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ABSTRACT 

Learners’ native language (L1) influences their knowledge and use of second language (L2) 

vocabulary, a phenomenon known as lexical transfer. Past research on this shows that learners’ 

L1 influences their L2 word choices, and that lexical similarity—which relates to cognancy—

between L1 words and their L2 counterparts facilitates the processing of the L2 words, 

particularly during the early stages of L2 acquisition, and makes speakers more likely to use 

the L2 words in spontaneous productions. 

To extend past research, the present research investigates whether crosslinguistic 

similarity influences L2 vocabulary use in a task-based, English-as-a-foreign language 

educational setting. Specifically, it investigates whether increased similarity between 

languages as a whole increases L2 lexical diversity, and whether increased similarity between 

L1 words and their L2 counterparts increases the use of the L2 words. It investigates this using 

two matching learner samples, containing 8,500 and 6,390 English texts, written in response to 

95 and 71 tasks, by speakers of 9 typologically diverse L1s, in the A1–B2 CEFR range of L2 

proficiency. 

Surprisingly, lexical similarity between the L1 and the L2 as a whole did not influence 

L2 lexical diversity, regardless of learners’ L2 proficiency. Likewise, lexical similarity 

between corresponding L1-L2 words did not influence the use of the L2 words, again regardless 

of L2 proficiency. Conversely, there were strong task effects on both L2 lexical diversity and 

L2 word choice. 

These findings show that the facilitative effect of crosslinguistic lexical similarity 

(especially the cognate facilitation effect) is constrained, and suggest that communicative needs 

and other task effects can override positive lexical transfer. This highlights the role of 

situational factors in crosslinguistic influence, and raises questions regarding when and how 

these and similar factors can override language transfer, for example when it comes to different 

types of transfer (e.g., positive vs. negative, or lexical vs. syntactic). In addition, this research 

contains substantial insights into related topics, such as the developmental patterns of L2 

lexical diversity, accounting for task effects in language assessment, measuring crosslinguistic 

distance, and using online platforms to develop language corpora.
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1 INTRODUCTION 

1.1 Crosslinguistic influence and language transfer 

Crosslinguistic influence (or language transfer) occurs when people’s knowledge of one 

language influences their knowledge and use of another language.1 A distinction is often made 

between positive transfer, which facilitates learners’ engagement with a language in terms of 

factors such as processing, acquisition, and use, and negative transfer (or interference), which 

hinders learners’ engagement with a language (Benson, 2002; Cebrian, 2000; R. Ellis, 2008; 

Gujord, 2020; L. S. Huang, 2009; James, 2012; Jarvis, 2000, 2009, 2015, 2017; Jarvis & 

Pavlenko, 2008; Kellerman, 1995; Koda, 2005; Kubota, 1998; Llach, 2010; O’Sullivan & 

Chambers, 2006; Odlin, 1989, 2003, 2005, 2013; Ringbom, 1987, 1992, 2007; Sersen, 2011; 

Yuan, 2014). 

Crosslinguistic influence can occur between any combination of languages, but most 

research focuses on influence from people’s native language (L1) to another language that they 

know (L2) (Jarvis, 2017).2 This influence can occur in all linguistic domains, such as 

phonology, semantics, morphology, and syntax. Various factors, such as the linguistic domain 

involved and crosslinguistic similarities, can determine whether learners experience influence, 

and if so then in what way and to what degree.3 For example, in the domain of morphosyntax, 

grammatical features such as the neuter gender are acquired by learners faster when they are 

instantiated in a similar manner in learners’ L1 and their target L2, compared to when they are 

instantiated differently, or when they appear only in the L2 (Tolentino & Tokowicz, 2011, 

2014). 

In the context of L2 acquisition, crosslinguistic influence is often said to affect learners’ 

interlanguage—their developing L2 knowledge, including their L2 grammar and lexicon—

which depends on factors such as their target L2, their L1, and any additional languages that 

they speak (Cebrian, 2000; Corder, 1967; Gudmestad, 2012; Gujord, 2020; Han & Tarone, 

2014; Ipek, 2009; Jarvis & Pavlenko, 2008; Kumpf, 1984; Lim, 2007; Llach, 2010; Major, 

 
1 Though this phenomenon does not necessarily involve transfer of linguistic features or patterns across languages, 

these two terms are generally used interchangeably, primarily because “transfer” can be more convenient to use 

and has become entrenched in the literature (Jarvis, 2017; Odlin, 2013). 
2 In line with much of the literature, I use “L2” here to refer to any language that is acquired after a learner’s L1, 

though it may not necessarily be the second language that the learner has acquired (Jarvis, 2017). 
3 In saying that learners “experience” crosslinguistic influence, I do not suggest that this is something that they 

are necessarily conscious of, as learners are often unaware of this influence (Benson, 2002; Llach, 2010; Ringbom, 

2007). Nevertheless, being consciously awareness of one’s language use and of related concepts, such as 

crosslinguistic similarities, can affect the crosslinguistic influence that people experience (Benson, 2002; Jarvis 

& Pavlenko, 2008; N. Jiang, 2002). 
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1998; Murphy, 2003; Odlin, 2003; Selinker, 1972, 2013). Crosslinguistic influence was 

originally believed to affect learners’ interlanguage mostly during the initial stages of 

acquisition, but later research showed that L1 influence can also play a substantial role during 

advanced stages of L2 acquisition (R. Ellis, 2008; Jarvis & Pavlenko, 2008; Llach, 2010; 

Ringbom, 2007; Schwartz & Sprouse, 1996; Upton & Lee-Thompson, 1987). 

In summary, learners’ L1 can influence the way in which they acquire, process, and use 

an L2, a phenomenon known as crosslinguistic influence or language transfer. This occurs 

primarily—but not exclusively—during the initial stages of acquisition, when learners’ L2 

proficiency is low. The nature of this influence is highly variable, and depends on many factors 

beyond learners’ L2 proficiency, such as the linguistic domain under consideration, and the 

similarities between learners’ L1 and their target L2. 

 

1.2 Lexical transfer 

[This section provides an overview of lexical transfer in the context of the present research. 

For more information on lexical transfer, including additional examples and a discussion of 

some relevant theories, see Appendix A.] 

Lexical transfer is a type of crosslinguistic influence that occurs when people’s knowledge of 

one language influences their knowledge and engagement with another language’s vocabulary, 

in terms of operations such as recognition, interpretation, storage, and retrieval (Jarvis, 2009). 

A notable aspect of lexical transfer is that crosslinguistic similarity in form between L1 

words and their L2 translations—which are referred to as psycholinguistic cognates when the 

similarity in both meaning and form is high—facilitates the processing and learning of the L2 

words (Bosma et al., 2019; Costa et al., 2000, 2005; de Groot & Keijzer, 2000; C. J. Hall, 2002; 

Helms-Park & Dronjic, 2013; Jarvis, 2009; N. Jiang, 2002; Lindgren & Bohnacker, 2020; 

Llach, 2010; Lotto & de Groot, 1998; Poort & Rodd, 2017; Ringbom, 2007; Sánchez-Casas & 

García-Albea, 2005; Tonzar et al., 2009; Vanlangendonck et al., 2020; Williams, 2015; Y. Zhu 

& Mok, 2020).4 This cognate facilitation effect means that when a word in the learner’s L1 has 

 
4 This interpretation of the term cognate is most common in fields such as psycholinguistics and language 

acquisition, which are primarily concerned with crosslinguistic similarities and differences as they are perceived 

by learners. However, the term cognate can also refer to words in different languages that share similar 

etymological origins; this meaning is most common in fields that are interested in such relations, such as historical 

linguistics and linguistic typology. Nevertheless, etymological cognancy often leads to psycholinguistic cognancy 

(Carrasco-Ortiz et al., 2021; Rabinovich et al., 2018; Schepens et al., 2012), so there is often—but not always—

an overlap between these two forms of cognancy, meaning that words that are cognate in one of these senses are 

also cognate in the other. 



13 

 

phonological and/or orthographic similarity to its L2 counterpart, the learner will generally 

have an easier time processing, acquiring, and using the L2 word. For example, for a French 

speaker, it will likely be easier to learn the English word orange, for which the corresponding 

word in French is also orange, than to learn the word lemon, for which the corresponding word 

in French is citron. 

The cognate facilitation effect, which is well-attested in the psycholinguistic and second 

language acquisition (SLA) literature, has been attributed to various cognitive mechanisms. 

However, the general explanation for it is that similarity in form between L1 words and L2 

words that share their meaning facilitates the linking and/or mapping of L2 words to their L1 

counterparts or to shared concepts, which facilitates the transfer of linguistic (e.g., semantic, 

syntactic, and morphological) information from the L1 to the L2 (Costa et al., 2000; Ecke, 

2015; C. J. Hall, 2002; Helms-Park & Dronjic, 2013; Jarvis & Pavlenko, 2008; N. Jiang, 2002; 

Ringbom, 2007; Tonzar et al., 2009). Furthermore, most approaches suggest that this type of 

lexical transfer plays a role primarily—but not exclusively—during early stages of L2 

acquisition (C. J. Hall, 2002; Jarvis, 2009; Llach, 2010; Williams, 2015). Overall, Ringbom 

(2007) summarizes this phenomenon as follows: 

Formal similarities, phonological and orthographical, have an essential role in the 

organisation of the mental lexicon, especially at early stages of learning. These 

similarities may be predominantly cross-linguistic or predominantly intralinguistic, 

with the proportion being determined largely by the distance perceived between L1 and 

L2 and by the proficiency of the learner. (p. 28) 

However, though there is much research on the topic, most of it has focused on experimental 

assessment of L2 processing, and on a limited range of L1s and L2 proficiency levels 

(Rabinovich et al., 2018). For example: 

− C. J. Hall (2002) examined 95 Spanish-speaking university students in an intermediate 

English for Academic Purposes course, and found that they reported higher levels of 

familiarity with pseudo-cognates than non-cognates, and showed greater consistency in 

translating the pseudo-cognates. 

− N. Jiang (2002) examined 25 Chinese-English bilingual speakers who were graduate 

students at an American university, and found that they responded faster than native 

English speakers to L2 word pairs that share the same L1 translations than to pairs that do 

not. 
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− Tonzar et al. (2009) examined 229 Italian speaking children, and found that they processed 

L2 cognates more accurately than non-cognates. 

Some research did examine the influence of crosslinguistic lexical similarity using broad 

samples, and found that increased similarity between languages as a whole—based on the mean 

similarity between corresponding L1-L2 words—leads to higher overall L2 proficiency scores 

in both speaking (Schepens et al., 2020; Schepens, van der Slik, et al., 2013b) and writing (van 

der Slik, 2010). This could be due to facilitated processing and/or production of L2 words, for 

example if the facilitated ability to process certain L2 words makes it easier for learners to 

acquire these words, and also frees up cognitive resources that can then be used to acquire other 

L2 words, which aligns with concepts such as comprehensible input (Krashen, 1989, 2003).5 

However, because research on this examined composite L2 scores that include a mix of factors 

such as vocabulary, grammar, and pronunciation, it is unclear what role lexical transfer plays 

here, and particularly whether it influences learners’ L2 productions directly. 

In addition, some research did look at L2 productions, and found evidence of a specific 

type of lexical transfer, called word choice transfer, whereby a person’s knowledge of a 

language influences their choice of words in another language (Jarvis et al., 2012; Jarvis & 

Pavlenko, 2008; Kyle et al., 2015; Stemle & Onysko, 2015). Based on this research, learners’ 

use of specific words and phrases, which is referred to as lexical signature, lexical style, or 

wordprints, has been shown to be relevant for use in stylometry for L1 identification, in both 

spontaneous productions and task-based productions such as TOEFL essays (Jarvis et al., 2012; 

Jarvis & Pavlenko, 2008). However, research on this did not generally investigate whether this 

phenomenon is driven by crosslinguistic similarity in particular, or by other factors, such as a 

cultural preference for certain words. 

The key exception that sounds out in this regard is Rabinovich et al. (2018), who 

investigated the influence of L1-L2 similarity on L2 word choice. They did so using a relatively 

 
5 Some support for this comes from Ard and Homburg (1983), who found that lexical similarity between learners’ 

L1 and the target L2 can facilitate the acquisition of vocabulary items that are not a part of an L1-L2 cognate pair. 

This is based on the observation that Spanish learners of English as a second language (ESL) were better able to 

learn English words than Arabic ESL learners, even when it comes to L2 words that are not similar to their L1 

counterparts. They attribute this to the increased similarity between Spanish and English compared to Arabic and 

English, and propose two mechanisms through which such similarity could facilitate the acquisition of the non-

similar words. First, it is possible that because learners have an easier time learning words that are similar between 

the two languages, they can dedicate more time and mental resources to learning words that are not similar, which 

leads to improved rates of acquisition for those types of words. Second, it is possible that even when words are 

not directly similar between the L1 and the L2, languages that have more similar lexical items tend to also have 

more similar lexical structures, in terms of their phonology and orthography, which could facilitate acquisition of 

L2 words, even if they’re not a part of a cognate pair. 
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large and broad sample, involving the spontaneous productions on social media of highly 

proficient (near-native) L2 English speakers, who represented a wide range of Indo-European 

L1s. The researchers found clear evidence of the cognate facilitation effect, since speakers were 

more likely to use L2 words when they were cognate with their L1 counterparts. However, this 

research still contains some gaps, for example when it comes to investigating how L2 

proficiency and task effects can moderate this cognate facilitation effect. 

 Investigating the roles of task is particularly important, since these findings contrast 

with those of Crossley and McNamara (2011), who found no L1 effect when it comes to several 

global L2 lexical measures, such as lexical diversity and polysemy. This is based on an 

examination of 599 L2 English texts in the International Corpus of Learner English, written 

by Czech, Finnish, German, and Spanish L1 speakers with high-intermediate to advanced L2 

English proficiency in response to one of few prompts for argumentative essays. This finding 

of intergroup homogeneity is unexpected given the L1 effects that were found in other studies, 

and casts uncertainty regarding the extent to which learners’ L1 influences learners’ L2 lexical 

productions. However, this finding does not necessarily contradict other past findings, since it 

is the only one to examine L1 effects on this type of global lexical measure in a task-based 

setting. Furthermore, while the lack of L1 effect here suggests that L1-L2 similarity might not 

influence these global lexical measures, at least in the task-based setting examined by these 

researchers, the researchers did not actually consider crosslinguistic similarity in their analyses, 

so there is uncertainty regarding whether the L1s are sufficiently different in their lexical 

similarity from English to prompt different levels of similarity-based L2 facilitation. 

In summary, past research on lexical transfer indicate the following key things, in relation 

to the present research: 

− Similarity in form (i.e., phonology and/or orthography) between L1 words and their L2 

counterparts facilitates the processing of the L2 words, particularly—but not 

exclusively—at early stages of L2 acquisition (Bosma et al., 2019; Costa et al., 2000, 

2005; de Groot & Keijzer, 2000; C. J. Hall, 2002; Helms-Park & Dronjic, 2013; Jarvis, 

2009; N. Jiang, 2002; Lindgren & Bohnacker, 2020; Llach, 2010; Lotto & de Groot, 

1998; Poort & Rodd, 2017; Ringbom, 2007; Sánchez-Casas & García-Albea, 2005; 

Tonzar et al., 2009; Vanlangendonck et al., 2020; Williams, 2015; Y. Zhu & Mok, 

2020). 

− Increased L1-L2 lexical similarity between languages as a whole, based on the mean 

similarity of corresponding words, leads to higher overall L2 proficiency scores, but it 
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is not clear what role lexical transfer plays in this (Schepens et al., 2020; Schepens, van 

der Slik, et al., 2013b; van der Slik, 2010). 

− Learners’ L1 can influence their choice of L2 words in both spontaneous and task-based 

settings, though it is unclear whether this effect is driven by crosslinguistic lexical 

similarity, and if so then to what degree (Jarvis et al., 2012; Jarvis & Pavlenko, 2008; 

Kyle et al., 2015; Stemle & Onysko, 2015). 

− Highly proficient L2 speakers are more likely to use L2 words that are cognate with 

their L1 in spontaneous productions, though there is limited research on this 

(Rabinovich et al., 2018). 

− Learners’ L1 does not influence their lexical diversity in task-based settings, though 

there is limited research on this (Crossley & McNamara, 2011). 

 

1.3 Research questions 

Overall, based on prior research, it is clear that learners’ L1 can influence their L2 in various 

ways. Most notably, in the context of lexical transfer, there is a robust facilitative effect of L1-

L2 lexical similarity on L2 processing and learning, as well as a robust effect of L1 on L2 word 

choice (with no claim regarding the influence of similarity in this regard). What is currently 

unclear, however, is whether there is an effect of L1-L2 lexical similarity on L2 vocabulary 

use in task-based settings, when it comes both to the choice of individual L2 words and to 

global lexical measures, such as lexical diversity. 

The present research will address this gap in knowledge, by examining the influence of 

crosslinguistic similarity on lexical transfer in a task-based setting. Specifically, it will answer 

the following key research questions: 

1. Does L1-L2 lexical similarity between languages as a whole influence L2 lexical diversity 

(in a task-based educational setting)? 

2. Does L1-L2 similarity between L1 words and their L2 counterparts influence the use of the 

L2 words (in a task-based educational setting)? 

The research will also examine other aspects of lexical transfer pertaining to these questions, 

such as whether such transfer, if it exists, is moderated by learners’ L2 proficiency. In addition, 

the research will investigate other important aspects of L2 vocabulary use, such as the 

developmental patterns of L2 lexical diversity, and will shed light on important methodological 

concepts, such as the development of learner corpora from online platforms. 
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In doing all this, this research will benefit from the use of broad analyses, the need for 

which has been identified in prior research (Crossley & McNamara, 2011; Rabinovich et al., 

2018). Specifically, this will involve the use of a broad sample, in terms of factors such as the 

number of learners, number of texts, number and type of tasks, number and diversity of L1s, 

and range of L2 proficiency levels involved. This will also involve the use of broad models, 

which control for a large range of relevant variables, such as L2 proficiency, crosslinguistic 

similarity, and task effects. 

 

 

1.4 Thesis outline 

This introduction is followed by three key chapters, each written in the form of a self-contained 

paper: 

− In the first chapter, I present my learner sample and explain how I developed it, in a way 

that can inform the work of others who are developing and using similar corpora. 

− In the second chapter, I investigate the influence of lexical similarity between languages as 

a whole on L2 lexical diversity (thus addressing my first research question). 

− In the third chapter, I investigate the influence of the similarity between L1 words and their 

L2 counterparts on the use of the L2 words (thus addressing my second research question). 

This is followed by a final chapter that discusses the key findings and implications of the two 

studies. This chapter also presents extensive suggestions for future research, including novel 

insights into many related topics, such as accounting for phonological weights and diacritics in 

calculations of lexical distance, and assessing the influence of segmental frequency and 

permissibility on lexical transfer. 

 In terms of structure, note that the “References” sections of the individual have been 

merged to a single section at the end of the thesis, to improve the flow of reading and avoid 

duplication. In addition, the two main studies make references to several supplementary 

documents; all these documents are included in the thesis as appendices, and the relevant 

appendix corresponding to each document is referenced in the first mention of the document.
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2 GETTING LEARNER DATA: THE EFCAMDAT CLEANED SUBCORPUS 

This chapter of the thesis describes how I developed the learner sample that I used in my 

research, by modifying the EF-Cambridge Open Language Database (EFCAMDAT) to create 

the EFCAMDAT Cleaned Subcorpus. 

Originally, I expected to work with the EFCAMDAT itself directly. However, when I 

looked at the dataset, I noticed some issues with it that I wanted to address before conducting 

my analyses. The quest to address those issues, which involved extensive organization and 

cleanup of the original dataset, ended up being substantial enough to be considered a research 

contribution in its own right, particularly as it can inform the work of others. As such, I 

published this chapter as the following paper, which discusses how I processed the 

EFCAMDAT, and is also framed as part of a broader discussion on the development and use 

of language corpora: 

Shatz, I. (2020). Refining and modifying the EFCAMDAT: Lessons from creating a new 

corpus from an existing large-scale English learner language database. International 

Journal of Learner Corpus Research, 6(2), 221–237. 

In addition, I have made the resulting dataset, together with other relevant material and code, 

openly available on the EFCAMDAT website (https://corpus.mml.cam.ac.uk/), for use by other 

researchers, as noted in the paper. 

The abstract for the paper is as follows, with the number of tokens added in brackets: 

This report outlines the development of a new corpus, which was created by refining and 

modifying the largest open-access L2 English learner database—the EFCAMDAT. The 

extensive data-curation process, which can inform the development and use of other 

corpora, included procedures such as converting the database from XML to a tabular 

format, and removing problematic markup tags and non-English texts. The final dataset 

contains two corresponding samples, written by similar learners in response to different 

prompts, which represents a unique research opportunity when it comes to analyzing task 

effects and conducting replication studies. Overall, the resulting corpus contains 

~406,000 texts [~24,826,000 tokens] in the first sample and ~317,000 texts [~20,564,000 

tokens] in the second sample, written by learners representing diverse L1s and a large 

range of L2 proficiency levels. 

 

https://corpus.mml.cam.ac.uk/
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2.1 Introduction 

Learner corpora are increasingly being developed from data that originates in large-scale online 

platforms. This is beneficial, since the growing size of such corpora enables the analysis of 

large amounts of learner data, in ways that were not possible before (Callies, 2015; McEnery 

et al., 2019). However, with these new data sources come new challenges, which require new 

developments in terms of how researchers curate and analyze learner corpora. One notable 

challenge is the need to develop approaches to working with data that was originally collected 

with educational or social goals in mind, rather than research, since such data is often messy 

and requires substantial processing before it can be properly analyzed. In addition, because of 

the increasing size of these new corpora, new approaches to data curation and analysis must be 

scalable, so they can be applied effectively on large-scale datasets, which puts an emphasis on 

the use of quantitative and NLP-based approaches. 

The present report addresses this topic by discussing the development of a new 

derivative corpus from an existing learner language database. The goals of this report are both 

to introduce the new derivative source, and to explain how it was developed, in order to inform 

future data curation and analysis by researchers working with other learner corpora, and 

potentially with other corpora in general. 

 In particular, the original database used in this report is the EF Cambridge Open 

Language Database (EFCAMDAT), which is the largest open-access L2 English learner 

database, with 1,180,310 texts written by 174,743 learners from various nationalities (Geertzen 

et al., 2013; Y. Huang et al., 2017, 2018). The texts in the EFCAMDAT were submitted by 

learners to EF’s online English school, which spans 16 English proficiency levels aligned with 

common proficiency standards such as the CEFR. Each level consists of 8 units, and upon 

completing a unit, learners are tasked with writing a text, which is then graded. If the learner 

receives a passing grade, they advance to the next unit; otherwise, they repeat the unit. The 

texts cover a variety of topics, such as reviewing a song for a website or describing one’s 

favorite day. 

The EFCAMDAT is pseudo-longitudinal overall, as learners generally complete only 

parts of the learning program. However, it contains substantial longitudinal data, since many 

learners complete sequences of tasks across increasing levels of proficiency, and researchers 

can track individual learners using the learner ID variable. In terms of metadata, the 

EFCAMDAT lists learners’ English proficiency and their nationality, and learners were only 

added to the database if their nationality matched their country of residence (Alexopoulou et 
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al., 2017). Prior research on the EFCAMDAT used learners’ nationality to estimate their L1, 

an approach that has been validated empirically (Alexopoulou et al., 2017; Y. Huang et al., 

2018; Murakami, 2014). 

I developed the derivative version of the EFCAMDAT because I wanted to conduct a 

large-scale quantitative study of L2 lexical development, and found that I first needed to make 

several substantial modifications to the EFCAMDAT. As such, some of the decisions made in 

the course of creating the derivative corpus may not work well for other types of research. For 

example, the removal of duplicate texts described below may interfere with analyses that focus 

on formulaic language. However, researchers can choose to implement only some of the 

procedures that I outline in this report; to facilitate this, I make the relevant programmatic 

scripts available, together with partially cleaned versions of the new corpus. 

 Overall, the outcome of this data-curation process, in terms of the new corpus, led to 

significant modifications in three key areas: 

1. Format. The new corpus is in a tabular format, rather than the EFCAMDAT’s original 

XML format. 

2. Content. The new corpus has been cleaned to remove texts containing issues that are 

likely to interfere with analyses relating to lexical development. 

3. Structure. The new corpus is split into two samples, to account for some tasks 

containing groups of texts written in response to different prompts. 

 

2.2 Preparing the new corpus 

2.2.1 Selecting the sample 

Because the new corpus was created with large-scale quantitative analyses of L2 lexical 

development in mind, the first step was to ensure that there were sufficient texts available for 

each combination of nationality and L2 proficiency level.6 Accordingly, I selected only those 

nationalities and proficiency levels that had enough texts for my analyses. This is in line with 

many prior studies that used the EFCAMDAT.  For example, Murakami (2016) and Shatz 

 
6 By “sufficient texts” I mean that the nationality generally had multiple texts available for each task at every L2 

proficiency level, to ensure that there was a fairly full and balanced representation of all tasks, proficiency levels, 

and nationalities in the sample that I analyzed. At this stage, I decided to err on the side of including—rather than 

omitting—nationalities and proficiency levels that I was uncertain about, since it will be possible to select a sub-

sample later if necessary, but not to analyze any data not included in this initial sample. Eventually, as discussed 

in Appendix B (“Sample information”), I omitted from my analyses the Turkish nationality and the C1 CEFR 

level (corresponding to EFCAMDAT levels 1–15), due to the low number of texts that they contained, which did 

not allow for full and balanced analyses. 
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(2019) examined only the top 10 nationalities with most texts in the EFCAMDAT, while 

Alexopoulou et al. (2015) and Geertzen et al. (2014) examined only the top 5. 

In terms of proficiency level, texts from levels 1-15 were kept, while those from level 

16 were omitted. There were relatively few texts at the omitted level (1,940, only 0.16% of the 

total), which were spread across multiple nationalities and tasks. In addition, levels 1-15 were 

grouped in bands of 3 based on EF’s guidelines, while level 16 was on its own (Geertzen et al., 

2013). Furthermore, level 16 was the only level listed as being above the maximum proficiency 

level set by several proficiency standards, such as the TOEFL. 

In terms of nationality, texts from the 11 nationalities with most texts were kept: 

Brazilian, Chinese, Taiwanese, Russian, Saudi Arabian, Mexican, German, Italian, French, 

Japanese, and Turkish. These nationalities accounted for the vast majority of texts in the corpus 

(~89%), and there were relatively few texts spread out across the other 187 nationalities. 

Overall, 1,051,939 texts fit these criteria (89.1% of the texts in the EFCAMDAT). 

 

2.2.2 Format: converting from XML to a tabular format 

The EFCAMDAT was originally made available in XML format; a sample text with the 

original XML formatting appears in Figure 1. 
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Figure 1. Sample text from the EFCAMDAT, with the original XML formatting 

 

The EFCAMDAT was imported from XML format using R, together with the XML package 

and a custom function (Lang, 2020). This converted the texts and all their metadata into tabular 

xlsx format, where each row represents a single text. In addition, the following markup tags 

were modified, to clean the texts for analysis: 

− 762,221 <br/> and 35 <br> tags were replaced with a space. 

− 88,343 &amp;quot; tags were replaced with a single set of quotation marks. 

− 6,872 &amp; tags were replaced with the word and. 

− 1 </code> tag was replaced with a space. 

 

2.2.3 Content: analyzing and removing texts 

2.2.3.1 Texts with problematic markup tags 

A small number of texts contained the &lt; and &gt; markup tags, which stand for ‘<’ and ‘>’ 

respectively. Texts containing these tags were removed, because they were generally 

accompanied by problematic data, such as improperly formatted error tags provided by 

teachers, together with suggested corrections. This included, for example: 

−  &lt;&lt;&lt;&lt;IS&lt;correct&gt;/correct&gt; 

<writing id="135" level="2" unit="5"> 

<learner id="73293" nationality="br"/> 

<topic id="13">Making notes for a visitor</topic> 

<date>2012-03-14 13:01:30.430</date> 

<grade>96</grade> 

<text> 

Welcome to my house. Near the my house there is recreation center. Opposite to the 

recreation center there is a soccer stadium. Between the recreation center and the soccer 

stadium there is many restaurants. You guys enjoy! 

</text> 

</writing> 
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− &lt;&lt;C, PU&lt; 

− MY&lt;&lt;x&gt;y&lt;My). 

These tags were not supposed to be in the version of the EFCAMDAT that was used here, 

which is meant to be free of annotations, and they would have interfered with future analyses, 

for example by inserting words into the text that the learner did not write. The reason why the 

full texts were removed is that the tags were inconsistent in terms of structure, so there was no 

simple scalable way to remove them while preserving the original texts they were in. 

There were 4,554 &lt; tags and 1,631 &gt; tags in the sample, spread across only 1,329 

texts (0.1% of texts at this stage). To remove them, two R packages were used: stringr to detect 

the relevant strings in texts (Wickham & RStudio, 2019), and dplyr (Wickham, François, et al., 

2019) to filter texts based on the detected strings. After this removal, 1,050,610 texts remained. 

 

2.2.3.2 Ultra-short texts 

Ultra-short texts were defined as texts with fewer than 20 words, since such texts were below 

the minimal wordcount that learners were instructed to write, even at the lowest proficiency 

level. These texts often contained various issues. For example, many contained just random 

symbols (e.g. “???,??!??????,????????!” in text #876464) or only a few words (e.g. just “Hi,” 

in text #613359). Similarly, there were over 20,000 such texts that were close variants of the 

same sentence (“Good evening. How are you. I'm fine, thanks. We're busy. Good night.”). 

Wordcounts were calculated using the stringr package (Wickham & RStudio, 2019) 

and a custom search pattern. 68,976 ultra-short texts were removed from the sample (6.6% of 

texts at this stage). Their average length was 13.49 words (median = 13, standard deviation = 

3.38). Most of these texts (51,460, 74.6%) came from the first three tasks, with the majority 

(40,152) coming from the first one. 

After this removal, 981,634 texts remained. 

 

2.2.3.3 Non-English texts 

Texts that were not written in English were removed. This included texts that contained 

gibberish of various forms, texts that were written entirely in a foreign language, and texts that 

contained substantial portions written in a foreign language. This problematic material often 

appeared due to technical issues, such as when the L1 instructions were copied into the text. 
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These texts were identified using the cld2 library in R, which relies on a Bayesian 

classifier that identifies the language of texts (Ooms, 2018). The threshold for removal was the 

maximal proportion of English in the text (0.99), to ensure that the texts did not contain 

substantial portions of foreign-language material. Overall, only 16,925 texts containing 

significant levels of non-English text were removed (1.7% of texts at this stage). After this 

removal, 964,709 texts remained. 

 

2.2.3.4 Duplicate texts 

Duplicate texts were texts that were almost identical to each other in substantial portions. This 

generally occurred as a result of reusing source material from the task almost verbatim. For 

example, the texts in task #64 often had the exact same opening in response to the prompt 

“Claiming back your security deposit”: “Dear Sir, I am writing to ask your advice about a 

problem I have with my landlord and the real estate agent…”. 

As with the other steps in the cleanup process, there are advantages and disadvantages 

to this removal. Specifically, the main advantage to removing these texts is that the direct reuse 

of source material could obscure L1 effects and other linguistic patterns in unpredictable ways. 

Conversely, the main disadvantage of removing these texts is that this could lead to the removal 

of some meaningful linguistic patterns, such as the use of formulaic language. However, this 

concern was mitigated, as this issue appeared to be relatively task dependent, rather than 

proficiency dependent. For example, the task with the highest proportion of duplicate texts 

(69.7%) was task #64, which is relatively advanced. This suggests that the issue of duplicate 

texts occurred, to a substantial degree, as a result of task effects and idiosyncrasies in the 

learning situation. In addition, the potential issues with this removal were further mitigated, as 

texts were removed only when they contained a substantial portion of identical, overlapping 

phrasing, down to letters and punctuation marks. 

To calculate similarity between texts in the database, the stringdist package in R was 

used (Van der Loo, 2014). Specifically, the analysis used the hamming method, an edit-based 

algorithm that calculates the number of substitutions required to get from one string to another. 

To use it, trimmed versions of each text were created, which contained only the first 100 

characters, since this method requires that the compared texts be of identical length. Texts were 

trimmed specifically to 100 characters, as the shortest text was 104 characters, and 100 
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represented a close and round number. This is beneficial when determining the similarity 

threshold later, and provides a proportion that is simple to replicate. 

Then, to determine the threshold of similarity at which texts would be considered 

duplicates, an initial analysis was conducted on a sample of texts from Brazilian and Japanese 

learners in tasks #1 and #73. This sample was chosen as it represents two distinctly different 

nationalities and tasks, which contain different numbers of texts (16,229 and 3,513 for 

Brazilian, 737 and 307 for Japanese, in tasks #1 and #73 respectively). 

A similarity matrix was calculated for the texts in this sample, and duplicate texts based 

on a similarity threshold of ‘5’ were extracted. This means that in cases where a trimmed text 

required fewer than five substitutions to be transformed into a different text in the sample, the 

two texts were designated as duplicates. Then, duplicate texts based on a similarity threshold 

of ‘10’ were also extracted, and the results between the two thresholds were compared 

manually by examining the list of new texts that were identified as duplicates, and checking 

whether they appeared to include true duplicates or false positives. This process was repeated, 

each time increasing the threshold by increments of 5 (10 → 15 → 20…). Eventually, 40 was 

identified as the optimal threshold, since it appeared to lead to the identification of new 

duplicates compared to a lower threshold of 35, and because increasing the threshold to 45 

appeared to lead to a substantial increase in false positives. 

Finally, a similarity matrix was calculated on the main sample, using ‘40’ as the 

threshold. Because each text must be compared against all other texts, this calculation involves 

potentially prohibitive computational complexity when run on large-scale datasets such as the 

EFCAMDAT. To resolve this, the analysis was run separately for each combination of 

nationality and task (for example, texts in task #1 among Japanese speakers, texts in task #1 

among German speakers, etc.). This reduces the complexity of the calculation, and is unlikely 

to have a substantial impact on its outcome, since within-nationality duplicates are more likely 

than between-nationality duplicates, and since between-task duplicates are unlikely. 

Based on this, 194,722 texts were removed (20.2% of the sample at this stage). Certain 

tasks were more likely to contain duplicate texts; for example, 8.9% of texts in task #23 were 

removed as duplicates, compared to only 5.1% of texts in task #53. Higher proficiency tasks 

were less likely to have texts marked as duplicates, but there were many cases where higher-

level tasks had a higher proportion of duplicates than lower-level tasks (the correlation between 
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proportion of duplicates per task and task number was Spearman’s rho=−0.46, p<.001). After 

this removal, 769,987 texts remained.  

 

2.2.3.5 Outlier texts based on wordcount 

This step targeted texts that were anomalously short or long. Such texts often suffered from 

various issues, such as the inclusion of large amounts of irrelevant material, for reasons that 

are unclear. For example, text #455618 was anomalously long, with 129 words at task #1, 

where the average wordcount was 32, and contained a letter about a company’s logo in response 

to the prompt “Introducing yourself by email”. 

Outlier texts in terms of wordcount were identified using Tukey’s method. This means 

that, for each task, outlier texts were those that had a wordcount 1.5 interquartile ranges (IQR) 

below the 1st quartile or above the 3rd quartile of wordcounts for texts from the same task 

(Kannan et al., 2015). Accordingly, a different set of problematic texts were identified using 

this method compared to the one for removing ultra-short texts, since this method accounts for 

differences in wordcounts between tasks. For example, this means that text #1211137 was 

removed in this step, since it had a wordcount of 24 at task #26, where the average wordcount 

was 63. Note that it would have been insufficient to use only this method without first removing 

ultra-short texts, because of the low average wordcount in many of the low-proficiency tasks, 

especially when ultra-short texts are included. 

 Based on this analysis, 34,607 texts were removed (4.50% of the sample at this stage). 

Of these, 5,717 (16.52%) were short outlier texts and 28,890 (83.48%) were long outlier texts. 

After this removal, 735,380 texts remained. 

 

2.2.4 Structure: classifying texts based on prompt 

To explain this process, it helps to first define three terms: 

− Task: this is the specific lesson that learners’ texts are categorized under (e.g. “task 

#11”). Task numbers are listed sequentially in the EFCAMDAT, and range from 1-128, 

with 8 tasks per proficiency level. 

− Prompt: this is the prompt that texts are written in response to (e.g. “Writing a weather 

guide for your city”). Each task has a corresponding prompt listed in the EFCAMDAT. 
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− Topic: this is the topic that a text revolves around (e.g. “weather”), as determined by 

classification software that will be described in this section. 

Many texts in the EFCAMDAT did not correspond to their listed task prompt. The reason for 

this issue was as follows: 

− Initially, each task was associated with a certain prompt. For example, task #11 had the 

prompt titled “Writing a weather guide for your city”. 

− At some point, the prompts for some tasks were replaced with new ones. For example, 

the prompt for task #11 was changed to something such as “Describe people’s favorite 

sport in your country”. 

− This change in prompt was not reflected in the database. Accordingly, all texts 

belonging to the same task number were listed together, regardless of which prompt 

they were written in response to. For example, task #11 contained texts written in 

response to the prompt on writing a weather guide, together with texts written in 

response to the new prompt on describing people’s favorite sport. 

Accordingly, it was necessary to do the following: 

− Determine which tasks contained groups of texts corresponding to multiple prompts. 

− Determine how many prompts were used in such tasks. 

− Categorize the texts in such tasks based on the prompt that they corresponded to. 

Since no information regarding the different prompts was available in the database, it was 

necessary to find a scalable way to analyze the topics that texts revolved around. To do this, I 

first grouped texts from each task (e.g. task #1, task #2…), and used the tm package in R 

(Feinerer & Hornik, 2018) to create a document-term matrix, with the term frequencies for 

each text. Then, I used the topicmodels package (Grün & Hornik, 2011) to estimate a latent 

Dirichlet allocation (LDA) model using Gibbs sampling. For a visual representation of this 

process, see Figure 2. 



28 

 

 

Figure 2. Rough illustration of the process used to classify texts based on topic 

Original texts:

• “My city has good weather”

• “It often rains in my city”

• “My favorite sport is basketball”

• “My city is hot in the summer”

• “People’s favorite sport is football”

• “My city has good weather”- city, good, weather

• “It often rains in my city”- rain, city

• “My favorite sport is basketball”- favorite, sport, basketball

• “My city is hot in the summer”- city, hot, summer

• “People’s main sport here is football”- people, main, sport, football

Topic 1: Topic 2: 

city sport

The city topic group: The sport topic group:

“My city has good weather” “My favorite sport is basketball”

“It often rains in this city” “People’s main sport here is football”

“My city is hot in the summer”

Identifying main topics, 
based on key terms 

Identifying key terms 
for each text 

Categorizing texts, 
based on topic 
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This process requires that the number of topics per task be specified in advance. Accordingly, 

to determine the appropriate number of topics, I started by running the process with two topics, 

and then tried increasing that number to three, while manually inspecting the texts. This 

revealed that the maximum number of prompts was ‘2’, as dividing texts into more than two 

topics led to groupings that were not based on a difference in prompt. For example, if texts 

written in response to the prompts “a weather guide for your city” and “people’s favorite sport 

in your country” were divided into more than two topics, then texts written in response to the 

same prompt would be separated; e.g. texts revolving around a weather guide might be split 

into those that primarily use keywords such as [winter/cold/rain] and those that use keywords 

such as [summer/hot/sun]. 

A single exception was task #13, where the classification software used the same 

keyword (‘there’) to classify texts from both topics. Accordingly, I re-ran the analysis for this 

task with three topics in the LDA model. I then examined the texts and combined two of the 

topics (under the keywords ‘there’ and ‘house’), while the third topic (under ‘neighborhood’) 

was marked as corresponding to a different prompt. 

Next, it was necessary to determine which tasks contained groups of texts 

corresponding to two prompts, and then classify texts accordingly. An examination showed 

that, in tasks with texts corresponding to two prompts, texts were initially written in response 

to the first prompt, until a certain date when the new prompt replaced the first. Accordingly, a 

sub-sample of the corpus was created, containing only texts submitted before 2012-07-04, 

which was established as the earliest approximate point when the second prompt was 

introduced. 

Then, the topics of the texts in the sub-sample were analyzed separately for each task: 

− In cases where most texts (80%+) before the cutoff date belonged to a single topic, the 

task was categorized as having two prompts. Essentially, if most texts before the cutoff 

revolved around a single topic, this indicated that the topic corresponded to an initial 

prompt, while the less frequent topic corresponded to a second prompt that was 

introduced only after the cutoff. For example, if almost all of the texts before the cutoff 

revolved around the topic city, and almost none revolved around the topic sport, then it 

was likely that texts written about sport were based on a second prompt, which was 

introduced later. 
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− In cases where fewer than 80% of texts before the cutoff belonged to a single topic, the 

task was treated as having a single prompt. Essentially, if the texts before the cutoff 

date revolved around two topics in relatively similar proportions, then there was likely 

only one prompt for the task, since the similarity in proportion indicated that the 

division into topics was not based on a difference in prompt. For example, if texts before 

the cutoff revolved around the topics restaurant and food in relatively similar 

proportions, then it was likely that the texts were written in response to the same 

prompt, and that they simply used slightly different keywords. 

One concern was that there might be tasks where one topic was much more common overall. 

However, this was ruled out, given that the most extreme ratio between topics in the full sample 

was 2.3:1 (between the second and the first topics in task #92), and the overall mean ratio 

between the first and second topics was 0.89 (median = 0.86, SD = 0.29). Conversely, the cutoff 

point used to determine whether two prompts were used was the much higher ratio of 4:1 (i.e., 

80%). Overall, the procedure used to classify texts is outlined in Figure 3. 
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Figure 3. Outline of the process that was used to identify and classify texts written in response 

to different prompts 

 

Group texts based on the task that they are listed under (e.g. all 

texts written under task #7).

Identify the two main topics that texts in each task revolve

around (e.g. "sport" and "restaurant"), and categorize each text 

based on its topic.

Create a sub-sample of the categorized texts, consisting only of 

texts written before the cutoff date. This cutoff is the earliest 

date at which a second prompt was generally introduced into 

tasks where it was used.

If more than 80% of the texts in the sub-sample revolve around 

a single topic, match that topic with the initial prompt listed in 

the corpus, and match the other topic with a second prompt. 

Otherwise, match both topics to the same initial prompt.
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In cases where all of the texts from a given task were established as having been written under 

the same prompt, they were all kept in the sample (31 tasks, 25.8% of total). Conversely, in 

cases where texts from a given task were established as having been written under two prompts, 

only texts written using the initial prompt were kept in the main sample (89 tasks, 74.2%). 

Accordingly, 329,318 texts (44.78% of texts) were designated as having been written in 

response to a second prompt, and were consequently separated into a second sample. 

 Finally, the texts in the second sample were further cleaned. This involved removing 

texts that were categorized as having been written in response to the second prompt despite 

being written before the cutoff date, which was the earliest point when the new prompt was 

generally introduced. The cutoff date used at this stage was 2013-04-03, which was later than 

the cutoff used previously. This is because the second prompt was often introduced around this 

later date, so using it allowed for the removal of more irrelevant texts. This led to the removal 

of 12,098 texts (3.67%), leaving 406,062 texts in the first sample and 317,220 texts in the 

second sample. 

An important limitation of the second sample is that it does not list the prompts that 

learners responded to in their texts, since such data is not available in the EFCAMDAT. 

However, the original prompts from the first sample are still listed in the second sample, to 

maintain continuity between the samples; this ensures that the two samples share the same data 

structure, which means that researchers can easily concatenate them into a single sample if they 

wish. Nevertheless, it is possible to estimate the prompts manually, by reading the texts. 

Alternatively, it is possible to identify the key topics that the texts revolve around, by using the 

same keyword-extraction method that was implemented earlier; one such keyword is already 

listed for each text in the new version of the corpus, based on the earlier extraction process. 

 

2.3 Discussion and conclusion 

Overall, this report outlined a comprehensive process used to modify and refine a large-scale 

English learner database—the EFCAMDAT—in terms of its format, content, and structure. 

The process used to create the derivative corpus is outlined in Figure 4. 
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Figure 4. Summary of the preparation process of the corpus 

 

Select the initial sample

(1,051,939 texts fit the relevant criteria; 89.1% of 1,180,310 texts)

Transform texts from XML into a tabular format, and convert markup 

tags

Remove texts with problematic markup tags

(1,329 texts; 0.1% of texts at this stage)

Remove ultra-short texts

(68,976 texts; 6.6% of texts at this stage)

Remove non-English texts

(16,925 texts; 1.7% of texts at this stage)

Remove duplicate texts

(194,722 texts; 20.2% of texts at this stage)

Remove outlier texts, based on wordcount

(34,607 texts; 4.50% of texts at this stage)

Identify tasks containing groups of texts corresponding to different 
prompts, and classify texts accordingly
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Based on this, from an initial database containing 1,180,310 texts, a corpus was created with 

406,062 texts (~24,826,000 word tokens) in the first sample and 317,220 texts (~20,564,000 

word tokens) in the second sample. These samples cover 120 and 89 topics respectively, and 

contain texts written by learners from 11 nationalities and with a large range of English 

proficiency levels (CEFR A1-C1). The numbers of texts per nationality and CEFR level in the 

new samples are listed in Table 1.
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Table 1. Number of texts in the derivative corpus, per nationality and CEFR level. Nationalities are listed by total number of texts in the first 

sample, in decreasing order 

Nationality Number of texts (first sample) Number of texts (second sample) 

Total A1 A2 B1 B2 C1 Total A1 A2 B1 B2 C1 

Brazilian 149,297 75,497 45,407 20,989 5,830 1,574 164,241 85,191 42,105 25,520 9,412 2,013 

Chinese 86,660 45,008 29,318 10,321 1,763 250 20,317 10,494 6,021 2,730 936 136 

Mexican 34,559 19,296 9,847 4,102 1,114 200 30,204 15,998 7,645 4,500 1,740 321 

Russian  32,243 12,295 10,885 6,329 2,066 668 17,078 7,249 4,652 3,449 1,443 285 

German 24,705 8,041 7,860 5,051 2,698 1,055 16,717 4,652 4,487 4,083 2,669 826 

French 19,135 7,626 6,253 3,688 1,242 326 13,384 4,610 3,755 3,188 1,528 303 

Italian 18,959 5,899 6,832 4,291 1,466 471 16,469 5,046 5,010 4,166 1,749 498 

Saudi Arabian 13,152 7,463 3,729 1,412 417 131 16,156 8,089 4,874 2,301 727 165 

Taiwanese 11,711 4,116 4,298 2,506 650 141 10,900 3,668 3,731 2,490 893 118 

Japanese 9,149 3,337 3,095 1,903 640 174 7,937 2,812 2,409 1,837 701 178 

Turkish 6,492 3,085 2,067 914 301 125 3,817 1,683 1,064 769 253 48 

Total 406,062 191,663 129,591 61,506 18,187 5,115 317,220 149,492 85,753 55,033 22,051 4,891 



36 

 

As noted earlier, the new corpus was created to facilitate large-scale quantitative analyses of 

L2 lexical development, using the data available in the EFCAMDAT. Accordingly, some of 

the procedures in the data-curation process may not be appropriate for other types of analyses; 

a notable example of this is the removal of duplicate texts, which could be an issue for analyses 

that focus on formulaic language. As such, to facilitate the use of the EFCAMDAT for other 

purposes, in addition to making the final version of the new corpus available, I have also made 

available additional versions of the corpus from different steps of the data-curation process, 

together with the key R scripts that I used. All these materials, together with other relevant 

ones, such as a glossary of variables, are available on the official EFCAMDAT site 

(https://corpus.mml.cam.ac.uk/). They are currently listed there under the “Resources” page, 

as the “EFCAMDAT Cleaned Subcorpus”. 

In addition to introducing the new derivative corpus, this report can also inform future 

work on other learner corpora, by identifying issues that researchers may encounter during data 

curation and analysis, and by proposing scalable solutions that they may use. This is something 

that is becoming increasingly necessary, given the growing use of large-scale learner corpora 

that are based on educational and social platforms, and that were therefore not originally 

collected with research in mind. 
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3 STUDY 1: THE INFLUENCE OF CROSSLINGUISTIC SIMILARITY ON L2 LEXICAL DIVERSITY 

This chapter outlines a study that examines how crosslinguistic lexical similarity at the 

language level influences the lexical diversity of L2 texts. In doing so, it also provides valuable 

insights into lexical diversity, in terms of factors such as how it develops as learners’ L2 

proficiency increases, how much it varies between and within L2 proficiency levels, and how 

strongly it is influenced by task effects. 

The abstract of the paper is as follows: 

We examined the potential influence of L1-L2 lexical similarity on L2 lexical diversity 

using two matching sub-corpora, containing 8,500 and 6,390 English texts, written by 

speakers of 9 typologically diverse L1s, in the A1–B2 CEFR range of L2 proficiency. 

Lexical similarity did not influence L2 lexical diversity, at any proficiency level. This 

suggests that the facilitative effect of lexical similarity that is found in processing and 

broad learning outcomes does not necessarily extend to L2 production, at least in the 

case of certain global measures, such as lexical diversity, and certain task-based 

settings, where lexical choices are driven primarily by the constrained communicative 

needs of the tasks. This is supported by the strong task effects that were found, which 

emerge as an important factor influencing vocabulary use that needs to be taken into 

account when assessing lexical diversity. Additionally, lexical diversity was shown to 

be a useful indicator of L2 proficiency, but primarily on group data, given the 

substantial variability involved, and from beginner to intermediate levels, when it starts 

to plateau. 

Note that, since this chapter is written in the format of a paper, you will have already 

encountered some of the material here previously in the thesis, especially when it comes to the 

research background and sample information.  

This work was done in collaboration with Dora Alexopoulou and Akira Murakami.
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3.1 Introduction 

[Due to space constraints—and to avoid repetition—I removed the opening of this introduction, 

which largely repeats the information from the thesis’s introduction (§1.1 and §1.2) on transfer, 

crosslinguistic influence, crosslinguistic similarity, and cognate facilitation. Instead, we turn 

immediately to the discussion of the key study by Crossley and McNamara, in the context of 

which we introduce lexical diversity.] 

…Indeed, Crossley and McNamara (2011) suggest that [the facilitative effect of crosslinguistic 

similarity] may not extend to task-based settings, at least when it comes to certain aspects of 

L2 production. Specifically, their research examined a sample of 599 L2 English texts from the 

International Corpus of Learner English, written in response to one of few prompts for 

argumentative-style essays, by speakers with high-intermediate to advanced L2 English 

proficiency, and with Czech, Finnish, German, or Spanish as an L1. They found that learners’ 

L1 had no effect on several global L2 lexical measures, including lexical diversity, which is 

the range of different words that are used in a text, where a higher range indicates greater 

diversity (McCarthy & Jarvis, 2010). 

Lexical diversity captures the rate of word repetition in texts, and learners with a larger 

vocabulary tend to repeat words less on average. As such, this measure is indicative of learners’ 

L2 vocabulary and of their ability to use it, and it generally increases as learners’ L2 proficiency 

increases, so it is often used in language assessment, though the correlation between lexical 

diversity and L2 proficiency is imperfect (Alexopoulou et al., 2017; Crossley et al., 2015; Hout 

& Vermeer, 2010; Jarvis, 2013; Johnson, 2017; Kyle et al., 2021; McCarthy & Jarvis, 2010; 

Murakami & Alexopoulou, 2016; Treffers-Daller et al., 2018; Yan et al., 2020; Zenker & Kyle, 

2021). Lexical diversity is also significantly influenced by task effects, so writing a résumé, 

for example, could elicit different average lexical diversity than describing the plot of a movie, 

which supports the suggestion that task effects may override the influence of lexical similarity 

on lexical diversity (Alexopoulou et al., 2017; Johnson, 2017; Torruella & Capsada, 2013; Yu, 

2010; Zenker & Kyle, 2021). 

However, Crossley and McNamara (2011) mention that their research is limited in terms 

of the scope of their sample and their analyses. This casts some uncertainty regarding the lack 

of L1 effect on L2 lexical diversity that they found, particularly in light of the extensive 

findings on the associated L1 effects when it comes to L2 processing, acquisition, and word 

choice. 
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Here, we will address the key limitations that they mention, and follow their call to 

replicate and extend their research. We will do so by analyzing the influence of learners’ L1 

on their L2 lexical diversity using a substantially broader and more diverse sample, in terms of 

the number of learners, number of texts, number and type of tasks, number and diversity of 

L1s, and range of L2 proficiency levels. In addition, our models will control for more variables, 

including L1-L2 lexical similarity, which they did not consider in their analysis, as well as L2 

proficiency and task. The use of such sample and models, together with our focus on lexical 

diversity in our analyses, will also help shed light on the influence of L2 proficiency and task 

on lexical diversity, which is necessary given that past studies that examined these effects 

generally did not focus on them and/or used narrower samples, and is important given the 

common use of lexical diversity in language assessment. 

