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Several theories of the glass transition propose that the structural relaxation time τα is controlled
by a growing static length scale ξ that is determined by the free energy landscape but not by
the local dynamical rules governing its exploration. We argue, based on recent simulations using
particle-radius-swap dynamics, that only a modest factor in the increase in τα on approach to the
glass transition may stem from the growth of a static length, with a vastly larger contribution
attributable instead to a slowdown of local dynamics. This reinforces arguments that we base on
the observed strong coupling of particle diffusion and density fluctuations in real glasses.
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When a liquid is cooled sufficiently rapidly to avoid
crystallization, its viscosity η increases. In general, η '
Gτα, where G is the (plateau) shear modulus and τα
characterizes the relaxation time of density fluctuations.
As the temperature T is lowered, G evolves mildly but
τα increases by about 15 order of magnitude [1] until, at
the transition temperature TG, it becomes too large to
measure experimentally. The liquid then becomes a glass,
and falls out of equilibrium. Near the glass transition, the
diffusion of a tagged particle also slows down. The time
τD over which a particle diffuses its own radius increases,
albeit not as much as τα. The decoupling of these two
quantities (the Stokes-Einstein breakdown) is significant,
but comparatively mild: S = τα/τD is increased by only
a few orders of magnitude at TG [2, 3].

The dependence of τα on T is used to classify glassy
liquids [4]. Writing τα = τ0 exp(E/kBT ) where τ0 is a
vibrational time (in the picosecond range) and E some
activation energy, one finds that E is constant in some
liquids, called strong, but increases up to a factor 5 un-
der cooling in other liquids, called fragile. Fragility is
best shown in the ‘Angell plot’ of log(τα) vs. TG/T
[4], which is linear for strong liquids but highly curved
for fragile ones. Quantitatively, fragility is defined as
m = d log(τα)/d log(TG/T ) evaluated at TG itself. Strong
liquids have m ≈ 25; very fragile ones have m ≈ 120.

There are competing explanations of the increase in
the activation energy E in fragile liquids, which occurs
with no obvious change of static structure [5]. Several
theories, including the Adam-Gibbs scenario [6], Random
First Order Theory (RFOT) [7–9], and those involving
locally favored structures [10, 11], posit that this increase
stems from the growth of a purely static length scale
ξ, characterizing ‘hidden order’ in the many-body free-
energy landscape, not captured by traditional probes of
static structure such as pair correlations.

Specifically, in modern interpretations of RFOT [7, 8],
ξ is a ‘point-to-set’ correlation length set by the mini-
mum scale on which alternative packings are available to
a patch of fluid whose environment is held frozen. Shorter
scale motions do cross local barriers, but cannot discover
a new density pattern which keeps returning to its ini-

tial state. In this view, regardless of how rapidly these
local moves permute the particles within the patch, τα
is controlled by the fact that the system can relax fully
its density fluctuations only via collective rearrangements
on the scale ξ, ‘breaking’ the hidden order. The resulting
collective activation energy is Ecoll ' c0(T )ξ(T )ψ, where
c0(T ) ' c0(TG) is non-singular, and ψ is some exponent.
It can be expressed in terms of thermodynamic quanti-
ties alone and is thus independent of the details of the
dynamics [48] (see below).

Although there is clear empirical evidence for a grow-
ing static length scale ξ(T ) (e.g., [12] and references
therein), its role in the dynamics is debated. Alterna-
tive theories propose that the increase of τα stems from
growing barriers to the elementary rearrangements re-
quired to explore the landscape [13–17]. Such barriers
effectively add a term to the activation energy Eel =
c1(T ). Unlike Ecoll, these kinetic barriers can depend
greatly on the detailed dynamical rules governing the
system. While the definition of ‘elementary rearrange-
ments’ can be multi-particle (see below), Eel describes
local physics and cannot diverge. However it might grow
strongly enough near TG to control the glass transition
via τα ∝ τel ' τ0 exp[Eel/kBT ]. For example in elastic
models [13], rearrangements require a certain strain, giv-
ing E(T ) ∼ G∞(T ) where G∞ is the high-frequency (vi-
brational) shear modulus. Empirically these quantities
are indeed strongly correlated [13, 14], as seen by plot-
ting log(τα) vs. (TGG∞(T ))/(TG∞(TG)), which appears
almost perfectly linear even for fragile liquids [14, 18].

