C(T1, T2) such that

|τ(x1)− τ(x2)| ≤ C(T1, T2)
√
|x1 − x2|.

Proof. For x1 ≤ x2 in (0, 1) we write

|τT (x1)− τT (x2)| =
∣∣∣∣ P

ρT (x1)
− P

ρT (x2)

∣∣∣∣ = |P |
∣∣∣∣ρT (x2)− ρT (x1)

ρT (x1)ρT (x2)

∣∣∣∣ (4.27)

≤ C(T1, T2)|ρT (x2)− ρT (x1)|

where P = PT (x) is the constant pressure we got from Lemma 4.17 and C(T1, T2) a

constant that depends only on the two temperatures and comes from the upper bound on

P , Lemma 4.17, and the, uniform in x, lower bound on the density as well, see Lemma

4.18.

Thus, in order to conlude we need to prove Hölder continuity for ρ(x). We need to estimate:∫ ∞
0

(f(x2, v))− f(x1, v))dv.

We can split this into two terms

I1 =
C− + C2C+

1− C1C2

√
2π

T1

∫ ∞
0

e−x2/v
(
1− e−(x1−x2)/v

)
MT1(v)dv,

and

I2 =

∫ x2

0

1

|v|
e−(x2−y)/|v|ρ(y)MT (y)(v)dy −

∫ x1

0

1

|v|
e−(x1−y)/|v|ρ(y)MT (y)(v)dy.

In order to bound I1 from above, we use Lemma 4.16 to write

I1 ≤ θ(T1, T2)

∫ ∞
0

(
1− e−(x2−x1)/v

)
MT1(v)dv

for some constant θ(T1, T2). Now proceding as in the proofs of the Lemmas in the previous

subsection, we split into v ≤ (x2 − x1)/α and bound the integrand by 1 for small v and by

α for large v:

I1 .
∫ (x2−x1)/α

0

MT1(v)dv + α

∫ ∞
(x2−x1)/α

MT1(v)dv .
x1 − x1

α
√

2πT1

+
α

2
.

Optimising over α gives

I1 ≤ θ′(T1, T2)
√

(x2 − x1).

Here the constant θ′(T1, T2) depends only on T1, T2. Now we turn to I2. We can rewrite it
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as

I2 = I3 + I4,

with

I3 =

∫ x1

0

∫
v>0

1

v
ρ(y)MT (y)(v)

(
e−(x2−y)/v − e−(x1−y)/v

)
dvdy,

and

I4 =

∫ x2

x1

∫
v>0

1

v
ρ(y)MT (y)(v)e−(x2−y)/vdvdy.

Looking first at I4 we show that

I4 ≤ ‖ρ‖∞
√
T2

T1

∫ x2

x1

1

v
e−(x2−y)/vMT2(v)dvdy.

Integrating in y gives

I4 ≤ Const.

∫
v>0

(
1− e−(x2−x1)/v

)
MT2(v)dv ≤ Const.

√
x2 − x1.

Now,

I3 ≤ ‖ρ‖∞
√
T2

T1

∫ x1

0

∫
v>0

1

v
MT2(v)e−(x1−y)/v

(
1− e−(x2−x1)/v

)
dvdy.

Integrating this in y gives

I3 ≤ ‖ρ‖∞
√
T2

T1

∫
v>0

MT2(v)
(
1− e−x1/v

) (
1− e−(x2−x1)/v

)
dv.

We can bound this by

I3 ≤ Const.

∫
v>0

MT2(v)
(
1− e−(x2−x1)/v

)
dv ≤ Const.

√
x2 − x1.

So we can repeat this for v < 0 to get

|ρ(x2)− ρ(x1)| ≤ C(T1, T2)
√
x2 − x1.

This gives uniform Hölder continuity for ρ. Now we get Hölder continuity for the τ(x) by

combining this with (4.27):

|τT (x1)− τT (x2)| ≤ C(T1, T2)
√
x2 − x1.
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4.4.5 Continuity of the map F

In this subsection we are going to prove the continuity of the map F which is the second

main ingredient in order to apply Schauder’s fixed point Theorem. Here we continue to

work with κ = 1.

Proposition 4.21. The map F is continuous from C((0, 1)) to C((0, 1)) with the L∞

norm.

Proof. Let T (x), T̃ (x) be two different continuous functions satisfying the bounds, i.e. are

bounded below and above by T1, T2 respectively where T1, T2 satisfy condition (1). In order

to conclude the continuity of F , we want to estimate the quantity |F(T )(x)−F(T̃ )(x)|
and bound it in terms of the difference of the two temperatures |T (x) − T̃ (x)| for all

x ∈ (0, 1). In what follows we write P̃ := PT̃ , ρ̃ := ρT̃ and we have

|F(T )(x)−F(T̃ )(x)| =

∣∣∣∣∣Pρ (x)− P̃

ρ̃
(x)

∣∣∣∣∣
≤ |P − P̃ |

ρ
(x) +

PP̃ |ρ− ρ̃|
ρρ̃

(x).

Therefore we need to estimate the differences between the two densities and the two

pressures that correspond to the two different temperatures. We proceed as in the proofs

of the Lemmas in subsection 4.4.3, using Lemma 4.13. We recall the result of Lemma 4.13

f(x, v) =e−x/|v|M̃1(v)
C− + C2C+

1− C1C2

+

∫ x

0

1

|v|
e−(x−y)/|v|ρ(y)MT (y)(v)dy v > 0,

f(x, v) =e−(1−x)/|v|M̃2(v)
C+ + C1C−
1− C1C2

+

∫ 1

x

1

|v|
e−(y−x)/|v|ρ(y)MT (y)(v)dy v < 0.

First note that the constants C1, C2 do not depend on whether we use T or T̃ . However

C−, C+ depend on this. In this case we would like to look at the differences between two

different realisations. We recall

C− =

∫ 1

0

ρ(y)

∫ 0

−∞
e−y/|v|MT (y)(v)dvdy.

Here we first look at the integral in v,∫ 0

−∞
e−y/|v|MT (y)(v)dv =

∫ ∞
0

e−y/
√
T (y)vM1(v)dv := F

(
y,
√
T (y)

)
.
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We calculate

d

dt
F (y, t) =

∫ ∞
0

y

t2v
e−y/tvM1(v)dv

=

∫ ∞
0

1

t

d

dv

(
e−y/tv

)
vM1(v)dv

=

∫ ∞
0

1

t
e−y/tv(v2 − 1)M1(v)dv ≤ 2

t
.

Therefore, ∣∣∣∣F (y,√T (y)
)
− F

(
y,

√
T̃ (y)

)∣∣∣∣ ≤ 2√
T1

∣∣∣∣√T (y)−
√
T̃ (y)

∣∣∣∣ .
This means that

|C− − C̃−| ≤
2√
T1

∥∥√T −√T̃
∥∥
∞ +

∫ 1

0

|ρ(y)− ρ̃(y)|
∫ ∞

0

(
1− e−y/v

√
T̃ (y)
)
M1(v)dvdy.

Then we can use our bounds from earlier to get that

|C− − C̃−| ≤
2√
T1

∥∥√T −√T̃
∥∥
∞ +

√
π

2T1

‖ρ− ρ̃‖∞.

Exactly the same result is true for C+.

Now in order to bound the difference of the densities, we write

B1(x) =

∫ ∞
0

e−x/vM̃1(v)dv ≈
√

π

2T1

,

and

B2(x) =

∫ 0

−∞
e−(1−x)/|v|M̃2(v)dv ≈

√
π

2T2

.

These quantities don’t depend on T, T̃ . Let us also write

A1(x) =

∫ x

0

∫ ∞
0

1

v
e−(x−y)/|v|ρ(y)MT (y)(v)dv,

and A2(x) defined symmetrically. Then we have that

ρ(x) =
B1(x)(C− + C2C+)

1− C1C2

+
B2(x)(C+ + C1C−)

1− C1C2

+ A1 + A2. (4.28)
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Therefore,

|ρ(x)− ρ̃(x)| ≤ 2(B1(x) +B2(x))

1− C1C2

(
|C− − C̃−|+ |C+ − C̃+|

)
+ |A1 − Ã1|+ |A2 − Ã2|.

(4.29)

We know from Lemma 4.14 that

(1− C1C2)−1 ≈
√

2

π

√
T1T2√

T1 +
√
T2

.

Therefore,
2(B1(x) +B2(x))

1− C1C2

≤ 2.

Therefore we can bound the first term in the rhs of (4.29) by

4(2 +
√
π/2)

1√
T1

(∥∥√T −√T̃
∥∥
∞ + ‖ρ− ρ̃‖∞

)
.

Regarding the differences between the Ai’s, we look only at A1, since the other case is the

same. Let us write

G(y, t) =

∫ ∞
0

1

vt
e−(x−y)/vtM1(v)dv.

By our earlier calculations, for example in the proof of the Lemma 4.18, we know that

G(y, t) ≤ e−1/2

(
2

πt2

)1/4

.

Then we can differentiate to see

d

dt
G(y, t) =

∫ ∞
0

(
− 1

vt2
+
x− y
v2t3

)
e−(x−y)/vtM1(v)dv ≤ 2

t
G(y, t) ≤ Ct−3/2.

This last inequality only holds for t ≥ 1. Now we have,

A1(x)−Ã1(x) ≤
∫ 1

0

(
ρ(y)

∣∣∣∣G(y,√T (y)
)
−G

(
y,

√
T̃ (y)

)∣∣∣∣+ (ρ(y)− ρ̃(y))G

(
y,

√
T̃ (y)

))
dy.

Therefore,

|A1(x)− Ã1(x)| ≤ CT
−3/4
1

∥∥√T −√T̃
∥∥
∞ + CT

−1/4
1 ‖ρ− ρ̃‖∞.

Therefore overall,

‖ρ− ρ̃‖∞ ≤ CT
−1/4
1 ‖ρ− ρ̃‖∞ + CT

−1/2
1

∥∥√T −√T̃
∥∥
∞.
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Hence,

‖ρ− ρ̃‖∞ ≤ CT
−1/2
1

∥∥√T −√T̃
∥∥
∞. (4.30)

Regarding the estimation of the difference of the pressures we define the following.

D1(x) =

∫ ∞
0

|v|2e−x/vM̃1(v)dv, D2(x) =

∫ 0

−∞
|v|2e−(1−x)/vM̃2(v)dv.

These quantites do not depend on T or T̃ and we have that

D1 ≈
√
T1, D2 ≈

√
T2.

Furthermore, we have

E1(x) =

∫ x

0

∫ ∞
0

|v|e−(x−y)/vρ(y)MT (y)(v)dvdy,

and

E2(x) =

∫ 1

x

∫ 0

−∞
|v|e−(y−x)/|v|ρ(y)MT (y)(v)dvdy.

Then the formula for the pressure can be rewritten as follows

P =
D1(C− + C2C+) +D2(C+ + C1C−)

1− C1C2

+ E1 + E2.

Therefore,

|P − P̃ | ≤ 2(D1 +D2)

1− C1C2

(
|C− − C̃−|+ |C+ − C̃+|

)
+ |E1 − Ẽ1|+ |E2 − Ẽ2|.

So we can bound,

2(D1 +D2)

1− C1C2

≤ 2(
√
T1 +

√
T2)

√
T1T2√

T1 +
√
T2

= 2
√
T1T2.

Then we want to bound the first term by

C
√
T2

∥∥√T −√T̃
∥∥
∞.

In general we can see that,

|P − P̃ | ≤ C
√
T2

∥∥√T −√T̃
∥∥
∞. (4.31)

Finally about the difference in temperatures, we use the results from Lemmas 4.18 and
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4.17: that ρ, ρ̃ ∼ 1, and P ∼
√
T1T2. Combining (4.30) and (4.31) with the calculations in

the beginning of this proof, we have for all x

∣∣∣F(T )(x)−F(T̃ )(x)
∣∣∣ ≤ C

√
T2

1 + κ1T
−1/4
1

∥∥√T −√T̃
∥∥
∞ +

(T1T2)C

(1 + κ1T
−1/4
1 )2

∥∥√T −√T̃
∥∥
∞

≤ Λ(T1, T2)
∥∥√T −√T̃

∥∥
∞

for a constant Λ(T1, T2) that depends only on the temperatures T1, T2. Since T, T̃ are

bounded below by T1 this gives the required continuity.

4.4.6 Fixed Point Argument

In this subsection we show how an application of Schauder’s fixed point theorem yields

the main result. First, for completeness we remind here the Schauder’s Theorem, which

can be found for example in [Sma74, Theorem 2.3.7].

Theorem 4.22 (Schauder Fixed Point Theorem). Let S be a non-empty, convex closed

subsect of a Hausdorff topological vector space and F a mapping of S into itself so that

F (S) is compact then F has a fixed point.

Proof of Theorem 3.1. We apply Schauder’s Theorem to get a fixed point for F :

Firstly by Proposition 4.21 we know that the map F : C(0, 1)→ C(0, 1) is a continuous

map. For T1, T2 fixed temperatures satisfying condition 1, we have that T (x) ∈ [T1, T2]

implies τ ∈ [T1, T2], in other words if we define the set

ST1,T2 := {T ∈ C([0, 1]) : T1 ≤ T (x) ≤ T2},

then

F(ST1,T2) ⊂ ST1,T2 .

Also, from Proposition 4.20, we have that F(ST1,T2) satisfies a Hölder condition of order 1/2

with a constant depending only on the two fixed temperatures. Since moreover F(ST1,T2)

is uniformly bounded, we conclude by Arzela-Ascoli, the compactness of the set.

The existence of a fixed point for this mapping ensures us that the steady state for the

linear BGK model with temperature profile T (x) is a steady state for the original non-linear

model (1.1)-(1.2)-(1.3) as well since T (x) = Tf (x). The properties of this non-equilibrium

steady state listed in the statement are proved in Lemmas 4.18, 4.19 and Proposition 4.21

respectively.
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4.5 Discussion of the results and future work

First we look at how Fourier’s law applies in this specific context. The heat flux associated

to the NESS is constant along the interval: Recall that the temperature that corresponds

to the stationary solution f is given by

Tf (x) =
1

ρf (x)

∫
|v − u(x)|2f(x, v)dv

and the heat flux is the vector field

J(x) :=

∫
(v − u(x))|v − u(x)|2f(x, v)dv.

Here we have u(x) = 0 everywhere (see beginning of proof of Lemma 4.17). We easily get

that

∂xJ(x) = 0 for x ∈ (0, 1),

i.e. the heat flux is constant. This means that if Fourier’s law (1.6) holds, then κ(Tf )∂xTf (x)

is constant. Note that this conclusion can be also found in [EGKM13, proof of Theorem

1.5] for the full Boltzmann operator and for temperatures close to equilibrium. There,

through comparison with numerical simulations indicating that the temperature is a

nonlinear function, one can see that indeed Fourier’s law is violated in the kinetic regime.

In our setting Tf (x) is close to the constant function
√
T1T2 as T1 →∞, as described

in the main Theorem 3.1. So for large boundary temperatures T1, the function Tf(x) is

constant in the bulk of the domain (0, 1) which is reminiscent to the behaviour of the heat

flux in the harmonic atom networks.

Comparison with the heat flux in the microscopic harmonic atom chains. In the

case of harmonic oscillator chains the temperature profile is close to being constant, and in

particular in the centre of the chain it is the linear average (T1 +T2)/2 as shown in [RLL67],

at least in the case of small temperature difference. The temperature is paradoxically

lower than the average very close to the hot reservoir. This purely harmonic system of

atoms is ballistic (Fourier’s law does not hold) and this is what causes the flat temperature

profile there.

In contrast to this, we expect the BGK model we consider here to be the kinetic

limit of the heat conduction microscopic model of harmonic atom chains perturbed by a

conservative stochastic dynamics as considered in [BO05] where Fourier’s law holds. We

prove for the BGK model that the temperature gets close to the constant
√
T1T2 for T1

large. This behaviour of the temperature profile however does not contradict the expected

diffusivity of our system, i.e. the fact that the conductivity in the hydrodynamic regime is

finite, since our result here does not hold on the hydrodynamic regime.
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As regards the connection of microscopic oscillator chains with the Boltzmann equation

for phonons, it has been shown that one can derive a phonon Boltzmann equation as a

kinetic limit (high frequency limit) starting from infinite chain of harmonic oscillators with

a small anhamonicity. We refer to [Spo06] for that and to [BOS10] for a stochastically

perturbed version of it. Another very interesting work analyzing the kinetic limit in the

case of an infinite linear chain of oscillators coupled to a single Langevin thermostat at

the boundary is [KORS20].

Possible directions. The most natural and important question arising from these results

is uniqueness of the steady state given here. A less ambitious question in the same direction

is whether the steady state found here is stable under small perturbations, this is done

in the Boltzmann equation setting in [AEMN10, AEMN12] and in the BGK setting in

[CEL+18, CEL+19]. This would also be an interesting question in terms of the study

of hypocoercivity as there are only a small number of works showing hypocoercivity for

equations on bounded domains and these are generally in the context of the Boltzmann

equation initiated by [Guo10]. Showing hypocoercivity for equations with non-explicit

non-equilibrium states is also a significant challenge.

Another possible angle for future work is to investigate similar problems in higher

dimensions. This would involve looking at the non-linear BGK equation where x ∈ Ω ⊂ Rd

and Ω is a smooth bounded domain. In this case getting L∞ estimates on the solution

from the Langrangian expansion of the steady state becomes much more challenging.
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Chapter 5

A quantitative perturbative approach

to hydrodynamic limits

This chapter is a joint work with Daniel Marahrens and Clément Mouhot and has not

been published yet.

We present a new unified method for proving the hydrodynamic limit of several

interacting particle systems on a lattice, and obtaining explicit bounds on the rate of

convergence to the hydrodynamic limit. In the case of the diffusive scaling, for the first

time in the literature, the convergence is proven to be uniform in time. We employ a

‘consistency-stability’ method with modulated Wasserstein-1 distance and a cost being

a microscopic `1 distance. We compare the law of the stochastic process to the law of a

process built to have the desired hydrodynamic behavior, the local Gibbs measure. The

method is a simplification compared to existing unified methods as it avoids the use of the

One and Two Block Estimates.
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5.1 Introduction

We consider the hydrodynamic limits of interacting particle systems on a lattice. The

problem is to show that under an appropriate scaling of time and space, the local particle

densities of a stochastic lattice gas converge to the solution of a macroscopic partial

differential equation. The goal of this work is to provide a general framework for proving a

hydrodynamic limit with an explicit rate of convergence which is also uniform in time under

parabolic scaling. We will present our method in a general way first and then we will apply

our general framework to three processes: the zero-range process, simple-exclusion process

and Ginzburg Landau process with Kawasaki dynamics. Note that the hydrodynamic

limit for all these is well-known and the limit equation is given by a nonlinear diffusion

equation under parabolic scaling and by a nonlinear hyperbolic equation under hyperbolic

(Eulerian) scaling, see a review in [KL99, Rez91].

Let us introduce some notation. Denote the discrete torus TdN ∼= (Z/NZ)d ∼=
{1, . . . , N}d and consider particle configurations in XN := NTdN or RTdN , the state space

for the jump process and a diffusion process. The lattice TdN can be thought of as a

discrete approximation of the d-dimensional Torus Td = Rd/Zd with periodic boundary

conditions x + e ≡ x for all x ∈ Td and e ∈ Zd. Variables in the discrete torus TdN are

called microscopic and denoted by x, y, z, whereas variables in the continuous torus Td

are called macroscopic and denoted by u. We embed TdN in Td via

TdN → Td, x 7→ x

N
.

This embeds the microscopic variables x ∈ TdN into the macroscopic ones u ∈ Td. Hence

the macroscopic distance between sites of the lattice is N−1. In general, we will denote

particle configurations in XN by the letter η. The interacting particle system evolves

through a stochastic process and is described by a time-dependent probability (Radon)

measure µNt ∈ P (XN).

Consider p : TdN × TdN → R+ so that p(x, y) = p(0, y − x) := p(y − x),
∑

z∈Zd p(z) = 1

and its support {z ∈ Zd : p(z) > 0} us finite, i.e. p(z) = 0 for |z| > A for some A ∈ R.

These are the finite range, translation invariant, irreducible transition probabilities. We

also denote by γ the mean transition rate:

γ = (γ1, . . . , γd) :=
∑
z∈Zd

zp(z).

For any initial measure µN0 ∈ P (XN) we obtain a unique measure µNt ∈ P (XN)

describing the state of the process at a later time t. This also yields a semigroup (SNt )t≥0

on P (XN), which is given by µNt = SNt µ
N
0 for all t ≥ 0. The semigroup SNt is a Feller-

semigroup uniquely determined by its generator, see [Lig85, Chapter 1]. The generator is
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a linear operator LN : Cb(XN)→ Cb(XN) and satisfies

d

dt
〈µNt , f〉 = 〈µNt ,LNf〉, (1.1)

where we have denoted by 〈·, ·〉 the integral of a continuous function with respect to a

measure. Equivalently, this is the duality pairing between (Radon) measures and bounded

continuous functions. Thus LN can also be thought of as the generator of the dual

semigroup on Cb(XN), which is the set of bounded continuous functions on XN .

Let us make precise the notion of convergence of the particle process. Given a particle

configuration η ∈ XN , the particle densities are given by the empirical measure

αNη :=
1

Nd

∑
x∈TdN

η(x)δ x
N
∈M+(Td). (1.2)

where M+(Td) is the space of positive Radon measures on the torus. Let ft ∈ H be the

solution to the hydrodynamical equation given initial data f0. The goal is to show that

the empirical measure (1.2) possesses an asymptotic in N density profile ft(·): for any

smooth function ϕ : Td → R,

for all t ≥ 0, lim
N→∞

PµNt
(
|〈αNη , ϕ〉 − 〈ft, ϕ〉| > ε

)
= 0 (1.3)

and to estimate the rate of convergence. Here PµN (A) denotes the probability corresponding

to the (measurable) event A under the probability measure µN ∈ P (XN):

PµN (A) =

∫
XN

χA(η) µ(dη),

where χA denotes the characteristic function of A. We denote the expectation of a

measurable function f with respect to a probability measure µN ∈ P (XN) by

EµN [f(η)] =
〈
µN , f

〉
=

∫
XN

f(η)µN(dη).

A measure µN is called invariant (or equilibrium) measure, if

〈
µN ,LNf

〉
= 0 for all f ∈ Cb(XN),

cf. equation (1.1).

We shall show that as the number N of sites in the lattice TdN approaches infinity, the

empirical measure converges to the solution of the limit partial differential equation

∂tft = Lft (1.4)
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where L is a diffusion operator whose diffusion coefficient will be specified for each model

separately.

We consider the space of microscopic variables XN equipped with a (Gibbs) probability

measure

νNλ (η) = Z−1e
∑
x∈Td

N
η(x)λx

, (1.5)

where Z is a normalizing constant to ensure νNλ (XN) = 1, the microscopic variables

η(x) ∈ N or ∈ R depending on the process, and λx are coefficients varying on the

macroscopic scale.

We assume the following Hypotheses:

(H1) Microscopic stability / Lyapunov condition. We assume that we can

define a coupling between two processes (ηt, ζt) evolving according to the same law, with a

density denoted by GN
t that satisfies

∂tG
N
t (η, ζ) = L̃∗NGN

t (η, ζ).

The coupling operator L̃N is such that each marginal of GN
t w.r.t. a reference measure dνNα

with α ≥ 0, i.e.
∫
XN

GN
t (η, ζ)dνNα (η), is evolving according to the Kolmogorov equation

∂tf
N
t (η) = L∗NfNt (η), where fNt (η) =

dµNt
dνNα

. (1.6)

For every ft ∈ H solution to the limit partial differential equation (1.4), we introduce

the local Gibbs measure νNft(·), i.e. the Gibbs measure with slowly varying parameters

λx = λ(ft(x/N)) in (1.5), associated to ft. The density then ψNt =
dνN
ft(·)
dνNα

, for α ≥ 0, takes

the form

ψNt (ζ) =
1

Zt
e
∑
x∈Td

N
ζ(x)λ(ft( xN ))

, (1.7)

and satisfies for some rate function EN(t, ζ)→ 0 as N →∞,

∂tψ
N
t (ζ)− L∗NψNt (ζ) = EN(t, ζ). (1.8)

Then the coupling density GN(η, ζ) on X2
N , solves the equation

∂tG
N
t (η, ζ)− L̃∗NGN

t (η, ζ) = SN(t, η, ζ) :=
dνNα
dνNα

(η)⊗ EN(t, ζ) (1.9)

and we choose the initial data GN
0 (η, ζ) to be the optimal coupling between the law of the

stochastic process, fNt , and the local Gibbs density ψNt .

We say that our model satisfies Hypothesis (H1) if
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L̃N

(
1

Nd

∑
x

|η(x)− ζ(x)|

)
≤ 0.

Note that the evolution equation (1.9) is introduced so that taking the first marginal in

the coupled Kolmogorov equation we recover the equation (1.6) and taking the second

marginal we recover (1.8). Indeed we write

∂t

∫
ζ∈XN

GN
t (η, ζ)dνNα (ζ)− L̃∗N

∫
ζ∈XN

GN
t (η, ζ)dνNα (ζ) =

∫
ζ∈XN

EN(t, ζ)dνNα (ζ) = 0

(1.10)

where the last equality is due to the conservation of mass: the fact that∫
XN

L∗NψNt (ζ)dνNα (ζ) = 0.

This yields (1.6) on the first marginal, whereas we have

∂t

∫
η∈XN

GN
t (η, ζ)dνNα (η)− L̃∗N

∫
η∈XN

GN
t (η, ζ)dνNα (η) = EN(t, ζ)

∫
η∈XN

dνNα (η) (1.11)

on the second marginal, which yields (1.8).

(H2) Macroscopic stability. Let (H, ‖ · ‖H) be the space of solutions to the limit

PDE. Typically H = L∞(Td) will do for our purposes. We assume that for every solution

ft ∈ H, there is K > 0, T ∈ (0,∞], so that

‖Dkft‖H ≤ K, for all t ∈ [0, T ]

and multi-indices k so that |k| ≤ 4.

When T =∞, there is R(t)
t→∞−→ 0 so that

‖Dk(ft − f∞)‖H .‖f0‖H R(t), and R(t) ∈ L1((0,∞))

for f∞ ∈ H.

(H3) Consistency estimate. We assume that the local Gibbs measure has the

following property: There exists a rate function EN vanishing as N goes to infinity, so that∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|(∂t − L∗N)ψNt (ζ)dνNα (η)dνNα (ζ) . EN max
k∈{1,...,4}

‖Dk(ft − f∞)‖H .

Our main general result on the hydrodynamic limit is stated in the following Theorem:

Theorem 1.1. Let F ∈ Lip(R) and φ ∈ C∞c (Td). Let f0 be the initial data to the

hydrodynamical equation (1.4) and µN0 be the initial distribution of the stochastic process.
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We also consider the density of the local Gibbs measure ψNt given in (1.7), and the coupling

GN
t between ψNt and fNt := dµNt /dν

N
λ . We assume that for C0 < ∞ independent of N ,

there exists RN → 0 as N →∞ so that∫
XN

∣∣∣∣∣N−d∑
x

η(x)φ
( x
N

)
−
∫
f0(u)φ(u)du

∣∣∣∣∣ dµN0 (η) ≤ C0RN ,∫
X2
N

∑
x

|η(x)− ζ(x)|GN
0 (dη, dζ) ≤ C0RN .

(1.12)

Then, under the Assumptions (H1)-(H2)-(H3), there are constants 0 < C1, C2 < ∞
independent of N, t and

r(t) =

{
∈ L1((0,∞)) if T =∞,

tK if T <∞.

such that for all t ≥ 0∣∣∣∣∣∣
∫
XN

F

N−d ∑
x∈TdN

η(x)φ
( x
N

)− F (∫
Td
ft(u)φ(u)du

)
dµNt (η)

∣∣∣∣∣∣ ≤ C1r(t)EN +RN + C2N
− d
d+2

(1.13)

where EN is the rate function from (H3) and where ft(·) solves the hydrodynamical equation

(1.4).

Remark 1.2. If f0 is continuous, one can construct an initial particle distribution µN0 for

which the initial assumptions hold:namely the local Gibbs measure µN0 = νNf0(·).

Remark 1.3. Note that this convergence in distribution of the random variable JN :=

〈αNη , φ〉 to the deterministic object 〈ft, φ〉 implies convergence in probability. This can be

done by choosing the function F to be an approximation of an indicator function with

support on a translation of (−δ, δ) for δ > 0. Indeed, let δ > 0, and Fδ, F̃δ to be smooth

approximations from above of the indicator functions on [x+δ,∞), (−∞, x−δ], respectively

and they are so that Fδ(J) = F̃δ(J) = 0. Then

PµNt (|JN − J | > δ) ≤ PµNt (JN > J + δ) + PµNt (JN < J − δ)

≤ EµNt (Fδ(JN)) + EµNt
(
F̃δ(JN)

)
→ 0

as N →∞.

Here we will apply our result to three prototypical models, the zero-range processes,

the simple exclusion processes and the Ginzburg-Landau model.
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5.1.1 Zero-Range process

Here the state space is given by XN = NTdN as there is no restriction on the number of the

particles per site x ∈ TdN and the generator is given by

for all f ∈ Cb(XN), LNf(η) =
∑
x,y∼x

p(y − x)g(η(x)) [f(ηx,y)− f(η)] (1.14)

where ηx,y is the configuration of the particle system after one particle has jumped from

site x to a neighboring site y ∈ TdN :

ηx,y(z) =


η(x)− 1 if z = x,

η(y) + 1 if z = y,

η(z) otherwise.

(1.15)

In order for the process to remain in the state space XN , we always assume g(0) = 0.