Based on this, our research questions are as follows: 

1. Does L1-L2 lexical similarity influence L2 lexical diversity in task-based settings, in 

general or at early proficiency levels? This is the main research question, and the findings 

of Crossley and McNamara (2011) suggest that it might not, despite the robust L1 effects 

found for similar phenomena, such as L2 processing and acquisition. 

2. How does L2 proficiency influence lexical diversity? We expect lexical diversity to 

increase with L2 proficiency, but this correlation is likely to be imperfect, particularly as 

the increase in lexical diversity might slow down as learners’ L2 proficiency increases 

(Alexopoulou et al., 2017; Treffers-Daller et al., 2018). 

3. To what extent does task influence lexical diversity? We expect task effects but are 

uncertain regarding their magnitude, so investigating this in a broad sample will help us 

understand how these effects relate in magnitude to the effect of L2 proficiency. 

 

3.2 Methodology 

3.2.1 Learner sample 

Here, we present the key details about our learner sample. For more information about it, see 

the supplementary “Sample information” document [included in the thesis as Appendix B]. 

The learner sample came from the EF-Cambridge Open Language Database 

(EFCAMDAT), an open-access L2-English learner corpus, containing texts written by learners 

in EF’s online English school (Geertzen et al., 2013; Y. Huang et al., 2018). When a learner 

joins EF’s school, their starting proficiency level is determined using a dedicated placement 
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test. The EFCAMDAT spans 16 proficiency levels that EF aligned with common proficiency 

standards, such as the Common European Framework of Reference for Languages (CEFR). 

Each level consists of several lessons; after completing a lesson, learners are assigned a writing 

task that they submit online, and that they then receive feedback on from a teacher. These tasks 

(discussed in more detail in the supplementary “Sample information”), cover a wide range of 

styles and topics, such as describing your favorite day, reviewing a song, writing an online 

profile, or giving instructions to a house-sitter. The curriculum is standardized, so learners with 

different L1s follow the same lessons and activities, and are given the same writing tasks. 

 We used the EFCAMDAT Cleaned Subcorpus, which is available on the EFCAMDAT 

site (https://corpus.mml.cam.ac.uk/) and which is outlined in detail in Shatz (2020). The key 

feature of this dataset is that it is split into two sub-corpora, each containing texts written by 

similar learners in response to different prompts. This means, for example, that both the first 

and the second sub-corpora contain texts written by German learners in task #4, but the learners 

in the first sub-corpus wrote their texts in response to a different prompt than learners in the 

second sub-corpus. As such, using this dataset presents two important advantages for research. 

First, it allows us to accurately categorize texts based on the task that they belong to. Second, 

as noted by Shatz (2020), this offers an opportunity to conduct our analyses on two similar but 

distinct learner samples, which serves as a form of replication. 

Texts were selected from this dataset, in a random manner but kept relatively balanced 

across L1s, proficiency levels, and tasks, as outlined in the supplementary “Sample 

information” document. The final samples are listed in Table 2. 

 

https://corpus.mml.cam.ac.uk/
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Table 2. Final learner samples. 

L1s (nationalities) Arabic (Saudi Arabian), French, German, Italian, 

Japanese, Mandarin (Chinese), Portuguese (Brazilian), 

Russian, Spanish (Mexican) 

Target L2 English 

L2 proficiency levels EFCAMDAT 1–12 (equivalent to CEFR A1–B2) a 

Tasks per corpus 95 (first) / 71 (second) b 

Number of texts per L1 per task 10 c 

Total number of texts (corpus) 8,500 (first) / 6,390 (second) d 

a Every 3 EFCAMDAT levels correspond to a single CEFR level. 
b There are 8 tasks per EFCAMDAT level in the first corpus, and 6 tasks per level in the second. One exception 

is task #51, in which texts from both corpora were classified under the first corpus due to limitations in the 

classification scheme, so we removed this task was removed from both corpora. 
c In the first corpus, there are a few exceptions to this (14 out of 855, 1.64%), which had 2–9 texts (mean = 6.43, 

standard deviation = 1.79), as listed in the “Sample information” document. 
d A few (~5%) of these texts were later removed as outliers (see §3.2.4). 
 

3.2.2 Lexical distance 

We calculated lexical distance7 between the L1s and English using Swadesh lists from the 

Automated Similarity Judgment Program (ASJP), which are wordlists containing concepts that 

appear in nearly all languages, such as water, full, and hear (Swadesh, 1950; Wichmann et al., 

2018). This source is often used to calculate lexical distance between languages, and has been 

validated extensively, as discussed in the supplementary information, for example through the 

comparison of distances based on it to distances based on expert judgments (Bakker et al., 

2009; Schepens, van der Slik, et al., 2013b; Wichmann et al., 2010). 

The Swadesh lists in the ASJP focus on a subset of 40 concepts, representing the most 

stable elements from the original list for language classification (Bakker et al., 2009; Holman 

et al., 2008b). To control for variations in completeness of Swadesh lists across languages, only 

the 38 concepts that are shared across all the L1s in the present sample were included. In 

addition, the ASJP’s phonetic script was converted to IPA using the asjp library in Python 

(Sofroniev, 2018). 

We calculated crosslinguistic lexical distance using Levenshtein distance normalized 

(LDN). This measure, which can be calculated in an automated, objective, and replicable 

manner for a large number of words from different languages, is a common measure of lexical 

distance, and has been extensively used and validated in previous studies, as shown in detail in 

 
7 See the supplementary information for an explanation why we use the term lexical distance. 



42 

 

the supplementary information [included in the thesis as Appendix D]. This includes research 

showing that it strongly correlates with expert cognancy judgments (Schepens, van der Slik, et 

al., 2013b), with distances based on morphological features (Schepens et al., 2020), and with 

various psycholinguistic measures, such as perceived language distance (Heeringa & Prokić, 

2018). This also includes L2 acquisition research that used this measure to quantify 

crosslinguistic similarity, and found that it predicts L2 outcomes such as word knowledge (De 

Wilde et al., 2020) and overall L2 proficiency (Schepens et al., 2020; Schepens, van der Slik, 

et al., 2013b).8 

LDN is calculated by taking the minimum number of character substitutions, additions, 

and deletions that are needed to transform one string to another, and then dividing this number 

by the length of the longer string, to account for variations in word length. For example, in the 

case of the word knee, the English-German pair /ni/ and /kni/ has an LDN of 0.33, since there 

is 1 character transformation (a /k/ is inserted or deleted), and the length of the longer string is 

3. Here, we first calculated lexical distance between each L1 entry and its corresponding L2 

(English) entry. Then, we calculated the overall L1-L2 lexical distance between each L1 and 

English, based on the mean distance of all the L1-L2 word pairs in that L1. 

The results of the lexical distance calculations are presented in Table 3. The wide range 

of distances from English highlight the diversity of the L1s in our sample. The distances are 

largely in line with what is expected based on general language classification, with the 

Germanic and Romance L1s being the closest to English. 

Note that arguments could be made for other types of distances, but as noted above, and 

as shown in detail in the supplementary information, this particular distance has been 

extensively validated, and is strongly correlated with other distances (both lexical and 

otherwise), so it is unlikely that the use of a different measure would substantially influence 

 
8 However, it is also important to note the limitations of using Levenshtein distance for language classification. 

One such key limitation is that it incurs the same cost for all character transformations, which does not always 

reflect underlying linguistic patterns accurately. For example, the English word “fish” /fɪʃ/ has an LDN of 1 from 

both its Spanish translation (“pez” /pes/) and its Hebrew translation (“דג” /dag/), despite being closer 

phonologically and etymologically to the Spanish translation, with which it could also be considered cognate. 

Another such limitation is that LDN looks only at formal similarity across words, but other factors (e.g., semantic 

and morphological similarity) may also play a role in language similarity, including at both the word level and the 

language level; this and other criticisms are also discussed in more detail in Greenhill (2011).  In addition, the 

studies that validated the use of this measure used various different methodologies for different purposes, which 

do not always align with those of the present study, and these studies also likely had various limitations and 

shortcomings. As such, it is important to be cautious in interpreting language classifications that are based on this 

measure, and it will be beneficial to replicate results that use them with other measures of distance, as we do 

ourselves with a binary distance measure. 
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the results. This is further supported by the particular findings of our study (especially the 

estimated marginal means in Table 5), which suggest that variation in the exact distances that 

were calculated would not substantially change our key findings. Moreover, this is supported, 

as shown later, by supplementary models that we built, with a binary measure of lexical 

distance (based on whether the L1 is Indo-European like English), which fully replicated our 

findings with lexical distance based on the Swadesh lists. 

 

Table 3. Lexical distance between each L1 and English, based on the phonological normalized 

Levenshtein distance from the closest synonym in the Swadesh lists. L1s are ranked in 

increasing order of mean distance. 

 Lexical distance 

L1 mean SD median IQR range 

German .665 .27 0.67 0.50-0.92 0.00-1.00 

Italian .820 .20 0.83 0.72-1.00 0.29-1.00 

French .855 .19 1.00 0.75-1.00 0.25-1.00 

Spanish .862 .19 1.00 0.75-1.00 0.29-1.00 

Portuguese .878 .18 1.00 0.80-1.00 0.50-1.00 

Russian .883 .18 1.00 0.80-1.00 0.00-1.00 

Japanese .907 .14 1.00 0.83-1.00 0.50-1.00 

Arabic .916 .12 1.00 0.80-1.00 0.50-1.00 

Mandarin .922 .12 1.00 0.85-1.00 0.50-1.00 

Note. Each L1 contained words corresponding to 38 unique meanings in English. The number of entries varied 

slightly between L1s, due to different numbers of L1 synonyms (the mean number of entries per L1 was 41, 

median = 39, SD = 3.67, range = 38–49). 

 

3.2.3 Lexical diversity 

Lexical diversity can be based on various measures, the simplest and best-known of which is 

the type-token ratio (TTR), which represents the number of types (unique words in the text), 

divided by the number of tokens (all the words in the text, regardless of repetition) (Torruella 

& Capsada, 2013). However, because the basic TTR measure is highly sensitive to text length, 

other measures have been developed from it (Covington & McFall, 2010; Fergadiotis et al., 

2015; Granger & Wynne, 1999; Hout & Vermeer, 2010; Jarvis, 2013; Kyle et al., 2021; 

McCarthy & Jarvis, 2010; Michel, 2017; Torruella & Capsada, 2013; Zenker & Kyle, 2021). 
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Here, we assessed lexical diversity using the measure of textual lexical diversity (MTLD), 

which is described as follows: 

MTLD is an index of a text’s LD [lexical diversity], evaluated sequentially. It is 

calculated as the mean length of sequential word strings in a text that maintain a given 

TTR value (here, .720). During the calculation process, each word of the text is 

evaluated sequentially for its TTR. For example, . . . of (1.00) the (1.00) people (1.00) 

by (1.00) the (.800) people (.667) for (.714) the (.625) people (.556) . . . and so forth. 

However, when the default TTR factor size value (here, .720) is reached, the factor 

count increases by a value of 1, and the TTR evaluations are reset. Thus, given the 

previous example, MTLD would execute . . . of (1.00) the (1.00) people (1.00) by (1.00) 

the (.800) people (.667) |||FACTORS = FACTORS + 1||| for (1.00) the (1.00) people 

(1.00) . . . and so forth. 

A partial factor value is calculated for the lexical remainders of a text (i.e., the final 

words that do not form a full factor). For example, a TTR of .887 forms 40.4% of the 

range between 1.00 and the full factor of .720. If a text contains 4 full factors and a 

remainder that has a TTR of .887, then the final factor count is 4.00 + 0.404 = 4.404… 

The total number of words in the text is divided by the total factor count. For example, 

if the text = 340 words and the factor count = 4.404, then the MTLD value is 77.203. 

Two such MTLD values are calculated, one for forward processing and one for reverse 

processing. The mean of the two values is the final MTLD value. 

(McCarthy & Jarvis, 2010, pp. 384–385) 

We chose MTLD for several reasons. First, there is substantial prior research on it, which 

facilitates the interpretation of our findings and their comparison with those of others 

(especially Treffers-Daller et al., 2018). Furthermore, prior research shows that MTLD strongly 

correlates with other common measures of lexical diversity, such as vocd-D, HD-D, and Maas 

(Fergadiotis et al., 2015; McCarthy & Jarvis, 2010; Treffers-Daller et al., 2018), so findings 

that are based on it are reasonably generalizable. 

In addition, MTLD is relatively robust to short texts and to variations in text length, 

compared to most other measures of lexical diversity (Fergadiotis et al., 2015; Koizumi, 2012; 

Koizumi & In’nami, 2012; McCarthy & Jarvis, 2010; Vidal & Jarvis, 2020; Yan et al., 2020; 

Zenker & Kyle, 2021). However, because the shorter the text is the greater role the remainder 

plays in the calculation of MTLD, and because remainders represent approximations of lexical 
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diversity, MTLD is less robust on short texts below a certain point (McCarthy & Jarvis, 2010; 

Vidal & Jarvis, 2020). The lower bound for using MTLD has traditionally been 100 words, but 

comprehensive recent research by Zenker and Kyle (2021) examined the use of MTLD in texts 

as short as 50 words, and found that it is fairly robust there too. 

Though some of the texts that we analyzed were below this lower bound, this potential 

issue did not appear to invalidate our findings, as shown in the results sections, and as expanded 

upon in the supplementary information. This is based on several pieces of evidence, including, 

most notably, that our key findings replicate when we analyze appropriate sub-samples with 

texts that are longer than 50 or 100 words. Furthermore, our results replicate when we conduct 

our analyses using another robust measure of lexical diversity—moving-average type–token 

ratio (MATTR)—which is calculated in a different way than MTLD (without remainders), and 

may therefore be more robust in short texts (Covington & McFall, 2010; Fergadiotis et al., 

2015; Vidal & Jarvis, 2020; Zenker & Kyle, 2021). In addition, prior research supports the 

reliability of MTLD in the EFCAMDAT, including in shorter texts, by showing that it strongly 

correlates with measures of syntactic complexity (Alexopoulou et al., 2017). 

Note that we calculated MTLD using the spelling-corrected texts, since spelling errors 

can inflate it; for more details on this and our technical approach, see the supplementary 

information. 

 

3.2.4 Data analysis 

We built mixed-effects linear regression models (Hox et al., 2018; Winter, 2019) for each 

corpus in our sample, with the following structure: 

1. Response variable: lexical diversity, based on the MTLD of each text. In addition, we also 

built supporting models with MATTR as the response variables (see the supplementary 

information). 

2. Predictors: 

a. Lexical distance, based on LDN. In addition, we built supporting models with a 

binary measure of lexical distance, based on language family, as explained in the 

supplementary information. 

b. L2 proficiency, based on EFCAMDAT proficiency level (1–12, corresponding to 

CEFR A1–B2) of the learner at the time they wrote the text (each lesson/task is 

classified under a certain proficiency level). 
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c. Interaction term between the predictors, to determine whether the effect of lexical 

distance varies as a function of L2 proficiency (i.e., whether the effect of lexical 

distance weakens as L2 proficiency increases), since prior research suggests that 

the expected L1 effects are generally stronger at lower proficiency levels. 

3. Random effects (random intercepts)9: 

a. Learner, to control for cases where learners had more than one text in the sample.10 

b. Task, as a categorical variable based on a unique identifier for each task. This allows 

us to control for task effects, which we operationalize here as the combination of all 

aspects of each writing task that might influence lexical diversity, aside from its 

associated L2 proficiency level (which we control for using the relevant predictor); 

this includes aspects such as the task’s style and prompt, though our approach does 

not allow us to determine which aspects of the task are responsible for the task 

effects.11 Note that the use of mixed-effects models allows us to assess such task 

effects despite the fact that each task is associated with only a single proficiency 

level (Hox et al., 2018; Winter, 2019), and this type of mixed-effects structure—

where each group in a random grouping variable always takes the same potentially 

unique value along a continuous predictor—is conventional in both corpus 

linguistics (e.g., Levshina, 2018) and psycholinguistics (e.g., Vandenberghe et al., 

2021). 

c. L1, as a categorical variable that controls for effects from the learners’ L1 and their 

associated (e.g., cultural) background, beyond the effects of lexical distance. This 

use of L1 as a random effect is similar to the use of task as a random effect, as 

outlined above. 

Before building the models, we centered the predictors to reduce potential collinearity with the 

interaction term. In addition, we identified and removed ~5% of texts that were classified as 

outliers based on their MTLD, as discussed in the supplementary information, leaving 8,081 

texts in the first corpus and 6,129 in the second. We also checked the statistical assumptions of 

 
9 Several models with random slopes were considered, but did not converge or were less optimal than the random-

intercepts model, though their inclusion did not substantially influence our findings; more details on this appear 

in the supplementary information. 
10 The mean number of texts per learner after the removal of outliers was 1.36 in the first corpus and 1.41 in the 

second. For more information, see the “Sample information” document. 
11 Our operationalization of tasks is therefore distinct from most notions of task within task-based learning and 

teaching approaches (Alexopoulou et al., 2017), and we do not make a claim regarding the impact of any specific 

aspect of tasks. 
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the models and found no substantial issues, as shown in the supplementary information, and 

compared these models with baseline models with no lexical distance. 

All the data and code that were used in the study are available in the following Open 

Science Framework (OSF) repository: https://doi.org/10.17605/OSF.IO/95HWB 

 

3.3 Results 

Figure 5 and Table 4 show that learners’ lexical diversity (MTLD) generally increases as their 

L2 proficiency increases, though this increase appears less steep going from the B1 to the B2 

CEFR level, particularly in the second corpus. In addition, this figure and table show there is 

substantial variability in MTLD both within tasks and within proficiency levels, based on the 

large standard deviation (SD) within each task/level, particularly compared to the differences 

between them. Together, this shows that lexical diversity is correlated with L2 proficiency, but 

this correlation is imperfect and involves substantial variability.

https://doi.org/10.17605/OSF.IO/95HWB
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Figure 5. Mean lexical diversity (MTLD); error bars indicate one standard deviation. Listed per task in (A) and (B), per EFCAMDAT proficiency 

level in (C), and per CEFR level in (D). There are 8 tasks per EFCAMDAT proficiency level in the first corpus and 6 tasks per EFCAMDAT level 

in the second. There are 3 EFCAMDAT levels per CEFR level in both corpora. Raw correlations appear in the supplementary information. 
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Table 4. Mean lexical diversity (MTLD) per CEFR (L2 proficiency) level, corresponding to Figure 5D. 

 First corpus Second corpus 

CEFR n mean MTLD (SD) MTLD increase (percentage) n mean MTLD (SD) MTLD increase (percentage) 

A1 1921 45.53 (20.49) - 1508 46.56 (17.13) - 

A2 2088 58.49 (22.68) 12.96 (28.46%) 1553 67.76 (24.86) 21.20 (45.54%) 

B1 2042 74.52 (22.63) 16.03 (27.41%) 1500 75.36 (23.52)  7.60 (11.22%) 

B2 2030 79.20 (24.50)  4.68 (6.29%) 1568 76.62 (20.81)  1.25 (1.66%) 

Note. n denotes the number of texts. MTLD increase is the mean MTLD at that CEFR level, minus the mean MTLD of the previous level. The 

percentage increase is the mean MTLD at that CEFR level, divided by the mean MTLD of the previous level, minus 1 and then times 100. 

Calculations are based on unrounded values. 
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Figure 6 shows there is much similarity between the L1s in terms of mean MTLD and in terms 

of MTLD increase over L2 proficiency. The scatterplots and linear models in Figure 7 show 

that lexical distance does not predict MTLD at any CEFR proficiency level (as they all had a 

non-significant R2 that is lower than .001). Furthermore, Table 5 shows that the different L1s 

had similar mean MTLD, and more importantly, that there is no association between lexical 

distance and MTLD, as the ranking of L1s in terms of lexical distance does not influence their 

ranking in terms of MTLD.
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Figure 6. Mean lexical diversity (MTLD) per CEFR (L2 proficiency) level, by L1, in each corpus. Error bars denote one standard deviation. The 

exact values for these plots appear in the supplementary information. Note that the increase in MTLD is more linear in the first corpus, where there 

is a similar increase for A1→A2 and A2→B1, than in the second corpus, where there is a much steeper increase for A1→A2 than A2→B1. 

However, the initial values (at A1) and final values (at B2) are similar in both corpora, and in both there is a relative plateau for B1→B2, though 

this is more pronounced in the second corpus (where there is even a decrease for Italian, likely due to the plateau combined with noise in the data). 
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Figure 7. Scatterplots and linear models with lexical distance (LDN) as the predictor and lexical diversity (MTLD) as the response variable, per 

CEFR (L2 proficiency) level. Each model’s R2 and p appear in the corresponding panel. The grey bands around each line denote its 95% CI. Darker 

points denote a higher concentration of observations. The lexical distance range was 0.67–0.92. The MTLD range was 8.01–161.29 in the first 

corpus and 11.12–164.64 in the second. The number of observations at each CEFR level appears in Table 4 (range = 1,500–2,088).
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Table 5. Estimated marginal mean (EMM) lexical diversity (MTLD) per L1 in each corpus, while controlling for L2 proficiency as a covariate, 

and for task and learner as random effects. There were 8,081 texts in the first corpus and 6,129 in the second. 

 Lexical distance MTLD (first corpus) MTLD (second corpus) 
Difference in 

rank d L1 numeric rank a EMM (SE) [95% CI] b rank c EMM (SE) [95% CI] b rank c 

German .665 1 65.02 (1.38) [62.31, 67.73] 5 66.66 (1.54) [63.64, 69.67] 5 0 

Italian .820 2 66.58 (1.39) [63.86, 69.31] 2 65.82 (1.54) [62.80, 68.84] 6 -4 

French .855 3 64.95 (1.39) [62.23, 67.68] 6 67.92 (1.55) [64.89, 70.95] 3 3 

Spanish .862 4 61.37 (1.39) [58.64, 64.10] 9 62.61 (1.54) [59.60, 65.62] 9 0 

Portuguese .878 5 65.29 (1.38) [62.59, 67.99] 4 65.61 (1.52) [62.63, 68.59] 7 -3 

Russian .883 6 68.22 (1.38) [65.52, 70.93] 1 69.35 (1.54) [66.32, 72.37] 2 -1 

Japanese .907 7 64.61 (1.41) [61.85, 67.36] 7 67.43 (1.57) [64.36, 70.50] 4 3 

Arabic .916 8 61.93 (1.41) [59.16, 64.70] 8 64.43 (1.55) [61.41, 67.46] 8 0 

Mandarin .922 9 66.10 (1.38) [63.39, 68.81] 3 70.55 (1.55) [67.51, 73.58] 1 2 

Note. The mean L2 proficiency level in both corpora was ~6.56 (on a scale of 1–12, corresponding to CEFR A1–B2). 
a Ranked in increasing order of lexical distance (i.e., a rank of 1 denotes the smallest distance, and therefore the L1 that is lexically closest to English). 
b The means are based on model estimates, so standard errors and confidence intervals are listed here (rather than SD). 
c Ranked in decreasing order of mean MTLD (i.e., a rank of 1 denotes the highest MTLD, and therefore the L1 with the highest lexical diversity). 
d This is equal to the MTLD rank of the L1 in the first corpus minus its rank in the second corpus.
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Table 6 contains the main mixed-effects models of the study. The lack of significance of the 

lexical distance predictor and its interaction with L2 proficiency, together with their negligible 

effect sizes, indicate that lexical distance does not influence lexical diversity, either in general 

or at low L2 proficiency levels. Furthermore, the very small random effect of L1 further 

suggests that there is almost no difference in lexical diversity between speakers of different 

L1s, regardless of crosslinguistic lexical similarity.12 Conversely, the significance and 

magnitude of the L2 proficiency predictor indicate that increased L2 proficiency predicts 

greater lexical diversity.  

In addition, the large variance in lexical diversity between tasks, based on the associated 

random effect, indicates that there are substantial task effects. Specifically, the SD of between-

task variability was 11.82 (i.e., the square root of the variance, equal to √139.66) in the first 

corpus and 11.14 (√124.01) in the second corpus. Since the expected increase of MTLD per 

EFCAMDAT level (the L2 proficiency measure) is 3.82 in the first corpus and 3.10 in the 

second, the SD of between-task variability is roughly equivalent to the expected increase of 

MTLD brought by 3.09 EFCAMDAT levels in the first corpus and 3.59 EFCAMDAT levels 

in the second. This, in turn, corresponds to a bit more than a whole CEFR level (1 CEFR level—

e.g., A1—corresponds to 3 EFCAMDAT levels). 

Finally, these findings are supported by additional models, presented in the 

supplementary information. Most notably, baseline models with no lexical distance led to 

similar results for L2 proficiency and task as the main models, and a comparison of the main 

models with the baseline models (based on AIC/BIC) provided support for the baseline models, 

which supports the finding that lexical distance does not predict lexical diversity, and does not 

interact with L2 proficiency. Furthermore, the findings were replicated in models that use 

binary distance from English (based on language family instead of LDN), and in models that 

use MATTR instead of MTLD as the measure of lexical diversity. These models all appear in 

the supplementary information.

 
12 Though the magnitude of this random effect should be interpreted with caution, given the relatively small 

number of groups involved. 
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Table 6. Results of the mixed-effects linear regression models, with lexical diversity (MTLD) as the response variable. Under fixed effects, 

lexical_distance is the mean lexical distance between the L1 and English (0–1), and L2_proficiency is the EFCAMDAT level associated with each 

text (1–12). In the statistics, std. B and std. 95% CI provide information on the standardized coefficients, which were calculated by refitting the 

model on standardized data. Under random effects, σ2 denotes the residual variance, τ00 denotes between-subjects (or groups) variance, ICC denotes 

the intraclass correlation coefficient, and N denotes the number of data points within each sampling unit. Finally, observations denotes the total 

number of texts in each sample, Mar. [Marginal] R2 denotes the proportion of the variance described by the fixed effects, and Cond. [Conditional] 

R2 denotes the proportion of the variance described by both the fixed and random effects. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 64.91 1.43 62.10 – 67.71 <0.001 0.01 -0.10 – 0.12 66.70 1.58 63.61 – 69.80 <0.001 0.00 -0.12 – 0.13 

Lexical_distance -2.35 10.25 -22.43 – 17.73 0.818 -0.01 -0.06 – 0.05 4.38 11.60 -18.36 – 27.12 0.706 0.01 -0.06 – 0.08 

L2_proficiency 3.82 0.36 3.12 – 4.51 <0.001 0.50 0.41 – 0.59 3.10 0.39 2.34 – 3.86 <0.001 0.43 0.32 – 0.54 

Lexical_distance * 

L2_proficiency 

-0.11 0.88 -1.83 – 1.61 0.900 -0.00 -0.02 – 0.02 0.18 1.02 -1.81 – 2.17 0.858 0.00 -0.02 – 0.02 

Random Effects 

σ2 337.86 313.01 

τ00 34.07 Learner 66.49 Learner 
 

139.66 Task 124.01 Task  
4.75 L1 6.04 L1 

ICC 0.35 0.39 

N 9 L1 9 L1  
5385 Learner 4357 Learner 

 
95 Task 71 Task 

Observations 8081 6129 

Mar. R2 / Con. R2 0.249 / 0.509 0.184 / 0.499 

 a These ICC values can be interpreted as indicating that a medium portion of the total variance is explained by the grouping structure in the 

population (Hox et al., 2018).
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3.4 Discussion 

We examined the effects of crosslinguistic lexical similarity, L2 proficiency, and task on the 

lexical diversity of learners’ L2 English writing. We used two matching sub-corpora with 

thousands of texts, written by speakers of nine typologically diverse L1s, in the A1–B2 range 

of CEFR L2 proficiency. We discuss our key findings below. 

 

3.4.1 The effect of crosslinguistic lexical similarity on lexical diversity  

Our results show that there is no effect of crosslinguistic lexical similarity on L2 lexical 

diversity, either in general or at early L2 proficiency levels. This was evident in the mixed 

models (Table 6), where lexical distance and the interaction between distance and L2 

proficiency were non-significant and functionally zero (i.e., there was no distance effect and 

this did not change as learners’ L2 proficiency changed). This was also evident in the estimated 

marginal means (Table 5), where there were only small differences between the L1s in lexical 

diversity, and where L1s that are lexically similar to English (e.g., German and French) 

sometimes had lower lexical diversity than L1s that are more lexically distant from English 

(e.g., Mandarin). Finally, this was also evident in the plots containing the association between 

lexical distance and lexical diversity across the CEFR levels (Figure 7), which also show that 

lexical distance is not a significant or substantial predictor of lexical diversity at any 

proficiency level. 

 These results suggest that the facilitative effect of lexical similarity on processing and 

learning that was found in prior studies does not translate to substantial differences in L2 lexical 

productions, at least when it comes to global measures such as lexical diversity (as opposed to 

the usage patterns of individual words), and when it comes to the present task-based settings.13 

This supports the findings of Crossley and McNamara (2011), on the lack of effect of L1 on 

lexical diversity in task-based settings, which they term intergroup homogeneity. The reason 

for this finding is likely that, in such settings, which learners will encounter in many 

educational contexts, lexical choices are driven primarily by task-based materials and 

communicative needs. Our findings, therefore, suggest that the effect of lexical similarity is 

 
13 We also considered and ruled out two other explanations. The first is that the number of cognates in the L1s is 

too low to influence lexical diversity, which would not explain why even highly similar L1s did not have higher 

lexical diversity than the distant L1s (as shown in Table 5). The second is that false cognates (or false friends)— 

words with similar form but different meanings across languages—may hinder L2 acquisition in L1s that are 

similar to the L2, but false cognates are generally much rarer than cognates (Ringbom, 2007), and this would 

contradict studies that found a facilitative effect of similarity on broad L2 proficiency (Schepens et al., 2020; 

Schepens, van der Slik, et al., 2013b; van der Slik, 2010). 
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limited, so even though it can facilitate processing, comprehension, and learning, learners 

ultimately cannot meet the communicative needs in L2 tasks without using extensive 

vocabulary, so they must acquire, learn to use, and use in practice necessary L2 vocabulary, 

regardless of its similarity to their L1. 

From a practical perspective, these findings suggest that in language teaching and 

assessment, educators and assessors should generally expect learners to have similar lexical 

diversity, regardless of the lexical similarity between their L1 and the target L2, at least in 

certain task-based settings. This means, for example, that educators should generally not expect 

Mandarin speakers to have lower lexical diversity in their English essays than German 

speakers, even though German is more lexically similar to English. 

Finally, a limitation of our study is that the placement of learners in specific proficiency 

levels in the EFCAMDAT might neutralize the potential L1 effect on lexical diversity, which 

could potentially appear in other samples. However, past studies on the EFCAMDAT found 

L1 effects across L2 proficiency levels for various linguistic phenomena, including clause 

subordination (Chen et al., 2021), relative clauses (Alexopoulou et al., 2015), clause-initial 

prepositional phrases (X. Jiang et al., 2014), grammatical morphemes (Murakami, 2016), 

capitalization (Shatz, 2019), and preference for certain punctuation marks and phrases (X. Jiang 

et al., 2014). Furthermore, also found similar L1 effects when comparing effects in the 

EFCAMDAT with those in other samples, such as the Cambridge Learner Corpus (Murakami 

& Alexopoulou, 2016). This suggests that L1 effects can occur in this sample, and that the lack 

of effect of crosslinguistic similarity on lexical diversity is likely due to a difference between 

crosslinguistic influence on lexical as opposed to functional content, the former playing a more 

important role in meeting communicative demands of tasks. Future research can confirm the 

generalizability of these findings in various ways, and most notably by replicating the analyses 

on other learner samples, or by examining a different target L2 (especially one that is not a 

lingua franca like English). 

 

3.4.2 The effect of L2 proficiency on lexical diversity 

As shown in the results (in Figures 5 and 6, and Tables 4 and 6), lexical diversity increased as 

learners’ L2 proficiency increased, though it plateaued (i.e., slowed down) over time. There 

was some difference in this plateau between the two corpora, since in the second corpus MTLD 

plateaued consistently as L2 proficiency increased, while in the first corpus this association 
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was more linear going from A1 to B1. Nevertheless, the mean MTLD per CEFR level was 

highly similar between the two corpora at all CEFR levels except for A2, and even in the first 

corpus, the increase in MTLD between the highest CEFR levels in the sample (B1–B2) was 

substantially smaller than between the other levels, both in terms of raw MTLD and in terms 

of percentage. In other words, it seems that the MTLD increase over L2 proficiency slows 

down as L2 proficiency increases, especially after the B1 level. 

Our findings therefore support and extend past findings, especially given our use of a 

relatively broad sample and our focus on the association between L2 proficiency and lexical 

diversity in our analyses. Most notably, our findings support and extend Treffers-Daller et al. 

(2018), who also focused on the association between L2 proficiency and lexical diversity, and 

who examined lexical diversity at the B1–C2 range in the written essays of students taking the 

Pearson Test of English Academic. Specifically, they found similar mean values of MTLD as 

we found here: 70.14 at B1 (74.52 and 75.36 here), and 84.55 at B2 (79.20 and 76.62 here). 

Furthermore, similarly to us, they also identified a plateau (i.e., slowdown) in the increase of 

lexical diversity, so they were able to use MTLD to distinguish significantly only between texts 

at the B1 and C1 or C2 levels. 

From a practical perspective, given the association between L2 proficiency and lexical 

diversity that was found here and in Treffers-Daller et al. (2018), including the large and fairly 

consistent within-level variance in lexical diversity across CEFR levels (Figure 5 and Table 4), 

it seems that MTLD can be used to distinguish between learners based on their L2 proficiency. 

However, our study suggests that MTLD can be most useful when used primarily on large-

scale group data at the CEFR A1–B1 range, with lower confidence as learners’ L2 proficiency 

increases, and preferably in conjunction with other measures of L2 proficiency. 

 

3.4.3 The effect of task on lexical diversity 

There were substantial task effects on lexical diversity, as shown by the between-task variance 

in Figure 5 and Table 6, which aligns with past findings (Alexopoulou et al., 2017; Michel, 

2017; Michel et al., 2019). Our study further quantified the magnitude of these effects, and 

showed that task effects on lexical diversity (i.e., the standard deviation of between-task 

variation) can be of a magnitude equivalent to the increase in lexical diversity brought on 

average by a whole CEFR level. 
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 From a theoretical perspective, this indicates that lexical diversity is strongly influenced 

by the functional goals and communicative needs associated with specific tasks, as suggested 

in §3.4.1. From a practical perspective, this highlights the importance of accounting for task 

effects when assessing lexical diversity. 

 

3.4.4 Conclusions 

In our study, lexical similarity between learners’ L1 and their target L2 did not increase or 

otherwise influence their L2 lexical diversity, regardless of their L2 proficiency. This suggests 

that the facilitative effect of lexical similarity on processing and learning does not necessarily 

extend to L2 production, at least in the case of certain global measures, such as lexical diversity, 

and certain task-based settings, where lexical choices are driven primarily by communicative 

needs. In addition, lexical diversity initially increased as learners’ L2 proficiency increased but 

then plateaued, and there were substantial task effects on lexical diversity. These findings are 

important to take into account when it comes to language teaching and assessment, as they help 

understand and predict the patterns that appear in learners’ L2 lexical diversity. 
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4 STUDY 2: THE INFLUENCE OF CROSSLINGUISTIC SIMILARITY ON L2 WORD CHOICE 

This chapter outlines a study that examines how similarity between L1-L2 words influences 

the usage patterns of the L2 words. As such, it is investigating a similar question as the previous 

study, but at a higher resolution, so to speak, by looking at the similarity between individual 

words (rather than languages as a whole), and by looking at the usage patterns of those words 

(rather than at the global lexical diversity of texts). 

The abstract of the paper is as follows: 

We examined whether and how L1-L2 crosslinguistic formal lexical similarity 

influences L2 word choice. Our sample included two learner subcorpora, containing 

8,500 and 6,390 English texts, written in an educational setting by speakers of diverse 

L1s, in the A1–B2 CEFR range of L2 proficiency. We quantified similarity based on 

phonological overlap between L1 words and their L2 (English) translations, and 

modeled the influence of similarity on the rate of use of the L2 words, while controlling 

for background factors, such as the baseline English frequency of words. This type of 

crosslinguistic similarity did not influence the choice of L2 words, regardless of 

learners’ L2 proficiency. Conversely, there were strong task effects. This suggests that 

the influence of such similarity (which relates to cognancy) is constrained, and that 

communicative needs and task effects can override transfer, which raises questions 

regarding when and how else situational factors can influence transfer. 

As with the previous study, because this chapter is written in the format of a paper, you will 

have already encountered some of the material here previously in the thesis, and especially in 

the previous study, example when it comes to the research background, methodology, and 

discussion. However, while there is some overlap in the material between this and the previous 

study, the two are distinctly different, and each represents a unique and independent 

contribution to the research literature.14 

This work was done in collaboration with Dora Alexopoulou and Akira Murakami.

 
14 This includes, for example the use of a different subset of the ASJP, the use of an additional lexical-distance 

dataset, the use of a different type of response variable (which does not have the same limitation as lexical diversity 

measures when it comes to short texts), the use of different (though similar) statistical models, and the use of 

different supporting analyses outside the main mixed models. 



61 

 

4.1 Introduction 

[Due to space constraints—and to avoid repetition—I removed the opening of this introduction, 

which largely repeats the information from the thesis’s introduction (§1.1 and §1.2) on transfer, 

crosslinguistic influence, crosslinguistic similarity, and cognate facilitation. Instead, we turn 

immediately to the discussion of the key study by Rabinovich et al.] 

…One exception [to studies on word-choice transfer that did not investigate the effects of 

crosslinguistic similarity] is a study by Rabinovich et al. (2018), who showed that L1-L2 

similarity can influence L2 word choice. Specifically, they investigated the spontaneous 

productions on a social media website—Reddit—of highly proficient (near-native) L2 English 

speakers of various Indo-European L1s. They focused on English words that were a part of a 

synset, which is a set of at least two synonyms that correspond to the same meaning. More 

specifically, they focused on synsets where the synonyms had at least two different 

etymological paths, and the synonyms themselves were fairly interchangeable.15 They found 

clear evidence of a cognate facilitation effect, meaning that the speakers were more likely to 

use English words that are cognate with their L1. 

 However, there is also some evidence suggesting that the effect of crosslinguistic 

similarity may not always extend to productions in task-based settings, where there are strong 

task effects and constrained communicative constraints. Specifically, Crossley and McNamara 

(2011) found that L2 texts written by speakers with different L1s had similar scores on several 

global lexical measures, such as lexical diversity and polysemy, despite different levels of 

similarity between their L1s and the target L2. This is based on an examination of 599 L2 

English texts in the International Corpus of Learner English, written by Czech, Finnish, 

German, and Spanish speakers, who are “high intermediate to advanced” L2 English speakers 

(p. 274), and who wrote the texts as a response to one of few prompts for argumentative essays. 

This finding is unexpected given the L1 effects that were found in other studies, and casts 

uncertainty regarding whether the associated L1 effects play a role in learners’ L2 word choice 

in task-based settings. 

To summarize, there is clear evidence for a facilitative effect of L1-L2 lexical similarity on 

L2 processing, comprehension, and learning, particularly at the early stages of L2 acquisition 

(e.g., Ringbom, 2007; Schepens et al., 2020), and there is also evidence showing that learners’ 

 
15 They operationalized interchangeability as meaning that no synonym within the synset accounted for more 90% 

of the occurrences of the synset in their corpus; see the supplementary information for a brief discussion of this 

operationalization. 
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L1 can influence their L2 word choice (e.g., Jarvis et al., 2012). However, evidence regarding 

the influence of crosslinguistic similarity, in particular, on L2 word choice is limited and less 

clear, especially in task-based settings. Based on this, we ask the following research questions: 

1. Does increased similarity between L1 words and their L2 translations lead to increased 

use of the L2 words in task-based English-as-a-foreign language (EFL) settings? 

2. If there is an effect of crosslinguistic lexical similarity in such task-based settings, is it 

moderated by learners’ L2 proficiency? 

Investigating these questions will help reconcile the different findings on the topic, and will 

shed light on remaining gaps in knowledge. Notably, it will help determine whether the effect 

identified by Rabinovich et al. (2018) extends to task-based settings, whether findings 

regarding word-choice transfer in task-based settings are likely attributable to some degree to 

crosslinguistic similarity, and whether the lack of L1 effect (i.e., intergroup homogeneity) 

found by Crossley and McNamara is a simply feature of the global lexical measure that they 

used and/or their sample. In addition, the focus on an educational EFL setting will shed light 

on the influence of crosslinguistic similarity in this type of common environment, where, as 

we will see, there are often strong task effects on word choices. 

In this study, we will examine how similarity between L2 English words and their L1 

translations influences the usage rates of the L2 words. For example, we want to see if an Italian 

learner of English will be more likely to use the word “lemon” than a French speaker under the 

same circumstances, because the Italian word for “lemon” (“limone”) sounds more similar to 

the English word than the French one (“citron”) does. If similarity does matter, then, we expect 

that, where possible, learners will prefer to use similar words, because they are easier to learn 

and retrieve. 

To investigate this, we will construct two crosslinguistic word lists of L1-L2 pairs (e.g., 

lemon-citron), and calculate the similarity for each pair, based on their phonological overlap. 

Then, we will build mixed-effects models to see if L1-L2 similarity influences word choice in 

an EFL learner corpus that covers a wide range of tasks, L2 proficiency levels, and L1s, while 

controlling for relevant factors such as the baseline frequency of the L2 words. 

 

4.2 Methodology 

Below, we first present the methods we used to calculate lexical distance (§4.2.1) and baseline 

English word frequency (§4.2.2). Then, we introduce our learner sample (§4.2.3), and explain 
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how we calculated L2 usage rates (§4.2.4). Finally, we present the models that we used to 

analyze the data (§1.1.1). 

All the study’s data and code are available at the following Open Science Framework 

(OSF) repository: https://doi.org/10.17605/OSF.IO/5EUA8 

 

4.2.1 Lexical distance 

4.2.1.1 Distance datasets 

In the present research, we quantify crosslinguistic lexical similarity based on the lexical 

distance between L1 words and their L2 translations, where increased distance denotes lower 

similarity.16 To do this, we use two datasets, which contain lists of corresponding words in 

different languages, as outlined briefly below. For more information on these datasets and their 

processing, see the comprehensive “Lexical-distance datasets information” document in the 

OSF repository [included in the thesis as Appendix C]. 

The first lexical-distance dataset is the Automated Similarity Judgment Program 

(ASJP) (Wichmann et al., 2018). It contains Swadesh lists, which are often used by researchers 

to calculate the lexical distance between languages (e.g., Schepens et al., 2013), and which 

contain words representing various concepts, such as hear, water, full, one, and dog (Swadesh, 

1950; Wichmann et al., 2018). 

 The Swadesh lists in the ASJP focus on a subset of 40 concepts, and to control for 

variation in the completeness of the Swadesh lists across languages, we included in our analysis 

only the 38 concepts that are shared by all the languages in our sample. These languages, which 

are based on the ones available in the learner sample that is outlined in §4.2.3, are: Arabic, 

French, German, Italian, Japanese, Mandarin, Portuguese, Russian, and Spanish as L1s, and 

English as the target L2. In addition, we focused on single-word entries, in line with most prior 

research and to avoid potential confounds, and so we included only entries that do not contain 

a multi-word phrase in any of the L1s or English. Accordingly, the final Swadesh-based sample 

contains 225 entries, with 25 entries for each of the 9 L1s, where each entry is a row containing 

an English word together with all its L1 counterparts in a specific L1. 

 However, an important caveat about the ASJP Swadesh lists is that they were collected 

primarily with the goal of comparing crosslinguistic distance at the language level, rather than 

 
16 We use the term lexical distance to distinguish it from other types of linguistic distances, as explained in the 

supplementary information. 

https://doi.org/10.17605/OSF.IO/5EUA8
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at the word level. As such, they contain a small number of words per L1, as shown above, and 

these words are all relatively high-frequency words, as will be shown in the section on baseline 

word frequency. This does not prohibit the use of the Swadesh lists in our analyses, but it does 

mean that they are not, by themselves, sufficient in order to investigate our research questions. 

As such, we extended our analyses by also using a second lexical-distance dataset— 

the Intercontinental Dictionary Series (IDS)—which contains parallel dictionaries in various 

languages (Key & Comrie, 2015). Similarly to the Swadesh lists, this dataset also contains a 

standardized list of words and their corresponding counterparts in various languages. But, the 

parallel dictionaries contain substantially more words per language than the Swadesh lists 

(~1300 general word meanings compared to ~40), which include both high- and low-frequency 

words (as shown in the section on baseline word frequency). However, a disadvantage of the 

parallel dictionaries is that they contain data only for French, German, Italian, Portuguese, and 

Spanish in the present sample. As such, they serve complement to the Swadesh lists, but do not 

replace them. Furthermore, it is beneficial to use multiple sources of lexical-distance data, as 

there can be various idiosyncratic issues with the transcriptions used in any given dataset; for 

more information on this in the context of the Swadesh lists, see the overview of these lists in 

Appendix C. Nevertheless, since the parallel dictionaries contain substantially more data than 

the Swadesh lists—as they cover more words by more than an order of magnitude, even taking 

into account the smaller number of L1s—the parallel dictionaries should be viewed as the main 

source of lexical-distance data in the present study. 

As with the Swadesh lists, we included only single-word entries in our analysis of this 

dataset. Furthermore, we removed from the parallel dictionaries a small number of words (22) 

that also appeared in the Swadesh lists, so that each dataset contained a unique lexical sample. 

Accordingly, the final parallel-dictionaries sample contains 5,515 entries, with 1,103 entries 

for each of the 5 L1s, where each entry is a row containing an English word and all its 

corresponding L1 counterparts in a single L1. 

 

4.2.1.2 Calculating lexical distance 

The lexical-distance measure that we used is Levenshtein distance normalized (LDN). 

Intuitively, LDN generally represents the degree of phonological or orthographic 

overlap between two words. It is calculated by taking the minimum number of character 

substitutions, additions, and deletions that are needed to transform one string to another (i.e., 



65 

 

the Levenshtein distance), and dividing it by the length of the longer string, to account for 

variations in word length. For example, in the case of the word knee, the English-German pair 

/ni/-/kni/ has an LDN of 0.33, since there is 1 character transformation (a /k/ is inserted or 

deleted), and the length of the longer string is 3. By contrast, the LDN for the corresponding 

English-Japanese pair /ni/-/hiza/ is greater (0.75), since there is less overlap, so more 

transformations are needed. 

In the present research, we first calculated lexical distance between each L1 entry and 

its corresponding L2 (English) entry, based on their phonological (IPA) transcription. When 

there were multiple L1 synonyms available (e.g., “soil” in French—sol and terre), we used the 

distance from the closest synonym, as our goal was to identify cases where the L2 word is 

closely similar to an L1 word (and is likely to be cognate with it). 

We used LDN for several reasons. First, this measure can be calculated in an automated, 

objective, and replicable manner for a large number of words from different languages 

(Schepens et al., 2012). Second, it is the most conventional measure that is used for this 

purpose, and, as shown in detail in the supplementary information (under “Validation of 

Levenshtein distance”), it has been extensively validated in past research in various fields, 

including typology, psycholinguistics, and SLA. This validation includes comparisons with 

other measures of language distance, such as expert cognancy judgments from historical 

linguistics and perceived language distance from psycholinguistics, which showed strong 

correlations and convergent validity between LDN and the other measures (e.g., Beijering et 

al., 2008; Schepens et al., 2012). Furthermore, LDN has been used extensively by many SLA 

researchers (e.g., De Wilde et al., 2020) in a similar manner as we use it here, to quantify 

crosslinguistic similarity between individual words—often to distinguish cognates from non-

cognates when investigating the effects of cognate facilitation—and it has been shown to be a 

robust predictor of many L2 outcomes, including word recognition (Carrasco-Ortiz et al., 

2021), word retrieval (Sadat et al., 2016), and word processing speed and accuracy (Casaponsa 

et al., 2015).17 

 

4.2.1.3 Limitations of LDN 

LDN is limited in several key ways. 

 
17 Some studies used non-normalized LD or orthographic LD, as discussed in the supplementary information. 



66 

 

First, it treats all character transformations as equal. For example, this means that the 

English word “fish” /fɪʃ/ has an equal and maximal LDN of 1 from both the corresponding 

Spanish word (“pez” /pes/) and the Hebrew one (“דג” /dag/), even though the English word is 

closer phonologically and etymologically to the Spanish word than to the Hebrew one, and 

could be considered a cognate of the first but not the second. 

To partially address this issue, we replicated our analyses using feature edit distance 

(or phonological edit distance), which assigns different costs to the transformation of different 

phonological units. The results of these models replicated our results when using LDN as the 

measure of distance, as shown and explained in detail in the supplementary information. 

Briefly, this distance, which has less validation and standardization than LDN, attempts to 

account for the phonological similarity across segmental units, by assigning different costs to 

the transformation of different units, based on their phonological features. For example, in the 

case of “fish” considered above, substituting /ʃ/ with /z/ generally incurs a lower cost than 

substituting /ʃ/ with /g/, since /ʃ/ and /z/ share more phonological features (e.g., being coronal), 

so they are more similar to each other from a phonological perspective. 

Another limitation of our use of LDN as a measure of lexical distance is that it only 

looks at one aspect of formal similarity across words (phonological overlap). However, other 

factors, including both formal ones, such as orthographic depth, and non-formal ones, such as 

semantic and pragmatic similarities, may also affect crosslinguistic influence. For example, it 

may be that there is an interaction between orthographic depth and the effects of phonological 

distance, or that the use of a different script across L1s from different language families 

moderates the effects of phonological similarity. 

Some past studies (e.g., Sadat et al., 2016) found a facilitative effect of formal similarity 

even without considering these factors, so we expect to be able to do the same. In addition, we 

further partially addressed this limitation in our analyses, by using mixed-effects models to 

control for some of these potential effects through random effects for word and L1. However, 

future analyses may still benefit from assessing the role of these factors directly. 

Finally, note that LDN does not assess cognancy directly, which we define here in the 

psycholinguistic sense, of words that have similar meaning and pronunciation/spelling across 

languages. Rather, it only quantifies the formal similarity between words that are generally 

similar in terms of meaning. Most notably, this means that there are cases where a large distance 

does not indicate lack of cognancy, as in the “fish” example above. Nevertheless, as noted 
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above, LDN is strongly correlated with cognancy (e.g., Schepens et al., 2012), and has been 

used to estimate cognancy directly in SLA studies that then used it to successfully predict L2 

outcomes (De Wilde et al., 2020; Sadat et al., 2016), so we expect to be a reasonable 

approximation in the context of the present large-scale analyses.18 

It is important to keep these limitations in mind when interpreting the findings of the 

study. Nevertheless, as noted in the previous sub-section, and as explained in the 

supplementary information (under “Validation of Levenshtein distance”), this distance has 

been extensively validated through research in various fields. This validation includes, most 

notably, strong correlations with other measures of distance, such as expert cognancy 

judgments and perceived language distance (Beijering et al., 2008; Schepens et al., 2012), and 

the use of this measure in SLA to successfully predict many L2 outcomes at the word level—

including in the context of the cognate facilitation effect—such as word recognition and word 

production, in a similar manner as in the present study (Carrasco-Ortiz et al., 2021; Sadat et 

al., 2016). As such, we believe that the use of LDN is reasonable in the present study. Most 

importantly, even if it will be unable to perfectly capture all of the effects of crosslinguistic 

similarity, it should be able to successfully capture some of them, as it did in many past SLA 

studies. 

 

4.2.1.4 Lexical distances 

Figure 8 and Table 7 contain information about the the lexical distances between the L1s in the 

sample and English. The distances of all word pairs are available in the data files in the OSF 

repository. 

This figure and table show that the words in the datasets cover the full range of distances 

from English (0–1), though most words tend to be highly dissimilar (with an LDN near 1). This 

suggests that learners may generally have limited opportunities to benefit from facilitative 

effects of crosslinguistic lexical similarity, although there was nevertheless a sufficient range 

of distances in our sample that the estimates of its effects were precise in our models, as shown 

in the results section. 

