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Abstract  

Background 

The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma 

(TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and 

RAD51D. 

Methods 

We analysed data from 6178 families, 125 with pathogenic variants in RAD51C; and 

6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and 

cumulative risks were estimated using complex segregation analysis to model the 

cancer inheritance patterns in families, while adjusting for the mode of ascertainment 

of each family. All statistical tests were two-sided. 

Results 

Pathogenic variants in both RAD51C and RAD51D were associated with TOC 

(RAD51C RR=7.55, 95%CI:5.60-10.19, p=5×10-40; RAD51D RR=7.60, 95%CI:5.61-

10.30, p=5×10-39) and BC (RAD51C RR=1.99, 95%CI:1.39-2.85, p=1.55×10-4; 

RAD51D RR=1.83, 95%CI:1.24-2.72, p=0.002). For both RAD51C and RAD51D, 

there was a suggestion that the TOC RRs increased with age until around age 60 

years and decreased thereafter. The estimated cumulative risks of developing TOC to 

age 80 were 11% (95%CI:6-21%) for RAD51C and 13% (95%CI:7-23%) for RAD51D 

pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 

were 21% (95%CI:15-29%) for RAD51C and 20% (95%CI:14-28%) for RAD51D 

pathogenic variant carriers. Both TOC and BC risks for RAD51C/D pathogenic variant 

carriers varied by cancer family history, and could be as high as 32-36% for TOC, for 
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carriers with two first degree relatives diagnosed with TOC; or 44-46% for BC, for 

carriers with two first degree relatives diagnosed with BC.  

Conclusions 

These estimates will facilitate the genetic counselling of RAD51C and RAD51D 

pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into 

cancer risk prediction models.  
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Genetic testing through multi-gene cancer panels is widely available and has 

become an integral part of the genetic counselling and oncologic practice used to 

inform clinical management options. RAD51C and RAD51D are included on widely 

available cancer panels due the reported associations of pathogenic variants in these 

genes with tubo-ovarian carcinoma (TOC) (1). However, the optimal interpretation of 

gene-panel testing results requires precise cancer risk estimates for pathogenic 

variants in RAD51C.  

The reported TOC risks for RAD51C pathogenic variant carriers vary widely 

with odds ratio (OR) estimates ranging from 3.4 to 15.8 based on case-control studies 

and a relative risk (RR) of 5.9 using family-based segregation analysis 

(Supplementary Table 1). Similarly, the reported TOC ORs/RRs for RAD51D 

pathogenic variant carriers ranged from 6.3 to 12.0 (Supplementary Table 1). There 

has been conflicting evidence for the association of both RAD51C and RAD51D 

pathogenic variants with BC risk. Some studies reported an increased BC risk (OR 

estimates for RAD51C:5.9-8.7; RAD51D:3.1-8.3) but others reported no statistically 

significant associations (Supplementary Table 2) (2-4).  

A concern with published risk estimates based on case-control studies, has 

been that cases may have been selected on the basis of cancer family history, which 

may confound the associations and/or lead to an overestimation of cancer risks due 

to the enrichment of cases for pathogenic variants. Furthermore, the pathogenic 

variant frequencies in controls come predominantly from publicly available resources 

and may come from populations that do not closely match the case population. 

Therefore, some of the published risk estimates may be susceptible to selection 

biases or biases due to population stratification and cannot be readily applied in the 

counselling process. Family- or pedigree-based approaches, with appropriate 
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ascertainment corrections in the analysis, which adjust for the ascertainment process 

of each family, address directly such potential biases and can result in more precise 

risk estimates due to the use of information on both genotyped and non-genotyped 

family members. Here, we use a large collection of families with RAD51C and/or 

RAD51D pathogenic variants, to estimate age-specific TOC and BC risks and assess 

how these vary by family history of cancer.  

Methods 

Families 

Families were enrolled between 1996 and 2017 through 28 study centres from 

12 countries from Europe and North America and were ascertained through: 

RAD51C/D variant screening of families with multiple TOC or BC affected members 

(24 studies); and RAD51C/D variant screening of TOC or BC patients unselected for 

cancer family history (3 studies). One study included families ascertained through 

both schemes. Four studies provided data on all families screened for RAD51C or 

RAD51D variants, irrespective of the result (Supplementary Table 3). Participants 

provided informed consent in accordance with institutional-review-board policies and 

local practices. The list of study centres and ascertainment criteria are provided in 

Supplementary Table 3. 

Variants 

Pathogenic variants including frameshift, nonsense, canonical splice sites and 

large genomic deletions were considered in the analyses. Variants in the last exon 

were excluded. We estimated the population RAD51C and RAD51D variant using the 

UK Biobank exome sequencing dataset (http://www.ukbiobank.ac.uk).  

http://www.ukbiobank.ac.uk/
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Statistical analysis 

Cancer inheritance patterns and observed genotypes in families were 

modelled using complex segregation analysis to estimate TOC and BC RRs 

simultaneously (8, 9) in the pedigree analysis software Mendel, version 3.3 (10).  

Family members were followed from birth until the age at first cancer diagnosis 

(excluding non-melanoma skin cancer), age at death, age at last follow-up, age at 

risk-reducing surgery (bilateral mastectomy in the BC analyses or bilateral salpingo-

oophorectomy in the TOC analyses if they occurred at least one year prior to cancer 

diagnosis), or age 80 years, whichever occurred first . Women diagnosed with a first 

TOC or BC were assumed to be affected at the age of diagnosis whilst women with 

any other type of first cancer diagnosis were censored at the age of diagnosis and 

were assumed as unaffected. Missing ages were inferred from other information 

(Supplementary Methods). Individuals with unknown disease status and no age 

information were censored at age 0.  

Each female was assumed to be at risk of developing TOC and BC assuming 

that the probability of developing each cancer was independent of one another 

conditional on genotype. We modelled the TOC and BC incidences so that they 

depend on the underlying assumed genetic effects (Supplementary Methods). Two 

main genetic models were fitted: a major-gene model that assumed all familial 

aggregation of TOC and BC to be due to RAD51C or RAD51D; and a major-gene 

plus polygenic component model that considered an additional residual familial 

component representing other unobserved genetic effects not due to RAD51C or 

RAD51D (11, 12) (Supplementary Methods). Models were fitted in which the log-

Relative Risk (logRR) for RAD51C/D pathogenic variant carriers relative to population 

incidences was assumed to be either constant across the whole age range; constant 
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for specific age groups; or a piecewise linear function of age (Supplementary 

Methods). We used country-, cohort- and population- age-specific incidences and 

constrained the overall cancer age-specific incidences over all assumed genetic 

effects to agree with the population age-specific incidences (12, 13) (Supplementary 

Methods). 

Since families were ascertained through different criteria across studies, we 

employed the “ascertainment assumption-free” approach to adjust for ascertainment 

by computing the pedigree likelihood conditional on all data relevant to the 

ascertainment (14-16) (Supplementary Methods). Non-informative families, for which 

no additional information was available beyond the data relevant to the 

ascertainment, were excluded from the analysis. 

The most parsimonious models were selected by comparing either the Akaike 

information criterion (AIC) for non-nested models, by selecting the model with the 

smaller AIC, or using the likelihood ratio test (LRT) for nested models. The hypothesis 

that the RR is 1.00 was assessed using a Wald test statistic. All statistical tests were 

two-sided. Statistical significance was considered as a P-value<0.05. 

Results 

Variants and families 

A total of 7,216 families eligible for pathogenic variant analysis were submitted 

to the coordinating centre, where 6,049 were identified through individuals with 

multiple relatives diagnosed with TOC or BC, and 1,167 were identified through 

women diagnosed with TOC or BC unselected for cancer family history.  After 

adjustment for ascertainment, 6,178 and 6,690 families were eligible for the RAD51C 

and RAD51D penetrance analysis respectively (Supplementary Tables 3-4). These 



14 
 

included 215 women with RAD51C pathogenic variants (137 were TOC and/or BC 

cases) from 125 families, and 92 women with RAD51D pathogenic variants (66 were 

TOC or BC cases) from 60 families (Table 1). Full lists of the RAD51C and RAD51D 

pathogenic variants in this dataset are summarized in Supplementary Table 5-6. The 

pathogenic variant population frequencies used in the segregation analysis model 

were estimated to be 0.00022 for RAD51C and 0.00026 for RAD51D based on 

42,325 cancer-free individuals from the UK Biobank exome sequencing data.  