Since the jump rate on a given site only depends on the number of particles at that partic-

ular site, this process is called zero range process. The jump rate g : N→ [0,∞) can be

thought of as describing the interactions of particles occupying the same site. A special case

is the case of linear g, where the particles perform independent random walks on the lattice.

A convenient family of invariant measures is given by the grand-canonical or Gibbs

measures, given by

νNρ (η) =
∏
x∈TdN

σ(ρ)η(x)

g(η(x))! Z(σ(ρ))
, (1.16)

where Z is the partition function of the zero range process and ρ ≥ 0. Furthermore we

used the notation g(n)! := g(1) · g(2) · · · g(n) and g(0)! := 1. The partition function is

defined as

Z(φ) =
∞∑
n=0

φn

g(n)!
. (1.17)

The function σ(ρ) is chosen such that

〈νNρ , η(0)〉 = ρ.

We shall elaborate on the construction of σ in a later Section. Since the number of particles

is conserved and the process has no other conserved quantities, another important set of

invariant measure is given by the canonical measures

νN,K(η) = νNρ
(
η
∣∣ ∑

x η(x) = K
)
, (1.18)
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which are the grand-canonical measures conditioned on hyperplanes of constant number of

particles. Note that this definition is independent of ρ. Since the equilibrium νNρ is made

up of independent random variables, we expect the convergence (1.3) to hold if we can

show that the process is locally at u ∈ Td in equilibrium νNft(u) with average density ft(u).

Diffusive scaling. We accelerate the zero-range process (ηt)t by a factor N2, i.e. the

microscopic spatial variables scale like N and time like N2, and we assume that the mean

γ = 0. The generator in this case is

for all f ∈ Cb(XN), LNf(η) = N2
∑
x,y∼x

p(y − x)g(η(x))
[
f(ηx,y)− f(η)

]
.

Under diffusive scaling, the empirical measure of the zero range process converges to the

solution ft to the nonlinear diffusion equation

∂tft = ∆cσ(ft). (1.19)

for the nonlinearity σ : [0,∞)→ [0,∞) appearing in (1.16). We denote by c = (ci,j)1≤i,j≤d

the correlations matrix

ci,j :=
∑
x∈Zd

p(x)xixj

and the diffusion operator is given by

∆c =
∑

1≤i,j≤d

ci,j∂ui∂uj .

Hydrodynamic limit under hyperbolic scaling. We accelerate the zero-range process (ηt)t

by a factor N , i.e. both the microscopic spatial variables and the time scale with N , and

we assume that the mean γ 6= 0. The generator in this case is

for all f ∈ Cb(XN), LNf(η) = N
∑
x,y∼x

p(y − x)g(η(x)) [f(ηx,y)− f(η)] .

Under the hyperbolic scaling, the empirical density of the zero-range process converges to

the solution ft to the conservation law

∂tft = γ · ∇σ(ft). (1.20)

When σ is not linear, the solution of (1.25) may develop discontinuities (shocks) in

which case is not differentiable and it is then understood in the sense of distributions.

Moreover, in the case of shocks, the solutions are not determined uniquely by their initial

data. We therefore seek for the relevant solutions under some criteria so that we have
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uniqueness, the so-called entropy solutions. Nevertheless, up to a finite time T of the

appearance of the first shock, there is a smooth solution to the equation.

Let us make the following assumptions on the rate function g : N→ [0,∞).

Assumption 2 (Assumptions on the jump rate on the Zero-Range process). We assume

the following

(ZR1) Non-degeneracy: Assume that g satisfies g(0) = 0 and g(n) > 0 for all n > 0.

(ZR2) Lipschitz-property: Furthermore we require that g is Lipschitz continuous with

0 ≤ |g(n+ 1)− g(n)| ≤ g∗ < +∞

for all n ∈ N.

(ZR3) Spectral gap: We also assume that there exists n0 > 0 and δ > 0 such that

g(n)− g(j) ≥ δ

for any j ∈ N and n ≥ j + n0.

(ZR4) Attractivity: Let the jump rate g be monotoneously increasing, i.e.

g(n+ 1) ≥ g(n)

for all n ∈ N.

As before (ηt)t is the Markov process generated by LN , with initial distribution µN .

We assume µN ≤ νNρ for some ρ ≥ 0.

Corollary 1.4 (Hydrodynamic limit for the Zero-Range process under diffusive scaling).

Let d = 1, F ∈ Lip(R) and φ ∈ C∞c (Td). Let f0 be the initial data to the diffusion equation

(1.19) and µN be the initial distribution of the zero-range process. We assume that for

C0 <∞ independent of N ,

∫
XN

∣∣∣∣∣N−d∑
x

η(x)φ
( x
N

)
−
∫
f0(u)φ(u)du

∣∣∣∣∣ dµN(η) ≤ C0N
− d
d+2 . (1.21)

For t > 0, under Assumption 2, there exists constant 0 < C <∞ independent of N, t such

that∣∣∣∣∣∣
∫
XN

F

N−d ∑
x∈TdN

η(x)φ
( x
N

)− F (∫
Td
ft(u)φ(u)du

)
dµNt (η)

∣∣∣∣∣∣ ≤ CN−
d

2+d (1.22)
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where ft(·) solves the equation

∂tft = ∆cσ(ft)

for the nonlinearity σ : [0,∞)→ [0,∞) appearing in (1.16).

Remark 1.5. Note that the restriction on the dimension d = 1 is here only because the

main Hypothesis (H2) is proved for the nonlinear diffusion equation only in the case d = 1

in the Appendix 6.6.2.

5.1.2 Simple Exclusion model

In contrast with the zero-range process, the simple exclusion process allows at most one

particle per site. The jump is supressed if it leads to an already occupied site. The state

space therefore is XN = {0, 1}TdN and the generator of the process is given by

for all f ∈ Cb(XN), LNf(η) =
∑
x,y∼x

p(y − x)(η(x)(1− η(y))
[
f(ηx,y)− f(η)

]
(1.23)

where ηx,y is the configuration of the particle system after one particle has jumped from

site x to a neighboring site y, given by (1.15).

A family of invariant measures is given by, for 0 < α < 1 the Bernoulli product

measures with parameter α, i.e.

νNα (η) =
∏
x∈TdN

αη(x)(1− α)1−η(x).

Diffusive scaling. We assume that the mean γ = 0 and we accelerate the process (ηt)t

by a factor N2, i.e. the microscopic x-variables scale with N , while the time with N2.

The generator then is

for all f ∈ Cb(XN), LNf(η) = N2
∑
x,y∼x

p(y − x)η(x)(1− η(y))
[
f(ηx,y)− f(η)

]
.

Under diffusive scaling, the empirical densities of the simple exclusion process converges

to the solution ft to the diffusion equation

∂tft = ∆cft, where ∆c =
∑

1≤i,j≤d

ci,j∂ui∂uj (1.24)

and c = (ci,j)1≤i,j≤d is the correlations matrix

ci,j :=
∑
x∈Zd

p(x)xixj.
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Hydrodynamic limit under hyperbolic scaling. We accelerate the process (ηt)t by a

factor N , i.e. both the microscopic spatial variables and the time scale like N , and we

assume that the mean γ =
∑

z p(z) 6= 0. The generator is

for all f ∈ Cb(XN), LNf(η) = N
∑
x,y∼x

p(y − x)η(x)(1− η(y))
[
f(ηx,y)− f(η)

]
.

Under the hyperbolic scaling, the empirical density of the zero-range process converges to

the solution ft to the conservation law

∂tft = γ · ∇σ(ft) (1.25)

where σ(ft) = ft(1 − ft). Due to the nonlinearity, the solution of (1.25) can develop

shocks (depending on the monotonicity of f0) even for smooth initial data [Daf16, Chapter

4]. Therefore, up to the time T of the appearance of the first discontinuity, we have a

hydrodynamic limit, as there is a smooth solution to the equation.

Corollary 1.6 (Hydrodynamic limit for the Symmetric Simple Exclusion process under

diffusive scaling). Let d ≥ 1, F ∈ Lip(R) and φ ∈ C∞c (Td). Let f0 be the initial data to the

diffusion equation (1.24) and µN0 be the initial distribution of the simple exclusion process.

We assume that at t = 0 there exists C0 <∞ independent of N ,

∫
XN

∣∣∣∣∣N−d∑
x

η(x)φ
( x
N

)
−
∫
f0(u)φ(u)du

∣∣∣∣∣ dµN0 (η) ≤ C0N
− d
d+2 . (1.26)

For t > 0 there exists constant 0 < C <∞ independent of N, t such that∣∣∣∣∣∣
∫
XN

F

N−d ∑
x∈TdN

η(x)φ
( x
N

)− F (∫
Td
ft(u)φ(u)du

)
dµNt (η)

∣∣∣∣∣∣ ≤ CN−
1

1+2d (1.27)

where ft(·) solves the diffusion equation

∂tft = ∆cft.

5.1.3 Ginzburg-Landau type models

Let TN = Z/(NZ), N ∈ N∗. be the one-dimensional periodic integer lattice. To each

lattice site x ∈ TN we associate the continuous variable η(x) ∈ R which represents a

charge at this site and η = (η(x))x∈TN ∈ RTN is then a field configuration. At t > 0 the

configuration is ηt = (ηt(x))x∈TN . The charges evolve randomly according to a diffusion

process to adjacent sites. We apply the diffusive scaling in space and time, i.e. speed up
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the time by N2 and shrink the space between charges by N so that we obtain a system of

spins (charges) located at points x/N with x = 1, . . . , N of the circle S = R/Z.

The Ginzburg-Landau dynamics for η is described by the set of stochastic differential

equations, for x ∈ TN ,

dηt(x) =
N2

2

(
V ′(η(x+ 1))− 2V ′(η(x)) + V ′(η(x− 1))

)
dt+N(dWt(x)−dWt(x+ 1)),

(1.28)

where Wt(x), x = 1, . . . , N are independent Brownian motions and V : R→ R, V ∈ C2(R)

is the external single-site potential.

Assumption 3 (Assumptions on the single-site potential of the Ginzburg-Landau model).

We assume

(GL1) V (u) = V0(u) + V1(u) and there exist C, λ > 0 so that

V ′′0 (u) ≥ λ and ‖V1‖L∞(T) ≤ C, ‖V ′1‖L∞(T) ≤ C.

This assumption can be directly compared with the one-body non-convex potentials

considered in [GOVW09, DMOWa, Fat13] as well. One can take for example the double-

well potential.

The infinitesimal generator of the diffusion process η(x) is the operator

LN :=
N2

2

∑
x∼y∈TN

(
∂

∂η(x)
− ∂

∂η(y)

)2

− N2

2

∑
x∼y∈TN

(
∂V

∂η(x)
− ∂V

∂η(y)

)(
∂

∂η(x)
− ∂

∂η(y)

)
.

(1.29)

The generator LN is symmetric with respect to the invariant (Gibbs) product measure

dνN(η) :=
∏
i∈TN

e−V (η(xi))dη(xi) on RTN .

Consider the Radon-Nikodym derivative fN0 of the initial state of the process, µN0 , with

respect to the reference measure dνN . Then at time t > 0, fNt := dµNt /dν
N and solves

∂tf
N
t = LNfNt .

Given a charge configuration η, we define the empirical measure

αNη =
1

N

∑
x

η(x)δx/N on S.
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In order to describe the hydrodynamical equation in this case, let us introduce some

notation. Let M(λ) the function defined in assumption (A3) above and consider

for all λ ∈ R, p(λ) = logM(λ), h(y) := sup
λ∈R

(
λy − p(λ)

)
.

Then h(·) and p(·) are a pair of conjugate convex functions and

h′(y) = λ iff y = p′(λ)

where

p′(λ) =
M ′(λ)

M(λ)
=

∫
ueλu−V (u)du

M(λ)

i.e. h′ and p′ are the inverse of each other. Moreover h′ and p′ are smooth and strictly

increasing functions.

We prove in the next statement that the empirical measure of the Ginzburg-Landau

dynamics has a macroscopic profile ft that solves the diffusion equation

∂tft(u) = ∂uuh
′(ft(u)), (t, u) ∈ (0,∞)× S. (1.30)

Corollary 1.7 (Hydrodynamic limit for Ginzburg-Landau type models under diffusive

scaling). Let d = 1, F ∈ Lip(R) and φ ∈ C∞c (T). Let f0 be the initial data to the diffusion

equation (1.30) and µN0 be the initial distribution of the Ginzburg-Landau process. We

assume that at t = 0 there exists C0 <∞ independent of N ,

∫
XN

∣∣∣∣∣N−d∑
x

η(x)φ
( x
N

)
−
∫
f0(u)φ(u)du

∣∣∣∣∣ dµN0 (η) ≤ C0N
− 1

3 . (1.31)

For t > 0, under Assumption 3, there exists constant 0 < C <∞ independent of N, t such

that ∣∣∣∣∣
∫
XN

F

(
N−d

∑
x∈TN

η(x)φ
( x
N

))
− F

(∫
T
ft(u)φ(u)du

)
dµNt (η)

∣∣∣∣∣ ≤ CN−
1
3 (1.32)

where ft solves the nonlinear diffusion equation

∂tft = ∂uuh
′(ft).

Remark 1.8. When the potential is convex, as we assume here, the rate N−1/3 matches

the one in [DMOWa], which is the only fully quantitative result in the literature so far.
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5.1.4 State of the art

The hydrodynamic limit under diffusive scaling for the Ginzburg-Landau process was

obtained first by Fritz in [Fri89]. Motivated by the work in [Fri89] then Guo, Papanicolaou

and Varadhan introduced in [GPV88] a more general method, applicable to several

reversible models under diffusive scaling, which is based on martingale convergence and

estimates of the entropy. Apart from the entropy method, [GPV88], see Theorem 1.9 below,

one can identify one more important method which is due to Yau [Yau91], the so-called

relative entropy method, see Theorem 1.10 below. This is based on a Grönwall-type estimate

for a relative entropy functional. Yau’s method, even though it needs stronger assumptions

on the initial data, i.e. closeness to hydrodynamic behavior in the sense of relative entropy

rather than in the sense of macroscopic observables, it is simpler and gives stronger results.

For an extensive account of these methods we refer to the book [KL99].

In order to state the following theorems, we need one more definition. Let µ, ν ∈ P (XN )

be two probability measures. Then the entropy of µ relative to ν is defined as

HN(µ|ν) =

∫
XN

log
(
dµ
dν

)
dµ (1.33)

whenever µ is absolutely continuous with respect to ν. The relative entropy is connected

to the Fisher information

DN(µ|ν) =

∫
XN

√
dµ
dν
LN
√

dµ
dν
dν. (1.34)

The entropy method for the zero-range process can be summarized in the following theorem,

[KL99, Chapter 5, Theorem 1.1]. Note that in the following theorems, we have not tried

to optimize the assumptions. The proofs under the given assumptions can be found in

[KL99].

Theorem 1.9 (Guo-Papanicolaou-Varadhan for the Zero-Range Process). Assume (ZR1)

and (ZR2) of Assumption 2 as well as g(n) ≥ g0n for some g0 > 0 and let µN0 ∈ P (XN)

and f0 ∈ L∞(Td) such that

for all ϕ ∈ C(Td), δ > 0, lim
N→∞

PµN0
(
|〈αNη , ϕ〉 − 〈ϕ, f0〉| > δ

)
= 0.

Furthermore we assume that the initial data satisfy the bounds

1

Nd
H(µN0 |νNρ ) ≤ C and

〈
µN0 ,

1

Nd

∑
x∈TdN

η(x)2

〉
≤ C

for some ρ > 0 and a constant C < +∞.
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Then, for t > 0, it holds that

for all ϕ ∈ C(Td), δ > 0, lim
N→∞

PµNt
(
|〈αNη , ϕ〉 − 〈ϕ, ft〉| > δ

)
= 0,

where ft is the unique weak solution to (1.19) and µNt solves (1.1) with Cauchy datum µN0 .

Thus the entropy method yields propagation in time of the hydrodynamic profile. The

relative entropy method by Yau, on the other hand, concerns the conservation of a stronger

notion. In analogy to (1.16), we define a local Gibbs measure with macroscopic profile

ft ∈ L∞(Td) by

νNft(·)(η) =
∏
x∈TdN

σ(ft(
x
N

))η(x)

g(η(x))! Z(σ(ft(
x
N

)))
(1.35)

where σ(ρ) is chosen such that 〈νNρ , η(0)〉 = ρ as discussed in subsection 5.1.1.

This measure has the property that it is locally (in infinitesimal macroscopic neighbor-

hoods where ft is constant) in equilibrium with a non-equilibrium profile ft as N →∞.

The relative entropy method then yields for the zero-range process, [KL99, Chapter 6,

Theorem 1.1]:

Theorem 1.10 (Yau for the Zero-Range Process). Assume (i) and (ii) of Assumption 2

as well as that the partition function Z is finite on all [0,∞), e.g. g(n) ≥ g0n for some

g0 > 0. Let µNt ∈ P (XN) that solve (1.1) and ft ∈ C2(Td) solve (1.19). Furthermore

assume that initially the rescaled relative entropy N−dHN(µN0 |νNf0(·)) vanishes in the limit,

i.e.

lim
N→∞

1

Nd
HN
(
µN0 |νNf0(·)

)
= 0.

Then for all t ≥ 0,

lim
N→∞

1

Nd
HN
(
µNt |νNft(·)

)
= 0. (1.36)

Note that the convergence of the relative entropy (1.36) implies that µNt has profile ft:

lim
N→∞

PµNt
(
|〈αNη , ϕ〉 − 〈ϕ, ft〉| > δ

)
= 0.

Thus the convergence of the relative entropy is stronger notion of hydrodynamic limit.

Yau’s relative entropy method shows that this stronger notion is conserved by the evolution.

Regarding quantitative estimates of the convergence in the hydrodynamic limit, a

first step was achieved by the method introduced by N. Grunewald, F. Otto, C. Villani,

and M. Westdickenberg in [GOVW09] for the Ginzburg-Landau model with Kawasaki

dynamics, when the potential is not necessarily convex. There, the authors prove a

logarithmic Sobolev inequality and the hydrodynamic limit based on a coarse-graining

of the state-space. In a more recent work [DMOWa, DMOWa] the quantitative theory is
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further developed for the Ginzburg-Landau model where the authors establish exact error

estimates to the limit.

Another question that can be asked in this setting is the convergence of the microscopic

entropy to the hydrodynamic entropy, which has been answered by [Kos01, Fat13] at a

qualitative level. We discuss about it in the work in progress-section 5.7.

5.2 Quantitative Local Law of Large Numbers

Let ft be a solution to the limit partial differential equation (1.4). We denote by η(x)
`

for

0 < ` < N , the `-averages given by

η(x)
`

=
1

`d∗

∑
|y−x|≤`

η(y)

where `∗ = 2`+ 1.

We give the proof of two lemmas concerning the exact rates of the law of large numbers

of the product Gibbs measure, for the sake of completeness. Lemma 2.2 is used to show

that choosing the initial data to be the product Gibbs measure with varying coefficient

f0(·), we recover indeed the desired hydrodynamical equation.

Lemma 2.1 (Quantitative Local Law of large numbers). Let ft be a solution to the limit

PDE (1.4) satisfying (H2). We consider 0 < ` < N,α ≥ 0,

ψNt (ζ) = dνNft(·)(ζ)/dνNα (ζ).

Let θ : X → [0,∞), where X = R or N, so that its average with respect to the local Gibbs

measure ϑ : R→ R+,

ϑ(ft(x/N)) :=

∫
XN

θ(ζ(x))ψNt (ζ)dνNα (ζ) = EνN
ft(·)

(θ(ζ(x)))

is Lipschitz. Assume that there exists a weight function W : X2
N → R+ so that for fixed

x ∈ TdN ,∫
XN

ζ(x)kψNt (ζ)dνNα (ζ) <∞ and

∫∫
X2
N

W(η(x), ζ(x))2ψNt (ζ)dνNα (ζ)dνNα (η) <∞

for |k| ≤ 2. We then have

N−d
∑
x∈TdN

∫∫
XN×XN

W(η(x), ζ(x))
∣∣∣θ(ζ(x))

`
− ϑ(ζ(x)

`
)
∣∣∣ψNt (ζ)dνNα (ζ)dνNα (η) .

1

`d/2
+

`

N
.

(2.37)
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Proof. The proof takes advantage of the independency of the variables under the law νNft(·).

We first apply a Cauchy-Schwarz inequality and we use the hypothesis on the second

moment of the weight W , so that we need to estimate

N−d
∑
x∈TdN

(∫
XN

∣∣∣θ(ζ(x))
`
− ϑ(ζ(x)

`
)
∣∣∣2 ψNt (ζ)dνNα (ζ)

)1/2

.

We write for fixed x ∈ TdN and |yi| ≤ `:

∫
XN

∣∣∣∣∣∣ 1

`d∗

`d∗∑
i=1

(θ ◦ ζ)(x+ yi)− ϑ(ζ(x)
`
)

∣∣∣∣∣∣
2

dνNft(·)(ζ)

1/2

.

(∫
XN

∣∣∣∣∣∣ 1

`d∗

`d∗∑
i=1

(
(θ ◦ ζ)(x+ yi)− ϑ

(
ft

(
x+ yi
N

)))∣∣∣∣∣∣
2

+

+

∣∣∣∣∣∣ 1

`d∗

`d∗∑
i=1

(
ϑ

(
ft

(
x+ yi
N

))
− ϑ(ζ(x+ yi)

`
)

)∣∣∣∣∣∣
2

+

+

∣∣∣∣∣∣ 1

`d∗

`d∗∑
i=1

(
ϑ(ζ(x+ yi)

`
)− ϑ(ζ(x)

`
)
)∣∣∣∣∣∣

2

dνNft(·)(ζ)

)1/2

:= (I) + (II) + (III).

(2.38)
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As for the first term

(I) ≤
∫
XN

∣∣∣∣∣∣ 1

`d∗

`d∗∑
i=1

(
(θ ◦ ζ)(x+ yi)− EνN

ft(·)
((θ ◦ ζ)(x+ yi))

)∣∣∣∣∣∣
2

dνNft(·)(ζ) =

1

`2d
∗

∑
i 6=j

∫
XN

(
θ(ζ(x+ yi))− EνN

ft(·)
(θ(ζ(x+ yi)))

)(
θ(ζ(x+ yj))− EνN

ft(·)
(θ(ζ(x+ yj)))

)
dνNft(·)(ζ)

+

∫
XN

1

`2d
∗

∑
i

(
θ(ζ(x+ yi))− EνN

ft(·)
(θ(ζ(x+ yi)))

)2

dνNft(·)(ζ)

=
1

`2d
∗

∑
i 6=j

[∫
XN

(
θ(ζ(x+ yi))− EνN

ft(·)

(
θ(ζ(x+ yi))

))
dνNft(·)(ζ)

]
×

×
[∫

XN

θ(ζ(x+ yi))− EνN
ft(·)

(
θ(ζ(x+ yi))

)
dνNft(·)(ζ)

]

+

∫
XN

1

`2d
∗

`d∗∑
i=1

(
θ(ζ(x+ yi))− EνN

ft(·)
(θ(ζ(x+ yi)))

)2

dνNft(·)(ζ)

=
1

`2d
∗

`d∗∑
i=1

∫
XN

(
θ(ζ(x+ yi))− EνN

ft(·)
(θ(ζ(x+ yi)))

)2

dνNft(·)(ζ) = O
(
`−d∗
)

(2.39)

where we have used the form of the product measure νNft(·) and in the last line the uniform

in N upper bounds of the moments (up to the second moment) since ft is bounded.

As for the second term

(II) .
∫
XN

1

`d∗

`d∗∑
i=1

∣∣∣∣ft(x+ yi
N

)
− ζ(x+ yi)

`
∣∣∣∣2 dνNft(·)(ζ)

≤
∫
XN

1

`d∗

`d∗∑
i=1

(
1

`d∗

`d∗∑
j=1

∣∣∣∣ft(x+ yi + yj
N

)
− ft

(
x+ yi
N

)∣∣∣∣2 +

+
1

`d∗

`d∗∑
j=1

∣∣∣∣ft(x+ yi + yj
N

)
− ζ(x+ yi + yj)

∣∣∣∣2
)

.

(
`

N

)2

+
1

`d

(2.40)

due to the smoothness of ft and for the last estimate we just repeat the calculations as we

did for the first term. As for the third term, using that ϑ is Lipschitz we need to estimate:
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(III) .
∫
XN

1

`d∗

`d∗∑
i=1

∣∣∣ζ(x)
`
− ζ(x+ yi)

`
∣∣∣2 dνNft(·)(ζ)

≤
∫
XN

1

`d∗

`d∗∑
i=1

∣∣∣ζ(x)
`
− EνN

ft(·)

(
ζ(x)

`
)∣∣∣2 dνNft(·)(ζ)+

+

∫
XN

1

`d∗

`d∗∑
i=1

∣∣∣ζ(x+ yi)
`
− EνN

ft(·)

(
ζ(x+ yi)

`
)∣∣∣2 dνNft(·)(ζ)

+

∫
XN

1

`d∗

`d∗∑
i=1

∣∣∣EνN
ft(·)

(
ζ(x)

`
)
− EνN

ft(·)

(
ζ(x+ yi)

`
)∣∣∣2 dνNft(·)(ζ)

.
1

`d
+

∣∣∣∣∫
XN

(
ζ(x+ yi)

`
− ζ(x)

`
)
dνNft(·)(ζ)

∣∣∣∣2 . 1

`d/2
+

∣∣∣∣ft(x+ yi
N

)
− ft

( x
N

)∣∣∣∣2 . 1

`d
+

(
`

N

)2

(2.41)

where the sums in the last line are neglected as they are normalized and thus they are of

order 1. Gathering therefore all our error estimates together and taking account of the

square root, we have a total error of order `−d/2 + `/N .

Lemma 2.2 (Sampling rate). Let t ≥ 0 and φ ∈ C∞c (Td) a test function. Under the law

νNft(·), the term
∫
Td α

N
η (u)φ(u)du, where αNη (u) is the empirical measure N−d

∑
x η(x)δx/N (u)

associated to a configuration η ∈ XN , converges in mean to
∫
Td ft(u)φ(u)du and moreover

∫
XN

∣∣∣∣∣ 1

Nd

∑
x

η(x)φ
( x
N

)
−
∫
Td
ft(u)φ(u)du

∣∣∣∣∣ dνNft(·)(η) ≤ CN−
d
d+2 . (2.42)

Proof. Given 0 < ` < N , we first compare the expression in (2.42) to the same formula

where η is replaces by its local `-average η(x)
`

and we write, with the same manipulations

as in the previous lemma:

∫
XN

∣∣∣∣∣∣ 1

Nd

∑
x∈TdN

η(x)φ
( x
N

)
−
∫
Td
ft(u)φ(u)du

∣∣∣∣∣∣ dνNft(·)(η) ≤

∫
XN

∣∣∣∣∣∣ 1

Nd

∑
x∈TdN

η(x)
`
φ
( x
N

)
−
∫
Td
ft(u)φ(u)dνNft(·)(η)du

∣∣∣∣∣∣ dνNft(·)(η) +
`

N
.

∫
XN

∣∣∣∣∣∣ 1

Nd

∑
x∈TdN

η(x)
`
φ
( x
N

)
− EνN

ft(·)

(
η(x)

`
)
φ
( x
N

)∣∣∣∣∣∣ dνNft(·)(η)+

+

∣∣∣∣∣∣ 1

Nd

∑
x∈TdN

ft

( x
N

)
φ
( x
N

)
−
∫
Td
ft(u)φ(u)du

∣∣∣∣∣∣+
`

N
.

1

`d/2
+

1

Nd
+

`

N
.

(2.43)
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Optimizing now over ` we find that for ` = `(N) ∼ N
2
d+2 , we get the stated rate.

5.3 Proof of the main abstract Theorem

Proof of the Theorem 1.1. For F ∈ Lip(R) and φ ∈ C∞c (Td), we write

∫
XN

∣∣∣∣∣F
(

1

Nd

∑
x

η(x)φ
( x
N

))
− F (〈ft, φ〉)

∣∣∣∣∣ dµNt (η)

≤ ‖F‖Lip

∣∣∣∣∣
∫
XN

1

Nd

∑
x

η(x)φ
( x
N

)
dµNt (η)−

∫
Td
ft(u)φ(u)du

∣∣∣∣∣
(3.44)

Then we bound the right-hand side as follows:

EµNt

(
1

Nd

∑
x

η(x)φ
( x
N

)
− 〈ft(u), φ(u)〉L2(Td)

)

≤
∫∫

X2
N

∣∣∣∣∣ 1

Nd

∑
x

η(x)φ
( x
N

)
−
∫
Td
ft(u)φ(u)du

∣∣∣∣∣GN
t (η, ζ)dνNλ (η)dνNλ (ζ)

≤
∫∫

X2
N

∣∣∣∣∣ 1

Nd

∑
x

(η(x)− ζ(x))φ
( x
N

)∣∣∣∣∣GN
t (η, ζ)dνNλ (η)dνNλ (ζ)

+

∫
XN

∣∣∣∣∣ 1

Nd

∑
x

ζ(x)φ
( x
N

)
−
∫
Td
ft(u)φ(u)du

∣∣∣∣∣ dνNft(·)(ζ)

≤ C1

∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|GN
t (η, ζ)dνNλ (η)dνNλ (ζ) + C2

1

Nd/(d+2)

(3.45)

where in the last line we applied Lemma 2.2 for the second term. Regarding the first term,

we calculate

d

dt

∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|GN
t (η, ζ)dνNλ (η)dνNλ (ζ)

(H3)

≤
∫∫

X2
N

1

Nd

∑
x

|η(x)− ζ(x)|L̃∗NGN
t (η, ζ)dνNλ (η)dνNλ (ζ) + max

k
‖Dk(ft − f∞)‖HEN

(H1)

≤ max
k
‖Dk(ft − f∞)‖HEN .