In addition, the distances are largely aligned with those based on general language 

classification. Specifically, the Germanic and Romance L1s are the closest to English, and the 

 
18 We used the phonological distance directly, rather than using it to estimate cognancy, because there is currently 

no standardized and well-validated way to determine cognancy based on distance. 
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Indo-European L1s are closer to English than the non-Indo-European L1s, except that Japanese 

is shown as being closer to English than Russian. However, because the lexical-distance 

datasets were modified through the removal of multi-word entries, the mean similarity between 

each L1 and English here should not be interpreted as the mean similarity between that L1 and 

English. Indeed, as shown in the supplementary information (under “Validation of Levenshtein 

distance”), when the unmodified wordlists are used, meaning that multi-word entries remain in 

the sample, Japanese and Russian switch positions as expected, and consequently, all the Indo-

European L1s are closer to English than the non-Indo-European L1s. Nevertheless, this is not 

important for our analyses, since we focus on the similarity and use of individual words, rather 

than on similarity at the language level and on global measures of word use (e.g., lexical 

diversity). 
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Figure 8. Lexical distance between L1 words English, per L1 in each dataset. The distance is 

equal to the phonological LDN between L1 words and their most lexically similar English 

counterpart. Within the boxplots, the line inside the box indicates the median, the lower and 

upper hinges indicate the 1st and 3rd quartiles, the whiskers indicate 1.5 interquartile ranges 

(IQR) past the hinges, and the dots indicate outliers beyond that. The violin plots indicate an 

estimate of the probability density of lexical distance for each L1, which can be viewed as the 

likelihood that a word in each L1 will have a certain lexical distance, where increased width 

indicates greater likelihood. Data is based on 25 words per L1 in the Swadesh lists and 1,103 

words per L1 in the parallel dictionaries. Note the similarity in lexical-distance patterns 

between Portuguese and Japanese, despite Portuguese being an Indo-European Romance 

language, and Japanese being non-Indo-European. However, as noted in the preceding 

discussion, this should not be interpreted as the true distance (at the language level) between 

these L1s and English, due to the systematic removal of multi-word entries from the sample.
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Table 7. Statistics about the lexical distances between the L1s and English in each dataset. L1s are arranged in order of increasing mean lexical 

distance in the Swadesh lists. 

 Swadesh lists Parallel dictionaries 

L1 mean SD median IQR range mean SD median IQR range 

German .622 .27 0.60 0.50-0.75 0.00-1.00 .785 .18 0.80 0.67-1.00 0.00-1.00 

Italian .776 .20 0.80 0.67-1.00 0.29-1.00 .847 .16 0.88 0.75-1.00 0.20-1.00 

Spanish .808 .21 0.80 0.71-1.00 0.29-1.00 .860 .16 0.88 0.80-1.00 0.20-1.00 

French .813 .20 0.83 0.67-1.00 0.25-1.00 .814 .20 0.83 0.67-1.00 0.00-1.00 

Portuguese .848 .18 0.86 0.80-1.00 0.50-1.00 .873 .15 0.89 0.80-1.00 0.20-1.00 

Japanese .864 .15 0.86 0.75-1.00 0.50-1.00 - - - - - 

Russian .881 .21 1.00 0.80-1.00 0.00-1.00 - - - - - 

Arabic .887 .14 1.00 0.80-1.00 0.50-1.00 - - - - - 

Mandarin .924 .13 1.00 0.83-1.00 0.50-1.00 - - - - - 

Note. The distance here is the phonological LDN from the closest synonym, calculated for the single-word entries in each dataset. There were 225 entries in the Swadesh lists 

(i.e., rows with an English word and all its corresponding counterparts in a certain L1), with 25 entries for each of the 9 L1s in the dataset. There were 5,515 entries in the 

parallel dictionaries, with 1,103 for each of the 5 L1s.
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4.2.2 Baseline word frequency 

Baseline word frequency is how often an English word is used in English in general, which we 

needed to control for since it can influence the outcome that we will be looking at—the usage 

rate of individual L2 words in our sample. The “Baseline frequency information” document in 

the OSF repository [included in the thesis as appendix C] contains detailed information 

regarding how we calculated this frequency, and explains the rationale behind the process. To 

summarize, we used the wordfreq library in Python (Speer et al., 2018), which curates 

frequency information from a number of diverse and large-scale sources, including books, 

subtitles, news, and social media. The specific frequency measure that we used from the library 

is Zipf frequency (developed by van Heuven et al., 2014), which is the base-10 logarithm of 

the number of times a word appears per billion words. Accordingly, “A word with Zipf value 

6 appears once per thousand words, for example, and a word with Zipf value 3 appears once 

per million words” (Speer et al., 2018). 

Figure 9 shows the distribution of the frequencies of the English words that were 

included in our lexical-similarity datasets. The frequencies of all words are available in the data 

files in the OSF repository. The mean Zipf frequency in the Swadesh lists was 5.24 (SD = 0.72, 

median = 5.14, range = 4.15–7.11), and the mean Zipf frequency in the parallel dictionaries 

was 4.35 (SD = 0.83, median = 4.32, range = 1.87–7.41). As such, both datasets included a 

wide range of words with different frequencies, though this range was greater in the parallel 

dictionaries. 
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Figure 9. The baseline (Zipf) frequency of the English words included in each lexical-distance 

dataset. Within the boxplots, the line inside the box indicates the median, the lower and upper 

hinges indicate the 1st and 3rd quartiles, the whiskers indicate 1.5 IQRs past the hinges, and the 

dots indicate outliers. The violin plots indicate an estimate of the probability density of the 

frequency of English words. Data is based on 25 English words in the Swadesh lists and 1,103 

words in the parallel dictionaries. 

 

4.2.3 Learner sample 

[I removed this section, since it duplicates the corresponding section in study 1, as both studies 

use the same sample. The only unique thing noted in this section is that, in the parallel-based 

samples, which contain only 5 L1s (compared to 9 in the Swadesh lists), there are 4,747 texts 

in the first corpus (55.85% of the 8,500 used with the Swadesh lists), and 3,550 in the second 

(55.56% of 6,390).] 

 

4.2.4 Word usage 

To assess learners’ use of L2 vocabulary, we calculated the number of times each English word 

in the lexical-distance datasets appears in any given text in the learner sample. We did this 
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separately for each cross of one of the lexical-distance datasets with one of the EFCAMDAT 

subcorpora, as shown in Table 8.19 

 

Table 8. The four final samples, each representing a cross between a lexical-distance dataset 

and a subcorpus. Observations equal the number of words per L1 in a lexical-distance dataset 

times the number of texts available in the subcorpus. 

Distance dataset Subcorpus L1s Words per L1 Texts a Observations 

Swadesh lists first 9 25 8,500 212,500 

Swadesh lists  second 9 25 6,390 159,750 

Parallel dictionaries first 5 1,103 4,747 5,235,941 

Parallel dictionaries second 5 1,103 3,550 3,915,650 

a The number of texts available for the parallel-dictionaries samples reflects them containing data for 5 out of 9 

L1s that we examine. 

 

Statistics about the counts of target words appear in in Table 9. For more information on the 

raw response variable, see the section on “Correlations of distance, frequency, and word use” 

in the supplementary information. 

Broadly, the data can be characterized as having a high proportion of zeros and a right 

skew, which means that there were many cases where a target was not used in a text, and a 

small number of cases where a target word was used in a text multiple times. This distribution 

is common for count data, and is expected given the diverse range of tasks and words in our 

sample, including the spectrum of low- and high-frequency words.20 This distribution should 

 
19 We calculated counts based on a spelling-corrected version of each text, which comes built-in as part of the 

EFCAMDAT Cleaned Subcorpus, and which was generated using the autocorrect library (McCallum, 2019) in 

Python, since we are interested in how often learners attempt to use target words, and misspellings could obscure 

those patterns. Nevertheless, this does not appear to make a practical difference to our analyses, as the correlations 

between the corrected and uncorrected counts were extremely high (Pearson’s r = .9954–.9998 for all datasets, 

with p < .001 in all cases, and the 95% CIs falling no more than .0001 from the estimates. Spearman's ρ had 

similar values, from .9918–.9982, all with p < .001). 
20 This means that most words are not used in most texts, and that some words are also not used in any of the texts, 

which is expected, given that we include specialized “high level” (i.e., low frequency) words in our sample. 

However, the inclusion of such words does not pose an issue for the models, as indicated by the model diagnostics 

that are discussed later, and as later indicated by the precise coefficient estimates for our predictors. In addition, 

note that removing such words from our sample would bias the results. To illustrate this with an example, consider 

a simple situation, where we compare, among German learners, the rate of use of two English words, that have 

equally low baseline frequency. One of the words is distant from the corresponding German word, whereas the 

other is similar to it. In this case, if there is indeed a facilitative effect of similarity, then we would expect that the 

distant word will not be used by learners (because it has low baseline frequency), but we would expect the similar 

word to be used in spite of the low baseline frequency (because of the facilitative effect). However, if we remove 
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not be interpreted as being indicative of overdispersion or zero-inflation, since those are 

features of a model rather than the response variable (Hartig, 2021a). Indeed, the assumption 

checking (in the “Model diagnostics” section of the supplementary information) show that the 

models do are not overdispersed or zero-inflated; rather, some actually have underdispersion, 

though as shown in the aforementioned section, this does not substantially influence our results. 

Also, as noted in the next section, we used Poisson models in our analyses, since they are 

designed for dealing with this type of count data, and due to the large size of the samples, there 

was a sufficient number of “positive” observations (i.e., with a count > 0) that the models were 

able to converge properly.

 
the distant word from our analysis because it is not used at all, then we would be obscuring the effects of similarity 

by comparison. Essentially, the fact that a word is not used at all by learners is important to our analyses, as it 

allows us to more accurately determine the effects of distance. This was a simple example, meant to clearly and 

intuitively illustrate the associated issue, but the same principle applies to the more complex analyses that we used 

in practice. 
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Table 9. Statistics about the distribution of the count data that was used in the models (i.e., the number of times a word appeared in a text). The 

specific statistics are given either for all observations (total), or for observations where the count was greater than zero (count>0).  

Dataset Subcorpus N(total) N(count>0) Prop.(count>0) 
a Mean(total) SD(total) Mean(count>0) SD(count>0) Max 

Swadesh first 212,500 13,049 0.061 0.174 0.968 2.832 2.782 24 

Swadesh second 159,750 9,819 0.061 0.188 1.104 3.063 3.323 26 

Parallel first 5,235,941 59,566 0.011 0.016 0.183 1.417 0.973 19 

Parallel second 3,915,650 47,072 0.012 0.017 0.196 1.452 1.058 15 

Note. The difference in distributions between the parallel dictionaries and Swadesh lists could be attributed, at least in part, to the parallel dictionaries having containing some 

lower-frequency words. Specifically, the mean Zipf frequency in the Swadesh lists was 5.24 (SD = 0.72, median = 5.14, range = 4.15–7.11), while the mean Zipf frequency in 

the parallel dictionaries was 4.37 (SD = 0.84, median = 4.35, range = 1.87–7.41). 
a This represents the proportion of entries with a count greater than 0, out of all entries in the sample. 
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4.2.5 Data analysis 

We built generalized linear mixed-effects models (GLMM), separately for each combination 

of corpus and lexical-distance dataset (e.g., Swadesh lists in the first corpus). Specifically, we 

built Poisson models (with the canonical log link), due to the use of count data in the response 

variable (Hox et al., 2018; Winter, 2019). The structure of the models was as follows: 

1. Response variable: rate of usage of the target English word. This is based on the number 

of times the target English word appears in a text, which is offset by the total number of 

words in the text,21 to control for different texts having a different total number of words 

(Hox et al., 2018; Winter, 2019). 

2. Predictors: 

a. Lexical distance (of individual L1-L2 word pairs), based on the phonological LDN 

between the English word and its closest synonym in the L1 of the learner who 

wrote the text. 

b. L2 proficiency, based on EFCAMDAT proficiency level (1–12, corresponding to 

CEFR A1–B2) of the learner at the time they wrote the text (each lesson/task is 

classified under a certain proficiency level). This predictor was added as both a 

main effect and as an interaction term with lexical distance, to see whether the 

effects of L2 proficiency moderate those of lexical distance. 

c. Word frequency of each English word (based on its baseline frequency in the 

English language), to control for this factor when considering the word’s rate of 

usage in the L2 texts. 

3. Random effects (random intercepts unless noted otherwise)22: 

a. Learner, to control for learners who had more than one text in the sample.23 

b. L1, with random slopes for lexical distance, to control for any other effects from 

the learners’ L1 and their associated (e.g., cultural) background. 

c. Task, to control for all the aspects of each writing task that can influence word 

choice, such as its prompt, with the exception of the task’s associated L2 proficiency 

level, which we control for using the relevant predictor. Note that this approach 

 
21 The total number of words in each text is based on the wordcount variable that is available in the EFCAMDAT 

Cleaned Subcorpus (Shatz, 2020). 
22 As discussed in the supplementary information, additional random intercepts and slopes were considered but 

not included in the models due to convergence issues, though this does not appear to substantially influence our 

findings. 
23 Most learners only had a single text in the sample (the mean number of texts per learner was 1.36 in the first 

corpus and 1.41 in the second). See the “Sample information” document in the OSF repository for more details. 
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accounts for all aspects of task effects in aggregate, and does not disentangle the 

different aspects.24 In addition, note that the use of mixed-effects models allows us 

to assess such task effects despite the fact that each task is associated with only a 

single proficiency level (Hox et al., 2018; Winter, 2019), and this type of mixed-

effects structure—where each group in a random grouping variable always takes 

the same potentially unique value along a continuous predictor—is conventional in 

both corpus linguistics (e.g., Levshina, 2018) and psycholinguistics (e.g., Baayen 

et al., 2007; Vandenberghe et al., 2021).25 

d. Word, to control for word-level random effects, in a similar manner as discussed 

above for task. 

e. Task:Word, to control for the effects of the interaction between task and word, and 

particularly cases where a certain task is more likely to prompt the use of a certain 

word. 

Before building the models, we scaled the distance predictor by a factor of 10, so that it is on 

a scale of 0–10 instead of 0–1, to facilitate model convergence by putting this predictor on a 

similar scale as the other predictors (L2 proficiency: 1–12, frequency: ~1–7.5). We also 

centered the three predictors, to facilitate convergence of the models and reduce potential 

collinearity between predictors and the interaction term. 

After building the models, we exponentiated the coefficient estimates to derive an 

incidence rate ratio (IRR), in order to facilitate the interpretation of the results, and the 

associated standard errors (SEs) were scaled accordingly (Hox et al., 2018; Sedgwick, 2010). 

The IRR can be interpreted as the expected change in the rate of the response variable as a 

factor of a 1-unit increase in the predictor. For example, an IRR of 2 means that a 1-unit 

increase in the predictor doubles the rate of response (i.e., doubles the rate of use of the target 

word), while an IRR of 0.5 means that a 1-unit increase in the predictor halves it. An IRR of 1 

corresponds to a coefficient estimate (B) of 0, as there is no expected change in the response 

variable as a result of a change in the predictor. For more details regarding IRR, see the 

supplementary information. 

 
24 As such, this operationalization of task is distinct from most notions of task within task-based learning and 

teaching approaches, and we make no claim regarding the impact of any specific aspect of tasks, such as their 

genre or cognitive complexity (Alexopoulou et al., 2017). 
25 Specifically, Levshina (2018) used website as a random effect, and website formality (mean word length) as a 

predictor. Baayen et al. (2007) used item as a random effect, and item frequency as a predictor. Vandenberghe et 

al. (2021) used participant as a random effect, and participant vocabulary size as a predictor. 



78 

 

In addition, we checked the statistical assumptions of the models. The relevant 

diagnostics appear in the supplementary information, and indicate that there are no substantial 

issues with the models. 

Finally, we also compared these models with baseline models, which did not include 

lexical distance as a predictor, to determine whether the inclusion of lexical distance improves 

the models’ predictive power. 

 

4.3 Results 

Figure 10 contains plots showing the basic association between distance and the rate of use of 

words in the datasets, compared to their baseline frequency in English. For the associated 

statistics, see “Frequency-ratio descriptive statistics” in the supplementary information. 

If there is facilitative effect of crosslinguistic similarity, then we would expect words 

with a lower lexical distance to have a higher frequency ratio; this would indicate that when a 

word in a learner’s L1 is similar to the corresponding L2 English word, then they are more 

likely to use it, which would mean that they use it more often in their writing than the word is 

used in baseline English. However, such an effect is not clearly visible in the plots, where the 

frequency ratio seems independent of lexical distance. Nevertheless, since this analysis is fairly 

limited (e.g., it does not control for potential task effects), we do not rule out the presence of 

this facilitative effect based on it, and instead move on to the more comprehensive mixed-

effects models.
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Figure 10. The lexical distance of words and their frequency ratio (i.e., their frequency in the sample divided by their baseline frequency in English, 

using the frequency measure described in §4.2.2). Accordingly, a ratio =1 (grey line) indicates that a word is used in an equal rate in the learner 

sample and in baseline English, whereas a ratio >1 indicates that the word is used more frequently in the sample, and a ratio <1 indicates the 

opposite. Words that did not appear in the sample were assigned a Zipf frequency of 0, in line with Speer (2020), and consequently have a frequency 

ratio of 0 here. Each point is a combination of a target word and a specific L1, since different L1s can have different distances from English for 

any given word. Darker shading indicates an overlap in points.  
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Table 10 contains the results of the mixed-models for the Swadesh lists. Surprisingly, there is 

essentially no effect of distance or of its interaction with L2 proficiency, as the associated effect 

sizes are almost exactly zero (B = -0.01–0.00, corresponding to IRR = 0.99–1.00). Given this, 

and given that the associated SEs are also very small (≤0.01 for both B and IRR), this lack of 

effect is robust within this sample. In addition, there is almost no variance between the L1s 

based on the associated random effect (SD ≤ 0.03), which suggests that speakers of different 

L1 used the target words in similar rates. 

By contrast, the random effects of task and word are stronger than the L1 effect by an 

order of magnitude or more (SD = 0.33–0.46), and the task:word effect is even stronger (SD = 

1.36–1.84), which shows that these factors, and primarily the need to use specific words in 

specific tasks, have a much stronger influence on learners’ rate of use of L2 words. Similarly, 

frequency as a control variable also has a very strong effect (B = 3.16–3.30, corresponding to 

IRR = 23.53–26.99), which was expected since the response variable is a type of frequency 

measure. 
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Table 10. Results of the mixed-models, for the Swadesh-based samples. The response variable was the rate of use of the target L2 English words 

(i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological LDN between each L2 word 

and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 proficiency level at which the 

text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target word in English (~1–7.5). 

Under random effects, τ00 and τ11 respectively represent the SD of the associated random intercepts and slopes, and ρ01 represents the correlation 

between random intercepts and associated random slopes (here, distance for L1). 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -10.32 0.16  0.00 <0.01 -65.40 <.001 -9.86 0.14  0.00 <0.01 -68.45 <.001 

Distance  -0.01 0.01  0.99 0.01  -1.17 .243 -0.01 0.01  0.99 0.01  -0.36 .718 

Proficiency  -0.04 0.02  0.96 0.02  -2.12 .034  0.00 0.02  1.00 0.02  -0.22 .829 

Frequency   3.30 0.21 26.99 5.66  15.70 <.001  3.16 0.19 23.53 4.50  16.50 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01   0.61 .543  0.00 <0.01  1.00 <0.01  -1.28 .202 

Random effects                                                

Learner_τ00   0.07                     0.23                    

Task_τ00   0.40                     0.33                    

Word_τ00   0.38                     0.46                    

Task:Word_τ00   1.84                     1.36                    

L1_τ00   0.02                     0.03                    

L1.Distance_τ11   0.01                     0.03                    

L1_ρ01   0.55                    -0.14                    
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Table 11 contains the results of the mixed-models based on the parallel dictionaries. The 

findings of these models support those of the Swadesh-based models. Specifically, there is 

essentially no effect of distance or of its interaction with proficiency (B = 0.00–0.01, 

corresponding to IRR = 1.00–1.01), and the associated SEs are also very small (≤0.01 for both 

B and IRR). In addition, as in the Swadesh-based models, there is almost no variance based on 

the L1 random effect (SD ≤ 0.01). 

A minor difference is that there is lower variance in the task random effect here (SD = 

0.03–0.11), but there is also greater variance based on the word and task:word effects (SD = 

0.45–0.65 and SD = 1.50–2.30 respectively), which supports the overall findings in this regard 

from the Swadesh models, which is that the need to use specific L2 words in specific tasks 

strongly influences learners’ tendency to use those words. Finally, and as expected, frequency 

is a substantial predictor here too (B = 2.89–2.97, IRR = 18.08–19.50). 
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Table 11. Results of the mixed-models, for the parallel-based samples. The response variable was the rate of use of the target L2 English words 

(i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological LDN between each L2 word 

and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 proficiency level at which the 

text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target word in English (~1–7.5). 

Under random effects, τ00 and τ11 respectively represent the SD of the associated random intercepts and slopes, and ρ01 represents the correlation 

between random intercepts and associated random slopes (here, distance for L1). 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -12.85 0.06  0.00 <0.01 -207.79 <.001 -12.59 0.05  0.00 <0.01 -243.41 <.001 

Distance   0.01 <0.01  1.01 <0.01    1.91 .056   0.01 0.01  1.01 0.01    1.04 .301 

Proficiency   0.11 0.01  1.12 0.01    9.22 <.001   0.04 0.01  1.04 0.01    4.29 <.001 

Frequency   2.89 0.06 18.08 1.05   49.86 <.001   2.97 0.05 19.50 0.99   58.52 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01    1.25 .211   0.00 <0.01  1.00 <0.01    1.09 .276 

Random effects                                                   

Learner_τ00   0.03                       0.04                     

Task_τ00   0.03                       0.11                     

Word_τ00   0.45                       0.65                     

Task:Word_τ00   2.30                       1.50                     

L1_τ00   0.00                       0.01                     

L1.Distance_τ11   0.01                       0.01                     

L1_ρ01   0.25                       0.81                     
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The results of the models are summarized in Figure 11, which contains the fixed effects from 

each model, and which illustrates the lack of effect of lexical distance and of its interaction 

with L2 proficiency. Furthermore, these results are supported by the comparisons with the 

baseline models (with no lexical distance), which appear in the supplementary information. 

 

 

 

Figure 11. Summary of the models’ fixed effects, illustrating the lack of effect of lexical 

distance and of its interaction with L2 proficiency. Distance is the phonological LDN between 

each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), 

proficiency is the EFCAMDAT L2 proficiency level at which the text was written (1–12, 

corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target 

word in English (~1–7.5). Dots denote the coefficient estimate (in IRR). Lines denote the 95% 

confidence intervals; where they appear to be missing, it is because they are too narrow to be 

visible, given the extremely small SEs. Asterisks denote statistical significance of the 

coefficient estimate (* denotes p < .05 and *** denotes p < .001). 
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4.4 Discussion 

4.4.1 Study summary 

We investigated how formal crosslinguistic lexical similarity influences learners’ use of L2 

vocabulary. Specifically, we investigated whether phonological overlap between L1 words and 

their L2 counterparts leads to increased use of the L2 words in a task-based setting, and if there 

is such an effect, whether it is moderated by learners’ L2 proficiency. Based on prior research, 

we expected that learners will be more likely to use L2 words that are similar in form to their 

L1 counterparts, especially at early L2 proficiency levels. 

We found no effect of crosslinguistic similarity on L2 vocabulary use, and no interaction 

between lexical similarity and L2 proficiency. This null finding was robust across all the 

combinations of the two subcorpora and two lexical-distance datasets that we examined, since 

all the associated predictors were tightly clustered around an IRR of 1 (corresponding to a 

coefficient estimate of 0). In addition, there was very low variance between the L1s based on 

the associated random effect, which suggests that speakers of different L1 used the target words 

in similar rates, despite the variation in the average lexical distance between them.26 

Conversely, the task, word, and especially the task:word random effects strongly influenced 

learner’s word choices, which shows that these factors, and primarily the need to use specific 

words in specific tasks, have a much stronger influence on people’s L2 vocabulary choices. 

 

4.4.2 Implications 

The main implication of our findings is that the facilitative effect of formal crosslinguistic 

lexical similarity (in this case, phonological overlap), which relates to cognancy, does not 

extend to learners’ L2 productions to the type of constrained task-based educational setting we 

examined, which many L2 learners are likely to encounter. This is regardless of learners’ L2 

proficiency, and applies to learners at the A1–B2 CEFR range of L2 proficiency, though the 

complete lack of interaction between lexical similarity and L2 proficiency that we found 

suggests that this likely applies also to learners at the C1–C2 range of proficiency. 

This finding supports the finding of Crossley and McNamara (2011) regarding lexical 

intergroup homogeneity among speakers of different L1s in task-based settings. This suggests 

 
26 However, the magnitude of this effect should be viewed with caution, since it is likely somewhat underestimated 

here, due to the small number of L1s involved, particularly in the parallel-based models. Nevertheless, the 

Swadesh-based models had similar results in this regard, and the exact magnitude of this effect is not crucial to 

our study, since our focus is on the effects of lexical distance, and as shown in the supplementary information, the 

estimates for the other effects remain functionally identical when the L1 random effect is removed. 
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that the lack of L1 effect that they found is not due to their use of a global lexical measure 

(lexical diversity) and is not due to an idiosyncrasy in their sample, but is rather more likely to 

be a general feature of task-based settings. 

At the same time, however, this does not necessarily contradict studies that found an 

L1 effect on L2 word choice independently of crosslinguistic lexical similarity (e.g., in 

stylometry). Rather, the difference may be because the L1 effect that they identified was driven 

by factors other than crosslinguistic similarity, such as a strong cultural preference for certain 

words, or because there were weaker task effects in their samples (which also included 

spontaneous productions), something that also applies to the findings of Rabinovich et al. 

(2018). 

Our finding also does not necessarily contradict the studies that found an effect of 

lexical similarity on the processing of individual L2 words or on broad L2 acquisition. Rather, 

it shows that this effect is constrained when it comes to L2 production (i.e., word choice), 

which is primarily driven by the message the learner wishes to communicate. This is supported 

by the strong effects of task, word, and task:word on word choice, which suggest that the need 

to use a specific word for a specific task is what drives learners’ decision of whether to use it, 

regardless of whether the word is similar to their L1. 

Accordingly, although L2 words that are similar to their L1 translation are likely easier 

for learners to process and use, the communicative needs of tasks can override this 

crosslinguistic influence, and drive learners to use necessary words rather than easier ones. 

Given that, in the present sample, the majority of L2 words appear to be substantially dissimilar 

from their L1 translations (even for relatively similar L1s, such as German), it seems likely that 

learners adapt to this quickly, as they have to get used to using L2 words even if they are 

dissimilar from their L1 translations. 

In addition, it is likely that other aspects of the tasks and their educational context 

played a role in overriding transfer in the present sample, and can also play a role in similar 

tasks and contexts (especially—but not only—educational ones). For example, it is likely that 

the lessons associated with tasks involved words (i.e., content) that learners then used for 

practice, or that some task prompts elicited the use of a specific register (i.e., style) that 

necessitated the use of certain words. This supports and extends limited past research which 

found that factors such as formality and task type may prompt, rather than override, transfer 

(Jarvis & Pavlenko, 2008), and highlights the potential influence of these situational and 
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contextual factors. This is important, since most transfer research focused on factors pertaining 

to the associated languages, such as the typological relation between them, or to the learners 

themselves, such as their L2 proficiency (Jarvis & Pavlenko, 2008). 

Finally, note that past studies on the EFCAMDAT found L1 effects in a wide range of 

linguistic phenomena, including clause subordination (Chen et al., 2021), relative clauses 

(Alexopoulou et al., 2015), clause-initial prepositional phrases (X. Jiang et al., 2014), 

grammatical morphemes (Murakami, 2016), articles (Shatz, 2017), and capitalization (Shatz, 

2019). Furthermore, X. Jiang et al., (2014) even found evidence of other types of lexical 

transfer than the one examined here, on the usage rates of certain punctuation marks (e.g., 

dashes) and phrases (e.g., “to my mind”), though they provide limited information on this. 

Potential explanations for why these types of transfer occur, while the present one does not, 

include the following: 

− It might be that these types of transfer do not interfere with the communicative needs and 

task effects in the first place, for example because they have to do primarily with functional 

elements rather than content words. 

− It might be that these types of transfer are “stronger” from a cognitive perspective, and 

therefore more difficult for communicative needs and task effects to override. 

− It might be that these types of transfer are different in some other way that prevents 

communicative needs and task effects from overriding them (e.g., because they represent 

negative—rather than positive—transfer). 

These explanations raise various interesting theoretical questions, which can be addressed by 

future research. 

One such question is whether and how negative and positive transfer can be influenced 

differently by communicative needs. For example, if negative transfer prompts a learner to use 

an L2 word incorrectly (e.g., with spelling errors), then communicative needs that encourage 

the correct use of the word might override that transfer, by leading the learner to allocate more 

cognitive resources to ensuring that they use the word correctly. Conversely, if positive transfer 

helps a learner use an L2 word correctly, then communicative needs that encourage the correct 

use of the word should not influence the transfer. 

Another relevant theoretical question is whether this communicative/task override plays 

a bigger role when it comes to certain linguistic domains (e.g., lexical vs. syntactic). We 

hypothesize that this is likely the case, given the contrast between the present null findings and 
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the past positive findings regarding other L1 effects, and given that some aspects of language 

play a bigger role than others when it comes to achieving communicative/task goals. For 

example, if a speaker wants to convey the meaning “I ate an apple”, being able to use the word 

“apple” is generally more important than being able to use the article “an”, since “I ate apple” 

conveys the original meaning more clearly than “I ate an”. 

 

4.4.3 Limitations and future research 

This study’s key limitation is that it relies on a single (albeit large-scale) learner sample. As 

such, the analyses should be replicated on other samples, in order to determine the 

generalizability of the findings. Such replications could, for example, analyze the writing of 

similar learners, of higher-proficiency learners (CEFR C1–C2), or of learners of an L2 other 

than English (which is a lingua franca). In particular, it would also be good to see analyses on 

a range of more open-ended tasks, where communicative needs and task effects are not 

expected to influence word choice as much as in the present study. 

In addition, to confirm the findings and determine their generalizability, it will also be 

beneficial to replicate them using other types of lexical distances or using other lexical-distance 

datasets. An interesting direction for future research in this regard is to focus on the preference 

for cognates within synsets, in a manner similar to Rabinovich et al. (2018). This can be done 

by comparing, within each synset, the probability that speakers of different L1s will use any 

given word in the synset, and then seeing if their choices reflect a preference for cognates (see 

the supplementary information for some more details on this). 

Finally, future research could address the theoretical questions outlined in §4.4.2, for 

example by comparing the effects of communicative needs on lexical transfer to their effects 

on other types of transfer (e.g., syntactic), to further our understanding of how such needs can 

influence and override transfer. 

 

4.4.4 Conclusions 

Our findings suggest that formal lexical similarity—which relates to cognancy and which is 

measured here based on phonological overlap between words in learners’ L1 and their L2 

translations—does not influence learners’ L2 word choice, regardless of learners’ L2 

proficiency, in the present task-based educational settings. This suggests that the facilitative 

effects of formal lexical similarity—the most notable of which is the cognate facilitation 
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effect—are more constrained than expected, and that communicative needs and task effects can 

override the influence of positive lexical transfer in some cases. Furthermore, this raises 

questions regarding when and how communicative needs and task effects influence language 

transfer, for example when it comes to different types of transfer (e.g., positive vs. negative, or 

lexical vs. syntactic). 
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5 GENERAL DISCUSSION 

5.1 Summary of key research and findings 

This research examines the influence of crosslinguistic similarity on lexical transfer from 

learners’ L1 to their target L2. It does so using a broad sample, which covers a large number 

of learners and texts, and a wide range of words, tasks, L2 proficiency levels, and typologically 

diverse L1s. In addition, it uses comprehensive mixed-effects models to make full use of the 

broad sample, and to control for many relevant variables, such as task effects. 

The research involves two key studies, which address this topic in a complementary 

manner. Specifically, the first study investigates whether overall lexical similarity between 

learners’ L1 and their target L2 influences their L2 lexical diversity, while the second study 

investigates whether lexical similarity between corresponding L1-L2 words influences the 

usage of the L2 words. As such, the first study examines global measures of lexical similarity 

and L2 use, and the second study “zooms in” on this potential association and uses a more fine-

grained and local lexical measure. Furthermore, both studies examine whether this potential 

crosslinguistic influence is moderated by learners’ L2 proficiency, with the expectation that the 

influence will be strongest at lower L2 proficiency levels. 

 Surprisingly, the studies found no effect of lexical similarity on either L2 lexical 

diversity or word choice, regardless of learners’ L2 proficiency. Conversely, there were strong 

task effects when it comes to both lexical measures. 

 

5.2 Key theoretical implications and future directions 

The key finding of this research—the lack of an L1 effect on L2 lexical diversity and word 

choice—does not necessarily contradict past findings on the topic, but rather extends them. It 

does so by showing that the facilitative effect of lexical similarity (which relates to cognancy) 

that was found in past research is constrained, and does not extend to learners’ L2 productions 

in certain task-based settings, which they are likely to encounter in places such as school. 

Essentially, it is likely that learners still find it easier to process and use the L2 words that are 

similar to (and potentially cognate with) their L1, but this does not influence learners’ decision 

of which words to use in the present task-based setting, where learners’ lexical choices are 

driven primarily by constrained communicative needs and associated task effects. This 

suggests that communicative needs and other task effects can override positive lexical transfer 

from learners’ L1, for example when the need to use a certain word to achieve a certain 
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communicative goal pushes them to use that specific word, rather than an alternative that is 

slightly easier for them to recall. 

As discussed in detail in the two studies, and particularly in study 2, the null findings 

here stand in stark contrast to findings on other L1 effects in the EFCAMDAT (Alexopoulou 

et al., 2015; Chen et al., 2021; X. Jiang et al., 2014; Murakami, 2016; Shatz, 2017, 2019). This 

raises many questions regarding the ability of communicative needs and other task effects to 

override language transfer, which future research can address. 

One key question in this regard is how communicative needs and task effects can 

influence and override transfer in different linguistic domains (e.g., lexical vs. syntactic). 

Specifically, while the present findings show how these situational factors can override—and 

consequently hide—positive lexical transfer, these factors may also play a role when it comes 

to other types of transfer. For example, these factors may also override potential negative 

transfer in some cases, in situations where communicative needs prompt speakers to allocate 

extra cognitive resources to ensuring that a certain linguistic structure is used correctly (e.g., 

by inhibiting the L1 and relying primarily on the L2 instead). Furthermore, these factors may 

also influence transfer in other ways, such as by weakening it, rather than overriding it entirely, 

or by amplifying it, for example by encouraging people to allocate more cognitive resources to 

a certain structure, in a way that helps them notice additional crosslinguistic similarities, and 

consequently benefit more from positive transfer than they otherwise would. 

Given the null findings in the present lexical domain within the EFCAMDAT sample, 

and the significant findings in various other linguistic domains, it seems likely that 

communicative needs and task effects play a bigger role when it comes to transfer that has to 

do with key communicative needs. For example, as noted in study 2, if a speaker wants to 

convey the meaning “I ate an apple”, being able to use the word “apple” is generally more 

important than being able to use the article “an”, since “I ate an apple” conveys the original 

meaning of the sentence more clearly than “I ate an apple”. Similarly, there are many other 

types of syntactic, semantic, morphological, phonological, and orthographic errors that can be 

made in this case without substantially interfering with the key meaning of the sentence, such 

as adding an unnecessary plurality marker to its object (“I ate an apples”) or misspelling its 

object (e.g., “I ate an applle”). However, the key word in question (“apple”) must be used in a 

recognizable manner in order to convey the key meaning of the sentence. 
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Nevertheless, communicative needs can also have to do with the form of the language, 

rather than its content. For example, this can be the case when it comes to the formality of 

utterances, which can influence people’s word choice in a way that overrides both negative and 

positive transfer in high-stakes situations, where displaying the right degree of formality is 

crucial to avoiding serious social conflict. 

The ability of communicative needs and task effects to influence and override different 

types of transfer can be most aptly studied in the future by directly comparing its influence on 

different types of transfer within the same language sample, or by comparing the existence and 

magnitude of similar types of transfer across different contexts of language use. For example, 

this can include running an experiment that involves different levels of task-based constraints, 

from narrow prompts to more open-ended ones, and investigating to what degree word choice 

is influenced by crosslinguistic similarity in the different contexts. This direction of research 

is also important when it comes to investigating the possibility that past studies on transfer may 

have missed existing transfer or mis-estimated its magnitude, due to the influence of these 

situational factors.  

Finally, from a broader perspective, these findings also emphasize the role of this type 

of situational factors when it comes to transfer.27 This is important, since most past transfer 

research focused on other types of factors, and primarily those pertaining to the linguistic 

structures in question, for example in terms of their instantiation and frequency across 

languages, as well as on factors pertaining to the learners themselves, especially when it comes 

to their language proficiency (James, 2012; Jarvis, 2009; Jarvis & Pavlenko, 2008; Yi, 2012). 

 

5.3 Additional insights 

This research also includes additional important contributions beyond the aforementioned key 

findings. 

 First, this includes insights into the development, sharing, and use of large-scale 

language datasets, based primarily on the EFCAMDAT Cleaned Subcorpus, which I developed, 

shared, and used here. This also includes insights into using the ASJP and IDS to calculate 

lexical distance, and the resulting datasets were also made openly available for use by others, 

 
27 I use the term “situational factors” rather broadly here, to refer to things such as task effects, but distinctions 

can be drawn between different types of such factors. For example, Jarvis and Pavlenko (2008) draw a distinction 

between social factors (e.g., idiolect), situational factors (e.g., formality), contextual factors (e.g., interlocutor), 

and performance-related factors (e.g., task type). 
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together with all the relevant data, code, and explanations of the development process. I hope 

that sharing all this will support and encourage the development, sharing, and use of similar 

language datasets by others. This is especially important given that the opportunities to develop 

such datasets are increasing rapidly, due to the growing use of digital platforms for various 

purposes, which generates large amounts of raw data, and given the rapid development of 

accessible computational tools that can be used to work with such data in an effective and 

scalable way. 

In addition, all the other data and code from the studies is also shared publicly together 

with the study, in support of open research practices. I am doing this to facilitate the 

interpretation and replication of the present research, and to raise awareness of data sharing 

and encourage others to do the same. I believe that this kind of open research is crucial for 

linguistics and for science in general, and should become the norm and the default option 

wherever possible. 

Finally, this research contains other contributions with significant implications 

pertaining to language learning, teaching, assessment, and research. This includes: 

− Extensive information on L2 lexical diversity, including its developmental patterns across 

L2 proficiency, its within-level and between-level variance, and the magnitude of the 

associated task effects. To my knowledge, my research on this is the largest study on the 

topic, in terms of the combination of the size and diversity of the sample (i.e., the 

combination of the number of learners and texts, number of tasks, number and typological 

diversity of the L1s, and the range of the L2 proficiency levels), as well as the scope of the 

analyses (particularly the use of the comprehensive mixed-effects models). 

− Extensive information on the use of lexical distance—and particularly Levenshtein distance 

and its normalized form—both in the context of general language research, as well as in 

the context of SLA research in particular. To my knowledge, the review that I present on 

the topic here is the most comprehensive to date in the context of SLA research, and can 

therefore facilitate the understanding and use of this and similar measures by other 

researchers. 

− Extensive information on the use of mixed-effects models for SLA research. Though these 

models are not new to the field, many researchers do not have sufficient familiarity with 

them, so they remain underutilized, or are used in inappropriate ways (e.g., without proper 

assumption checking). This appears to be particularly the case when it comes to mixed-

models outside of linear mixed-models (LMMs), as in the case of Poisson models. I hope 



94 

 

that by including such models in my work, and providing many details on their use, I will 

help increase their adoption and proper use in the field. 

 

5.4 Additional future research 

In §5.2, I outline the key directions that future research can follow in order to explore the 

theoretical implications of the present findings (i.e., the way situational factors, such as 

communicative needs and task effects, can influence and override different types of transfer). 

In addition, future research can also replicate and extend the present research, by conducting it 

with one or more of the following modifications: 

− Other learner samples (e.g., the Cambridge Learner Corpus instead of the EFCAMDAT). 

− Other L1s or a different L2. 

− Other measures of lexical distance (e.g., cognancy judgments) or other lexical distance 

datasets (e.g., the NorthEuraLex). 

− Other measures of L2 lexical outcomes (e.g., lexical sophistication). 

Of these, I believe that it is most important to replicate this research on other learner samples, 

in order to determine the generalizability of the findings in other L2 contexts, and provide 

further insights into how and when communicative needs and task effects override lexical 

transfer.28 A different L2 would also be particularly valuable to examine, given English’s status 

as a global lingua franca, though this status also means that many of the relevant datasets use 

English as an L2, and that acquisition patterns that pertain to it in generally have greater 

practical implications than for most other languages. 

There is, of course, also value in replicating this research using other L1s, other lexical 

distance measures, other lexical-distance datasets, and other types of L2 outcomes. However, 

given the robustness of the results within the present analyses, and given the correlation 

between many of these different measures and datasets (e.g., between different measures of 

 
28 Although it is also important to emphasize the many strengths of the learner sample that was used here. These 

include the scale and broadness of the sample (in terms of number of texts, learners, tasks, L1s, and the L2 

proficiency levels), as well as the extensive past research that used this sample to study L1 and task effects 

(Alexopoulou et al., 2015, 2017; Chen et al., 2021; X. Jiang et al., 2014; Michel et al., 2019; Murakami, 2014, 

2016; Shatz, 2017, 2019). Given this, and given the robustness of the findings within the present learner sample, 

and given that L1 effects in this sample have been shown to strongly correlate with those in other learner samples 

(most notably, the Cambridge Learner Corpus, as shown in Murakami, 2013), it is likely that these findings will 

generalize to other samples that share the same structure, in terms of communicative needs and task effects. What 

would be most interesting, therefore, is to see how these findings generalize to learner samples with distinctly 

different structures, such as those that use much more open-ended tasks. 
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lexical distance), it appears less likely that this would make as much of a difference as 

replicating these analyses on different learner samples. 

Nevertheless, I think there are several interesting and valuable directions for future 

research in this regard, as well as when it comes to several other associated directions. Below, 

I briefly outline some of these directions, and present further relevant information, based on 

various things that I encountered and considered during my PhD research, in the hope that it 

will inform future work. 

 

5.4.1 Using other lexical-distance datasets 

In terms of lexical-distance datasets to use in future research, the NorthEuraLex appears to be 

a highly promising source, in terms of the number and diversity of languages that it covers, the 

number of words that it contains per language, and the fact that it contains both orthographic 

and phonetic transcriptions for each word (Dellert et al., 2020).29 This is a relatively new 

resource, which was only recently published, and which, at the time of writing this, is awaiting 

a major update that will involve many improvements and corrections (going from version 0.9 

to 1.0), which is why I did not use it in the present research.30 I believe that once the new major 

version of this dataset is released, it will be the best lexical-distance dataset to use in follow-

up analyses on the present research. I also think that there will be value in establishing a script 

for automatically generating lexical-distance data from the NorthEuraLex, particularly if it 

becomes the dataset of choice for most research involving this type of lexical distance. 

 In addition, another newly released dataset that seems promising is CogNet (Batsuren 

et al., 2021). It has an entirely different structure, since it focuses on assessing cognancy across 

languages. This can be useful for those interested in using cognancy as a measure of lexical 

distance, and once the data regarding cognates is extracted, it should also be possible to 

calculate crosslinguistic lexical distances between the cognates using similar approaches as in 

the present study. 

 
29 It also appears to have fewer issues with its transcriptions than the IDS, though this is based only on my initial 

impression, rather than on comprehensive work with the dataset. 
30 Specifically, the following notice is listed on the project’s homepage: “The current versions of the wordlists 

have been compiled by non-experts based on available resources, and are therefore guaranteed to contain many 

errors and inaccuracies. Therefore, they are not adequate for use as a primary reference or data source for any of 

the languages concerned, but only in computational frameworks where some noise can be dealt with. The next 

major version (planned for autumn 2020) will contain at least 80 additional languages, a first batch of etymological 

annotations for the larger families, as well as many updates and corrections based on the feedback of experts and 

native speakers.” (http://web.archive.org/web/20210828091842/http://northeuralex.org/ as archived on 28-Aug-

21). 

http://web.archive.org/web/20210828091842/http:/northeuralex.org/
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5.4.2 Accounting for orthography 

The present research focuses on crosslinguistic phonological similarity, and does not account 

directly for orthographic similarity, though the mixed-effects models that were used in the 

main analyses do account for it indirectly through the L1 and word random effects. Reasons 

for this include the lack of orthographic data in the ASJP, the problem with calculating 

orthographic distance between languages with different scripts,31 and the strong correlation 

between phonological and orthographic distance.32 Nevertheless, it could be interesting to 

expand analyses to account for both phonological and orthographic similarity. 

 The main way to do this is to include in the sample only L1s that share the same script 

as the target L2, calculate both orthographic and phonological distances between the word pairs 

in the sample, and then include both distance measures in the analyses, while ensuring that 

potential issues (especially collinearity) are addressed. 

In addition, another way in which orthographic similarity can be taken into account is 

through similarity at the script level (or writing system), rather than at the word level. 

Specifically, I propose that differences in script between learners’ L1 and the target L2 can be 

calculated using three types of scales: 

i. Binary scale. This involves distinguishing between L1s that use the same script as the 

target L2 and those that do not. 

ii. Categorical scale. This involves categorizing the L1s and the L2 based on their script 

(e.g., Latin, Cyrillic, or Arabic). 

 
31 The distances are almost always maximal when the scripts are different, and therefore they are largely 

meaningless. However, note that L1-L2 similarities and differences can have cross-script effects (i.e., they can 

influence learners’ L2 even when the two languages use different script), which means, for example, that the 

facilitative effect of cognate status on L2 word use can occur even when the L1 and L2 use different scripts 

(Bowers et al., 2000; Bowers & Michita, 1998; Gollan et al., 1997; Hoshino & Kroll, 2008; N. Jiang, 1999; Kroll 

et al., 2012; Muljani et al., 1998; Thierry & Wu, 2007; Wu & Thierry, 2010), though differences in writing system 

do play a role in some cases (J. Zhang et al., 2019). 
32  Specifically, in the parallel dictionaries, where all the L1s share English’s Latin script, and where there are 

orthographic transcriptions, there was a strong correlation between phonological and orthographic distance, both 

in the case of LDN (r = .68, 95% CI = [.67, .70], p < .001), and in the case of LD (r = .73, 95% CI = [.71, .74], p 

< .001). Similar strong correlations have been found in other studies, such as in Carrasco-Ortiz et al. (2021), who 

found a correlation of r = .782 between phonological and orthographic distance in a dataset of English and Spanish 

words. Furthermore, this correlation has been raised as a problematic source of collinearity, leading some 

researchers to omit orthographic distance from their statistical analyses, and keep only phonological distance (e.g., 

De Wilde et al., 2020, 2021). This does not entirely rule out the inclusion of both distances types, as the issue of 

collinearity can potentially be mitigated through the use of sufficiently large and diverse samples, but it does mean 

that researchers who consider including both distance measures in their analyses should do so with caution 

(Morrissey & Ruxton, 2018; R. M. O’Brien, 2007; Winter, 2019). 
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iii. Ordinal scale. This involves categorizing the L1s based on their script, and then 

ranking them based on how similar their script is to that of the L2, based on the type of 

script used (e.g., phoneme-based vs. syllable-based) and potentially also the degree of 

overlap in symbols between the scripts. 

In the case of the ordinal scale, there it is possible to use the following four categories, 

described here in the context of English as the target L2:  

i. Same script. This includes languages such as French and Spanish, which use a 

script that is identical or almost identical to English. 

ii. Different script with overlap. This includes languages such as Russian and Greek, 

which use a substantially different script than English, but which contain some 

overlap in terms of certain graphemes (e.g., /a/ in Russian).33 

iii. Different script without overlap. This includes languages such as Hebrew and 

Arabic, which use a script that does not overlap with English at all in terms of 

graphemes, but which is the same type of script overall (i.e., an alphabet). 

iv. Different script type. This includes languages such as Chinese and Japanese, 

which contain no overlap in graphemes with English, and which use a non-

alphabetic script.34 Note that, in an alphabetic system, each grapheme generally 

corresponds to a phoneme, so non-alphabetic scripts are generally either a syllabary, 

if graphemes correspond to syllables, or a logographic system, if graphemes 

correspond to morphemes. 

This type of crosslinguistic similarity be taken into account both in analyses that look at 

similarities at the word level, as well as those that look at similarities at the language level.35 

 

 
33 It is possible to refine this category of the scale further, for example by calculating the proportion of the alphabet 

which overlaps. In this regard, it may also be possible to refine the previous category of the scale in a similar 

manner. 
34 Though speakers of these languages may still have substantial experience with the Latin script, for example 

through the Rōmaji script in Japanese, which can complicate analyses that use this scale. 
35 In the present research, the effect of script is broadly taken into account through the L1 random effect, but is 

largely irrelevant for most of the analyses. Specifically, in the case of study 1 (on lexical diversity), similarity in 

script is almost perfectly correlated with phonological distance, while in the case of study 2 (on word choice), all 

the L1s that are included in the parallel dictionaries share the same script, so it could only make a difference for 

the analyses on the Swadesh lists there. 
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5.4.3 Using phonological weights 

This refers to assigning different weights to the transformation of different phonological units. 

For extensive information on this, see the section on “Feature edit distance” in the 

supplementary information of the word-choice study (Appendix E). 

 

5.4.4 Accounting for diacritics 

Diacritics are marks that modify base characters in orthographic or phonological transcriptions, 

as in the case of the /ˆ/ in /ê/ (Ball, 2001). Diacritics are similar to other types of symbols that 

are used to modify base characters, such as suprasegmentals (e.g., the long marker /ː/), which 

here will all be grouped under the term “diacritics”, due to the similarities in how they are 

represented and how they function. 

 Diacritics pose two main challenges to calculations of lexical distance.36 First, 

differences in diacritics may be less substantial than differences in base characters, for example 

in terms of how they are perceived by language speakers (Heeringa et al., 2013). Second, there 

is often inconsistency in how diacritics are transcribed, both between and within 

transcribers/datasets (McSweeny & Shriberg, 1995; Ramsdell et al., 2007; Shriberg & Lof., 

1991). Nevertheless, I included diacritics in my calculations of lexical distance without treating 

them differently than other characters, for several reasons. 

First, most past research that used and validated LD(N) did not discuss the handling of 

diacritics (e.g., Petroni & Serva, 2008; Schepens et al., 2012; Wichmann, 2019), which 

suggests that this research did not treat diacritics differently than other characters, so this course 

of options seems a reasonable and conservative option to use here. This choice is supported by 

the fact that the language-level distances that we found in the analyses here align with the 

distances that are expected based on general language classification, as shown in the two main 

studies of the thesis. 

Another reason for treating diacritics the same as other characters when calculating lexical 

distance is that there is currently no way to handle diacritics that is clearly better than this. 

Specifically: 

− One option is to weigh diacritic-based changes differently than character-based 

changes, for example by assigning a weight of 0.5 to a transformation of /e/ into /é/, 

 
36 This also applies to calculations of phonological or orthographic overlap or similarity, which often serve as a 

proxy for lexical distance, as in the present research. 
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compared to a weight of 1 if it is transformed into /a/ (Heeringa et al., 2013; Silveira & 

Leussen, 2015). However, this does not fully address the issue of inconsistency in the 

transcription of diacritics, and it is not clear that diacritic-based changes are indeed less 

substantial than character-based changes in all case (e.g., when assessing 

psychotypological distance). Furthermore, this adds substantial complexity and 

arbitrariness to the analyses, for example when deciding how diacritics should be 

weighted compared to other character transformations (e.g., 0.5? 0.3? 0.25?), which can 

lead to various issues with running such analyses in a replicable manner. 

− Another option is to remove or ignore diacritics entirely when calculating lexical 

distance, so that only the base characters in each string are compared (e.g., Jäger, 2018; 

Luján-Mora & Palomar, 2001; Sanders & Chin, 2009; Santos et al., 2018; Wieling et 

al., 2007, 2014; Zhang, 2018). This has the benefit of solving most issues associated 

with diacritics, but it comes directly at the cost of lost linguistic information. 

Furthermore, it also adds substantial complexity to the analyses, especially when 

different types of diacritics need to be removed, since this is not always a 

straightforward process, as we will see soon. 

− Another option is to use FD(N) instead of LD(N), since, as outlined in the previous sub-

section, such distances may be better able to handle diacritics, by properly parsing the 

linguistic information associated with them. However, in addition to the general issues 

associated with FD(N) that were discussed previously, this still does not fully address 

the issue of inconsistency in diacritic transcriptions, and this can also lead to other 

issues, such as inconsistency in terms of how FD(N) calculations treat different types 

of diacritics.37 In addition, FD(N), at least in its current form, generally only applies to 

phonological transcriptions, but diacritics may also appear in orthographic 

transcriptions. 

The complexity of trying to deal with diacritics is compounded when considering the many 

different types of diacritics, which have different linguistic functions and take different 

programmatic forms. For example, focusing on the programmatic form of diacritics, you can 

have: 

 
37 For example, PanPhon acknowledges the diacritic in /ɔ̃/, but ignores the diacritic in /ž/. 



100 

 

− Symbol-based diacritics that must be attached to a base character, meaning that deleting 

the base character also generally deletes the diacritics in software (e.g., the nasalization 

diacritic in /ɔ̃/). 

− Symbol-based diacritics that must be attached to a base character, and that modify multiple 

(usually two) characters (e.g., the affricate mark in /t͡ s/). 

− Symbol-based diacritics that can appear on their own (e.g., the long diacritic in /aː/). 

− Letter-based diacritics that can appear on their own (e.g., the palatalization diacritic in /pʲ/). 