Combining the two activation terms gives ln(τα/τ0) '
a0ξ

ψ + a1, with a0 = c0/kBT and a1 = c1/kBT . This
estimate coincides in form with an upper bound on τα
[19]; this bound shows that a diverging ξ is required for an
ideal glass transition (τα/τ0 →∞). It is then tempting to
conclude that growth of ξ controls the real glass transition
(τα/τ0 → 1015).

In this work we present arguments for the contrary
view, proposing instead that most of the increase in τα
stems from an increase upon cooling of Eel. Our main
argument is based on recent numerical observations [20–
23] in which a judicious choice of dynamics is shown to
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equilibrate systems far deeper inside the glass (T � TG)
than previously achievable. Indeed this dynamics almost
abolishes the glass transition. We shall infer from this
that Eel rather than Ecoll is dominant in controlling τα.
This finding applies, strictly speaking, only to the poly-
disperse systems studied numerically in [20–23]. We then
give a more general and complementary argument, to
the effect that the Stokes-Einstein factor should obey
S ≥ exp[Ecoll/kBT ] = τα/τel. It follows that the growth
of ξ contributes only a few decades at most to the 15
decades increase in τα on the approach to TG. Our find-
ings are depicted schematically in Fig.1.

FIG. 1: Left panel: schematic of the free energy landscape
F ({r}) for models where the dominant kinetic barriers Ecoll

are collective, and appear on a length scale ξ. Local barriers
Eel are much smaller than Ecoll. In this scenario introducing
swap moves in the dynamical rules should have little effect
on structural relaxation, since it leaves Ecoll unchanged; also
there should be a very large decoupling between particle dif-
fusion (that can occur by permuting particles, which requires
to overcome local barriers only) and relaxation of density
fluctuations (for which collective barriers must be overcome).
Both predictions appear to be contradicted by observations,
suggesting that local barriers dominate the slowdown (right
panel). (In this case the definition of Ecoll and ξ may become
somewhat arbitrary.)

Swap algorithms. Recent Monte-Carlo schemes have
successfully equilibrated liquids at temperatures where
traditional algorithms would need at least a 1010 speed-
up to allow equilibration [20–25]. These swap algorithms
consider polydisperse particles. In addition to the usual
translational moves, they allow moves in which two par-
ticles of different radius exchange places. This can also
be viewed as a radius-swap at fixed particle positions
(in which case there is no direct contribution to tagged-
particle diffusivity). Particles sizes are then an extra set
of dynamical variables, with update rules that preserve
detailed balance. Accordingly the free energy landscape
F ({r}) as a function of particle positions {r} is, after in-
tegration over sizes, well defined and independent of the
chosen dynamical rules [49]. The swap rules can involve
either well-separated particles as in [22, 23], or be local,
for instance restricted to nearest neighbour swaps [26].
For the dynamical rules of [22, 23], the time scale τ+α on
which density fluctuations relax with swaps [50] can be
compared to the value τ−α without swaps allowed. The
latter case behaves like molecular dynamics simulations,
and display the standard glass transition. Remarkably
though, with the swap dynamics switched on the glass

transition is essentially gone: τ+α (TG)/τ0 is only around
102 − 103. This contrasts with τ−α /τ0 ' 1015 for the
standard dynamics at TG.