(3.46)
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Integrating then in time we get∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|GN
t (η, ζ)dνNλ (η)dνNλ (ζ)

≤
∫∫

X2
N

1

Nd

∑
x

|η(x)− ζ(x)|GN
0 (η, ζ)dνNλ (η)dνNλ (ζ) + EN

∫ t

0

max
k
‖Dk(fs − f∞)‖Hds.

(3.47)

Finally, the assumptions on the initial coupling GN
0 imply that the first term of the

right-hand side vanishes as RN and the second term, due to assumption (H2) equals to

ENKt if T <∞, while in the case of T =∞, the second term equals EN
∫ t

0
R(s)ds which

is integrable in time. These conclude the statement of the main Theorem.

5.4 Proof of (H1)-(H2)-(H3) for the Zero-Range Pro-

cess

We recall that the generator is, (1.23):

for all f ∈ Cb(XN), LNf(η) =
∑
x,y∼x

p(y − x)g(η(x)) [f(ηx,y)− f(η)] (4.48)

where the jump rate satisfies Assumption 2. We also recall that the function σ(ρ), which

is the nonlinearity appearing in limit equation, is chosen so that 〈νNρ , η(0)〉 = ρ. We give

some details now on the construction of σ.

Let Z : [0, φ∗)→ R be the partition function of the zero range process given by (1.17),

with φ∗ denoting the radius of convergence of Z. An important consequence of Assumption

2, (iii) on the jump rate, is that φ∗ = +∞, since the assumption implies g(n) ≥ δ̃n for

some δ̃ ≤ δ/n0.

The density function as a function of the fugacity φ is given by

R(φ) = φ∂φ log(Z(φ)) =
1

Z(φ)

∑
n≥0

nφn

g(n)!
. (4.49)

This is a smooth function R : [0,∞)→ R and it holds that, [KL99], R is monotonously

increasing with limφ→∞R(φ) =∞. Then σ : [0,∞)→ [0,∞) is well-defined as its inverse

function, σ = R−1. Thus νNσ(ρ), as defined in (1.16), is an invariant and translation-invariant

product measure with density

〈νNρ , η(x)〉 = ρ.

207



Furthermore its average jump rate satisfies

〈νNρ , g(η(x))〉 = σ(ρ).

The Lipschitz continuity of the rate function implies that ρ 7→ σ(ρ) is also Lipschitz

continuous with constant g∗, [KL99, Corollary 3.6]. The second assumption implies that

infρ σ(ρ)/ρ > 0. Note, however, that g(n) ≥ δ̃n yields σ′(0) > 0. Therefore it is impossible

to obtain a fast diffusion, e.g. σ(ρ) = ρm, m > 1, in this limit. Indeed Assumption 2 yields

Lemma 4.1.

0 < inf
ρ≥0

σ′(ρ) ≤ sup
ρ≥0

σ′(ρ) < +∞. (4.50)

The upper bound extends to higher derivatives as well, i.e.

sup
ρ∈R
|σ(k)(ρ)| < +∞ (4.51)

for all integers k > 0.

Sketch of proof. The second order bound follows from

σ′′(ρ) = −R
′′(σ(ρ))σ′(ρ)

R′(σ(ρ))2
,

since σ and R are inverse to each other, i.e. R(σ(ρ)) = ρ. Assumption 2 implies δj ≤
Z(j)(φ)/Z(φ) ≤ (g∗)j is bounded, and the explicit expressions for R′′ and R′ then yield a

bound on σ′′(ρ). Higher derivatives are treated analogously.

In what follows we discuss about consequences of the attractivity assumption.

Attractivity and moment bounds for Zero-range process.

We take advantage of attractivity, i.e. Assumption 2, (iv). Combined with a coupling

of two processes, it allows us to prove uniform estimates on the particle moments. This

discussion can be found as well in [Lig85, KL99], therefore we simply sketch the results

here.

Consider two copies of the zero range process with initial configurations η, ζ ∈ XN so

that

for all x ∈ TdN η ≤ ζ, i.e. η(x) ≤ ζ(x).

Assumption 2, (iv) simply states g(n+ 1) ≥ g(n) for all n ∈ N and hence we can always

let particles of the process with more particles jump at a higher rate. Specifically at an

arbitrary site x ∈ TdN , at time t = 0 where we have η(x) ≤ ζ(x), we let one particle at

x ∈ TdN of both processes η and ζ jump at the same time with jump rate g(η(x)) and

additionally let just one particles of ζ jump with jump rate g(ζ(x))− g(η(x)) ≥ 0. This
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coupling almost surely preserves the property η(x) ≤ ζ(x) for all x ∈ TdN . It constructs a

random particle process (ηt, ζt) (which are random variables) with state space XN ×XN

and whose marginals ηt and ζt are both zero range processes with jump rate g, so that

for all t ≥ 0, x ∈ TdN , ηt(x) ≤ ζt(x)

almost surely.

A consequence of this coupling is the preservation of stochastic ordering. Consider

fN ∈ Cb(XN) monotonous: fN(η) ≤ fN(ζ) for all η ≤ ζ. Two probability measures

µ, ν ∈ P (XN) are said to be ordered, µ ≤ ν, if

〈µ, fN〉 ≤ 〈ν, fN〉 for all monotonous fN ∈ Cb(XN).

Suppose now µN0 , µ̃
N
0 ∈ P (XN ) are two initial measures of the zero range process such that

µ̃N0 ≤ µN0 .

It can be shown [Lig85, Theorem II.2.4] that this property is equivalent to the existence of

a coupling measure on XN ×XN with marginals µ̃N0 and µN0 that concentrates on {η ≤ ζ}.
This coupling is precisely defined and used for hypothesis (H1) in Section 5.4.2. As shown

above, under the evolution of the coupled process, the support of the coupled probability

measure remains within {η ≤ ζ} and it follows, again by [Lig85, Theorem II.2.4], that

µ̃Nt ≤ µNt .

Let us now turn to the problem of bounding the moments of the particle system. We

define the k-th order moment as

Mk

[
µN
]

:=

〈
µN ,

1

Nd

∑
x∈TdN

η(x)k

〉
.

Lemma 4.2. Assume that the initial measure is bounded from above by the invariant

measure with fugacity φ > 0, νNφ for some φ > 0, i.e. µN0 ≤ νNφ . Then for any k > 0, it

holds that

Mk

[
µNt
]
≤Mk

[
νNφ
]

= Ck < +∞

for all N > 0 and t ≥ 0.

Proof. All moments of νNφ are finite and translation-invariant yields

Mk

[
νNφ
]

= 〈νNφ , η(0)k〉 = Ck
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independent of N . Attractivity yields

µNt ≤ νNφ ,

and hence

Mk

[
µNt
]
≤Mk

[
νNφ
]

since N−d
∑

x∈TdN
η(x)k ≥ 0.

In what follows we consider the diffusive/parabolic scaling in time. The framework

however holds also for the hyperbolic scaling but for finite time: for the time interval

where our solution to the limit equation is smooth. We discuss this in the Remark 4.6

after the proofs.

We consider ft to be the unique strong solution to the quasi-linear diffusion equation

(1.19). Let us stress here that ft satisfies Assumption (H3) with H = L∞ as proven in

the Appendix 6.6.2. Following the abstract method, we consider the local Gibbs measure

with slowly varying coefficient ft(·) as defined in (1.35) whose density ψNt is

ψNt (ζ) :=
dνNft(·)(ζ)

dνNα (ζ)
= e

∑
x∈Td

N
ζ(x) log

(
σ(ft(x/N))

σ(α)

)
−log

(
Z(σ(ft(x/N)))

Z(σ(α))

)
. (4.52)

The last equality is a reformulation based on the form of the product measure νNft(·). This

corresponds to the density of an artificial process that we consider here because it has the

right hydrodynamics. This is proved with an explicit rate for the sake of completeness in

the preliminaries-Section 5.2, Lemma 2.2.

5.4.1 Consistency estimate

The density ψNt satisfies

Proposition 4.3. Let d = 1 and k, α > 0. There exists 0 < C0 <∞ and c > 0 such that∫∫
X2
N

N−d
∑
x∈TdN

|η(x)− ζ(x)|k(∂tψNt (ζ)− L∗ψNt (ζ))dνNα (η)dνNα (ζ) ≤ C0e
−ctN−

d
2+d .

(4.53)

Proof. We split the proof into several steps.

210



Step 1: Explicit calculations on the local equilibrium measure. First we compute

L∗NψNt (ζ) = N2
∑
x∼y

p(y − x)g(ζ(x))

(
e
∑
z∈Td

N
ζx,y(z) log

(
σ(ft(z/N))

σ(α)

)
−log

(
Z(σ(ft(z/N)))

Z(σ(α))

)
−

− e
∑
z∈Td

N
ζ(z) log

(
σ(ft(z/N))

σ(α)

)
−log

(
Z(σ(ft(z/N)))

Z(σ(α))

))

= N2
∑
x∼y

p(y − x)g(ζ(x))e
∑
z∈Td

N
ζ(z) log

(
σ(ft(z/N))

σ(α)

)
−log

(
Z(σ(ft(z/N)))

Z(σ(α))

)
×

×
(
e

log
(
σ(ft(y/N))

σ(α)

)
−log

(
σ(ft(x/N))

σ(α)

)
− 1

)
= N2

∑
x∼y

p(y − x)g(ζ(x))ψNt (ζ)

(
σ(ft(y/N))

σ(ft(x/N))
− 1

)
.

Since
∑

x∼y σ(ft(x/N))p(y − x)
(
σ(ft(y/N))
σ(ft(x/N))

− 1
)

= 0, we deduce

L∗NψNt (ζ) = N2ψNt (ζ)
∑
x∼y

p(y − x)(g(ζ(x))− σ(ft(x/N)))

(
σ(ft(y/N))− σ(ft(x/N))

σ(ft(x/N))

)
.

This can be reformulated in terms of the weighted Discrete Laplacian

1

N2
∆N
c φ(x/N) := c1φ((x+ 1)/N) + c−1φ((x− 1)/N)− (c1 + c−1)φ(x/N)

where ci’s are related to the transition probabilities. Then we have

N−d
∑
x∈TdN

|η(x)− ζ(x)|kL∗NψNt (ζ) =

N−d
∑
x∈TdN

|η(x)− ζ(x)|k
∑
y∈TdN

(g(ζ(y))− σ(ft(y/N)))
∆N
c σ(ft(y/N))

σ(ft(y/N))

= N−d
∑
x

|η(x)− ζ(x)|k (g(ζ(x))− σ(ft(x/N)))
∆N
c σ(ft(x/N))

σ(ft(x/N))
+R1

(4.54)

where we split the sum in y into two sums: y = x and y 6= x and

R1 := N−d
∑
x

|η(x)− ζ(x)|k
∑
y 6=x

(g(ζ(y))− σ(ft(y/N)))
∆N
c σ(ft(y/N))

σ(ft(y/N))
.

On the other hand, calculating ∂tψ
N
t (ζ), we write
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∂tψ
N
t (ζ) = ψNt (ζ)

∑
x

∆c(σ(ft(x/N)))

σ(ft(x/N))
σ′(ft(x/N))(ζ(x)− ft(x/N))

so that

N−d
∑
x

|η(x)− ζ(x)|k∂tψNt (ζ) =

N−d
∑
x

|η(x)− ζ(x)|k∆c(σ(ft(x/N)))

σ(ft(x/N))
σ′(ft(x/N))(ζ(x)− ft(x/N)) +R2

(4.55)

where

R2 := N−d
∑
x

∑
y 6=x

|η(x)− ζ(x)|k∆c(σ(ft(y/N)))

σ(ft(y/N))
σ′(ft(y/N))(ζ(y)− ft(y/N)).

For the computation of ∂tZ(σ(ft(x/N))), we have used the relation

∑
k≥0

kσ(ft(x/N))k

g(k)!Z(σ(ft(x/N)))
= EνN

ft(·)
(ζ(0)) = ft

( x
N

)
.

We therefore estimate

N−d
∑
x

|η(x)− ζ(x)|k (∂t − L∗)ψNt (ζ)

ψNt (ζ)
≤

N−d
∑
x

|η(x)− ζ(x)|k(g(ζ(x))− σ(ft(x/N)))
∆N
c σ(ft(x/N))

σ(ft(x/N))

−N−d
∑
x

|η(x)− ζ(x)|k∆c(σ(ft(x/N)))

σ(ft(x/N))
σ′(ft(x/N))(ζ(x)− ft(x/N)) +R1 +R2.

(4.56)

Step 2: Replacement with the continuous Laplacian. As a second step, we may

replace the discrete Laplacian ∆N
c with the continuous Laplacian ∆c to get the error:

RN := N−d
∑
x

|η(x)− ζ(x)|k (N2∆N
c −∆c)(σ(ft(x/N)))

σ(ft(x/N))
g(ζ(x)).

This error vanishes as N goes to infinity since

RN . N−d
∑
x

|η(x)− ζ(x)|k ‖(σ ◦ ft)
(4)‖∞

12N2
|ζ(x)| . e−ctN−2.

Here we applied Cauchy-Schwarz, Young’s Inequality and the boundedness of the moments
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from Lemma 4.2. The exponentially fast decay in time of ‖(σ ◦ ft)(4)‖∞ is an application

of the results proved in the Appendix that hold for d = 1. The equation (4.56) is taking

then the form

1

Nd

∑
x

|η(x)− ζ(x)|k (∂t − L∗N)ψNt (ζ)

ψNt (ζ)
=

1

Nd

∑
x

|η(x)− ζ(x)|k
(
g(ζ(x))− σ

(
ft

( x
N

))
− σ′

(
ft

( x
N

))(
ζ(x)− ft

( x
N

)))
×

×
∆cσ

(
ft
(
x
N

))
σ
(
ft
(
x
N

)) := (I) + e−ctN−2 +R1 +R2.

(4.57)

Multiplying now both sides by ψNt (ζ) and integrating with respect to dνNα (η) and

dνNα (ζ):

The first two errors R1ψ
N
t (ζ) and R2ψ

N
t (ζ) when averaged they give 0 due to the conserva-

tion of mass, i.e.
∫
L∗ψNt dνNα = 0, which means (since the local Gibbs measure is product)

that ∑
x∈TdN

∫
ζ(x)

(
g(ζ(x))− σ(ft(x/N))

)∆N
c σ(ft(x/N))

σ(ft(x/N))
dνNft(·)(ζ(x)).

Then due to the definition of σ∫∫
X2
N

R1ψ
N
t (ζ)dνNα (ζ)dνNα (η) = −N−d

∑
x

∫
η(x)

∫
ζ(x)

|η(x)− ζ(x)|kdν1
ft(·)(ζ(x))dν1

ft(·)(η(x))×

×
∫
ζ(x)

(g(ζ(x))− σ(ft(x/N)))
∆N
c σ(ft(x/N))

σ(ft(x/N))
dν1

ft(·)(ζ(x)) = 0.

For R2, we have similarly as above:

0 =

∫
XN

∂tψ
N
t (ζ)dνNα (ζ) =

∑
x

∫
ζ(x)

∆c(σ(ft(x/N)))

σ(ft(x/N))
σ′(ft(x/N))(ζ(x)− ft(x/N))dν1

ft(·)(ζ(x))

so that∫∫
X2
N

R2ψ
N
t (ζ)dνNα (ζ)dνNα (η) = −N−d

∑
x

∫
η(x)

∫
ζ(x)

|η(x)− ζ(x)|kdν1
ft(·)(ζ(x))dν1

ft(·)(η(x))×

×
∫
ζ(x)

(ζ(x)− ft(x/N))
∆N
c σ(ft(x/N))

σ(ft(x/N))
dν1

ft(·)(ζ(x)) = 0.

Step 3: Replacement with the `-averages. This is split into the following steps:

Firstly, for ` ∈ N, 0 < ` < N , we may replace ζ(x) and g(ζ(x)) in the above formula

by their `-averages around x: ζ(x)
`

and g(ζ(x))
`
. Indeed, we present the proof here for
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ζ(x) and we denote by φ(x/N) := σ′
(
ft
(
x
N

)) ∆cσ(ft( xN ))
σ(ft( xN ))

which is continuous. We then

estimate the following difference for k > 0:∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|k(ζ(x)− ζ(x)
`
)σ′
(
ft

( x
N

)) ∆cσ
(
ft
(
x
N

))
σ
(
ft
(
x
N

)) dνNft(·)(ζ)dνNα (η) =

≤

∫∫
X2
N

(
N−d

∑
x

|η(x)− ζ(x)k

)2

dνNft(·)(ζ)dνNα (η)

1/2

×

×

(∫∫
X2
N

(
ζ(x)− ζ(x)

`
)2

φ2(x/N)dνNft(·)(ζ)dνNα (η)

)1/2

.

(4.58)

Due to the moment bounds, see Lemma 4.2, the first factor is bounded uniformly in N .

We estimate the other factor which equals to

Ce−ct

∫∫
X2
N

 1

`d∗

∑
|w|≤`

(ζ(x)− ζ(x+ w))

2

dνNft(·)(ζ)dνNα (η)

1/2

.

This integral squared equals to:

∫
XN

 1

`∗

`d∗∑
i=1

((
ζ(x)− ft

( x
N

))
+

(
ft

( x
N

)
− ft

(
x+ yi
N

))
+

(
ft

(
x+ yi
N

)
− ζ(x+ yi)

))2

dνNft(·)(ζ)

=

∫
XN

{
1

`2d
∗

`d∗∑
i=1

((
ζ(x)− ft

( x
N

))2

+

(
ft

(
x+ yi
N

)
− ζ(x+ yi)

)2

+

(
ft

( x
N

)
− ft

(
x+ yi
N

))2)

+
2

`2d
∗

`d∗∑
i 6=j

(
ζ(x)− ft

( x
N

))(
ft

(
x+ yi
N

)
− ζ(x+ yi)

)
+
(
ζ(x)− ft

( x
N

))(
ft

( x
N

)
− ft

(
x+ yi
N

))
+

(
ft

(
x+ yi
N

)
− ζ(x+ yi)

)(
ft

( x
N

)
− ft

(
x+ yi
N

))
+

(
ft

(
x+ yi
N

)
− ζ(x+ yi)

)(
ft

( x
N

)
− ft

(
x+ yj
N

))
+

(
ft

(
x+ yi
N

)
− ζ(x+ yi)

)(
ft

(
x+ yj
N

)
− ζ(x+ yj)

)
+

(
ft

( x
N

)
− ft

(
x+ yi
N

))(
ft

( x
N

)
− ft

(
x+ yj
N

))}
dνNft(·)(ζ)

(4.59)

where for yi we have |yi| ≤ ` for all i = 1, . . . , `d∗. The first five terms of the second

summand are zero due to orthogonality. Regarding the first integral, the first two terms
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give an error of order `−d since the moments are bounded and ft ∈ L∞, and the third

term gives an error of order `−d(`/N)2 due to the smoothness of ft. Finally the term in

the last line leaves an error of order (`/N)2. Thus overall of this replacement we get an

error of order Ce−ct(`−d/2 + `/N). Optimizing now this w.r.t. `, for ` = N1/(1+d/2), we get

an error of order N−d/(d+2).

Then we apply the local law of large numbers, Lemma 2.1 with X = N, θ = g, ϑ = σ

and with the weight function for fixed x ∈ TdN , W(η(x), ζ(x)) = |η(x)− ζ(x)|k. We write

therefore (I) up to an error of order Ce−ct`−d/2 + Ce−ct`/N as:∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|k
(
σ(ζ(x)

`
)− σ

(
ft

( x
N

))
− σ′

(
ft

( x
N

))(
ζ(x)

`
− ft

( x
N

)))
×

∆cσ
(
ft
(
x
N

))
σ
(
ft
(
x
N

)) ψNt (ζ)dνNα (ζ)dνNα (η).

Step 4: From `-averages to the macroscopic profile. For some ρ in between ζ(x)
`

and ft
(
x
N

)
, we bound the above formula from

∫∫
X2
N

1

Nd

∑
x

|η(x)− ζ(x)|kσ
′′(ρ)

2

(
ft(x/N)− ζ(x)

`
)2 ∆cσ

(
ft
(
x
N

))
σ
(
ft
(
x
N

)) ψNt (ζ)dνNα (ζ)dνNα (η)

. Ce−ct
∫∫

X2
N

1

Nd

∑
x

|η(x)− ζ(x)|k
(
ft(x/N)− ζ(x)

`
)2

ψNt (ζ)dνNα (ζ)dνNα (η)

(4.60)

due to our assumptions on σ and the regularity of the limit PDE. Then by Cauchy-Schwarz,
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. Ce−ct
∫∫

X2
N

(
N−d

∑
x

|(η − ζ)|2k(x)

)1/2(
N−d

∑
x

(
ft(x/N)− ζ(x)

`
)4
)1/2

ψNt (ζ)dνNα (ζ)dνNα (η)

. Ce−ct

(∫∫
X2
N

N−d
∑
x

(
ft(x/N)− ζ(x)

`
)4

ψNt (ζ)dνNα (ζ)dνNα (η)

)1/2

= Ce−ct

(∫
XN

N−d
∑
x

(
ft(x/N)− ζ(x)

`
)4

dνNft(·)(ζ)

)1/2

yi=xi+x,
|xi|≤`

= Ce−ct

∫
XN

N−d
∑
x

`−d∗ `d∗∑
i=1

(
ft

( x
N

)
− ζ(yi)

)4

dνNft(·)(ζ)

1/2

= Ce−ct

∫
XN

N−d
∑
x

`−d∗ `d∗∑
i=1

(
ft

( x
N

)
− ft

( yi
N

))
+ `−d∗

`d∗∑
i=1

(
ft

( yi
N

)
− ζ(yi)

)4

dνNft(·)(ζ)

1/2

. Ce−ct

(∫
XN

N−d
∑
x

(
A`,N +B`,N(ζ)

)4

dνNft(·)(ζ)

)1/2

=

Ce−ct

(∫
XN

N−d
∑
x

(
A4
`,N +B4

`,N(ζ) + 4A3
`,NB`,N(ζ) + 4B3

`,N(ζ)A`,N + 6A2
`,NB

2
`,N(ζ)

)
dνNft(·)(ζ)

)1/2

.

(4.61)

Now |A4
`,N | . (`/N)4 due to the smoothness of ft and that |x− yi| ≤ `. Also,∣∣∣∣∫

XN

B4
`,N(ζ)dνNft(·)(ζ)

∣∣∣∣ . C`−2d
∗

since EνN
ft(·)

(
ft
(
yi
N

)
− ζ(yi)

)
= 0. Indeed

EνN
ft(·)

`−d∗ `d∗∑
i=1

ft

( yi
N

)
− ζ(yi)

4 = EνN
ft(·)

`−4d
∗

`d∗∑
i=1

(
ft

( yi
N

)
− ζ(yi)

)4

+

+ EνN
ft(·)

(
2`−4d
∗

∑
i<j

(
ft

( yi
N

)
− ζ(yi)

)2 (
ft

(yj
N

)
− ζ(yj)

)2
)
≤ C`−2d

∗

(4.62)

where C is the constant coming from the moment bounds up to the fourth moment and

the L∞ bound of ft. Similarly for the other terms we compute
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∣∣∣∣∫
XN

4A`,NB
3
`,N(ζ)dνNft(·)(ζ)

∣∣∣∣ . (∫ A2
`,Ndν

N
ft(·)(ζ)

)1/2(∫
B6
`,N(ζ)dνNft(·)(ζ)

)1/2

. (`/N)`−3d∣∣∣∣∫
XN

4A3
`,NB`,N(ζ)dνNft(·)(ζ)

∣∣∣∣ . 0∣∣∣∣∫
XN

6A2
`,NB

2
`,N(ζ)dνNft(·)(ζ)

∣∣∣∣ . (∫ A4
`,Ndν

N
ft(·)(ζ)

)1/2(∫
B4
`,N(ζ)dνNft(·)(ζ)

)1/2

. (`/N)2`−2d

where the above estimates consisted of Cauchy-Schwarz and the moment bounds.

Step 5: Final rate. Gathering all the errors together, we have that

(I) +RN . Ce−ct

{
(`/N)1/2`−3d/2 + `1−d/N +

(
`

N

)2

+ `−d + (`−d/2 + `/N) +N−2

}
,

which in terms of N , choosing ` = N1/(1+d/2), is of order

O(N−3d/2 +N−d/(1+d/2) +N−d/(2+d) +N−2) = O(N−d/(2+d)).

5.4.2 Microscopic Stability estimate

We employ the basic coupling, or Wasserstein coupling, discussed in [Lig85], see also

[Rez91],which is a coupling of two zero-range processes with generator L̃ : Cb(X
2
N) →

Cb(X
2
N) given by

L̃Nf(η, ζ) := N2
∑
x,y

p(y − x)g(η(x)) ∧ g(ζ(x))(f(ηxy, ζxy)− f(η, ζ))

+N2
∑
x,y

p(y − x)
(
g(η(x))− g(η(x)) ∧ g(ζ(x))

)
(f(ηxy, ζ)− f(η, ζ))

+N2
∑
x,y

p(y − x)
(
g(ζ(x))− g(η(x)) ∧ g(ζ(x))

)
(f(η, ζxy)− f(η, ζ)).

(4.63)

Note that indeed when both η and ζ are zero-range processes, their coupled law satisfies

exactly the forward Kolmogorov equation, i.e. each marginal corresponds to a zero-range

process at the respective rate of jump. The generator of this coupled process is defined

like above so that the particles in processes η, ζ are jumping simultaneously as much as

possible.

We are interested in the coupled process, since we want to estimate the discrete L1-

distance between two solutions in the microscopic level and in particular the distance

among the density of a ‘true’ zero-range process fNt and the density of the artificial process
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ψNt as given in (4.52). We have the following energy estimate on the law of the coupled

process.

Lemma 4.4. Let GN
t be the coupling density on X2

N evolving according to (1.9). The first

marginal of it is the evolution of the density ψNt , relative to the reference measure dνNα , of

an artificial process considered so that it has the desired hydrodynamical behavior, while

the second marginal gives us the density of a zero-range process fNt . For φ ∈ C∞c (Td) we

have that∫∫
X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN
t (η, ζ)dνNα (η)dνNα (ζ)

≤
∫∫

X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN

0 (η, ζ)dνNα (η)dνNα (ζ) + CN−
d

2+d (1− e−ct).

(4.64)

Proof. We calculate

d

dt

∫∫
X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN
t (η, ζ)dνNα (η)dνNα (ζ) ≤∫∫

X2
N

N−d
∑
x

|η(x)− ζ(x)|L̃∗NGN
t (η, ζ)dνNα (η)dνNα (ζ) + C0e

−ctN−d/(2+d)

where the last estimate is due to Proposition 4.3 for k = 1. For the first term in the

right-hand side we compute

L̃N(|η − ζ|)(x) = N2
∑
x∼y

((g(ζ(x))− g(η(x)))− (g(ζ(y))− g(η(y)))) 1lη(x)≥ζ(x)
η(y)≥ζ(y)

+N2
∑
x∼y

((g(ζ(y))− g(η(y)))− (g(ζ(x))− g(η(x)))) 1lζ(x)≥η(x)
ζ(y)≥η(y)

−N2
∑
x∼y

(|g(ζ(x))− g(η(x))|+ |g(ζ(y))− g(η(y))|) 1l{the rest scenarios}

since the last term is non-negative we write

L̃N

(
N−d

∑
x

|η − ζ|(x)

)
≤ N2−d

∑
x∈TdN
x∼y

(
(g(ζ(x))− g(η(x))) 1lη(x)≥ζ(x)

η(y)≥ζ(y)

)

−N2−d
∑
x∈TdN
x∼y

(
(g(ζ(y))− g(η(y))) 1lη(x)≥ζ(x)

η(y)≥ζ(y)

)
+N2−d

∑
x∈TdN
x∼y

(
(g(ζ(y))− g(η(y))) 1lζ(x)≥η(x)

ζ(y)≥η(y)

)

−N2−d
∑
x∈TdN
x∼y

(
(g(ζ(x))− g(η(x))) 1lζ(x)≥η(x)

ζ(y)≥η(y)

)
.
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We exchange x, y to see that the 2nd with the 3rd and the 4th with the 5th are canceled,

and thus

1

Nd

∑
x∈TdN

L̃N(|η − ζ|)(x) ≤ 0. (4.65)

Therefore we have∫∫
X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN
t (η, ζ)dνNα (η)dνNα (ζ)

≤
∫∫

X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN

0 (η, ζ)dνNα (η)dνNα (ζ) + CN−
d

2+d

∫ t

0

e−csds.

Remark 4.5 (contraction property for a copy of two zero-range processes). Note that when

both of our processes are zero-range processes, say the evolution of ηt and ζt is governed by

LN with initial distributions µN1 , µ
N
2 , we consider the coupled process (ηt, ζt) on the product

space XN ×XN with generator L̃N . Then the Lemma 4.4 tells us that the quantity

N−d
∑
x

∫∫
X2
N

|η(x)− ζ(x)|µ̃Nt (η, ζ)

is non-increasing in time, where µ̃Nt is the coupling measure. In other words, we have

a contraction property in Wasserstein-1 distance with the cost being the microscopic `1

distance N−d
∑

x |η(x)− ζ(x)|: for all t > 0,

W1(µNt,1, µ
N
t,2) ≤ W1(µN0,1, µ

N
0,2) (4.66)

for the appropriate initial data so that we catch the infimum.

Proof of Corollary 1.4. We show that we can apply Theorem 1.1. Indeed the hypotheses

(H3),(H1) are implied by the Lemmas 4.3 and 4.4 above. The regularity properties for

the hydrodynamical equation (1.19) in the Appendix 5.A imply hypothesis (H2) with

H = L∞(Td) and T =∞ as we are in the parabolic case (given of course the assumptions

on the jump rate (2)).