− Precomposed characters (also known as precombined glyphs), which are a combination of 

a diacritic and base character(s) that is transcribed as a single character (e.g., /ą/, which 

replaces the 2-character /a̧/, or /ʧ/, which replaces the 3-character /t͡ ʃ/). 

This variability is important, since solutions for handling diacritics may work with some of 

them, but not others, which can increase the room for error in any analyses involved.38 

Overall, diacritics may lead to issues in calculations of lexical distance, since diacritic-

based differences may be perceived as less substantial than character-based differences, and 

since the transcription of diacritics is often more inconsistent than the transcription of base 

characters. Nevertheless, these issues do not appear to invalidate the use of LD(N) when 

calculating lexical distance, especially when it comes to large-scale analyses that are expected 

to accommodate this type of limited noise. Furthermore, there is currently no approach that is 

clearly superior to simply keeping the diacritics in the dataset and treating them the same way 

as other characters, since all the alternatives also involve various issues. 

As such, my goal in writing about this here is to raise awareness of the influence of 

diacritics on lexical distance, and to provide an initial overview of this concept, the issues 

involved, and the current solutions. This will help researchers who work with lexical distance 

to at least be aware of the issue, so they can make an informed decision regarding how to handle 

 
38 For example, when it comes to Python, solutions that are often recommended for removing diacritics are the 

unidecode function in the unidecode library (Solc, 2019) and the normalize function in the unicodedata module 

(What Is the Best Way to Remove Accents in a Python Unicode String?, 2009). However, these methods fail to 

account for non-accent diacritics, such as the labialization symbol (/ʷ/), which they change into a /w/, or the long 

symbol (/ː/), which they simply do not remove. Furthermore, these solutions can also involve other issues, such 

as lossy transliteration of Unicode characters into ASCII, which means that characters that exist in the Unicode 

character-set but not in the more limited ASCII character-set are not preserved during the transliteration process. 

This means, for example, that /ɔ̃/ might be converted to /o/, as in the case of the unidecode function, or deleted 

entirely, as in the case of the relevant function in the unicodedata library. These issues will not apply to every 

language sample, and it is possible to address them by identifying and removing problem characters using regex, 

while potentially combining this with more appropriate functions, such as the deaccent function from the gensim 

library in Python (Rehurek & Sojka, 2010). Nevertheless, this further illustrates some of the pitfalls and 

complexity associated with handling diacritics. 
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diacritics in their analyses. In addition, this can prompt further discussions on the topic, which 

may lead to the development of better approaches for handling diacritics in linguistic analyses. 

 

5.4.5 Assessing segmental frequency and permissibility 

The present research, as well as most research on the influence of crosslinguistic similarity on 

lexical transfer, focuses on the similarity between corresponding individual words, including 

when the mean distance between words in different languages is used. An interesting direction 

for future research is to examine the influence of phonological and orthographic similarity 

between languages on lexical transfer, in terms of permissibility and frequency of phonological 

and orthographic segmental units in each language (e.g., a phoneme such as /b/, or a 

combination of phonemes such as /ba/). This type of system similarity has been conceptualized 

in various ways, such as through phonotactic typicality, which expresses the degree to which 

the phonological structure of L2 words resembles the phonological structure of a learner’s L1 

(de Groot, 2006), and this type of crosslinguistic similarities and differences can influence L2 

processing, acquisition, and use (N. C. Ellis & Beaton, 1993; French & O’Brien, 2008; Llach, 

2010; Llach et al., 2006; Martin & Ellis, 2012; I. O’Brien, 1998; I. O’Brien et al., 2006; 

Speciale et al., 2004). 

For example, when L2 words contain sounds that are impermissible in learners’ L1, 

learners often modify those sounds in various ways instead of producing them faithfully 

(Carlisle, 1991, 1997; Carlson, 2018a; Carlson et al., 2016; Davidson, 2011; Dupoux et al., 

2011). This means, for instance, that since word-initial /s/ clusters are impermissible in 

Spanish, when Spanish speakers encounter such clusters in languages such as English, they 

tend to insert a word-initial /e/ in order to repair the seemingly illicit cluster (e.g. spirit → 

espirit), especially during the initial stages of acquisition (Carlisle, 1991, 1997; Carlson, 

2018b). This has been attributed to parallel activation of L2 and L1 phonotactic constraints 

during the processing of the L2 words (Carlson, 2018a; Carlson et al., 2016; Freeman et al., 

2016, 2017). This issue can require learners to dedicate more resources to processing, 

acquiring, and using L2 words with the impermissible clusters, which can interfere with other 

various aspects of L2 lexical development, such as L1-L2 mapping and the acquisition of other 

L2 words (Carlson, 2018a; Carlson et al., 2016; Davidson, 2011; Dupoux et al., 2011). 

There are many other cases of this type of crosslinguistic influence. For example, 

learners are better able to recall phototactically typical words compared to atypical words, 
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which is attributed to the increased L1-L2 similarity in phonological encoding making it easier 

for learners to generate phonological coding of the L2 word forms in phototactically typical 

words (de Groot, 2006; de Groot & van Hell, 2005). In addition, the L1-L2 similarity of 

phonotactic patterns can also affect the pronounceability of L2 words, with words that are more 

similar being viewed as more pronounceable (N. C. Ellis & Beaton, 1993). Finally, 

orthographic similarity can influence lexical transfer, for example by facilitating L2 lexical 

processing in cases where learners can establish beneficial associations between the writing 

systems of the L1 and the L2 (Koda, 1996; Muljani et al., 1998). 

Overall, research shows that phonological and orthographic similarity at the language 

level between learners’ L1 and their target L2 can influence L2 processing, acquisition, and 

use, even outside the context of cognancy or similarity between specific corresponding words. 

However, as with the cognate facilitation effect, most research on this focused on narrow 

assessments of L2 processing, so there is a need for broad assessments of L2 production in this 

regard. 

 There is a comprehensive recent study on a similar concept by Schepens et al. (2020), 

which looked at phonological similarities between languages based on their phonological 

inventories, and examined their influence on a composite score of L2 proficiency. However, 

what I think would be interesting is to go beyond the basic inventory, and look at all the 

available combinations of sounds and symbols within the languages, while considering their 

permissibility and frequency in each language, for example based on their n-grams within the 

language.39 This can be based on wordlists such as those in the NorthEuraLex, or on wordlists 

that also include the frequency of each word in the language, such as those in the wordfreq 

package in Python. Using this data, regarding how often combinations of sounds/symbols 

appear in learners’ L1 and their target L2, it would be interesting to answer the following 

questions about lexical transfer: 

− Does the frequency of L1 phonological/orthographic units influence their frequency in 

learners’ L2 productions? If so, does this occur due to a preference for units that are 

similar across the languages, avoidance of units that are different, or both? 

− Is the influence of frequency distinct from that of permissibility? Specifically, it might 

be the case that as long as a cluster is permissible in the L1 (i.e., has a frequency greater 

 
39 This aligns with some other suggestions for ways in which n-grams can be used to quantify distance between 

languages (Gamallo et al., 2017). 
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than zero), then its frequency has no effect on L2 productions. Conversely, it might be 

the case that permissibility does not matter, and all the matters is L1 frequency, where 

impermissibility is merely a case where frequency is equal to zero. In addition, it might 

also be the case that both frequency and permissibility matter, (i.e., that frequency 

influences acquisition, but the effect of the transition from low-frequency to 

impermissibility is inconsistent with the effect that is expected based on a simple 

decrease in frequency). 

Furthermore, these analyses can be refined by looking not only at general frequency and 

permissibility, but also at frequency and permissibility given the position of segmental units 

within words or in relation to other segmental units.40 

 

5.4.6 Assessing other L2 outcomes 

This research examines the influence of crosslinguistic similarity on lexical transfer in the 

context of two L2 outcomes: lexical diversity and the usage rates of individual words. Future 

research can expand on this by looking other types of L2 outcomes. 

For example, when it comes to other global lexical measures, it would be interesting to 

look at other types of measures beyond lexical diversity (Jarvis, 2013; Mazgutova & Kormos, 

2015), such as lexical sophistication (Kyle & Crossley, 2016) and lexical proficiency (Baba, 

2009). On the other hand, when it comes to the usage patterns of individual words, it would be 

interesting to look at the emergence of L2 words, possibly by using event history analysis (also 

known as survival analysis)(Hox et al., 2018; Ota & Green, 2013). Furthermore, it would also 

be interesting to analyze the transfer-based spelling and pronunciation errors that people make 

as a result of crosslinguistic similarity and lexical transfer, using the same type of large-scale 

analyses as in the present study.  

 

 
40 Specifically, it is possible to take the absolute and relative position of the units into account (N. C. Ellis & 

Beaton, 1993). Absolute position refers to the position of a segment/sequence within a word, regardless of the 

position of other segments. For example, if a language does not allow the /t/ sound to appear in word-final position, 

that phonotactic constraint refers to its absolute position. Relative position refers to the position of a 

segment/sequence within a word, relatively to the position of other segments. For example, if a language does not 

allow the /t/ sound to appear immediately after an /r/ sound, that phonotactic constraint refers to its relative 

position. 
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5.4.7 Other considerations and open questions 

When it comes to the influence of crosslinguistic similarity on lexical transfer, there are many 

related research directions that are worth pursuing, beyond the ones mentioned so far. 

 One topic of interest is whether normalized and non-normalized distances play a 

different role in influencing transfer, and whether this is moderated by word length. For 

example, do two-character transformations in a four-letter word lead to different lexical transfer 

than three-character transformations in a six-letter word? What about edge cases such as the 

pair /aaa/-/bbb/ compared to the pair /aaa/-/bbbbbb/, where the LDN is equal but the LD is 

markedly different? 

A related topic of interest is whether there are bounds to the effects of similarity. For 

example, is it the case that there must be overlap in at least 40% of phonemes in an L1-L2 word 

pair for learners to benefit from crosslinguistic similarity? Similarly, is it possible that there is 

no difference between words that are 60% similar and those that are 90%, because past a certain 

point additional similarity no longer confers additional benefits? 

Finally, another topic of interest is how else can other aspects of word complexity, 

beyond word length, influence lexical transfer? For example, is there a bigger cognate 

facilitation effect when it comes to complex L2 words (e.g., words that contain difficult 

phonological clusters) because those words are harder to learn, so learners are more likely to 

turn to their L1 for help? 

Answering these questions will help us understand how crosslinguistic similarity 

influences L2 lexical development. Furthermore, this will inform the methodology that is used 

to research the topic, for example by helping us determine what constitutes cognancy from a 

psycholinguistic perspective. In addition, this can also be beneficial in applied contexts, for 

example when it comes to understanding when it is worthwhile to highlight crosslinguistic 

similarities to facilitate the learning of L2 words. 

There are, of course, many, many other topics that can also be considered in future 

research. These include, for example, the role of systematicity and individual variation in 

lexical transfer (Murakami, 2016), the role of part of speech (N. C. Ellis & Beaton, 1993), and 

the role of factors such as orthographic depth (Schepens, Dijkstra, et al., 2013). The questions 

and directions that I am proposing here are merely the ones that I believe to be the most relevant 

given the focus of the present research. 
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5.5 Conclusion 

This research investigates the effects of crosslinguistic similarity on lexical transfer. It uses a 

broad learner-corpus sample, containing L2 English texts written by a diverse range of learners 

in a task-based setting. Interestingly, lexical similarity between languages did not influence L2 

lexical diversity, regardless of learners’ L2 proficiency. Similarly, lexical similarity between 

corresponding L1-L2 words did not influence the use of the L2 words, again regardless of L2 

proficiency. Conversely, there were strong task effects on both lexical measures. 

These findings show that the facilitative effect of lexical similarity is constrained, and 

suggest that communicative needs and other task effects can override positive lexical transfer. 

This raises questions regarding when and how communicative needs and other task effects can 

override and influence transfer, for example when it comes to different types of transfer (e.g., 

positive vs. negative, or lexical vs. syntactic), and highlights the potential influence of such 

situational factors on language transfer. In addition, this research contains many insights into 

related topics, primarily in the form of additional findings and suggestions for future work, for 

example when it comes to accounting for task effects in language assessment, using online 

platforms to develop language corpora, and measuring crosslinguistic distance.
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7 APPENDICES 

7.1 Appendix A: Further background information 

7.1.1 Examples of lexical transfer 

One example of lexical transfer appears in a study by N. Jiang (2004), who showed that 

semantic transfer from learners’ L1 leads them to process pairs of L2 words faster when they 

have the same L1 translation compared to when they do not. This means that, as Jiang points 

out (p. 421), when Korean learners of English as a second language (ESL) are shown pairs of 

words in English, they are able to process those pairs faster when the words are similar in 

meaning and share the same Korean translation, compared to when the words are similar in 

meaning but have different translations. For instance, Korean speakers are faster when they 

process word pairs such as chance and opportunity, which are similar in meaning and which 

share the same Korean translation (기회, pronounced ‘giwhoi’), than when they process word 

pairs such as decrease and reduce, which are also similar in meaning but which have different 

Korean translations (줄이다, which is pronounced ‘julida’, and 축소되다, which is 

pronounced ‘chuksohada’).41 Jiang attributed this phenomenon to new L2 words being linked 

to their L1 translation, which results in information from the L1 lemma transferring to the L2 

lexemes.42 

 Another example of lexical transfer appears in a study by Tonzar, Lotto, and Job (2009), 

who examined how Italian-speaking children learned L2 words in English and German. They 

found that when a word in the children’s target L2 was part of a cognate pair with an L1 word 

(e.g., limone-lemon, but not mela-apple), then the children had an easier time acquiring it. 

However, they also found that this effect decreased over time, as children’s familiarity with the 

target L2 grew. 

Furthermore, Tonzar et al. (2009) also found that similarities and differences in form 

between the children’s L1 and their target L2 influenced the L2 errors that they made. 

Specifically, when the L2 words were part of cognate pair with the L1, learners tended to make 

mistakes that maximized the similarities between the L2 and the L1, using one of two possible 

strategies:43 

 
41 These examples are all taken directly from Jiang's paper (2004, p.421).  
42 In this context, the term lemma refers to the part of the word that contains its syntactic and semantic information 

(N. Jiang, 2000). However, in some works, the term lemma is used to refer to a word’s syntax, but not to its 

semantics, which is viewed as its meaning, or its underlying lexical concept (Levelt et al., 1999). 
43 All the examples that are described here are taken from the paper by Tonzar et al. (2009, p, 640). 
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i. Transforming L2 phonemes into L1 graphemes. For example, writing carafe in German 

instead of karaffe (“carafe”), since the /k/ sound is spelled as /c/ in Italian. 

ii. Adapting L2 words to L1 word forms. For example, writing polipe in German instead 

of polyp (“polyp”), since nouns in Italian generally end with a vowel. 

Conversely, when the L2 words were non-cognates, learners tended to make mistakes that 

maximized the differences between the L2 and the L1, using one of two possible strategies: 

i. Adapting L1 words to L2 word forms. For example, adding a word-final consonant in 

order to differentiate the L2 word from L1 (Italian) words that generally have a word-

final vowel, as in the case of writing mühler in German instead of mühle (“mill”). 

ii. Using L2 graphemes that are not a part of the L1 alphabet. For example, inserting a ‘ß’, 

as in the case of writing flatoß in German instead of flöte (“flute”). 

 

7.1.2 Theories of lexical acquisition and transfer 

[Here, I outline a few theories that can explain various aspects of lexical acquisition and 

transfer, in the context of the L2 lexicon. This is meant to provide some insights into the topic, 

but is not meant to be a comprehensive review. Furthermore, my research does not make a 

claim regarding which of these particular theories can best explain my findings, because the 

focus of the research was different, and as such it was not conducted in a way that would allow 

me to answer this question.] 

One theory of lexical acquisition and transfer is N. Jiang's (2000, 2002, 2004) psycholinguistic 

model. In this model, development of new L2 lexical entries occurs in three stages. The first is 

the formal stage, when an initial lexical entry is established; this entry consists of formal 

phonological and orthographical specifications, together with a pointer to the L1 translation. 

The second stage is the lemma-mediation stage, when information from the L1 lemma is 

transferred to the related L2 lexical items, and mediates their usage. The final stage is the L2-

integration stage, when syntactic, semantic, and morphological specifications from the L2 are 

fully integrated into the L2 lexical entries.  

Under this model, it is expected that the majority of L2 words will generally fossilize 

at the second stage, and these fossilized entries consist of formal L2 specifications, together 

with the syntactic and semantic information that was transferred from their L1 counterparts.44 

 
44 N. Jiang (2000) points out two main factors that encourage L2 learners to rely on their L1 during L2 lexical 

development. First, unlike during L1 acquisition, during L2 acquisition learners already have a preexisting 
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For example, consider the following sentences (taken from N.  Jiang, 2002, p. 620), where the 

incorrectly used fossilized words are underlined, while the felicitous words (which should be 

used in this context) are provided in parenthesis: 

i. I go to the oven (bakery) in the morning to buy bread. 

ii. He bit himself in the language (tongue). 

The sentence in (i) was produced by a native speaker of Arabic, where both the meaning of 

oven and the meaning of bakery are linked to the same word: furn. Similarly, the sentence in 

(ii) was produced by a native Finnish speaker, where both the meaning of language and the 

meaning of tongue are also linked to the same word: kieli. In both cases, the cause of the error 

is the same: there is a certain distinction that exists between two meanings in the L2, but not in 

the L1, so the two L2 words are mapped to the same L1 translation. This causes learners to 

struggle to distinguish between the L2 words from a semantic perspective, which makes it 

difficult for them to choose the correct word during L2 production (Jarvis & Pavlenko, 2008; 

N. Jiang, 2002).45 Furthermore, such errors have been found to occur consistently even for 

high-frequency L2 words, and even among learners with high L2 proficiency, which provides 

support for the notion of fossilization (Altenberg & Granger, 2001). 

Other theories of L2 lexical development predict a similar influence of learners’ L1 on 

their acquisition of L2 lexical items. For example, the Parasitic Model of vocabulary 

acquisition suggests that L2 entries are initially mapped to an L1 lemma, since learners exploit 

existing lexical material in their L1 in order to establish an initial representation of words in 

the L2 (Ecke, 2015; C. J. Hall, 2002; C. J. Hall & Ecke, 2003). Similarly the Revised 

Hierarchical Model suggests that during the initial stages of acquisition, learners access L2 

words through the L1, and this form of mediated conceptual processing of L2 words is 

influenced by form associations between L2 words and their L1 counterparts (Kroll et al., 2010; 

Kroll & Stewart, 1994; Talamas et al., 1999). 

These theories of L2 lexical development therefore suggest that formal similarity 

between words in learners’ L1 and their equivalents in the target L2 can facilitate the 

acquisition of the L2 words, by helping learners form a connection between the L1 and L2 

lexical items, which makes it easier to use relevant lexical information from the L1 during the 

 
conceptual/semantic system, which is associated with their L1 lexical system. Second, L2 acquisition occurs 

primarily through instructed learning, which often involves poor input in terms of quality and quantity. 
45 This type of error involves semantic transfer, but similar errors can also involve conceptual transfer, depending 

on the words and concepts involved (Jarvis & Pavlenko, 2008, pp. 120–122). 
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acquisition of the L2 items. However, there are also additional factors that can explain why 

various types of similarity between learners’ L1 and their target L2 can facilitate acquisition. 

One notable reason why similarity in form between L1 words and their L2 counterparts 

could facilitate the acquisition of these L2 words is that such similarity could reduce the 

cognitive processing load that is required both for the L2-L1 mapping and for the learning of 

the structural properties of the L2 words. This, in turn, could allow the learners to dedicate 

more cognitive resources to the acquisition of other aspects of the words, and most notably its 

semantic properties, such as its appropriate usage space or its collocational properties (Kida & 

Barcroft, 2018). This is reflected in the Type of Processing–Resource Allocation (TOPRA) 

model, which suggests that increasing the processing demands in one domain, such as 

structure, could decrease learners’ ability to process other domains, such as semantics 

(Barcroft, 2004; Kida & Barcroft, 2018). Accordingly, similarity in structure between L1 words 

and their L2 counterparts could have an opposite effect, since a decrease in the structural 

processing demands of the L2 words and in the processing demands of the L2-L1 mapping, 

could allow for an increase in learners’ ability to process the semantics of those words.46 

Furthermore, the idea that decreasing the processing demands in one domain could 

allow learners to dedicate more cognitive resources to other domains could also explain why 

L1-L2 lexical similarity could facilitate the acquisition of lexical items that are not a part of a 

cognate pair. Specifically, the fact that learners have to dedicate less time and resources when 

learning L2 cognates, as a result of the facilitative effect of L1-L2 similarity, this means that 

they can dedicate more time and mental resources to learning words that are not a part of a 

cognate pair. 

 Finally, there are additional factors which could be responsible for the facilitative effect 

of L1-L2 lexical similarity in cognate pairs. For examples, it is possible that the structural 

similarity serves as a beneficial cue for the retrieval of the corresponding translation (Tonzar 

et al., 2009). In addition, some researchers propose that while non-cognates are represented 

through separate entries in the learner’s lexicon, cognates share a single entry, which is 

connected to a single underlying concept, which could facilitate acquisition of cognates, as it 

is easier for learners to modify an existing lexical entry instead of creating a new one (Sáchez-

Casas et al., 1992; Sánchez-Casas & García-Albea, 2005; Tonzar et al., 2009). 

 
46 In this context, L2-L1 mapping refers to a process where a new L2 word form is mapped to a known L1 meaning, 

as L2 learners are generally expected to transfer semantic representations from the L1, rather than relearn the 

meaning of words such as door or apple (Kida & Barcroft, 2018). 
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7.1.3 False cognates 

Though crosslinguistic lexical similarity often leads to positive lexical transfer, it can also lead 

to negative transfer (i.e., interference). A notable example of this is the case of false cognates 

(sometimes also referred to as false friends, deceptive cognates, homographic non-cognates, 

interlexical homographs/homophones, and interlingual homographs/homophones), which are 

crosslinguistic word pairs that have similar form in terms of phonology and/or orthography, 

but different meanings (primarily in terms of semantics), unlike cognates, which are similar in 

both form and meaning (Brenders et al., 2011; Chavula & Suleman, 2016; Gerard & 

Scarborough, 1989; Marecka et al., 2021; Otwinowska & Szewczyk, 2019; Ringbom, 2007; 

Schepens, Dijkstra, et al., 2013; Urlacher, 2010).47 For example, in the case of English and 

Dutch, the word room is a false cognate, since it means ‘room’ in English and ‘cream’ in Dutch 

(Chavula & Suleman, 2016). 

Unlike regular cognates, which learners generally find easier to process, learn, and use 

than non-cognates, learners generally struggle when it comes to engaging with false cognates 

(Otwinowska & Szewczyk, 2019; Tonzar et al., 2009). This is especially an issue when there 

is some semantic overlap between the L1 and the L2 words, or if they frequently occur in the 

same context, since this can increase interference from the L1 (Ringbom, 2007). An example 

of this is presented by Ringbom (2007), who points out the English-Swedish adjective pair of 

phoney and fånig, which have a similar form, a similar negative connotation, and which are 

used in similar situations, but which also have slightly different meanings, as the English word 

means that something is ‘fake’, while the Swedish word means that something is ‘silly’ or 

‘ridiculous’. However, research suggests that false cognates are generally relatively rare 

compared to cognates (Chavula & Suleman, 2016; Ringbom, 2007), and in the case of French 

and English, for example, estimates suggest that there is approximately 1 false cognate for 

every 11 cognates (Ringbom, 2007). 

 

 
47 This distinction between cognates and false cognates is based on the common distinction used in the context of 

psycholinguistics. Other distinctions may also be used, particularly in the context of historical linguistics when 

taking the etymology of the words into account (S. E. Carroll, 1992). 
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7.2 Appendix B: Sample information 

This document contains background information about the EFCAMDAT and the EFCAMDAT 

Cleaned Subcorpus, as well as about the sample selection process and the final sample that was 

used in the study. 

 

7.2.1 Background information on the EFCAMDAT 

The EF Cambridge Open Language Database (EFCAMDAT) is an open access L2 

English/EFL learner corpus, available at https://corpus.mml.cam.ac.uk/. It has been extensively 

used to study L2 acquisition, including when it comes to task effects (Alexopoulou et al., 2017; 

Michel et al., 2019) and L1 effects (Alexopoulou et al., 2015; Chen et al., 2021; X. Jiang et al., 

2014; Murakami, 2014, 2016; Shatz, 2017, 2019).48 

The EFCAMDAT contains over 1,180,00 texts, written by approximately 175,000 

learners from various nationalities, who were enrolled in Education First’s (EF) online English 

school, called “Englishtown”, between 2011–2013 (Geertzen et al., 2013; Y. Huang et al., 

2017, 2018). When a learner joins EF’s online school, they are given an English proficiency 

placement test, and are allocated a starting proficiency level accordingly (Geertzen et al., 2013). 

The EFCAMDAT spans 16 teaching levels of increasing proficiency, which EF has aligned 

with common proficiency standards (Geertzen et al., 2013), such as the Common European 

Framework of Reference for Languages (CEFR) (Council of Europe, 2001).49 Specifically: 

EF teaching materials are designed to use tasks that align with the can-do statements 

for the relevant CEFR level, as well as vocabulary and grammatical structures that are 

appropriate for the level. These alignments are based on the Council of Europe’s CEFR 

documentation, criterial feature research, and the content developers’ experience.  

(Alexopoulou et al., 2017, appendix S1, p.1) 

Each level consists of 6–8 distinct lessons. After completing each lesson, learners are assigned 

a short writing task that they submit online. As Alexopoulou et al. (2017, p. 192) note: 

 
48 Murakami (2013) also compared some L1 effects that were found in the EFCAMDAT with those found in the 

Cambridge Learner Corpus (CLC), and found that there was a strong correlation between the two. 
49 EF’s proficiency classification scheme has been used extensively in previous studies that used the dataset (e.g. 

Alexopoulou et al., 2015, 2017; Chen et al., 2020; Michel et al., 2019; Murakami, 2016; Shatz, 2019), and support 

for this scheme also comes from past studies, such as Murakami (2013), who analyzed both the EFCAMDAT and 

the Cambridge Learner Corpus (CLC), and concluded that the correspondence between the EF levels and the 

CEFR levels seems to hold, at least for the A2 and B1 levels, which are the levels that he was able to directly 

compare to their equivalent levels in the CLC (p. 84). 

https://corpus.mml.cam.ac.uk/
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Broadly speaking, the writing activities contained in EFCAMDAT can be characterized 

as tasks, because L2 writers work toward a nonlinguistic outcome, for example, write 

a complaint or apply for a job, and are engaged in language use to achieve that goal 

(Samuda & Bygate, 2008). In this sense, EFCAMDAT can be seen as a task-based 

corpus.  

Tasks include a prompt and general instructions on what to write and how long to make the 

text, and have an expected length, ranging from 20–40 words in lesson 1 in level 1, to 150–180 

words in lesson 8 in level 16 (Alexopoulou et al., 2017). The tasks cover a wide range of topics, 

such as describing your favorite day or reviewing a song for a website, and can involve different 

task types, such as narrative and descriptive. For an overview of how tasks in the EFCAMDAT 

may be classified, see Alexopoulou et al. (2017) and Michel et al. (2019). 

Figures 12 and 13 contain examples of the screens learners see while performing the 

writing tasks. Table 12 contains the prompt of the first task in each level. A list of all task 

prompts, together with screenshots of the tasks up to and including level 10, can be found on 

the EFCAMDAT website (https://corpus.mml.cam.ac.uk/task_screenshots/index.php).50 

 

 
50 We include a representative sample is of these prompts and screenshots—rather than all of them—for copyright 

and length reasons. However, as noted, all this information can be accessed on the EFCAMDAT site. 

https://corpus.mml.cam.ac.uk/task_screenshots/index.php
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Figure 12. A screenshot for the first task in level 1, about “Introducing yourself by email”. At 

the top of the screen is the prompt; learners write the text in the box in the middle. On the right 

is a model answer that learners can choose to view. 

 

 

Figure 13. A screenshot for the first task in level 9, about “Giving feedback to a restaurant”. 

At the top of the screen is the prompt, followed by relevant background content in the middle 

that learners write their text in response to. On the right is a model answer that learners can 

choose to view. 
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Table 12. Examples of the topics and prompts of the first task in each level in the EFCAMDAT. 

Task is the task number out of all the tasks (1–128). Level is the EFCAMDAT level (1–16). 

CEFR is the corresponding CEFR level (there are 3 EFCAMDAT levels per CEFR level in all 

cases, except for the final CEFR level C2, which corresponds to EFCAMDAT level 16 only). 

Topic is the topic of the task, and Prompt is the prompt that learners are given for the task. 

Task Level CEFR Topic Prompt 

1 1 A1 Introducing 

yourself by 

email 

Write an email to your teacher to introduce yourself. 

When you're finished, click 'Submit.' Write 20-40 

words. 

9 2 A1 Describing 

your 

favorite 

day 

What's your favorite day of the week? What do you 

usually do on that day, and at what time? Write about 

your favorite day of the week below. Remember to 

include an introduction, middle and end to your 

writing. Type into the input box. When you're 

finished, click 'Submit.' Write 20-40 words.  

17 3 A1 Replying 

to a new 

penpal 

You receive this email from a new online pen friend. 

Write an appropriate reply. Type into the input box. 

When you're finished, click 'Submit.' Write 20-40 

words. 

25 4 A2 Writing 

about what 

you do 

Write about where you work, what you do, if you 

like your job and why / why not. Type into the input 

box. When you're finished, click 'Submit.' Write 50-

70 words. 

33 5 A2 Planning to 

attend a 

music 

festival 

You want to write an email to your family to tell 

them about the music festival you’re going to. Tell 

them about the date, the cost of a ticket, the 

equipment you’re taking and the music you want to 

listen to. Type into the input box. When you're 

finished, click 'Submit.' Write 50-70 words. 

Use future forms such as: ‘I’m going to go to a music 

festival’, ‘I’m taking a tent, T-shirt and shorts…’, 

‘I’m going to listen to pop and dance music’ and 

‘Maybe it’ll rain’. 

41 6 A2 Writing a 

movie plot 

Decide what happens to John and Isabella. Write the 

final part of the story for your friend. Type into the 

input box. When you're finished, click 'Submit.' 

Write 50-70 words. 
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Task Level CEFR Topic Prompt 

49 7 B1 Giving 

instructions 

to play a 

game 

You're working at a summer camp for children aged 

8-12. You have been given instructions for three 

popular camp games, but they are a little too difficult 

for the kids to understand. Your task is to write 

simpler instructions for them. Type into the input 

box. When you're finished, click 'Submit.' Write 70-

100 words. 

57 8 B1 Writing a 

natural 

remedies 

pamphlet 

Read grandma’s email and choose three of the 

remedies you think will sell well. Write a pamphlet 

explaining the benefits of each product, and how to 

use it. You should explain who the product is best 

for. Type into the input box. When you're finished, 

click 'Submit.' Write 70-100 words. 

65 9 B1 Giving 

feedback to 

a restaurant 

You've reached the end of the survey form and are 

being asked to give additional information. Write 

down in your own words what you thought about the 

food and drinks. Type into the input box. When 

you're finished, click 'Submit.' Write 70-100 words. 

73 10 B2 Helping a 

friend find 

a job 

Send Anna the zookeeper's job ad. It deals with 

animals, it's outside and it looks exciting! Write an 

email to Anna encouraging her to apply for the job. 

Try to use words and phrases such as 'absolutely', 

'totally', 'by far the...', 'amazing', 'exhilarating', 'urge' 

and 'encourage'. Write 100-150 words. 

Begin your email like this: 

Hi, Anna! I’ve found an absolutely amazing job for 

you. Let me tell you why you should apply... 

81 11 B2 Writing a 

movie 

review 

There is movie festival in your local town. Think of 

the last movie you watched and enjoyed. Write a 

review of the movie to promote the movie in the local 

newspaper. Write 100-150 words. Type your answer 

into the input box. 

89 12 B2 Turning 

down an 

invitation 

Write the email to Graham, politely declining his 

invitation. Make sure that you use polite phrases, 

explain why you can’t come, and invite him and his 

wife next week instead (suggest some possible 

evenings). Write 100-150 words. Type your answer 

into the input box. 
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Task Level CEFR Topic Prompt 

97 13 C1 Writing a 

campaign 

speech 

Write your campaign speech for student council 

president. Think about the profile you fit – are you a 

socialist or a capitalist, or a bit of both? Convince 

your classmates that you are the best candidate. Write 

150-180 words. Type your answer into the input box. 

105 14 C1 Writing 

advertising 

copy 

Choose one of the 3 images and slogans. Write an 

email to the CEO, giving reasons why you’ve 

selected the particular image and slogan and how it 

fits with Century’s image of classic, stylish products. 

Write 150-180 words. Type your answer into the 

input box. 

113 15 C1 Covering a 

news story 

Task 1: You're a journalist covering a big murder 

trial. Your connection at the police station has given 

you the interview tapes. Listen and make notes about 

what happened. Task 2: It's time to write your report. 

Write the story, adding some details of your own to 

'spice it up'. Use the audio to help you. Write 150-

180 words. Type your answer into the input box. 

121 16 C2 Attending 

a robotics 

conference 

Write a short report comparing the three robots for 

the web-based magazine. Write 150-180 words. Type 

your answer into the input box. 

 

Learners generally complete the tasks at home, with no time limit. Learners might consult their 

notes, though the large number of spelling and grammatical errors in the data indicate that they 

do not generally use tools such as spell-checkers. Furthermore, learners generally pay for EF’s 

program themselves, and engage in the program for their own learning, so they are motivated 

to make the most of it for learning purposes (rather than cheat). 

The texts that learners write are graded and given feedback by a teacher, and must 

receive a passing grade for the learner to advance to the next lesson.51 The EFCAMDAT 

contains a mixture of longitudinal and pseudo-longitudinal data, since learners generally 

complete only parts of the program (e.g., because they were placed at a high initial proficiency 

level), and since some may have continued the program after the data-collection period for the 

dataset has ended. When it comes to metadata, the EFCAMDAT lists learners’ English 

proficiency and nationality, and learners are only added to the database if their nationality 

 
51 Although, as noted in §7.2.3.1, the EFCAMDAT contains almost no texts that were written by the same learner 

for the same task, and those few cases do not necessarily appear to be a case of the learner resubmitting their task. 
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matches their country of residence (Alexopoulou et al., 2017). Accordingly, past research that 

used the EFCAMDAT relied on learners’ nationality to estimate their L1, an approach that 

been validated empirically (Alexopoulou et al., 2017; Y. Huang et al., 2018; Malmasi & Dras, 

2015; Murakami, 2014), and also used in associated studies on other language datasets 

(Rabinovich et al., 2018). 

 

7.2.2 EFCAMDAT tasks and lexical choices 

There is growing evidence that task effects can play an important role in L2 lexical choices 

(Kyle et al., 2016; Michel, 2017; Reid, 1986; Zenker & Kyle, 2021), including in the 

EFCAMDAT (Alexopoulou et al., 2017; Michel et al., 2019). In the context of the 

EFCAMDAT tasks, learners’ lexical choices can be influenced by various factors, including: 

− The content expected to be included in the task’s writing (e.g., the topic that learners are 

expected to write about). 

− The style expected of the task’s writing (e.g., the level of formality expected of learners). 

− The task’s material (e.g., the vocabulary words that appear in the prompt, in example 

answers if learners choose to view them, and in any background content that learners are 

writing about). 

− The material in the preceding lesson (e.g., vocabulary words that learners just learned). 

Tasks may also differ in how constrained they are, in the sense that some allow for more 

spontaneous and open responses, whereas others necessitate a narrower range of responses. 

However, all tasks can generally be viewed as fairly constrained, in the sense that they are 

written in response to a specific prompt, and in an educational context where the key goal of 

communication is learning.52 

The factors that can lead to task effects in the EFCAMDAT are common in many 

educational contexts. This also means that, even in contexts where not all of these factors apply, 

it is generally likely that at least some of them will apply. For example, even if students are 

asked to write an essay on whatever topic they choose (i.e., without a specific prompt), there 

are still likely to be both explicit and/or implicit expectations regarding which topics are 

appropriate for the school environment. This is also the case in many common non-educational 

contexts, such as the workplace, where similar factors can also lead to task effects. 

 
52 As noted above, learners generally pay for the course themselves, so it is in their best interest to use the 

opportunity in order to learn, rather than get a good grade. 
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There is limited publicly available information about many of these factors (e.g., about 

the vocabulary that learners were presented with in the lessons preceding each task), aside from 

tasks’ topics and prompts, examples of which are presented in the previous sub-section. 

Accordingly, there is currently limited information regarding how these factors influence 

learners’ productions in the EFCAMDAT. The most relevant of this information appears in  

Michel et al. (2019), who manually categorized tasks based on different task types (e.g., 

argumentative or descriptive), as well as in a similar preceding study by Alexopoulou et al. 

(2017). 

In the present research, we include task as a random effect within our mixed-effects 

models, to control, in aggregate, for all aspects of each task that can influence lexical choices, 

such as prompt and the preceding lesson.53 This approach does not attempt to disentangle the 

different aspects of each task that lead to task effects, so we will make no claim regarding the 

impact of any specific aspect of tasks on learners’ lexical choices. 

Finally, note that, despite these effects, past studies on the EFCAMDAT were able to 

find L1 effects in a wide range of linguistic phenomena. This includes lexical transfer (X. Jiang 

et al., 2014), capitalization (Shatz, 2019), articles (Shatz, 2017), grammatical morphemes 

(Murakami, 2016), clause subordination (Chen et al., 2021), relative clauses (Alexopoulou et 

al., 2015), and clause-initial prepositional phrases (X. Jiang et al., 2014). 

 

7.2.3 The EFCAMDAT Cleaned Subcorpus 

The present sample comes from the EFCAMDAT Cleaned Subcorpus,54 which was derived 

from the full EFCAMDAT as outlined in Shatz (2020). The key feature of this dataset is that it 

is split into two sub-corpora, each containing texts written by similar learners in response to 

different prompts. This means, for example, that both the first and second sub-corpora contain 

texts written by German learners in task #4, but the learners in the first sub-corpus wrote their 

texts in response to a different task prompt than the learners in the second sub-corpus, and it 

occurred as result of a partial update of the Englishtown content during the data collection 

period. As such, using this dataset presents two important advantages for research. First, it 

allows us to more accurately categorize texts based on the task that they belong to, which leads 

to more accurate assessment of task effects. Second, as noted by Shatz (2020), this type of 

 
53 The only exception is the task’s associated L2 proficiency level, which we control for using the relevant 

predictor, as explained in the paper. 
54 As accessed/downloaded on 4-January-2021. 
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dataset offers an opportunity to conduct our analyses on two similar but distinct learner 

samples, which serves as a form of replication. 

 The EFCAMDAT Cleaned Subcorpus contains texts from the A1–C1 CEFR range, and 

from the top 11 nationalities with most texts in the EFCAMDAT (referred to henceforth as 

“L1s”, rather than “nationalities”, since, as discussed earlier, we are using nationality to 

estimate L1). The distribution of texts for each combination of L1 and CEFR level is shown in 

Table 13. 
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Table 13. Number of texts in the EFCAMDAT Cleaned Subcorpus, per L1 and CEFR proficiency level. L1s are listed by the total number of texts 

that they have in the first corpus, in decreasing order. Data is taken from Shatz (2020), which outlines the creation process of this dataset. L1 is 

estimated here based on learners’ nationality, as discussed earlier; in cases where the name of the L1 is different than the name of the nationality, 

notes have been added to clarify ambiguities. 

L1 First corpus Second corpus 

Total A1 A2 B1 B2 C1 Total A1 A2 B1 B2 C1 

Portuguese a 149,297 75,497 45,407 20,989 5,830 1,574 164,241 85,191 42,105 25,520 9,412 2,013 

Mandarin b 86,660 45,008 29,318 10,321 1,763 250 20,317 10,494 6,021 2,730 936 136 

Spanish c 34,559 19,296 9,847 4,102 1,114 200 30,204 15,998 7,645 4,500 1,740 321 

Russian  32,243 12,295 10,885 6,329 2,066 668 17,078 7,249 4,652 3,449 1,443 285 

German 24,705 8,041 7,860 5,051 2,698 1,055 16,717 4,652 4,487 4,083 2,669 826 

French 19,135 7,626 6,253 3,688 1,242 326 13,384 4,610 3,755 3,188 1,528 303 

Italian 18,959 5,899 6,832 4,291 1,466 471 16,469 5,046 5,010 4,166 1,749 498 

Arabic d 13,152 7,463 3,729 1,412 417 131 16,156 8,089 4,874 2,301 727 165 

Mandarin b 11,711 4,116 4,298 2,506 650 141 10,900 3,668 3,731 2,490 893 118 

Japanese 9,149 3,337 3,095 1,903 640 174 7,937 2,812 2,409 1,837 701 178 

Turkish 6,492 3,085 2,067 914 301 125 3,817 1,683 1,064 769 253 48 

Total 406,062 191,663 129,591 61,506 18,187 5,115 317,220 149,492 85,753 55,033 22,051 4,891 
a This is based on the Brazilian nationality (i.e., Brazilian Portuguese). 
b The first entry of Mandarin, which contains more texts, refers to Chinese Mandarin (i.e., the Chinese nationality); the second entry refers to Taiwanese Mandarin (i.e., the 

Taiwanese nationality). 
c This is based on the Mexican nationality (i.e., Mexican Spanish). 
d This is based on the Saudi Arabian nationality. 
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7.2.3.1 Differences and similarities between the two corpora 

As noted previously (in the section presenting background information on the EFCAMDAT), 

information is available on the prompts that learners wrote their texts in response to. However, 

this information is only available for texts in the first corpus in the EFCAMDAT Cleaned 

Subcorpus, since the separation of the original EFCAMDAT into two corpora was 

programmatic, as outlined by Shatz (2020), so listed prompts were available only for the first 

corpus, but not the second. 

Nevertheless, this is not crucial to the present research, for several reasons. First, to the 

best of our knowledge, the texts were produced in the same general educational environment, 

with the same general learning goals, by similar learners. This is supported by the fact that the 

writings in the two corpora are largely similar, for example in terms of wordcount, as shown 

in Figure 14 and Table 14. Furthermore, the way we controlled for task effects as random 

effects in our models minimizes any issues associated with this, since we make no claim about 

any specific aspects of the tasks, but rather treat all their aspects in aggregate (as noted earlier 

and as discussed in more detail in the Methodology section of the paper). Finally—and most 

importantly—our results replicated with high similarity across the two corpora (especially 

when it comes to the main mixed-effects models), indicating that any differences between them 

did not change our key findings.55

 
55 One difference between the two corpora that we do know about is that there are 8 tasks per EFCAMDAT level 

in the first corpus and 6 tasks per level in the second, as discussed in the supporting documents of Shatz (2020). 

But, like other potential differences in prompts, this did not generally appear to substantially affect the key findings 

across the two corpora. 
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Figure 14. Mean wordcount of texts (error bars indicate one standard deviation), in the final samples that were selected for the study, as outlined 

in the next sub-section (N = 8,500 in the first corpus and 6,390 in the second). Listed per task in (A) and (B), per EFCAMDAT proficiency level in 

(C), and per CEFR level in (D). There are 8 tasks per EFCAMDAT proficiency level in the first corpus and 6 tasks per level in the second. There 

are 3 EFCAMDAT levels per CEFR level in both corpora. 
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Table 14. Statistics on the wordcounts of texts per CEFR (L2 proficiency) level in each corpus, in the final samples that were selected for the 

study, as outlined in the next sub-section (N = 8,500 in the first corpus and 6,390 in the second). SD denotes standard deviation, and n denotes the 

number of texts at that CEFR level. 

 First corpus Second corpus 

CEFR Mean SD Median IQR Range n Mean SD Median IQR Range n 

A1  39.71 14.63 37 29-45 20-111 2160  41.25 13.87 40 30-50 20-105 1620 

A2  68.11 15.59 68 58-75 22-133 2160  66.78 20.41 65 52-80 20-129 1620 

B1  93.41 21.15 93 79-101 28-197 2065 102.97 20.50 104 91-115 31-188 1530 

B2 130.60 28.56 130 109-149 21-245 2115 150.54 39.20 153 123-177 31-287 1620 
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7.2.4 Sample selection process and final sample 

Two of the 11 nationalities that appear in the EFCAMDAT Cleaned Subcorpus data were 

excluded from the present study:56 

− Turkish, since it had a too few texts for analysis, especially for certain tasks at the upper 

proficiency levels (see Table 13 for the number of texts per CEFR level written by Turkish 

speakers). 

− Taiwanese, since both it and the Chinese nationality had data for the Mandarin L1, but the 

Chinese nationality had substantially more texts (as shown in Table 13). The two samples 

were not aggregated, because the Chinese nationality was already one of the nationalities 

with the most texts (2nd most in the first corpus and 3rd most in the second corpus), so adding 

the texts from the Taiwanese nationality would not have helped given the relatively 

balanced selection process of texts that is outlined below, and would have only caused a 

potential confound in terms of the learner backgrounds (Nisioi, 2015). 

In addition, the C1 CEFR level (corresponding to EFCAMDAT levels 13-15) was excluded, 

since there were relatively few texts at this level, particularly for the L1s with the lower number 

of texts in general. Finally, texts were removed if they were not the first text that a learner 

submitted for a certain task.57 This included only 1,045 texts in the first corpus (0.27%) and 

284 texts in the second corpus (0.10%), after excluding the Turkish, Taiwanese, and C1 texts. 

After this initial process, we selected a random subset of texts from the dataset, in a 

way that keeps the number of texts relatively balanced across L1s, proficiency levels, and tasks. 

This was necessary due to the extreme differences between the number of texts available for 

different L1s/proficiency levels/tasks, which were substantial enough to lead to issues with the 

interpretability of the findings.58 In this regard, it is important to note that the initial differences 

in the distribution of texts is primarily reflective of EF’s market considerations, for example 

when it comes to the countries where they are most active. As such, selecting a relatively 

 
56 This selection of a subset of nationalities from the sample is in line with past research that used the 

EFCAMDAT, as in the case of Murakami (2016) and Shatz (2019), who examined only the top 10 nationalities 

with most texts, and Alexopoulou et al. (2015) and Geertzen et al. (2014), who examined only the top 5. This is 

also in line with the EFCAMDAT Cleaned Subcorpus itself, which, as noted here, contains only texts from the 

top 11 nationalities with most texts. 
57 It is not possible to know what led to some of these cases, such as the case where learner #174187 wrote 5 

separate texts for task #80 over the course of almost a year, though the initial text had a grade of 87. 
58 For example, the Portuguese sample in the first corpus has ~75,500 texts at the A1 level, compared to only 

~5,800 texts at the B2 level, and more crucially, compared to only ~3,300 texts at the Japanese A1 level, and only 

~650 texts at the Japanese B2 level. Similarly, in the second corpus, Portuguese had more texts in total than all 

the other L1s combined. 
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balanced subset is a reasonable way to eliminate the substantial imbalance that appears in the 

original sample, and is in line with many past studies on the EFCAMDAT, who used similar 

subsetting procedures, and worked on specific and relatively balanced subsets of the corpus 

(Geertzen et al., 2014; Y. Huang et al., 2020; Malmasi & Dras, 2015; Murakami, 2016; Nisioi, 

2015), as well with studies on other learner samples, such as the TOEFL11 corpus (Kyle et al., 

2015). 

The final sample that was selected for the study is outlined in Table 15. It contains 10 

texts for each combination of task and L1 (e.g., 10 texts written by German speakers in task 

#4), with a few exceptions, which are outlined in §7.2.5.1. There are 8 tasks per CEFR level in 

the first corpus and 6 tasks per CEFR level in the second corpus.59 Accordingly, in the first 

corpus, there are 207–240 texts for each of the 9 L1s per each of the 4 CEFR levels, and 8,500 

texts in total. In the second corpus, there is the same number of L1s and CEFR levels, and there 

are 170–180 texts per combination of L1/CEFR level, and 6,390 texts in total.

 
59 The one exception is task #51 in CEFR B1, which was removed from both corpora in the sample, because texts 

from both corpora in this task were classified under the first corpus, due to limitations in the classification scheme 

that was used in the EFCAMDAT Cleaned Subcorpus (Shatz, 2020). 
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Table 15. Number of texts in the final sample, per each combination of L1/CEFR proficiency level. 

L1 First corpus Second corpus 

Total A1 A2 B1 B2 Total A1 A2 B1 B2 

Arabic 915 240 240 228 207 710 180 180 170 180 

French 950 240 240 230 240 710 180 180 170 180 

German 950 240 240 230 240 710 180 180 170 180 

Italian 950 240 240 230 240 710 180 180 170 180 

Japanese 939 240 240 227 232 710 180 180 170 180 

Mandarin 949 240 240 230 239 710 180 180 170 180 

Portuguese 950 240 240 230 240 710 180 180 170 180 

Russian 950 240 240 230 240 710 180 180 170 180 

Spanish 947 240 240 230 237 710 180 180 170 180 

Total 8,500 2,160 2,160 2,065 2,115 6,390 1,620 1,620 1,530 1,620 

Note. There are 8 tasks per CEFR level in the first corpus and 6 tasks per CEFR level in the second corpus. The one exception is CEFR level B1, where task #51 was removed 

both corpora in the present sample, because texts from both corpora in this task were classified under the first corpus due to limitations in the classification scheme that was 

used in the EFCAMDAT Cleaned Subcorpus (Shatz, 2020). 
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7.2.5 Additional sample information 

7.2.5.1 Cases with fewer than 10 texts 

Table 16 contains cases where there were fewer than 10 texts at a certain task for a certain L1 

(e.g., at task #64 for Arabic). There were only such cases in the first corpus, and only 14 

(1.64%) such cases out of 855 combinations of task and L1. All but one case had 5 or more 

texts (mean = 6.43, SD = 1.79, range = 2–9). Given the small number of these cases, and the 

small difference that they generally had in terms of the number of texts compared to the regular 

cases in the sample with 10 texts, this does not substantially influence the analyses or the 

interpretation of the findings. 

 

Table 16. Cases with fewer than 10 texts at a certain task for a certain L1. 

Task Number L1 Number of texts 

64 Arabic 8 

64 Japanese 7 

85 Arabic 8 

86 Arabic 8 

87 Arabic 5 

88 Arabic 7 

92 Arabic 6 

93 Arabic 7 

93 Mandarin 9 

94 Arabic 6 

95 Arabic 5 

96 Arabic 5 

96 Japanese 2 

96 Spanish 7 
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7.2.5.2 Number of texts per learner 

Table 17 contains the number of texts written per learner in the sample. In most cases, learners 

had only a single text in the corpus, though some learners had more than that. The main reason 

for including cases where a learner had more than one text is to ensure that we have a sufficient 

number of texts for analysis across all the combinations L1/task in the sample. This style of 

analysis is in line with previous studies on the EFCAMDAT, which also included multiple 

texts per learner (e.g. Alexopoulou et al., 2017; Michel et al., 2019; Shatz, 2019).
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Table 17. Number of texts per learner. Note that in all cases, both the median and the and minimal texts per learner were 1. 

 First corpus Second corpus 

 

texts learners 

texts per learner 

texts learners 

texts per learner 

L1 mean SD max mean SD max 

Arabic 915 487 1.88 2.32 24 710 485 1.46 1.11 9 

French 950 571 1.66 1.34 11 710 462 1.54 0.96 7 

German 950 674 1.41 0.88 8 710 495 1.43 0.84 7 

Italian 950 580 1.64 1.28 13 710 472 1.50 0.94 7 

Japanese 939 448 2.10 2.15 17 710 382 1.86 1.50 11 

Mandarin 949 755 1.26 0.70 7 710 524 1.35 0.95 9 

Portuguese 950 810 1.17 0.54 8 710 665 1.07 0.26 3 

Russian 950 696 1.36 0.81 7 710 516 1.38 0.93 9 

Spanish 947 594 1.59 1.45 12 710 511 1.39 0.85 8 

Overall 8500 5615 1.51 1.33 24 6390 4512 1.42 0.96 11 
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7.3 Appendix C: Lexical distance & baseline frequency information 

This document contains information regarding the lexical-distance datasets that were used in 

the study, as well as regarding how the baseline frequency of English words was calculated. 

The majority of the content here applies to study 2 (on word choice), though the material about 

the Swadesh lists also applies to study 1 (on lexical diversity). 

 

7.3.1 Brief overview of the lexical-distance datasets 

7.3.1.1 Swadesh lists 

Swadesh lists are lists of words that represent concepts that appear in nearly all languages, such 

as water, night, full, and hear, with each list containing the equivalent of those words in a 

specific language. These lists are often used in lexicostatistical studies, primarily to calculate 

the distance between languages (Bakker et al., 2009; Holman et al., 2008a; Schepens, van der 

Slik, et al., 2013b; Swadesh, 1950, 1955; Wichmann et al., 2010, 2011). 