Risk models 

The genetic models that included a residual polygenic/modifying familial 

component for TOC and BC provided better fits to the data than the major-gene 

models for both RAD51C and RAD51D (results for major gene models not shown). 

For RAD51C, using a constant RR with age, the AIC for the major gene model was 

4363 compared with 4346 for the BC polygenic model and with 4336 for the TOC 

polygenic model (Table 2). For RAD51D, the AIC for the major-gene model was 4187 

compared with 4178 for the BC polygenic model and with 4160 for the TOC polygenic 

model (Table 2). Therefore, we based all subsequent analyses on the major-gene 

plus polygenic component models.  

Tubo-ovarian carcinoma risk 

The estimated TOC RRs were 7.55 (95%CI: 5.60-10.19, p=5×10-40) for 

RAD51C and 7.60 (95%CI: 5.61-10.30, p=5×10-39) for RAD51D pathogenic variant 

carriers when RRs were assumed to be constant with age (Table 2).  When separate 

RRs were estimated for each age-decade, there was a suggestion that RRs 

increased with age until 60-69 years and then decreased for RAD51C pathogenic 

variant carriers. A similar pattern was seen for RAD51D pathogenic variant carriers 

but the RR peaked in the 50-59 age group (Table 2). These models provided a better 
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fit to the data than the models with a constant RR for both RAD51C (LRT-test, 

degrees of freedom (df)=4, p=0.04) and RAD51D (LRT, df=4, p=0.02). When we 

partitioned age into <50 years and ≥50, the estimated TOC RRs were higher for ages 

≥50 years for both RAD51C (RR=9.44, 95%CI:6.63-13.45 for ages≥50; RR=4.97, 

95%CI:2.75-8.97 for ages<50) and RAD51D pathogenic variant carriers (RR=10.56, 

95%CI:7.48-14.91 for ages≥50; RR=3.23, 95%CI:1.36-7.71 for ages<50). The model 

with separate RR parameters for each decade of age did not fit better than this two 

age-group model in either RAD51C (LRT, df=3, p=0.12) or RAD51D (LRT, df=3, 

p=0.51). To smooth the RR changes over age, we fitted models in which the logRR 

was assumed to be a piecewise linear function of age. For RAD51C, there was 

statistically significant evidence that the RR increases with age (p=0.004) from age 

30 to age 60 years and then decreases. Similarly for RAD51D, there was statistically 

significant evidence that the RR increases with age (p=0.002) from age 30 to age 58 

years and then decreases. The piecewise linear models were the most parsimonious 

with the lowest AIC (Table 2). Under these models, the estimated cumulative risks of 

developing TOC for a woman with a RAD51C pathogenic variant to age 50 years was 

1% (95% CI: 0.6-2%) and 11% (95% CI: 6-21%) to age 80 years; the corresponding 

cumulative TOC risks were 0.8% (95% CI: 0.5-2%) to age 50 and 13% (95% CI: 7-

23%) to age 80 for a woman with a  RAD51D pathogenic variant, assuming the UK 

incidences (Figure 1 and Table 3). The corresponding risks using USA population 

incidences are shown in Supplementary Table 7. 

Breast cancer risk 

The estimated BC RR was 1.99 (95%CI:1.39-2.85, p=1.55×10-4) for RAD51C 

and 1.83 (95%CI:1.24-2.72, p=0.002) for RAD51D pathogenic variant carriers when 

RR was constant with age (Table 2). When RRs varied by age-decade, for RAD51C, 
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the statistically significant association was restricted to ages 30-49, but this model 

did not fit better than the model with a constant RR (LRT, df=5, p=0.37).  When only 

two age groups were assumed, there was further evidence of higher BC RR in 

younger ages (20-49 years, RR=2.42, 95%CI:1.61-3.63) compared with age ≥50 

(RR=1.36, 95%CI:0.70-2.63), but the model with a constant RR remained the most 

parsimonious. For RAD51D, a “U” shape pattern was observed with higher RR 

estimates in ages 20-39 and 70-79 years (Table 2), but the model with constant RR 

remained the most parsimonious (LRT, df=4, p=0.59 comparing against the age-

specific RR model, Table 2). The estimated cumulative risks of developing BC to age 

50 were 4% (95%CI:3-6%) for RAD51C and 4% (95%CI 2-5%) for RAD51D 

pathogenic variant carriers and to age 80 were 21% (95%CI:15-29%) for RAD51C 

and 20% (95 CI:14-28%) for RAD51D pathogenic variant carriers assuming UK 

incidences (Figure 1 and Table 3; Supplementary Table 7 assuming USA 

incidences).    

Birth cohort and variant screening sensitivity 

We assessed whether the estimated risks vary by birth cohort by estimating 

separate RRs for different birth cohort groupings (Supplementary Table 8).  There 

was a suggestion of increasing BC risks with more recent birth cohort, but the 

differences were not statistically significant. Similarly, there were no statistically 

significant differences in the TOC RR estimates between cohort groupings for either 

RAD51C or RAD51D RRs.  We also assessed the impact on the results of assuming 

a reduced mutation screening sensitivity when including RAD51C/D test-negative 

families (Supplementary Methods). As the mutation screening sensitivity parameter 

decreased, the estimated TOC and BC RRs increased (Supplementary Table 9).  
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Predicted risks by family history 

The most parsimonious models included a residual familial polygenic 

component. Under this model, the risk of developing TOC or BC for RAD51C/D 

pathogenic variant differs by cancer family history. The predicted risk of developing 

TOC to age 80 years varies from 11% (95%CI:6-21%) for RAD51C and 13% 

(95%CI:7-23%) for RAD51D pathogenic variant carriers with no family history of TOC 

in first and second-degree relatives to 32% (95%CI:20-50%) for RAD51C and 36% 

(95%CI:23-53%) for RAD51D pathogenic variant carriers whose mother and sister 

developed TOC at age 50 years (Figure 2 and Supplementary Tables 10-11). 

Similarly, the predicted cumulative risk of developing BC to age 80 years varies from 

20% (95%CI:15-28%) for RAD51C and 19% (95%CI:13-27%) for RAD51D 

pathogenic variant carriers with an unaffected mother at age 50 years and unaffected 

maternal grandmother at age 70 years to 46% (95%CI: 6-56%) for RAD51C and 44% 

(95%CI:33-55%) for RAD51D pathogenic variant carriers with two first degree 

relatives diagnosed with. 

Discussion 

This is the largest family-based study to date to estimate age-specific relative 

and absolute TOC and BC risks for RAD51C and RAD51D pathogenic variant 

carriers, confirming that RAD51C and RAD51D pathogenic variants are associated 

with TOC and BC risks which vary by cancer-family history. 

Several case-control studies have estimated the association between 

RAD51C and RAD51D pathogenic variants and TOC (Supplementary Table 1). 

However, these studies had limited statistical power and the OR estimates, ranging 

from 3.4 to 15.8, were (Supplementary Table 1). The reported associations with BC 
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risk have been unclear with conflicting evidence (Supplementary Table 2. A 

complicating factor in interpreting the results from some BC case-control studies 

includes the fact that BC cases may have been selected on the basis of family history 

of both BC and TOC, which may confound the BC associations given the known TOC 

association; and publicly-available controls were often not closely matched to the 

case populations. In contrast, the present analysis considered the ascertainment 

process for each family separately and modelled the simultaneous associations with 

TOC and BC. In addition, family-based analyses closely control for population 

stratification since genetic background is shared within families (17, 18).  