Remark 4.6 (Explicit rate for T < ∞ under Eulerian scaling). Note that when one is

interested in hyperbolic scaling (Eulerian scaling) to the N -particle system, where we expect

our limit PDE to be a conservation law ∂tft = γ · ∇σ(ft), we can still apply our method to

get an explicit rate of convergence to the hydrodynamic limit with the disadvantage that

the result is valid only up to a finite time T of the appearance of the first discontinuity.

In particular for the consistency estimate (H3) same manipulations, as shown, can be
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performed with the difference that the bound on the derivatives depends on time. As for

the microscopic stability estimate (H1) nothing changes.

Similar calculations have been done in [GkS03, section 3] for a multispecies zero-range

process leading to a system of conservation laws. The relative entropy method of Yau was

applied there up to a finite time as well (up to the appearance of the first shock).

The only result proving the hydrodynamic limit so far under hyperbolic scaling for all times

is by Rezakhanlou in [Rez91].

5.5 Proof of (H1)-(H2)-(H3) for the Simple Exclusion

process

We consider H = L∞(Td) the space of solutions to the linear diffusion equation

∂tft = ∆cft.

Here we also have to impose a bound condition on the initial profile, in particular we

need a constant δ > 0 to exist so that

δ ≤ f0 ≤ 1− δ.

We consider the local Gibbs measure, which here is characterized by the relation

νNft(·) ({η(x) = 1}) = ft

( x
N

)
= 1− νNft(·) ({η(x) = 0}) .

For α ∈ (0, 1), ft ∈ (0, 1), we consider the relative density

ψNt (ζ) :=
dνNft(·)
dνα

(ζ) = e
∑
x ζ(x)λ(t,x/N)e

∑
x log

(
1−ft(x/N)

1−α

)
(5.67)

where

λ(t, x/N) := log

(
ft(x/N)(1− α)

α(1− ft(x/N))

)
.

Inspired again by the relative entropy method of Yau [Yau91], we aim at obtaining a

quantitative version of the hydrodynamic limit from the SSEP to the heat equation,

without invoking the so-called one-block estimate.
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5.5.1 Consistency estimate

Proposition 5.1. For all d ≥ 1, for η, ζ ∈ {0, 1}TdN and α ∈ (0, 1) we have that∫∫
X2
N

N−d
∑
x∈TdN

|η(x)− ζ(x)|(∂tψNt (ζ)− L∗NψNt (ζ))dνNα (η)dνNα (ζ) ≤ C0e
−ctN−

d
2+d .

(5.68)

Proof. We compute

L∗NψNt (ζ) =
N2

2

∑
x∼y

ζ(x)(1− ζ(y))ψNt (ζ)
(
eλ(t,y/N)−λ(t,x/N) − 1

)
= ψNt (ζ)

N2

2

∑
x

ζ(x)(1− ζ(x+ 1))
(
eλ(t,(x+1)/N)−λ(t,x/N) − 1

)
+

+ ψNt (ζ)
N2

2

∑
x

ζ(x+ 1)(1− ζ(x))
(
eλ(t,x/N)−λ(t,(x+1)/N) − 1

)
(5.69)

where for the second line we considered the process ζ̃(x) := ζ(x− 1) . We expand then

the exponential ex =
∑

k≥0
xk

k!
to write

L∗NψNt (ζ) = ψNt (ζ)
N2

2

∑
x

(
ζ(x)(1− ζ(x+ 1))

(
λ

(
t,
x+ 1

N

)
− λ

(
t,
x

N

))
+

+ ζ(x+ 1)(1− ζ(x))

(
λ
(
t,
x

N

)
− λ

(
t,
x+ 1

N

))
+

+
(
ζ(x)(1− ζ(x+ 1)) + ζ(x+ 1)(1− ζ(x))

)(λ (t, x+1
N

)
− λ

(
t, x
N

))2

2
+

+
∑
k≥3
k:odd

(
ζ(x)− ζ(x+ 1)

)(λ (t, x+1
N

)
− λ

(
t, x
N

))k
k!

+

+
∑
k≥4
k:even

(
ζ(x) + ζ(x+ 1)− 2ζ(x)ζ(x+ 1)

)(λ (t, x+1
N

)
− λ

(
t, x
N

))k
k!

)

= ψNt (ζ)
N2

2

∑
x

(
ζ(x)∆Nλ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇Nλ
(
t,
x

N

)∣∣∣2 + Λk≥3
N

)

(5.70)

where θ(ζ(x)) := (1/2)(ζ(x) + ζ(x+ 1)− 2ζ(x)ζ(x+ 1)).

Thus,
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∫∫
X2
N

N−d
∑
x∈TdN

|η(x)− ζ(x)|L∗NψNt (ζ)dνNα (η)dνNα (ζ)

=
N2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
∑
y

(
ζ(y)∆Nλ

(
t,
y

N

)
+ θ(ζ(y))

∣∣∣∇Nλ
(
t,
y

N

)∣∣∣2 +

+ Λk≥3
N

)
dνNα (η)dνNft(·)(ζ)

=
N2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
(
ζ(x)∆Nλ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇Nλ
(
t,
x

N

)∣∣∣2 + Λk≥3
N

)
dνNα (η)dνNft(·)(ζ)

+
N2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
∑
y 6=x

(
ζ(y)∆Nλ

(
t,
y

N

)
+ θ(ζ(y))

∣∣∣∇Nλ
(
t,
y

N

)∣∣∣2 +

+ Λk≥3
N

)
dνNα (η)dνNft(·)(ζ)

(5.71)

where we split the sum in y into two sums: y = x and y 6= x. Conservation of mass, i.e.∫
L∗NψNt (ζ)dνNα (ζ) = 0, now yields that

∑
x

∫
ζ(x)

(
ζ(x)∆Nλ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇Nλ
(
t,
x

N

)∣∣∣2 + Λk≥3
N

)
dν1

ft(·)(ζ(x)) = 0. (5.72)

We therefore write∫∫
X2
N

N−d
∑
x∈TdN

|η(x)− ζ(x)|L∗NψNt (ζ)dνNα (η)dνNα (ζ) =

N2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
(
ζ(x)∆Nλ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇Nλ
(
t,
x

N

)∣∣∣2 + Λk≥3
N

)
dνNα (η)dνNft(·)(ζ)

−N
2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|dν1
α(η(x))dν1

ft(·)(ζ(x))×

×
∫
ζ(x)

(
ζ(x)∆Nλ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇Nλ
(
t,
x

N

)∣∣∣2 + Λk≥3
N

)
dν1

ft(·)(ζ(x)).

(5.73)
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Now we calculate ∂tψ
N
t (ζ):

∂tψ
N
t (ζ) = ψNt (ζ)∂t logψNt (ζ) = ψNt (ζ)

∑
x∈TdN

∂tλ(t, x/N)
(
ζ(x)− ft(x/N)

)
= ψNt (ζ)

∑
x∈TdN

∆ft(x/N)

2ft(x/N)(1− ft(x/N))

(
ζ(x)− ft(x/N)

)
= ψNt (ζ)

∑
x∈TdN

(
∆λt

( x
N

)
− ϑ′

(
ft

( x
N

))
|∇λ(t, x/N)|2

)(
ζ(x)− ft

( x
N

))
(5.74)

where

ϑ
(
ft

( x
N

))
= EνN

ft(·)
[θ(ζ(x))] = ft

( x
N

)
− ft

( x
N

)2

. (5.75)

The last line is implied by the relation

∂tλt

( x
N

)
= ∆λt

( x
N

)
− ϑ′

(
ft

( x
N

))
.

We also have that

0 = ∂t

∫
XNψ

N
t (ζ)dνNα (ζ) =

∑
x∈TdN

∫
ζ(x)

∂tλt

( x
N

)(
ζ(x)− ft

( x
N

))
dν1

ft(·)(ζ(x)).

Then∫∫
X2
N

N−d
∑
x∈TdN

|η(x)− ζ(x)|(L∗NψNt (ζ)− ∂tψNt (ζ))dνNα (η)dνNα (ζ) =

N2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
(
ζ(x)∆Nλ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇Nλ
(
t,
x

N

)∣∣∣2 + Λk≥3
N

)
dνNα (η)dνNft(·)(ζ) =

−N
2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|dνNα (η)dνNft(·)(ζ)×

×
∫
ζ(x)

(
ζ(x)∆Nλ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇Nλ
(
t,
x

N

)∣∣∣2 + Λk≥3
N

)
dν1

ft(·)(ζ(x))

− N−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
(

∆λt

( x
N

)
− ϑ′

(
ft

( x
N

))
|∇λ(t, x/N)|2

)
×

×
(
ζ(x)− ft

( x
N

))
dνNft(·)(ζ).

(5.76)

We replace the discrete Laplacian ∆N and the discrete derivative |∇N |2 with the continuous
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versions up to two errors R1,N and R2,N :∫∫
X2
N

N−d
∑
x∈TdN

|η(x)− ζ(x)|(L∗NψNt (ζ)− ∂tψNt (ζ))dνNα (η)dνNα (ζ) =

N−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
(
ζ(x)∆λ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇λ(t, x
N

)∣∣∣2) dνNα (η)dνNft(·)(ζ)

−N
−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|dνNα (η)dνNft(·)(ζ)×

×
∫
ζ(x)

(
ζ(x)∆λ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇λ(t, x
N

)∣∣∣2) dν1
ft(·)(ζ(x))

− N−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
(

∆λt

( x
N

)
− ϑ′

(
ft

( x
N

))
|∇λ(t, x/N)|2

)
×

×
(
ζ(x)− ft

( x
N

))
dνNft(·)(ζ)

+R1,N +R2,N +R(Λk≥3
N ).

(5.77)

Gathering the same terms we write∫∫
X2
N

N−d
∑
x∈TdN

|η(x)− ζ(x)|(L∗NψNt (ζ)− ∂tψNt (ζ))dνNα (η)dνNα (ζ) =

N−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
{

∆λt

( x
N

)(
ζ(x)− ft

( x
N

)
−
(
ζ(x)− ft

( x
N

)))
+
∣∣∣∇λ(t, x

N

)∣∣∣2 (θ(ζ(x))− ϑ
(
ft

( x
N

))
− ϑ′

(
ft

( x
N

))(
ζ(x)− ft

( x
N

)))}
dνNα (η)dνNft(·)(ζ)

−N
−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|dνNα (η)dνNft(·)(ζ)×

×
∫
ζ(x)

(
ζ(x)∆λ

(
t,
x

N

)
+ θ(ζ(x))

∣∣∣∇λ(t, x
N

)∣∣∣2 + Λk≥3
N

)
dν1

ft(·)(ζ(x))

+
N−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
(

∆λt

( x
N

)
ft

( x
N

)
+
∣∣∣∇λ(t, x

N

)∣∣∣2 ϑ(ft ( x
N

)))
dνNα (η)dνNft(·)(ζ)

+R1,N +R2,N +R(Λk≥3
N )

= E1 + E2 + E3 +R1,N +R2,N +R(Λk≥3
N ).

(5.78)

The first line of E1 vanishes. For the second line of E1 we apply the same steps as in the

consistency estimate of the zero-range process, namely first we replace ζ(x) with its local

`-averages, we then apply Lemma 2.1 in the discrete case, we Taylor expand and use that

224



ϑ′′ is bounded. Finally we estimate by hand. We end up therefore with an error of order

e−ctN−
d

2+d .

For E3, we first use that the quantity |η(x)− ζ(x)| is bounded in the SEP and then we

add and subtract the term∫
Td

(
∆λ(t, u)ft(u) + |∇λ (t, u))|2 (ft(u)− ft(u)2)

)
du.

E3 is estimated then as follows

|E3| .

∣∣∣∣∣N−d ∑
x∈TdN

(
∆λ
(
t,
x

N

)
ft

( x
N

)
+
∣∣∣∇λ(t, x

N

)∣∣∣2(ft ( x
N

)
− ft

( x
N

)2
))

−
∫
Td

(
∆λ(t, u)ft(u) + |∇λ (t, u))|2 (ft(u)− ft(u)2)

)
du

∣∣∣∣∣
+

∫
Td

(
∆λ(t, u)ft(u) +

∣∣∣∇λ(t, x
N

)∣∣∣2 (ft(u)− ft(u)2)

)
du . e−ctN−1.

(5.79)

For the above: Explicit calculations give that the last integral is zero as the integrand

is given by ∂u

(
∂uft(u)
1−ft(u)

)
and we are on the Td. The first term of the right-hand side is

the Riemann differences controlled by N−1 × ‖Q‖L2(Td) where Q(u) := ∆λt(u)ft(u) +∣∣∇λ (t, x
N

)∣∣2 (ft(u)− ft(u)2).

E2 is of order N−1 as well, since it consists of the same terms as E3.

Regarding the error R(Λk≥3
N ) we show that it is less than N−1:

|R(Λk≥3
N )| =

∣∣∣∣∣N2−d

2

∫∫
X2
N

∑
x∈TdN

|η(x)− ζ(x)|
∑
k≥3
k:odd

(ζ(x)− ζ(x+ 1))

(
λ
(
t, x+1

N

)
− λ

(
t, x
N

))k
k!

+

+
∑
k≥4
k:even

2θ(ζ(x))

(
λ
(
t, x+1

N

)
− λ

(
t, x
N

))k
k!

dνNα (η)dνNft(·)(ζ)

∣∣∣∣∣
. N−d

∑
x

N2
∑
k≥3

‖∇λN‖k∞
1

Nkk!
.
∑
k≥3

N2−kC
k

k!
.

(5.80)

The above series is the expansion of the exponential N2(eC/N − 1− (CN)−1 − C2/(2N2)).

Now expanding around 0 the term in the parenthesis, we see that it is of lower order, i.e.

O(N−3). This yields that |R(Λk≥3
N )| . N−1.

Remark 5.2. Note that similar calculations are implied by the result presented in the

proof of Theorem 3.1 in [GLT09]. The authors there employ Yau’s relative entropy method

for a class of kinetically constrained lattice gases to show that the macroscopic density is
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evolving according to the porous medium equation.

5.5.2 Microscopic stability estimate

We employ the basic coupling, or Wasserstein coupling, discussed in [Lig85], see also

[Rez91],which is a coupling of two copies of simple exclusion processes, We denote by

b : N2 → {0, 1} the function b(n,m) = 1 when n = 1,m = 0 and 0 otherwise. The

generator of the coupled process L̃N : Cb(X
2
N)→ Cb(X

2
N) is given by

L̃Nf(η, ζ) := N2
∑
x,y

p(y − x)b(η(x), η(y)) ∧ b(ζ(x), ζ(y))(f(ηxy, ζxy)− f(η, ζ))

+N2
∑
x,y

p(y − x)
(
b(η(x), η(y))− b(η(x), η(y)) ∧ b(ζ(x), ζ(y))

)
(f(ηxy, ζ)− f(η, ζ))

+N2
∑
x,y

p(y − x)
(
b(ζ(x), ζ(y))− b(η(x), η(y)) ∧ b(ζ(x), ζ(y))

)
(f(η, ζxy)− f(η, ζ)).

(5.81)

Note that indeed when both η and ζ are simple exclusion processes, their coupled law

satisfies exactly the forward Kolmogorov equation, i.e. each marginal corresponds to a

simple exclusion process. The generator of this coupled process is defined like above so

that the particles in processes η, ζ ‘agree’ as much as possible.

We are interested in the coupled process, since we want to estimate the discrete L1-

distance between two solutions in the microscopic level and in particular the distance

among the density of a ‘true’ simple-exclusion process fNt and the density of the artificial

process ψNt as given in (5.67). We have the following energy estimate on the law of the

coupled process.

Lemma 5.3. Let GN
t be the coupling density on X2

N evolving according to (1.9). The first

marginal of it is the evolution of the density ψNt , relative to the reference measure dνNα , of

an artificial process considered so that it has the desired hydrodynamical behavior, while

the second marginal gives us the density of a simple exclusion process fNt . For φ ∈ C∞c (Td)
we have that∫∫

X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN
t (η, ζ)dνNα (η)dνNα (ζ)

≤
∫∫

X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN

0 (η, ζ)dνNα (η)dνNα (ζ) + CN−
d

2+d (1− e−ct).

(5.82)
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Proof. We calculate

d

dt

∫∫
X2
N

N−d
∑
x

|η(x)− ζ(x)|φ
( x
N

)
GN
t (η, ζ)dνNα (η)dνNα (ζ) ≤∫∫

X2
N

N−d
∑
x

|η(x)− ζ(x)|L̃∗NGN
t (η, ζ)dνNα (η)dνNα (ζ) + C0e

−ctN−
d

2+d

where the last estimate is from Proposition 5.1. For the first term in the right-hand side

we compute

L̃N(|η − ζ|)(x) = N2
∑
x∼y

((b(η(x), ζ(x))− b(η(x), ζ(x)))− (b(η(y), ζ(y))− b(η(y), ζ(y)))) 1lη(x)≥ζ(x)
η(y)≥ζ(y)

+N2
∑
x∼y

((b(η(y), ζ(y))− b(η(y), ζ(y)))− (b(η(x), ζ(x))− b(η(x), ζ(x)))) 1lζ(x)≥η(x)
ζ(y)≥η(y)

−N2
∑
x∼y

(|b(η(x), ζ(x))− b(η(x), ζ(x))|+ |b(η(y), ζ(y))− b(η(y), ζ(y))|) 1l{the rest scenarios}

since the last term is non-negative we write

L̃N

(
N−d

∑
x

|η − ζ|(x)

)
≤ N2−d

∑
x∈TdN
x∼y

(
(b(η(x), ζ(x))− b(η(x), ζ(x))) 1lη(x)≥ζ(x)

η(y)≥ζ(y)

)

−N2−d
∑
x∈TdN
x∼y

(
(b(η(y), ζ(y))− b(η(y), ζ(y))) 1lη(x)≥ζ(x)

η(y)≥ζ(y)

)

+N2−d
∑
x∈TdN
x∼y

(
(b(η(y), ζ(y))− g(η(y), ζ(y))) 1lζ(x)≥η(x)

ζ(y)≥η(y)

)

−N2−d
∑
x∈TdN
x∼y

(
(b(η(x), ζ(x))− b(η(x), ζ(x))) 1lζ(x)≥η(x)

ζ(y)≥η(y)

)
.

We exchange x, y to see that the 2nd with the 3rd and the 4th with the 5th are canceled,

and thus N−d
∑

x∈TdN
L̃N(|η − ζ|)(x) ≤ 0. Integrating in time implies the claim of the

Lemma.

Proof of the Corollary 1.6. We show that we can apply Theorem 1.1: the hypotheses

(H3),(H1) are implied by the Lemmas 5.1 and 5.3 above. The hypothesis (H2) is well

known that it is satisfied with H = L∞(Td), as our limit equation is just the linear heat

equation in the symmetric simple exclusion process-case.
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5.6 Proof of (H1)-(H2)-(H3) for the Ginzburg-Landau

process

First we provide a uniform in N bound on the particle moments with respect to the

measure νNρ for ρ ≥ 0. We shall take advantage of the attractivity of the process, which in

this case is provided by the convexity of the potential V .

Lemma 6.1. Assume that the one-body potential V : R→ R satisfies the Assumption 3

and that there is a ρ ≥ 0 such that µN0 ≤ νNρ where νNρ (ζ) = e−
∑
x V (ζ(x))+ρ

∑
x ζ(x). Then

for any k > 0 we have for the k-th moments:∫
XN

N−d
∑
x∈TdN

η(x)kdνNρ (η) = Ck <∞.

Proof. It is enough to show that
∫
R y

keρy−V (y)dy < Ck. For that we will use the convexity

of the potential away from the origin. Indeed take R > 0, say R ≥ xmin if xmin is the

point at the bottom of the right well if one thinks of the double-well potential. Then∫ ∞
0

ykeρy−V (y)dy =

∫ R

0

ykeρy−V (y)dy +

∫ ∞
R

ykeρy−V (y)dy ≤ (Reρ)k +

∫ ∞
R

ykeρy−V (y)dy

For the second integral: w.l.o.g. we assume that M := supx∈(R,∞) e
−V (x) = e−V (R). Due to

the convexity, we can find α ≥ R + 1 so that V ′(α) ≥ (α − R)
(
V (α)− V (R)

)
> α − R,

which implies that

V (x) ≥ V (α) + V ′(α)(x− α) ≥ V (α) + (α−R)(x− α).

Then ∫ ∞
α

ykeρy−V (y)dy ≤ e−V (α)

∫ ∞
α

ykeρye−(α−R)(y−α)dy

=
e−V (α)

α−R

∫ ∞
0

∣∣∣∣y + α2 −Rα
α−R

∣∣∣∣k eρ(y+α2−Rα)/(α−R))e−ydy

.
eρα

(α−R)k+1

∫ ∞
0

|y + α2 −Rα|ke−yρ(1−1/(α−R))dy

.
eρα

(α−R)k+1

since 1 ≥ 1/(α−R). A similar estimate on (−∞, 0) follows by symmetry.

We consider ft to be the unique strong solution of the quasilinear diffusion equation

(1.30).
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Lemma 6.2. There exists C > 0 so that

0 <
1

C
≤ h′′(u) ≤ C <∞

for all u ∈ R.

Proof. The proof follows from basic estimates and properties of the Legendre transform;

calculations were done in [GOVW09, Lemma 41], see also [DMOWa, Lemma 5.1] ac-

companied by the paper [DMOWb]. The constant C is then given by exp(oscRV1) :=

exp(supR V1 − infR V1) which is bounded by our Assumption 3.

This solution satisfies Assumption (H2) of the abstract method with H = L∞ as

proven in the Appendix 6.6.2.

Following the abstract method, we consider the local Gibbs measure with slowly varying

coefficient λ(t, x), as was done (among other works) in [Yau91], where λ : R+ × T→ R+

is a smooth function. For every solution to (1.30), we take

λ(t, u) = h′(f(t, u)).

Then the density ψNt , relevant to the Gibbs measure, is given as follows:

ψNt (η) :=
e
∑
x η(x)λ(t,x/N)∏

x∈TN M(λ(t, x/N))
, M(λ(t, x/N)) :=

∫
R
eη(x)λ(t,x/N)−V (η(x))dη(x). (6.83)

The macroscopic density is given by the relation

dp

dλ
(λ(x/N)) =

d logM(λ)

dλ

∣∣∣
λ=λ(t,x/N)

=

∫
RTN ζ(x)e

∑
y ζ(y)λ(t,y/N)−V (ζ(y))dζ

M(λ)
= f(t, x/N).

Also when the average spin is ft(u) and the charges are organised according to the Gibbs

measure, the average of V ′(x) is h′(ft(x/N)):∫
RTN

V ′(ζ(x))ψNt (ζ)dνN(ζ) =
1

M(h′(ft(x/N)))

∫
RTN

e
∑
x ζ(x)h′(ft(x/N)) ∂

∂ζ(x)
(−e−V (ζ(x)))dζ

= h′(ft(x/N))

∫
RTN

ψNt (ζ)dνN(ζ) = h′(ft(x/N))

after an integration by parts in the second equality.
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5.6.1 Consistency estimate

Proposition 6.3. Let d = 1, k > 0 and two configurations η, ζ ∈ RTN of the Ginzburg-

Landau process. We have∫∫
X2
N

N−1
∑
x∈TN

|η(x)− ζ(x)|k(∂tψNt (ζ)− L∗NψNt (ζ))dνN(η)dνN(ζ) ≤ C0e
−ctN−1/3

(6.84)

for some C0, c positive constants.

Proof. When the generator is acting on the local Gibbs measure, explicit calculations give

L∗NψNt (ζ) =
N2

2

∑
x∈TN

(
∂

∂ζ(x)
− ∂

∂ζ(x+ 1)

)2

ψNt (ζ)

−
(

∂V

∂ζ(x)
− ∂V

∂ζ(x+ 1)

)(
∂

∂ζ(x)
− ∂

∂ζ(x+ 1)

)
ψNt (ζ)

+

(
∂

∂ζ(x)
− ∂

∂ζ(x− 1)

)2

ψNt (ζ)−
(

∂V

∂ζ(x)
− ∂V

∂ζ(x− 1)

)(
∂

∂ζ(x)
− ∂

∂ζ(x− 1)

)
ψNt (ζ)

= N2ψNt (ζ)
∑
x∈TN

∆Nh′(ft(x/N))

(
h′(ft(x/N))− ∂V

∂ζ(x)

)
.

(6.85)

We write λ = h′(ft(x/N)) and calculate the time-derivative part:

∂tψ
N
t (ζ) = ψNt (ζ)

∑
x∈TN

∂tλ(t, x/N)ζ(x)− ψNt (ζ)
∂tM(λ(t, x/N))

M(λ(t, x/N))

= ψNt (ζ)
∑
x∈TN

∂tλ(t, x/N)
(
ζ(x)− ft(x/N)

)
.

(6.86)

Gathering them together, we want then to estimate∫
RTN

∫
RTN

N−1
∑
x∈TN

|η(x)− ζ(x)|(∂t − L∗N)ψNt (ζ)dνN(ζ)dνN(η)

=

∫
RTN

∫
RTN

N−1
∑
x∈TN

|η(x)− ζ(x)|
{
∂tλ(t, x/N)(ζ(x)− ft(x/N))

−N2∆Nλ(t, x/N)(V ′(ζ(x))− λ(t, x/N))
}
ψNt (ζ)dνN(ζ)dνN(η)

+N−1
∑
x∈TN

∑
y 6=x

∫
RTN

∫
RTN
|η(x)− ζ(x)|

{
∂tλ(t, y/N)(ζ(y)− ft(y/N))

−N2∆Nλ(t, y/N)(V ′(ζ(y))− λ(t, y/N))
}
ψNt (ζ)dνN(ζ)dνN(η)

(6.87)

where we have split the first sum into two sums on x and y 6= x. Now using that
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∫
RTN (∂t − L∗N)ψNt (ζ)dνN(ζ) = 0, the right hand side equals to∫
RTN

∫
RTN

N−1
∑
x∈TN

|η(x)− ζ(x)|
{
∂tλ(t, x/N)(ζ(x)− ft(x/N))

−N2∆Nλ(t, x/N)
(
V ′(ζ(x))− λ(t, x/N)

)}
ψNt (ζ)dνN(ζ)dνN(η)

−N−1
∑
x

∫
RTN

∫
RTN
|η(x)− ζ(x)|ψNt (ζ)dνN(ζ)dνN(η)

∫
RTN

{
∂tλ(t, x/N)(ζ(x)− ft(x/N))

−N2∆Nλ(t, x/N)(V ′(ζ(x))− λ(t, x/N))
}
ψNt (ζ)dνN(ζ).

(6.88)

The second term above is 0. For the first term of the right-hand side, we replace, up to an

error of order Ce−ctN−2, the discrete Laplacian with the continuous one:∫
RTN

∫
RTN

N−1
∑
x

|η(x)− ζ(x)|(L∗N − ∂t)ψNt (ζ)dνN(ζ)dνN(η)

=

∫
RTN

∫
RTN

N−1
∑
x

|η(x)− ζ(x)|
{
− ∂tλ(t, x/N)(ζ(x)− ft(x/N))

+ ∂uuλ(t, x/N)
(
V ′(ζ(x))− λ(t, x/N)

)}
ψNt (ζ)dνN(ζ)dνN(η) + Ce−ctN−2

=

∫∫
RTN×RTN

N−1
∑
x

|η(x)− ζ(x)|
{
− h′′(ft(x/N))∂uuh

′(ft(x/N))(ζ(x)− ft(x/N))

+ ∂uuh
′(ft(x/N))

(
V ′(ζ(x))− λ(t, x/N)

)}
ψNt (ζ)dνN(ζ)dνN(η) + Ce−ctN−2

=

∫∫
RTN×RTN

N−1
∑
x

|η(x)− ζ(x)|∂uuh′
(
ft

( x
N

))
×

×
(
V ′(ζ(x))− h′

(
ft

( x
N

))
− h′′

(
ft

( x
N

))(
ζ(x)− ft

( x
N

)))
ψNt (ζ)dνN(ζ)dνN(η) + Ce−ctN−2.

(6.89)

Now we replace ζ(x) by its `-averages ζ(x)
`
. We denote by

φ(t, x/N) = ∂uuh
′(ft(x/N))h′′(ft(x/N)).

In order to estimate the error from this replacement, i.e. from the term∫∫
RTN×RTN

N−1
∑
x

|η(x)− ζ(x)|φ
(
t,
x

N

)(
ζ(x)− ζ(x)

`
)
,

we follow the lines of Step 3 in the proof of Prop. 4.3. Since the variables η, ζ are

independent under νN , we conclude a bound in `,N which is of order O(`/N + `−1/2).

In the same manner we also replace V ′(ζ(x)) by V ′(ζ(x))
`
, which leaves the same error
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as above. The right-hand side then takes the form∫∫
RTN×RTN

N−1
∑
x∈TN

|η(x)− ζ(x)|∂uuh′
(
ft

( x
N

))
×

×
(
V ′(ζ(x))

`
− h′

(
ft

( x
N

))
− h′′

(
ft

( x
N

))(
ζ(x)− ft

( x
N

)))
ψNt (ζ)dνN(ζ)dνN(η)

+ Ce−ct(N−2`/N + `−1/2).

(6.90)

An application now of Lemma 2.1, using then that h(k) is bounded and that ‖ft‖Hk .

e−ct‖f0‖Hk , the right-hand side is bounded by above from

Ce−ct
∫
RTN

∫
RTN

N−1
∑
x∈TN

|η(x)− ζ(x)|×

×
(
h′(ζ(x)

`
)− h′

(
ft

( x
N

))
− h′′

(
ft

( x
N

))(
ζ(x)

`
− ft

( x
N

)))
ψNt (ζ)dνN(ζ)dνN(η)

+ Ce−ct(N−2`/N + `−1/2).