Table 18 contains a sample from several Swadesh lists, taken from the Automated 

Similarity Judgment Program (ASJP, version 18) (Wichmann et al., 2018).60 This resource 

contains a large selection of Swadesh lists for various languages, which is often used for studies 

on the topic (Bakker et al., 2009; Holman et al., 2008a; Schepens, van der Slik, et al., 2013b; 

Wichmann et al., 2010, 2011).61 

 

 
60 New versions of the ASJP are released periodically, with added data and other modifications. The present study 

used data from version 18 of the dataset, though version 19 has been released since then. 
61 The frequent use of this source also means that it has been extensively validated. This includes studies that 

cross-validated Levenshtein distances that were calculated from these lists, by comparing them with other 

measures of language distance, and showing that they strongly correlate with expert-based cognancy judgments 

(Schepens, van der Slik, et al., 2013b); psychoacoustic, psycholinguistic, phonetic, and phonological measures of 

distance (Brown et al., 2013); taxonomic distances in the World Atlas of Language Structures (WALS) and the 

Ethnologue (Holman et al., 2008b); and distances based on morphological and typological features in the WALS 

(Bakker et al., 2009; Schepens, van der Slik, et al., 2013a). In addition, further support for these lists comes from 

studies that used it for language classification and linguistic phylogenetics, and involved various forms of validity 

and reliability checks (Brown et al., 2008; Holman et al., 2008b, 2008a; Pompei et al., 2011; Wichmann, 2019; 

Wichmann et al., 2010). Finally, distances from these lists were also used successfully in the context of SLA, to 

predict Dutch L2 proficiency (Schepens, van der Slik, et al., 2013b, 2013a), which aligns with studies that 

predicted L2 Dutch proficiency using two different types of cognancy judgments (Schepens et al., 2020; van der 

Slik, 2010). 
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Table 18. A selection of words from Swadesh lists in English, German, French, and Japanese. 

 Phonetic transcription 

Meaning English German French Japanese 

I Ei ix j3 wataSi 

you yu du ti anata 

one w3n ains oe* hitocu 

fish fiS fiS pw~aso* uo 

blood bl3d blut sa* Ci 

horn horn horn korn cuno 

ear ir or ore mimi 

drink drink triNk3n bw~a nomu / su 

come k3m kh~om3n v3ni ku / yuku 

sun s3n zon3 sole suna 

full ful fol pl3* miCita / ippai de 

new nu noi nuvo ataraSi / Sinsen 

Note. The ASJP uses a specialized set of characters in its transcription, as outlined in Brown et al. (2008). One 

important limitation of this transcription is that it collapses certain phonological distinctions, since in some cases, 

different underlying segments are transcribed using the same character; for example, the “voiced bilabial stop and 

fricative” (IPA: /b/ and /β/) are both transcribed using /b/ in the ASJP. In addition, as with similar source, there 

may be issues with the ASJP transcriptions, since some words may be transcribed incorrectly, and sometimes the 

wrong words be may selected for transcription. Accordingly, despite the extensive validation for these lists that 

was noted above, and as with distances based on similar sources, distances that are based on the ASJP should 

preferably be interpreted with caution, be used for large-scale analyses that can accommodate some noise, and be 

connected to follow-up analyses that use alternative sources of distance, as we do in the present study. 

 

The Swadesh lists in the ASJP contain up to 100 standard concepts (i.e., general meanings) per 

language. However, the ASJP is focused on a subset of 40 concepts out of the initial 100, and 

“As a rule of thumb the database normally only includes lists that are at least 70% complete, 

i.e., which contain at least 28 items on the 40-item list” (Wichmann et al., 2011, p. 3). This is 

based on studies that showed that this subset represents the most stable elements from the 

original list, whose use leads to optimal results when it comes to language classification 

(Bakker et al., 2009; Holman et al., 2008b, 2008a). The following list represents all the 

concepts in the database, with the subset of 40 main concepts in bold: 
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I, you, we, this, that, who, what, not, all, many, one, two, big, long, small, woman, 

man, person, fish, bird, dog, louse, tree, seed, leaf, root, bark, skin, flesh, blood, bone, 

grease, egg, horn, tail, feather, hair, head, ear, eye, nose, mouth, tooth, tongue, claw, 

foot, knee, hand, belly, neck, breast, heart, liver, drink, eat, bite, see, hear, know, 

sleep, die, kill, swim, fly, walk, come, lie, sit, stand, give, say, sun, moon, star, water, 

rain, stone, sand, earth, cloud, smoke, fire, ash, burn, path, mountain, red, green, 

yellow, white, black, night, hot, cold, full, new, good, round, dry, name 

From “ASJP” (2018) 

 

7.3.1.2 Parallel dictionaries 

The parallel dictionaries are similar to the Swadesh lists, in the sense that they are lists of words 

in different languages that can be directly compared between different languages. The parallel 

dictionaries in this case came from the Intercontinental Dictionary Series (IDS) (Key & 

Comrie, 2015).62 The entries in the IDS are organized in 22 chapters, each of which revolves 

around a topic such as animals (e.g. ‘bird’), the body (e.g. ‘head’), the house (e.g. ‘wall’), time 

(e.g. ‘immediately’), cognition (e.g. ‘learn’), and law (e.g. ‘acquit’). The IDS was modelled 

after A Dictionary of Selected Synonyms in the Principal Indo-European Languages, which 

was compiled by Carl Darling Buck, which contained approximately up to 1200 general entries 

per language. The IDS itself contains 1310 general entries (i.e. general word meanings, not 

taking the number of synonyms into account), and if a certain form does not exist in a certain 

language, the entry for it is left blank (Key & Comrie, 2015). It offers less diversity in terms of 

the number of languages that includes, compared to the Swadesh lists, but far more words per 

language. 

 

7.3.2 Processing the lexical-distance datasets 

7.3.2.1 Swadesh lists 

The words in the Swadesh lists in the Automated Judgment Similarity Program (ASJP) are 

transcribed using a specialized phonetic script (outlined in Brown et al., 2008), so these 

transcriptions were converted to IPA using the dedicated asjp library in Python (Sofroniev, 

2018). 

 
62 No version number could be found for the database; data was downloaded from it on 04-Dec-19. 
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In addition, due to the focus on single-word entries here, we removed 15 entries (4.39% 

of 342) that contained multi-word phrases, either in the English meaning or in the 

corresponding L1 translations.63 In addition, to control for the number of meanings across L1s, 

as was done during the initial preparation of the lexical-distance data, single-word entries were 

removed if they contained the same English meaning as an entry in another L1 that had a multi-

word meaning. For example, if the French entry for a certain English meaning was removed 

for being multi-word, then the entries in the other L1s that correspond to the same meaning 

were also removed. Based on this, a further 102 entries were removed (31.19% of 327). As 

such, the final version of the Swadesh list used for analysis contained 225 entries, with 25 

entries for each of the 9 L1s, where each entry is a row containing an English word an all its 

corresponding L1 translations. 

 

7.3.2.1.1 Arabic dialect 

According to Eberhard et al. (2020), the three most common Arabic dialects in Saudi Arabia 

are:64 

− Spoken Najdi Arabic (the de facto national working language, with ~14,600,000 speakers 

out of a population of ~33,414,000). 

− Spoken Hijazi Arabic (~10,300,000 speakers). 

− Spoken Gulf Arabic (~962,000 speakers). 

In the version of the ASJP that was used (18), there was data for two of these dialects: Najdi 

Arabic and Gulf Arabic. 

However, Najdi Arabic had substantially fewer entries available than the other L1s (30 

general word meanings, compared to 40–100). Because we wanted to use the same words 

across all L1s, to minimize potential confounds as a result of using different words, we decided 

 
63 One issue with analyzing these phrases is that there are many cases where the same word appears both by itself 

and as part of a multi-word phrase (e.g. hand and palm of hand in the parallel dictionaries). Another issue is that 

the frequency data for multi-word phrases is estimated, unlike the frequency data for single-word phrases, which 

is calculated directly based on existing datasets. Furthermore, most of the multi-word phrases are expected to be 

very rare in writing, to a point where it will be difficult to assess their acquisition. Finally, from a linguistic 

perspective, it is expected that these phrases will have different acquisition patterns than the single-word entries, 

as they are more likely, for example, to be influenced by syntactic patterns that relate to how the words are used 

together. While it is possible to account for some of these issues, and while there is value in studying the 

acquisition of multi-word phrases and in comparing it to the acquisition of single words, we decided to focus on 

the acquisition of single words in the present study, in line with most prior research. 
64 There is also Standard Arabic, which is the national language in Saudi Arabic, but according to Eberhard et al. 

(2020), it is “Not an L1. In most Arab countries only the well-educated have adequate proficiency in Modern 

Standard Arabic.”. 
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to use Gulf Arabic instead of Najdi Arabic in the present sample, since using Najdi Arabic 

would have reduced the number of words for each L1 in the sample. 

An analysis showed that there is substantial similarity between the entries that the two 

dialects of Arabic share in the Swadesh lists, as the correlation between the LDN from the 

closest synonym in each dialect was Pearson’s r = .5438, p = .0011. Furthermore, the mean 

LDN for Najdi Arabic was 0.90 (SD = 0.13, median = 1) and for Gulf Arabic was 0.92 (SD = 

0.12, median = 1), which, with less rounding, is equivalent to only 0.0182 (|0.8978−0.9160|).  

In practice, if Najdi Arabic was used as-is, without modifying the words in the other 

L1s, then Arabic would have only shifted from being ranked the 8th most distant L1 to the 7th 

most distant L1, by switching places with Japanese (mean LDN = .91), which is a relatively 

small difference. Furthermore, given that Arabic was ranked #9 and #8 for mean MTLD (in 

the first and second corpora), this change would have supported (and slightly strengthened) the 

current conclusions of the study, regarding the lack of association between lexical distance and 

lexical diversity, since there would have been a bigger gap between Arabic’s rank in terms of 

lexical distance and its rank in terms of MTLD. 

Overall, while it would have been ideal to be able to use Najdi Arabic, these analyses 

suggest that Gulf Arabic was a reasonable substitute in the present study.65 

 

7.3.2.2 Parallel dictionaries 

The second lexical-distance dataset is the Intercontinental Dictionary Series (IDS), which 

contains parallel dictionaries in various languages—essentially, lists of words of corresponding 

words in various languages, similarly to the Swadesh lists (Key & Comrie, 2015).66 The parallel 

dictionaries required more processing before they could be used in the analyses, as shown in 

the following sub-sections. In addition, the parallel dictionaries contain data for fewer 

languages than the Swadesh lists, but for more words per language, as shown in the following 

sub-sections, so it is beneficial to use this dataset in the present study, to complement the 

Swadesh lists. 

 

 
65 A suggestion to consider for future research is to instead use the data from Najdi Arabic (rather than Gulf 

Arabic), and only substitute the missing values using Gulf Arabic (or preferably, using Hijazi Arabic, as it was 

added to a later version of the ASJP). 
66 No version number could be found for the database; data was downloaded from it on 04-Dec-19. 
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7.3.2.2.1 Initial cleanup process 

Data was initially available in the IDS for the following languages (out of the ones that were 

included based on the learner sample): French, German, Italian, Portuguese, Russian, Spanish, 

and English. For all languages, entries were transcribed orthographically, with two exceptions. 

First, entries in Spanish were transcribed orthographically with a minor modification, which is 

explained and addressed later (§7.3.2.2.2). Second, entries in Russian were transcribed 

phonemically using a specialized non-IPA script, which could not be reliably transformed into 

IPA, so this L1 was excluded from this dataset. 

Because this is a large-scale resource, with +1,500 entries per language in the sample, 

collected by different researchers at different periods of time, a substantial initial organization 

and cleanup process was required.67 The goals of this process were to resolve programmatic 

issues that interfered with analyses (e.g., the removal of ‘null’ entries), to remove extraneous 

data which was artificially included as part of transcriptions and which could interfere with 

calculations of lexical distance (e.g., question marks), and to resolve other types of artificial 

issues that could interfere with the analyses (e.g., parenthetical information).68 In doing so, the 

overarching goal was to reduce artificial noise and errors in the data, even at the cost of 

removing some data which was problematic in a way that could not be properly resolved. 

Overall, as shown below, only a relatively minor portion of the entries had issues that 

necessitated the removal of the full entry, and given this, together with the relatively large size 

of the dataset, this left sufficient entries for the main analyses. 

The cleanup process included the following. 

First, entries corresponding to the meaning of ‘zero, nothing’ (IDS code 13.0) were 

removed, because the German entry for ‘zero’ (‘null’) caused some software issues during 

analysis. Corresponding entries were removed from all language, rather than just from German, 

to maintain a balanced sample. This included a total of 2 entries in English (‘zero’ and ‘null’, 

which account for 0.13% of the 1,551 entries), and 11 entries across the other languages (0.13% 

of 8,507). 

Then, question marks (? and ¿) were removed from the transcriptions, and the entries 

that contained them were marked as questions. In addition, in the French entry for ‘which’ (ID 

 
67 Initially, there were 1,551 entries in English and 8,507 entries in the 6 other languages, with a mean of 1701.40 

entries in each language (SD = 135.09, range = 1539–1898). 
68 The term “artificial” here is used to denote the fact that the issues are attributed to this particular dataset and to 

the way it was collected, rather than to an underlying linguistic phenomenon. 
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17-670-171-1), which contained two separate words (“quel? lequel?”) within the same entry, 

the second word was removed. 

Then, the entries for the meaning of he/she/it (IDS code 2.930), were removed, due to 

the inconsistent way they were formatted across different languages. For example, in French, 

the words were all listed under the same entry, similarly to English, while in Italian each word 

was listed as a different entry, under the same single meaning.69 This included a total of 1 entry 

in English (0.06% of 1,549), and 12 entries in the all the other languages combined (0.14% of 

8,496). 

Then, entries containing a slash (/) were removed, since slashes were used 

inconsistently across the different entries (no remaining entries in English, 25 entries in the 

other languages, 0.29% of 8,484).70 This included, for example, cases where the 

masculine/feminine versions of a word were listed under the same entry, in various formats 

(e.g. primo/ prima ‘cousin’ in Portuguese and ciervo/a in Spanish), despite the fact that the two 

versions were not necessarily represented in the other languages. In addition, this also included 

other uses of slashes, in various forms (e.g. llevar a la espalda/ en el hombre for ‘carry-on-

shoulder’ in Spanish). 

Then, entries containing parentheses were modified as follows: 

− In 34 cases where an entry contained a single word or expression fully surrounded in 

parentheses, the parentheses were removed. All such cases were in German, and always 

for synonyms of an initial entry, suggesting that this scheme may potentially have been 

originally used to mark synonyms (e.g. (Stier), a second entry for the meaning ‘ox’ in 

German). 

− A few entries contained an addition in parentheses that appeared to be a prefix (3, all in 

German, e.g. (er)wachen, ‘wake up’) or a suffix (3, all in Spanish, e.g., baɲar(se), a 

partly phonemic transcription for ‘bathe’). In all such cases, the parentheses were 

removed from the transcription, but the lexical material inside the parentheses was 

preserved, since such material was generally necessary to preserve the original meaning 

of the word. 

 
69 Furthermore, because in Italian there were two possible words listed for each of the original three meanings, it 

would not have been possible to modify the entries in a way that would fit under the existing classification scheme. 
70 Note that the reason why the he/she/it entries had to be removed separately is that they did not always include 

slashes. 
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− Finally, there were 19 entries where at least one word appeared inside of parentheses 

and at least one word appeared outside of them (all in non-English entries). Because 

there was significant variability in terms of what kind of material was included in 

parentheses in each case, these entries (0.22% of the 8,459 non-English entries at this 

stage) were removed. 

In addition, there were 4 entries (in German) were there were square brackets around the entire 

word (e.g. [Sommerküche] ‘cookhouse’); in all cases, the square brackets were removed from 

the transcription. 

In entries where there was one hyphen (-) or more, the hyphens were replaced with 

spaces. Hyphens were used in some cases in place of a space to separate words, but they did 

not appear to convey a meaning beyond that of a regular space, and their use was inconsistent, 

and did not follow any discernible criteria, both within each language, and across languages. 

For example, in English, ‘grass-skirt’ and ‘garden-house’, contained a hyphen, but ‘spider 

web’, ‘body hair’, ‘fish trap’, and ‘walking stick’ did not. Furthermore, while hyphens were 

sometimes used to separate words in French and Portuguese, they were not used for this 

purpose in any of the other L1s in the sample. Accordingly, hyphens were removed from 22 

entries in English and 46 non-English entries (26 in French and 20 in Portuguese). 

Some of the entries in the IDS contained various types of parenthetical information in 

the ‘meaning’ column (which was the English value for the entries). This included, for 

example, ‘calm (of sea)’, ‘lightning (as striking)’, ‘rain (noun)’, ‘burn (vb trans)’, ‘man (vs. 

woman)’, ‘young man (adolescent)’, ‘son-in-law (of a woman)’, ‘you (singular)’, ‘we 

(inclusive)’, ‘male (adj)’, ‘cattle (bovine)’, ‘tree (cf 08.600)’, ‘sow (2)’, ‘fin (dorsal)’, ‘nit 

(louse egg)’, ‘beget (of father)’, ‘smoke (tobacco)’, ‘mold (clay etc)’, ‘dear (costly, 

expensive)’, ‘share (distribute)’, ‘thick (in dimension)’, ‘little (quantity)’, few’, ‘long-time (for 

a)’, ‘think (= reflect)’, ‘think (= be of the opinion)’, ‘ask (question, inquire)’, ‘light (in color)’, 

‘people (populace)’. Because of the wide range of reasons why this parenthetical information 

was included, and the range of ways in which it was, entries containing parenthetical 

information in their original meaning were removed entirely from the sample.71 This included 

 
71 This is because there was no reliable way to handle the parenthetical information, and it was therefore preferable 

to remove it in order to reduce the amount of noise and issues in the dataset, even at the potential cost of the loss 

of some information, particularly because the parallel dictionaries contain sufficient relevant information even 

after such removal. 
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130 entries in English (8.40% of the 1,548 English entries at this stage), and a corresponding 

727 entries in other languages (8.61% of the 8,440 non-English entries at this stage). 

Finally, a small number of entries contained an apostrophe (') connecting two words for 

various reasons. This included 7 entries in English (0.49% of 1,418 entries), that has a 

possessive /s/ (e.g., mother's brother, men's house, and one's native country), and 23 entries in 

non-English languages (0.30% of 7,713 entries), and specifically in French (e.g., chute d'eau 

‘waterfall’, s'eveiller ‘wake up’, and lobe de l'oreille ‘earlobe’) and Italian (5 e.g., lobo 

dell'orecchio ‘earlobe’ and acino d'uva ‘grape’). Because of the variability in the way these 

apostrophes and the related lexical material should be interpreted phonologically and 

morphologically, these entries were removed from the sample. 

 

7.3.2.2.2 Dealing with non-standard orthography 

The entries for most of the languages in the present sample were transcribed using standard 

orthography for each language. For example, the entries for the word ‘world’ were transcribed 

as world in English, monde in French, mondo in Italian, mundo in Portuguese, and Welt in 

German. However, there was one exception to this—Spanish—whose entries had to be 

modified accordingly. 

 Specifically, the transcription appeared to be in standard orthography for the most part. 

For example, the entry for ‘world’ was mundo, the entry for ‘charcoal’ was carbón, and one 

entry for ‘extinguish’ was extinguir. Nevertheless, to identify any possible variations, we used 

the following approach. 

First, we calculated the frequency of the Spanish entries (i.e. how often they appear in 

Spanish), using the wordfreq library in Python (Speer et al., 2018); this package was also used 

to get the general frequency data for the entries, and will therefore be explained in more detail 

later. Then, we examined all the entries that had a frequency of ‘0’, which meant that they did 

not appear once in any of the extensive datasets used by wordfreq, since this suggests that the 

word is either extremely rare, or that it is spelled in an unconventional way (i.e., phonemically) 

in the present dataset. 

 A total of 43 entries (2.69% of 1,596 entries in Spanish) fit this criterion. An 

examination of them revealed that the only exception to standard orthography that could be 
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identified was the use of /ɲ/ in place of /ñ/ (e.g., in montaɲa ‘mountain’). In all 38 entries where 

this occurred, the /ɲ/ in the orthographic transcription was replaced by an /ñ/.72 

 

7.3.2.2.3 Dealing with capitalization 

[Note: This is not relevant for the studies in the thesis, since they only looked at phonological 

distance. It was part of the initial cleanup and organization process that I conducted when 

working with the IDS, to facilitate future research on the resulting dataset, which may take 

orthographical distance into account.] 

Some entries were capitalized in the original dataset for various reasons. This included the 

following: 

− The entry for the meaning of God was capitalized for all L1s. 

− A single Italian entry (fico del Banian ‘banyan’). 

− In English, the entries for the word ‘I’ and for the days of the week (e.g., ‘Sunday’) 

were capitalized. 

− In German, the entries for nouns were capitalized (e.g., Welt ‘world’), as is conventional 

in German. 

Capitalization can influence calculations of orthography-based lexical distance, in cases where 

an upper-case letter is substituted with a lower-case one (and vice versa). Given the rarity of 

capitalization in the present dataset, as well as the fact that in one case all languages share the 

capitalization, and in another case the capitalization is in the target L2, this is unlikely to have 

a substantial influence on analyses, with the potential exception of German, where it is both 

relatively common and systematic. There, the presence of capitalization causes the 

orthographic lexical distance to be overestimated for German words, under the assumption that 

the substitution of an upper-case letter with its lower-case equivalent is less substantial than its 

substitution with a different letter. Conversely, removing capitalization causes the distance to 

be underestimated, by artificially eliminating some of the distances between the words.73 

 
72 Another solution that was considered for identifying these entries is a spellchecker such as the pyspellchecker 

library in Python (Barrus, 2019). However, this was much more likely to lead to false positives, likely because 

the spellchecker relies on the frequency of words to identify potential corrections, so it tended to “correct” rare 

words that are spelled correctly by changing them to a more common word that is spelled similarly. 
73 Another option is to used weighted Levenshtein distance, by giving substitutions of upper-case letters and their 

lower-case equivalents a lower cost than other substitutions (e.g., 0.5 instead of 1). This has the advantage of 

reflecting the unique nature of such substitution. However, this also introduces complexity and arbitrariness into 

the model, and makes it more difficult to interpret the findings in light of other findings in the field, given the 

relative rarity of this approach. 
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Accordingly, in the present study, we create a decapitalized version of the transcription, which 

may be used together with or instead of the original version.74 

 

7.3.2.2.4 Final cleanup and organization 

Once the cleanup of the entries themselves was completed, it was necessary to further clean up 

the remaining dataset, in order to minimize the influence of the prior removal of various entries 

from the sample, and ensure that the sample is balanced across all the L1s. Before explaining 

how this was done, it is beneficial to illustrate how entries in the dataset are structured. To start 

with a simplified example of how each entry looks, see Table 19. 

 

Table 19. A simplified example of what entries in the dataset look like, intended to help 

illustrate their structure as it relates to the final stages of the dataset cleanup process. 

Entry ID Language General 

Word ID 

Synonym 

number 

Entry Meaning 

1-215-170-1 Italian 1-215 1 sabbia sand 

1-215-170-3 Italian 1-215 3* rena sand 

1-240-170-1 Italian 1-240 1 valle valley 

1-240-171-1 French 1-240 1 vallée valley 

4-870-171-1 French 4-870 1 médecin doctor 

Note. In the original database, synonym numbers are always odd, so that a number of ‘3’ indicates that the 

synonym is the second one for the general word ID, while ‘5’ indicates that it is third, and so on. ‘1’ indicates that 

this is the first entry for that general word ID. 

 

Based on this, we see that an entry’s ID contains four pieces of information, based on the four 

numbers separated by hyphens: 

− The first number marks the chapter to which the word belongs. This includes, for 

example, chapter 1, which is 'the physical world’. 

− The second number marks the general underlying meaning that the entry corresponds 

to within a particular chapter. For example, meaning #215 in chapter 1 is ‘sand’. 

Combining this number together with the chapter number therefore gives the ‘general 

 
74 The one exception was to remove the capitalization that only appeared on the single Italian entry (fico del 

Banian) for consistency and because it appeared to be in error. 
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word ID’, which is the general meaning that the entry corresponds to. Note that these 

numbers do not reflect the number of words in each chapter; for example, meaning 

#223 in a chapter might be followed by meaning #230, and then #240. 

− The third number marks the entry’s language. For example, language #170 is French. 

− The fourth and final number marks which number synonym that the entry is, for that 

general word ID under that particular language. This number is marked by consecutive 

odds numbers starting from ‘1’. For example, in the case of the entries for the meaning 

of ‘sand’ in French, the first entry has the synonym number ‘1’, while the second has 

the synonym number ‘3’.75 

For example, if we look at entry with the id of ‘1-215-170-3’, this means the following: 

− The entry is in chapter ‘1’ ('the physical world’). 

− The entry’s main meaning under chapter 1 is ‘215’ (so the general word ID is 1-215), 

meaning that it corresponds to ‘sand’ as a main meaning. 

− The entry’s language code is ‘170’, meaning that it’s in French. 

− The entry’s synonym number is ‘3’, meaning that it’s the second synonym for that 

underlying meaning in this particular language. 

Based on this, the following types of entries were removed from the dataset, in the following 

order, as later summarized in Figure 15:76 

− Entries for which one of the synonyms was removed at an earlier stage of the 

analysis. This means, for example, that if one of two synonyms for a certain general 

meaning was removed from the English dataset at an earlier point, then the remaining 

synonyms were removed at this stage. This was done on a per language basis, and was 

 
75 The original dataset contains two additional variables, that are not mentioned here, but that are sometimes used 

when working with the entries programmatically. These variables are: pk, which is a unique number that identifies 

each entry in the dataset, and valueset_pk, which is a unique number that identifies each set of synonyms in a 

language (so all words that are in the same language and correspond to the same general meaning have the same 

valueset_pk). For example, in Italian, entry 1-210-170-1 has pk of 32533 and valueset_pk of 26436, while entries 

1-212-170-1 and 1-212-170-3 have pk’s of 32534 and 32535 respectively, and a valueset_pk of 26437 for both. 

Essentially, the pk variable corresponds to the full ID of each entry, while the valueset_pk variable corresponds 

to the full ID minus the final number (the synonym identifier). Though pk and valueset_pk are less informative 

than the ID variable in its various forms, they can be beneficial in situations where one wants to work with a 

continuous integer variable rather than with a categorical one. 
76 In terms of order, the crucial thing is to remove entries for which one of the synonyms was removed at an earlier 

stage of the analysis before removing entries where the general meaning does not appear for all L1s, in order to 

ensure that all the L1s contain data for all the general meanings that are kept in the sample. For example, consider 

a situation where French and Italian both have entries for general meaning A, but French originally had two 

synonyms for it, one of which was removed, while Italian has only a single entry for it. If the cleanup isn’t 

performed in the appropriate order, French will end up without this meaning, while Italian will keep it. 
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achieved by comparing the current version of the dataset with the original one, to 

identify all the entries where words with the same general meaning in that language 

were previously removed. In English, a total of 169 out of the original 1,551 entries 

(10.90%) were removed during the initial cleanup process, leaving 1,382 entries. Of 

these, a further 7 entries (0.51%) were removed at this stage, leaving 1,375 English 

entries. In the L1s, a total of 817 entries out of the original 8,507 entries (9.60%) were 

removed during the initial cleanup process, leaving 7,690 entries. Of these, a further 17 

entries (0.22%) were removed at this stage, leaving 7,673 entries in the various L1s. 

− Entries where the general meaning does not appear for all L1s. This issue too could 

occur as a result of prior removal of entries from the dataset. This means, for example, 

that if only half of the L1s contained an entry for a certain underlying meaning, that 

entry was removed. However, if all the L1s had entries for that general meaning but 

different numbers of synonyms, the entries were kept. In total, there were 1,191 unique 

general meanings in the dataset of the various L1s. Of these, 41 (3.44%) general 

meanings were not shared across all L1s. After accounting for these general meanings, 

205 entries out of 7,673 (2.67%) were removed from the sample, leaving 7,468 

entries.77 

− L1 entries that did not have a corresponding English translation. This could 

happen, for example, due to a prior removal of an English entry from the dataset. 222 

(2.97%) entries of the current 7,468 were removed as a result of this, leaving 7,246 

entries. These entries represent 85.18% of the original 8,507 entries in the dataset. 

 
77 Note that multiple entries can be removed from a single general meaning under a single language, if several 

synonyms are listed for it. 
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Figure 15. Flowchart showing the process used to determine which entries in the dataset will 

be removed, following the initial cleanup process.
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Overall, the final 7,246 L1 entries in the dataset were divided between the five L1s. Each L1 

had a different number of entries, as a result of a different number of synonyms, but all these 

entries belonged to an equal number of general word meanings (1,116). On average, there were 

1449.20 entries for each L1 (SD = 118.37, median = 1,428, range = 1301–1619). 

 Note that the above information is based on when the entries were arranged based on 

L1, meaning that every row in the dataset contained the data corresponded to a single L1 entry, 

together with all its available English translations (with a separate row for each L1 synonym). 

When the entries were arranged to be English-based, meaning that each row corresponded to a 

single English entry together with all its corresponding entries in a single L1 (with a separate 

row for each English synonym), there were initially 6,695 entries in the table. This was after 

the first two stages of the cleanup process, where entries were removed if one of their synonyms 

was removed at an earlier stage of the analysis or if the general meaning of the entry did not 

appear for all L1s. Next, the final stage of the cleanup process was replicated, and English 

entries with no corresponding L1 translation were removed (45 entries, 0.67% of total), leaving 

6,650 English entries, corresponding to 1,330 English meanings and 5 L1s. Overall, the total 

number of combinations of L1 and English entries, while taking synonyms into account, was 

9,094.78 

 Since the present study focused on single-words entries, 514 multi-word entries (7.73% 

of 6,650) were removed from the sample, to avoid potential confounds, as with the Swadesh 

lists. Furthermore, to control for the number of meanings across L1s, single-word entries were 

removed if they contained the same English meaning as an entry in another L1 that had a multi-

word meaning. Based on this, a further 401 entries were removed (6.54% of 6,136). 

Next, in some cases, two entries in the parallel dictionaries (but not in the Swadesh 

lists) contained an English word that is spelled in the same manner (e.g., drink as a noun and a 

verb, plain as a noun and an adjective, horn as a body part and an instrument). Such entries 

were removed, because of the issues that they present when it comes to calculating how often 

the target word was used in the learners’ writing. This included only 110 entries (1.92% of 

5,735, which includes 22 meanings for each of the 5 L1s). 

Finally, there were 22 cases where an entry appeared both in the Swadesh lists and in 

the parallel dictionaries. To ensure that the lexical material was unique to each dataset, and 

 
78 This is equivalent to the number of all English synonyms listed in the L1-based table, where each row represents 

an L1 entry, and to the number of all L1 synonyms listed in the English-based table, where each row represents 

an English entry. 
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since the Swadesh lists had fewer words than the parallel dictionaries, such cases were removed 

from the parallel dictionaries. This also included only 110 entries (1.96% of 5,625, which 

includes 22 meanings for each of the 5 L1s). 

After this, there were 5,515 entries, with 1,103 entries for each of the 5 L1s, where each 

entry is a row containing an English word an all its corresponding L1 translations. 

 

7.3.2.2.5 Generating IPA transcriptions 

The parallel dictionaries’ orthographic transcriptions of entries in each L1 were converted to 

IPA using Python’s epitran library (version 1.8), which is a grapheme-to-phoneme (G2P) 

transduction system, dedicated to transliterating orthographic text in various languages into 

IPA (Mortensen et al., 2018). Then, to get an IPA transcriptions of the English entries, the 

English-to-IPA library in Python (version 0.21) was used (Phillips, 2019).79 This library uses 

the Carnegie Mellon University (CMU) Pronouncing Dictionary in order to convert English 

text into IPA. This tool was chosen for English because, as noted in the Epitran documentation, 

sound-symbol correspondence is so low in English that effective G2P systems in the language 

currently rely on pronouncing dictionaries.80 

29 English entries (2.06% of 1,411) were removed because there was no IPA 

transcription for one or more of the words in the entry, since they could not be found in the 

CMU pronouncing dictionary. This included primarily phrases that are sometimes written 

using two separate words which in this case were conjoined (e.g., shoulderblade, lowtide, and 

doorpost), though some of the excluded words are more frequently written in a conjoined 

manner (e.g., beeswax, stingray, and earlobe),81 and there were also some words that did not 

fit this pattern (e.g., adze, defecate and nape). 

In addition, there was a problem with some of the characters used in the English the 

pronunciation dictionary. Specifically, these characters were inconsistent with the character set 

used by Epitran, which caused inconsistencies with the IPA transcriptions between the L1s and 

English. This can lead to issues in various ways, such as when it comes to calculations of lexical 

 
79 The relevant function was run so that only a single transcription was provided per word, in keeping with the 

other languages, though some words may have more than a single transcription available in the dictionary. 
80 Epitran itself currently relies on a similar dependency for its English G2P system (namely, the CMU Flite 

speech synthesis system) but the implementation of the dedicated English-to-IPA library was found to be more 

convenient from a practical perspective. 
81 Because the pronunciation of these phrases as a single word could be different from their pronunciation as 

separate units, the decision was made to remove them together with the other entry that had no IPA pronunciation 

listed, rather than derive their transcription based on the IPA transcription of their constituents. 
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distance and which was potentially problematic for calculations of lexical distance, since such 

characters are not recognized by the software used to calculate feature distance (PanPhon, 

which is explained in more detail later, in the section explaining how lexical distance was 

calculated).82 This included the following: 

− /g/ (Latin Small Letter G, U+0067, from the ‘Basic Latin’ block), which was replaced 

by /ɡ/ (Latin Small Letter Script G, U+0261, from the ‘IPA extensions block’).83 

− The affricates /ʧ/ and /ʤ/, which were replaced by /t͡ ʃ/ and /d͡ʒ/ respectively. 

Finally, an important caveat is that Epitran warns that the transcriptions for several languages, 

including Portuguese and French in the present sample, should be approached with caution, 

since “It is not possible to provide highly accurate support for these language-script pairs due 

to the high degree of ambiguity inherent in the orthographies” (Mortensen, 2019).84 This is 

important to take into account in any analyses involving these languages. In the present study, 

the lexical distance data for these languages was validated by comparing the correlations 

between the lexical distances in the parallel dictionaries to those in the Swadesh lists, for words 

that appear in both datasets, separately for each language. These analyses are shown in §7.3.3, 

which compares the two datasets, and overall, the correlations were high for all L1s, and though 

the correlations for those two languages were slightly lower than for the other languages, this 

difference was not statistically significant.  

 

7.3.3 Comparison of lexical-distance datasets 

We compared the lexical distances calculated based on the Swadesh lists with those calculated 

based on the parallel dictionaries, to see to what degree they correspond. A primary goal of this 

was to see if the data for French and Portuguese corresponds between the two datasets as much 

as the data for the other shared languages (German, Italian, and Spanish), since Epitran, which 

is the software used to derive phonological transcriptions from orthographical ones in the 

parallel dictionariones in the present dataset, warns that those languages are more likely to 

 
82 The problem characters were identified by collecting the set of all characters used in the English IPA 

transcriptions in the present sample, and calculating the feature edit distance between them and an empty string 

(such distance is explained later); cases where there was a distance of zero indicated that the character was not 

recognized by PanPhon. 
83 Character codes were checked on https://unicode-table.com/. 
84 An attempt was made to use pronouncing dictionaries for these languages too. However, the dictionaries that 

were found all had lower coverage, and while they may have been more accurate in some cases, there were also 

cases where they had identical transcriptions as the Epitran versions (or transcriptions that were highly similar), 

as well as cases where they introduced new issues. Because of this, and because of the added complexity that they 

lead to, it was decided to use only the Epitran versions for the languages. 
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involve errors, due to ambiguity inherent in their orthogrphy. In addition to issues that arise 

due to the phonological transcription proess, differences between the datasets could be 

attributed to amany other causes, such as dialectical variation in the chosen transcription. 

We calculated the correlation between the phonological LDN in the two datasets, for 

the 35 English meanings per L1 that appeared in both datasets initially, including multi-word 

entries (175 entries total). The overall correlation between the two datasets was r = .738 (95% 

CI = .662–.799, p < .001), and correlations for each L1 are listed in Table 20.85 

 

Table 20. Correlation between phonological LDN in the Swadesh lists and parallel dictionaries, 

with n = 35 for each language. 

Language Pearson’s r 95% CI p 

French .637 .385-.800 < .001 

German .731 .526-.856 < .001 

Italian .761 .573-.873 < .001 

Portuguese .615 .355-.787 < .001 

Spanish .828 .683-.910 < .001 

 

Portuguese and French had the lowest correlations, but these correlations were still high, and 

the differences in correlation between these languages and the others was not statistically 

significant, as shown in Table 21. 

 

 
85 The correlation in distances between single-word entries that appear in both datasets (22 entries per L1, 110 

total), was similar: r(108) = .681 (p < .001, 95% CI = [.566, .770]). 
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Table 21. Difference in correlation between the languages. Specifically, Portuguese and French 

are compared to Spanish (the language with the highest correlation) and German (the language 

with the lowest correlation aside from the first two). 

 German Spanish 

Portuguese Fisher’s z = -0.8558, p = .3921 

Zou's 95% CI = -0.4047, 0.1516] 

Fisher’s z = -1.8516, p = .0641 

Zou's 95% CI = [-0.4854, 0.0126] 

French Fisher’s z = -0.7164, p = .4737 

Zou's 95% CI = [-0.3755, 0.1675] 

Fisher’s z = -1.7123, p = .0868 

Zou's 95% CI = [-0.4558, 0.0275] 

Note. Differences were calculated using the cocor package in R (Diedenhofen & Musch, 2015), with the 

correlation for each language being treated as an independent group. 

 

Although the differences are close to significance in the case of the comparison with Spanish, 

they are far from it in the comparison with German. As such, and given that the correlations 

across datasets for Portuguese and French are high overall, it was decided to keep these 

languages in the present sample, with the caveat that their phonological transcriptions likely 

contain slightly more “noise” than those of the other languages. 

 

7.3.4 Word frequency information 

Frequency was calculated using the wordfreq library in Python (Speer et al., 2018). The 

wordfreq library was chosen for several reasons, including the large dataset that it uses, the 

diverse sources that its dataset is based on, and its robust process for calculating frequency. 

Specifically, when it comes to the data that this library is based on: 

This data comes from a Luminoso project called Exquisite Corpus, whose goal is to 

download good, varied, multilingual corpus data, process it appropriately, and combine 

it into unified resources such as wordfreq. 

Exquisite Corpus compiles 8 different domains of text, some of which themselves come 

from multiple sources: 

• Wikipedia, representing encyclopedic text 

• Subtitles, from OPUS OpenSubtitles 2018 and SUBTLEX 

• News, from NewsCrawl 2014 and GlobalVoices 

• Books, from Google Books Ngrams 2012 
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• Web text, from ParaCrawl, the Leeds Internet Corpus, and the MOKK 

Hungarian Webcorpus 

• Twitter, representing short-form social media 

• Reddit, representing potentially longer Internet comments 

• Miscellaneous word frequencies: in Chinese, we import a free wordlist that 

comes with the Jieba word segmenter, whose provenance we don't really know 

(Speer, 2020) 

In particular, the frequency data for the languages that were included in the present study comes 

from the sources outlined in Table 22. 

 

Table 22. Sources for the data on the word frequencies in the languages that were examined in 

the present study, based on the information in Speer (2020). 

Language Number 

of 

Sources 

Wiki Subs News Books Web Twitter Reddit Misc. 

English 7 Yes Yes Yes Yes Yes Yes Yes - 

French 7 Yes Yes Yes Yes Yes Yes Yes - 

German 7 Yes Yes Yes Yes Yes Yes Yes - 

Italian 7 Yes Yes Yes Yes Yes Yes Yes - 

Portuguese 5 Yes Yes Yes - Yes Yes - - 

Spanish 7 Yes Yes Yes Yes Yes Yes Yes - 

 

As such, the languages had similar data sources, and all of them had sufficient data to be 

designated as having a ‘large’ wordlist, meaning that they cover words that “appear at least 

once per 100 million words”, in contrast with ‘small’ wordlists, which “cover words that appear 

at least once per million words” (Speer, 2020). However, note that in the present study we only 

used the frequency data for English, since the goal of using it was to simply control for the rate 

of usage of the target words in English 
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 The wordfreq library combines the frequencies from different sources in a way that is 

meant to minimize the impact of potential outliers.86,87 This is referred to as the figure-skating 

metric, after the scoring system of Olympic figure skating, and involves the following: 

• Find the frequency of each word according to each data source. 

• For each word, drop the sources that give it the highest and lowest frequency. 

• Average the remaining frequencies. 

• Rescale the resulting frequency list to add up to 1. 

(Speer, 2020) 

In the present study, we focus on the log-frequency of words, rather than on frequency, given 

the large body of research suggesting that log-frequency is often better associated with 

linguistic outcomes (Baayen, 2001; Baayen et al., 2006; Balota et al., 2001; J. B. Carroll, 1967; 

Davis, 2005; de Groot & Keijzer, 2000; Gordon & Caramazza, 1982; Jurafsky, 2003; 

Kuperman et al., 2012; Rubenstein & Pollack, 1963; Scarborough et al., 1977; Segui et al., 

1982; Tanaka‐Ishii & Terada, 2011; Winter, 2019), including in the context of similar L2 

outcomes as we examine here (Bosma et al., 2019; Carrasco-Ortiz et al., 2021; De Wilde et al., 

2020, 2021; Otwinowska et al., 2020; Otwinowska & Szewczyk, 2019; Poort & Rodd, 2017; 

Sadat et al., 2016; van de Ven et al., 2019). 

Specifically, the wordfreq library offers an improved log-frequency measure, called 

Zipf frequency, which is also used in several other studies on similar L2 outcomes (Bosma et 

 
86 Though not crucial for the present analysis, it is worthwhile to point out that wordfreq relies on frequency bins 

for performance reasons. As stated on the project page: “wordfreq's wordlists are designed to load quickly and 

take up little space in the repository. We accomplish this by avoiding meaningless precision and packing the words 

into frequency bins. In wordfreq, all words that have the same Zipf frequency rounded to the nearest hundredth 

have the same frequency. We don't store any more precision than that. So instead of having to store that the 

frequency of a word is .000011748975549395302, where most of those digits are meaningless, we just store the 

frequency bins and the words they contain. Because the Zipf scale is a logarithmic scale, this preserves the same 

relative precision no matter how far down you are in the word list. The frequency of any word is precise to within 

1%. (This is not a claim about accuracy, but about precision. We believe that the way we use multiple data sources 

and discard outliers makes wordfreq a more accurate measurement of the way these words are really used in 

written language, but it's unclear how one would measure this accuracy.)” (Speer, 2020). 
87 Though this is not relevant for the present study, which focused on single-word entries, the wordfreq library is 

capable of estimating the frequency of multi-word combinations, based on the frequency of their constituents, 

where “The word frequencies are combined with the half-harmonic-mean function in order to provide an estimate 

of what their combined frequency would be” (Speer, 2020). However, an important caveat about this approach is 

the following: “This method of combining word frequencies implicitly assumes that you're asking about words 

that frequently appear together. It's not multiplying the frequencies, because that would assume they are 

statistically unrelated. So if you give it an uncommon combination of tokens, it will hugely over-estimate their 

frequency.” (Speer, 2020). 
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al., 2019; Carrasco-Ortiz et al., 2021; De Wilde et al., 2020, 2021). This measure, which was 

developed by van Heuven et al. (2014), is described as follows in the wordfreq library: 

The Zipf frequency of a word is the base-10 logarithm of the number of times it appears 

per billion words. A word with Zipf value 6 appears once per thousand words, for 

example, and a word with Zipf value 3 appears once per million words. 

Reasonable Zipf values are between 0 and 8, but because of the cutoffs described above, 

the minimum Zipf value appearing in these lists is 1.0 for the 'large' wordlists and 3.0 

for 'small'. We use 0 as the default Zipf value for words that do not appear in the given 

wordlist, although it should mean one occurrence per billion words. 

(Speer, 2020) 

This measure was developed with the goal of creating a standardized measure, that would be 

independent of corpus size, and that would fulfill the following conditions: 

(1) It should be a logarithmic scale (e.g., like the decibel scale of sound loudness). 

(2) It should have relatively few points, without negative values (e.g., like a typical 

Likert rating scale, from 1 to 7). 

(3) The middle of the scale should separate the low-frequency words from the high-

frequency words. 

(4) The scale should have a straightforward unit. 

(van Heuven et al., 2014, p. 1179) 

To understand this scale, consider the examples in Table 23. 
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Table 23. Examples of words with different Zipf values, taken from van Heuven et al. (2014, 

p. 1180). 

Zipf value Frequency per million words Examples of words 

1 0.01 bioengineering, farsighted, harelip 

2 0.1 airstream, doorkeeper, neckwear 

3 1 cornerstone, dumpling, perpetrator 

4 10 dirt, muffin, widespread 

5 100 basically, drive, spot 

6 1,000 great, other, years 

7 10,000 and, have, I 

Note. In the original study, words with a Zipf value of 3 and lower were considered low-frequency words, while 

words with a Zipf value of 4 and higher were considered high-frequency words. 
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7.4 Appendix D: Supplementary information for study 1 (on lexical diversity) 

7.4.1 Lexical distance 

[This first three sub-sections in this section largely overlap with the corresponding material of 

the supplementary information for study 2, though the latter has some more information in the 

part on the validation of lexical distance. As such, and due to space constraints, I removed the 

overlapping content from this section; for the relevant material, see the first section of 

Appendix E. 

Included below is the one sub-section that appears in this study but not the other, since it 

focuses on using the Swadesh lists for calculating distance at the language—rather than word—

level. Nevertheless, some of this material is also mentioned in parts pertaining to the second 

study, and primarily Appendix C, which contains information on the calculation of lexical 

distance.] 

 

7.4.1.1 Validation of ASJP-based Swadesh lists 

The previous sub-section outlines the support for Levenshtein distance as a measure of 

language distance, both in general and in the context of SLA. In addition, below we outline the 

support for the use of the ASJP Swadesh lists as a source for calculating lexical distance.  

First, the key evidence in support of these lists comes from studies that cross-validated 

Levenshtein distances that were calculated from these lists, by comparing them with other 

measures of language distance, and showing that they strongly correlate. This includes 

correlations between the ASJP-based distances and: 

− Expert-based cognancy judgments, on historical-comparative grounds (Schepens, van der 

Slik, et al., 2013b). 

− Psychoacoustic, psycholinguistic, phonetic, and phonological measures of distance 

(Brown et al., 2013). 

− Taxonomic distances in the World Atlas of Language Structures (WALS) and the 

Ethnologue (Holman et al., 2008b). 

− Distances based on morphological features in the WALS (Schepens, van der Slik, et al., 

2013a) and typological features (Bakker et al., 2009). 

In addition, further support for these lists comes from studies that used it for language 

classification and linguistic phylogenetics, and involved various forms of validity and 
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reliability checks (Brown et al., 2008; Holman et al., 2008b, 2008a; Pompei et al., 2011; 

Wichmann, 2019; Wichmann et al., 2010).88 

Finally, distances from these lists were also used successfully in the context of SLA, to 

predict L2 Dutch proficiency, in a sample of 35 Indo-European L1s (Schepens, van der Slik, et 

al., 2013b), and in a sample of 39 Indo-European and 34 non-Indo-European L1s (Schepens, 

van der Slik, et al., 2013a). This aligns with similar findings on L2 Dutch proficiency, which 

are based on two different types of cognancy judgments (Schepens et al., 2020; van der Slik, 

2010).  

However, despite this support for the use of the ASJP lists, it is important to also note 

their limitations. First, the ASJP uses a specialized set of characters in its transcription (outlined 

in Brown et al., 2008), which collapses certain phonological distinctions to facilitate 

transcription, by transcribing different segments using the same character (e.g., the IPA: /b/ 

and /β/ are both transcribed using the ASJP /b/). Second, there may be various issues with the 

ASJP transcriptions, meaning that some words may be transcribed incorrectly, and that the 

wrong words be may selected for transcription in some cases. As such, distances that are based 

on these lists should preferably be used for large-scale analyses that can accommodate this (as 

in the present study). Furthermore, distances based on these lists should be interpreted with 

caution, and compared with distances from other sources where possible (again, as in the 

present study). 

In summary, it is important to be cautious when relying on distances calculated based 

the ASJP lists, just as it is important to be cautious about distances calculated using other 

sources. This also means that it is beneficial to replicate analyses using distances from different 

sources, as we do in the present study using a binary measure of language distance. 

Nevertheless, these is extensive support for the use of these lists, as outlined above, so we 

believe that the use of the list here is reasonable for our purposes. 

 

 
88 The ASJP lists have also been used for this purpose with language measures other than 

Levenshtein distance. For example, this includes studies that used point-wise mutual 

information (PMI) as the distance measure, although they also used Levenshtein distance as a 

first step to identify potential cognancy (Jäger, 2015, 2018). 
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7.4.2 Model diagnostics (assumption checks) 

Figures 16 and 17 contain the assumption checks for the mixed-effects models that appeared 

in the study, and namely for linearity, homoscedasticity, normality of residuals, normality of 

random effects, lack of collinearity, and lack of influential observations (Hox et al., 2018; 

Winter, 2019). The plots were generated using the dedicated performance package in the 

easystats ecosystem in R (Lüdecke et al., 2021). 

When interpreting these diagnostic plots, we follow two notable recommendations from 

Winter's (2019) relevant work, and namely the focus on primarily visual techniques for 

diagnostic purposes, and the use of assumption checking on as a way to determine whether 

there are any major issues with the model. As Winter notes in this regard: 

Newcomers to regression modeling often find it discomforting that the assumptions are 

assessed visually. In fact, formal tests for checking assumptions do exist, such as the 

Shapiro-Wilk test of normality. However, applied statisticians generally prefer visual 

diagnostics (Quinn & Keough, 2002; Faraway, 2005, 2006: 14; Zuur et al., 2009, Zuur, 

Ieno, & Elphick, 2010). The most important reason for using graphical validation of 

assumptions is that it tells you more about your model and the data. [Footnote 7: Here 

are some other reasons: each of these tests also has assumptions (which may or may not 

be violated), the tests rely on hard cut-offs such as significance tests (even though 

adherence to assumptions is a graded notion), and the tests may commit Type I errors 

(false positives) or Type II errors (false negatives) (see Chapter 10 for an explanation 

of these concepts).] For example, the residuals may reveal a hidden nonlinearity, which 

would suggest adding a nonlinear term to your model (see Chapter 8). Or the residuals 

may reveal extreme values that are worth inspecting in more detail. One should also 

remember that a model’s adherence to the normality and constant variance assumptions 

is not a strict either/or. Faraway (2006: 14) says that ‘It is virtually impossible to verify 

that a given model is exactly correct. The purpose of the diagnostics is more to check 

whether the model is not grossly wrong.’” 

(Winter, 2019, pp. 109-110) 

Based on this approach, and based on the figures below, there do not appear to be issues with 

the model that are substantial enough to invalidate its use. Namely, the mild heteroscedasticity 

is unlikely to be an issue, especially given that the potential consequence of having standard 

errors that are too small (Hox et al., 2018, p. 248) would not substantially change the findings 
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of the study, due to the null results for lexical distance and its interaction with proficiency, and 

also the robustness of the effects of L2 proficiency. In addition, note that the findings in the 

mixed-models are also supported by the other analyses in the main paper, and specifically the 

estimated marginal means and the linear models per CEFR level.
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Figure 16. Assumption checks for the main models in the first corpus. 
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Figure 17. Assumption checks for the main models in the second corpus.
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7.4.3 Information on MTLD 

7.4.3.1 Technical approach for calculating MTLD (including spelling correction) 

In our analyses, we used the MTLD scores that come pre-calculated with the EFCAMDAT 

Cleaned Subcorpus (Shatz, 2020). These scores were calculated based on the spelling-corrected 

version of each text, generated using the autocorrect library in Python (McCallum, 2019), since 

spelling errors can artificially inflate the number of types in the text (Granger & Wynne, 1999). 

They were calculated using the lexical-diversity library in Python (Kyle, 2018), first using the 

library’s tokenize function to tokenize each text, and then using the mtld function to calculate 

the MTLD. 

 There are two main caveats about this approach. First, if the autocorrect function—for 

which there is no validation information available—corrects misspelled words by transforming 

them into a different word than learners intended, this could still result in some inflation of 

lexical diversity scores. Second, it is possible to add further steps to the pre-processing of the 

texts—especially lemmatization—to potentially increase the validity of the resulting lexical-

diversity calculations. 

As such, we also calculated MTLD scores using the recently released TAALED Python 

library (Kyle et al., 2021),89 which utilizes more sophisticated pre-processing for texts.90 

Specifically, TAALED involves multiple steps of preprocessing: tokenizing the text, removing 

most punctuation, adding part-of-speech tags (to disambiguate homographs), lemmatizing each 

word, checking for misspelled words (which are then ignored, rather than corrected), and 

converting all words to lower-case. 