For both RAD51C and RAD51D pathogenic variants the TOC incidence 

markedly increases and peaks around ages 58-60 years compared with the country- 

and cohort-specific population incidences. Even though this is the largest study to 

date, the age specific results were based on relatively small numbers in each age 

group. If this pattern is replicated by other studies this may have implications on the 

timing of risk-reducing interventions.  

We used variant frequencies estimated from the UK (RAD51C: 0.00022; 

RAD51D: 0.00026). These are similar to other frequency estimates. Following the 

same pathogenic variant selection criteria, the variant frequencies were estimated to 

be 0.00055 for RAD51C and 0.0003 for RAD51D using European non-Finnish non 

cancer gnomAD data and 0.0007 for RAD51C and 0.0004 for RAD51D from Song et 

al (7). Therefore, our results are unlikely to have been influenced by incorrect 

assumptions for the population variant frequencies.       

To maximise the number of families used in the analyses, for studies with data 

available for all families used in the mutation screening process, we used both 
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families in which pathogenic variants were detected and families without pathogenic 

variants, under the assumption that the mutation screening sensitivity is 100%. Our 

analyses which assumed reduced mutation screening sensitivity suggest that if this 

is substantially lower (~60%), the estimated risks may have been somewhat 

underestimated. The results were very similar to the main results for the most 

plausible values of 80-90%.    

Women diagnosed with cancer were censored at the age of risk-reducing 

surgery if the surgery occurred at least one year prior to cancer diagnosis. We 

repeated the analysis assuming women were censored at the age of risk-reducing 

surgery plus one year for both affected and unaffected. The results were almost 

identical to the main analysis (Supplementary Table 12) suggesting that this 

assumption in unlikely to have led to bias in the results due to unequal counting of 

person-time.  

The most parsimonious models incorporated a residual polygenic component, 

which also modifies the TOC and BC risk for pathogenic variant carriers. This 

indicates that other unobserved genetic or environmental risk factors shared in 

families may modify cancer risks for pathogenic variant carriers, consistent with 

results on other susceptibility genes e.g. BRCA1, BRCA2, PALB2 and CHEK2 (11, 

12, 19-23). These may include the combined effects of common genetic variants 

(polygenic risk score, PRS) identified through genome-wide association studies 

which have been shown to modify TOC and BC risks for pathogenic variant carriers 

in other genes (24, 25). The results presented here imply that cancer family history 

should be considered when counselling carriers with RAD51C/D pathogenic variants 

as it can lead to large differences in the cumulative TOC and BC and thus influence 

clinical management. For example, the cumulative risk of TOC to age 80 could be as 
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high as 20-23% for a woman with a RAD51C/D pathogenic variant if her mother 

developed TOC at age 55 (Figure 2 and Supplementary Table 10-11).  Similarly, a 

woman with a RAD51C/D pathogenic variant and a first degree relative diagnosed 

with BC at a young age would be classified as at “high-risk” (≥30%) of developing BC 

on the basis of the current NICE guidelines in the UK (26).  

The current study has several limitations. Although this is the largest study of 

its kind to date, we were not able to assess variations in risks by variant type or 

location. Similarly, the number of TOC/BC cases in some age groups remains small 

and age specific RR estimates are associated with large standard errors (Table 2). 

Previous studies have suggested that pathogenic variants in RAD51C or RAD51D 

may be more strongly associated with specific BC subtypes, in particular estrogen 

receptor negative or triple-negative BC (3, 4). No cancer subtype analysis were 

performed for either BC or TOC. To estimate subtype-specific associations in this 

study design requires tumour pathology data being available on all family members 

diagnosed with BC/TOC but these were not available. Nevertheless, our BC risk 

estimates will still be of clinical relevance as current screening or other interventions 

do not distinguish between the risks for different BC subtypes. The analysis was 

restricted to studies from Europe and North America. Further studies are needed 

when applying our findings to other populations. 

It has been recently suggested that risk-reducing salpingo-oophorectomy 

(RRSO) may be offered to women with lifetime risks of TOC of >4-5% (27, 28). The 

current cumulative risk estimates and associated confidence intervals place both 

RAD51C and RAD51D pathogenic variant carriers in the category of women for 

whom RRSO could be recommended for prevention. However, unlike BRCA1 

pathogenic variants this may only be warranted for women over the age 50, which 
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allows for women of childbearing age to complete their families. Although the average 

risk estimates of BC for RAD51C/RAD51D pathogenic variant carriers would place 

these women in the moderate risk category, in combination with family history of BC, 

the cumulative risks could be as high as 46% (Figure 2), which would place them in 

the high-risk category based on the NICE guidelines (26).  

In summary, we refined and provided age-specific TOC risk estimates for 

women with RAD51C and RAD51D pathogenic variants. We also confirmed that both 

RAD51C and RAD51D pathogenic variants confer a moderate risk of BC. Our results 

suggest that the RAD51C and RAD51D genes should be included in gene panel 

testing for TOC and BC to guide cancer surveillance and prevention. Incorporation of 

RAD51C and RAD51D into risk prediction models should be considered to facilitate 

stratified TOC and BC risk management.  
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Table 1 Summary of women by mutation, disease status and age among the families 

with RAD51C and RAD51D pathogenic variants. 

Age (years) 
Pathogenic variant carriers Tested non carriers Untested 

Unaffected BC TOC Unaffected BC TOC Unaffected BC TOC 

RAD51C 
(N=1794 from 
125 families) 

         

<20 1 0 0 1 0 0 88 0 1 

20-29 6 1 0 2 0 0 73 4 1 

30-39 18 21 2 12 1 0 128 15 6 

40-49 26 25 10 24 4 0 156 35 12 

50-59 14 16 27 11 3 0 143 30 21 

60-69 9 6 20 9 5 2 161 35 24 

70-80 4 4 6 3 1 0 368 15 15 

missing* 0 0 0 0 0 0 172 0 0 

Total† 78 73 65 62 14 2 1289 134 80 

RAD51D 
(N=935 from 60 
families) 

         

<20 1 0 0 2 0 0 26 0 0 

20-29 2 1 0 2 0 0 40 0 0 

30-39 7 7 2 6 0 0 54 7 4 

40-49 7 11 4 8 2 1 80 19 7 

50-59 7 8 17 8 0 0 85 28 19 

60-69 1 3 10 5 2 0 87 13 14 

70-80 1 0 3 0 0 0 192 7 5 

Missing* 0 0 0 0 0 0 120 0 0 

Total 26 30 36 31 4 1 684 74 49 

*Individuals with missing phenotype information were censored at age 0. 

†There  are 3 individuals with two cancers diagnosed at the same age and counted in 

both BC and TOC: one is RAD51C pathogenic variant carrier and the other two were 

untested for RAD51C. 

BC: Breast Cancer; TOC: Tubo-ovarian Carcinoma 
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Table 2 Estimated tubo-ovarian carcinoma and breast cancer RR for RAD51C and RAD51D pathogenic variant carriers.  