(6.91)

We now find ρ in between ζ(x)
`

and ft
(
x
N

)
so that the integrals are bounded by∫

RTN

∫
RTN

N−1
∑
x∈TN

|η(x)− ζ(x)|(h
′)′′(ρ)

2

(
ft(x/N)− ζ(x)

`
)2

dνN(ζ)dνN(η). (6.92)

Under the assumption of boundedness of h(k) for all k’s, we follow now the step 3 of the

proof of Prop. 4.3. This will give in total an error of the form

Ce−ctN−1/3,

after optimizing over `.
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5.6.2 Microscopic stability estimate

We consider a coupling of two Ginzburg-Landau processes with generator L̃N : Cb(X
2
N )→

X2
N given by

L̃Nf(η, ζ) :=
N2

2

∑
x∼y

([(
∂

∂η(x)
− ∂

∂η(y)

)∗(
∂

∂η(x)
− ∂

∂η(y)

)
⊗ 1

]
f(η, ζ)

+

[
1⊗

(
∂

∂ζ(x)
− ∂

∂ζ(y)

)∗(
∂

∂ζ(x)
− ∂

∂ζ(y)

)]
f(η, ζ)

+ (2 +K)

(
∂

∂η(x)
− ∂

∂η(y)

)
⊗
(

∂

∂ζ(x)
− ∂

∂ζ(y)

)
f(η, ζ)

)
(6.93)

where K is a constant to be chosen later and the adjoint is taken in L2(dνN) and so we

recover our generator as we have(
∂

∂η(x)
− ∂

∂η(y)

)∗(
∂

∂η(x)
− ∂

∂η(y)

)
=

(
∂

∂η(x)
− ∂

∂η(y)

)2

−
(

∂V

∂η(x)
− ∂V

∂η(y)

)(
∂

∂η(x)
− ∂

∂η(y)

)
.

This should be the analogue of the basic coupling implemented for the jump processes

in the previous sections, where the last term would correspond to the simultaneous jumps

in a jump process.

Lemma 6.4. Let GN
t be the coupling density on X2

N evolving according to (1.9). When V

satisfies the Assumption (GL1), cf. 3, for a test function φ ∈ C∞c (T) we have that∫∫
X2
N

N−1
∑
x∈TN

|η(x)− ζ(x)|2 φ
( x
N

)
GN
t (η, ζ)dνN(η)dνN(ζ)

≤
∫∫

X2
N

N−1
∑
x∈TN

|η(x)− ζ(x)|2 φ
( x
N

)
GN

0 (η, ζ)dνN(η)dνN(ζ) + CN−
1
3 (1− e−ct).

(6.94)

Proof. We calculate first the time-derivative of the left-hand side:

d

dt

∫∫
X2
N

N−1
∑
x∈TN

|η(x)− ζ(x)|2 φ
( x
N

)
GN
t (η, ζ)dνN(η)dνN(ζ)

= C0e
−ctN−1/3 +

∫∫
X2
N

L̃N

(
N−1

∑
x

|η(x)− ζ(x)|2
)
GN
t (η, ζ)dνN(η)dνN(ζ)

(6.95)

where the first term is the error from the consistency estimate. Now about the second
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term we have∫∫
X2
N

N

2

∑
x∼y

(
8− 2(V ′0(η(x))− V ′0(η(y)))

(
η(x)− ζ(x)− (η(y)− ζ(y))

)
+ 2(V ′0(ζ(x))− V ′0(ζ(y)))

(
η(x)− ζ(x)− (η(y)− ζ(y))

)
− 2(V ′1(η(x))− V ′1(η(y)))

(
η(x)− ζ(x)− (η(y)− ζ(y))

)
+ 2(V ′0(ζ(x))− V ′0(ζ(y)))

(
η(x)− ζ(x)− (η(y)− ζ(y))

)
− 8− 4K

)
GN
t (η, ζ)dνN(η)dνN(ζ).

(6.96)

Using now the strict convexity of the potential V0, i.e. V ′′0 (x) ≥ λ > 0 and the boundedness

of V ′, i.e. V ′1(x) ≤ C, we bound it from above by

∫∫
X2
N

N

2

∑
x∼y

(
− λ|η(x)− ζ(x)|2 + C|η(x)− ζ(x)| − 4K

)
GN
t (η, ζ)dνN(η)dνN(ζ).

(6.97)

This is negative when C < 4
√
Kλ . which implies the Lemma.

Proof of Corollary 1.7. We show that we can apply Theorem 1.1. Indeed the hypotheses

(H3),(H1) are implied by the Proposition 6.3 and Lemma 6.4, respectively. The regularity

properties for the hydrodynamical equation (1.19) in the Appendix 5.A imply hypothesis

(H2) with H = L∞(Td) given Lemma 6.2.

5.7 Perspectives-Work in progress

5.7.1 The case of d ≥ 2 dimensions

So far in our proof of the hydrodynamic limit in the diffusive case, we have assumed d = 1.

This restriction is there only because of the stability results that we need for the limit

PDE, which is a quasi-linear diffusion equation. In particular, as shown in the Appendix

6.6.2 in order to get, by applying only basic estimates, uniform in time propagation of

higher regularity we need to restrict to d = 1. This implies a spectral gap in W k,∞-norm

where k : |k| ≤ 4.

Regularity results for uniformly parabolic equations in higher dimensions usually

rely on the famous results of Nash, de Giorgi, and Moser. In order to remove this

assumption on the dimension in the diffusive case here an idea is to apply the well-known

De Giorgi–Nash–Moser iteration technique combined with Schauder estimates, as was

done for similar equations for example in [HNP15, Appendix A].
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5.7.2 Convergence of the microscopic entropy to the macroscopic

entropy

Another important question in the field of statistical mechanics is the convergence of the

microscopic entropy N−dHN(µNt |νN) towards the macroscopic entropy. The goal of this

subsection is to present our work in progress which is to investigate this problem and its

relation to entropic chaos. The problem can be thought of independently from the results

of the previous sections. We would like to recover the results as in [Kos01, Fat13].

Let us introduce first some notation. Let (ft)t∈[0,∞) ⊂ H be a solution to the limit

equation (1.19) and set

f∞ =

∫
Td
ft(u) du,

which is independent of t. The notation is furthermore justified on noting that we expect

ft → f∞ as t→∞ in, cf. Lemma 1.3. Furthermore we denote the pressure by

p(λ) = logZ(eλ), (7.98)

where Z is the partition function given in equation (1.17). Then we let the macroscopic

entropy be given by

H∞(ft) :=

∫
Td
h(ft(u)) du− h(f∞), (7.99)

where the function is given by

h(ρ) = ρ log σ(ρ)− p
(

log σ(ρ)
)
.

Let us find the corresponding macroscopic Fisher information by differentiating in time.

It holds that

d

dt
H∞(ft) =

∫
Td

(
∂tft log σ(ft) + ft

σ′(ft)

σ(ft)
∂tft − p′(log σ(ft))

σ′(ft)

σ(ft)
∂tft

)
du.

Since σ is the inverse function of φ∂φ logZ(φ), we find that p′(λ) = σ−1(eλ) and hence

d

dt
H∞(ft) = −

∫
Td

σ′(ft(u))2

σ(ft(u))
|∇ft(u)|2 du =: −D∞(ft), (7.100)

where D∞(ft) is called the macroscopic Fisher information. Next we establish a microscopic

analogue of equation (7.100), relating the microscopic entropy HN(µNt |νN) and its Fisher

information DN(µNt |νN), to be defined presently. Let fNt ∈ Cb(XN) denote the density of

µNt ∈ P (XN) with respect to the Gibbs measure νN ∈ P (XN), i.e. set

fNt (η) :=
dµNt
dνNf∞

(η). (7.101)
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The microscopic Fisher information is then defined as

DN(µNt |νNf∞) :=

∫
XN

√
fNt N

−2LN
√
fNt dν

N
f∞ =

〈√
fNt , N

−2LN
√
fNt

〉
L2(νNf∞ )

. (7.102)

Abusing notation, we shall sometimes refer to DN(µNt |νNf∞) by DN(fNt |νNf∞), where fNt is

the density defined in (7.101). Also note that we have left out a factor of N2 as opposed

to the natural (macroscopic) time-scaling, i.e. the time scale of the Fisher information is

the microscopic time scale.

Firstly we have indeed the equivalence of entropic chaos and convergence of the entropy.

For example for the zero-range process we have the following lemma.

Lemma 7.1. Under the conclusion of Corollary 1.4, i.e. the hydrodynamic limit for the

zero-range process, it holds that

N−dHN(µNt |νNf∞) = H∞(ft) +N−dHN(µNt |νNft(·)) + C
( 1

N
+ e−ctN−

1
2+d

)
.

In particular, the microscopic entropy N−dHN(µNt |νN) converges to the macroscopic

entropy H∞(ft) if and only if there is entropic chaos, i.e. N−dHN(µNt |νNft(·)) vanishes as

N →∞.

Proof. It holds that

1

Nd
HN(µNt |νNf∞) =

1

Nd

∫
XN

log
( dµNt
dνNf∞

)
dµNt

=
1

Nd

∫
XN

log
( dµNt
dνNft(·)

)
dµNt +

∫
XN

log
(dνNft(·)
dνNf∞

)
dµNt .

It holds that
dνNft(·)
dνNf∞

(η) =
∏
x∈TdN

Z(σ(f∞))

Z(σ(ft(x/N)))

(
σ(ft(x/N))

σ(f∞)

)η(x)

, (7.103)

Consequently, the second term equals

1

Nd

∫
XN

log
(dνNft(·)
dνNf∞

)
dµNt

=
1

Nd

∑
x∈TdN

∫
XN

(
log

Z(σ(f∞))

Z(σ(ft(x/N)))
+ η(x) log

σ(ft(x/N))

σ(f∞)

)
dµNt (η).

We know that the macroscopic solution ft is differentiable, and the hydrodynamic limit

yields that the right hand side converges to∫
Td
ft(u) log σ(ft(u)) du−

∫
Td
p
(

log σ(ft(u))
)
du− f∞ log σ(f∞) + p

(
log σ(f∞)

)
,
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as N →∞. Thus, in view of (7.99), we have shown that

1

Nd
HN(µNt |νNf∞) =

1

Nd
HN(µNt |νNft(·)) +H∞(ft) + C

( 1

N
+ e−ctN−

d
2+d

)
.

which concludes the proof.

The main objective is then to show that under the initial assumption∣∣∣ 1

Nd
HN [µN0 |νNf∞ ]−H∞(f0)

∣∣∣ ≤ rH,0(N)

for some rate function rH,0(N), there are rate function r1(N, t), r2(N, t) so that∣∣∣ 1

Nd
HN [µNt |νNf∞ ]−H∞(ft)

∣∣∣ ≤ rH,0(N) + r1(N, t),

and similarly for the Fisher information at rate r2(N, t).
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Appendix

5.A Regularity properties of the quasilinear diffusion

equation

As we saw for our proof of the hydrodynamic limit relies on a stability result for the limit

PDE and in particular on estimates on the (uniform) propagation of higher regularity.

For the limit partial differential equation we consider solutions in

H := L∞(Td).

Note that in particular H ⊂ L2(Td). For each f ∈ L2(Td), define its H−1(Td)–norm by

‖f‖2
H−1 := −

∫
Td
f∆−1f du

where ∆−1f = f̃ denotes the solution to the Poisson equation with boundary condition

∆f̃ = f, such that

∫
Td
f̃ du = 0.

This norm can be extended to H−1(Td) by density and is equivalent to the usual H−1–

operator norm. Furthermore it holds that

〈f, f̃〉L2 ≤ ‖∇f‖L2‖f̃‖H−1 and ‖f‖H−1 ≤ ‖f‖L2 (1.104)

for all f ∈ H1(Td), f̃ ∈ H−1(Td). In the almost linear case, when (4.50) holds, the theory

of weak solutions to equation (1.19) is given by the following lemma.

Lemma 1.1 (Weak solutions to the quasi-linear diffusion equation). For every f0 ∈ H,

the diffusion equation (1.19) possesses a unique weak solution ft ∈ H, t ∈ [0,∞), in the

sense that∫ ∞
0

∫
Td

(
ft(u)∂tω(t, u) + σ(ft(u))∆ω(t, u)

)
dudt+

∫
Td
f0(u)ω(0, u) du = 0
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for all ω ∈ C1([0,∞);C2(Td)) with compact support in [0,∞)×Td. Uniqueness thus yields

a semigroup

S∞t f0 := ft

The solution also has the following regularity properties. The semigroup S∞t satisfies

‖S∞t f0‖Lp ≤ ‖f0‖Lp

for all 1 ≤ p ≤ +∞. The solution f = (ft)t∈[0,T ] also satisfies

f ∈ L2(0,∞;H1(Td)) ∩H1(0,∞;H−1(Td)) ⊂ C([0,∞);L2(Td)).

In particular
d

dt
〈ft, ϕ〉 = 〈σ(ft),∆ϕ〉 (1.105)

for all t ≥ 0 and all ϕ ∈ C2(Td).

Proof. Starting from smooth solutions in C∞(Td), c.f. Ladyzhenskaya [LSU68], it classical

to construct a weak solution using the uniform Hölder–continuity following from the

results of de Giorgi-Nash-Moser. For an account of this construction, see also [KL99]. The

maximum principle shows that the semigroup S∞t conserves the L∞(Td)–norm, i.e.

‖S∞t f0‖L∞ ≤ ‖f0‖L∞ .

Therefore it holds that S∞t : H → H. Now, if we let ft and f̃t be two solutions, it holds

that
d

dt
‖ft − f̃t‖H−1 = −2

∫
Td

(ft − f̃t)(σ(ft)− σ(f̃t)) du ≤ 0.

Thus the solutions are unique. Furthermore it holds that

d

dt
‖ft‖2

L2 = −2

∫
Td
σ′(ft)|∇ft|2 du,

whence S∞t is a contraction in L2(Td) and∫ T

0

∫
Td
|∇ft|2 dudt ≤ C

∫ T

0

∫
Td
σ′(ft)|∇ft|2 dudt ≤ C‖f0‖2

L2 .

is bounded. It follows that f ∈ L2(0, T ;H1(Td)). The diffusion equation ∂tft = ∆cσ(ft)

consequently yields

f ∈ L2(0, T ;H1(Td)) ∩H1(0, T ;H−1(Td)).

Interpolation, see Theorem 3 in §5.9.2 in [Eva98], then yields f ∈ C([0, T ];L2(Td)). Now
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the weak form of the diffusion equation yields equation (1.105) for all ϕ ∈ C2(Td) and

almost all t ∈ [0, T ]. Since f is continuous in time with values in L2(Td), this equation

indeed extends to all t ∈ [0, T ]. Furthermore it holds that

d

dt

∫
Td
|ft|p du ≤ −p(p− 1)

∫
Td
|ft|p−2σ′(ft)|∇ft|2 du ≤ 0,

if ft is bounded away from zero. The general case follows from approximation of the

modulus function | · | by smooth functions, c.f. the book of Vazquez [V0́7].

We will need an estimate on the conservation of regularity. For any integer k > 0 and

f ∈ Hk(Td), let Dkf denote the k-th derivative of f (a tensor). Given f0 ∈ H, consider

the solution ft to the diffusion equation (1.19) with initial datum f0.

Lemma 1.2 (Improved Regularity). For d = 1, we have for all k > 1 a uniform in time

upper bound on all the derivatives of order k

‖Dkft‖L2 ≤ C max
{
‖Dkf0‖L2 , ‖∇f0‖

2k+1
2

L2 + 1
}
. (1.106)

Proof. Let k ∈ Nd be any multi-index such that |k| = k. The filtration equation yields that

d

dt

∫
Td
|Dkft|2 du = −2

∫
Td
∇DkftD

k
(
σ′(ft)∇ft

)
du

By the Leibniz rule, this is bounded by

−2

∫
Td
σ′(ft)|∇Dkft|2 du+ C(k)

∑
m;ji

∫
Td
σ(m+1)(ft) ∇Dkft · ∇Dk−

∑
i jift

m∏
j=1

Djjft (1.107)

where the sum is over all integers m > 0 and multi-indices (ji)
m
i=1 such that

∑m
i=1 ji ≤ k

and ji 6= 0 for all i. Thanks to Lemma 4.1, each summand of this sum is bounded from

above by

C
∥∥∇Dkft

∥∥
L2

∥∥∇Dk−
∑
i jift

m∏
j=1

Djjft
∥∥
L2 . (1.108)

First we choose any coefficients p, (pi)
k
i=1 such that 1/2 = 1/p+

∑
i 1/pi to obtain that

∥∥∇Dk−
∑
i jift

m∏
j=1

Djjft
∥∥
L2 ≤

∥∥∇Dk−
∑
i jift

∥∥
Lp

m∏
j=1

∥∥Djjft
∥∥
Lpj
. (1.109)

Note that every order n of the derivatives appearing in this product satisfies 1 ≤ n ≤ k.

We recall here the Gagliardo-Nirenberg-Sobolev inequality for a real valued function h

on Rd: for fixed 1 ≤ r, q ≤ ∞ and m ∈ N, we assume that there are θ, j ∈ N to be such
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that
d

p
− j =

(
d

r
−m

)
θ +

d

q
(1− θ), j

m
≤ θ ≤ 1.

Then

‖Djh‖Lp ≤ C‖Dmh‖θLr‖h‖1−θ
Lq . (1.110)

We apply the above inequality for r = q = 2 and setting

θ :=
−d
p

+ d
2

+ |k−
∑

i ji|
k

and θi :=
− d
pi

+ d
2

+ |ji| − 1

k
.

Note that
|k−

∑
i ji|

k
≤ θ ≤ 1 and

|ji| − 1

k
≤ θi ≤ 1

and that

θ +
∑
i

θi = 1− m(1− d/2)

k
≤ 1− 1

2k
and (1− θ) +

∑
i

(1− θi) ≤ k +
1

2

since 1 ≤ m ≤ k and d = 1. Then the Gagliardo-Nirenberg-Sobolev inequality and the

fact that m ≤ k yields

∥∥∇Dk−
∑
i jift

∥∥
Lp

m∏
j=1

∥∥Djjft
∥∥
Lpj
≤ C‖Dk+1ft‖

2k−m
2k

L2 ‖∇ft‖
m+m

2k

L2

≤ C‖Dk+1ft‖
2k−1
2k

L2 ‖∇ft‖
2k+1
2k

L2 + 1).

(1.111)

By the previous lemma, it holds that ‖ft‖L∞ ≤ ‖f0‖L∞ and ‖∇ft‖L2 ≤ C‖∇f0‖L2 .

Therefore we conclude that for all k, there exist constants 0 < c and C <∞ such that

d

dt
‖Dkft‖2

L2 ≤ −c‖Dk+1ft‖2
L2 + C

(
‖Dk+1ft‖

2− 1
2k

L2 ‖∇f0‖
2k+1

2

L2 + 1
)
. (1.112)

Since the integral of the derivative Dkft over the torus Td vanishes, Poincaré’s inequality

yields

‖Dkft‖2
L2 ≤ C‖Dk+1ft‖2

L2 .

We can choose therefore C ′ > large enough so that the right-hand side of (1.112) is negative

when ‖Dkft‖ ≥ C ′. We then deduce that

‖Dkft‖L2 ≤ C max
{
‖Dkf0‖L2 , ‖∇f0‖

2k+1
2

L2 + 1
}
,

which concludes the proof of the statement.

Next provide some large–time decay estimates which will enable us to provide uniform

in time bounds in the hydrodynamic limit.
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Lemma 1.3 (Spectral gap). Let f0 ∈ L∞(Td). Furthermore let f∞ =
∫
Td f(u)du denote

the spatial average of f . Then there exist finite, positive constants c, C such that

‖ft − f∞‖pLp ≤ Ce−ct‖f0 − f∞‖pLp , for all 2 ≤ p < +∞,

‖ft − f∞‖H−1 ≤ Ce−ct‖f0 − f∞‖H−1 ,

‖ft − f∞‖L∞ ≤ Ce−ct‖f0 − f∞‖H−1 .

(1.113)

Proof. Let ft be a solution to the diffusion equation. First of all, conservation of mass

yields
∫
ft(u) du = f∞. Let f̄t := ft − f∞, which solves the equation

∂tf̄t = ∇ ·
(
σ′(f̄t + f∞)∇f̄t

)
. (1.114)

Note that in contrast to ft, the function f̄t is no longer non-negative everywhere. The

equation for f̄t yields

d

dt

∫
Td
|f̄t|p du = p

∫
Td
|f̄t|p−2f̄t∇ ·

(
σ′(f̄t + f∞)∇f̄t

)
du. (1.115)

Now integration by parts yields

d

dt

∫
Td
|f̄t|p du = −p(p− 1)

∫
Td
σ′(f̄t + f∞)|f̄t|p−2|∇f̄t|2 du. (1.116)

Since

|f̄t|p−2|∇f̄t|2 =
∣∣|f̄t|p/2−1∇f̄t

∣∣2 =
4

p2

∣∣∇|f̄t|p/2∣∣2, (1.117)

it holds that

d

dt

∫
Td
|f̄t|p du = −4(p− 1)

p

∫
Td
σ′(f̄t + f∞)

∣∣∇|f̄t|p/2∣∣2 du ≤ −c∫
Td

∣∣∇|f̄t|p/2∣∣2 du.
(1.118)

Now Poincaré’s inequality in the L2-norm applied to |f̄t|p/2 yields

d

dt

∫
Td
|f̄t|p du ≤ −c

∫
Td
|f̄t|p du, (1.119)

which yields the decay of the Lp-norms of f̄t = ft − f∞. Note that c, C can be taken to be

independent of the choice of p ≥ 2.

The decay of the H−1–norm follows from

d

dt
‖ft − f∞‖2

H−1 = −2

∫
Td
σ′(ft(u))(ft(u)− f∞)2 du ≤ −c‖ft − f∞‖2

H−1 (1.120)
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by uniform ellipticity and (1.104).

Next, in order to show the exponential convergence with respect to the L∞ norm we

use that for k > (d+ 2)/2, there exists a bounded embedding Hk−1(Td) ↪→ L∞(Td) and

therefore

‖ft − f∞‖L∞ ≤ C‖ft − f∞‖Hk−1 .

Moreover interpolation yields

‖ft − f∞‖Hk−1 ≤ ‖ft − f∞‖
k
k+1

Hk ‖ft − f∞‖
1
k+1

H−1 .

Since Lemma 1.2 yields uniform-in-time bounds on the higher order Hk–norms of ft, we

have uniform-in-time bounds on the Hk–norms of (ft − f∞) as well. The existence of

spectral gap in H−1–norm then implies that

‖ft − f∞‖L∞ . Ce−ct‖f0 − f∞‖
1
k+1

H−1

(
max

{
‖Dkf0‖L2 , ‖∇f0‖

2k+1
2

L2 + 1
}) k

k+1

≤ Ce−ct‖f0 − f∞‖H−1 .

This ensures us that the semigroup relaxes indeed exponentially fast in L∞–norm as

well.
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Chapter 6

Spectral gap in mean-field O(n)-model

This chapter is a joint work with Simon Becker and it is published in [BM20].

We study the dependence of the spectral gap for the generator of the Ginzburg-Landau

dynamics for all O(n)-models with mean-field interaction and magnetic field, below and

at the critical temperature on the number N of particles. For our analysis of the Gibbs

measure, we use a one-step renormalization approach and semiclassical methods to study

the eigenvalue-spacing of an auxiliary Schrödinger operator.

245



6.1 Introduction and main results

6.1.1 O(n)-model

The model we are concerned with in this article is the generator of the Ginzburg-Landau

dynamics, or overdamped Langevin dynamics, of the mean-field O(n)-model in the critical

and supercritical regime β ≥ n, as defined precisely in Section 6.2. Our objective is to

study the scaling of the spectral gap in terms of the system size N , for all the numbers of

components n ≥ 1, and including the cases with or without external magnetic field, in the

low temperature and critical regime, extending the study of the subcritical regime β < n

in [BB19]. When β < n, the spectral gap of the generator remains open uniformly in N

and for any number of components n, in the full temperature range.

The mean-field O(n)-model is defined by the energy function

H(σ) = 1
2

∑
x∈[N ]

σ(x)(−∆MFσ)(x)− 1

β

∑
x∈[N ]

〈h, σ(x)〉 (1.1)

acting on spin configurations σ : {1, .., N} → Sn−1 where ∆MF is the mean-field Laplacian

and h ∈ Rn an external magnetic field. For our study of spectral gaps, we consider the

Ginzburg-Landau dynamics associated with the Gibbs measure dρ ∝ e−βH(σ) with Hamilton

function (1.1). The inverse temperature parameter β is such that lower temperatures

(higher β) favors alignment of spins. The study of mean-field O(n)-models is motivated by

the fact that their behavior approximates that of the full O(n)-model on high-dimensional

tori [Ell85, LLP].

6.1.2 State of the art and motivation

The study of spectral gaps in O(n) models is a popular problem that has received a lot of

attention over the last decades. The study of logarithmic Sobolev (and other functional)

inequalities is a classical and very effective tool to study concentration of measures and to

quantify the relaxation rates, i.e. the mixing properties, of the dynamics. In particular,

the spectral gap (the speed of relaxation) is determined by the constant in the Log-Sobolev

inequalities. We define the spectral gap to be the size of the gap between 0 and the rest of

the spectrum of the associated generator L, defined in (2.5). The gap then can be also

characterized by

λS := inf
f∈L2(dρ)\{0}

−〈Lf, f〉L2(dρ)

Varρ(f)
(1.2)

where Varρ is the variance relative to the equilibrium measure ρ. All these quantities will

be specified for our setting in the following section. For further background on functional
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inequalities see [Gro93, BE85, Led99, Led01, GZ03, ABC+00] and references therein.

There are only few general approaches for the study of spectral gaps of spin systems,

using log-Sobolev inequalities, available and many of them rely on an asymptotic study of

log-Sobolev inequalities [LY93, SZ92a, SZ92b, SZ92c] or [MO13] for a more recent result

in that direction. In the article [BB19], a simpler proof for a log-Sobolev inequality was

provided for bounded and unbounded spin systems and sufficiently high temperatures.

The novelty of the approach in [BB19] is the combination of the study of log-Sobolev

inequalities with a simple renormalization group approach to decompose the stationary

measure in a way that makes it accessible to Bakry-Émery techniques.

Inspired by the method in [BB19], we invoke the same one-step renormalization group

procedure to reduce the high-dimensional problem to the study of a low-dimensional

renormalized measure and a fluctuation measure. In the subcritical regime β < n, which

is the regime analyzed in [BB19], the renormalization of the equilibrium measure is

particularly efficient, since the renormalized potential is strictly convex such that the

Bakry-Émery criterion can be directly applied to this measure and implies that the spectral

gap remains open. This renormalization group method has recently also been successfully

applied in the study of the spectral gap for hierarchical spin models [BBb] and for a lattice

discretization of a massive Sine-Gordon model [BBa].

The low temperature regime, which is the regime we are concerned about within

this article, has a non-convex renormalized potential. In this regime, after a single

renormalization step, the renormalized potential is not convex. This makes the asymptotic

analysis much more difficult and requires new methods:

While we analyze the Ising model, n = 1, without magnetic field, directly using explicit

criteria for spectral gap and log-Sobolev inequalities [BG99, BGL14], we heavily use the

equivalence between the generator of the Ginzburg-Landau dynamics and a Schrödinger

operator to analyze multi-component,n ≥ 2, O(n)-models. This analysis builds heavily

upon ideas by Simon [Sim83, CFKS87] and Helffer–Sjöstrand [HS85, HS87] who developed

effective semiclassical methods to study the low-lying spectrum of Schrödinger operators

in the semiclassical limit (which in our case corresponds to N →∞). These results are

discussed thoroughly in the final chapters of [NH05]. In this article however, we have to

study the spectrum of Schrödinger operators beyond the harmonic approximation. In

this case, the limiting operator is not explicitly diagonalizable anymore and the spacing

between eigenvalues is no longer linear in the semiclassical parameter N, the number of

spins.

The mixing time of the Glauber dynamics of the mean-field Ising model (O(1)) without

magnetic field has been carefully analyzed in [DLP09b, DLP09a]. There it is shown-among

others- that the mixing time in the subcritical regime β < 1 is N log(N), the scaling at

the critical point N3/2 for β = 1 and in the supercritical regime β > 1 it is exponential
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growing in N . This is to be compared to a spectral gap that remains open for β < 1,

closes like N−1/2 for β = 1 and closes exponentially fast also for β > 1. Thus, the mixing

time for the Glauber dynamics are -up to a factor 1/N - comparable to our findings on the

spectral gap, cf. Theorem 1.1.

Our main result on the mean-field Ising model in the supercritical regime β > n is

stated in the following Theorem:

Theorem 1.1 (Spectral gap–Supercritical Mean-field Ising models, β > 1). Let N be the

number of spins and n the number of components.

For the supercritical mean-field Ising model (n = 1, β > 1), the spectral gap λN of the

generator

• for the case of small magnetic fields |h| < hc, closes as N →∞ exponentially fast,

λN = e−N∆small(V )(1+O(1)). In particular, for magnetic fields h ∈ [0, hc)

∆small(V ) =

∫ γ2(β)

γ1(β)

β (ϕ− tanh(βϕ+ h)) dϕ

where γ1(β) ≤ γ2(β) ∈ R are the two smallest numbers satisfying the condition

γ(β) = tanh(γ(β) β + h).

• For critical magnetic fields |h| = hc, the spectral gap does not close faster than

O(N−1/3) anymore.