In practice, though this may be beneficial, it does not substantially alter our conclusions. 

Specifically, the correlation between the original MTLD scores and the new (TAALED-based 

ones) was very strong:  r = .77, p < .001, 95%CI = [.76, .78] in the first corpus and r = .74, p < 

.001, 95%CI = [.73, .75] in the second (in the samples used in the main models, after the 

 
89 We did not use this library in the first place because it was released very recently, after we concluded the main 

analyses for this study. In addition, we did not switch to using it from the main analyses, since it is still in beta, 

so it has not yet been as extensively tested and used by others as the simpler approach, which also means that the 

MTLD values calculated using its approach are likely to be less comparable with those in other studies. 

Nevertheless, as shown next, the results based on these scores closely mirror those from the main models, so this 

is not crucial for our study. Also, note that all the MTLD values that we used available for further analysis, together 

with the rest of our data, in the study’s OSF repository. 
90 We used version 0.22 of TAALED. Note that this library is developed by the same person as the lexical-diversity 

library which we used to calculate the main MTLD scores, and utilizes the same underlying functions for 

calculating lexical diversity. In addition, the pre-processing involved with this library relies on the pylats (Kyle, 

2022) and spaCy (Honnibal et al., 2020) Python libraries; versions 0.24 and 3.2.4 were used respectively. 
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removal of the outliers). In addition, as shown in Table 24 (Figures 18 and 19 contain the 

associated assumption checks), our key findings replicate when using the new MTLD scores; 

this includes the null effect of lexical distance and of its interaction with L2 proficiency, and 

the strong effects of L2 proficiency and task. This means that our conclusions remain the same 

regardless of which of these two approaches we use in our analyses.
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Table 24. Results of the mixed-effects linear regression models, with lexical diversity (MTLD) as the response variable; here, the MTLD are those 

calculated using the TAALED library in Python. Under fixed effects, lexical_distance is the mean lexical distance between the L1 and English (0–

1), and L2_proficiency is the EFCAMDAT level associated with each text (1–12). In the statistics, std. B and std. 95% CI provide information on 

the standardized coefficients, which were calculated by refitting the model on standardized data. Under random effects, σ2 denotes the residual 

variance, τ00 denotes between-subjects (or groups) variance, ICC denotes the intraclass correlation coefficient, and N denotes the number of data 

points within each sampling unit. Finally, observations denotes the total number of texts in each sample, Mar. [Marginal] R2 denotes the proportion 

of the variance described by the fixed effects, and Cond. [Conditional] R2 denotes the proportion of the variance described by both the fixed and 

random effects. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 50.98 1.00 49.02 – 52.94 <0.001 0.01 -0.07 – 0.09 52.00 1.03 49.99 – 54.01 <0.001 0.00 -0.09 – 0.09 

Lexical_distance -5.30 5.88 -16.83 – 6.23 0.368 -0.02 -0.05 – 0.02 0.89 5.62 -10.13 – 11.91 0.874 0.00 -0.03 – 0.04 

L2_proficiency 3.26 0.27 2.73 – 3.78 <0.001 0.46 0.38 – 0.53 2.69 0.28 2.15 – 3.24 <0.001 0.42 0.33 – 0.50 

Lexical_distance * 

L2_proficiency 

0.79 0.89 -0.96 – 2.54 0.378 0.01 -0.01 – 0.03 0.57 0.96 -1.31 – 2.46 0.550 0.01 -0.02 – 0.03 

Random Effects 

σ2 366.84 302.24 

τ00 26.10 Learner 44.73 Learner 
 

76.72 Task 62.17 Task  
1.25 L1 1.01 L1 

ICC 0.22 0.26 

N 9 L1 9 L1  
5385 Learner 4357 Learner 

 
95 Task 71 Task 

Observations 8081 6129 

Mar. R2 / Con. R2 0.209 / 0.384 0.175 / 0.392 
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Figure 18. Assumption checks for the TAALED-based models in the first corpus.
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Figure 19. Assumption checks for the TAALED-based models in the second corpus. 
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7.4.3.2 MTLD outliers 

The study used MTLD to assess learners’ lexical diversity, where higher MTLD indicates 

greater lexical diversity. Because MTLD varies substantially based on various factors, such as 

L2 proficiency and task, there is no simple way to characterize what general mean values of 

MTLD are expected to be (Alexopoulou et al., 2017; Hout & Vermeer, 2010; Jarvis, 2013; 

Kojima & Yamashita, 2014; Mazgutova & Kormos, 2015; Murakami & Alexopoulou, 2016; 

Torruella & Capsada, 2013; Treffers-Daller, 2013; Treffers-Daller et al., 2018; Yu, 2010; 

Zenker & Kyle, 2021). Nevertheless, a very rough characterization, based on the 

aforementioned studies, is that mean MTLD values tend to fall between 50–100, although both 

mean MTLD and the MTLD of individual texts can be lower or higher than that, in 

approximately the 10–150 range. 

In the present study, before running the main analyses, we identified and removed texts 

that were classified as outliers in terms of their lexical diversity. The goal of this was to remove 

extreme values that were likely to be caused by technical issues with the assessment of MTLD, 

particularly when it comes to short texts (see the section on text length and MTLD for more 

information on this). 

The first step to this was to remove texts with an anomalous absolute MTLD, and 

specifically an MTLD of 0. Such MTLD represents a unique case where there is absolutely no 

lexical repetition in the text, so the TTR is 1 throughout, leading to an MTLD of 0. These cases 

primarily reflect the technical limitations of lexical diversity measures when it comes to short 

texts with a list-like structure.91 As such, this MTLD value was only found in short texts, with 

wordcounts of 20–39 in the first corpus (mean = 27.78, SD = 5.21) and 20–34 in the second 

corpus (mean = 22.85, SD = 3.83) (see the section on text length and MTLD for more 

information on this). Furthermore, there was a substantial gap in MTLD between these texts 

and texts with a non-zero MTLD, as the minimal non-zero MTLD was 8.01 in the first corpus 

and 11.12 in the second. 

Then, additional outliers were identified and removed based on anomalous relative 

MTLD, using Tukey’s method (Hoaglin et al., 1986; Kannan et al., 2015; Rousseeuw & Croux, 

1993; Tukey, 1977). Specifically, outlier texts were defined as texts that had an MTLD at least 

1.5 interquartile ranges (IQR) below the 1st quartile of MTLD or above the 3rd quartile, either 

 
91 An example of such an outlier text is the following: “Dear Mr hang, there are 33 computers,5 pens,9 keyboards,3 

headphones,6 boxes, 46 desks and chairs in the office, a desk of them have broken, need to repair thank you Dora” 

(text #614876 in the first corpus, lesson #2). 
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within their task or within their EFCAMDAT proficiency level. It was necessary to remove 

these texts because their extreme MTLD values appeared to be primarily reflective of technical 

issues with the assessment of lexical diversity, as many of them had MTLD values that are far 

above what could be expected at that proficiency level, or far above what would be expected 

in general, on even complex native-level texts. For example, one text in task #22 in the first 

corpus had an MTLD of 493.92, while the median MTLD at the associated EFCAMDAT 

proficiency level was 43.56, and the median MTLD at the highest proficiency level in the 

corpus (corresponding to the top of the CEFR B2 range) was 81.78.92 It was necessary to 

account for both task and level median MTLD, since MTLD is often more consistent within 

tasks due to task effects, but individual tasks are also more likely to be influenced by extreme 

outliers than whole levels, particularly when the task prompt elicited writing that was likely to 

lead to extreme MTLD due to technical issues. Specifically, this was primarily the case in tasks 

that elicited short, list-like texts, such as task #22 in the first corpus (“Writing your online 

profile”), which was responsible for 14.32% of outlier texts in the first corpus, but 0% of 

outliers in the second corpus. The task had many extreme outliers in terms of high MTLD, so 

the median MTLD for the task (after removing zero-MTLD outliers) was 109.76, while the 

median MTLD for the EFCAMDAT proficiency level in which this task appeared (level 3) was 

43.56, and the median MTLD at the highest proficiency level in the corpus (level 12) was 

81.78. 

Overall, the proportion of texts that were designated as outliers was small and similar 

in the two samples (4%–5%). All the texts that were removed as outliers appear in the study’s 

OSF repository, and relevant statistics regarding outlier texts are shown in Table 25. After the 

removal of outliers, there were 8,081 texts in the first corpus and 6,129 in the second. 

In addition, Table 26 shows the results of supporting models that were calculated on 

the full samples, before the removal of outliers (Figures 20 and 21 show the associated 

assumption checks). As expected, there were more issues with these models’ assumptions 

compared to the main models (e.g., with the non-normality of the residuals and with 

heteroscedasticity), which provides support for the removal of the outliers. Nevertheless, the 

findings in these models largely mirror those of the main models, in the sense that the lexical-

 
92 The text was “Name: Julio Age: 32 birthday: 06 July Like doing: cooking, listening to music, chatting on line, 

surfing the internet. Lives in: Sao Paulo, Brazil. favorite Season: summer animal: dog Time: evening Day: Sunday 

Number: 6 I can cook, but I cant draw.” (text #66095 in the first corpus). 
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distance predictor and the interaction term were non-significant and negligible, whereas the L2 

proficiency predictor and the task effects were significant and substantial.



187 

 

Table 25. Descriptive statistics of the outlier texts. 

 First Corpus Second corpus 

Number of L1s in sample 9 9 

Number of texts (total in sample) 8500 6390 

Number of outliers 419 261 

Proportion of outliers (out of total texts) .05 .04 

Proportion of texts per L1 (in full samples) a .11 .11 

Min proportion of texts per L1 (in outliers) .09 .07 

Max proportion of texts per L1 (in outliers) .15 .19 

SD of proportion of texts per L1 (in outliers) b .02 .04 

Mean EFCAMDAT proficiency level (in full samples) c 6.47 6.49 

Mean EFCAMDAT proficiency level (in outliers) c 4.67 5.21 

Mean wordcount (in full samples) 82.59 90.21 

Mean wordcount (in outliers) 63.70 75.00 

Proportion of outliers with MTLD of ‘0’ .12 .05 

Proportion of outliers with MTLD above the cutoff d 0.998 1.00 

Proportion of outliers in only task MTLD e .29 .25 

Proportion of outliers in only level MTLD e .35 .24 

Proportion of outliers in both task and level MTLD e .24 .47 
a The proportion of texts per L1 is equal to 1 divided by the number of L1s in the sample (9). The mean proportion 

of texts per L1 in the outliers is equal to the proportion of texts per L1 in the corresponding sample, as all L1s that 

appear in the original samples contained outliers. 
b Since the full samples had an equal number of texts per L1 in the second corpus and an almost equal number of 

texts in the first corpus, the SD of the proportion of texts per L1 in the full samples was 0 in the second corpus 

and 0.001 in the first. 
c This is on a scale of 1-12 in the present sample, where each 3 levels correspond to a single CEFR level (e.g., 

EFCAMDAT levels 1-3 correspond to CEFR A1). 
d This refers to the proportion of outliers, out of all the outlier texts, that were removed because they had an MTLD 

greater than 1.5 IQRs above the 3rd quartile of MTLDs in their corresponding task or proficiency level, after the 

removal of texts with an MTLD equal to 0. 
e Non-zero outliers were removed either because their MTLD exceeded the threshold for their task, for their 

proficiency level, or both. This removal took place after the removal of zero-MTLD outliers.



188 

 

Table 26. Results of the models that were calculated on the full sample (before the removal of outliers). 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 67.99 1.62 64.82 – 71.16 <0.001 0.00 -0.09 – 0.09 69.50 1.89 65.79 – 73.20 <0.001 -0.00 -0.12 – 0.12 

Lexical_distance -5.91 8.93 -23.42 – 11.60 0.508 -0.01 -0.05 – 0.03 13.79 15.98 -17.52 – 45.11 0.388 0.03 -0.04 – 0.11 

L2_proficiency 3.32 0.44 2.47 – 4.18 <0.001 0.34 0.25 – 0.42 2.81 0.44 1.96 – 3.67 <0.001 0.31 0.22 – 0.41 

Lexical_distance * 

L2_proficiency 

1.39 1.27 -1.10 – 3.89 0.274 0.01 -0.01 – 0.03 0.54 1.38 -2.16 – 3.24 0.694 0.00 -0.02 – 0.03 

Random Effects 

σ2 763.83 545.84 

τ00 77.46 Learner 172.63 Learner 
 

206.53 Task 153.32 Task 
 

2.99 L1 11.47 L1 

ICC 0.27 0.38 

N 9 L1 9 L1 
 

5615 Learner 4512 Learner 
 

95 Task 71 Task 

Observations 8500 6390 

Mar. R2 / Cond. R2 0.112 / 0.354 0.099 / 0.443 
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Figure 20. Assumption checks for the model before the removal of outliers, in the first corpus. 
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Figure 21. Assumption checks for the model before the removal of outliers, in the second corpus.
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7.4.3.3 Text length (wordcount) and MTLD 

Prior studies have shown that MTLD is relatively robust to short texts and to variations in text 

length, which means that it is less influenced by them than most other lexical diversity 

measures, with the possible exception of MATTR (Fergadiotis et al., 2015; Koizumi, 2012; 

Koizumi & In’nami, 2012; McCarthy & Jarvis, 2010; Vidal & Jarvis, 2020; Zenker & Kyle, 

2021).93 

However, a caveat about this is that, as noted in the paper, MTLD calculates partial 

factors for lexical remainders of a text (i.e., the words that do not form a full factor). These 

approximated remainders have a greater influence on MTLD the shorter the text is (i.e., the 

fewer full factors there are), which substantially increases the uncertainty associated with 

calculating MTLD on short texts, particularly when they are composed of only a remainder 

(McCarthy & Jarvis, 2010; Vidal & Jarvis, 2020). 

Initial estimates suggested that this measure should therefore be used primarily on texts 

longer than 100 words, but comprehensive recent research by Zenker and Kyle (2021) 

examined the use of MTLD in texts as short as 50 words, and found that it is fairly robust there 

too, though not perfectly so. This suggests that it can be reasonable to use MTLD on texts with 

50 and potentially even fewer tokens, though this should be done with caution, and only for 

certain types of analyses, such as large-scale analyses of texts at the group level, as in the 

present study.94 

 In the present sample, some texts were shorter than 50 words, especially at the early 

proficiency levels, as shown in Figure 22 and Table 27. It is not possible to avoid this issue in 

the present sample, since selecting only texts above 50 words in advance (i.e., during the initial 

sample selection) would lead to a biased sample. Accordingly, it is important to replicate the 

present findings on additional learner samples, and preferably on samples that contain longer 

texts in particular. 

Nevertheless, there are some things that are important to mention in this regard, as they 

strongly suggest—particularly when taken together—that the inclusion of short texts in the 

present sample does not invalidate the present findings: 

 
93 There are also some variations of MTLD that are relatively robust to text length, such as MTLD-MA-Wrap, but 

the research by Zenker and Kyle (2021) suggests that the original MTLD measure is more robust on short texts. 
94 Another situation where it might be reasonable to use MTLD on short texts is when it is used as one of only 

many different factors for assessing L2 proficiency. 
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1. Some of the issues associated with short texts were mitigated through the removal of 

outliers, as shown in the section on MTLD outliers. 

2. In the study that found that MTLD is stable at the 50-word level (Zenker & Kyle, 2021), 

the 50-word threshold was the minimal number of words that was examined, which 

indicates that MTLD may also be stable at lower text lengths. Furthermore, as the 

analyses of Zenker and Kyle (2021) show, any potential slant in MTLD would be milder 

the closer the text is to the stabilization point in terms of number of words. Given this, 

and given that the texts in the sample were at least 20 words long, and their mean length 

was close to or above 50 at all proficiency levels (as shown in the table and figure below), 

there is a limit on any potential slant that could occur due to the use of shorter texts. As 

such, it is unlikely that any potential bias in the MTLD of the texts was substantial 

enough to change the main findings of the study, especially given that the findings 

regarding the association between L2 proficiency and MTLD were robust in the present 

sample and aligned with those of prior studies (Hout & Vermeer, 2010; Jarvis, 2013; 

Kojima & Yamashita, 2014; McCarthy & Jarvis, 2010; Murakami & Alexopoulou, 2016; 

Treffers-Daller et al., 2018; Yan et al., 2020). 

3. Prior studies on the EFCAMDAT show that the MTLD of texts in it, including of short 

texts at the earliest proficiency levels, is strongly correlated with measures of syntactic 

complexity such as mean length clause and subordinate clause per T-unit, and that all 

these measures in return are correlated with proficiency (Alexopoulou et al., 2017; 

Murakami, 2014). This further suggests that MLTD scores on the short texts in 

EFCAMDAT do not distort the relation between lexical diversity and proficiency. 

4. Generally, the lower learners’ L2 proficiency, the smaller their functional vocabulary, and 

the higher the rate of repetition in their writing. This means that, assuming the text length 

is held constant, as learners’ L2 proficiency decreases, we would expect the number of 

MTLD factors in their productions to increase, and therefore also expect the MTLD 

remainder to account for a smaller proportion of their total MTLD, which will lead to 

more accurate assessment of MTLD in short texts. This is particularly important in the 

context of the present analyses, since all the learners in the sample were at the beginner to 

intermediate range of L2 proficiency (CEFR A1–B2), so we would expect this to apply to 

them. Furthermore, as shown below, the shortest texts were generally written by the 

learners with the lowest L2 proficiency, where we would expect the highest rate of 

repetition, which reduces this issue when calculating MTLD on those texts.  



193 

 

5. Crucially, the main finding of the study, which was the lack of effect of lexical distance 

on MTLD, was consistent across all the CEFR levels, as shown in the Results section of 

the main paper (in the Figure with the scatterplots and linear models). This means that 

this finding held even in the higher-level sub-samples, where almost all texts are much 

longer than 50 words, and also at the highest levels, where nearly all texts are longer than 

100 words. At the very least, this shows that this effect does not exist at those higher 

levels. 

6. We also built supporting models, which included only texts from the A2–B2 CEFR range 

(Table 28 and Figures 23 and 24) and from the B1–B2 range (Table 29 and Figures 25 

and 26). As shown in the Table below, these models contained substantially fewer texts 

below 50 words than the full models (which contained texts at the A1–B2 range), and in 

the case of the B1–B2 models there were almost no texts below 50 words, and most texts 

were longer than 100 words. Both sets of models replicated the main finding, and namely 

the lack of effect of lexical distance on lexical diversity.95 

7. We also replicated the key analyses using MATTR as a measure of lexical diversity 

instead of MTLD, since it is also considered to be robust to short texts and variations in 

text length, and is calculated in a different way than MTLD (see §7.4.4.4 for these 

analyses, an explanation of MATTR, and the rationale behind focusing on MTLD in the 

main analyses). We found that there is a very high correlation between it and MTLD in 

the sample, and that the results are practically the same regardless of which of these 

measures of lexical diversity is used. 

Overall, while we hope that the information that we present here will inform the broader 

discussion on lexical diversity, it is important to emphasize that we do not claim that it is always 

reasonable to use MTLD when analysing short texts. Rather, we acknowledge the substantial 

issues with calculating MTLD—as well as lexical diversity in general—on short texts. This 

means that it would be ideal to conduct any analyses pertaining to lexical diversity on texts that 

are at least 50 words longs—and preferably even 100 or more—which some of the texts in the 

present study are not. As such, it is recommended to replicate these findings on other learner 

samples, which contain longer texts. 

 
95 We do not attempt to assess the influence of L2 proficiency here, given the more limited range of L2 proficiency 

levels, and given the plateau in the association between L2 proficiency and lexical diversity that was found in the 

full analyses. 
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Nevertheless, when the evidence outlined above is taken in aggregate, it strongly 

suggests that any potential issues associated with short texts do not invalidate the findings of 

the present study. This evidence includes, most notably, the robustness of MTLD in short texts 

as indicated by Zenker and Kyle (2021), the association between lexical diversity and L2 

proficiency (as well as other measures of linguistic complexity) that was found here and in 

previous studies, the replication of our key findings in sub-samples containing texts that are 

almost all longer than 50 words (as well as in sub-samples containing texts that are longer than 

100 words), and the replication of our key findings when using MATTR as the measure of 

lexical diversity (§7.4.4.4). 
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Figure 22. Mean wordcount of texts after removing outliers (error bars indicate one standard deviation). Listed per task in (A) and (B), per 

EFCAMDAT proficiency level in (C), and per CEFR level in (D). There are 8 tasks per EFCAMDAT proficiency level in the first corpus and 6 

tasks per level in the second. There are 3 EFCAMDAT levels per CEFR level in both corpora. The grey line in each panel shows denotes a 

wordcount of 50. 
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Table 27. Statistics on the wordcounts of texts per CEFR (L2 proficiency) level in each corpus. SD denotes standard deviation, Mdn denotes 

median, IQR denotes the interquartile range, Rng denotes the full range, ntotal denotes the total number of texts at that CEFR level, n<50 denotes the 

number of texts at that level that have fewer than 50 words, and p<50 denotes the percent of texts at that level that have fewer than 50 words. 

 First corpus Second corpus 

CEFR Mean SD Mdn IQR Rng ntotal n<50 p<50 Mean SD Mdn IQR Rng ntotal n<50 p<50 

A1  40.47 14.84 38 30-46 20-111 1921 1530 79.65  41.56 13.77 40 31-51 20-105 1508 1101 73.01 

A2  68.11 15.54 68 58-75 22-133 2088 148  7.09  67.08 20.15 66 52-80 20-129 1553 334 21.51 

B1  93.40 21.15 92 79-101 28-197 2042 13  0.64 102.80 20.40 104 91-115 31-188 1500 19  1.27 

B2 130.35 28.76 130 109-149 21-245 2030 5  0.25 150.40 39.32 153 122-177 31-287 1568 4  0.26 
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Table 28. Results of the models that were calculated on the texts at the A2–B2 CEFR range. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 65.65 1.82 62.09 – 69.21 <0.001 0.00 -0.12 – 0.13 71.59 1.93 67.81 – 75.37 <0.001 0.00 -0.14 – 0.15 

Lexical_distance 0.66 11.89 -22.64 – 23.96 0.956 -0.00 -0.07 – 0.06 5.87 13.43 -20.46 – 32.20 0.662 0.02 -0.07 – 0.10 

L2_proficiency 3.57 0.54 2.50 – 4.64 <0.001 0.37 0.26 – 0.48 1.17 0.57 0.06 – 2.28 0.039 0.13 0.01 – 0.25 

Lexical_distance * 

L2_proficiency 

-1.40 1.38 -4.11 – 1.31 0.312 -0.01 -0.03 – 0.01 -0.61 1.65 -3.85 – 2.64 0.714 -0.01 -0.03 – 0.02 

Random Effects 

σ2 359.60 348.44 

τ00 40.04 Learner 80.21 Learner 
 

136.42 Task 109.29 Task 
 

6.20 L1 7.75 L1 

ICC 0.34 0.36 

N 9 L1 9 L1 
 

3882 Learner 3182 Learner 
 

71 Task 53 Task 

Observations 6160 4621 

Mar. R2 / Cond. R2 0.135 / 0.427 0.017 / 0.372 
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Figure 23. Assumption checks for the model with texts at the A2–B2 range, in the first corpus. 
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Figure 24. Assumption checks for the model with texts at the A2–B2 range, in the second corpus. 
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Table 29. Results of the models that were calculated on the texts at the B1–B2 CEFR range. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 71.77 3.28 65.34 – 78.20 <0.001 0.01 -0.15 – 0.16 75.51 2.81 69.99 – 81.02 <0.001 0.00 -0.14 – 0.15 

Lexical_distance 6.83 17.07 -26.62 – 40.28 0.689 -0.01 -0.10 – 0.08 5.48 16.92 -27.68 – 38.65 0.746 0.01 -0.08 – 0.11 

L2_proficiency 1.76 0.90 -0.01 – 3.54 0.051 0.13 -0.00 – 0.25 0.18 0.76 -1.32 – 1.68 0.812 0.01 -0.10 – 0.13 

Lexical_distance * 

L2_proficiency 

-3.23 2.74 -8.60 – 2.15 0.239 -0.02 -0.05 – 0.01 -0.44 3.11 -6.55 – 5.66 0.887 -0.00 -0.04 – 0.03 

Random Effects 

σ2 393.08 344.15 

τ00 52.70 Learner 91.71 Learner 
 

103.60 Task 52.20 Task 
 

10.23 L1 8.66 L1 

ICC 0.30 0.31 

N 9 L1 9 L1 
 

2335 Learner 1978 Learner 
 

47 Task 35 Task 

Observations 4072 3068 

Mar. R2 / Cond. R2 0.016 / 0.309 0.000 / 0.307 
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Figure 25. Assumption checks for the model with texts at the B1–B2 range, in the first corpus. 



202 

 

 

Figure 26. Assumption checks for the model with texts at the B1–B2 range, in the second corpus. 
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7.4.4 Supporting models  

This section contains supporting mixed-effects models that were used to complement the main 

models in the paper. For all models, the following holds unless noted otherwise: 

− Under fixed effects, lexical_distance is the mean lexical distance between the L1 and 

English (0–1), and L2_proficiency is the EFCAMDAT level associated with each text 

(1–12). 

− In the statistics, std. B and std. 95% CI provide information on the standardized 

coefficients, which were calculated by refitting the model on standardized data. 

− Under random effects, σ2 denotes the residual variance, τ00 denotes between-subjects 

(or groups) variance, τ11 denotes the random-slope variance, ρ01 denotes the random-

slope-intercept correlation, ICC denotes the intraclass correlation coefficient, and N 

denotes the number of data points within each sampling unit. 

− Finally, observations denotes the total number of texts in each sample, Mar. [Marginal] 

R2 denotes the proportion of the variance described by the fixed effects, and Cond. 

[Conditional] R2 denotes the proportion of the variance described by both the fixed and 

random effects. 

Interpretation of the associated assumption checks is based on the approach outlined in §7.4.1 

of this document. 

 

7.4.4.1 Random slopes models 

Several mixed-effect models with random slopes were considered and ruled out (Matuschek et 

al., 2017; Winter, 2019). 

First, in the case of random slopes of L2 proficiency for learner, the number of 

observations was smaller than the number of parameters pertaining to random effects, since 

most learners only have a single text in the sample, as shown in the “Sample information” 

document in the study’s Open Science Framework (OSF) repository, so the models did not 

converge, and had an error indicating that “the random-effects parameters and the residual 

variance (or scale parameter) are probably unidentifiable”. 

Second, in the case of random slopes of lexical distance for task, the models did 

converge, but a comparison showed that the models with only random intercepts were 

preferable. Specifically, we compared the AIC and BIC across models, as shown in Table 30. 
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Table 30. Comparisons of AIC and BIC across models. Both measures were used, as 

suggested in Kuha (2004). Data was generated in R using the AIC and BIC functions. 

Corpus Model df AIC Δ AIC BIC Δ BIC 

First Only intercept 8 71071.51 0.45 71127.49 - 

First With slope 10 71071.06 - 71141.03 13.54 

Second Only intercept 8 53972.68 - 54026.45 - 

Second With slope 10 53973.58 0.90 54040.79 14.34 

Note. ΔAIC is calculated by subtracting the AIC of a given model from the AIC of the model with the minimal 

AIC in that corpus. Accordingly, no ΔAIC is listed for the model with the minimal AIC in a corpus. The same is 

the case for ΔBIC. 

 

The difference in AIC was not substantial in either corpus (Δ < 2).96 However, the difference 

in BIC presented strong evidence (ΔBIC > 10) in favor of the intercepts-only model, in both 

corpora. Given this, the more parsimonious intercepts-only models were used as the main ones 

for the study. However, this choice does not substantially affect the findings of the study, as 

shown in Table 31, which contains the results of these random-slopes models (with the 

corresponding assumption checks in Figures 27 and 28), which mirror the results of the main 

models, when it comes to the non-significant and negligible effect of lexical distance and of its 

interaction with L2 proficiency, as well as the significant and substantial effects of L2 

proficiency and task. This is unsurprising, since the main concern with not including potential 

random slopes is an increased rate of Type I error (Matuschek et al., 2017; Winter, 2019), but 

the effects of lexical distance and its interaction were non-significant, while the findings for L2 

proficiency were robust in terms of significance.

 
96 Interpretations of the differences in AIC/BIC are based on Fabozzi et al. (2014).  



205 

 

Table 31. Results of the models with random slopes of lexical distance for task. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 64.91 1.43 62.10 – 67.71 <0.001 0.01 -0.10 – 0.12 66.70 1.58 63.61 – 69.80 <0.001 0.00 -0.12 – 0.13 

Lexical_distance -2.52 10.37 -22.84 – 17.79 0.808 -0.01 -0.06 – 0.05 4.26 11.71 -18.69 – 27.21 0.716 0.01 -0.06 – 0.08 

L2_proficiency 3.82 0.36 3.12 – 4.52 <0.001 0.50 0.41 – 0.59 3.10 0.39 2.34 – 3.86 <0.001 0.43 0.32 – 0.54 

Lexical_distance * 

L2_proficiency 

-0.11 0.99 -2.05 – 1.84 0.914 -0.00 -0.02 – 0.02 0.17 1.11 -2.01 – 2.35 0.879 0.00 -0.02 – 0.02 

Random Effects 

σ2 336.54 312.14 

τ00 34.03 Learner 66.37 Learner 
 

139.77 Task 124.06 Task 
 

4.75 L1 6.05 L1 

τ11 247.89 Task.Lexical_distance 179.03 Task.Lexical_distance 

ρ01 -0.18 Task 0.36 Task 

ICC 0.35 0.39 

N 9 L1 9 L1 
 

5385 Learner 4357 Learner 
 

95 Task 71 Task 

Observations 8081 6129 

Mar. R2 / Cond. R2 0.249 / 0.511 0.184 / 0.500 
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Figure 27. Assumption checks for the models with random slopes of lexical distance for task in the first corpus. 
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Figure 28. Assumption checks for the models with random slopes of lexical distance for task in the second corpus.
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Finally, in the case of random slopes of L2 proficiency for L1, the models had singularity issues 

in the both the first and second corpora, indicating that “the parameters are on the boundary of 

the feasible parameter space: variances of one or more linear combinations of effects are (close 

to) zero”. This suggests that inferences that are drawn from these models may not be reliable, 

so we did also not include these random slopes in our main analyses. Nevertheless, as in the 

case of random slopes of lexical distance for task, the results of these models closely mirror 

those of the main models, as shown in Table 32 (the corresponding assumption checks appear 

in Figures 29 and 30). 

Overall, the information in this section provides support for the use of the random-

intercepts model that appeared in the paper. Furthermore, it suggests that including potential 

random slopes does not substantially change the findings of the study. Nevertheless, as 

recommended by Meteyard & Davies (2020), we acknowledge that the choice to use this 

particular model specification represents one justified path out of several possible ones. 
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Table 32. Results of the models with random slopes of L2 proficiency for L1. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 64.87 1.45 62.03 – 67.71 <0.001 0.01 -0.10 – 0.12 66.70 1.59 63.59 – 69.81 <0.001 0.00 -0.12 – 0.13 

Lexical_distance -2.59 10.66 -23.48 – 18.29 0.808 -0.01 -0.07 – 0.05 4.40 11.79 -18.70 – 27.51 0.709 0.01 -0.06 – 0.08 

L2_proficiency 3.80 0.37 3.08 – 4.53 <0.001 0.50 0.40 – 0.59 3.10 0.39 2.33 – 3.87 <0.001 0.43 0.32 – 0.54 

Lexical_distance * 

L2_proficiency 

-0.21 1.60 -3.34 – 2.92 0.894 -0.00 -0.03 – 0.03 0.21 1.26 -2.26 – 2.69 0.867 0.00 -0.02 – 0.03 

Random Effects 

σ2 338.07 312.64 

τ00 32.99 Learner 66.65 Learner 
 

139.82 Task 124.09 Task 
 

5.18 L1 6.26 L1 

τ11 0.09 L1.L2_proficiency 0.03 L1.L2_proficiency 

ρ01 1.00 L1 1.00 L1 

N 9 L1 9 L1 
 

5385 Learner 4357 Learner 
 

95 Task 71 Task 

Observations 8081 6129 

Mar. R2 / Cond. R2 0.334 / NA 0.269 / NA 

Note. Some of the statistics are missing or equal to zero due to the singularity and convergence issues with the models, which are specified in the 

body of the text. 
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Figure 29. Assumption checks for the models with random slopes of L2 proficiency for L1 in the first corpus.
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Figure 30. Assumption checks for the models with random slopes of L2 proficiency for L1 in the first corpus.
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7.4.4.2 Baseline models 

The baseline models were models with no lexical distance as a predictor, and consequently also 

no interaction between lexical distance and L2 proficiency.97 The goal of comparing the main 

models to these models was to provide further insights into the effects of lexical distance, by 

showing what happens when it is excluded from the model. 

Table 33 shows the results of the baseline model. As expected, given the null effect of 

lexical distance and of its interaction with L2 proficiency in the main models, the results here 

closely mirror those of the main models. Figures 31 and 32 show the assumption checks for 

the models, which also closely mirror those of the main models (though there is no check for 

collinearity, since there is only one predictor). In addition, Table 34 contains the AIC/BIC 

comparison with the main models, based on the approach outlined in the previous section on 

the random-slopes models. The results of this comparison are mixed, with AIC providing weak 

support for the main models, and BIC providing strong support for the baseline models, so 

overall there was stronger support for the baseline models. This was expected given the lack 

of effect of lexical distance and of its interaction with L2 proficiency, and suggests that the 

weak support based on AIC is due to overfitting in the main models.

 
97 Recall that, as noted in the main paper, this interaction term is meant to determine whether the effect of lexical 

distance varies as a function of L2 proficiency (i.e., whether the effect of lexical distance becomes weaker as L2 

proficiency increases), since prior studies indicated that the expected L1 effects are generally stronger at lower 

proficiency levels. 
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Table 33. Results of the baseline models (with no lexical distance). 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 64.91 1.41 62.15 – 67.67 <0.001 0.01 -0.10 – 0.11 66.70 1.55 63.66 – 69.75 <0.001 0.00 -0.12 – 0.12 

L2_proficiency 3.82 0.36 3.12 – 4.52 <0.001 0.50 0.41 – 0.59 3.10 0.39 2.34 – 3.86 <0.001 0.43 0.32 – 0.54 

Random Effects 

σ2 337.83 313.05 

τ00 34.04 Learner 66.37 Learner  
139.67 Task 124.02 Task  
4.13 L1 5.33 L1 

ICC 0.34 0.38 

N 9 L1 9 L1  
5385 Learner 4357 Learner  
95 Task 71 Task 

Observations 8081 6129 

Mar. R2 / Cond. R2 0.249 / 0.508 0.184 / 0.498 
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Figure 31. Assumption checks for the baseline models in the first corpus. 
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Figure 32. Assumption checks for the baseline models in the second corpus.
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Table 34. Comparisons of AIC and BIC across models. Both measures were used, as 

suggested in Kuha (2004). Data was generated in R using the AIC and BIC functions. 

Corpus Model df AIC Δ AIC BIC Δ BIC 

First Main models 8 71071.51 - 71127.49 9.92 

First Baseline 6 71075.59 4.07 71117.57 - 

Second Main models 8 53972.68 - 54026.45 8.71 

Second Baseline 6 53977.41 4.73 54017.74 - 

Note. ΔAIC is calculated by subtracting the AIC of a given model from the AIC of the model with the minimal 

AIC in that corpus; accordingly, no ΔAIC is listed for the model with the minimal AIC in the corpus. The same 

is the case for ΔBIC.
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7.4.4.3 Models with binary distance 

In these models, rather than use phonological LDN based on Swadesh lists as the measure of 

lexical distance, we used a binary measure of lexical distance, based on whether the L1 was an 

Indo-European language like English or not. The Indo-European L1s included German, French, 

Italian, Portuguese, Spanish, and Russian, and were coded as 0 in the models. The non-Indo-

European L1s included Arabic, Japanese, and Mandarin, and were coded as 1. The goal of these 

models was to check if the findings hold when the L1s are categorized based on general 

linguistic relation to English. 

Table 35 shows the results of the models that used this distance measure, and Figures 

33 and 34 show the associated assumption checks. The results of these models closely mirror 

the results of the main models, as there are no substantial differences in any of the patterns. 

This was expected, given the robustness of the lack of effect in the main models and associated 

analyses (especially the estimated marginal means), and given that the binary distances align 

directly with the phonological LDN, in the sense that all the Indo-European L1s were lexically 

closer to English than all the non-Indo-European L1s.
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Table 35. Results of the models that use binary distance as a measure of lexical distance, based on whether the L1 was an Indo-European language 

like English or not. The Indo-European L1s included German, French, Italian, Portuguese, Spanish, and Russian, and were coded as 0 in the 

models. The non-Indo-European L1s included Arabic, Japanese, and Mandarin, and were coded as 1. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 65.25 1.52 62.28 – 68.22 <0.001 0.01 -0.10 – 0.12 66.32 1.68 63.03 – 69.61 <0.001 0.00 -0.12 – 0.13 

Lexical_distance -1.08 1.58 -4.18 – 2.02 0.494 -0.02 -0.07 – 0.04 1.14 1.80 -2.38 – 4.67 0.524 0.02 -0.04 – 0.09 

L2_proficiency 3.88 0.36 3.18 – 4.58 <0.001 0.50 0.41 – 0.59 3.10 0.39 2.33 – 3.87 <0.001 0.43 0.32 – 0.54 

Lexical_distance * 

L2_proficiency 

-0.20 0.14 -0.48 – 0.08 0.159 -0.01 -0.03 – 0.00 -0.01 0.16 -0.33 – 0.31 0.966 -0.00 -0.02 – 0.02 

Random Effects 

σ2 337.78 313.04 

τ00 34.05 Learner 66.45 Learner 
 

139.71 Task 124.01 Task 
 

4.52 L1 5.80 L1 

ICC 0.35 0.39 

N 9 L1 9 L1 
 

5385 Learner 4357 Learner 
 

95 Task 71 Task 

Observations 8081 6129 

Mar. R2 / Cond. R2 0.249 / 0.509 0.184 / 0.499 
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Figure 33. Assumption checks for the model with binary distance as a predictor, in the first corpus. 
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Figure 34. Assumption checks for the model with binary distance as a predictor, in the second corpus. 
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7.4.4.4 MATTR-based models 

7.4.4.4.1 Rationale 

In the main analyses in our study, we used measure of textual lexical diversity (MTLD) as a 

measure of lexical diversity, for two main reasons. First, there is substantial prior research on 

it, which facilitates the comparison of our findings with those of others (e.g., Treffers-Daller et 

al., 2018), and which shows that MTLD is strongly correlated with other common measures of 

lexical diversity, such as vocd-D, HD-D, and Maas (Fergadiotis et al., 2015; McCarthy & 

Jarvis, 2010; Treffers-Daller et al., 2018), so findings that are based on it are reasonably 

generalizable. Second, research shows that MTLD is relatively robust to short texts and to 

variations in text length, compared to most other measures of lexical diversity (Fergadiotis et 

al., 2015; Koizumi, 2012; Koizumi & In’nami, 2012; McCarthy & Jarvis, 2010; Vidal & Jarvis, 

2020; Yan et al., 2020; Zenker & Kyle, 2021). 

Another robust measure of lexical diversity that we considered is the moving-average 

type–token ratio (MATTR) (Covington & McFall, 2010; Fergadiotis et al., 2015; Vidal & 

Jarvis, 2020; Zenker & Kyle, 2021). We decided to focus on only one measure in the body of 

the article, due to length constraints. We chose MTLD over MATTR because, as noted above, 

there is more research on it, which facilitates the interpretation of our findings and their 

comparison with the findings of others, and particularly Treffers-Daller et al. (2018), who 

examined MTLD but not MATTR. 

Nevertheless, since MATTR is calculated in a different manner than MTLD, we built 

models that use it as our response variable, to see if the choice of lexical-diversity measure 

influences our findings. MATTR is an extension of type-token ratio (TTR), which is one of the 

simplest measures of lexical diversity and, as introduced in the main text, is calculated by 

dividing the number of word types by that of word tokens. TTR is highly sensitive to text length 

because the rate of increase in the number of word types differs across token counts. MATTR 

corrects this issue by calculating multiple TTRs in a sliding-window fashion within a fixed 

window size and calculating their averages. Individual TTRs, therefore, are calculated with the 

same number of tokens throughout. Specifically, MATTR is calculated as follows: 

We choose a window length (say 500 words) and then compute the TTR for words 1–

500, then for words 2– 501, then 3–502, and so on to the end of the text. The mean of 

all these TTRs is a measure of the lexical diversity of the entire text… 

 (Covington & McFall, 2010, p. 96) 
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This means that MATTR should not theoretically suffer from the same potential issues as 

MTLD when it comes to assessing lexical diversity in very short texts, since it does not involve 

the use of lexical remainders. This is supported by Zenker and Kyle (2021), who examined the 

use of MATTR in texts as short as 50 tokens and found that it is fairly robust there, though they 

also found that MTLD was robust in those conditions. 

 

7.4.4.4.2 Our approach 

When calculating MATTR, we used the same sample as for the main models (i.e., after the 

removal of the small percentage of outliers), to allow for a direct comparison of the models. 

We calculated MATTR using the same programmatic tools that we used to calculate 

MTLD. Specifically, we used the tokenize function in lexical-diversity library in Python (Kyle, 

2018) to tokenize the spelling-corrected versions of the texts, and then used the library’s mattr 

function to calculate the MATTR of each text, based on the approach by Covington & McFall 

(2010) that is outlined above. 

We calculated two main sets of MATTR scores, using different window sizes: 20 and 

50. The window size of 20 was used at it is the length of the shortest text in the sample, and 

consequently allows us to calculate a MATTR score for all the texts in the sample. However, 

because MATTR has not been validated using such short window size yet, we also calculated 

MATTR with a window length of 50, which has been previously validated (Zenker & Kyle, 

2021), on all texts in our sample that had 50+ tokens.98 

In addition, we also calculated MATTR scores with a window length of 50 using the 

more sophisticated TAALED-based approach to pre-processing texts (as outlined in the section 

of this supplementary information on our technical approach for calculating MTLD). 

 

 
98 This is not to say that MATTR is necessarily invalid when a window size of 20 is used, but rather that its validity 

has not yet been investigated. However, a key issue that can be expected to occur with such short window size is 

that there will not be enough vocabulary repetition in such short sequences for this measure to work properly. But, 

this does not seem to be a substantial issue in our sample, as discussed in the next sub-section, which shows that 

there is a very strong correlation between the two sets of MATTR scores in our sample (i.e., between those with 

a window size of 20 and a window size of 50). A possible reason for this is that our sample includes the writings 

of L2 learners with beginner to intermediate L2 proficiency, and generally, the lower a learner’s L2 proficiency 

is, the smaller their functional vocabulary is, and the higher the rate of repetition in their productions, as we note 

in the section of this supplementary information discussing text length and MTLD. This also ties in to a statement 

made by Covington and McFall (2010, p. 97) in their paper outlining MATTR: “A short window, perhaps as short 

as 10 words, is appropriate if the goal is to detect repetition of immediately preceding words or phrases due to 

dysfluent production”. 
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7.4.4.4.3 Analyses of MATTR values 

The correlation of MTLD with MATTR scores based on a window size of 20 was very strong 

in both the first corpus (r = .79, p < .001, 95%CI = [.78, .80]) and the second (r = .76, p < .001, 

95%CI = [.75, .77]).99 

 In addition, the correlation of MTLD in texts longer than 50 words with MATTR scores 

based on a window size of 50 was also very strong in both the first corpus (r = .86, p < .001, 

95%CI = [.85, .86]) and the second (r = .85, p < .001, 95%CI = [.84, .86]).100 

 Similarly, the correlation of MATTR based on a window size of 20 and MATTR based 

on a window size of 50, in texts with 50+ tokens, was also very strong in both the first corpus 

(r = .88, p < .001, 95%CI = [.87, .88]) and the second (r = .86, p < .001, 95%CI = [.85, .87]). 

 Finally, the correlation between MATTR (with a window length of 50) that was 

calculated using simple tokenization and MATTR (again with a window length of 50) that was 

calculated with the more sophisticated TAALED-based pre-processing was also very strong in 

both the first corpus (r = .92, p < .001, 95%CI = [.91, .92]) and the second (r = .88, p < .001, 

95%CI = [.87, .89]). 

 In summary, there were very strong correlations between MTLD and MATTR across 

the full sample (when a window size of 20 is used), as well as between MTLD and MATTR in 

texts with 50+ tokens (when a window size of 50 is used). In addition, there were very strong 

correlations between MATTR with a window size of 20 and MATTR with a window size of 

50, in texts with 50+ tokens, as well as between MATTR based on a simple tokenization 

approach and MATTR based on a more sophisticated TAALED-based pre-processing 

approach (again, when a window size of 50 is used on texts with 50+ tokens).  

This supports the MTLD values found in the present study—and consequently the 

findings based on them—by showing their strong association with the MATTR values. This 

 
99 There was a very small number of cases (19 in the first corpus, 0.24% of total; and 11 in the second corpus, 

0.18% of total) where the number of tokens used to calculate MATTR was less than 20 (range = 16–19 in both 

corpora), even though the calculated wordcount in the corpus was 20 or more. This was due to minor differences 

in how the number of tokens is calculated by the lexical-diversity library compared to how it was calculated in the 

EFCAMDAT Cleaned Subcorpus. In such cases—where a text is shorter than the window length used to calculate 

MATTR, a simple TTR value is returned instead, similarly to when the text is the same length as the window. 

However, the influence of this is negligible here, given the very small proportion of such cases, and the relatively 

minor influence of this on the calculations of MATTR in these cases. 
100 We calculated this using texts which had 50+ tokens according to all three available token counts (the counts 

in the corpus, the counts based on the simple tokenization function, and the counts based on the TAALED-based 

pre-processing). In practice, this was not an issue for the absolute vast majority of texts, compared to using texts 

with a wordcount of 50+ in the corpus: in the first corpus, this led to the use of 6,284 texts (98.42% of those with 

a corpus count of 50+), and in the second corpus, this led to the use of 4,580 texts (98.05%). 
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also supports the use of the use of MATTR with a short window length of 20 in the present 

study (i.e., on the present sample, for the present analyses). Finally, this suggests that while the 

TAALED-based pre-processing is likely beneficial, its effect does not substantially alter our 

findings, as supported by the previous supplementary models (with TAALED-based MTLD), 

which had similar findings as the main models. 

Nevertheless, these findings should be interpreted with caution, since we focused on 

validating the use of these measures within the context of the present study only, and as such 

we do not claim that these findings will necessarily generalize to other samples or analyses. 

Specifically, we acknowledge the potential issues associated with calculating lexical diversity 

(including MTLD and MATTR) using texts as short as those as the ones in our sample, and 

with using such a short window length in the case of MATTR. But, given the evidence outlined 

above, we believe that these issues do not invalidate the main findings of this study. 

 

7.4.4.4.4 MATTR-based results 

We built a set of MATTR-based models to supplement our MTLD-based ones. For this, we 

used the MATTR values that we calculated with a window length of 20 (using the whole 

sample), as well as the MATTR scores that we calculated with a window length of 50 (using a 

subset of the sample, including all texts from the A2–B2 CEFR level).101,102 

The results of these models appear in Tables 36 and 37 (the assumption checks are in 

Figures 35, 36, 37, and 38). They largely mirror the results of the main models, and this is 

particularly evident when looking at the standardized coefficients, which can be directly 

compared with the standardized coefficients in the main (MTLD-based) models. 

Specifically, across all models, there is a no effect of lexical distance, and no interaction 

between it and L2 proficiency.103 In addition, there is a similarly significant association 

 
101 We used the same subset of the sample as for MTLD-based supplementary models that are described in the 

section on text length and MTLD in the supplementary information. As shown in the descriptive statistics in that 

section, the vast majority of the texts in this subset had a wordcount equal to or greater than 50. To avoid a 

selection bias—which is also the reason why we focused here on texts from A2–B2, rather than just texts with 

50+ words—we included all the texts from those proficiency levels in our analyse. 96.95% in the first corpus and 

91.80% in the second corpus contained 50+ tokens (based on the number of tokens used to calculate the MATTR 

scores). 
102 Since the TAALED-based MATTR values were so strongly correlated with those based on the simpler pre-

processing approach, and since using the TAALED based values did not make a difference for the MTLD-based 

models, we did not build TAALED-based models here, as they would be redundant. 
103 In terms of significance, the interaction term in the second corpus is borderline significant based on the criterion 

of p = .05, but this appears to spurious, given (1) that its p-value is only borderline significant (p = .043), (2) the 

effect size is low enough to be negligible, (3) the interaction is non-significant in the other corpus, (4) the effect 
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between L2 proficiency and lexical diversity, which appears when looking at the full sample, 

but weakens or disappears when looking only at texts at the A2–B2 range. Finally, when it 

comes to the random effects, there is again a relatively large effect of task and a negligible 

effect of L1. This similarity in results across the MTLD- and MATTR-based models is 

expected, given the very strong correlations between MTLD and MATTR presented in the 

previous sub-section.  

Overall, the supporting models that use MATTR as a measure of lexical diversity show 

very similar results as the MTLD-based models. This provides strong support for the main 

findings, especially given that MTLD and MATTR are the two main lexical-diversity measures 

that are recommended for use when it comes to the kind of learner data that was used here, and 

given the strong correlation between these two measures and between these measures and other 

lexical-diversity measures, such as vocd-D, HD-D, and Maas (Fergadiotis et al., 2015; 

Koizumi, 2012; Koizumi & In’nami, 2012; McCarthy & Jarvis, 2010; Treffers-Daller et al., 

2018; Yan et al., 2020; Zenker & Kyle, 2021).

 
of distance is insignificant and insubstantial in both corpora, and (5) we are making multiple comparisons, so it is 

expected that there will be some borderline cases such as this simply due to chance. 
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Table 36. Results of the models that were calculated with MATTR as a response variable instead of MTLD, using a window length of 20. MATTR 

was scaled by a factor of 100 (so a scale of 0–100 instead of 0–1), to facilitate the interpretation of the unstandardized coefficients as well as 

comparison with MTLD. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 87.00 0.34 86.33 – 87.68 <0.001 0.01 -0.10 – 0.12 88.24 0.31 87.63 – 88.84 <0.001 -0.00 -0.12 – 0.11 

Lexical_distance -1.21 1.95 -5.04 – 2.62 0.537 -0.01 -0.06 – 0.03 -0.43 2.01 -4.37 – 3.52 0.833 -0.01 -0.06 – 0.05 

L2_proficiency 0.89 0.09 0.71 – 1.07 <0.001 0.49 0.39 – 0.59 0.60 0.08 0.44 – 0.75 <0.001 0.40 0.30 – 0.51 

Lexical_distance * 

L2_proficiency 

0.13 0.21 -0.28 – 0.54 0.536 0.01 -0.01 – 0.02 0.44 0.22 0.01 – 0.87 0.043 0.02 0.00 – 0.04 

Random Effects 

σ2 17.40 13.53 

τ00 2.95 Learner 3.86 Learner 
 

9.28 Task 5.17 Task 
 

0.16 L1 0.17 L1 

ICC 0.42 0.40 

N 9 L1 9 L1 
 

5385 Learner 4357 Learner 
 

95 Task 71 Task 

Observations 8081 6129 

Mar. R2 / Cond. R2 0.239 / 0.555 0.159 / 0.499 
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Table 37. Results of the models that were calculated with MATTR as a response variable instead of MTLD, using a window length of 50, and 

texts at the A2–B2 CEFR range. MATTR was scaled by a factor of 100 (so a scale of 0–100 instead of 0–1), to facilitate the interpretation of the 

unstandardized coefficients as well as comparison with MTLD. 