Implications of these observations. Local and long-
range swap dynamics do appear to give very similar re-
sults for τα [23], as we justify in SI. This suggest that
either type of swap dynamics can mollify local barri-
ers, leading to much faster relaxation than the conven-
tional dynamics of real glasses. It follows that the lat-
ter is dominated by Eel. Indeed, switching from stan-
dard to swap dynamics simply enhances the local move
set: swapping is a specific local move involving two par-
ticles only [51]. The underlying free-energy landscape
F ({r}) is unaffected. As such, so long as one first equi-
librates the system, any static thermodynamic length ξ
must be identical with both dynamics. Indeed, a major
selling-point of the swap algorithms is that they allow full
equilibration over an unprecedentedly wide temperature
range. We further consider (shown below) that for large
enough τα the collective barriers Ecoll must be identical
for swap and non-swap dynamics. We can now compare
the dynamics with (+) and without (−) swaps. Since
τ∓α = τel

∓ exp[Ecoll(ξ)/kBT ], if glass physics is domi-
nated by the growing length scale ξ, then τ−α /τ

+
α should

depend only weakly on T : the only such dependence is
through the factor τel

−/τel
+. But in the simulations,

τ−α /τ
+
α increases without apparent limit as T is lowered:

this increase can be tracked for about 4 decades before
it becomes too large to measure [22, 23]. In contrast,
the growth of τ+α , which bounds above the slowing down
caused by the growth of ξ, only shows a 2 or 3 decade
increase at TG. However, it continues to grow by several
more decades as T is further decreased.

We offer the following interpretation for these results.
The relaxation time τ+α describing the with-swap dynam-
ics, for which local barriers are mollified, may ultimately
be controlled by the growth of ξ, although other effects
are plausible [52]. However, with the swap-free dynam-
ics relevant to real glasses, the resulting contribution to
τ−α /τ0 is smaller than 3 decades at the glass transition.
Thus the lion’s share of the growth in τα stems not from
a growing static length but from growing local barri-
ers. Only these barriers are affected by introducing local
swaps, so that the resulting collapse of the glass transi-
tion points directly to their dynamical importance.

Stokes-Einstein violation. The arguments above are re-
stricted to polydisperse systems, as simulated by radius-
swap algorithms. However for conventional swap-free
dynamics the relaxation in these systems is no differ-
ent from classical numerical models of structural glasses
[22, 23]. This suggests that polydispersity is imma-
terial to whether a growing static length controls the
glass transition. To support this view, we now present
a polydispersity-free argument that again points toward
control predominantly by local barriers.

For concreteness we suppose RFOT to correctly iden-
tify the static length scale ξ. Recall that in this approach,
each configuration is a mosaic of states, whose character-



3

istic size ξ results from a competition between configura-
tional entropy and “surface tension” between states. The
activation barrier to nucleate a new density configuration
on a length scale r then varies as c0r

ψ: the dynamics is
fast on short length scales, but slow on long ones. How-
ever for r < ξ, a single state is thermodynamically fa-
vored. Local rearrangements are possible, but will not
fully relax density fluctuations. Processes that can relax
density fluctuations occur on a scale ξ, the smallest on
which alternative density patterns can appear [8].

We believe that this picture contradicts the observa-
tion that in real glasses the Stokes Einstein (SE) fac-
tor S = τα/τD at TG is of order 103 [3, 27], rather
than much larger. In practice, much of the violation
is thought to arise from dynamic heterogeneity (DH),
in which diffusive and structural relaxation times are
dominated by the most liquid and most solid regions re-
spectively [28]. However, DH can only increase S: any
other mechanism found to contribute to the SE viola-
tion therefore bounds it below. We may therefore write
S = S1S2 ≥ S1, where S2 accounts for DH, and S1 allows
the possibility that particles can exchange positions while
leaving density fluctuations unchanged [29]. We now ar-
gue that S1 ∼ exp[a1ξ

ψ], by noting first that, even for
r < ξ, there is always an exponentially large number of
states available for conventional dynamics, correspond-
ing to permutations of the particles within a fixed den-
sity pattern. Any such state can be reached by a series
of permutations, each be generated by local rearrange-
ments only. Without polydispersity there cannot be any
thermodynamic reason for a particular permutation to be
preferred, so a tagged particle can move diffusively with
τD ' τ0 exp[Eel/kBT ] = τα/S1.