• Finally, for strong magnetic fields |h| > hc, it is bounded away from zero uniformly

in N .

where hc =
√
β(β − 1)− arccosh(

√
β).

In the case of supercritical multi-component systems (n ≥ 2, β > n) without magnetic

fields, it is the rotational invariance of the model that leads to a decay of the spectral

gap as N tends to infinity. To capture this property, we call a function f : (Sn)N → R
radial, if it is only a function of the norm of the mean spin |σ̄|. Our main results for

all multi-component systems in the supercritical regime β > n are summarized in the

following Theorem:

Theorem 1.2 (Spectral gap–Supercritical Mean-field O(n)-models, β > n ≥ 2). Let N be

the number of spins and n the number of components.

For the supercritical mean-field O(n)-models(n ≥ 2, β > n), the spectral gap λN of the

generator
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• closes as λN = O(N−1) if there is no external magnetic field h = 0, but remains

open λN = O(1) for radial functions.

• is bounded away from zero uniformly in the number of spins for all h ∈ Rn\{0}.

We also analyze the behavior of the spectral gap at the critical point β = n and h = 0.

Using a discrete Fourier analysis approach implemented in Section 6.6 for the Ising case

n = 1 and a direct asymptotic analysis for all higher component systems n ≥ 2, we find a

different asymptotic of the spectral gap from both the supercritical β > n (exponentially

fast closing) and subcritical β < n (spectral gap remains open) regimes:

Theorem 1.3 (Spectral gap–Critical Mean-field O(n) models, β = n). For all critical,

β = n, h = 0 mean-field O(n)-models the spectral gap closes as λN = O(N−1/2). In

particular, the rate N−1/2 is attained for the magnetization

M(σ) = N−1/2
∑
x∈[N ]

σ(x).

We emphasize that at the critical points (β = n, h = 0), the gap does no longer close

once a non-zero magnetic field is present:

Theorem 1.4 (Spectral gap–Mean-field O(n) models, β = n, h 6= 0 ). For all, β = n and

h 6= 0, the spectral gap of all mean-field O(n)-models remains open.

The proof of Theorem 1.4 is along the lines of Theorem 1.1 in the regime h > hc and

follows from Proposition 4.2 in the Ising-case, n = 1, and in the multi-component case,

n ≥ 2, from Proposition 5.4.

6.1.3 Organization of the chapter

The chapter is organized as follows:

• In Section 6.2 we introduce the mean-field O(n)-model.

• In Section 6.3 we introduce the renormalized methods.

• In Section 6.4 we analyze the mean-field Ising model in the supercritical regime

β > 1 and prove Theorem 1.1.

• In Section 6.5 we analyze the higher-component mean-field O(n)-models in the

supercritical regime β > n and prove Theorem 1.2.

• In Section 6.6 we study the critical regime and prove both Theorems 1.3 and 1.4.
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• Our article contains an appendix that contains technical details and further details

on numerical methods.

Notation. We write f(z) ≤ O(g(z)) to indicate that there is C > 0 such that |f(z)| ≤
C |g(z)| and f(z) = O(g(z)) for z → z0 if there is for any ε > 0 a neighbourhood Uε of z0

such that |f(z)| ≤ ε |g(z)| . The expectation with respect to a measure µ is denoted by

Eµ(X). The normalized surface measure on the n sphere is denoted as dSSn . We write 1l

to denote a vector or matrix whose entries are all equal to one and id for the identity map.

Finally, we introduce the notation [N ] := {1, ..., N} . The eigenvalues of a self-adjoint

matrix A shall be denoted by λ1(A) ≤ ... ≤ λN(A).

6.2 The mean-field O(n)-model

We study the mean-field O(n)-model with spin configuration σ : [N ]→ Sn−1 and introduce

the mean-field Laplacian (∆MFσ)(x) := 1
N

∑
y∈[N ] (σ(y)− σ(x)) .

The mean spin is defined as σ := 1
N

∑
x∈[N ] σ(x). The energy of a spin configuration σ

is given by the Curie-Weiss Hamiltonian

H(σ) = 1
2

∑
x∈[N ]

σ(x)(−∆MFσ)(x)− 1

β

∑
x∈[N ]

〈h, σ(x)〉

= 1
4N

∑
x,y∈[N ]

|σ(x)− σ(y)|2 − 1

β

∑
x∈[N ]

〈h, σ(x)〉

= N
2

(1− |σ|2)− N
β
〈h, σ〉.

(2.3)

where the constant vector h ∈ Rn represents an external magnetic field and β is the inverse

temperature of the system. The energy of the system can thus be written as a function of

the mean-spin σ̄. This is also why the model is called a mean-field model.

The critical temperature for the O(n)-models is β = n and we study both regimes: the

supercritical regime β > n and the critical regime β = n.

The dynamics we consider is the continuous-time Ginzburg-Landau dynamics

∂tf =
∑
x∈[N ]

〈
∇(x)

Sn−1 , β
−1∇(x)

Sn−1f + f∇(x)

Sn−1H
〉
Rn (2.4)

to the invariant distribution of the mean-field O(n)-model which is the Gibbs measure

dρ(σ) := e−βH(σ)/Z dS⊗NSn−1(σ) with normalizing constant Z. The operators ∆
(x)

Sn−1 defined

by 〈f,−∆
(x)

Sn−1f〉 := 〈∇(x)

Sn−1f,∇(x)

Sn−1f〉 and ∇(x)

Sn−1 are the Laplace-Beltrami and gradient

operator on Sn−1 acting on spin i, respectively. We recall that for the Ising model n = 0

and a function F : S0 → R, the gradient is given by (∇S0F )(σ) = F (σ) − F (−σ). The

L2
(
(Sn−1)N

)
-adjoint of the generator of the Kramers-Smoluchowski equation (2.4) is the
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generator

(Lζ)(σ) :=
∑
x∈[N ]

β−1(∆
(x)

Sn−1ζ)(σ)− 〈(∇(x)

Sn−1H)(σ), (∇(x)

Sn−1ζ)(σ)〉Rn . (2.5)

Studying the operator L on the weighted space L2
(
(Sn−1)N , dρ

)
makes this generator

self-adjoint. The quadratic form of the generator (2.5) is just a rescaled Dirichlet form

−〈Lf, f〉L2(dρ) = β−1
∑
x∈[N ]

∥∥∥∇(x)

Sn−1f
∥∥∥2

L2(dρ)
.

6.3 Renormalized measure and mathematical prelim-

inaries

We start with the definition of entropy with respect to probability measures:

Definition 3.1 (Entropy). For a probability measure µ on some Borel set Ω the entropy

Entµ(F ) of a positive measurable function F : Ω→ R≥0 with
∫

Ω
F (x) log+(F (x)) dµ(x) <

∞ is defined as

Entµ(F ) :=

∫
Ω

F (x) log

(
F (x)

/∫
Ω

F (y) dµ(y)

)
dµ(x). (3.6)

Instead of studying the generator of the dynamics directly, we apply a one step

renormalization first [BBS19, Sec. 1.4]:

Definition 3.2 (Renormalized quantities). The renormalized single spin potential Vn

associated with the mean-field O(n)-model for ϕ ∈ Rn is defined as

Vn(ϕ) = − log

∫
Sn−1

e−
β
2
‖ϕ−σ‖2+〈h,σ〉 dSSn−1(σ)

= β
2

(
1 + ‖ϕ‖2)− log

(
Γ
(
n
2

) (
2

‖βϕ+h‖

)n
2
−1

In
2
−1

(‖βϕ+ h‖)
) (3.7)

where I is the modified Bessel function of the first kind. The N -particle renormalized

measure is defined for a normalizing constant ν
(n)
N by

dνN(ϕ) = ν
(n)
N e−NVn(ϕ) dϕ on Rn. (3.8)

Definition 3.3 (Fluctuation measure). For any ϕ ∈ Rn, there is a probability measure

µϕ, the fluctuation measure, on (Sn−1)
N

defined as

Eµϕ(F ) =

∫
(Sn−1)N

F (σ)eNVn(ϕ)
∏
x∈[N ]

e−
β
2
‖ϕ−σ(x)‖22+〈h,σ(x)〉 dS(σ(x)). (3.9)
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A straightforward calculation, [BBS19, Lemma 1.4.3] shows that the stationary measure

dρ can be decomposed into the fluctuation and renormalized measure such that Eρ(F ) =

EνN (Eµϕ(F )).

Example 1. In the case of the Ising model (n = 1) the renormalized potential is

V1(ϕ) = β
2
(1 + ϕ2)− log (cosh(βϕ+ h)) . (3.10)

For the XY model (n = 2) the renormalized potential reads

V2(ϕ) = β
2
(1 + ‖ϕ‖2)− log (I0(‖βϕ+ h‖)) (3.11)

where I is the modified Bessel function of the first kind. For the Heisenberg model (n = 3)

one finds

V3(ϕ) = β
2

(
1 + ‖ϕ‖2)− log

(
sinh ‖βϕ+ h‖
‖βϕ+ h‖

)
.

We observe that the renormalized potential grows quadratically at infinity such that

∆Vn ∈ L∞(Rn).

The Ginzburg-Landau dynamics for the renormalized measure is then given by the

self-adjoint operator Lren : D(Lren) ⊂ L2(Rn, dνN)→ L2(Rn, dνN), satisfying

(Lrenζ)(ϕ) = (∆Rnζ)(ϕ)−N 〈∇RnVn(ϕ),∇Rnζ(ϕ)〉 . (3.12)

The renormalized generator Lren satisfies

−〈Lrenf, f〉L2(dνN ) = ‖∇Rnf‖2
L2(dνN ) . (3.13)

The renormalized Schrödinger operator with null space spanned by e−NVn is the operator

defined by conjugation −∆ren = e−NVn/2Lrene
NVn/2

∆ren = −∆Rn + N2

4
|∇Vn(ϕ)|2 − N

2
∆Vn(ϕ). (3.14)

Definition 3.4 (LSI and SGI). Let µ be a Borel probability measure on Rn. We say that

µ satisfies a logarithmic Sobolev inequality LSI(k) iff

Entµ(f 2) ≤ 2
k
‖∇f‖2

L2(dµ)

for all smooth functions f . The LSI(k) implies [Led99, Prop. 2.1] that µ satisfies a spectral

gap inequality SGI(k)

Varµ(f) ≤ 1
k
‖∇f‖2

L2(dµ) .

Thus, in light of the characterisation (1.2), the spectral gap of Lren is by (3.13) precisely
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the constant in the SGI of the renormalized measure.

Remark 3.5. If f vanishes outside a set Ω of measure µ(Ω) < 1 and if µ satisfies a

SGI(k) then

‖f‖2
L2(dµ) ≤

1
k(1−µ(Ω))

‖∇f‖2
L2(dµ) . (3.15)

For Borel probability measures µ on R there is an explicit characterization of the

measures satisfying a LSI [BG99, Theorem 5.3]:

Any such measure µ satisfies a LSI(k) iff there exist absolute constants K0 = 1/150

and K1 = 468 such that the optimal value k in the LSI(k) satisfies

K0(D0 +D1) ≤ 1/k ≤ K1(D0 +D1)

for finite D0 and D1. Let m be the median of µ and p(t) dt the absolutely continuous part

of µ with respect to Lebesgue measure. The constants D0 and D1 are given by

D0 := sup
x<m

(
−µ((−∞, x]) log(µ((−∞, x]))

∫ m

x

ds

p(s)

)
and

D1 := sup
x>m

(
−µ([x,∞)) log(µ([x,∞))

∫ x

m

ds

p(s)

)
.

(3.16)

For constants

B0 := sup
x<m

(
µ((−∞, x])

∫ m

x

ds

p(s)

)
and B1 := sup

x>m

(
µ([x,∞))

∫ x

m

ds

p(s)

)
(3.17)

one defines the Muckenhoupt number [Muc72] B := max(B0, B1). The measure µ satisfies

then a SGI with optimal constant c = 1/k if and only if B is finite in which case

B/2 ≤ c ≤ 4B (3.18)

[BGL14, Theorem 4.5.1].

Remark 3.6. The proof given in [BG99, Theorem 5.3] shows that the characterization of

LSI constants holds true not only by splitting at the median: Instead, there is ε > 0 such

that for any ζ for which µ((−∞, ζ]), µ([ζ,∞)) ∈ (1/2−ε, 1/2+ε) the above characterization

(3.16) holds true when the median m is replaced by ζ. The same is, up to an unimportant

adaptation of the lower bound in (3.18), for the SGI as well, cf. [GR01, Prop. 3.2 + 3.3].

We continue by observing that the fluctuation measures satisfy a LSI( 2
γn

) independent

of h or ϕ. This follows for n = 1 with γn = 4 from a simple application of the tensorization

principle to the classical bound on the Bernoulli distribution [ABC+00, Led01, SC97]. For

number of components n ≥ 2 one can use the results from [ZQM11].
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Proposition 3.7. Let the renormalized measure νN satisfy a LSI(λ), then the full equilib-

rium measure ρ satisfies a LSI

Entρ(F
2) ≤ 2

γn

(
1 + 8Nβ2

λ

) ∑
x∈[N ]

∥∥∥∇(x)

Sn−1F
∥∥∥2

L2(dρ)

and if the renormalized measure νN satisfies a SGI(λ), then the equilibrium measure ρ

satisfies a SGI

Varρ(F ) ≤ 1
γn

(
1 + 4Nβ2

λ

) ∑
x∈[N ]

∥∥∥∇(x)

Sn−1F
∥∥∥2

L2(dρ)
.

Proof. The proof of the SGI is as follows: For the SGI we obtain the decomposition

Varρ(F ) = EνN (Varµϕ(F )) + VarνN (Eµϕ(F ))

≤ 1
γn

∑
x∈[N ]

∥∥∥∇(x)

Sn−1F
∥∥∥2

L2(dρ)
+ 1

λ
EνN

(∣∣∇ϕEµϕ(F )
∣∣2) . (3.19)

To bound the second term in the above estimate, we compute using the Cauchy-Schwarz

inequality and the spectral gap inequality for fluctuation measures µϕ on the sphere,

defined by (3.9) such that, see [BB19, Theorem 1, (11)-(15)],

∇ϕEµϕ(F ) = N∇V (ϕ)Eµϕ(F )− β
∑
x∈[N ]

Eµϕ(F (ϕ− σx)). (3.20)

We then use that by the explicit expression (3.7)

∇V (ϕ) = β

∫
Sn−1 e

−β
2
‖ϕ−σx‖2(ϕ− σx)dSSn−1(σx)∫

Sn−1 e
−β

2
‖ϕ−σx‖2 dSSn−1(σx)

= β(ϕ− Eµϕ(σx)). (3.21)

Inserting this into (3.20) we find that

∇ϕEµϕ(F ) = β
∑
x∈[N ]

Eµϕ(Fσx)− Eµϕ(F )Eµϕ(σx) = β
∑
x∈[N ]

covµϕ(F, σx).

Thus, we have using Cauchy-Schwarz that

∣∣∇ϕEµϕ(F )
∣∣2 ≤ Nβ2

∑
x∈[N ]

| covµϕ(F, σx)|2. (3.22)
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We can then use that by Cauchy-Schwarz again

covµϕ(F, σx) = Eµϕ
(
(F − Eµϕ(F ))(σ − Eµϕ(σ))

)
≤
√

Eµϕ(F − Eµϕ(F ))2

√
Eµϕ(F − Eµϕ(F ))2

√
Eµϕ(σ − Eµϕ(σ))2

≤ 2
√

Varµϕ(F ).

(3.23)

Finally, inserting this into (3.22) and using the LSI for the fluctuation measure, we find

EνN
(∣∣∇ϕEµϕ(F )

∣∣2) ≤ 4Nβ2EνN Varµϕ(F )

≤ 4Nβ2

γn
Eρ
∑
x∈[N ]

∣∣∣∇(x)

Sn−1F
∣∣∣2 (3.24)

which after inserting this bound into (3.19) implies the claim. To prove the LSI we follow

[BB19] and write

Entρ(F
2) = EνN

(
Entµϕ(F 2)

)
+ EntνN

(
Eµϕ(F 2)

)
≤ 2

γn

∑
x∈[N ]

∥∥∥∇(x)

Sn−1F
∥∥∥2

L2(dρ)
+ 2

λ
EνN

(∣∣∣∇ϕ

√
Eµϕ(F 2)

∣∣∣2) .
For the second term we have from applying the Cauchy-Schwarz inequality:

∣∣∣∇ϕ

√
Eµϕ(F 2)

∣∣∣2 = β2

∣∣∣∣∣
∑

x∈[N ] covµϕ(F 2, σx)√
Eµϕ(F 2)

∣∣∣∣∣
2

≤ β2N

∑
x∈[N ] | covµϕ(F 2, σx)|2

Eµϕ(F 2)
.

By doubling the variables σx, σ
′
x, we write

| covµϕ(F 2(σx), σx)| =
1

2

∣∣∣Eµϕ((F 2(σx)− F 2(σ′x))(σx − σ′x)
)∣∣∣

≤
√

Varµϕ(F )

√
1

2
Eµϕ⊗µϕ ((F (σx) + F (σ′x))

2(σx − σ′x)2)

≤
√

Varµϕ(F )
√

8Eµϕ(F 2)

where in the last two lines we applied CS inequality and used that |σx − σ′x| ≤ 2. Then

| covµϕ(F 2, σ)|2 ≤ 8 Varµϕ(F )Eµϕ(F 2).

This gives ∣∣∣∇ϕ

√
Eµϕ(F 2)

∣∣∣2 ≤ 8Nβ2 Varµϕ(F ).
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Overall we have

Entρ(F
2) ≤ 2

γn

∑
x∈[N ]

∥∥∥∇(x)

Sn−1F
∥∥∥2

L2(dρ)
+ 16β2N

λγn

∑
x∈[N ]

∥∥∥∇(x)

Sn−1F
∥∥∥2

L2(dρ)

= 2
γn

(
1 + 8β2N

λ

) ∑
x∈[N ]

∥∥∥∇(x)

Sn−1F
∥∥∥2

L2(dρ)
.

6.4 The mean-field Ising model

Without loss of generality, we assume h ≥ 0 when studying the Ising model. We define

the critical magnetic field strength in the Ising model

hc(β) :=
√
β(β − 1)− arccosh(

√
β)

for temperatures β ≥ 1 as the supremum of all h > 0 such that x = tanh(βx + h) has

three distinct solutions for x ∈ [−1, 1]. In particular hc(β) is monotone with respect to the

inverse temperature β.

The critical magnetic field strength is chosen in such a way that for fields h < hc(β)

there are two potential wells in the renormalized potential landscape, see Figure 6.1,

whereas for h ≥ hc(β) there is only one, see Figure 6.2 in subsection 6.4.3 where this case

is discussed.

6.4.1 Lower bound on spectral gap in weak field h < hc(β) regime

We start by showing that the inverse spectral gap in the Ising model in the case of

subcritical magnetic fields, i.e. h < hc(β), converges at most exponentially fast to zero as

the number of spins, N , increases.

We start by showing a LSI with exponential constant for the renormalized measure.

This implies by Prop. 3.7 that such an LSI must also hold for the full many-particle

measure dρ.

Proposition 4.1 (LSI for νN). Let β > 1 and h < hc(β) such that V1 is a double well

potential where the depth of the smaller well is denoted by ∆small(V ), cf. Fig. 6.1. The

mean-field Ising model satisfies a LSI
(
e−N∆small(V )(1+O(1))

)
1

EntνN (F 2) . eN∆small(V )(1+O(1))

∫
R
|F ′|2 dνN .

1If the magnetic field is zero, i.e. h = 0, both wells are of equal size.
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Figure 6.1: Weak magnetic fields: Renormalized potentials for the Ising model with β = 3
and zero h = 0 or weak h = 0.5 magnetic fields form a double well.

Proof. The renormalized potential V1 has on [0,∞) a global minimum with positive

second derivative at some ϕmin satisfying ϕmin = tanh(βϕmin + h). This follows since the

renormalized potential (3.7) reduces to

V1(ϕ) =
β

2
ϕ2 − log(cosh(βϕ+ h))

and the critical points of this potential are easily found to satisfy ϕ = tanh(βϕ+ h), see

also [BBS19, Lemma 1.4.6]. For small temperatures, i.e. β →∞, one has ϕmin = 1 + O(1).

We first consider h = 0 : In this case, the median of the renormalized measure is

located precisely at ϕ = 0 and ϕmin > 0 is one of the two non-degenerate global minima of

the renormalized potential (the other minimum is located at −ϕmin by axisymmetry).

An application of Laplace’s principle, see [Won01, Ch. II,Theorem 1], shows that for

all x > 0 :

lim
N→∞

1
N

log

(
−νN([x,∞)) log(νN([x,∞)))

∫ x

0

eNV1(ϕ)

ν
(1)
N

dϕ

)

= lim
N→∞

1
N

(
log

∫ ∞
x

e−NV1(ϕ) dϕ+ log (− log(νN([x,∞)))) + log

∫ x

0

eNV1(ϕ) dϕ

)
= − inf

t∈[x,∞)
V1(t) + sup

t∈[0,x]

V1(t).

(4.25)

The supremum of (4.25) is attained at x = ϕmin such that

− inf
t∈[x,∞)

V1(t) + sup
t∈[0,x]

V1(t) = ∆small(V ) > 0.
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Here, we used that for x > ϕmin we get by Laplace’s principle

− log (νN [x,∞)) = N(V (x)− V (ϕmin))(1 + O(1))

and thus limN→∞
log(− log(νN [x,∞)))

N
= 0.

On the other hand, if x ∈ (0, ϕmin) then, again by Laplace’s principle, − log (νN [x,∞)) =

− log(1
2
) + O(1) and thus limN→∞

log(− log(νN [x,∞)))
N

= 0 as well. The case x = ϕmin can be

treated analogously. Hence, we obtain for the constant D1 as in (3.16)

D1 := sup
x>0

(
−νN([x,∞)) log(νN([x,∞)))

∫ x

0

eNV1(ϕ)

ν
(1)
N

dϕ

)
= eN∆small(V )(1+O(1)).

(4.26)

The symmetry of the distribution for h = 0 implies then that D0 = D1.

We now consider h > 0: The renormalized potential possesses a unique global minimum

at some ϕmin and the median of the renormalized measure converges to this point ϕmin,

see Fig. 6.1, as Laplace’s principle implies∫∞
ϕmin

e−NVn(ϕ) dϕ∫∞
−∞ e

−NVn(ϕ) dϕ
=

1

2
+O(1/N).

Hence, it suffices to verify the LSI bounds (3.16) for m = ϕmin as argued in Remark 3.6.

Arguing as in (4.26) yields for h > 0 and x < ϕmin :

lim
N→∞

1
N

log

(
−νN((−∞, x] log(νN((−∞, x]))

∫ m

x

eNV1(ϕ)

ν
(1)
N

dϕ

)

= lim
N→∞

1
N

(
log

∫ x

−∞
e−NV1(ϕ) dϕ+ log (− log(νN([x,∞)))) + log

∫ m

x

eNV1(ϕ) dϕ

)
= − inf

t∈(−∞,x]
V1(t) + sup

t∈[x,m]

V1(t)

(4.27)

which shows D0 = eN∆small(V )(1+O(1)) by taking x to be the minimum of the smaller well of

the renormalized potential. For the constant D1 we get on the other hand for x > ϕmin,

since the renormalized potential is monotonically increasing on [ϕmin,∞),

lim
N→∞

1
N

log

(
−νN([x,∞)) log(νN([x,∞))

∫ x

m

eNV1(ϕ)

ν
(1)
N

dϕ

)

= lim
N→∞

1
N

(
log

∫ ∞
x

e−NV1(ϕ) dϕ+ log

∫ x

m

eNV1(ϕ) dϕ+ log (− log(νN([x,∞))))

)
= − inf

t∈[x,∞)
V1(t) + sup

t∈[m,x]

V1(t) = 0

(4.28)
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such that D1 is negligible compared with D0.

6.4.2 Upper bound on spectral gap in weak field h < hc(β) regime.

The upper bound on the spectral gap is obtained by finding an explicit trial function

saturating the SGI. For this construction, we use the notation and results of Lemma 2.1.

In order to fix ideas first, we assume h = 0. We start by observing that the mean

spin σ can only take values in the set M := {−1,−1 + 2/N, ..., 1} . The weights of the

stationary measure dρ are given by functions ηN :M→ R

ηN(i) :=
∑
σ;σ=i

e−βH(σ) =

(
N

N/2(1 + i)

)
e−

Nβ
2

(1−i2). (4.29)

where we used (2.3).

We also introduce trial functions fN : {±1}N → R for the spectral gap inequality given

by

fN(σ) :=
∑

i∈M;0≤i≤σ

1l{i≤γ3(β)}

ηN(i)
(4.30)

with indicator function 1l and γ3(β) is the largest solution to ϕ = tanh(βϕ+ h). Since fN

depends only on the mean spin, we can identify them with functions gN :M→ R

gN(m) =
∑

i∈M;0≤i≤m

1l{i≤γ3(β)}

ηN(i)
such that fN(σ) = gN(σ).

For the L2 norm of the fN we find

‖fN‖2
L2(dρ) =

∑
i∈M

ηN(i)

Z
|gN(i)|2 ≥

∑
i∈M;i>γ3(β)

ηN(i)

Z

 ∑
j∈M;0≤j≤γ3(β)

1

ηN(j)

2

(4.31)

where Z is the normalization constant of the full measure dρ. For the gradient of fN we

find ∣∣∣∇(i)

S0 fN(σ)
∣∣∣2 = |gN(σ)− gN(σ ± 2/N)|2 . ηN(σ)−2.

Hence, for some C > 0

∑
i∈[N ]

∥∥∥∇(i)

S0 fN

∥∥∥2

L2(dρ)
≤ CN

Z

∑
i∈M;0≤i≤γ3(β)

1

ηN(i)
. (4.32)

Using (3.15) with µ(Ω) = 1
2

implies by comparing (4.31) with (4.32) that the constant γ
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in the SGI is bounded from below by

1

NC

∑
i∈M;i>γ3(β)

ηN(i)
∑

i∈M;0≤i≤γ3(β)

1

ηN(i)
≤ 1

2γ
. (4.33)

We recall from the discussion in Lemma 2.1 that the continuous approximation ηN(i)

attains its maximum in the limit at i = γ3(β) and the summand 1
ηN (i)

in the second sum

attains its maximum in the limit at i = 0.

Thus it suffices to study the asymptotic of the logarithm of the leading order summands

in (4.33) using the asymptotic behaviour of ζN := ∂s log(ηN(s)) given in (2.99)

log
(
ηN (γ3(β))
ηN (0)

)
= N

∫ γ3(β)

0

ζN(s) ds = N

∫ γ3(β)

0

(βs− arctanh(s)) ds (1 + O(1))

= N

(
βγ3(β)2

2
−
∫ γ3(β)β

0

arctanh(x/β)

β
dx

)
(1 + O(1))

= −N
∫ γ3(β)

0

β(x− tanh(βx)) dx (1 + O(1))

= N∆small(V )(1 + O(1)).

Here, we used integration of the inverse function to obtain the last line and (3.10) in the

last one. In the case of a positive weak magnetic field h ∈ (0, hc(β)) we choose a trial

function fN,h : {±1}N → R given by

fN,h(σ) :=
∑

i∈M;σ<i<γ3(β)

1l{i≥γ1(β)}

ηN,h(i)
where for i ∈M

ηN,h(i) :=

(
N

N/2(1 + i)

)
e−

Nβ
2 (1−i2)+hNi.

(4.34)

Proceeding as above in (4.31) we obtain for the L2 norm the lower bound

‖fN,h‖2
L2(dρ) ≥

1

Z

∑
i∈M;i<γ1(β)

ηN,h(i)

 ∑
j∈M;γ3(β)>j≥γ1(β)

1

ηN,h(j)

2

. (4.35)

For the Dirichlet form we find, as for (4.32), for some C > 0

∑
x∈[N ]

∥∥∥∇(x)

S0 fN,h

∥∥∥2

L2(dρ)
≤ CN

Z

∑
j∈M;γ3(β)>j≥γ1(β)

1

ηN,h(j)
. (4.36)

We can apply (3.15) with µ(Ω) = 1
1−ε for some ε > 0 since the trial function (4.34) vanishes

to the right of the global maximum such that by comparing (4.35) with (4.36) the constant
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Figure 6.2: Strong magnetic fields: The renormalized potential and its second derivative
for h = 5 for β = 3. The potential is non-convex even though it is a single well potential.
However, it is convex in a neighbourhood of the global minimum.

γ in the SGI is bounded from below by

1

NC

∑
i∈M;i<γ1(β)

ηN,h(i)
∑

j∈M;γ3(β)>j≥γ1(β)

1

ηN,h(j)
≤ 1

εγ
. (4.37)

The weight ηN,h(i) in the first sum attain their maximum (in the limit) at i = γ1(β) and

the summands 1
ηN,h(i)

in the second sum attain their maximum at i = γ2(β).

To explicitly state an upper bound on the spectral gap it suffices to study the asymptotic

of the logarithm of the leading order summands

log
(
ηN,h(γ1(β))

ηN,h(γ2(β))

)
= N

∫ γ1(β)

γ2(β)

ζN,h(s) ds =

∫ γ1(β)

γ2(β)

(βs− arctanh(s)) ds (1 + O(1))

= N

(
β(γ1(β)2 − γ2(β)2)

2
−
∫ γ1(β)β

γ2(β)β

arctanh(x/β)

β
dx

)
(1 + O(1))

= −N
∫ γ1(β)

γ2(β)

β(x− tanh(βx)) dx (1 + O(1))

= N∆small(V )(1 + O(1)).