  First corpus Second corpus 

Predictors B SE 95% CI p std. B std. 95% CI B SE 95% CI p std. B std. 95% CI 

(Intercept) 74.57 0.54 73.51 – 75.64 <0.001 0.00 -0.14 – 0.14 77.89 0.49 76.92 – 78.85 <0.001 0.00 -0.15 – 0.16 

Lexical_distance 0.88 2.98 -4.95 – 6.72 0.767 0.00 -0.06 – 0.07 2.53 3.09 -3.53 – 8.59 0.413 0.03 -0.05 – 0.11 

L2_proficiency 1.01 0.17 0.68 – 1.34 <0.001 0.38 0.26 – 0.51 0.08 0.15 -0.21 – 0.37 0.599 0.04 -0.10 – 0.17 

Lexical_distance * 

L2_proficiency 

-0.46 0.36 -1.16 – 0.25 0.203 -0.01 -0.03 – 0.01 -0.24 0.39 -0.99 – 0.52 0.542 -0.01 -0.03 – 0.02 

Random Effects 

σ2 23.66 18.67 

τ00 3.05 Learner 4.66 Learner 
 

13.31 Task 7.61 Task 
 

0.39 L1 0.41 L1 

ICC 0.41 0.40 

N 9 L1 9 L1 
 

3882 Learner 3182 Learner 
 

71 Task 53 Task 

Observations 6160 4621 

Mar. R2 / Cond. R2 0.145 / 0.499 0.002 / 0.406 
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Figure 35. Assumption checks for the model MATTR as the response variable (using a window length of 20), in the first corpus. 
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Figure 36. Assumption checks for the model MATTR as the response variable (using a window length of 20), in the second corpus. 
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Figure 37. Assumption checks for the model MATTR as the response variable (using a window length of 50 and texts at the A2–B2 CEFR range), 

in the first corpus. 
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Figure 38. Assumption checks for the model MATTR as the response variable (using a window length of 50 and texts at the A2–B2 CEFR range), 

in the second corpus. 
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7.4.5 Supporting statistics 

7.4.5.1 Raw correlations of lexical diversity and proficiency 

The Pearson’s r correlation between lexical diversity (MTLD) and L2 proficiency (based on 

EFCAMDAT level) was r = .51, p < .001, 95%CI = [.49, .52] in the first corpus and r = .43, p 

< .001, 95%CI = [.41, .45] in the second corpus. Spearman’s rho correlations are very similar 

(.52 in the first corpus and .45 in the second, both p < .001). Likewise, so are the correlations 

when using task number as the measure of proficiency (r = .51, p < .001, 95%CI = [.49, .52] in 

the first corpus and r = .44, p < .001, 95%CI = [.41, .46] in the second), and when using CEFR 

as the measure of proficiency (r = .49, p < .001, 95%CI = [.48, .51] in the first corpus and r = 

.44, p < .001, 95%CI = [.42, .46] in the second). 

 

7.4.5.2 Lexical diversity per CEFR level, by L1 

Table 38 contains details about lexical diversity per CEFR level and by L1 in each corpus. 

 

Table 38. The mean and the standard deviation of lexical diversity (MTLD), per CEFR level 

and by L1 in each corpus. 

L1 CEFR level Mean (SD) 

[first corpus] 

Mean (SD) 

[second corpus] 

Arabic A1 43.36 (20.03) 45.16 (18.75) 

Arabic A2 56.01 (23.09) 63.54 (26.23) 

Arabic B1 71.80 (22.52) 72.97 (24.03) 

Arabic B2 73.44 (22.99) 76.17 (19.73) 

French A1 45.59 (21.21) 46.96 (16.85) 

French A2 58.01 (20.61) 69.21 (26.02) 

French B1 74.18 (22.46) 76.45 (23.78) 

French B2 80.50 (23.20) 78.07 (21.59) 

German A1 46.35 (20.28) 46.63 (15.78) 

German A2 58.15 (22.44) 67.52 (23.38) 

German B1 73.58 (23.52) 75.59 (21.56) 

German B2 80.01 (24.40) 76.92 (19.74) 

Italian A1 47.10 (20.42) 45.85 (15.55) 

Italian A2 60.52 (24.58) 66.94 (23.60) 
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L1 CEFR level Mean (SD) 

[first corpus] 

Mean (SD) 

[second corpus] 

Italian B1 76.66 (23.55) 75.97 (22.96) 

Italian B2 80.36 (23.81) 74.60 (19.95) 

Japanese A1 45.58 (20.71) 48.26 (17.72) 

Japanese A2 57.82 (21.80) 68.76 (27.14) 

Japanese B1 74.86 (23.16) 74.40 (25.10) 

Japanese B2 78.68 (26.03) 77.97 (20.95) 

Mandarin A1 45.32 (20.74) 48.91 (19.08) 

Mandarin A2 61.77 (23.83) 73.85 (24.08) 

Mandarin B1 75.18 (21.88) 78.59 (22.94) 

Mandarin B2 79.45 (22.88) 79.18 (22.12) 

Portuguese A1 46.28 (20.06) 44.84 (16.07) 

Portuguese A2 58.10 (22.57) 68.93 (22.70) 

Portuguese B1 75.16 (21.31) 73.33 (24.87) 

Portuguese B2 80.02 (24.92) 74.62 (22.09) 

Russian A1 47.10 (20.47) 48.18 (17.68) 

Russian A2 58.94 (22.43) 67.88 (26.62) 

Russian B1 79.49 (22.97) 80.50 (22.45) 

Russian B2 86.41 (26.31) 81.12 (21.38) 

Spanish A1 43.04 (20.38) 44.44 (16.23) 

Spanish A2 57.13 (22.35) 63.37 (22.46) 

Spanish B1 69.79 (21.15) 70.68 (22.84) 

Spanish B2 72.88 (23.28) 71.22 (18.39) 

 

 

7.4.5.3 Number of texts per CEFR level, by L1 

Table 39 contains the number of texts per CEFR level by L1 in each corpus, after removing 

outliers. 

 



234 

 

Table 39. Number of texts in the final sample after the removal of outliers, per L1 and CEFR proficiency level. 

L1 First corpus Second corpus 

Total A1 A2 B1 B2 Total A1 A2 B1 B2 

Arabic 863 206 233 226 198 688 171 172 167 178 

French 911 222 230 229 230 681 162 176 167 176 

German 903 211 231 229 232 691 170 174 170 177 

Italian 905 215 232 226 232 688 174 172 166 176 

Japanese 901 217 231 227 226 677 168 172 165 172 

Mandarin 887 210 230 222 225 660 158 168 164 170 

Portuguese 903 208 234 229 232 683 164 174 168 177 

Russian 908 216 233 227 232 669 168 170 164 167 

Spanish 900 216 234 227 223 692 173 175 169 175 

Total 8,081 1,921 2,088 2,042 2,030 6,129 1,508 1,553 1,500 1,568 
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7.4.6 Information about the analyses in R 

All analyses were conducted in R (R Core Team, 2021).104 All tests of statistical significance 

throughout the study were two-tailed. The mixed-effects models were built using the lmer 

function in the lme4 package in R (Bates et al., 2015), using the default settings (REML and a 

nloptwrap optimizer). Assumption checks were generated using the performance package in 

the easystats ecosystem (Lüdecke et al., 2021). The scatterplots and linear models with lexical 

distance as the predictor and lexical diversity as the response variable (per CEFR level) were 

generated in ggplot2 using the lm method under geom_smooth (Wickham, Averick, et al., 

2019). 

To list the specific packages that were loaded throughout the analyses, we used the 

sessionInfo function from the report library (Makowski & Lüdecke, 2019). Note that this 

generates an automated output based on the citation information associated with the metadata 

of each package, which may be incomplete or formatted differently than APA style. We present 

this bibliography here as-is, to preserve the original output, and we therefore also separate it 

from the main the main bibliography for this document. 

 

---Start of report(sessionInfo()) output below--- 

Analyses were conducted using the R Statistical language (version 4.0.4; R Core Team, 2021) 

on Windows 10 x64 (build 19042), using the packages ggpubr (version 0.4.0; Alboukadel 

Kassambara, 2020), cowplot (version 1.1.1; Claus Wilke, 2020), Matrix (version 1.3.2; 

Douglas Bates and Martin Maechler, 2021), lme4 (version 1.1.26; Douglas Bates et al., 2015), 

Hmisc (version 4.5.0; Frank E Harrell Jr, with contributions from Charles Dupont and many 

others., 2021), ggplot2 (version 3.3.3; Wickham. ggplot2: Elegant Graphics for Data Analysis. 

Springer-Verlag New York, 2016.), stringr (version 1.4.0; Hadley Wickham, 2019), forcats 

(version 0.5.1; Hadley Wickham, 2021), tidyr (version 1.1.3; Hadley Wickham, 2021), readr 

(version 1.4.0; Hadley Wickham and Jim Hester, 2020), dplyr (version 1.0.5; Hadley Wickham 

et al., 2021), tibble (version 3.1.0; Kirill Müller and Hadley Wickham, 2021), purrr (version 

0.3.4; Lionel Henry and Hadley Wickham, 2020), ggeffects (version 1.0.2; Lüdecke D, 2018), 

 
104 There are two exceptions to this. First, MATTR was calculated using Python, as noted in the section on 

MATTR in this document. Second, the lexical-distance data was also generated in Python. Specifically, the 

following Python libraries were used for some basic data wrangling and calculations: SciPy (Virtanen et al., 2019), 

pandas (McKinney, 2010), and numpy (Oliphant, 2006; Walt et al., 2011). The ASJP’s specialized phonetic script 

(outlined in Brown et al., 2008) was converted to IPA using the dedicated asjp library (Sofroniev, 2018). The 

distances were calculated using the PanPhon library (Mortensen et al., 2016). 
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sjPlot (version 2.8.7; Lüdecke D, 2021), performance (version 0.7.0; Lüdecke et al., 2020), 

report (version 0.2.0; Makowski et al., 2020), data.table (version 1.14.0; Matt Dowle and Arun 

Srinivasan, 2021), openxlsx (version 4.2.3; Philipp Schauberger and Alexander Walker, 2020), 

janitor (version 2.1.0; Sam Firke, 2021), lattice (version 0.20.41; Sarkar, Deepayan, 2008), 

survival (version 3.2.7; Therneau T, 2020), tidyverse (version 1.3.0; Wickham et al., 2019) and 

Formula (version 1.2.4; Zeileis A, Croissant Y, 2010). 
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7.5 Appendix E: Supplementary information for study 2 (on word choice) 

7.5.1 Lexical distance 

7.5.1.1 The term “lexical distance” 

There is no universal distinction between the terms lexical distance and lexical similarity, 

which are often used interchangeably.105 In the present study, we use lexical distance to refer 

to distance between individual L1-L2 words, which are translations of one another. This 

distance is based on objective phonological distance (specifically, normalized Levenshtein 

distance—LDN), which serves as a proxy for the subjective similarity between the words that 

is expected to be perceived by speakers, as supported by the studies outlined in the next sub-

section (§7.5.1.2). 

 The reason we use the term lexical distance in particular is to distinguish it from other 

types of language distances, such as morphological distance, in line with prior studies (Bakker 

et al., 2009; Brown et al., 2008; Gooskens, 2006; Holman et al., 2008b; Schepens et al., 2016; 

Schepens, van der Slik, et al., 2013b). Here, it is worth noting that lexical distance can serve as 

a proxy of overall language distance, which is sometimes also referred to as linguistic distance 

or typological distance (e.g., Ecke, 2015; Llach, 2010),106 but we do not use it in this sense 

here, since in our study we only consider the distance of individual L1-L2 word pairs directly, 

rather than the distance between languages as a whole. Nevertheless, note that we are using a 

specific type of lexical distance—phonological LDN—as a proxy for overall lexical distance, 

which can include other factors, such as orthography.107 Finally, note that other less-common 

 
105 Though increased distance denotes decreased similarity and vice versa, so lexical distance is technically more 

closely associated with lexical dissimilarity. 
106 Though one issue with the term “typological distance” is that it is not always used to refer to overall language 

distance. Rather, it is sometimes used to refer to distance that is based on grammatical features, such as those that 

are available in the World Atlas of Language Structures (WALS), in order to draw a distinction between it and 

other types of distance, such as lexical distance that is based on Levenshtein distance in Swadesh lists (Bakker et 

al., 2009). 
107 Though note that phonological and orthographic similarity tend to be highly correlated. For example, in a 

recent study on the English and French vocabulary of Dutch speaking children, De Wilde et al.( 2021), who also 

used normalized Levenshtein distance, included only phonological similarity in their analyses, and omitted 

orthographic similarity, since the two variables were highly correlated and could therefore lead to issues with 

collinearity. This is also something that these researchers did in another associated study (De Wilde et al., 2020), 

and is an issue that was raised by other researchers, such as Carrasco-Ortiz et al. (2021), who found a correlation 

of r = .782 between orthographic and phonological distance in their dataset of English and Spanish words. Here 

too, there were similarly strong correlations between phonological and orthographic distance in the parallel 

dictionaries, where all the L1s share English’s Latin script, both in the case of LDN (r = .68, 95% CI = [.67, .70], 

p < .001), and in the case of LD (r = .73, 95% CI = [.71, .74], p < .001). We do not include orthographic distance 

in our analyses both because of its substantial overlap with phonological similarity in the case of L1s that share 

English’s script, and because we wanted to use consistent analyses for all the L1s in the sample, but orthographic 

distance is largely meaningless across languages that use different scripts (which includes several of the L1s in 

the Swadesh-based sample). 
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terms are sometimes used for lexical distances that are similar to the one that we use here, such 

as phonological overlap (Carrasco-Ortiz et al., 2021) or cognate linguistic distance (van der 

Slik, 2010).108 

 

7.5.1.2 Validation of Levenshtein distance 

Here, we outline the extensive use and validation that Levenshtein distance (LD) and its 

normalized form (LDN) have received in prior research.109 

First, we open with a notable study by Schepens et al. (2012), which is often cited by 

other researchers in this context (e.g., Blom et al., 2020; Cenoz et al., 2021; Cop et al., 2017; 

De Wilde et al., 2020, 2021; Otwinowska & Szewczyk, 2019; Silveira & Leussen, 2015; 

Wieling et al., 2014). Specifically, in their study, Schepens et al. (2012) conclude the following: 

It is possible to automatically identify large distributions of cognates with respect to 

form-similarity in various European languages by means of a formalized form- 

similarity metric such as normalized Levenshtein distance. Applying this metric to a 

professional translation database, similarity norms were obtained that are comparable 

to experimentally acquired orthographic similarity ratings (Dijkstra et al., 2010; 

Tokowicz et al., 2002), and lead to high correlations (around .90) and a large proportion 

of correctly classified stimuli (over 90%). The obtained distributions were also 

compared to an account of cross-language similarity based on Gray and Atkinson (r = 

.72). A common pattern in the degree of orthographic similarity of these distributions 

was observed within languages of the same family. In our analysis, English showed 

characteristics of multiple language families (Germanic, Romance). Cognate 

distributions were computed here using semi-complete lexicons, whereas Gray and 

Atkinson used only a small set of high frequency words. 

In all, our study demonstrated the feasibility and advantages of applying techniques 

from artificial intelligence to psycholinguistic and linguistic research involving 

multiple languages. First, the application of the normalized Levenshtein distance 

function resulted in an automatized selection of more and better stimulus materials for 

cognate studies on bilingual word processing. Second, the Levenshtein distance 

 
108 Though the term “cognate lexical distance” is not appropriate to use here, since it refers to the overall distance 

between languages as calculated based on the proportion of cognates, rather than to distances that are calculated 

between individual word pairs. 
109 Note that LDN is sometimes also referred to in the literature using similar terms, and especially NLD and nLD. 
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function yielded accurate and detailed cross-language similarity distributions for 

multiple languages, thus allowing a comparison to language family trees. As such, the 

present study has shown that the Levenshtein distance function can compete with 

existing similarity measures (such as those proposed by Coltheart, Davelaar, Jonasson 

& Besner, 1977, and Van Orden, 1987) and can be considered as a new formal and 

computational model of orthographic similarity, useful for future empirical studies in 

monolingual and bilingual domains as diverse as those dealing with neighborhood 

effects, spelling systems, and dyslexia. 

 (p. 165) 

In addition, further support for LD(N) as a measure of lexical distance comes from many other 

studies. 

 First, there is substantial support for this measure based on its extensive use in studies 

pertaining to language classification. For example, in a study that examined lexical distance 

between 35 Indo-European L1s and Dutch, Schepens et al. (2013b) found a very high 

correlation (r = .90) between this measure as determined based on the ASJP’s Swadesh lists, 

and distances that are based on shared cognates as determined by Gray and Atkinson (2003) 

on historical-comparative grounds. Furthermore, Schepens et al. (2013a) found that this 

measure correlates strongly with crosslinguistic morphological similarity (r = -.65), as 

determined based on morphological features in the World Atlas of Language Structures. In 

addition, based on comparisons with other data sources, such as established dialect boundaries, 

using LD between phonetic strings has been shown to be effective for assessing dialects, for 

example when it comes to Gaelic (Kessler, 1995) and Dutch (Gooskens & Heeringa, 2004; 

Nerbonne & Heeringa, 2001). Finally, other studies have found that this measure leads to 

accurate language classification as determined based on measures such as expert classification, 

when it comes to many other languages and dialects (Schepens et al., 2012; Serva & Petroni, 

2008; Wichmann et al., 2010). 

There is also substantial support for LD(N) based on the high correlation between it 

and various psycholinguistic measures (Heeringa & Prokić, 2018).110 For example, Beijering 

et al. (2008) found a strong correlation between LDN-based distances and intelligibility scores 

 
110 This is important, since LD/LDN are objective measures of language distance, which often serve—including 

in the present research—as proxies for the subjective language distance that learners perceive (i.e., the 

psychotypology), which is the main driver behind the crosslinguistic influence that they experience (Jarvis & 

Pavlenko, 2008; Kellerman, 1983; Ringbom, 2007; Xia, 2017). 
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(r = -.86) and perceived linguistic distances (r = .52), in their study of Standard Danish and 17 

other Scandinavian language varieties.111 Similarly, Gooskens (2006) found a correlation of r 

= -.82 between phonetic LD and intelligibility scores among students from schools in Denmark, 

Norway, Sweden, and Finland. Furthermore, Gooskens and Heeringa (2004), who examined 

15 Norwegian dialects as judged by Norwegian listeners, found a strong correlation between 

LD and perceptual distance (r = .62 in an experiment where monotonized recordings were used, 

and r = .67 in an experiment where nonmanipulated recordings were used), leading the 

researchers to conclude that:  

This shows that dialect distances calculated with Levenshtein distance approximate 

perceptual distances rather well. We see this as a confirmation of the usefulness of the 

Levenshtein method, as has been shown before for Dutch dialects. Now we know that 

the method is also applicable in a language area with a less simple geographic situation 

than the Dutch one. 

(p. 205) 

Furthermore, this measure has also been extensively used and validated in the context of second 

language acquisition (SLA) research, which involved similar analyses as the present study. 

This includes the following studies: 

− Otwinowska et al. (2020) used LDN to quantify L1-L2 orthographic similarity between 

words, in their study on the influence of cross-linguistic lexical similarity on the 

learning of cognates and non-cognates among Polish learners of English. Specifically, 

they used this measure to show that the cognates and false cognates that they examined 

were comparable in terms of their L1-L2 orthographic similarity, and this measure has 

been used in similar ways in associated studies (e.g., Marecka et al., 2021; Otwinowska 

& Szewczyk, 2019).112 

− Many studies used this measure to assess cognancy. This includes using LD to 

determine cognancy based on phonological (Sadat et al., 2016) or orthographic 

transcriptions (Bultena et al., 2020; Y. Zhu & Mok, 2020), using LD to compare 

cognates and non-cognates based on both phonological and orthographic transcriptions 

(Carrasco-Ortiz et al., 2021), using LDN to determine cognancy based on orthographic 

 
111 They also found similar correlations when it comes to non-normalized LD (r = -.79 for intelligibility and r = 

.62 for perceived distance). 
112 Otwinowska et al. (2020) also used LDN to quantify orthographic dissimilarity “between a correct L2 

translation and a participant’s response that was required to treat the response as correct” (p. 712), and other 

researchers used this measure for similar comparative purposes (Hanulíková et al., 2012; Marecka et al., 2021). 
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transcriptions (Casaponsa et al., 2015), and using LDN to determine cognancy based 

on both phonological and orthographic transcriptions (De Wilde et al., 2020). 

− In addition, LD/LDN were also used in other studies to assess crosslinguistic similarity 

of words and its influence on L2 acquisition (De Wilde et al., 2021; van de Ven et al., 

2019), to quantify crosslinguistic orthographic overlap of non-identical cognates 

(Vanlangendonck et al., 2020), and to serve various similar purposes (Cenoz et al., 

2021), as have other closely related measures of lexical distance (Dijkstra et al., 2010; 

Schepens, van der Slik, et al., 2013a). 

Note that many of the aforementioned SLA studies also found that this measure of lexical 

distance is an accurate predictor of various L2 outcomes, including L2 meaning recognition 

(De Wilde et al., 2021), word processing speed and accuracy (Casaponsa et al., 2015), word 

recognition (Carrasco-Ortiz et al., 2021), receptive word knowledge (De Wilde et al., 2020), 

word retrieval (Sadat et al., 2016), translation accuracy (van de Ven et al., 2019), increased 

errors in the case of gender-incongruent cognates (Bultena et al., 2020), and overall L2 

proficiency (Schepens, van der Slik, et al., 2013a). 

Finally, in the case of the present study, the classification of L1s based on their lexical 

distance from English aligns with what we expect based on general language classification. 

Specifically, based on the distances per L1, which are shown in Table 40, the Germanic and 

Romance L1s are the lexically closest to English, and all the Indo-European L1s are closer to 

English than all the non-Indo-Eurpoean L1s (Eberhard et al., 2021). 
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Table 40. The lexical distances between each L1 and English. This is based on the Swadesh 

lists, since they contain data for all the L1s in the present sample, and specifically on the data 

before the removal of multi-word entries, unlike the similar table in the body of the paper. The 

reason for this is that the inclusion of only single-word entries is appropriate for the analyses 

of individual word pairs, and therefore does not interfere with our main analyses, but could 

bias comparisons at the language level, where it is important to include all the available word 

pairs. 

   Lexical distance 

L1 Language family a Indo-European a mean SD 

German Germanic Y .656 .27 

Italian Romance Y .820 .20 

Spanish Romance Y .840 .20 

French Romance Y .851 .19 

Russian Slavic Y .867 .19 

Portuguese Romance  Y .878 .18 

Japanese Japonic N .892 .15 

Arabic Semitic N .912 .12 

Mandarin Sino-Tibetan N .920 .12 

Note. These values are calculating using English-based tables, where distances are calculated from each English 

word in the dataset to its closest L1 synonym. It is also possible to calculate these distances using L1-based tables, 

where distances are calculated from each L1 word to its closest English synonym. However, the distances are 

quite similar regardless of which option is used (Spearman’s ρ = 0.97, p < .001); the key differences are that when 

L1-based tables are used, the Spanish-English distance increases to make it more distant than French, and the 

Russian-Portuguese distance increases to make it more distant than Portuguese. 
a Language classifications are based on (Eberhard et al., 2021). 

 

The fact that the Indo-European L1s were found to be lexically closer to English also aligns 

our expectations based on the measure of linguistic distance proposed by Chiswick and Miller 

(2005). Specifically, this measure is based on the difficulty that English speakers have 

acquiring other languages, and has been shown by Chiswick and Miller to predict the difficulty 

that speakers of those languages will have when acquiring English as an L2. Similarly to our 

measure of distance, their measure also suggests that all the Indo-European L1s that are 

included here are closer to English than the non-Indo-Eurpoean L1s.113 Furthermore, in this 

 
113 Their measure ranks languages on a scale of 1–3, where 1 marks the hardest languages to learn (i.e., the most 

distant) and 3 marks the easiest languages to learn (i.e., the least distant). Out of the L1s included in the present 

sample, French, Italian, and Portuguese have a ranking of 2.5, German, Spanish, and Russian, have a ranking of 

2.25, Arabic and Mandarin have a ranking of 1.5, and Japanese has a ranking of 1. This roughly corresponds to 

the ranking found here, whereby all the Indo-European L1s are closer to English than the non-Indo-European L1s. 

The imperfect correlation between their measure and ours is expected, since, as they note, their measure includes 

various aspects of the language beyond vocabulary, such as syntax. 
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regard, the use of our measure of lexical distance is further supported by Schepens et al. 

(2013a), who calculated lexical distance in a similar manner as us between 49 L1s and Dutch, 

and found that increased distance is strongly correlated (r = -.80) with broad L2 proficiency in 

Dutch.114 This suggests that distances that are based on this measure strongly predict L2 

learnability, in a similar manner as proposed by Chiswick and Miller. 

In summary, there is extensive support for our use of LDN as a measure of lexical distance 

here, including in terms of construct and convergent validity. This includes: 

− Many studies that validated it by comparing it to other measures of language classification, 

such as expert cognancy judgments (Brown et al., 2008; Gooskens & Heeringa, 2004; 

Holman et al., 2008b; Kessler, 1995; Nerbonne & Heeringa, 2001; Schepens et al., 2012; 

Schepens, van der Slik, et al., 2013b, 2013a; Serva & Petroni, 2008; Wichmann et al., 

2010). 

− Many studies that validated it by comparing it to psycholinguistic measures of language 

perception, such as perceived distance (Beijering et al., 2008; Gooskens, 2006; Gooskens 

& Heeringa, 2004; Heeringa & Prokić, 2018). 

− Many SLA studies that used it for similar purposes, to assess crosslinguistic similarity 

(particularly cognancy), and found that it predicts many types of L2 outcomes (Bultena et 

al., 2020; Carrasco-Ortiz et al., 2021; Casaponsa et al., 2015; Cenoz et al., 2021; De Wilde 

et al., 2020, 2021; Hanulíková et al., 2012; Marecka et al., 2021; Otwinowska et al., 2020; 

Otwinowska & Szewczyk, 2019; Sadat et al., 2016; Schepens, van der Slik, et al., 2013a; 

van de Ven et al., 2019; Vanlangendonck et al., 2020; Y. Zhu & Mok, 2020). 

− The alignment of the overall crosslinguistic lexical distances in our samples with what is 

expected based on general language classification.  

That said, this measure, like all linguistic measures, is imperfect, and we recommend that future 

work replicate our analyses using other distance measures,115 as we do ourselves using feature 

edit distance. Furthermore, it is important to remember that the validation of this measure is 

itself imperfect, in the sense that the studies that validated it likely had their own limitations 

and shortcomings, and their methodologies and goals do not always align with our own. 

 
114 Schepens et al. base this on distances as calculated using Swadesh lists in the ASJP, similarly to us, though 

they use LDND rather than LDN; this is a closely associated variant of Levenshtein distance, which is discussed 

in detail in the next sub-section. 
115 For more information on the issues with this measure, see the “Limitations of LDN” sub-section in the paper’s 

methodology. Also, additional criticism of this measure—primarily in the context of language classification—can 

be found in Greenhill (2011). 
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Nevertheless, given all the support for this measure outlined above, we believe that its use here 

is reasonable, and that the outcomes based on it are reasonably reliable and generalizable. 

 

7.5.1.3 LDN vs. LDND 

As noted in the body of the paper, LDN is the normalized version of LD, which accounts for 

word length by diving the LD between a pair or words by the length of the longer word, to 

control for variations in word length. 

LDN can be further normalized into LDND, by dividing it by the mean LDN of all N(N-

1)/2 pairings of words with different meanings, to control for shared phonotactic preferences 

or overlap in phoneme inventories (Bakker et al., 2009, p. 171). However, while the first 

normalization of LD is usually seen as crucial, the second normalization is controversial and 

rare (Petroni & Serva, 2010; Wichmann et al., 2010), and none of the SLA or psycholinguistic 

studies outlined in the previous sub-section (§7.5.1.2) used it. Furthermore, the use of LDND 

can lead to two notable issues. First, it is not sample-independent unlike LDN, so the LDND 

between two words varies based on which others words from the same languages are included 

in the analysis, which is not the case for LDN. Second, it minimizes similarity due to shared 

phonotactic preferences or overlap in phoneme inventories, which should be taken into account 

when assessing lexical distance in the present context, since similarity driven by these causes 

can influence the perceived similarity of words across languages. 

As such, in the present study we use LDN, rather than LDND. Nevertheless, these two 

measures are generally strongly correlated (Holman et al., 2008a; Pompei et al., 2011; 

Wichmann et al., 2010), so the impact of using one over the other is likely minor. 

 

7.5.2 Feature edit distance 

7.5.2.1 Rationale for feature edit distance 

As noted in our discussion of Levenshtein distance in the paper, a notable issue with this 

measure is that it treats all character transformations as equal, even though this does not 

accurately represent differences in distances as perceived by learners. For example, this means 

that the English word “fish” /fɪʃ/ has an equal and maximal LDN of 1 from both the 

corresponding Spanish word (“pez” /pes/) and the Hebrew one (“דג” /dag/), even though the 

English word is closer phonologically and etymologically to the Spanish word than to the 

Hebrew one, and could be considered a cognate of the first but not the second. 
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 A potential way to mitigate this issue is to assign different weights to different character 

transformations, based on the phonological features of the associated segmental units. The 

resulting measure, which can be viewed as a modified form of Levenshtein distance, is referred 

to as phonological edit distance, feature edit distance, or feature distance (FD)(Allen & 

Becker, 2015; Eden, 2018; Fontan et al., 2016; K. C. Hall et al., 2017; Kondrak, 2000; 

Manurung et al., 2008; McCoy & Frank, 2018; Mortensen et al., 2016; Sanders & Chin, 2009; 

Schepens, Dijkstra, et al., 2013; L. Zhang, 2018). For example, when using FD, substituting /ʃ/ 

with /z/ would generally incur a lower penalty than substituting it with /g/, since /ʃ/ and /z/ are 

share the same value on more phonological features, such as being coronal, so they can be 

considered more similar to each other from a phonological perspective. 

 

7.5.2.2 Limitations of feature edit distance 

Though FD might be able to capture phonological similarity more accurate than LD, we 

decided to use LD(N) as the key measure of similarity in our study, for two main reasons. 

 First, while there is extensive validation for the use of LD based on research in several 

fields (as shown under “Validation of Levenshtein distance” in this supplementary 

information), there is little validation of FD in similar contexts. As such, while LD might 

potentially be less linguistically motivated than FD, we do know based on prior research that 

it is able to predict linguistics outcomes fairly well—including when used to predict the 

influence of crosslinguistic similarity on L2—whereas we do not yet know the same for FD. 

In fact, the limited research that did investigate the use of FD and similar measures did not find 

that they are necessarily better predictors of linguistic outcomes than simple Levenshtein 

distance (Wieling et al., 2007; Wieling, Nerbonne, et al., 2014). For example, as Wieling et al. 

(2007, p. 93) state: 

It was found that generally speaking the binary versions approximate perceptual distances 

better than the feature- based and acoustic-based versions. The fact that segments differ 

appears to be more important in the perception of speakers than the degree to which 

segments differ. Therefore we will use the binary version of Levenshtein distance in this 

article… 

Second, the simplicity of LD (compared to FD) presents advantage for replication of analyses, 

the generalizability of findings, the comparison of findings across studies, and the minimization 

of researcher degrees of freedom. Specifically, while LD is generally implemented in 
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consistent manner across the various software packages that offer it, which means that 

calculating LD using different packages/software will lead to the same results, this is not the 

case of FD, which depends heavily on factors such as: 

− Which phonological features are taken into account (Gooskens & Heeringa, 2004; 

Nerbonne & Heeringa, 1997).116 

− What weights should be assigned to differences in feature values, and how substitutions 

should be weighted compared to insertions/deletions. 

− Whether different weights should be assigned to different features, and if so, then what 

weights. This is compounded by the fact that different features could potentially be 

weighted differently for different populations (e.g., speakers of different L1s, who perceive 

the different features differently) and in different contexts (e.g., when it comes to assessing 

perceived distance vs. intelligibility). 

− How this distance should be normalized.117 

Furthermore, in this regard, there is also the question of whether to use FD in particular, or a 

similar measures that attempts to capture crosslinguistic similarities, such as pointwise mutual 

information (PMI)(Wieling, Bloem, et al., 2014) or naive discriminative learning 

(NDL)(Wieling, Nerbonne, et al., 2014). 

In summary, although FD might be more linguistically motivated than LD, it is not clear 

that this is the case and that FD is a better predictor of linguistic outcomes. Furthermore, much 

methodological work needs to be done on FD to validate and standardize its use, before it can 

be used with confidence by researchers. 

 

 
116 For example, in the case of the PanPhon, which we use in the present research, /a/ and /æ/ have an FD of 0, 

since the two segments share identical values for all features in the package’s dataset. This can lead to situations 

where two entries have an FD = 0 but an LD > 0, as in the case of /bambu/ and /bæmbu/ (‘bamboo’), which have 

an FD = 0 but an LD = 1. 
117 Generally, FD is normalized into FDN in a similar manner as LD, though its theoretical maximum is based on 

the number of segmental units in the longer string, rather than on the number of characters (e.g. /t͡ sː/ is viewed as 

a single segmental unit). However, unlike in the case of LD, where substitutions of non-identical characters always 

incur a cost of 1, in the case of FD substitutions of non-identical characters generally (depending on the specific 

type of FD) incur a cost <1, so the theoretical maximum is not actually the length of the longer string, which raises 

questions regarding what the theoretical maximum should be. For example, should it be based on the maximal 

number of insertions/deletions together with the maximal possible theoretical substitution given the global set of 

segmental units, or the maximal possible substitution given the local set of segmental units? Furthermore, since 

nearly all substitutions are going to incur a lower cost than the maximum, is it even appropriate to use this 

maximum in the normalization process? 
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7.5.2.3 Our technical approach 

We built models that use FD as a predictor, to supplement our main models (which use LD). 

However, these models, should be interpreted with caution, given the limitations of FD that we 

discussed above. 

To calculate FD for our models, we used PanPhon, a Python package that relates IPA 

segments—both simple (e.g. /t/) and complex (e.g. /t͡ sː/)—to their definitions in terms of 

articulatory features (Mortensen et al., 2016).118 This includes the following 22 features: 

syl [±syllabic]. Is the segment the nucleus of a syllable? 

son [±sonorant]. Is the segment produced with a relatively unobstructed vocal tract? 

cons [±consonantal]. Is the segment consonantal (not a vowel or glide, or laryngeal 

consonant)? 

cont [±continuant]. Is the segment produced with continuous oral airflow? 

delrel [±delayed release]. Is the segment an affricate? 

lat [±lateral]. Is the segment produced with a lateral constriction? 

nas [±nasal]. Is the segment produced with nasal airflow? 

strid [±strident]. Is the segment produced with noisy friction? 

voi [±voice]. Are the vocal folds vibrating during the production of the segment? 

sg [±spread glottis]. Are the vocal folds abducted during the production of the 

segment? 

cg [±constricted glottis]. Are the vocal folds adducted during the production of the 

segment? 

ant [±anterior]. Is a constriction made in the front of the vocal tract? 

cor [±coronal]. Is the tip or blade of the tongue used to make a constriction? 

distr [±distributed]. Is a coronal constriction distributed laterally? 

lab [±labial]. Does the segment involve constrictions with or of the lips? 

hi [±high]. Is the segment produced with the tongue body raised? 

 
118 The information here is based on version 0.18 of PanPhon. Note that there are also other tools for calculating 

such distance, such as the abydos library in Python (Little, 2018); we chose PanPhon for its features and 

documentation, but more extensive testing and validation is needed to compare different packages. 
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lo [±low]. Is the segment produced with the tongue body lowered? 

back [±back]. Is the segment produced with the tongue body in a posterior position? 

round [±round]. Is the segment produced with the lips rounded? 

velaric [±velaric]. Is the segment produced using a velaric airstream mechanism?  

tense [±tense]. Is the segment produced with an advanced tongue root? 

long [±long]. Does the segment take up two units of length? 

This list is based on the information in Mortensen et al. (2016, p. 3478), Mortensen 

(2015), and Mortensen (personal communication, December 6, 2019) 

PanPhon contains the data on these 22 features for different IPA segment, with 3 possible 

values: in cases where the feature value is specified, it is marked as either + or -, and in cases 

where it is unspecified, it is marked as 0. For example, table 41 contains the sample values for 

some of the characters in the PanPhon database.  
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Table 41. A sample of characters from the PanPhon database, which is used to calculate FD. 

ipa syl son cns cnt dlr lat nas str voi sg cg ant cor dst lab hi lo bac rnd vel tns lng 

p - - + - - - - 0 - - - + - 0 + - - - - - 0 - 

z - - + + - - - 0 + - - + + - - - - - - - 0 - 

ɲ - + + - - - + 0 + - - - - 0 - + - - - - 0 - 

ɡ - - + - - - - 0 + - - - - 0 - + - + - - 0 - 

ɡːʲ - - + - - - - 0 + - - - - 0 - + - - - - 0 + 

t͡ ʃ - - + - + - - 0 - - - - + + - - - - - - 0 - 

u + + - + - - - 0 + - - 0 - 0 + + - + + - + - 

ɑ + + - + 0 - - 0 + - - 0 - 0 - - + + - - + - 

ɑː + + - + 0 - - 0 + - - 0 - 0 - - + + - - + + 

Note. The feature values are taken directly from the Nov 11, 2019 release of PanPhon. Some feature names here are trimmed here due to space constraints. 
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Specifically, we used the partial_hamming_feature_edit_distance function,119 which 

calculates FD in the following manner: 

− An edit that involves an insertion or a deletion incurs a cost of 1. 

− An edit that involves going from a certain feature value to an opposite feature value incurs 

a cost of 1/22. For example, if a segment that is [+back] is substituted with a segment that 

is [-back], a cost of 1/22 is incurred for that particular feature edit. 

− An edit that involves going from a specified feature value to an unspecified feature value 

and vice versa incurs a cost of 1/44. For example, if a segment that is [+back] is substituted 

with a segment whose [back] feature is unspecified, a cost of 1/44 is incurred for that 

particular feature edit. 

− An edit that involves going from a certain feature value to an identical feature value incurs 

no cost. For example, if a segment that is [+back] is substituted with a segment that is also 

[+back], no cost is incurred for that particular feature edit. 

The resulting FD was normalized into FDN by dividing it by the length of the longer string in 

the pair, based on the number of segmental units (e.g., /t͡ sː/), since FD focuses on segmental 

units rather than characters. 

 Note that whereas LD is standardized, FD is not, as mentioned in the previous section. 

As such, the FD that we calculated here should be viewed as only one type of FD, and other 

types of FD are calculated differently and may lead to different outcomes. 

 

7.5.2.4 Descriptive statistics for FDN values 

There was a moderate-to-strong correlation between FDN and LDN in both the Swadesh lists 

(r = .40, 95% CI = [.28, .50], p < .001) and the parallel dictionaries (r = .47, 95% CI = [.45, 

.49], p < .001). This suggests that although these two measures have a strong association, as 

can be expected, they capture substantially different aspects of crosslinguistic distance, and the 

 
119 Alternative functions are available for this purpose in PanPhon. We selected this function because it offered a 

balance between the two other main functions: feature_edit_distance, where insertion/deletions are treated the 

same as substitutions, and so generally incur a cost <1 (due to the presence of unspecified features), and 

hamming_feature_edit_distance, where transformations from specified feature values to unspecified ones (and 

vice versa) incur a cost of 1/22, similarly to transformations to opposite feature values. It is not clear that the 

specific distance that we used is the best one (i.e., the one that best predicts the perceived similarity between 

words), which highlights the need for validation and standardization of this measure. Nevertheless, this is not 

crucial for the present research, as the differences between the distances that these measures lead to are small 

enough that they do not influence our findings. 
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use of one rather than the other might influence the results of analyses, at least to some 

degree.120 

Figure 39 and Table 42 contain information about the FDN between the L1s in the 

sample and English. The FDN of all word pairs is available in the data files in the OSF 

repository (under “Lexical distance & frequency data”). 

 

 
Figure 39. Lexical distance between L1 words English, per L1 in each dataset. The distance is 

equal to the phonological FDN between L1 words and their most lexically similar English 

counterpart. Within the boxplots, the line inside the box indicates the median, the lower and 

upper hinges indicate the 1st and 3rd quartiles, the whiskers indicate 1.5 interquartile ranges 

(IQR) past the hinges, and the dots indicate outliers beyond that. The violin plots indicate an 

estimate of the probability density of lexical distance for each L1, which can be viewed as the 

likelihood that a word in each L1 will have a certain lexical distance, where increased width 

indicates greater likelihood. Data is based on 25 words per L1 in the Swadesh lists and 1,103 

words per L1 in the parallel dictionaries (i.e., after the removal of multi-word entries).

 
120 Although we do not expect it to change the null findings in the present study, both because past studies found 

an effect of crosslinguistic similarity while using LD(N), and because the correlation between LDN and FDN 

means that we would expect to find at least some effect of similarity in our sample, which is not the case. 
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Table 42. Statistics about the lexical distances (FDN) between the L1s and English in each dataset. L1s are arranged in order of increasing mean 

lexical distance in the Swadesh lists. 

 Swadesh lists Parallel dictionaries 

L1 mean SD median IQR range mean SD median IQR range 

German .271 .17 0.32 0.10-0.41 0.00-0.55 .316 .15 0.31 0.22-0.42 0.00-0.82 

Spanish .357 .16 0.38 0.26-0.47 0.07-0.68 .362 .14 0.35 0.26-0.46 0.00-0.81 

Russian .370 .16 0.39 0.32-0.45 0.00-0.69 - - - - - 

Italian .371 .17 0.35 0.27-0.48 0.11-0.76 .390 .14 0.38 0.28-0.49 0.00-0.81 

Portuguese .400 .17 0.45 0.27-0.50 0.03-0.71 .370 .14 0.36 0.27-0.47 0.02-0.76 

French .404 .19 0.38 0.31-0.51 0.05-0.82 .330 .15 0.32 0.23-0.42 0.00-0.85 

Mandarin .405 .17 0.39 0.26-0.54 0.14-0.71 - - - - - 

Arabic .432 .14 0.45 0.34-0.50 0.09-0.65 - - - - - 

Japanese .455 .14 0.40 0.34-0.57 0.17-0.70 - - - - - 

Note. The distance here is the phonological FDN from the closest synonym, calculated for the single-word entries in each dataset. There were 225 entries in the Swadesh lists 

(i.e., rows with an English word and all its corresponding counterparts in a certain L1), with 25 entries for each of the 9 L1s in the dataset. There were 5,515 entries in the 

parallel dictionaries, with 1,103 for each of the 5 L1s. All counts are after the removal of multi-word entries. 
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Several key observations can be made about these distances. 

First, FDN is much more evenly distributed within each L1 than LDN, primarily due to 

the lack of ceiling effect present in LDN (i.e., the tendency of words to have the maximal 

possible LDN of 1). This can likely facilitate analyses using this distance, but it does not 

necessarily more accurately represent distance between words as perceived by learners. 

Second, there are some similarities and differences in the per-L1 differences here 

compared to those based on LDN, as shown in Table 43 below. Specifically, the similarities 

are that German is ranked as the closest L1 to English, and that all the Romance L1s (French, 

Italian, Spanish, and Portuguese) are ranked as closer than all the non-Indo-European L1s 

(Arabic, Japanese, and Mandarin). The differences are that the ranking is different within the 

Romance L1, the Indo-European L1s, and the non-Indo-European L1s, and that there are also 

several differences across these groups, including, most notably, that in FDN Russian is ranked 

as substantially closer to English than Portuguese and Mandarin, and that French is ranked as 

being practically as distant from English as Mandarin. These distances are not directly 

reflective of those between the languages, since they include only single-word entries (as 

discussed in more detail under the “Validation of Levenshtein distance” in the supplementary 

information). Nevertheless, these as shown in the aforementioned section, these distances are 

expected to be close to the “real” distances between these languages, and as such the results 

for FDN are highly unexpected, especially in the case of French. This suggests that the present 

FDN measure is not better than LDN at quantifying crosslingusitic distance. 
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Table 43. Comparison of the ranking of the L1s based on their distance from English in the 

Swadesh lists, separately for LDN and FDN. 

 LDN FDN 

Rank L1 Mean L1 Mean 

1 German .622 German .271 

2 Italian .776 Spanish .357 

3 Spanish .808 Russian .370 

4 French .813 Italian .371 

5 Portuguese .848 Portuguese .400 

6 Japanese .864 French .404 

7 Russian .881 Mandarin .405 

8 Arabic .887 Arabic .432 

9 Mandarin .924 Japanese .455 

 

7.5.2.5 FDN-based models 

As with our main models, we used the normalized version of this distance (FDN), which we 

scaled (by multiplying it by 10) and centered. 

 We initially built these models using the same fixed and random effects as in our main 

models. However, the Swadesh-based models in both subcorpora had issues with singular 

convergence (due to the intercepts and slopes of the L1 random effect), and the parallel-based 

models did not converge at all.121 

As such, below (in Tables 44 and 45) we present the results for FDN-based models 

without the L1 random effect. However, this does not substantially influence our findings, since 

this effect was very weak in the FDN-based models that contained it and did converge, and the 

results of the models were functionally identical regardless of the inclusion of this effect, as 

was the case for the LDN-based models (see the “Models without the L1 random effect” in the 

supplementary information). 

These tables show that the FDN-based models replicate the key findings of the LDN-

based models, with a similar null effect of distance and its interaction with proficiency (B = 

0.00–0.01, corresponding to IRR = 1.00–1.01), together with strong task effects.  

 
121 Specifically, they had a “gradient function must return a numeric vector of length 7” error and a “NA/NaN 

function evaluation” warning. 
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In addition, we also built FDN-based models using only data from German speakers. 

This is both to replicate the associated LDN-based models, and because the FDN-based results 

for the German speakers were consistent with the LDN-based results and with what is expected 

based on general language classification (as discussed under “Validation of Levenshtein 

distance” in the supplementary information), while also being the L1 that is closest to English. 

The results of these models are shown in Tables 46 and 47. As with the German-based 

models that used LDN as the measure of distance, these models replicate the key findings of 

the main models, in terms of the lack of a substantial effect of distance or of its interaction with 

proficiency, and in terms of the strong task effects.122 

Overall, the results from the FDN-based models complement those of the LDN-based 

main models, and suggest that the null effect in the main models should not be attributed to 

LDN failing to fully capture the phonological overlap between words, something that is also 

supported by past validation of Levenshtein distance. However, given the limitations of FD 

that were above, both in general and within this sample, more work on validating and 

standardizing FD and similar measures is needed before a conclusive statement can be made 

on the influence of its use in this context.

 
122 The one notable difference is the much weaker effect of frequency here for the parallel-based model in the first 

corpus, together with an associated increase in the magnitude of the intercept, as is the case with the corresponding 

LDN-based model. We do not have a clear explanation for this, but it is not crucial for the present analyses, given 

that the key findings replicate despite of this, and that this was an issue for only one of the four models. 
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Table 44. Results of the mixed-models with FDN as the distance measure, for the Swadesh-based samples. The response variable was the rate of 

use of the target L2 English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological 

FDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 

proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target 

word in English (~1–7.5). Under random effects, τ00 represents the SD of the associated random intercepts. 

 First subcorpus Second subcorpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -10.32 0.16  0.00 <0.01 -65.27 <.001 -9.85 0.14  0.00 <0.01 -68.84 <.001 

Distance   0.01 <0.01  1.01 <0.01   3.60 <.001  0.00 <0.01  1.00 <0.01  -0.13 .898 

Proficiency  -0.04 0.02  0.96 0.02  -2.10 .035  0.00 0.02  1.00 0.02  -0.24 .813 

Frequency   3.29 0.21 26.94 5.67  15.65 <.001  3.15 0.19 23.29 4.44  16.52 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01   1.03 .302  0.00 <0.01  1.00 <0.01   1.45 .148 

Random effects                                                

Learner_τ00   0.07                     0.24                    

Task_τ00   0.40                     0.33                    

Word_τ00   0.38                     0.46                    

Task:Word_τ00   1.84                     1.36                    
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Table 45. Results of the mixed-models with FDN as the distance measure, for the parallel-based samples. The response variable was the rate of 

use of the target L2 English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological 

FDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 

proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target 

word in English (~1–7.5). Under random effects, τ00 represents the SD of the associated random intercepts. 

 First subcorpus Second subcorpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -12.84 0.06  0.00 <0.01 -210.04 <.001 -12.58 0.05  0.00 <0.01 -246.81 <.001 

Distance   0.01 <0.01  1.01 <0.01    2.60 .009   0.00 <0.01  1.00 <0.01    0.61 .542 

Proficiency   0.12 0.01  1.13 0.01   10.14 <.001   0.04 0.01  1.04 0.01    4.22 <.001 

Frequency   2.90 0.06 18.16 1.05   49.95 <.001   2.97 0.05 19.50 0.99   58.51 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01    1.91 .056   0.00 <0.01  1.00 <0.01    0.67 .501 

Random effects                                                   

Learner_τ00   0.03                       0.05                     

Task_τ00   0.03                       0.11                     

Word_τ00   0.45                       0.65                     

Task:Word_τ00   2.32                       1.50                     
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Table 46. Results of the mixed-models with FDN as the distance measure, for the Swadesh-based samples, using only data from German speakers. 

The response variable was the rate of use of the target L2 English words (i.e., their count offset by the total number of words in each text). Under 

fixed effects, distance is the phonological FDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–

10), proficiency is the EFCAMDAT L2 proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is 

the baseline Zipf frequency of the target word in English (~1–7.5). Under random effects, τ00 represents the SD of the associated random intercepts. 

 First subcorpus Second subcorpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -9.81 0.21  0.00 <0.01 -47.29 <.001 -9.35 0.17  0.00 <0.01 -55.11 <.001 

Distance  0.06 0.10  1.07 0.11   0.63 .528  0.01 0.08  1.01 0.08   0.15 .884 

Proficiency -0.07 0.02  0.93 0.02  -3.13 .002 -0.01 0.02  0.99 0.02  -0.55 .579 

Frequency  2.69 0.24 14.79 3.50  11.38 <.001  2.69 0.19 14.72 2.79  14.19 <.001 

Dist:Prof  0.03 0.01  1.03 0.01   2.31 .021  0.00 0.01  1.00 0.01   0.46 .648 

Random effects                                               

Learner_τ00  0.00                     0.27                    

Task_τ00  0.13                     0.20                    

Word_τ00  0.21                     0.31                    

Task:Word_τ00  1.80                     1.15                    
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Table 47. Results of the mixed-models with FDN as the distance measure, for the parallel-based samples, using only data from German speakers. 

The response variable was the rate of use of the target L2 English words (i.e., their count offset by the total number of words in each text). Under 

fixed effects, distance is the phonological FDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–

10), proficiency is the EFCAMDAT L2 proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is 

the baseline Zipf frequency of the target word in English (~1–7.5). Under random effects, τ00 represents the SD of the associated random intercepts. 

 First subcorpus Second subcorpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -15.47 0.07 0.00 <0.01 -237.29 <.001 -12.46 0.06  0.00 <0.01 -205.98 <.001 

Distance   0.00 0.03 1.00 0.03   -0.10 .922  -0.02 0.03  0.98 0.02   -0.99 .322 

Proficiency  -0.03 0.01 0.97 0.01   -3.41 .001   0.02 0.01  1.02 0.01    2.77 .006 

Frequency   0.11 0.06 1.12 0.07    1.75 .080   2.65 0.06 14.19 0.85   44.37 <.001 

Dist:Prof   0.02 <0.01 1.02 <0.01    5.43 <.001   0.01 <0.01  1.01 <0.01    3.85 <.001 

Random effects                                                  

Learner_τ00   0.00                      0.03                     

Task_τ00   0.03                      0.03                     

Word_τ00   0.35                      0.38                     

Task:Word_τ00   2.30                      1.66                     

 

 



262 

 

7.5.3 Additional descriptive information 

7.5.3.1 Correlations of distance, frequency, and word use 

Figure 40 contains basic scatterplots with the usage of the target English words in relation to 

their lexical distance from the corresponding L1 words. These plots show that the datasets 

contain words with a broad range of lexical distances, and a broad range of rates of usage. In 

addition, there appears to be a weak positive association between lexical distance and word 

usage, since the words with the higher rates of usage are almost exclusively located on the 

right. This is contrary to the negative correlation that we expect, whereby higher distance is 

associated with reduced usage. However, this could be due to confounds such as the baseline 

frequency of the English words, which our mixed-models address.
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 Figure 40. Usage of the target English words, based on their mean proportion in texts (where the proportion of a word in each text is based on the 

number of times it is used there, divided by the total number of words in the text). Each point is a combination of a target word and a specific L1, 

since the different L1s can have different distances from English for any given word. Darker shading indicates an overlap in points.
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Table 48 shows the raw correlations between lexical distance, baseline frequency of the words 

in English, and the rate of usage of the L2 English words in the present sample. 

For both lexical-distance datasets, there is a significant and substantial positive 

correlation between the baseline frequency of words and their rate of use in the learner sample, 

though this correlation is stronger for the words in the Swadesh lists (r = .39–.41) than in the 

parallel dictionaries (r = .17–.18). In addition, in the Swadesh lists there is also a significant 

and substantial positive correlation (r = .18) between the lexical distance of words and their 

frequency, meaning that more distant words are more frequent, but this correlation is not 

substantial (r = .03) in the parallel dictionaries. 

In addition, there is a weak positive correlation between distance and usage for the 

Swadesh-based samples (r = .10–.11), which might be attributable to the distance-frequency 

and frequency-usage correlations. This is opposite to the association that we would expect 

between distance and usage if there was a cognate facilitation effect (assuming no other factors 

played a role), since decreased crosslinguistic distance (i.e., increased similarity/cognancy) 

should lead to increased word use. In the case of the parallel dictionaries, there is functionally 

no correlation between distance and usage (r = .01), which is expected given the almost null 

correlation between distance and frequency in this dataset, together with the weaker correlation 

between frequency and word use. 