Cancer and Models considered 
Age 

(years) 
RR 

(95% CI) 
P-value* 

LRT  
P-value† 

AIC 
Best fitting 

models 

RAD51C       

Tubo-ovarian carcinoma       

Age-constant model 30-79 7.55 (5.60-10.19) 5×10-40 
 

4335.8 — 

Age-specific model for each decade of age 30-39 2.85 (0.46-17.70) — 0.04 4334.0 — 

40-49 5.94 (3.09-11.43) — 

50-59 8.55 (5.10-14.33) — 

60-69 13.90 (8.45-22.88) — 

70-79 2.54 (0.53-12.27) — 

Age-specific model, separate parameters for 2 
age groups: [30,50),[50,80) 

30-49 4.97 (2.75-8.97) — 0.048 4333.8 — 

50-79 9.44 (6.63-13.45) — 

Piecewise linear model‡ 35 2.40 — 0.004 4328.6 Yes 

45 5.14 — 

55 11.02 — 

65 9.02 — 

75 2.82 — 

Breast cancer       

Age-constant model 20-79 1.99 (1.39-2.85) 1.55×10-4 
 

4346.4 Yes 

Age-specific model, separate parameters for 
each decade of age 

20-29 1.19 (0.09-16.12) — 0.37 4351.0 — 

30-39 3.25 (1.60-6.62) — 

40-49 2.50 (1.41-4.45) — 

50-59 0.96 (0.34-2.71) — 

60-69 1.54 (0.45-5.36) — 

70-79 2.57 (0.61-10.81) — 

Age-specific model, separate parameters for 2 
age groups: [20,50),[50,80) 

20-49 2.42 (1.61-3.63) — 0.12 4346.0 — 

50-79 1.36 (0.70-2.63) — 

RAD51D       

Tubo-ovarian carcinoma       

Age-constant model 30-79 7.60 (5.61-10.30) 5×10-39 
 

4160.0 — 

Age-specific model for each decade of age 30-39 3.60 (0.78-16.75) — 0.02 4155.8 — 
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40-49 3.19 (1.04-9.72) — 

50-59 12.54 (7.62-20.63) — 

60-69 10.60 (6.10-18.41) — 

70-79 4.94 (1.34-18.26) — 

Age-specific model, separate parameters for 2 
age groups: [30,50),[50,80) 

30-49 3.23 (1.36-7.71) — 0.002 4152.1 — 

50-79 10.56 (7.48-14.91) — 

Piecewise linear model§ 35 1.64 — 0.002 4151.6 Yes 

45 4.30 — 

55 11.29 — 

65 10.16 — 

75 5.77 — 

Breast cancer       

Age-constant model 20-79 1.83 (1.24-2.72) 0.0002 
 

4177.9 Yes 

Age-specific model, separate parameters for 
each decade of age except for 20-39 age group 

20-39 2.25 (1.25-4.04) — 0.59 4183.1 — 

40-49 1.46 (0.69-3.09) — 

50-59 1.56 (0.69-3.51) — 

60-69 1.63 (0.54-4.98) — 

70-79 4.19 (1.51-11.62) — 

Age-specific model, separate parameters for 2 
age groups: [20,50),[50,80) 

20-49 1.84 (1.12-3.02) — 1.00 4179.9 — 

50-79 1.83 (1.02-3.26) — 

*The p-values assessing the null hypothesis of RR=1.00 

†Likelihood ratio tests (LRT) comparing each model against the model with a constant RR.  

‡logRR(t)=a+b1(t-30) if t ∈ [30,60); logRR(t)=a+b1×30+b2(t-60) if t ∈ [60,80) where a=0.49 (95% CI: -0.80 to 1.78), b1=0.076 (95% CI: 

0.023 to 0.13), b2=-0.12 (95% CI: -0.23 to -0.0036)   

§logRR(t)=a+b1(t-30) if t ∈ [30,58); logRR(t)=a+b1×28+b2(t-58) if t ∈ [58,80) where a=0.010 (95% CI: -1.49 to 1.51), b1=0.097 (95% 

CI: 0.034 to 0.16), b2=-0.057 (95% CI: -0.13 to 0.017)   

 



30 
 

Table 3 Estimated age-specific cancer incidences and cumulative cancer risks for RAD51C and RAD51D pathogenic variant carriers 

Age (years) 
RAD51C pathogenic variant carriers RAD51D pathogenic variant carriers 

BC TOC BC TOC 

Estimated incidences per 1,000 person-years 
(95% Confidence Interval)* 

    

30 0.4 (0.2-0.5) 0.05 (0.01-0.2) 0.3 (0.2-0.5) 0.03 (0.007-0.1) 

40 2 (1-3) 0.3 (0.2-0.8) 2 (1-2) 0.3 (0.1-0.7) 

50 5 (3-6) 2 (1-3) 4 (3-6) 2 (1-3) 

60 6 (4-9) 7 (4-11) 6 (4-9) 6 (4-8) 

70 7 (5-10) 3 (1-8) 7 (4-10) 5 (2-9) 

79 8 (5-11) 1 (0.2-8) 7 (5-11) 3 (0.9-12) 

Estimated cumulative risks, %, (95% 
Confidence Interval)* 

    

30 0.1 (0.08-0.2) 0.02 (0.02-0.02) 0.1 (0.07-0.2) 0.02 (0.02-0.02) 

40 1 (0.7-1) 0.2 (0.08-0.4) 0.9 (0.6-1) 0.1 (0.06-0.3) 

50 4 (3-6) 1 (0.6-2) 4 (2-5) 0.8 (0.5-2) 

60 9 (6-12) 4 (3-7) 8 (6-12) 4 (3-7) 

70 15 (11-21) 9 (6-14) 14 (10-20) 9 (6-14) 

80 21 (15-29) 11 (6-21) 20 (14-28) 13 (7-23) 

*Assuming the UK population calendar and cohort specific incidences for an individual born between 1950-1959. Mortality is not 

accounted for absolute risk estimates. 

BC: Breast Cancer; TOC: Tubo-ovarian Carcinoma 
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Figure 1 Estimated age-specific tubo-ovarian carcinoma and breast cancer 

cumulative risks in RAD51C and RAD51D pathogenic variant carriers. The 

shaded areas correspond to the 95% confidence intervals. 
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Figure 2 Estimated tubo-ovarian carcinoma and breast cancer cumulative risks 

for RAD51C and RAD51D pathogenic variant carriers by cancer family history. 
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Supplementary Material 

Methods 

Variant frequencies  

We estimated the RAD51C and RAD51D pathogenic variant frequencies in the 

population using the UK Biobank exome sequencing dataset 

(http://www.ukbiobank.ac.uk). Specifically, among the 49,960 available subjects, we 

selected cancer-free individuals (either self-reported or medical records) and removed 

relatives up to second degree, leaving 42,325 individuals for the variant frequency 

estimation. The pathogenic variants within RAD51C and RAD51D were extracted. 

Variants in the last exon were excluded. The pathogenic variant frequencies were 

estimated and were used as input parameters in the segregation analysis. 

Missing age at cancer diagnosis 

Individuals with missing age at cancer diagnosis but other age information available 

were assumed to develop the corresponding cancer at the minimum available age. 

For those without any age information available, we assigned the age at cancer 

diagnosis to be the “average cancer-specific age at diagnosis” obtained from:  the 

family, within the study group and within the country, whichever was available in this 

order. A summary of the number of individuals with missing age is shown in 

Supplementary Table 13.  

Statistical models 

Two main genetic models were fitted: (1) a major-gene model that assumed all familial 

aggregation of tubo-ovarian carcinoma (TOC) and breast cancer (BC) to be due to 

RAD51C or RAD51D; and (2) a polygenic model that considered an additional residual 

familial component representing other unobserved genetic effects not due to RAD51C 

http://www.ukbiobank.ac.uk/
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or RAD51D (1, 2). Under each model, the cancer incidence for individual i at age t 

born in cohort k from country c was dependent on the underlying genetic effects though 

a model of the form 

𝜆𝑖(𝑡, 𝑘, 𝑐) = 𝜆0(𝑡, 𝑘, 𝑐) exp((𝑡)𝐺𝑖 +  𝑃𝑖), 

where 𝜆0(𝑡, 𝑘, 𝑐) is the baseline incidence for non-RAD51C/D carriers at age t for 

cohort k and country c, Gi is an indicator variable taking values 1 for RAD51C/D 

pathogenic variant carriers and 0 for non-carriers, and 𝑃𝑖 is the polygenic component 

which was set to 0 under the single-gene models and was assumed to be normally 

distributed with mean 0 and variance 𝜎𝑅
2 under the polygenic models (3, 4). (𝑡) is the 

log-risk ratio for RAD51C/D pathogenic variant relative to non-carriers. To ease 

interpretation, the models were parameterised in terms of the cancer-specific log-

relative risk (log-RR) for RAD51C and RAD51D pathogenic variant carriers relative to 

the population incidences for TOC and BC. Specifically, the RR at age t was defined 

as: 

RR (t) =
𝑖𝑅𝐴𝐷51𝐶/𝐷+(𝑡, 𝑘, 𝑐)

𝑖𝑝𝑜𝑝(𝑡, 𝑘, 𝑐)
 

where iRAD51C/D+(t, k, c) denotes the average cancer incidence for RAD51C/D 

pathogenic variant carriers at age t born in cohort k from country c (over all polygenic 

effects) and ipop(t, k, c) denotes the population incidence at age t for cohort k and 

country c.  