6.4.3 Spectral gap in strong magnetic field regime h > hc(β).

Next, we study the case of strong magnetic fields for the Ising model, that is V ′1 has at

most one root, for β > 1. We also include the case β = 1 and h 6= 0. Unlike in the case of

weak magnetic fields, in which case the constant in the LSI for the renormalized measure
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is exponentially increasing in the number of spins, the spectral gap of the renormalized

measure is now linearly increasing in the number of spins. Responsible for this uniform

gap is the local uniform convexity at the minimum of the renormalized potential. More

precisely, we have

V ′1(ϕ) = β(ϕ− tanh(βϕ+ h)) and V ′′1 (ϕ) = β(1− β sech(βϕ+ h)2). (4.38)

Thus, V ′′1 (ϕ) = 0 yields ϕ± = −h±arccosh(
√
β)

β
. Inserting this into V ′1(ϕ±) = 0 implies that

h± = ± arccosh(
√
β) ∓

√
β(β − 1) with sign sgn(h±) = ∓1 and thus ϕ± = ±

√
β−1
β
. In

particular, in the subcritical regime β > 1 all global minima ϕ∗ have sign sgn(ϕ∗) = sgn(h),

such that the renormalized potential satisfies V ′′1 (ϕ∗) > 0. Moreover, for β = 1 and h 6= 0

there are no points at which both the first and second derivative vanish. The third

derivative at this point however is always non-zero and given by

V
(3)

1 (ϕ±) = ∓2
√
β(β − 1)β.

Proposition 4.2 (Ising model, strong field). Let β ≥ 1 and h > hc(β), i.e. V1 is a single

well potential. We obtain for the Ising model a SGI(γ)

VarνN (F ) ≤ 1
γ

∫
R
|F ′|2 dνN

where 1
γ

is uniformly bounded in N.

Proof. Since the renormalized Schrödinger operator and renormalized generator are uni-

tarily equivalent up to a factor, see (3.14), the semiclassical eigenvalue distribution stated

in [Sim83, Theo. 1.1] implies the statement of the Proposition:

It follows immediately from the renormalized Schrödinger operator (3.14)

∆ren = − d2

dϕ2 + N2

4
|V ′1(ϕ)|2 − N

2
V ′′1 (ϕ). (4.39)

that the low-lying eigenfunction of ∆ren accumulate at the unique non-degenerate (the

second derivative is non-zero) potential well and the spectral gap of the renormalized

measure grows linearly in N. The result then follows from Prop. 3.7.

6.4.4 Critical magnetic fields in n = 1

Proposition 4.3. Let h = h± and β > 1. The spectral gap of the radial renormalized

Schrödinger operator grows as O(N2/3) and in particular, the spectral gap of the full

measure does not close faster than O(N−1/3).
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Figure 6.3: Critical magnetic field for n = 1: Renormalized potential of the Ising model
with β = 2 possesses two critical points, one inflection point and a global minimum.

Proof. Let λ := N/2 and consider the Schrödinger operator, defined in (3.14),

H := −∂2
x + λ2|V ′1(x)|2 − λV ′′1 (x) (4.40)

for the renormalized potential and auxiliary Schrödinger operators, which are obtained as

the Taylor expansion of (4.40)

Hϕ∗ = −∂2
x + λ2|V ′1(ϕ∗)|2(x− ϕ∗)2 − λV ′′1 (ϕ∗) and

Hϕ± = −∂2
x + λ2β3(β − 1)(x− ϕ±)4 ± λ2

√
β(β − 1)β(x− ϕ±)

(4.41)

on L2(R) localized to the two critical points, the inflection point ϕ± and the global

minimum ϕ∗. We then define j ∈ C∞c ((−2, 2); [0, 1]) such that j(x) = 1 for |x| ≤ 1 and

from this functions

Jϕ∗(x) := j(λ2/5|x− ϕ∗|), Jϕ±(x) := j(λ3/10|x− ϕ±|) and

J(x) :=
√

1− Jϕ±(x)2 − Jϕ∗(x)2 with

‖∇Jϕ∗‖
2
Rn ≤ O(λ4/5),

∥∥∇Jϕ±∥∥2

RN ≤ O(λ3/5).

(4.42)

Invoking then unitary maps Uϕ∗ , Uϕ± ∈ L(L2(R)) defined as

(Uϕ∗f)(x) := λ−1/4f(λ−1/2(x+ ϕ∗)) and (Uϕ±f)(x) := λ−1/6f(λ−1/3(x+ ϕ±)) (4.43)

shows that the two Schrödinger operators in (4.41) are in fact unitarily equivalent, up to
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Figure 6.4: The five smallest eigenvalues of the operator Sϕ± as a function of β. The
smallest eigenvalue is strictly positive.

multiplication by powers of λ, to the λ-independent Schrödinger operators

Sϕ∗ = −∂2
x + |V ′1(ϕ∗)|2x2 − V ′′1 (ϕ∗)

Sϕ± = −∂2
x + β3(β − 1)x4 ± 2

√
β(β − 1)βx,

(4.44)

respectively. Both operators have discrete spectrum and that inf(Spec(Sϕ±)) > 0 is shown

in Section 6.C. We illustrate the behaviour of the smallest eigenvalues of Sϕ± in Figure

6.4. More precisely, we have that

λU−1
ϕ∗ Sϕ∗Uϕ∗ = Hϕ∗ and λ2/3U−1

ϕ± Sϕ±Uϕ± = Hϕ± . (4.45)

Taylor expansion of the potential at the respective critical point and the estimate on

the gradient (4.42) imply that

|Jϕ∗(H−Hϕ∗)Jϕ∗| ≤ O(λ4/5) and also
∣∣Jϕ±(H−Hϕ±)Jϕ±

∣∣ ≤ O(λ3/5). (4.46)

Let 0 = e1 < e2 ≤ .. be the eigenvalues (counting multiplicities) of Sϕ∗ and 0 < f1 ≤ f2 ≤ ...

the ones of Sϕ± and choose τ such that λen+1 > τ > λen and λ2/3fm+1 > τ > λ2/3fm with

Pi being the projection onto the eigenspace to all eigenvalues of Si below τ. The IMS
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formula, see [CFKS87, (11.37)] for a version on manifolds, implies that

H = JHJ − |∇J |2 +
∑

i∈{ϕ∗,ϕ±}

(
JiHiJi + Ji(H−Hi)Ji − |∇Ji|2

)
. (4.47)

On the other hand, it follows that

Jϕ∗Hϕ∗Jϕ∗ = Jϕ∗Hϕ∗Pϕ∗Jϕ∗ + Jϕ∗Hϕ∗(id−Pϕ∗)Jϕ∗
≥ Jϕ∗Hϕ∗Pϕ∗Jϕ∗ + λenJ

2
ϕ∗

and also

Jϕ±Hϕ±Jϕ± = Jϕ±Hϕ±Pϕ±Jϕ± + Jϕ±Hϕ±(id−Pϕ±)Jϕ±

≥ Jϕ±Hϕ±Pϕ±Jϕ± + λ2/3fmJ
2
ϕ± .

In particular, we find

‖V ′1‖2
Rn ≥ cλ−6/5 on J for some c > 0.

and

‖V ′′1 ‖Rn ≥ cλ−3/10 on J for some c > 0.

This implies for large λ that

JHJ ≥ λ2/3fmJ
2. (4.48)

From (4.47) we then conclude that for some C > 0

H ≥ λ2/3fmJ
2 − Cλ4/9 +

∑
i∈{ϕ±,ϕ∗}

JiHiPiJi = λ2/3fm +
∑

i∈{ϕ±,ϕ∗}

JiHiPiJi − o(
√
λ).

This implies the claim of the Proposition, since

rank (J0H±PJ0) ≤ n.

More precisely, for the eigenvalues E1(λ) ≤ E2(λ) ≤ .. of H we have shown that

lim inf
λ→∞

λ−2/3En(λ) ≥ fn−1 > 0 for n ≥ 2.

In particular, the lowest possible eigenvalue e1 = 0 of the renormalized Schrödinger

operator is of course attained as the nullspace of the renormalized Schrödinger operator

Hϕ∗ is non-trivial. This shows that the spectral gap of the renormalized Schrödinger

operator grows at least proportional to λ2/3.
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Figure 6.5: Heisenberg model, (n = 3): The renormalized potential of the Heisenberg
model for h = 0 and β = 5.

6.5 Multi-component O(n)-models

6.5.1 n ≥ 2: Zero magnetic field, h = 0

Let h = 0 then the renormalized potential for n ≥ 2 is radially symmetric and possesses a

critical point at ϕ = 0. In the supercritical case, i.e. β > n, the renormalized potential

possesses another critical radius r = ‖ϕ‖ ∈ (0, 1), see Figure 6.6. To see this, we

differentiate the renormalized potential

∂rVn(r) = βr
(

1− In/2(βr)

rIn/2−1(βr)

)
.

It is now obvious that r = 0 is a critical point of the renormalized potential at which

lim
r↓0

In/2(βr)

rIn/2−1(βr)
= 2

n
β
2
> 1 such that ∂2

rVn(0) = β
(
1− β

n

)
< 0 (5.49)

where we used that β > n is supercritical. To conclude the existence of precisely one

other critical radius rmin at which the renormalized potential attains its global minimum

it suffices therefore to show that
In/2(βr)

rIn/2−1(βr)
decays monotonically to zero. We prove this

in Lemma 2.2 in the appendix. This implies that also the factor
(

1− In/2(βr)

rIn/2−1(βr)

)
has

precisely one root, i.e. the second critical radius.
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Figure 6.6: XY-model: The renormalized potential of the XY-model for h = 0 and β = 10.

6.5.2 Zero magnetic field- A lower bound on the spectral gap

When h = 0 and n ≥ 2, then the renormalized Schrödinger operator (3.14) for λ := N/2

is the self-adjoint operator

∆ren = −∆Rn + λ2 |∇RnV |2 − λ∆RnV.

This operator is also rotationally symmetric such that by separating (spherical coordinates)

the angular part from the radial part, the remaining radial component ∆rad,`
ren of the

renormalized Schrödinger operator on L2((0,∞), rn−1dr) for ` ∈ N0 reads

∆rad,`
ren = −

(
∂2
r + n−1

r
∂r − `(`+n−2)

r2

)
+ λ2 |∂rVn(r)|2 − λ∂2

rVn(r). (5.50)

Here, the term `(`+n−2) accounts for the eigenvalues of the angular part of the Laplacian.

The renormalized potential possesses, when h = 0 and n ≥ 2, exactly two critical radii at

which |∂rVn(r)|2 = 0. The radii are r = 0 and r = rmin, see the beginning of this Section

6.5.1. However, Vn(r) is strictly concave at 0, i.e. ∂2
rVn(0) < 0, and by Lemma 2.2 strictly

convex at rmin such that ∂2
rVn(rmin) > 0. This follows from

∂2
rVn(rmin) = βrmin∂r|r=rmin

(
1− In/2(βr)

rIn/2−1(βr)

)
> 0,

see the beginning of Section 6.5.

The radial symmetry of the renormalized potential implies that the renormalized

measure decomposes into dνN (ϕ) = ν
(n)
N rn−1e−NVn(r)dr⊗ dSSn−1 . We study the radial part

due to tensorization principle, as the surface measure on Sn−1 is known to satisfy a LSI (n)

[DEKL13, Corollary 2]. Thus the rotational invariance of the renormalized measure implies

that the spectral gap inequality for the renormalized measure is at least uniform in N.

In our next Proposition we therefore study the low-lying spectrum of the radial

component, ∆rad,0
ren , as λ→∞.

Proposition 5.1. Let h = 0, n ≥ 2 and β > n. The spectral gap of the radial renormalized
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Schrödinger operator ∆rad,0
ren grows linearly in N .

Proof. The proof we present here follows the steps of the proof in [Sim83].

To study the low-lying spectrum of the radial component of the renormalized Schrödinger

operator, let λ := N/2 and consider Schrödinger operators

H0
osc(λ) = −

(
∂2
r + n−1

r
∂r
)

+ λ2|∂2
rVn(0)|2r2 − λ ∂2

rVn(0) and

Hrmin
osc (λ) = −∂2

x + λ2 |∂2
rVn(rmin)|2(x− rmin)2 − λ ∂2

rVn(rmin)
(5.51)

where we use the variable x rather than r to emphasize that the last operator is defined

on L2(R), unlike the first one which is an operator on L2((0,∞), rn−1 dr). Observe

that in (5.51) we replaced the gradient term of the Schrödinger operator by its Taylor

approximation at the critical point. This explains the occurrence of the second derivative

at the critical point in (5.51). Invoking the unitary maps U0 ∈ L(L2((0,∞), rn−1 dr)) and

Urmin
∈ L(L2(R)) defined as

(U0f)(x) = λ−n/4f(λ−1/2x) and (Urmin
f)(x) = λ−1/4f(λ−1/2(x+ rmin)) (5.52)

shows that the two Schrödinger operators in (5.51) are in fact unitarily equivalent, up to

multiplication by λ, to the λ-independent Schrödinger operators

S0
osc = −

(
∂2
r + n−1

r
∂r
)

+ |∂2
rVn(0)|2r2 − ∂2

rVn(0)

Srmin
osc = −∂2

x + |∂2
rVn(rmin)|2x2 − ∂2

rVn(rmin),
(5.53)

respectively. More precisely, we have that

U−1
0 λ S0

oscU0 = H0
osc(λ) and U−1

rmin
λ Srmin

osc Urmin
= Hrmin

osc (λ). (5.54)

Since the bottom of the spectrum of the operator S0
osc is strictly positive S0

osc ≥ −∂2
rVn(0) >

0, we conclude from (5.54) that the bottom of the spectrum of H0
osc(λ) increases linearly

to infinity as λ→∞.
To connect the low-energy spectrum of the renormalized Schrödinger operator with

the above auxiliary operators, take j ∈ C∞c (−∞, 2) such that j(x) = 1 for |x| ≤ 1. Then,

we define

J0(x) = j(λ2/5 |x|), Jrmin
(x) = j(λ2/5 |x− rmin|) with ‖∇Ji‖Rn ≤ O(λ2/5) (5.55)

for i ∈ {0, rmin} and J :=
√

1− J2
rmin
− J2

0 .

Without loss of generality we can assume that λ is large enough such that J0 and Jrmin

are disjoint.
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Taylor expansion of the potential at 0 and rmin respectively and the estimate on the

gradient (5.55) imply that

∣∣Ji(∆rad,0
ren −H i

osc)Ji
∣∣ ≤ O(λ4/5) for i ∈ {0, rmin} .

Let 0 = e1 < e2 ≤ .. be the eigenvalues (counting multiplicities) of S0
osc⊕Srmin

osc and choose τ

such that en+1 > τ > en with Pi being the projection onto the eigenspace to all eigenvalues

of H i
osc below τλ. The IMS (Ismagilov, Morgan, and Simon/Sigal) formula, see [Sim83,

Lemma 3.1] and [CFKS87, (11.37)] for a version on manifolds, implies that

∆rad,0
ren = J∆rad,0

ren J − |∂rJ |2 +
∑

i∈{0,rmin}

(
Ji∆

rad,0
ren Ji − |∂rJi|2

)
such that

∆rad,0
ren = J∆rad,0

ren J − |∂rJ |2 +
∑

i∈{0,rmin}

(
JiH

i
oscJi + Ji(∆

rad,0
ren −H i

osc)Ji − |∂rJi|2
)
. (5.56)

On the other hand, it follows that

JiH
i
oscJi = JiH

i
oscPiJi + JiH

i
osc(id−Pi)Ji ≥ JiH

i
oscPiJi + λenJ

2
i .

By construction, since ∇Vn vanishes linearly on the support of Ji, we have

‖∇Vn‖2
Rn ≥ c(λ−2/5)2 = cλ−4/5 on J for some c > 0.

Since ∆Vn is globally bounded anyway, this implies for large λ that

J∆rad,0
ren J ≥ J2(cλ6/5 − λ) ≥ λenJ

2. (5.57)

From (5.56) we then conclude that for some C > 0

∆rad,0
ren ≥ λen − Cλ4/5 +

∑
i∈{0,rmin}

JiH
i
oscPiJi = λen +

∑
i∈{0,rmin}

JiH
i
oscPiJi − o(λ).

This implies the claim of the Proposition, since

rank

 ∑
i∈{0,rmin}

JiH
i
oscPiJi

 ≤ n.
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More precisely, for the eigenvalues E1(λ) ≤ E2(λ) ≤ .. of ∆rad,0
ren we have shown that

lim inf
λ→∞

λ−1En(λ) ≥ en.

In particular, the lowest possible eigenvalue e1 = 0 of the renormalized Schrödinger

operator is of course attained as the nullspace of the renormalized Schrödinger operator is

non-trivial. This shows that the spectral gap of the renormalized Schrödinger operator

grows at least linearly in λ in the angular sector ` = 0.

Corollary 5.2. Let h = 0, n ≥ 2 and β > n. The spectral gap of the full Gibbs measure ρ

does not close faster than O(N−1). In particular, for radial functions, i.e. f only depends

on |σ̄|, the spectral gap remains open.

Proof. Since the spectral gap of the radial component of the renormalized measure grows

linearly in N and the spectral gap of the angular component is uniform in N , the

tensorization principle implies that the full renormalized measure satisfies a SGI that is

uniform in N . Due to Proposition 3.7, the spectral gap of the full measure does therefore

not close faster than of order 1/N.

For radial functions f , the RN 3 ϕ 7→ Eµϕ(f) maps also into radial functions and

therefore the spectral gap of the renormalized measure is only determined by the radial

renormalized Schrödinger operator in Prop. 5.1. Using Proposition 3.7 and (3.19), this

implies that for radial functions, the gap remains open.

In the next Proposition we show that the rate N−1 in this case is in fact optimal:

Proposition 5.3. Let h = 0, n ≥ 2 and β > n. The spectral gap of the full measure ρ of

the dynamics decays at least as fast as N−1.

Proof. We consider the mean-spin σ̄ : (Sn)N → Rn+1 defined by

σ̄(σ) =
1

N

N∑
i=1

σi = (σ̄1(σ), ..., σ̄n+1(σ)) ∈ Rn+1. (5.58)

In analogy to the spherical harmonics which in cartesian coordinates reads x1/‖x‖, we

consider the function:

f(σ) :=
σ̄1(σ)

‖σ̄(σ)‖
η(‖σ̄(σ)‖). (5.59)

where η ∈ C∞(R; [0, 1]) is a cut-off function such that for fixed 1 > δ > 0:

η(t) :=

{
1, when t > δ and

0, when t ≤ δ/2.
(5.60)
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As we want to compute the covariant derivative ∇σ1t(σ), we consider the parametrisation

γ1(t) so that γ1(0) = σ1. Then we define γ(t) := (γ1(t), σ2, . . . , σN) and s(t) := σ̄(γ(t)).

It is then clear that for v := γ′1(0) we have s′(0) = v/N , the first coordinate of which is

s′1(0) = 〈e1, v〉/N . We define then

s1(t) := σ̄1(γ(t)) = 〈e1, s(t)〉. (5.61)

Thus, since f(γ(t)) = s1(t)
‖s(t)‖ , we find for the derivative

f ′(0) =
1

|s(0)|2

(
|s(0)|s′1(0)− s1(0)

s(0) · s′(0)

|s(0)|

)
η(|s(0)|)

+
s1(0)

|s(0)|
η′(|s(0)|)s(0) · s′(0)

|s(0)|

=
1

N |σ̄(σ)|2

(
|σ̄(σ)|〈e1, v〉 − 〈e1, σ̄(σ)〉〈σ̄(σ), v〉

|σ̄(σ)|

)
η(|σ̄(σ)|)

+
σ̄1(σ)

|σ̄(σ)|
η′(|σ̄(σ)|)〈σ̄(σ), v〉

N |σ̄(σ)|
.

(5.62)

Therefore, we see that in terms of

µ(σ) :=
1

N

(
1

|σ̄(σ)|2

(
|σ̄(σ)|e1 − σ̄1(σ)

σ̄(σ)

|σ̄(σ)|

)
η(|σ̄(σ)|) +

σ̄1(σ)

|σ̄(σ)|2
η′(|σ̄(σ)|)σ̄(σ)

)
,

the derivative is just

∇σ1f(σ) = µ(σ)− 〈µ(σ), σ1〉σ1.

The cut-off function η ensures that |σ̄(σ)| is not small. Therefore we can bound |Z(σ)| =
O(1) which implies that Eρ(|∇σ1σ̄(σ)|2) . 1/N2 or that∑

i∈[N ]

Eρ(|∇σiσ̄(σ)|2) . 1/N.

By rotational symmetry we also know that Eρ(f) = 0. For the second moment

Eρ(f(σ)2), we have by rotational invariance again

1 =
n+1∑
i=1

Eρ
(
σ̄i(σ)2

|σ̄(σ)|2

)
=

n+1∑
i=1

Eρ
(
σ̄1(σ)2

|σ̄(σ)|2

)
(5.63)

= (n+ 1)Eρ
(
σ̄1(σ)2

|σ̄(σ)|2
η (|σ̄(σ)|)

)
+ (n+ 1)RN
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where RN is the error

RN := Eρ
(
σ̄1(σ)2

|σ̄(σ)|2
(1− η (|σ̄(σ)|))

)
.

Our aim is now to argue that RN is small as N is large.

For β > n we know that the renormalized potential attains its minimum at hyperspheres

∂BRN (0, rmin). This implies that the renormalized measure concentrates at such ϕ ∈
∂B(0, rmin) with exponential tail bounds, i.e. the probability of ϕ away from ∂B(0, rmin)

is exponentially small in N . The fluctuation measure then enforces that also the mean

spin σ̄ has to be outside of a ball of radius δ > 0 with high probability. To see this recall

that the fluctuation measure can be rewritten as

Eµϕ(F ) =

∫
(Sn−1)N

F (σ)eβN〈ϕ,σ̄〉 dS⊗
N

Sn−1(σ)∫
(Sn−1)N

eβN〈ϕ,σ̄〉 dS⊗
N

Sn−1(σ)
=

∫
(Sn−1)N

F (σ)eβN〈ϕ,σ̄〉 dS⊗
N

Sn−1(σ)

N (ϕ)N
. (5.64)

Here, the radial normalizing function

N (ϕ) :=

∫
Sn−1

eβ〈ϕ,σ〉 dSSn−1(σ) = Γ
(
n
2

) (
2
‖βϕ‖

)n
2
−1

In
2
−1

(‖βϕ‖)

is a strictly monotonically increasing function of |ϕ| that satisfies N (ϕ) ≥ 1 and N (ϕ) = 1

if and only if ϕ = 0. This follows directly from the Taylor series of the modified Bessel

function.

Hence, we can pick δ such that eβ〈ϕ,σ̄〉 < (1 + N (ϕ))/2 for all ϕ ∈ ∂B(0, rmin) and

|σ̄| ≤ δ. Hence, we see that for such ϕ

Eµϕ(1l|σ̄|≤δ) = O

((
1

2N (ϕ)
+

1

2

)N)
.

This shows that Eρ(1l|σ̄|≤δ) = O
((

1
2N (ϕ)

+ 1
2

)N)
and hence that RN tends exponentially

fast to zero as well, as N tends to infinity, under the condition that β > n.

6.5.3 Nonzero magnetic fields for n ≥ 2

The situation h 6= 0 and n ≥ 2 cannot be reduced to a one-dimensional model due to

lack of symmetries. Yet, the renormalized Schrödinger operator provides a very elegant

tool to show that the spectral gap of the full generator of the Ginzburg-Landau dynamics

dynamics remains open as N →∞.

In fact, whereas the global minimum for h = 0 of the renormalized potential is attained

on a hypersphere, the global minimum for h 6= 0 is attained at a single point, only.
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Figure 6.7: XY-model: The renormalized potential of the XY-model for h = (−2, 0) and
β = 10. The rotational symmetry is broken.

This allows us to identify the asymptotic of the low-energy spectrum of the renormalized

Schrödinger operator directly with the spectrum of a quantum harmonic oscillator.

Let ϕc ∈ Rn be a critical point of the renormalized potential (3.7). We define the set

Σ :=

{
n∑
i=1

(
ni|λi|+ 1

2
(|λi| − λi)

)
, with ni ∈ N0, λi ∈ σ(D2Vn(ϕc))

}

where λ1, ..., λn comprise the entire spectrum of D2Vn(ϕc).

Let ek be the k-th smallest element counting multiplicity in Σ we then have the

following Proposition:

Proposition 5.4. Let h 6= 0, β ≥ n, and n ≥ 2. Let Ek(λ) denote the k-th lowest

eigenvalue of the renormalized generator then this eigenvalue satisfies the asymptotic law

limλ→∞
Ek(λ)
λ

= ek. In particular, the ground state of the renormalized generator in the

limit as λ→∞ is unique and the spectral gap of the renormalized Schrödinger operator

remains open and linearly in λ.

Proof. When h 6= 0 then the renormalized potential has a unique non-degenerate minimum.

To see this recall that the renormalized potential reads

Vn(ϕ, h) = β
2

(
1 + ‖ϕ‖2)− log

(
Γ
(n

2

)(
2

‖βϕ+h‖

)n
2
−1

In
2
−1

(‖βϕ+ h‖)
)
.

Introducing the new variable ζ := βϕ+ h implies that

Vn(ϕ(ζ), h) = 1
2β

(
β2 + ‖ζ − h‖2)− log

(
Γ
(n

2

)(
2
‖ζ‖

)n
2
−1

In
2
−1

(‖ζ‖)
)

= 1
2β

(
β2 + ‖ζ‖2 + ‖h‖2 − 2〈ζ, h〉

)
− log

(
Γ
(n

2

)(
2
‖ζ‖

)n
2
−1

In
2
−1

(‖ζ‖)
)
.

(5.65)
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Computing the gradient of that expression yields

∇ζVn(ϕ(ζ), h) = − 1

β
h+ gβ(‖ζ‖)êζ (5.66)

where we introduced the auxiliary function gβ(r) :=
(
r
β
− In/2(r)

In/2−1(r)

)
. Thus for the gradient

to vanish the vectors h and ζ have to be linearly dependent.

Assuming thus that êh = ±êζ we obtain from setting the gradient to zero the following

equation
βIn/2(‖ζ‖)
In/2−1(‖ζ‖)

= (‖ζ‖ ∓ ‖h‖).

Thus, when h and ζ are aligned, there is precisely one solution, the global minimum of the

renormalized potential, satisfying

βIn/2(‖ζ‖)
In/2−1(‖ζ‖)

= (‖ζ‖ − ‖h‖)

with gβ(‖ζ‖) = β−1‖h‖ > 0. That the aligned scenario corresponds to the global minimum

is evident from the expression of the renormalized potential (5.65).

The simplicity of the solution follows since the left hand side
βIn/2(‖ζ‖)
In/2−1(‖ζ‖) is a concave,

monotonically increasing function from 0 to β as ‖ζ‖ → ∞.
When h and ζ point in opposite directions, there can, by concavity of the left-hand

side, be between zero and two solutions to the equation

βIn/2(‖ζ‖)
In/2−1(‖ζ‖)

= (‖ζ‖+ ‖h‖)

with gβ(‖ζ‖) = −β−1‖h‖ < 0. In particular, for sufficiently low temperatures there exists

a local maximum and a saddle point of the renormalized potential as shown in Figure 6.7.

From differentiating (5.66), the Hessian is given by

D2
ζVn(ϕ(ζ), h) = g′(‖ζ‖) ζζ

T

‖ζ‖2
+ gβ(‖ζ‖)

(
id

‖ζ‖
− ζζT

‖ζ‖3

)
. (5.67)

We note that the Hessian has full rank unless at critical points unless g′β(‖ζ‖)+gβ(‖ζ‖)(‖ζ‖−
‖ζ‖−1) = 0, since gβ(‖ζ‖) 6= 0 by (5.66) for non-zero magnetic fields.

In addition, there can be only a saddle point which can only happen at one fixed

temperature depending on n.

Finally, if the temperature is sufficiently high, yet still such that β > n, there may be

no critical point if h and ζ point in opposite directions. This is in particular the case when
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β = n and h 6= 0: Taylor expansion at zero yields

βIn/2(‖ζ‖)
In/2−1(‖ζ‖)

=
βΓ(n/2)

2Γ(1 + n/2)
‖ζ‖+O(‖ζ‖2)

where for β = n we find nΓ(n/2)
2Γ(1+n/2)

= 1 and concavity of the function ‖ζ‖ 7→ βIn/2(‖ζ‖)
In/2−1(‖ζ‖) show.

Thus ‖∇Vn‖2 vanishes at not more than three critical points ϕc on the span of h. In

particular, all eigenvalues of D2Vn are non-negative only at the global minimum of Vn by

(5.67), since we already established that g′(‖ζ‖) < 0 at the other two. To see that they

are strictly positive there, it suffices to analyze for r = ‖ζ‖

g′β(‖ζ‖) =
(
β−1 − I(‖ζ‖)−1

)
+ ‖ζ‖ I

′(‖ζ‖)
I(‖ζ‖)2

=
gβ(‖ζ‖)
‖ζ‖

+
‖ζ‖I ′(‖ζ‖)
I(‖ζ‖)2

> 0.

(5.68)

Hence, we find that

g′β(‖ζ‖) + gβ(‖ζ‖)(‖ζ‖ − ‖ζ‖−1) = gβ(‖ζ‖)‖ζ‖+
‖ζ‖I ′(‖ζ‖)
I(‖ζ‖)2

. (5.69)

In particular, this expression is strictly positive at the global minimum, since gβ(‖ζ‖) > 0

and I ′(‖ζ‖) > 0 by general principles, see Lemma 2.2.

The asymptotic behaviour of the spectrum of the renormalized Schrödinger operator

has been computed in [Sim83] (which we can directly apply as we satisfy the conditions

(A1) − (A4) in [Sim83]) and our above representation of Σ follows by noticing that
1
2
D2 |∇Vn|2 (ϕc) = (D2Vn(ϕc))

2
> 0.