We then have S1 = exp[a1ξ
ψ] < S ' 103, implying

that the growth of ξ cannot account for more than about
a 3 decade increase in τα at TG. Were the glass transi-
tion controlled purely by growth of ξ, a much stronger
decoupling of τD and τα could be expected. This is in-
compatible with the fact that the fragility defined from
τD is almost as large as that defined from τα (only 13-
25% [53] smaller for the liquids studied in [3, 27]). In
practice therefore, diffusive and density relaxations are
much more strongly coupled than RFOT seems to imply,
pointing to a major role for Eel at the glass transition.
The same arguments apply to any theory for which fast
local moves are insufficient to break a hidden order on a
growing scale ξ.

In the specific case of RFOT our argument can be
restated as follows: for the nucleation picture to hold
(whereby a new density pattern appears by an activated
barrier crossing at scale ξ) local equilibrium in the land-
scape F ({r}) should be reached, on all length scales
shorter than ξ, at time scales much smaller than τα. But
this local exploration of phase space permutes particles,
leading to diffusion on the same fast timescale. Thus
in any temperature regime where RFOT is dominant
in driving the slowdown in τα, a severe Stokes Einstein
breakdown should occur. This is not seen in practice.

Asymptotic equivalence of landscapes. We now return
to the case of polydisperse particles and explain why, as
we assumed above, the free energy landscape F ({r}) is
the same for dynamics with and without swaps, for large
enough τα. This implies in turn that Ecoll is the same
(including its prefactor c1) for the two types of dynamics,
precisely in the regime in which a growing static length
could come to dominate the dynamics. The argument is
almost the same as the one just given for monodisperse
particles: for large ξ, local rearrangements are rapid in
comparison to τα, sampling with Boltzmann weight con-
figurations where groups of particles are permuted lo-
cally. Thus traditional (non-swap) dynamics already per-
forms local swaps on time scales much shorter than τα
in this limit. The collective free energy barriers, when
large, must thus be described by the same F ({r}) with
and without swaps, which is what we assumed above.

Discussion. We are not suggesting that a growing
length scale ξ cannot contribute at all to the slowdown
of dynamics in real glasses. But to play more than a sup-
porting role, the resulting order must affect elementary
rearrangements themselves, via Eel. For example, in the
spirit of elastic models, locally favored structures that
grow under cooling [10, 11] could increase G∞, which
slows down local moves requiring finite strain. Simi-
larly, the observation that radius-swap moves dramati-
cally speed up the dynamics of glasses does not contra-
dict dynamically-facilitated models [30, 31], since in these
models the choice of local dynamics is important. How-
ever they do need to be consistent with the fact that
particle diffusion and density relaxation dynamics are
strongly coupled.

In our view, the proof that a static length scale must
diverge if τα does [19] is of limited practical relevance for
real liquids near their glass transition, since the proper
signal for this divergence is τα/τD which increases rela-
tively mildly within the experimental range. (Moreover,
ξ need only diverge as (ln(τα/τD))1/ψ.) The same con-
clusion is reached if, instead of considering the dynamics
in terms of the rescaled temperature T/TG, one normal-
izes it by a natural energy scale G∞(T )/G∞(TG) (which
cannot be singular for smooth interactions). As stated
earlier, the dynamics shows no sign of divergence if plot-
ted in terms of (TGG∞(T ))/(TG∞(TG)) [14, 18].