We constrained the total genetic variance (𝜎𝑡𝑜𝑡𝑎𝑙
2 ), which was defined as the sum of 

the variance due to RAD51C/D pathogenic variant (𝜎𝐾
2) and the residual polygenic 

variance (𝜎𝑅
2 ), to agree with external estimates of the total polygenic variance. This 

was assumed be equal to 2.06 for TOC and 1.66 for BC, based on estimates from 

previously published segregation analyses (1, 5-7).   
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When the logRR for RAD51C/D pathogenic variant carriers relative to the population 

incidences was assumed to be a piecewise linear function of age, the logRR(t)  was 

modelled as: 

logRR((𝑡)) = {
𝑎 + 𝑏1(𝑡 − 30),                               𝑡 ∈ [30, 𝜏) 

𝑎 + 𝑏1(𝜏 − 30) + 𝑏2(𝑡 − 𝜏),        𝑡 ∈ [𝜏, 80)
 

where, t is the age,  𝜏 is the age-breakpoint where the slope changes to 𝑏2. We 

optimised 𝜏 by fitting a series of models in which 𝜏  took values from age 55 to 65 (the 

plausible age range from the age-specific logRR models). 

Cancer incidences 

Country- and cohort-specific population cancer incidences (Cancer incidence in five 

continents, http://ci5.iarc.fr/CI5plus/Default.aspx) were used here to take into account 

differences in incidences by study group, study location and changes in incidences 

over time. The overall cancer incidences were constrained over all assumed genetic 

effects in the model to agree with the population incidences (5). The reported 5-year 

interval constant incidences were smoothed using the locally weighted regression 

LOWESS approach (8, 9). A total of eight cohort-specific incidences (<1920, 1920-

1929, 1930-1939, 1940-1949, 1950-1959, 1960-1969, 1970-1979 and >1980) were 

used in the model by assuming each individual was born at the midpoint of each 

assumed cohort period (1915 for the first cohort and 1985 for the last cohort).  

Ascertainment adjustment 

We adjusted for ascertainment for each family separately by employing an 

assumption-free approach (10-12). We divided the data for each family into two parts 

depending on whether the data could be relevant to the ascertainment (F1) or not (F2). 

The conditional likelihood L=Pr(F1, F2)/Pr(F1) was then maximized, where Pr(F1, F2) 

is the probability of the observed data in the entire pedigree and Pr(F1) is the 

http://ci5.iarc.fr/CI5plus/Default.aspx
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probability of the observed data in the component relevant to the ascertainment. 

Specifically, for population-based families, F1 included the phenotype and genotype 

of the proband only. For families ascertained through multiple affected members, F1 

included the genotype of the proband and phenotypes of all the family members. For 

the families from the four studies that provided data irrespective of the variant 

screening result (ICR, UKFOCSS, UKFOCR, and SEARCH), the proband’s genotype 

was excluded from F1 as it did not form part of the ascertainment (Supplementary 

Table 4).  

Variant screening sensitivity 

Four studies (ICR, UKFOCSS, UKFOCR and SEARCH) provided data on all families 

screened for RAD51C or RAD51D variants, irrespective of the mutation search result. 

Details of these studies and methods have been published elsewhere (13-15). In these 

families only the proband was screened for RAD51C/D mutations. To maximise the 

number of informative families included in the analysis (after ascertainment 

adjustment), for these four studies, the analysis included also the families in which the 

proband was found not to carry a pathogenic variant in RAD51C or RAD51D and these 

probands were treated as non-carriers in the analyses. However, this assumes that 

the variant screening sensitivity, describing the probability of detecting a variant given 

it exists, is 100%, which may not be necessarily true given the variant screening was 

carried in research setting in those studies. In practice variant screening sensitivity 

could be lower and some of the non-carrier families may carry pathogenic variants in 

RAD51C or RAD51D. To assess the impact of a reduced variant screening sensitivity 

on the risk estimates we extended the models to allow for a reduced variant screening 

sensitivity parameter (16) which was assumed to range from 0.6 to 0.9. 
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Supplementary Table 1 Previously published studies on tubo-ovarian carcinoma 

(TOC) risks associated with germline mutations in RAD51C and RAD51D 

 

Published case-control studies 

Population/ 
country 

Samples 
Minor allele 
frequency 

OR (95% CI) 
Reference 

Cases Controls RAD51C RAD51D RAD51C RAD51D 

European 
~120,000 
BC*/TOC† 

~120,000 NA NA 
4.24 
(2.56-7.02) 

7.28 
(4.03-13.14) 

(17) 

France 

5131 
patients 
with FH‡ 
of BC or 
TOC 

571 
geographically 
matched 
controls 

0.0012 0.00052 
14.62 
(5.39-29.52) 

11.84 
(1.09-40.00) 

(18) 

United 
States 

1,915 
patients 
unselected 
for FH 

4,300 ESP§ 
European 
American 

0.0002 0.0005 
15.8 
(1.9-128) 

9.0 
(1.9-42.5) 

(19) 

3,6276 ExAC 0.0011 0.0004 
3.4 
(1.5-7.6) 

10.9 
(4.6-26.0) 

Mixed 
population 

3.429 
patients 
(including 
3,135 
unselected 
for FH and 
294 with 
FH) 

2,772 controls 
(including 
2,678 
unselected for 
FH and 94 
selected for 
FH) 

0.00036 0.00018 5.2 (1.1-24) 12 (1.5-90) (15) 

Published family segregation studies 

Population/ 
country 

Families 

Minor allele 
frequency 

HR (95% CI) 
Reference 

RAD51C RAD51D RAD51C RAD51D 

European 1132 families with FH NA NA 
5.88 
(2.91-11.88) 

NA (14) 

UK 
911 families with FH of 
BC/TOC 

NA NA NA 
6.30 
(2.86-13.85) 

(13) 

*BC: breast cancer 

†TOC: tubo-ovarian carcinoma 

‡FH: family history  

§ESP: the National, Heart, Lung, and Blood Institute Exome Sequencing Project 
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Supplementary Table 2 Previously published studies on breast cancer risks 

associated with germline mutations in RAD51C and RAD51D 

 

Published case-control studies 

Population/ 
country 

Samples 
Minor allele 
frequency 

OR (95% CI) 
Reference 

Cases Controls RAD51C RAD51D RAD51C RAD51D 

Australia 

3080 
patients 
with FH* of 

BC† or 

TOC‡ 

4840 
geographocally 
matched 
controls 

0.0004 NA 
8.67 
(1.89-80.52) 

NA (20) 

European 
~120,000 
BC/TOC 

~120,000 NA NA 
1.13 
(0.88-1.44) 

1.25 
(0.90-1.75) 

(17) 

France 

5131 
patients 
with FH of 
BC or TOC 

571 
geographically 
matched 
controls 

0.0012 0.00052 
1.92 
(0.71-3.85) 

2.42 
(0.36-7.39) 

(18) 

Germany 

5,589 
Patients 
with FH or 
early-
onset BC 
or bilateral 
BC or 
patients 
affected by 
BC and 
TOC 

2,189 
geographically 
matched 
controls 

0.00045 0 
1.76 
(0.38-8.17) 

NA 

(21) 

27,173 ExAC 
(European, 
non-Finnish, 
non-TCGA) 

0.00065 0.00015 
1.29 
(0.62-2.69) 

3.04 
(0.99-9.30) 

7,325 
FLOSSIES 
(European 
American 
ancestry) 

0.00015 0.00015 
5.91 
(1.28-27.34) 

3.28 
(0.64-16.91) 

United 
States 
(white or 
Ashkenazi 
Jewish) 