Since the renormalized Schrödinger operator and renormalized generator are unitarily

equivalent up to a factor, the semiclassical eigenvalue distribution stated in [Sim83,

Theorem 1.1] implies the statement of the Proposition.

6.6 The critical regime, Proof of Theo. 1.3

We conclude our analysis by investigating the critical case β = n and prove Theorem 1.3.

As before, we distinguish between n = 1 and multi-component systems n ≥ 2 :

6.6.1 Critical Ising model

It follows from (4.25), which always vanishes for all x > 0, that the spectral gap, at the

critical point β = n = 1, does not close exponentially fast in the number of spins. We

want to show in this subsection that it closes at least polynomially, though. For a refined

analysis in dimension n = 1, we recall some basic ideas from discrete Fourier analysis:
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Figure 6.8: The renormalized potential V1 for
β = 1, h = 0 is a symmetric convex function.
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Figure 6.9: Strong convexity of the renormalized
potential V1 fails at the origin, ϕ = 0.
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Let f : {±1}N → C be an arbitrary function on the hypercube. The L2({±1}N , 2−Ndµcount)

inner product on the hypercube is defined as

〈f, g〉{±1}N :=
∑

x∈{±1}N
2−Nf(x1, .., xN)g(x1, .., xN).

The characteristic function χS for S ⊂ [N ] is defined as χS(x) :=
∏

i∈S σi and the family

(χS)S⊂[N ] forms an orthonormal basis of L2({±1}N ). In particular, χ∅ = 1. We also define

indicator vectors 1lS ∈ RN such that 1lS(x) = 1 if x ∈ S and 0 otherwise.

Every function f ∈ L2({±1}N) admits a unique Fourier decomposition

f =
∑
S⊂[N ]

f̂(S)χS (6.70)

where f̂(S) := 〈f, χS〉. The variance of the stationary measure is given as the sum of

Varρ(f) = EνN (Varµϕ(f)) + VarνN (Eµϕ(f)). (6.71)

Since the first term on the right-hand side of this equation is always uniformly bounded

by the Dirichlet form, as shown in the proof of Proposition 3.7, it suffices to study

the behaviour of the second term. Thus, applying the expectation with respect to the

fluctuation measure yields by the Fourier decomposition (6.70)

Eµϕ(f) =
∑
S⊂[N ]

f̂(S)Eµϕ(χS). (6.72)

In particular, using the explicit form of V1(Φ), a direct computation yields for all x ∈ [N ]

Eµϕ(σ(x)) = eV1(ϕ)

(
e−

β
2
|ϕ−1|2+h − e−β2 |ϕ+1|2−h

)
2

= tanh(βϕ+ h).

Using that µϕ is a product measure, this implies that the full expression for (6.72) is

given by

Eµϕ(f) =
∑
S⊂[N ]

f̂(S)(tanh(βϕ+ h))|S|. (6.73)

Hence, we find for the variance

VarνN (Eµϕ(f)) =
N∑

S1,S2⊂[N ]

f̂(S1)f̂(S2)
(
EνN

(
tanh(βϕ+ h)|S1|+|S2|

)
− EνN

(
tanh(βϕ+ h)|S1|

)
EνN

(
tanh(βϕ+ h)|S2|

) ) (6.74)
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For the Dirichlet form, we find, with S14S2 denoting the symmetric difference of sets S1

and S2,

∑
x∈[N ]

Eρ
∣∣∣∇(x)

S0 f
∣∣∣2 =

∑
x∈[N ]

∑
S1,S2⊂[N ]

f̂(S1)f̂(S2)Eρ(∇(x)

S0 χS1∇
(x)

S0 χS2)

= 4
∑
x∈[N ]

∑
S1,S2⊂[N ]

δx∈S1δx∈S2 f̂(S1)f̂(S2)Eρ(χS1χS2)

= 4
∑

S1,S2⊂[N ]

∑
x∈S1∩S2

f̂(S1)f̂(S2)Eρ(χS14S2)

= 4
∑

S1,S2⊂[N ]

〈1lS1 , 1lS2〉RN f̂(S1)f̂(S2)Eρ(χS14S2)

= Eρ

∣∣∣∣∣∣2
∑
S⊂[N ]

1lS f̂(S)χS

∣∣∣∣∣∣
2

RN

.

(6.75)

Proposition 6.1. For zero magnetic fields, i.e. h = 0, and β ≥ 1,all functions with

Fourier support on sets of fixed cardinality k ∈ N, i.e. for f given as

f =
∑

S⊂[N ];|S|=k

f̂(S)χS.

satisfy the inequality VarνN (Eµϕ(f)) ≤ N
4k

∑
x∈[N ]

∣∣∣∇(x)

Sn−1f
∣∣∣2
L2(dρ)

.

In particular, for the magnetization

M = 1√
N

∑
x∈[N ]

σ(x) (6.76)

we obtain an inequality

VarνN (Eµϕ(M)) =
NEνN (tanh(βϕ)2)

4

∑
x∈[N ]

∣∣∣∇(x)

Sn−1M
∣∣∣2
L2(dρ)

.

Moreover, the spectral gap for critical β = 1 closes at least like O(N−1/2).
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Proof. When h = 0, it suffices to estimate the variance by Jensen’s inequality as

VarνN (Eµϕ(f)) ≤ EνN
∑

S1,S2⊂[N ];|S1|=|S2|=k

f̂(S1)f̂(S2)Eµϕ(χS1)Eµϕ(χS2)

≤ EνNEµϕ

∣∣∣∣∣∣
∑

S⊂[N ];|S1|=|S2|=k

f̂(S)χS

∣∣∣∣∣∣
2

=
1

k2
Eρ

∣∣∣∣∣∣
〈 ∑
S⊂[N ];|S1|=|S2|=k

f̂(S) 1lS χS, 1l[N ]

〉
RN

∣∣∣∣∣∣
2

≤ N

k2
Eρ

∣∣∣∣∣∣
∑

S⊂[N ];|S1|=|S2|=k

f̂(S) 1lS χS

∣∣∣∣∣∣
2

RN

.

(6.77)

Using (6.75) we then obtain the spectral gap inequality

VarνN (Eµϕ(f)) ≤ N

k2
Eρ

∣∣∣∣∣∣
∑

S⊂[N ];|S1|=|S2|=k

f̂(S) 1lS χS

∣∣∣∣∣∣
2

RN

=
N

4k2

∑
x∈[N ]

∣∣∣∇(x)

S0 f
∣∣∣2
L2(dρ)

.

(6.78)

Turning to the magnetization (6.76), we can write the variance of the magnetization M in

terms of the expectation value EνN (tanh(βϕ)2)

VarνN (Eµϕ(M)) = 1
N

∑
x,y∈[N ]

EνN
(
tanh(βϕ)2

)
= NEνN

(
tanh(βϕ)2

)
. (6.79)

We now recall that tanh(βϕ)2 = β2ϕ2 +O(ϕ4) and for β = 1

V1(ϕ) =
1

2
+
ϕ4

12
+O(ϕ6)

by Taylor expanding around 0. It therefore follows from Laplace’s principle [Won01, Ch.

II,Theorem 1] that

EνN
(
tanh(βϕ)2

)
∼ N1/4N−3/4 = N−1/2. (6.80)

On the other hand, we can compute the Dirichlet form of the magnetization using

(6.75)

∑
x∈[N ]

Eρ
∣∣∣∇(x)

S0 M
∣∣∣2 = 4

N
Eρ

∣∣∣∣∣∣
∑
x∈[N ]

1lS χS

∣∣∣∣∣∣
2

= 4Eρ(1) = 4. (6.81)
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Thus, comparing (6.79) with (6.81) implies the claim together with the asymptotic (6.80).

While Proposition 6.1 shows that the magnetization leads for critical β = 1 to a

spectral gap that closes at least like ∼ N−1/2, when h = 0, the next Proposition shows

that the magnetization does not imply a vanishing spectral gap when h > 0.

Proposition 6.2. Let h > 0, β ≥ 1, and f a function with Fourier transform supported

on sets of cardinality ≤ k for some fixed k ∈ N0 independent of N , i.e.

f =
∑

S⊂[N ];|S|≤k

f̂(S)χS.

Then such functions satisfy an improved inequality with ϕmin = argminϕ V1(ϕ)

VarνN (Eµϕ(f)) ≤ β2 csch2(2(βϕmin + h))

2V ′′1 (ϕmin)

∑
x∈[N ]

Eρ
∣∣∣∇(x)

S0 f
∣∣∣2
RN

(1 + o(1)) (6.82)

with a constant β2 csch2(2(βϕmin+h))
2V ′′1 (ϕmin)

(1 + o(1)) that strictly bounded away from zero in the limit

N →∞. In particular, V ′′1 (ϕmin) > 0 by the discussion in the beginning of Section 6.4.3.

Proof. Using (4.104), which applies since V ′′1 (ϕmin) > 0 by the discussion in Subsection

6.4.3, we conclude that

Eµϕ(f) =
∑
S⊂[N ]

f̂(S)(tanh(βϕ+ h))|S| (6.83)

implies since

d

dϕ
tanh(βϕ+ h) = β sech2(βϕ+ h) = β csch(βϕ+ h)2 tanh(βϕ+ h)2
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that

VarνN (Eµϕ(f))

=
1

2NV ′′1 (ϕmin)

∣∣∣∣∣∣
∑
S⊂[N ]

f̂(S)β|S| tanh(βϕmin + h)|S|+1 csch(βϕmin + h)2

∣∣∣∣∣∣
2

(1 + o(1))

=
β2 tanh(βϕmin + h)2 csch(βϕmin + h)4

2NV ′′1 (ϕmin)

∣∣∣∣∣∣
∑
S⊂[N ]

f̂(S) tanh(βϕmin + h)|S|〈1lS, 1l[N ]〉RN

∣∣∣∣∣∣
2

(1 + o(1))

≤ 2β2 csch2(2(βϕmin + h))

V ′′1 (ϕmin)

∣∣∣∣∣∣
∑
S⊂[N ]

f̂(S) tanh(βϕmin + h)|S| 1lS

∣∣∣∣∣∣
2

(1 + o(1))

=
2β2 csch2(2(βϕmin + h))

V ′′1 (ϕmin)

∣∣∣∣∣∣Eρ
∑
S⊂[N ]

f̂(S)χS 1lS

∣∣∣∣∣∣
2

(1 + o(1))

≤ 2β2 csch2(2(βϕmin + h))

V ′′1 (ϕmin)
Eρ

∣∣∣∣∣∣
∑
S⊂[N ]

f̂(S)χS 1lS

∣∣∣∣∣∣
2

(1 + o(1))

=
β2 csch2(2(βϕmin + h))

2V ′′1 (ϕmin)

∑
x∈[N ]

Eρ
∣∣∣∇(x)

S0 f
∣∣∣2
RN

(1 + o(1))

(6.84)

where we used (4.104) in the first line, |S| = 〈1lS, 1l[N ]〉 in the second line, Cauchy-Schwarz

and csch(x)4 tanh(x)2 = 4 csch(2x)2 in the third line, (4.103) and (6.83) in the fourth line,

Jensen’s inequality in the fifth line and finally (6.75) in the last line.

6.6.2 Critical multi-component systems

In this subsection, we prove the multi-component part of Theorem 1.3:

Proof of Theorem 1.3. The magnetization M = N−1/2
∑

x∈[N ] σ(x) has in the multi-

component case always unit Dirichlet norm

∑
x∈[N ]

Eρ
∣∣∣∇(x)

Sn−1M
∣∣∣2 =

∑
x∈[N ]

Eρ(N−1) = 1. (6.85)

On the other hand, we can explicitly calculate using the derivative of the modified Bessel

function of the first kind, ∂zIν(z) = ν
z
Iν(z) + Iν+1(z), and (3.7), the expectation value
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Eµϕ(σ(x)) that is independent of x ∈ [N ] for ϕ 6= 0

Eµϕ(σ(x)) = eNVn(ϕ)e−
β
2

(1+‖ϕ‖2)
∏
y∈[N ]

∫
Sn−1

e−β〈ϕ,σ(y)〉σ(x) dS(σ(y))

=
In/2(‖βϕ‖)
In/2−1(‖βϕ‖)

ϕ

‖ϕ‖
.

(6.86)

Taylor expansion at zero then yields

(
Eµϕ(σ(x))

)2
=

(
In/2(‖βϕ‖)
In/2−1(‖βϕ‖)

)2

=
Γ
(
n
2

)2

4Γ
(
1 + n

2

)2‖βϕ‖
2 +O(‖βϕ‖4).

For the renormalized potential we find by Taylor expansion, which we shall already

specialize to critical temperatures β = n, at zero

Vn(ϕ) =
n

2
+

n3

8 + 4n
‖ϕ‖4 +O(‖ϕ‖5).

For the magnetization M (6.76), we can write

VarνN (Eµϕ(M)) = 1
N

∑
x,y∈[N ]

EνN

((
In/2(‖βϕ‖)
In/2−1(‖βϕ‖)

)2
)

= NEνN

((
In/2(‖βϕ‖)
In/2−1(‖βϕ‖)

)2
)
.

(6.87)

We then have by radial symmetry of both the renormalized potential and the integrand

that at critical temperatures β = n

EνN

((
In/2(‖nϕ‖)
In/2−1(‖nϕ‖)

)2
)

=

∫∞
0
e−NVn(r)rn−1

(
In/2(nr)

In/2−1(nr)

)2

dr∫∞
0
e−NVn(r)rn−1 dr

.

Applying Laplace’s principle, cf. [Won01, Ch. II,Theorem 1], with constants µ = 4 and

α = 3 + (n− 1) implies that

EνN

((
In/2(‖nϕ‖)
In/2−1(‖nϕ‖)

)2
)
∼ Nn/4N−(n+2)/4 = N−1/2.

Combining this asymptotic behavior with (6.85) and (6.87) then yields the multi-component

claim of Theorem 1.3, i.e. the rate N1/2 is caught for the trial (mean spin) function M

and thus the spectral gap is decaying at least with speed N−1/2.

The following Proposition shows that the upper bound N−1/2 on the spectral gap in
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Figure 6.10: The five smallest eigenvalues of the operator H1 as a function of λ. The
smallest eigenvalue stays at zero.

the critical regime β = n for all dimensions n ≥ 1, is in fact sharp:

Proposition 6.3. Let h = 0 and β = n ≥ 1. The spectral gap of the radial renormalized

Schrödinger operator grows as O(N1/2) and in particular, the spectral gap of the full

measure does not close faster than O(N−1/2).

Proof. Let λ := N/2, we then consider the equivalent Schrödinger operators to the

renormalized generator

H1 := −∂2
x + λ2|V ′1(x)|2 − λV ′′1 (x) and for n ≥ 2

H`
n := −

(
∂2
r + n−1

r
∂r
)

+ `(`+n−2)
r2

+ λ2|∇Vn|2 − λ∆Vn, ` ∈ N0,
(6.88)

where we used that by rotational symmetry of the renormalized potential, for n ≥ 2, we

can decompose the Schrödinger operator into individual angular sectors parametrized by

` ∈ N0. We then introduce auxiliary Schrödinger operators

H1 = −∂2
x + λ2 x6

9
− λx2 and for n ≥ 2

H`
n = −

(
∂2
r + n−1

r
∂r
)

+ `(`+n−2)
r2

+ λ2 n6

(2+n)2
r6 − λ 3n3

2+n
r2, ` ∈ N0

(6.89)

on L2(R) and L2((0,∞), rn−1 dr), respectively. The five first eigenvalues of H1 are shown

in Fig. 6.10. We then define j ∈ C∞c (−2, 2) such that j(x) = 1 for |x| ≤ 1 and from this

J0(x) = j(λ2/9 |x|) and J :=
√

1− J2
0 with ‖∇J0‖Rn = O(λ4/9). (6.90)
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Invoking the unitary maps U1 ∈ L(L2(R)) and Un ∈ L(L2((0,∞), rn−1 dr)) defined as

(U1f)(x) := λ−1/8f(λ−1/4(x)) and (Unf)(r) := λ−n/8f(λ−1/4r) (6.91)

shows that the two Schrödinger operators in (6.89) are in fact unitarily equivalent, up to

multiplication by
√
λ, to the λ-independent Schrödinger operators

S1 = −∂2
x + 1

9
x6 − x2 and for n ≥ 2

S`n = −
(
∂2
r + n−1

r
∂r
)

+ `(`+n−2)
r2

+ n6

(2+n)2
r6 − 3n3

2+n
r2, ` ∈ N0

(6.92)

respectively. That inf(Spec(S0
n)) = 0 is shown in Section 6.C. Since `(`+n−2)

r2
> 0 we have

consequently that for ` > 0 by monotonicity inf(Spec(S`n)) ≥ inf(Spec(S1
n)) > 0. More

precisely, we have that

λ1/2U−1
n S`nUn = H`

n. (6.93)

More precisely, since (Unf)(x) := λ−n/8f(λ−1/4x), it follows that

(S`nUnf)(r) =− λ−n/8
((

λ−1/2f ′′(λ−1/4r) + λ−1/4 n−1
r
f ′(λ−1/4r)

)
+ `(`+n−2)

r2
f(λ−1/4r)

+ n6

(2+n)2
r6f(λ−1/4r)− 3n3

2+n
r2f(λ−1/4r)

)
.

(6.94)

Then, applying (U−1
n f)(r) = λn/8f(λ1/4r) shows that

(U−1
n S`nUnf)(r) =λ−1/2

(
−
(
f ′′(r) + n−1

r
f ′(r)

)
+ `(`+n−2)

r2
f(r)

+ λ2 n6

(2+n)2
r6f(r)− λ 3n3

2+n
r2f(r)

)
.

(6.95)

Taylor expansion of the potential at 0 and the estimate on the gradient (6.90) imply

that ∣∣J0(H`
n −H`

n)J0

∣∣ = O(λ4/9).

Let 0 = e1 < e2 ≤ .. be the eigenvalues (counting multiplicities) of Sn (over all angular

sectors `) and choose τ such that en+1 > τ > en with P being the projection onto the

eigenspace to all eigenvalues of H below τ
√
λ. The IMS formula, see [CFKS87, (11.37)]
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for a version on manifolds, implies that

Hn = JHnJ − |∇J |2 +
(
J0HnJ0 − |∇J0|2

)
such that

Hn = JHnJ − |∇J |2 +
(
J0HnJ0 + J0(Hn −Hn)J0 − |∇J0|2

)
. (6.96)

On the other hand, it follows that

J0HnJ0 = J0HnPJ0 + J0Hn(id−P )J0 ≥ J0HnPnJ0 +
√
λenJ

2
0 .

By construction, since ∇Vn vanishes to third order on the support of J0, we have

‖∇Vn‖2
Rn ≥ c(λ−2/9)6 = cλ−4/3 on J for some c > 0.

Since ∆Vn vanishes to second order

‖∆Vn‖Rn ≥ cλ−4/9 on J for some c > 0.

This implies for large λ that

JHJ ≥
√
λenJ

2. (6.97)

From (6.96) we then conclude that for some C > 0

Hn ≥
√
λenJ

2 − Cλ4/9 + J0HnPJ0 =
√
λen + J0HnPJ0 − o(

√
λ).

This implies the claim of the Proposition, since

rank (J0HnPJ0) ≤ n.

More precisely, for the eigenvalues E1(λ) ≤ E2(λ) ≤ .. of Hn we have shown that

lim inf
λ→∞

λ−1/2En(λ) ≥ en.

In particular, the lowest possible eigenvalue e1 = 0 of the renormalized Schrödinger

operator is of course attained as the nullspace of the renormalized Schrödinger operator is

non-trivial. This shows that the spectral gap of the renormalized Schrödinger operator

grows at least proportional to
√
λ.
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Appendix

6.A Numerical results

Recall that the eigenfunctions of the operator

Hosc := − ~2

2µ

d2

dx2
+
µω2

2
x2 (1.98)

are given for n ∈ N0 by

Ψn(x) :=
1√
2nn!

(µω
π~

)1/4

e−
µωx2

2~ Hn

(√
µω

~
x

)
.

Then, it follows that

〈Ψn,−~2Ψ′′m〉L2(R) =


~µω

2
(2n+ 1), if n = m

−~µω
2

√
n(n− 1), if n = m+ 2

−~µω
2

√
(n+ 1)(n+ 2), if n = m− 2.

.

and

〈Ψn, x
2Ψm〉L2(R) =


~

2µω
(2n+ 1), if n = m

~
2µω

√
n(n− 1), if n = m+ 2

~
2µω

√
(n+ 1)(n+ 2), if n = m− 2.

.

Using the annihilation operator a = 2−1/2(∂q + q) where q =
√

µω
~ x and its adjoint we

can explicitly compute the matrix elements of all (〈Ψn, x
nΨm〉) by writing qn =

√
2(a+a∗)n

and using the well-known action of the annihilation operator on eigenstates of (1.98).

Using a finite-basis truncation of the above matrices allowed us then to obtain Figures 6.4

and 6.10.
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6.B Asymptotic properties of the Ising model

Lemma 2.1. Let β > 1 and h ∈ [0, hc). The three critical points of ηN,h : (−1, 1)→ R

ηN,h(s) =
Γ(N + 1)

Γ(N/2(1 + s) + 1)Γ(N/2(1− s) + 1)
e−

Nβ
2

(1−s2)+Nhs

are given by scN := γ(β)(1+O(1)) where γ(β) satisfies the critical equation for the continuous

renormalized potential

γ(β) = tanh(βγ(β) + h).

Let us order the solutions γ(β) to that equation by γ1(β) < γ2(β) < γ3(β). For h = 0 the

function ηN,0 attains (in the limit N → ∞) its maximum at γ1(β) = −γ3(β) < 0 and

minimum at γ2(β) = 0.

Let h > 0, then the function ηN,h attains (in the limit N → ∞) its unique global

maximum at γ3(β) > 0 whereas both γ1(β), γ2(β) < 0 and γ1(β), γ2(β) are local maxima

and minima respectively.

The logarithmic derivative ζN,h(s) = ∂s log(ηN,h(s)) satisfies

ζN,h(s) = N (βs− arctanh (s) + h) (1 + O(1)). (2.99)

Proof. For h = 0 we note that ηN,0 is even and for h > 0 the global maxima of ηN,h must

be attained at some s ≥ 0. Direct computations show by the logarithmic scaling of the

digamma function Ψ2(s) = log(Γ)′(s) = log(s) +O(1/s) that the logarithmic derivative

ζN,h(s) = ∂s log(ηN,h(s)) is given by (2.99). Thus, for all critical values sc
N of ηN,h, i.e. those

values that satisfy ζN,h(s
c
N) = 0, there exists γ(β) ∈ [−1, 1] such that γ(β) := limN→∞ s

c
N

and γ(β) is any solution to γ(β) = tanh(γ(β)β + h).

We then obtain (2.99) directly by differentiating log(ηN,h) and using the identity

− ∂s log
(

Γ
(
N(1+s)

2
+ 1
)

Γ
(
N(1−s)

2
+ 1
))

= −N
2

(
log

(
1 +N/2(1 + s)

1 +N/2(1− s)

))
(1 + O(1))

= −N
2

(
log

(
1 + s N/2

1+N/2

1− s N/2
1+N/2

))
(1 + O(1))

= −N
2

(
log

(
1 + s

1− s

))
(1 + O(1))

= −N artanh(s)(1 + O(1)).

(2.100)
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Moreover, we read off from (2.99) that

lim
k↑1

ζN,h(k) = −∞ and lim
k↓−1

ζN,h(k) =∞.

In particular, γ(β) solves the implicit equation γ(β) = tanh(βγ(β) + h). For the second

derivative of ζN,h which is h-independent, we find the closed-form expression using the

derivative of the trigamma function Ψ3

ζ ′′N,h(s) = −N
3

8
(Ψ′3(1 +N/2(1 + s))−Ψ′3(1 +N/2(1− s)))

=
N3

8

∫ ∞
0

z2 e
−z(1+N/2(1+s)) − e−z(1+N/2(1−s))

1− e−z
dz.

(2.101)

This implies that ζN is strictly convex on [−1, 0) and strictly concave on (0, 1]. Using the

asymptotic of the trigamma function Ψ3(s) = 1/s+ 1/(2s2) +O(1/s3) we find that ζN,h is

strictly monotone increasing at zero, independent of h,

ζ ′N(0) = Nβ − N2Ψ3(1 +N/2)

2
= N

(
β − N/2

1 +N/2

)
(1 + O(1)) > 0,

since β > 1.

Lemma 2.2. The function I(r) := r
In/2−1(r)

In(r)
is strictly monotonically increasing on (0,∞).

In particular I ′(r) > 0.

Proof. By differentiating and using that I ′ν(r) = ν
r
Iν(r) + Iν+1(r) we find

I ′(r) = r

(
1−

In/2−1(r)In/2+1(r)

In(r)2

)
.

Thus, it suffices to record that the product of Bessel functions satisfies In/2(z)
2 >

(In/2−1In/2+1)(z) :

(In/2−1In/2+1)(z) = (z/2)n
∞∑
k=0

(n+ k + 1)k(z
2/4)k

k!Γ(n/2− 1 + k + 1)Γ(n/2 + 1 + k + 1)

(In/2In/2)(z) = (z/2)n
∞∑
k=0

(n+ k + 1)k(z
2/4)k

k!Γ(n/2 + k + 1)Γ(n/2 + k + 1)

(2.102)

Hence, the identity follows from

Γ(n/2 + k + 1)2 < Γ(n/2− 1 + k + 1)Γ(n/2 + 1 + k + 1)

which follows itself from logarithmic convexity of the gamma function.
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6.C SUSY Quantum Mechanics

We use ideas from supersymmetric quantum mechanics, to show positivity and analyze the

ground state of several Schrödinger operators appearing in this article:

In one dimension, we recall that using operators

A = ∂x +W (x) and A∗ = −∂x +W (x)

with real-valued and smooth superpotential W , we can write

A∗A = −∂2
x −W ′(x) +W (x)2 and AA∗ = −∂2

x +W ′(x) +W (x)2.

In particular, W (x) :=
√
β(β − 1)βx2 yields operator Sϕ± defined in (4.44).

However, solving AΨ = 0 or A∗Ψ = 0 shows that Ψ = Ce±
√
β(β−1)βx3 /∈ L2(R). This

shows that inf(Spec(AA∗)), inf(Spec(A∗A)) > 0.

We now analyze operators in (6.92). Choosing W (x) := x3

3
, yields A∗A = S1 in (6.92),

and we find by solving AΨ(x) = 0 that Ψ(x) ∝ e−x
4/12 which implies that inf(Spec(A∗A)) =

0.

For radial operators on L2((0,∞), rn−1 dr), a similar argument applies:

We define operators

A = ∂r +W (r) and A∗ = −∂r +
n− 1

r
+W (r).

Choosing then W (r) := n3

(2+n)
r3, such that A∗A = Sn with Sn in (6.92), we find by

solving

AΨ = 0⇒ Ψ(r) ∝ e−
n3

4(n+2)
r4 ∈ L2((0,∞), rn−1 dr).

6.D Asymptotic properties

Lemma 4.1. [BBS19, Theo 1.4.10] Let V : R → R be smooth with unique global

minimum at ϕmin ∈ R and V ′′(ϕmin) > 0. Assume that
∫
R e
−V (ϕ) dϕ is finite and

that {ϕ ∈ R;V (ϕ) ≤ V (ϕmin) + 1} is compact. We also define the probability measure

dζN(ϕ) = e−NV (ϕ) dϕ/
∫
R e
−NV (ϕ)dϕ. Then for any bounded smooth function g : R→ R

EζN (g) =

∫
R g(ϕ)e−NV (ϕ)dϕ∫

R e
−NV (ϕ)dϕ

= g(ϕmin) +
g′′(ϕmin)

2NV ′′(ϕmin)
+

3V ′′′(ϕmin)g′(ϕmin)

4NV ′′(ϕmin)3
+O(1/N2)

(4.103)
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and for the variance

VarζN (g) =
g′(ϕmin)2

NV ′′(ϕmin)
+O(1/N2) (4.104)
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[ABC+00] C. Ané, S. Blachère, D. Chafäı, P. Fougères, I. Gentil, F. Malrieu, C. Roberto,
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[JPS17] V. Jakšić, C.-A. Pillet, and A. Shirikyan. Entropic fluctuations in thermally

driven harmonic networks. J. Stat. Phys., 166(3-4):926–1015, 2017.

[KL99] C. Kipnis and C. Landim. Scaling limits of interacting particle systems,

volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

[KM06] A. Klein and S. Molchanov. Simplicity of eigenvalues in the Anderson model.

J. Stat. Phys., 122(1):95–99, 2006.

[KORS20] T. Komorowski, S. Olla, L. Ryzhik, and H. Spohn. High Frequency Limit for

a Chain of Harmonic Oscillators with a Point Langevin Thermostat. Arch.

Ration. Mech. Anal., 237(1):497–543, 2020.

301



[Kos01] E. Kosygina. The behaviour of the specific entropy in the hydrodynamic

scaling limit for Ginzburg-Landau model. Markov Process. Related Fields,

7(3):383–417, 2001.

[Kuw10] K. Kuwada. Duality on gradient estimates and Wasserstein controls. J. Funct.

Anal., 258(11):3758–3774, 2010.

[Lan75] Oscar E. Lanford, III. Time evolution of large classical systems. In Dynamical

systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle,

Wash., 1974), pages 1–111. Lecture Notes in Phys., Vol. 38. 1975.

[Led99] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities.
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[SZ92a] D. W. Stroock and B. Zegarliński. The equivalence of the logarithmic Sobolev

inequality and the Dobrushin-Shlosman mixing condition. Comm. Math.

Phys., 144(2):303–323, 1992.

305
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