On the other hand, with local barriers mollified by
swap dynamics [22, 23], the growth of ξ could become
paramount, and RFOT is possibly the correct theory of
such dynamics. For realistic dynamics however, theories
of local barriers appear necessary to describe the glass
transition. One such theory is provided by elastic mod-
els [13, 14], for which Eel is proportional to G∞. However
the spatial description of local moves remains very crude
in these models. Importantly, they can involve finite col-
lections of particles, for purely dynamical reasons. For
example, it may require less strain energy to permute
three particles forming a triangle than two neighboring
particles.

Understanding the geometry of such elementary rear-
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rangements is a challenge. Recently there has been a
convergence of different approaches to compute the prop-
erties of soft collective vibrational modes in hard sphere
liquids: a real space description [32, 33], mean-field ap-
proximation [34, 35] and exact calculations in infinite
dimensions [36–38]. (The discussion below may apply
to other liquids by replacing the packing fraction φ by
T .) It is found that some elastic modes become stable
only above an onset packing fraction φ0 [33, 38, 39]. For
φ < φ0, one expects flow to be fast: the system can
relax without crossing free energy barriers along unsta-
ble directions of phase space. By contrast, flow must
be activated for φ > φ0. This phenomenon is captured
in part by the mode-coupling theory of liquids and by
mean-field theory [7, 40–43]. One expects a growing dy-
namical length scale at such intermediate φ because the
last modes to remain unstable as φ increases are increas-
ingly collective. For larger φ, the simplest guess is that
activated elementary rearrangements occurs along simi-
lar modes to those whose stability is exchanged at φ0.
This is consistent with observations that the dynamical
length scale almost saturates (at the scale of collective
motions of a few tens of particles) once τα has increased
by a few orders of magnitude [44].

This line of thought is consistent with the observa-
tions of swap algorithms. Indeed if elementary rearrange-
ments become more collective because local moves are
too costly, then dynamical correlations can disappear if
effective local moves such as radius-swaps are allowed.
Alongside much faster relaxation, dynamical correlations
near the mode coupling temperature should then be elim-
inated. This is indeed observed: dynamical correlations
become very small when swaps are used [22]. Further-
more, dynamical correlations near TG also become very
small. This observation undermines the RFOT result
that dynamical heterogeneities near TG in liquids reflect
ξ [5], since ξ is unaffected by the choice of dynamics. In-
stead it supports the view that for non-swap dynamics,
elementary rearrangements are spatially more extended
than ξ, further indicating that TG lies outside the tem-
perature range where RFOT might apply.

Another point to clarify concerning elastic models is
why G∞ increases under cooling. From that perspective,
the exchange of stability of some elastic modes at φ0 can
be shown to lead to an increase in shear modulus under

cooling [7, 35, 45], and is thus consistent with mean-field
approaches. Other factors that stiffen the material may
be very system-specific, including the previously men-
tioned growth of locally-favored structures [10, 11].

A promising avenue that appears consistent with the
swap-algorithm observations would thus be to combine
elastic models with a more detailed description of collec-
tive dynamical modes beyond their linear regime. This
could also account for other key facts of the dynamics in
liquids, in particular the presence of growing dynamical
length scales, the correlations between activation energy
and high frequency shear modulus, and the correlations
between entropy and dynamics [46].
Conclusion. The recent observation that swap algo-

rithms can essentially eliminate the glass transition with-
out changing the free energy landscape casts doubt on
theories in which a growing static length scale, deter-
mined solely by this landscape and setting a minimum
scale for finding new density patterns, controls the slow-
down of relaxations in glasses. Instead, these obser-
vations cap the contribution from this source at a few
decades of growth in the structural relaxation time, with
a much larger factor arising instead from the growing bar-
riers to local rearrangement. This concurs with a similar
cap derived from the Stokes Einstein violation for real
glasses which is likewise only a few orders of magnitude,
requiring tagged particle diffusion (asymptotically unaf-
fected by the growth of ξ) and structural relaxation to
remain strongly coupled near the glass point. Among
theories of the local barrier physics, a combination of
elastic models with an improved description of collective
dynamic modes may offer a promising route forward.
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