38,326 
patients 
quantifying 
for clinical 
genetic 
testing 

26,911 ExAC 
(non-Finnish, 
non-TCGA) 

0.0006 0.0001 
0.78 
(0.47-1.37) 

3.07 
(1.21-7.88) 

(22) 

Mixed 
population 

2,134 
patients 
with FH of 
BC or TOC 

26,375 ExAC 
(non-Finnish, 
non-TCGA 
European) 

0.0007 0.0001 
0.39 
(0.02-2.41) 

8.33 
(2.20-30.48) 

(23) 

Published family segregation studies 

Population/ 
country 

Families 

Minor allele 
frequency 

HR (95% CI) 
Reference 

RAD51C RAD51D RAD51C RAD51D 

European 1132 families with FH NA NA 
0.91 
(0.45-1.86) 

NA (14) 

UK 
911 families with FH of 
BC/TOC 

NA NA NA 
1.32 
(0.59-2.96) 

(13) 

*FH: family history 

†BC: breast cancer 
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‡TOC: tubo-ovarian carcinoma 
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Supplementary Table 3 List of contributing study groups and number of families 

 

Study group 
Full name of 
study groups 

Total number of 
families 

Number of 
families by 

ascertainment 
type 

Number of non-
informative families 
excluded from the 

analysis due to 
ascertainment 

 

Number of families  
eligible for inclusion in 

the analysis with 

pathogenic variants‡  

Reference 

RAD51C RAD51D fhx* pop† RAD51C RAD51D RAD51C RAD51D  

Ambry  Ambry Genetics 18 10 28 0 7 5 11 5  

AOCS 
Australian 
Ovarian Cancer 
Study 

3 1 0 4 0 0 3 1 
 

BFBOCC-LT 

Baltic Familial 
Breast Ovarian 
Cancer 
Consortium 
(Lithuania) 

4 0 4 0 2 0 2 0 

 

CBCS 
Copenhagen 
Breast Cancer 
Study 

7 1 8 0 3 1 4 0 
 

CFB   15 5 20 0 13 5 2 0  

CNIO 
Spanish National 
Cancer Centre 

1 0 1 0 1 0 0 0 
 

Curie  Institut Curie 1 3 4 0 0 3 1 0  

DFCI 
Dana Farber 
Cancer Insitute 

4 2 6 0 3 2 1 0 
 

FPGMX 

Fundación 
Pública Galega de 
Medicina 
Xenómica 

0 1 1 0 0 0 0 1 

 

GC-HBOC 

German 
Consortium for 
Hereditary Breast 
and Ovarian 
Cancer 

74 16 90 0 26 8 48 8    
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Study group 
Full name of 
study groups 

Total number of 
families 

Number of 
families by 

ascertainment 
type 

Number of non-
informative families 
excluded from the 

analysis due to 
ascertainment 

 

Number of families  
eligible for inclusion in 

the analysis with 

pathogenic variants‡  

Reference 

RAD51C RAD51D fhx* pop† RAD51C RAD51D RAD51C RAD51D  

HCSC 
Hospital Clinico 
San Carlos 

1 1 2 0 0 1 1 0  

HEBCS 
Helsinki Breast 
Cancer Study 

6 4 8 2 2 1 4 3  

HVH 
University 
Hospital Vall 
d’Hebron 

0 3 3 0 0 1 0 2 (24) 

IBOC   1 0 1 0 0 0 1 0  

ICR 

BOCS (Breast 
and Ovarian 
Cancer Study) 
formerly FBCS 
(Familial Breast 
Cancer Study 

5354 (among these, 
4451 families were 
screened for RAD51C 
and 5026 families 
were screened for 
RAD51D) 

5354 0 0 0 

4451 
among 
these 24 
with 
pathogenic 
variants 

5026 
among 
these 21 
with 
pathogenic 
variants 

(13, 14) 
Sequencing 
methods 
described in study 
references 

kConFab 

Kathleen 
Cuningham 
Consortium for 
Research into 
Familial Breast 
Cancer 

2 1 3 0 0 0 2 1  

MALOVA 
MALignant 
OVArian cancer 
study 

1 2 0 3 0 0 1 2 (25) 

MCBCS   1 0 1 0 1 0 0 0  

MCGILL McGill University 1 1 2 0 1 0 0 1 (26) 

MSKCC 
Memorial Sloane 
Kettering Cancer 
Center 

1 0 1 0 0 0 1 0  

POC   3 0 3 0 3 0 0 0  
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Study group 
Full name of 
study groups 

Total number of 
families 

Number of 
families by 

ascertainment 
type 

Number of non-
informative families 
excluded from the 

analysis due to 
ascertainment 

 

Number of families  
eligible for inclusion in 

the analysis with 

pathogenic variants‡  

Reference 

RAD51C RAD51D fhx* pop† RAD51C RAD51D RAD51C RAD51D  

UKFOCSS/ 
UKFOCR 

UK Familial 
Ovarian Cancer 
Screening Study/ 
UK Familial 
Ovarian Cancer 
Registry 

491 (among these, 486 
families were screened 
for RAD51C and 484 
families were screened 
for RAD51D) 

491 0 0 0 

486 among 
these 8 
with 
pathogenic 
variants 

484 among 
these 6 
with 
pathogenic 
variants 

(27) 
Sequencing 
methods 
described in 
reference (15) 
 

SEARCH 

  
1158 (among these, 
1151 families were 
screened for RAD51C 
and 1154 families were 
screened for RAD51D) 

0 1158 0 0 

1151 
among 
these 3 
with 
pathogenic 
variants 

1154 
among 
these 7 
with 
pathogenic 
variants 

(15) 
Sequencing 
methods 
described in study 
reference. 

SWE-BRCA 
Swedish Breast 
Cancer Study 

9 1 10 0 3 0 6 1  

UCV   0 2 2 0 0 2 0 0  

UPENN 
University of 
Pennsylvania 

1 0 1 0 1 0 0 0  

USC 
 University of 
South California 

2 2 4 0 0 1 2 1  

Total 

  

6244 6720 6049 1167 66 30 

6178 
among 
these 125 
with 
pathogenic 
variants 

6690 
among 
these 60 
with 
pathogenic 
variants 

 

*fhx: family-based ascertainment 

†pop: population-based ascertainment 

‡For ICR, SEARCH and UKFOCSS/UKFOCR the cell contains the total number of families screened for RAD51C or RAD51D 
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Supplementary Table 4 Summary of types of ascertainment adjustment schemes 

used in the study 

 

Type of 
ascertainment 

Study Groups 
F1: Data relevant to 
ascertainment 

F2: Data not relevant to 
ascertainment 

Population-based 

SEARCH 
(1) Phenotype of the 
proband 

(1) Phenotypes of all family 
members except the proband; 
(2) mutation status of all family 
members  

Others 
(1) Phenotype of the 
proband; (2) mutation 
status of the proband 

(1) Phenotypes of all family 
members except the proband; 
(2) mutation status of all family 
members except proband's 

family-based 

ICR, UKFOCSS, 
UKFOCR 

(1) All family 
phenotypes 

Mutation status of all family 
members  

Others 

(1) All family 
phenotypes; (2) 
mutation status of the 
proband 

Mutation status of all family 
members except proband's 
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Supplementary Table 5 List of pathogenic variants in RAD51C among eligible 
families included in the analysis 

Variants HGVS 
(ref: ENST00000337432.9) 

Type Number of families 

c.158_160delinsTT frameshift variant 1 

c.158del frameshift variant 1 

c.181_182del frameshift variant 2 

c.186_187del frameshift variant 1 

c.216_220del frameshift variant 2 

c.224dup frameshift variant 6 

c.483_484insC frameshift variant 2 

c.498del frameshift variant 2 

c.501_502dup frameshift variant 1 

c.525dup frameshift variant 3 

c.622_623del frameshift variant 1 

c.651_652del frameshift variant 1 

c.704dup frameshift variant 1 

c.732del frameshift variant 4 

c.774del frameshift variant 3 

c.849_852del frameshift variant 1 

c.862del frameshift variant 3 

c.890del frameshift variant 1 

c.93del frameshift variant 14 

c.945dup frameshift variant 1 

c.966-?_c.1131+?del frameshift variant 1 

c.572-?_c.1131+?del frameshift variant 1 

c.706-?_c.1131+?del frameshift variant 12 

c.966-?_c.1026+?del frameshift variant 2 

c.706-?_c.837+?del in-frame large deletion 1 

c.145+1G>T intron splicing site variant 2 

c.146-4_146-2del intron splicing site variant 1 

c.404+2T>C intron splicing site variant 2 

c.571+1G>A intron splicing site variant 2 

c.572-1G>T intron splicing site variant 1 

c.705+1G>A intron splicing site variant 1 

c.706-1G>A intron splicing site variant 3 

c.706-2A>G intron splicing site variant 14 

c.837+1G>A intron splicing site variant 2 

c.905-2_905-1del intron splicing site variant 2 

c.905-2del intron splicing site variant 1 

c.397C>T nonsense variant 3 

c.502A>T nonsense variant 2 

c.577C>T nonsense variant 6 

c.664C>T nonsense variant 1 

c.701C>G nonsense variant 2 

c.955C>T nonsense variant 7 

c.97C>T nonsense variant 4 

c.994C>T nonsense variant 1 
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Supplementary Table 6 List of pathogenic variants in RAD51D among eligible 
families included in the analysis 

Variants HGVS 
(ref: ENST00000345365.10) 

Type Number of families 

c.140_141insAA frameshift variant 1 

c.255_256insCTCCCAAAGTGCTAGG frameshift variant 1 

c.270_271dup frameshift variant 1 

c.363del frameshift variant 2 

c.416del frameshift variant 1 

c.480+1G>A frameshift variant 1 

c.564_567del frameshift variant 2 

c.564del frameshift variant 2 

c.623dup frameshift variant 1 

c.667_667+21del frameshift variant 1 

c.740_741dup frameshift variant 1 

c.748del frameshift variant 5 

c.83-?_577-?del frameshift variant 1 

c.145-?_263+?del frameshift variant 1 

c.451C>T nonsense variant 1 

c.478C>T nonsense variant 1 

c.547C>T nonsense variant 1 

c.556C>T nonsense variant 11 

c.620C>A nonsense variant 1 

c.649G>T; c.655C>T (cis) nonsense variant 1 

c.694C>T nonsense variant 4 

c.757C>T nonsense variant 2 

c.803G>A nonsense variant 3 

c.898C>T nonsense variant 4 

c.263+1G>A intron splicing site variant 1 

c.576+1G>A intron splicing site variant 5 

c.577-2A>G intron splicing site variant 2 

c.649_655delinsTGAGGTT intron splicing site variant 1 

c.83-1G>A intron splicing site variant 1 
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Supplementary Table 7 Estimated age-specific cancer incidences and cumulative 

cancer risks for RAD51C and RAD51D pathogenic variant carriers in the USA. 

Age 
(years) 

Estimated incidences (per 1,000 person-years) for RAD51C and RAD51D 
pathogenic variant carriers (95% Confidence Interval)* 

RAD51C RAD51D 

BC TOC BC TOC 

30 0.4 (0.3-0.6) 0.06 (0.02-0.2) 0.4 (0.3-0.6) 0.04 (0.009-0.2) 

40 2 (1-3) 0.3 (0.1-0.7) 2 (1-3) 0.2 (0.1-0.6) 

50 4 (3-6) 1 (1-2) 4 (3-6) 1 (0.9-2) 

60 7 (5-9) 5 (3-8) 6 (4-9) 4 (3-6) 

70 9 (6-13) 2 (0.9-6) 8 (6-12) 3 (2-7) 

79 9 (6-13) 0.9 (0.1-6) 8 (6-12) 2 (0.6-9) 

Age 
(years) 

Estimated cumulative risks (%) for RAD51C and RAD51D pathogenic 
variant carriers by age (95% Confidence Interval)* 

RAD51C RAD51D 

BC TOC BC TOC 

30 0.1 (0.1-0.2) 0.04 (0.04-0.04) 0.1 (0.09-0.2) 0.04 (0.04-0.04) 

40 1 (0.8-2) 0.2 (0.09-0.4) 1 (0.7-2) 0.1 (0.07-0.4) 

50 4 (3-6) 0.9 (0.5-2) 4 (3-6) 0.8 (0.4-1) 

60 9 (6-13) 4 (2-6) 8 (6-12) 3 (2-6) 

70 16 (11-22) 7 (4-11) 15 (10-21) 7 (5-11) 

80 23 (17-31) 8 (5-17) 21 (15-30) 10 (6-18) 

*Assuming the USA population calendar and cohort specific incidences for an 

individual born between 1950-1959. Mortality is not accounted for absolute risk 

estimate 

BC: breast cancer; TOC: tubo-ovarian carcinoma 
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Supplementary Table 8 Estimated relative risks (RRs) of tubo-ovarian carcinoma 

(TOC) and breast cancer (BC) for RAD51C and RAD51D pathogenic variant carriers 

by birth cohort 

Cancer Year of birth 
RAD51C RAD51D 

RR (95% CI) p-value* RR (95% CI) p-value* 

BC 

Before 1940 1 

0.15 

1 

0.57 1940-1959 2.47 (0.77-7.93) 1.43 (0.5-4.09) 

in 1960 or later 2.68 (0.81-8.84) 1.82 (0.57-5.81) 

TOC 

Before 1940 1 

0.43 

1 

0.75 1940-1959 1.19 (0.54-2.62) 1.17 (0.53-2.61) 

in 1960 or later 0.53 (0.13-2.16) 0.76 (0.23-2.56) 

*Likelihood ratio test comparing against the model with a constant RR, degrees of 

freedom=2 
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Supplementary Table 9 Estimated breast cancer (BC) and tubo-ovarian carcinoma 

(TOC) relative risks for RAD51C and RAD51D pathogenic variant carriers by different 

variant screening sensitivity parameters* 

Gene Cancer 
Assumed sensitivity of mutation screening 

0.9 0.8 0.7 0.6 

RAD51C 
BC 2.08 (1.46-2.98) 2.16 (1.51-3.10) 2.25 (1.57-3.24) 2.37 (1.64-3.43) 

TOC 8.29 (6.07-11.33) 8.94 (6.45-12.37) 9.75 (6.93-13.71) 10.86 (7.58-15.56) 

RAD51D 
BC 1.90 (1.28-2.82) 1.98 (1.33-2.94) 2.06 (1.38-3.07) 2.15 (1.44-3.22) 

TOC 8.22 (5.98-11.29) 8.86 (6.35-12.35) 9.72 (6.87-13.75) 10.89 (7.56-15.70) 

*Under the models assuming a constant RR across age groups.  
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Supplementary Table 10 Age-specific cumulative breast cancer (BC) risks (%) for 

female RAD51C and RAD51D pathogenic variant carriers by cancer family history 

Age 
(years) 

Without 
considering 

family 
history 

Mother 
unaffected at 
50, maternal 
grandmother 
unaffected at 

70 

Mother with 
BC at 35 

Mother and 
sister with BC 

at 50 

Mother and 
maternal 

grandmother 
with BC at 50 

RAD51C 

30 0.1 (0.1-0.2) 0.1 (0.1-0.2) 0.2 (0.2-0.3) 0.3 (0.2-0.5) 0.2 (0.2-0.3) 

35 0.4 (0.3-0.6) 0.4 (0.3-0.5) 0.7 (0.5-1) 1 (0.8-2) 0.8 (0.6-1) 

40 1 (0.7-1) 1 (0.7-1) 2 (1-3) 3 (2-4) 2 (2-3) 

45 2 (2-3) 2 (2-3) 4 (3-6) 6 (4-8) 5 (3-6) 

50 4 (3-6) 4 (3-5) 7 (5-10) 11 (8-14) 8 (6-11) 

55 6 (4-9) 6 (4-9) 11 (8-16) 16 (12-22) 13 (9-17) 

60 9 (6-13) 9 (6-12) 16 (11-22) 23 (17-30) 18 (13-24) 

65 12 (9-17) 12 (8-16) 21 (15-28) 29 (22-38) 23 (17-31) 

70 15 (11-21) 15 (11-20) 26 (19-34) 36 (27-45) 29 (21-37) 

75 18 (13-25) 18 (13-24) 30 (22-39) 41 (32-51) 33 (25-43) 

80 21 (15-29) 21 (15-28) 34 (26-45) 46 (36-57) 38 (29-48) 

RAD51D 

30 0.1 (0.1-0.2) 0.1 (0.1-0.2) 0.2 (0.1-0.3) 0.3 (0.2-0.4) 0.2 (0.2-0.3) 

35 0.4 (0.2-0.5) 0.4 (0.2-0.5) 0.7 (0.5-1) 1 (0.7-2) 0.8 (0.5-1) 

40 0.9 (0.6-1) 0.9 (0.6-1) 2 (1-3) 3 (2-4) 2 (1-3) 

45 2 (1-3) 2 (1-3) 4 (3-5) 6 (4-8) 4 (3-6) 

50 4 (3-5) 4 (2-5) 7 (5-10) 10 (7-14) 8 (5-11) 

55 6 (4-9) 6 (4-8) 10 (7-15) 15 (11-21) 12 (8-17) 

60 8 (6-12) 8 (6-12) 15 (10-21) 21 (15-29) 16 (12-23) 

65 11 (8-16) 11 (7-15) 19 (14-27) 27 (20-36) 22 (15-30) 

70 14 (10-20) 14 (9-19) 24 (17-33) 33 (25-44) 27 (19-36) 

75 17 (12-24) 16 (11-23) 28 (20-38) 39 (29-50) 31 (23-41) 

80 20 (14-28) 19 (13-27) 32 (23-43) 44 (33-55) 36 (26-47) 
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Supplementary Table 11 Age-specific cumulative tubo-ovarian carcinoma (TOC) 

risks (%) for female RAD51C and RAD51D pathogenic variant carriers by cancer 

family history 

Age 
(years) 

Without 
considering 

family history 

Mother 
unaffected at 
50, maternal 
grandmother 
unaffected at 

70 

Mother with 
TOC at 55 

Mother and 
sister with 
TOC at 50 

Mother and 
maternal 

grandmother 
with TOC at 50 

RAD51C 

35 0.1 (0-0.2) 0.1 (0-0.1) 0.1 (0.1-0.3) 0.2 (0.1-0.5) 0.2 (0.1-0.3) 

40 0.2 (0.1-0.4) 0.2 (0.1-0.4) 0.3 (0.2-0.8) 0.6 (0.3-1) 0.4 (0.2-0.9) 

45 0.4 (0.2-0.9) 0.4 (0.2-0.9) 0.8 (0.4-2) 2 (0.7-3) 1 (0.5-2) 

50 1 (0.6-2) 1 (0.6-2) 2 (1-4) 4 (2-6) 2 (1-4) 

55 2 (1-4) 2 (1-3) 4 (3-7) 7 (5-11) 5 (3-8) 

60 4 (3-7) 4 (3-7) 9 (6-12) 14 (10-20) 10 (7-15) 

65 7 (5-11) 7 (5-11) 14 (9-20) 22 (16-31) 16 (11-23) 

70 9 (6-15) 9 (6-14) 17 (11-25) 27 (19-38) 20 (13-29) 

75 10 (6-18) 10 (6-18) 19 (12-30) 30 (20-45) 22 (14-35) 

80 11 (6-21) 11 (6-21) 20 (12-35) 32 (20-51) 24 (14-40) 

RAD51D 

35 0 (0-0.1) 0 (0-0.1) 0.1 (0.1-0.2) 0.2 (0.1-0.4) 0.1 (0.1-0.3) 

40 0.1 (0.1-0.3) 0.1 (0.1-0.3) 0.2 (0.1-0.6) 0.4 (0.2-1) 0.3 (0.1-0.8) 

45 0.3 (0.2-0.8) 0.3 (0.2-0.8) 0.6 (0.3-2) 1 (0.5-3) 0.8 (0.4-2) 

50 0.8 (0.5-2) 0.8 (0.5-2) 2 (0.9-3) 3 (2-5) 2 (1-4) 

55 2 (1-3) 2 (1-3) 4 (3-6) 7 (4-10) 5 (3-7) 

60 4 (3-7) 4 (3-7) 8 (6-12) 14 (9-20) 10 (7-15) 

65 7 (5-11) 7 (5-10) 13 (9-19) 22 (15-30) 16 (11-22) 

70 9 (6-14) 9 (6-14) 17 (12-25) 28 (19-38) 20 (14-29) 

75 11 (7-19) 11 (7-18) 20 (13-31) 32 (23-46) 24 (16-36) 

80 13 (7-23) 13 (7-23) 23 (14-37) 36 (23-54) 27 (17-43) 
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Supplementary Table 12 Estimated tubo-ovarian carcinoma (TOC) and breast 

cancer (BC) RR for RAD51C and RAD51D pathogenic variant carriers under the 

best fitting models in the main text assuming censoring for risk-reducing surgery 

occurs one year after surgery for both affected and unaffected*. 

*There was only 1 unaffected woman in families with RAD51D pathogenic variants 

censored at risk-reducing bilateral mastectomy. The number of unaffected women who 

had undergone risk-reducing salpingo-oophorectomy were: 8 among the families with 

RAD51C pathogenic variants, and 5 among the families with RAD51D pathogenic 

variants.   

†logRR(t)=a+b1(t-30) if t ∈ [30,60); logRR(t)=a+b1×30+b2(t-60) if t ∈ [60,80) where 

a=0.49 (95% CI: -0.75 to 1.74), b1=0.076 (95% CI: 0.025 to 0.13), b2=-0.12 (95% CI: -

0.23 to -0.0043)   

‡logRR(t)=a+b1(t-30) if t ∈ [30,58); logRR(t)=a+b1×28+b2(t-58) if t ∈ [58,80) where 

a=0.011 (95% CI: -1.52 to 1.55), b1=0.097 (95% CI: 0.033 to 0.16), b2=-0.057 (95% 

CI: -0.13 to 0.016)   

 

Cancer Models considered Age (years) 
RAD51C RR 

(95% CI) 
AIC 

RAD51C 

TOC Piecewise linear model† 

35 2.40 

4328.6 

45 5.14 

55 11.02 

65 9.01 

75 2.81 

BC Age-constant model 20-79 1.99 (1.39-2.85) 4346.5 

RAD51D 

TOC Piecewise linear model‡ 

35 1.64 

4151.7 

45 4.30 

55 11.29 

65 10.14 

75 5.75 

BC Age-constant model 20-79 1.83 (1.24-2.72) 4178.0 
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Supplementary Table 13 A summary of the number of individuals with missing age 

information at different events (based on all families used in the analysis).   

Event 
Total 
number of 
individuals 
with event 

Total number 
of individuals 
with missing 
ages at event 
(%) 

Number of individuals with missing ages at each 
event and age inferred from: 

other age 
information 
on the 
individual  
(%) 

the mean 
event age 
within the 
family (%) 

the mean event 
age within the 
study group (%) 

First breast 
cancer 
(female) 

15850 2378 (15%) 1426 (9%) 871 (5.5%) 81 (0.5%) 

Ovarian 
cancer 

6742 920 (13.65%) 657 (9.7%) 166 (2.5%) 97 (1.4%) 

First other 
cancer 
(female) 

6172 1551 (25.13%) 
1014 
(16.4%) 

277 (4.5%) 260 (4.2%) 

Bilateral 
mastectomy 

144 29 (20.14%) 29 (20.1%)  —  — 

Bilateral 
salpingo-
oophorectomy 

624 42 (6.73%) 42 (6.7%)  —  — 
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