The difference in correlations between the Swadesh lists and the parallel dictionaries 

can be attributed, in part, to the fact that the parallel dictionaries contain a broader range of 

words in terms of their baseline English frequencies, including ones that are lower-frequency 

than in the Swadesh lists (Zipf frequency range of 1.87–7.41 in the parallel dictionaries, 

compared to 4.15–7.11 in the Swadesh lists). However, as shown in Table 49, when this 

difference is largely eliminated, by selecting a subset of the parallel dictionaries containing 

only words with a Zipf frequency of 4.15 and above (as in the Swadesh lists),123 the distance-

frequency and frequency-usage correlations increase but remain weaker than in the Swadesh 

lists (respectively, r = .07 and r = .23–.25), and the distance-usage correlation remains 

functionally zero (r = .01 in both corpora).

 
123 Though there is still a small but significant difference (W = 457718, p < .001) in the mean frequency of words 

between the datasets, where the mean Zipf frequency in the Swadesh lists is 5.24 (SD = 0.72), and the mean 

frequency in the parallel dictionaries is 4.91 (SD = 0.54). 
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Table 48. The raw correlations between lexical distance, frequency, and word usage, presented in the form of Pearson’s r [95% CI] (p). 

 Swadesh lists Parallel dictionaries 

 First corpus Second corpus First corpus Second corpus 

Distance-Frequency a .18 [.05, .30] (.007) .03 [.01, .06] (.013) 

Frequency-Usage b .39 [.38, .39] (<.001) .41 [.40, .41] (<.001) .17 [.16, .17] (<.001) .18 [.18, .18] (<.001) 

Distance-Usage b .10 [.10, .11] (<.001) .11 [.10, .11] (<.001) .01 [.01, .01] (<.001) .01 [.01, .01] (<.001) 

a The distance-frequency correlation depends only on the source of lexical-distance data (i.e., it is corpus-independent). N = 225 for the Swadesh lists (based on 25 entries for 

each of the 9 L1s included there), and N = 5,515 for the parallel dictionaries (based on 1,103 entries for each of the 5 L1s included there). 
a Usage is based on the mean proportion of words in each text (based on the number of times each word is used there, divided by the total number of words in the text). As 

such, this measure is corpus-dependent. Sample sizes for it were 212,500 (Swadesh, first), 159,750 (Swadesh, second), 5,235,941 (parallel, first), and 3,915,650 (parallel, 

second); this is based on the number of lexical-distance entries multiplied by the number of available texts. 
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Table 49. The raw correlations between lexical distance, frequency, and word usage, presented 

in the form of Pearson’s r [95% CI] (p). Data is based on words in the parallel dictionaries 

with a Zipf frequency ≥ 4.15 (n = 3195, 57.93% of the total words in the parallel dictionaries). 

For the corpus-dependent correlations (i.e., those involving usage), there were 3,033,333 

observations in the first corpus, and 2,268,450 in the second. 

 First corpus Second corpus 

Distance-Frequency .07 [.04, .10] (<.001) 

Frequency-Usage .23 [.22, .23] (<.001) .25 [.25, .25] (<.001) 

Distance-Usage .01 [.01, .01] (<.001) .01 [.01, .01] (<.001) 

 

 

One possibility that was raised, based on the findings of the mixed-models in the paper, is that 

the cognate facilitation effect does not exist, and was found in other studies due to the 

confounding influence of factors such as frequency, which we controlled for in the models. 

While this would be a novel finding in its own right, we do not believe that this is the case. 

This is because past studies have found evidence of the cognate facilitation effect even 

when frequency is controlled for, so we would expect to find this effect here too (Bosma et al., 

2019; Carrasco-Ortiz et al., 2021; Casaponsa et al., 2015; Costa et al., 2000; De Wilde et al., 

2020, 2021; Hoshino & Kroll, 2008; Otwinowska et al., 2020; Otwinowska & Szewczyk, 2019; 

Poort & Rodd, 2017; Sadat et al., 2016; Sheng et al., 2016; van de Ven et al., 2019; J. Zhang 

et al., 2019; Y. Zhu & Mok, 2020). Similarly, in the case of task effects, the aforementioned 

studies found cognate facilitation using a wide range of methods, including ones where task 

effects, as conceptualized in the present study, do not play a role, since they were focused 

primarily on experiment-based investigation of language processing, so it does not appear the 

us controlling for task effects could explain the lack of cognate facilitation either. 

In addition, the correlations that we found here do not lead to a cognate facilitation effect, 

even without controlling for proper background factors. Specifically, in the case of the Swadesh 

lists, based on the positive distance-frequency and frequency-usage correlations, we would 

expect to find an effect opposite to cognate facilitation, in the sense that increased distance 

(i.e., reduced similarity) will correlate with increased word use, which is in fact what we find 

for the distance-usage correlation. Furthermore, in the case of the parallel dictionaries, we 

would not expect to find a similar effect at all, since the correlation between distance and 

frequency is functionally zero. 
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Overall, the extensive evidence from past studies shows that the cognate facilitation effect 

exists even when frequency and other factors are controlled for. Furthermore, the raw 

correlations between the key variables in our study (lexical distance, baseline frequency, and 

L2 word usage) show that, when background factors are not properly controlled for, we would 

expect to find either a null effect or an opposite effect than cognate facilitation. As such, the 

absence of the cognate facilitation effect in our main models is a novel theoretical finding, that 

is not merely attributable to the fact that we control for background factors such as frequency.
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7.5.3.2 Frequency-ratio descriptive statistics 

Table 50 contains descriptive statistics regarding the frequency ratio of the words in the 

samples, as visualized in Figure 3 of the paper (in the beginning of the Results section). It 

shows that, on average, target English words were used in equal rates in the sample as in 

baseline English (i.e., had a frequency ratio near 1). However, all samples contained a range of 

words with different frequency ratios (total range 0.70–1.58), and this rate was greater in the 

parallel-based samples, likely due to the inclusion of very low-frequency words. In addition, 

this inclusion is likely also the reason why more of the words from the parallel dictionaries did 

not appear in the parallel-based samples at all, as indicated by the substantially higher rate of 

words with a frequency of 0 in the parallel dictionaries. 
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Table 50. Descriptive statistics regarding frequency ratio, which is the frequency of a word in a given sample divided by its baseline frequency in 

English. The baseline frequency in English is based on the same frequency measure that we use throughout the paper, as discussed in the “Baseline 

word frequency” section of the paper. The frequency of use per sample is calculated separately for each combination of a target word and a specific 

L1, since different L1s can have different distances from English for any given word. The frequencies within the sample are based on 8,500 texts 

for the Swadesh lists in the first subcorpus, 6,390 for the Swadesh lists in the second subcorpus, 4,747 for the parallel dictionaries in the first 

subcorpus, and 3,550 for the parallel dictionaries in the second subcorpus. This corresponds to 212,500 observations (number of words per L1 

times the number of texts in the sample) for the Swadesh lists for the first subcorpus, 159,750 for the Swadesh lists in the second subcorpus, 

5,235,941 for the parallel dictionaries in the first subcorpus, and 3,915,650 for the parallel dictionaries in the second subcorpus. 

   Frequency of 0 b Frequency ratio c 

Distance dataset Subcorpus Words a n % mean median SD range 

Swadesh lists first 225 31 13.78 1.03 1.03 0.09 0.70–1.19 

Swadesh lists  second 225 31 13.78 1.00 1.00 0.07 0.76–1.19 

Parallel dictionaries first 5,515 2,691 48.79 1.02 1.01 0.12 0.71–1.57 

Parallel dictionaries second 5,515 2,818 51.10 1.01 1.00 0.10 0.70–1.58 

a Words is equal to the number of L1s in the distance dataset (9 in the Swadesh lists, 5 in the parallel dictionaries), times the number of words per L1 (25 in the Swadesh lists, 

1,103 in the parallel dictionaries). 
b Words that did not appear in the sample were assigned a Zipf frequency of 0, in line with Speer (2020), and consequently have a frequency ratio of 0 here. n represents the 

number of such words in the sample, and the % represents the percent of such words out of the total words in the sample. 
c All the frequency ratio statistics were calculated while excluding cases with a frequency of zero. A ratio of 1 indicates that a word is used in an equal rate in the sample and 

in baseline English, whereas a ratio >1 indicates that the word is used more frequently in the sample, and a ratio <1 indicates the opposite.
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7.5.4 Incidence rate ratio (IRR) 

As noted in the body of the paper, we exponentiated the coefficient estimates in the mixed-

models to derive an incidence rate ratio (IRR), in order to facilitate the interpretation of the 

results, and the standard errors (SEs) of the coefficients were then scaled by multiplying them 

by the exponentiated coefficient estimates (Hox et al., 2018; Sedgwick, 2010). 

The IRR itself can be interpreted as the expected change in the rate of the response variable 

as a factor of a 1-unit increase in the predictor. For example, an IRR of 2 means that a 1-unit 

increase in the predictor doubles the rate of response (i.e., doubles the rate of use of the target 

word), while an IRR of 0.5 means that a 1-unit increase in the predictor halves it. An IRR of 1 

corresponds to a coefficient estimate (B) of 0, as there is no expected change in the response 

variable as a result of a change in the predictor. 

It is important to note that when combining multiple coefficients, you should not add the 

exponentiated coefficients, but rather multiply them, which is equivalent to exponentiating the 

added coefficients. For example, consider a situation where you are predicting the IRR of a 

word that is 1 unit more frequent than some baseline level, in a learner whose proficiency is 1 

unit higher than some baseline level. If the raw coefficient of frequency is 0.5 and that of 

proficiency is 0.3, then the IRR will be: 

𝑒0.5 × 𝑒0.3 = 𝑒(0.5+0.3) = 2.2 

In addition, if you want to predict the IRR of a word that is 1 unit less frequent, then you need 

to take the inverse of the IRR of a word that is 1 unit more frequent, since this is equivalent to 

exponentiating the negative of the associated coefficient. For example, if the coefficient is 0.5, 

then the IRR of a word that is 1 unit less frequent than some baseline level is: 

𝑒−0.5 =
1

𝑒0.5
= 0.6 
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7.5.5 Random effects 

7.5.5.1 Random slopes 

Initially, we tested several potential mixed-effects models, with random slopes of lexical 

distance for the learner, L1, task, and word random effects (separately for each one). For the 

models based on the parallel dictionaries, only the model with random slopes for L1 converged 

properly, as the other models either had problems with singular convergence or did not 

converge at all, even though they were tested on their own (i.e., as a single random slope, before 

combining multiple ones). 

Given this, and given that the goal was to use a consistent random-effects structure across 

all models, we included only random slopes of distance for L1 in these models. However, as 

shown in the results section of the main paper, this does not appear to be an issue given our 

particular findings, since the main concern with omitting random slopes is an increased rate of 

Type I error (Matuschek et al., 2017; Winter, 2019), but our key findings provide support for 

the null hypothesis. 

 

7.5.5.2 Random intercepts by text 

We considered adding to the models a random effect (random intercepts) for each text in the 

sample. However, there is substantial overlap between this and the learner random effect, 

since, as noted in the paper, most learners only had a single text in the sample.124 In addition, 

we also had the task random effect, which accounts for further variance that may be associated 

with specific texts (each learner had only a single text per task). 

When we attempted to build models that included the text random effect in addition to 

learner, in the case of the parallel-based models, the model did not converge for the first corpus, 

and had convergence warning for the second corpus.125 Given this, and given that the goal was 

to use a consistent random-effects structure across all models, we did not include this random 

effect in our final models. 

 
124 The mean number of texts per learner was 1.36 in the first corpus and 1.41 in the second. For more details on 

this, see the “Sample information” document in the study’s OSF repository. 
125 In the first corpus, we had a “gradient function must return a numeric vector of length 8” error, as well as 

“NA/NaN function evaluation” and “restarting interrupted promise evaluation” warnings. In the second corpus, 

we had the same warnings as in the first corpus, but not the error. 
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Nevertheless, as shown Tables 51 and 52, the models that did converge with this 

random effect were functionally equivalent to the models without it, so excluding this effect 

from the main models does not make a substantial difference to our findings.126

 
126 In addition, note that the random effect of text was estimated to be functionally equivalent to zero in 2 out of 

the 3 models that did converge, possibly because there was not sufficient information to disentangle it from the 

learner random effect. 
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Table 51. Results of the mixed-models with text as an additional random effect, for the Swadesh-based samples. The response variable was the 

rate of use of the target L2 English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the 

phonological LDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the 

EFCAMDAT L2 proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf 

frequency of the target word in English (~1–7.5). Under random effects, τ00 and τ11 respectively represent the SD of the associated random intercepts 

and slopes, and ρ01 represents the correlation between random intercepts and associated random slopes (here, distance for L1). 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -10.32 0.16  0.00 <0.01 -65.39 <.001 -9.87 0.14  0.00 <0.01 -68.53 <.001 

Distance  -0.01 0.01  0.99 0.01  -1.17 .243 -0.01 0.01  0.99 0.01  -0.38 .701 

Proficiency  -0.04 0.02  0.96 0.02  -2.12 .034  0.00 0.02  1.00 0.02  -0.25 .802 

Frequency   3.30 0.21 26.99 5.66  15.70 <.001  3.16 0.19 23.50 4.50  16.49 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01   0.61 .543  0.00 <0.01  1.00 <0.01  -1.18 .238 

Random effects                                                

Learner_τ00   0.07                     0.15                    

Text_τ00   0.00                     0.24                    

Task_τ00   0.40                     0.33                    

Word_τ00   0.38                     0.46                    

Task:Word_τ00   1.84                     1.36                    

L1_τ00   0.02                     0.03                    

L1.Distance_τ11   0.01                     0.03                    

L1_ρ01   0.55                    -0.05                    



274 

 

Table 52. Results of the mixed-models with text as an additional random effect, for the parallel-based samples. The response variable was the rate 

of use of the target L2 English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the 

phonological LDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the 

EFCAMDAT L2 proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf 

frequency of the target word in English (~1–7.5). Under random effects, τ00 and τ11 respectively represent the SD of the associated random intercepts 

and slopes, and ρ01 represents the correlation between random intercepts and associated random slopes (here, distance for L1). 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept)       -12.59 0.05  0.00 <0.01 -243.41 <.001 

Distance         0.01 0.01  1.01 0.01    1.04 .301 

Proficiency         0.04 0.01  1.04 0.01    4.29 <.001 

Frequency         2.97 0.05 19.50 0.99   58.52 <.001 

Dist:Prof         0.00 <0.01  1.00 <0.01    1.09 .276 

Random effects                                                   

Learner_τ00         0.04                     

Text_τ00         0.00                     

Task_τ00         0.11                     

Word_τ00         0.65                     

Task:Word_τ00         1.50                     

L1_τ00         0.01                     

L1.Distance_τ11         0.01                     

L1_ρ01         0.81                     
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7.5.5.3 Models without the L1 random effect 

We built supplementary models without the L1 random effect (i.e., without random slopes of 

distance for L1 and without random intercepts for L1). The main reason for this are that there 

was only a relatively small number of L1s in the samples, particularly in the parallel-based 

models, so we wanted to check whether and how removing this effect would change the 

estimates for the other effects.127 

As shown Tables 53 and 54, the findings of these models mirror almost exactly those of 

the main models in the paper, which indicates that including or excluding the L1 random effect 

does not substantially influence the findings.

 
127 Also, this effect was very weak and practically null. It is likely that it is underestimated to some degree due to 

the small number of L1s, though, given that it is very weak even in the Swadesh-based models, where there are 

more L1s, it is likely that it is also very weak in reality, even if slightly less so. 
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Table 53. Results of the mixed-models without the L1 random effect, for the Swadesh-based samples. The response variable was the rate of use of 

the target L2 English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological 

LDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 

proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target 

word in English (~1–7.5). Under random effects, τ00 represents the SD of the associated random intercepts. 

 First subcorpus Second subcorpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -10.32 0.16  0.00 <0.01 -65.41 <.001 -9.85 0.14  0.00 <0.01 -68.76 <.001 

Distance  -0.01 0.01  0.99 0.01  -2.05 .040 -0.01 0.01  0.99 0.01  -0.99 .321 

Proficiency  -0.04 0.02  0.96 0.02  -2.12 .034  0.00 0.02  1.00 0.02  -0.22 .827 

Frequency   3.29 0.21 26.97 5.66  15.70 <.001  3.15 0.19 23.40 4.46  16.52 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01   0.72 .471  0.00 <0.01  1.00 <0.01  -1.25 .211 

Random effects                                                

Learner_τ00   0.07                     0.24                    

Task_τ00   0.40                     0.33                    

Word_τ00   0.38                     0.46                    

Task:Word_τ00   1.84                     1.36                    
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Table 54. Results of the mixed-models without the L1 random effect, for the parallel-based samples. The response variable was the rate of use of 

the target L2 English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological 

LDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 

proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target 

word in English (~1–7.5). Under random effects, τ00 represents the SD of the associated random intercepts. 

 First subcorpus Second subcorpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -12.84 0.06  0.00 <0.01 -210.05 <.001 -12.58 0.05  0.00 <0.01 -246.85 <.001 

Distance   0.01 <0.01  1.01 <0.01    3.44 .001   0.01 <0.01  1.01 <0.01    1.54 .124 

Proficiency   0.12 0.01  1.13 0.01   10.17 <.001   0.04 0.01  1.04 0.01    4.21 <.001 

Frequency   2.90 0.06 18.15 1.05   49.97 <.001   2.97 0.05 19.48 0.99   58.51 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01    1.21 .226   0.00 <0.01  1.00 <0.01    1.07 .283 

Random effects                                                   

Learner_τ00   0.03                       0.05                     

Task_τ00   0.03                       0.11                     

Word_τ00   0.44                       0.65                     

Task:Word_τ00   2.32                       1.50                     
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7.5.6 Model diagnostics (assumption checks) 

7.5.6.1 Residual plots 

7.5.6.1.1 Rationale for diagnostic approach 

When interpreting the diagnostic plots, we follow two notable recommendations from Winter's 

(2019) relevant work, and namely the focus on visual techniques for diagnostic purposes, and 

the use of assumption checking on as a way to determine whether there are any major issues 

with the model. As Winter notes in this regard: 

Newcomers to regression modeling often find it discomforting that the assumptions are 

assessed visually. In fact, formal tests for checking assumptions do exist, such as the 

Shapiro-Wilk test of normality. However, applied statisticians generally prefer visual 

diagnostics (Quinn & Keough, 2002; Faraway, 2005, 2006: 14; Zuur et al., 2009, Zuur, 

Ieno, & Elphick, 2010). The most important reason for using graphical validation of 

assumptions is that it tells you more about your model and the data. [Footnote 7: Here 

are some other reasons: each of these tests also has assumptions (which may or may not 

be violated), the tests rely on hard cut-offs such as significance tests (even though 

adherence to assumptions is a graded notion), and the tests may commit Type I errors 

(false positives) or Type II errors (false negatives)…] For example, the residuals may 

reveal a hidden nonlinearity, which would suggest adding a nonlinear term to your 

model (see Chapter 8). Or the residuals may reveal extreme values that are worth 

inspecting in more detail. One should also remember that a model’s adherence to the 

normality and constant variance assumptions is not a strict either/or. Faraway (2006: 

14) says that ‘It is virtually impossible to verify that a given model is exactly correct. 

The purpose of the diagnostics is more to check whether the model is not grossly 

wrong.’” 

(Winter, 2019, pp. 109-110) 

The reliance on visual checks is particularly important given the large sample sizes in the 

present study, which can lead to statistically significant but meaningless deviations from model 

assumptions (Hartig, 2020). 

 

7.5.6.1.2 Technical details 

All analyses were conducted using R. The models were built using the glmmTMB package, 

which was developed for fitting generalized linear mixed models (GLMMs) (Brooks et al., 
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2017).128 Analysis of residuals for the model diagnostics was performed using the DHARMa 

package (Hartig, 2021b). This package was chosen as it is dedicated to residual diagnostics for 

the type of models used in the present study (GLMMs), and it is used in the glmmTMB 

documentation as the package of choice for this purpose (Bolker, 2020), and it is also widely 

used by others for this purpose (e.g., Brooks et al., 2019; Gries, 2021). 

DHARMa uses an approach to residual diagnostics that addresses common issues with 

such diagnostics. Full details for the package’s approach to diagnostics, and for the rationale 

behind this approach, can be found in the package’s documentation (Hartig, 2021a). However, 

the key points regarding this approach are the following: 

DHARMa aims at solving these problems by creating readily interpretable residuals for 

generalized linear (mixed) models that are standardized to values between 0 and 1, and 

that can be interpreted as intuitively as residuals for the linear model. This is achieved 

by a simulation-based approach, similar to the Bayesian p-value or the parametric 

bootstrap, that transforms the residuals to a standardized scale. The basic steps are: 

1. Simulate new data from the fitted model for each observation. 

2. For each observation, calculate the empirical cumulative density function for the 

simulated observations, which describes the possible values (and their probability) at 

the predictor combination of the observed value, assuming the fitted model is correct. 

3. The residual is then defined as the value of the empirical density function at the value 

of the observed data, so a residual of 0 means that all simulated values are larger than 

the observed value, and a residual of 0.5 means half of the simulated values are larger 

than the observed value. 

… 

The key advantage of this definition is that the so-defined residuals always have the 

same, known distribution, independent of the model that is fit, if the model is correctly 

specified. To see this, note that, if the observed data was created from the same data-

generating process that we simulate from, all values of the cumulative distribution 

should appear with equal probability. That means we expect the distribution of the 

 
128 We chose glmmTMB for several reasons, including that it is designed with GLMMs in mind, it supports variants 

of Poisson models that we used or expected to potentially need (e.g., Conway-Maxwell Poisson), it is substantially 

faster than many competing packages for the type of models that we built (Brooks et al., 2017), it is well-

documented, it interfaces well with other relevant packages (e.g., broom.mixed), and it uses a similar syntax as 

lme4. 
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residuals to be flat, regardless of the model structure (Poisson, binomial, random effects 

and so on). 

(Hartig, 2021a) 

Specifically, for each model, we ran the four main diagnostic functions that are available in 

DHARMa. These are explained in detail in the DHARMa documentation (Hartig, 2021a), but 

we can briefly say the following regarding them and regarding their interpretation: 

A. plotQQunif- this produces a uniform quantile-quantile plot from a DHARMa output. In a 

well-specified model, the residuals (black dots) should be plotted over the straight red line. 

B. plotResiduals- this plots the residuals against rank-transformed predicted values.129 In a 

well-specified model, the residuals (marked by the shaded grey background and black dots) 

should be spread homogeneously both vertically and horizontally, and the associated 

smooth spline (red dashed line) should be plotted over the mean line (solid red line at the 

horizontal 0.50 mark).130 Note that, due to the large number of residuals, areas that are 

shaded darker denote a higher concentration of residuals, even if individual black points 

are not shown there; this is because the function uses a smooth scatterplot instead of a 

regular scatterplot when the number of residuals is high, to facilitate visual assessment. In 

addition, stars are used to mark simulation outliers (i.e., data points that are outside the 

range of simulated values), though it is not a judgment about the magnitude of the residual 

deviation. 

C. testDispersion- this tests whether the observed data is more or less dispersed than expected 

under the fitted model, by comparing the variance of the observed residuals against the 

variance of the simulated residuals. The key outcome of this test is the ratio between the 

two, where a ratio < 1 indicates underdispersion, while a ratio > 1 indicates overdispersion. 

D. testZeroInflation- this compares the observed number of zeros with the zeros expected from 

simulations. The key outcome of this test is the ratio between the two, where a ratio < 1 

indicates that the observed data has fewer zeros than expected, while a ratio > 1 indicates 

that it has more zeros than expected (i.e., zero-inflation).  

 
129 The predicted values are rank-transformed by default, since this makes patterns easier to spot visually, 

especially if the distribution of predictors is skewed, as noted in the DHARMa documentation 

(http://web.archive.org/web/20210803085455/https://rdrr.io/cran/DHARMa/man/plotResiduals.html). 
130 Note that “a scaled residual value of 0.5 means that half of the simulated data are higher than the observed 

value, and half of them lower. A value of 0.99 would mean that nearly all simulated data are lower than the 

observed value. The minimum/maximum values for the residuals are 0 and 1.” (Hartig, 2021a). Furthermore, due 

to the way that residuals are transformed in DHARMa, the scaled residuals in a properly fitted model are expected 

to have a uniform—rather than normal—distribution. 
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The results of the diagnostic checks for each model will be presented in their own figure in the 

next sub-section, in the form of a panel with 4 checks, each represented by a dedicated plot. 

Within each figure, plot (A) will correspond to the results from the plotQQunif function, plot 

(B) will correspond to plotResiduals, plot (C) will corresponds to testDispersion, and plot (D) 

will correspond to testZeroInflation. 

Note that, as mentioned in the DHARMa documentation, some minor deviations from 

perfect patterns (e.g., in the residual plots) can occur due to chance, even in well-specified 

models. Furthermore, when assessing deviations, it is important to consider the magnitude of 

the deviation in addition to its significance, as even negligible deviations can be significant in 

large samples. 

 

7.5.6.1.3 Diagnostic plots 

The diagnostic plots for the Swadesh-lists models appear in Figures 41 and 42. In each figure, 

(A) contains the QQ plot, (B) contains the residual plot, (C) contains the dispersion test, and 

(D) contains the zero-inflation test. These diagnostic checks suggest that the models are fairly 

well-specified, though they have some underdispersion, particularly in the first corpus; the 

potential consequences of this are discussed at the end of this sub-section, after the diagnostic 

plots for the parallel-dictionaries models. 
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Figure 41. Diagnostics for the Swadesh-lists models (first corpus). 
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Figure 42. Diagnostics for the Swadesh-lists models (second corpus). 
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In the case of the parallel-dictionaries models, we were unable to run the full diagnostics on 

the full models, since the large size of the models necessitated memory allocation for the 

diagnostics that exceeded our available computational resources. To address this, we built new 

models using sub-samples from the original samples (separately for each corpus), containing 

2,500,000 randomly selected observations each, and used these for the diagnostics.131 

The results of these models, which are shown in Table 55, are similar to those of the 

main models, which supports their use for diagnostic purposes, though the model for the first 

corpus is slightly less well-specified than for the associated main model.132 The results of the 

associated diagnostic checks, which appear in Figures 43 and 44, are similar to those of the 

Swadseh-based models, and suggest that the model are fairly well-specified, though they also 

have some underdispersion. 

 

 
131 The size of 2,500,000 observations was chosen since with a 3,000,000-observations sub-sample we still hit the 

memory allocation limit for the dispersion and zero-inflation tests. 
132 There are two key differences between the subsample-based model for the first corpus and the associated main 

model. First, this (subsample-based) model had a “singular convergence” warning, likely due to the random 

intercept for L1 and the associated random slope of distance for L1, though the associated effect sizes were very 

similar to those in the main models (i.e., functionally 0). Second, the frequency predictor in the subsample model 

is underestimated, as it has a smaller IRR (and SE) than in the main models, though the frequency predictor is still 

substantial. It is important to keep these differences in mind when it comes to the diagnostics, but they are 

nevertheless minor enough that this model is reasonable to use for diagnostic purposes, especially given that it is 

slightly less well-specified than the main model, which makes using it more conservative. In addition, note that, 

as expected, the differences between the subsample-based model and the main model generally become smaller 

as the size of the sub-sample increases, and the residual plots also become even closer to what is expected in a 

well-specified model. For example, when the sub-sample is increased to 3,000,000 observations, though there is 

still a “singular convergence” warning, the IRR and SE of frequency both become more similar to those of the 

associated main model (specifically, the IRR becomes 13.23 and the SE becomes 0.80), and the residual plot 

become even closer to what is expected for a well-specified model (i.e., the slight uptick at the right side of the 

plot flattens). 
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Table 55. Results of the mixed-effects models, for the parallel-based samples, using the 2,000,000-observation subsamples that were selected for 

diagnostics. The response variable was the rate of use of the target L2 English words (i.e., their count offset by the total number of words in each 

text). Under fixed effects, distance is the phonological LDN between each L2 word and its most lexically similar L1 counterpart (originally 0–1, 

scaled to 0–10), proficiency is the EFCAMDAT L2 proficiency level at which the text was written (1–12, corresponding to CEFR A1–B2), and 

frequency is the baseline Zipf frequency of the target word in English (~1–7.5). Under random effects, τ00 and τ11 respectively represent the SD of 

the associated random intercepts and slopes, and ρ01 represents the correlation between random intercepts and associated random slopes (here, 

distance for L1). 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -13.83 0.06 0.00 <0.01 -224.94 <.001 -12.52 0.05  0.00 <0.01 -236.96 <.001 

Distance   0.01 <0.01 1.01 <0.01    2.54 .011   0.00 0.01  1.00 0.01    0.16 .871 

Proficiency   0.02 0.01 1.02 0.01    2.16 .031   0.04 0.01  1.04 0.01    4.31 <.001 

Frequency   2.21 0.06 9.15 0.57   35.60 <.001   2.91 0.05 18.34 0.96   55.74 <.001 

Dist:Prof   0.00 <0.01 1.00 <0.01    0.61 .541   0.00 <0.01  1.00 <0.01    1.58 .115 

Random effects                                                  

Learner_τ00   0.03                      0.05                     

Task_τ00   0.03                      0.08                     

Word_τ00   0.27                      0.58                     

Task:Word_τ00   2.47                      1.52                     

L1_τ00   0.00                      0.00                     

L1.Distance_τ11   0.00                      0.01                     

L1_ρ01   1.00                      0.87                     
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Figure 43. Diagnostics for the parallel-dictionaries models (first corpus). In the case of the zero-inflation test, note that the ratio between observed 

and simulated zeros is very close to 1, so this is not an issue for this model. 
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Figure 44. Diagnostics for the parallel-dictionaries models (second corpus). 
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Overall, the diagnostics for the models suggests that the models are fairly well-specified, 

though they have some underdispersion, which can lead to overestimated SEs, and 

consequently to overestimated p-values (Brooks et al., 2017, 2019; Dean & Lundy, 2016; 

Forthmann & Doebler, 2021; Harris et al., 2012; Hartig, 2021a; Sellers & Morris, 2017). 

However, this underdispersion does not invalidate the present findings, given the robust effect 

sizes that were found across all samples (IRRs very close to 1, with SEs ≤ 0.01), since even if 

these SEs are overestimated, the key patterns of results are still the same, in terms of the lack 

of effect of distance and of its interaction with proficiency. Essentially, even if these SEs should 

be smaller than they are, this would only reinforce our certainty regarding the estimated IRRs, 

and show that they are functionally equivalent to 1, which corresponds to a coefficient estimate 

of 0 and means that there is no effect. This is further supported by the supplementary models 

in the next sub-section, which replicate our findings while accounting for underdispersion. In 

sum, these diagnostics suggest that these models are fairly well-specified, and that they allow 

us to reliably answer our key research questions. 

 

7.5.6.1.4 Supplementary models (generalized Poisson) 

To account for any underdispersion in the main models, we built supplementary generalized 

Poisson models, which can handle both underdispersion and overdispersion (Brooks et al., 

2019; Harris et al., 2012; Sellers & Morris, 2017; F. Zhu, 2012).133 As shown below, these 

models suffered from various convergence issues, so they are not a viable option to use as the 

main models, and we do not compare them directly to the main models here in terms of 

performance (e.g., based on AIC/BIC). Nevertheless, these models had very similar results as 

the main models, which provides support for the key findings. 

Specifically, Table 56 contains these models for the Swadesh-based samples. Both 

models had results that are extremely similar to the main models, particularly in the case of the 

 
133 In addition, we also attempted to build Conway-Maxwell-Poisson models, which can also handle both 

underdispersion and overdispersion (Brooks et al., 2017, 2019; Forthmann & Doebler, 2021; Lynch et al., 2014; 

Sellers & Morris, 2017). The reason for this attempt was that these models might be less prone to convergence 

problems, though they are also much more computationally intensive (Brooks et al., 2019). Unfortunately, they 

also had convergence warnings for the Swadesh-based model in the second corpus, similarly to the generalized 

Poisson models, so they were not helpful in this regard, and furthermore, due to their high computational costs, 

we were unable to get them to converge for the parallel-based samples. Nevertheless, this is not crucial, as the 

results for these models in the case of the Swadesh-based samples where they did converge were very close to 

those of the generalized-Poisson models, and functionally equivalent when it comes to the key variables under 

consideration (i.e., an IRR of 0.99–1 and an SE ≤.01 for distance and the distance:proficiency interaction). 
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key variables that the study focuses on (distance and the distance:proficiency interaction). The 

sample for the first corpus converged with a “NA/NaN function evaluation warning”.134 

 

 
134 See the glmmTMB documentation for a description and discussion of all the convergence warnings and 

errors mentioned here: http://web.archive.org/web/20210516105444/https://cran.r-

project.org/web/packages/glmmTMB/vignettes/troubleshooting.html 

http://web.archive.org/web/20210516105444/https:/cran.r-project.org/web/packages/glmmTMB/vignettes/troubleshooting.html
http://web.archive.org/web/20210516105444/https:/cran.r-project.org/web/packages/glmmTMB/vignettes/troubleshooting.html
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Table 56. Results of the generalized Poisson models, for the Swadesh-based samples. The response variable was the rate of use of the target L2 

English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological LDN between 

each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 proficiency level 

at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target word in English 

(~1–7.5). Under random effects, τ00 and τ11 respectively represent the SD of the associated random intercepts and slopes, and ρ01 represents the 

correlation between random intercepts and associated random slopes (here, distance for L1). 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -10.28 0.12  0.00 <0.01 -86.73 <.001 -9.73 0.13  0.00 <0.01 -77.08 <.001 

Distance  -0.01 0.01  0.99 0.01  -1.39 .165 -0.01 0.01  0.99 0.01  -0.59 .552 

Proficiency  -0.05 0.02  0.95 0.02  -2.40 .016 -0.01 0.02  0.99 0.02  -0.67 .504 

Frequency   3.29 0.14 26.78 3.78  23.32 <.001  3.09 0.16 21.95 3.52  19.29 <.001 

Dist:Prof   0.00 <0.01  1.00 <0.01   0.54 .587  0.00 <0.01  1.00 <0.01  -1.04 .296 

Random effects                                                

Learner_τ00   0.00                     0.17                    

Task_τ00   0.37                     0.30                    

Word_τ00   0.37                     0.47                    

Task:Word_τ00   1.81                     1.29                    

L1_τ00   0.01                     0.03                    

L1.Distance_τ11   0.01                     0.02                    

L1_ρ01   0.76                    -0.04                    
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Table 57 contains the generalized Poisson models for the parallel-based samples. There were 

more convergence issues here, as the first corpus did not converge at all (It had a “gradient 

function must return a numeric vector of length 13” error, as well as a “NA/NaN function 

evaluation” warning), and the second corpus converged with two warnings (“singular 

convergence” and a “non-positive-definite Hessian matrix”).135 Nevertheless, the findings of 

the model that did converge, albeit with warnings, are very similar to those of the associated 

main model. 

 

 
135 As noted previously, see the glmmTMB documentation for a description and discussion of all the 

convergence warnings and errors mentioned here: http://web.archive.org/web/20210516105444/https://cran.r-

project.org/web/packages/glmmTMB/vignettes/troubleshooting.html 

http://web.archive.org/web/20210516105444/https:/cran.r-project.org/web/packages/glmmTMB/vignettes/troubleshooting.html
http://web.archive.org/web/20210516105444/https:/cran.r-project.org/web/packages/glmmTMB/vignettes/troubleshooting.html
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Table 57. Results of the generalized Poisson models, for the parallel-based samples. The response variable was the rate of use of the target L2 

English words (i.e., their count offset by the total number of words in each text). Under fixed effects, distance is the phonological LDN between 

each L2 word and its most lexically similar L1 counterpart (originally 0–1, scaled to 0–10), proficiency is the EFCAMDAT L2 proficiency level 

at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target word in English 

(~1–7.5). Under random effects, τ00 and τ11 respectively represent the SD of the associated random intercepts and slopes, and ρ01 represents the 

correlation between random intercepts and associated random slopes (here, distance for L1). 

 First corpus a Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept)       -12.49 0.04  0.00 <0.01 -289.28 <.001 

Distance         0.01 0.01  1.01 0.01    1.33 .184 

Proficiency         0.04 0.01  1.04 0.01    7.09 <.001 

Frequency         2.95 0.04 19.07 0.84   67.23 <.001 

Dist:Prof         0.00 <0.01  1.00 <0.01    1.11 .265 

Random effects                                

Learner_τ00         0.00                     

Task_τ00         0.11                     

Word_τ00         0.67                     

Task:Word_τ00         1.43                     

L1_τ00         0.00                     

L1.Distance_τ11         0.01                     

L1_ρ01         1.00                     

a There are no results for the model in the first corpus since it did not converge, but the table is kept in the same format as for the other models to 

facilitate comparisons. 
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In summary, we attempted to build models that use variants of the Poisson distribution that can 

handle both underdispersion and overdispersion (namely, generalized Poisson models). The 

resulting models had a number of convergence issues, errors, and warnings, which supports the 

use of the regular Poisson models as the main models in the study. Nevertheless, the findings 

in the models that did converge, including those that converged with no warnings (i.e., the 

Swadesh-based models in the first corpus) mirror the findings of the main models, especially 

with regard to the key variables in the study (the distance predictor and the distance:proficiency 

interaction). This was expected, since the main issue with underdispersion are overestimated 

SEs (Brooks et al., 2017, 2019; Dean & Lundy, 2016; Forthmann & Doebler, 2021; Harris et 

al., 2012; Hartig, 2021a; Sellers & Morris, 2017), and this is not a problem here, given the very 

small SEs that were found across all samples. As such, these models provide support for the 

findings of the main models, and suggest that any potential underdispersion in the data does 

not substantially change our key findings. 

 

7.5.6.2 Collinearity 

In addition to residual plots, we checked for potential collinearity using the performance 

package in R (Lüdecke et al., 2021).136 The results of this appear in Figure 45, which contains 

the variance inflation factor (VIF) for the predictors in each model. In all cases, the VIF was 

minimal (i.e., equal to or very close to 1), which indicates the collinearity was not an issue for 

the present analyses, especially given the large sample sizes (Morrissey & Ruxton, 2018; R. 

M. O’Brien, 2007; Winter, 2019).

 
136 The VIF values were calculated using the performance package, and the results were plotted using the base R 

barplot function. 
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Figure 45. Plots showing the variance inflation factor (VIF) for the predictors in each sample, to check for collinearity.
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7.5.7 Baseline models (without distance) 

The baseline models were models that did not include lexical distance at all (MODELSbaseline). 

We compared these models to the main models that were used in the study (MODELSmain), where 

lexical distance was included as a predictor, as part of an interaction with L2 proficiency, and 

as random slopes of L1. In addition, to better understand how the removal of lexical distance 

from the models influences them,137 we also compared the baseline and main models with 

models that contained distance as a predictor/interaction but without random slopes 

(MODELSno_slope), and with models that had distance only as a predictor, with no random slopes 

or interaction (MODELSonly_predictor). 

Specifically, we compared the models’ AIC and BIC, and the results of this are shown 

in Table 58. Both measures were used, as suggested in Kuha, (2004). The AIC and BIC of each 

model were extracted directly from each model object in R using the summary function. All 

comparisons were between models that used the same set of data (i.e., between models that use 

the same learner sample and lexical-distance dataset), as required when using these measures 

(Fabozzi et al., 2014; Kuha, 2004). 

 

 
137 For example, this could show if removing lexical distance from the interaction improves the models, but 

removing it as a predictor worsens them. 
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Table 58. Comparisons of AIC and BIC across models. 

Corpus Distance data Model AIC Δ AIC BIC Δ BIC 

First Swadesh baseline 73703.03 0.58 73785.16  - 

First Swadesh only predictor 73702.45 - 73794.85  9.69 

First Swadesh no slope 73704.03 1.59 73806.70 21.54 

First Swadesh main 73705.32 2.87 73828.52 43.36 

Second Swadesh baseline 61475.10 5.66 61554.95  - 

Second Swadesh only predictor 61474.56 5.11 61564.39  9.44 

Second Swadesh no slope 61474.99 5.55 61574.80 19.86 

Second Swadesh main 61469.44 - 61589.22 34.27 

First parallel baseline 401614.39  - 401722.16  - 

First parallel only predictor 401663.18 48.80 401784.42 62.27 

First parallel no slope 401662.38 48.00 401797.09 74.94 

First parallel main 401655.51 41.12 401817.16 95.01 

Second parallel baseline 346322.57 5.27 346428.02  - 

Second parallel only predictor 346322.72 5.41 346441.34 13.33 

Second parallel no slope 346323.49 6.18 346455.29 27.28 

Second parallel main 346317.31 - 346475.47 47.46 

Note. ΔAIC is calculated by subtracting the AIC of a given model from the AIC of the model with the minimal 

AIC for that combination of corpus (i.e., first/second) and lexical-distance dataset (i.e., Swadesh/parallel), since 

comparisons can only be made between models that are based on the same data (Fabozzi et al., 2014; Kuha, 2004). 

Accordingly, no ΔAIC is listed for the model with the minimal AIC for a certain combination (e.g., Swadesh lists 

in the first corpus). The same is the case for ΔBIC. 

 

Interpretations of the differences in AIC/BIC are based on Fabozzi et al. (2014). In terms of 

BIC, there was very strong support for the simplest (baseline) model in all 4 cases, as it had the 

minimal BIC, with ΔBIC either slightly below 10 or far above it. In terms of AIC, the picture 

was less clear. Specifically, in the case of the parallel dictionaries in the first corpus, the 

baseline model was strongly supported (ΔAIC > 40). However, in the case the first corpus in 

the Swadesh lists, there was only weak support for the baseline and predictor-only models over 

the main model (ΔAIC ~2–3), and in the case of the second corpus (both Swadesh and parallel), 
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there was moderate support (ΔAIC ~5–6) for the main models over the other models (though 

the main models were ranked the worst in all cases based on BIC). This difference between 

AIC/BIC can be attributed to the greater penalty that BIC imposes for the number of parameters 

in the model (Fabozzi et al., 2014). When the patterns of the two measures are considered, 

together with the estimates for the associated predictors, it appears that the AIC comparisons 

are sometimes recommending the use of an overfitted model here. 

Overall, the comparison between the models did not consistently support the inclusion 

of linguistic distance as a predictor based on AIC, and consistently supported its exclusion 

based on BIC. It is, therefore, reasonable to conclude that the effect of distance is at best unclear 

in our dataset. This is strongly supported by the findings for the main models that are shown in 

the paper, where the distance predictor and the interaction had IRRs very close to 1 

(corresponding to a coefficient estimate of 0) and very small SEs, and where the SDs of the 

random slopes of distance were also very close to 1 (i.e., to a coefficient estimate of 0). 

The results for the baseline models are shown in Tables 59 and 60. 
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Table 59. Results of the baseline mixed-effects models, for the Swadesh-based samples. The response variable was the rate of use of the target L2 

English words (i.e., their count offset by the total number of words in each text). Under fixed effects, proficiency is the EFCAMDAT L2 proficiency 

level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target word in 

English (~1–7.5). Under random effects, τ00 represents the standard deviation (SD) of the associated random intercepts. 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -10.32 0.16  0.00 <0.01 -65.30 <.001 -9.85 0.14  0.00 <0.01 -68.62 <.001 

Proficiency  -0.04 0.02  0.96 0.02  -2.11 .035  0.00 0.02  1.00 0.02  -0.25 .806 

Frequency   3.29 0.21 26.89 5.65  15.68 <.001  3.15 0.19 23.31 4.44  16.52 <.001 

Random effects                                                

Learner_τ00   0.07                     0.23                    

Task_τ00   0.40                     0.33                    

Word_τ00   0.38                     0.46                    

Task:Word_τ00   1.84                     1.36                    

L1_τ00   0.02                     0.03                    
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Table 60. Results of the baseline mixed-effects models, for the parallel-based samples. The response variable was the rate of use of the target L2 

English words (i.e., their count offset by the total number of words in each text). Under fixed effects, proficiency is the EFCAMDAT L2 proficiency 

level at which the text was written (1–12, corresponding to CEFR A1–B2), and frequency is the baseline Zipf frequency of the target word in 

English (~1–7.5). Under random effects, τ00 represents the standard deviation (SD) of the associated random intercepts. 

 First corpus Second corpus 

Predictor B SEB IRR SEIRR z p B SEB IRR SEIRR z p 

(Intercept) -12.86 0.06  0.00 <0.01 -207.24 <.001 -12.59 0.05  0.00 <0.01 -242.46 <.001 

Proficiency   0.11 0.01  1.11 0.01    9.02 <.001   0.04 0.01  1.04 0.01    4.36 <.001 

Frequency   2.90 0.06 18.14 1.05   49.90 <.001   2.97 0.05 19.57 0.99   58.57 <.001 

Random effects                                                   

Learner_τ00   0.03                       0.05                     

Task_τ00   0.03                       0.12                     

Word_τ00   0.46                       0.65                     

Task:Word_τ00   2.30                       1.50                     

L1_τ00   0.01                       0.01                     
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7.5.8 Analysis of synonym sets 

Rabinovich et al. (2018) use a different approach than us to analyze the cognate facilitation 

effect, with the key difference being that they examined how cognancy within a synonym set 

(synset) influences word choice, whereas we examined how similarity between words and 

synonym sets influences word choice. While conducting a similar style of analysis as them is 

beyond the scope of this study, below we present a brief analysis of our sample in light of the 

approach used by Rabinovich et al.. 

Based on our own research and on the conditions in which Rabinovich et al. (2018) found 

evidence of the cognate facilitation effect, we can identify the following criteria as conditions 

under which we would expect to find this effect within synonym sets: 

− There must be a communicative need or reasonable opportunity to convey the 

relevant meaning. They characterize their sample as involving “spontaneous 

productions”, so in their case it is likely that learners had more opportunities for choosing 

which meanings to convey than in more constrained task-based settings. 

− The relevant meaning must be able to be conveyed using a synset. This is because the 

cognate facilitation effect, as found by them, is based on the contrast in usage between 

synonyms within a synset. 

− The synonyms must be easily interchangeable. This is because otherwise, the effects of 

cognancy may be obscured by other factors that play a role in the choice of specific 

synonyms out of the synset, and especially frequency effects. In their study, they 

operationalized this concept by avoiding synsets that were dominated by a single synonym 

(i.e., where a single synonym accounted for 90% or more of the usage of that synset in their 

dataset). This means, for example, that a synset such as {kiss, buss, osculation} was 

excluded, whereas a synset such as {divide, split} was retained.138 

− There must be a mix of cognates and non-cognates in the synset.  Specifically, there 

must be at least one cognate for the cognate facilitation effect to occur, but there must also 

 
138 While this is a reasonable operational definition from a practical perspective, especially when working with 

large-scale datasets, it is important to note that there are various issues with it. For example, some synonyms might 

not be easily interchangeable due to connotations that they carry, even if they have a similar rate of usage. In 

addition, the reliance on a strict 90% threshold can lead to issues, such as in a case where a single synonym 

accounts for 85% of the uses in a corpus, meaning that it is still fairly dominant over the others. Similarly, there 

can be a difference between a synset with two synonyms that each account for 50% of uses, and a synset with 3 

synonyms that has a usage distribution of 50%-49%-1% or 50%-25%-25%. Finally, if a certain L2 word a cognate 

in many languages, it might become a highly dominant synonym, and therefore be omitted from the sample even 

though it displays a strong cognate facilitation effect. 
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be at least one non-cognate against which the cognate stands out.139 Note that this criterion 

is L1-dependent, since cognancy of an L2 word is defined based on its relation to an L1 

word. 

We briefly analyzed our samples to determine to what degree these conditions occur there. 

In the Swadesh lists, none of the English words were listed as being a part of a synset. 

In the parallel dictionaries, out of 1,103 English words that were included in our analyses, 751 

(68.09%) were listed as having no synonyms, and 352 (31.91%) were part of a synset. Of those 

with a synonym, 21 (5.97%) of the entries that originally had two synonyms in the dataset 

appeared by themselves in the final dataset, due to removal of the other synonym in during the 

data preparation.140 Of the 331 entries that were a part of a synset in the present dataset, 304 

(91.84%) were part of a synonym pair (i.e., a synset with 2 synonyms), and 27 (8.16%) were a 

part of a synonym triplet (i.e., a synset with 3 synonyms). As such, there were a total of 161 

synsets in our parallel-dictionaries dataset. 

When considering how many of these were easily interchangeable, we based our 

criterion on a similar one as Rabinovich et al., and define an easily interchangeable synset as 

one where the difference in Zipf frequency between the synonyms is no greater than 1 (i.e., 

where no synonym is 10 times or more common than the others, since Zipf frequency is on a 

logarithmic scale). 110 (68.32%) of the synsets (corresponding to 223 entries) fulfilled this 

criterion, with Zipf frequency differences ranging all the way from 0.00–0.99. 

Next, there was the question of which of these synsets contain a difference in lexical 

similarity that could be characterized as corresponding to cognancy/non-cognancy, since we 

use a continuous measure of lexical similarity, rather than something that clearly delineates 

whether a pair of words are cognates or not. As a rough measure, we categorized synset as 

fulfilling this criterion if at least one of the synonyms had an LDN ≤ .60 and at least one had 

an LDN ≥ .80.141 Unlike the previous criteria, which were L1-independent, this was L1-

dependent, so there were 550 relevant synset combinations (110 synsets for each of the 5 L1s 

 
139 However, it may also be the case that there can be a facilitative effect of lexical similarity even if there are no 

cognates in a synonym set, as long as some of the synonyms are substantially more similar to the L1 counterpart 

than the other synonyms are. 
140 The remaining entries with synonyms did not have any of their synonyms removed during the data-preparation 

stage. 
141 As with the 90% frequency cutoff proposed by Rabinovich et al., the exact cut-off that was chosen is somewhat 

arbitrary, and any single cutoff that is used will likely involve a tradeoff between false positives and false 

negatives. The specific values that were chosen here are based on a manual examination of the data, and while 

arguments could be made for other values or criteria, it does not appear that this would substantially change the 

findings of this analysis. 
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in the parallel dictionaries). Of these, 93 (16.91%), which contain 189 synonyms, fulfilled the 

cognancy criterion. 

Finally, there was the question of whether there was a communicative need for the 

underlying meanings represented by these synsets. This was determined based on whether at 

least one of the synonyms in the relevant synsets appeared at least once in a text: 

− In the first corpus, there were 179,439 rows which represent a combination of one of the 

above synonyms with a text (while taking learners’ L1 into account). Of these, 710 (0.4%) 

rows had a count > 0 for the target word, meaning that it was used at least once.142 These 

represented the use of 63 synsets (67.74% of the original synsets). 

− In the second corpus, there were 134,190 rows which represent a combination of one of the 

above synonyms with a text. Of these, 709 (0.53%) rows had a count > 0 for the target 

word. These represented the use of 64 synsets (68.82% of the original synsets). 

Overall, this suggests that, in the present samples, there was a substantial number of cases 

where words were used from a synset that fulfills the necessary criteria for the cognate 

facilitation effect (interchangeability, a combination of cognancy/non-cognancy, and a 

communicative need for the underlying meaning). 

This aspect of the data should be interpreted with caution, since there are various issues 

with how these criteria are operationalized and with how synonyms are listed in the datasets in 

the first place. For example, there are cases where synonyms that fit these criteria are not really 

interchangeable, as in the case of {vein/artery}, or are only interchangeable in some situations, 

as in the case of {marriage/wedding}. Nevertheless, even taking such issues into account, it 

seems that at least some of the entries in the present analyses include cognates as part of a fairly 

interchangeable synset (e.g., {woods/forest}, {stone/rock}, {carriage/wagon/cart}), so it may 

be possible to use this sample in analyses that are similar to those of Rabinovich et al.. 

 

7.5.9 Software used in the analyses 

All analyses were performed in R (R Core Team, 2021).143 All tests of statistical significance 

throughout the study were two-tailed. To list the specific packages that were loaded throughout 

 
142 See §7.5.17.5.3 for summary statistics of the usage of the target words. Briefly, we can say that this apparently 

low rate is expected, since many words are used rarely, when there is a need for them in a task. 
143 However, the lexical-distance data was generated in Python. Specifically, the following Python libraries were 

used for basic data wrangling and calculations: SciPy (Virtanen et al., 2019), pandas (McKinney, 2010), and 

numpy (Oliphant, 2006; Walt et al., 2011). The ASJP’s phonetic script (outlined in Brown et al., 2008) was 
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the analyses, we used the sessionInfo function from the report library (Makowski & Lüdecke, 

2019). This generates an automated output based on the citation information associated with 

the metadata of each package, which may be incomplete or formatted differently than APA 

style. We present this bibliography here as-is, to preserve the original output, and we therefore 

also separate it from the main the main bibliography for this document. 

 

---Start of report(sessionInfo()) output below--- 

Analyses were conducted using the R Statistical language (version 4.0.4; R Core Team, 

2021) on Windows 10 x64 (build 19042), using the packages broom.mixed (version 0.2.6; Ben 

Bolker and David Robinson, 2020), DHARMa (version 0.4.1; Florian Hartig, 2021), ggplot2 

(version 3.3.3; Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New 

York, 2016.), stringr (version 1.4.0; Hadley Wickham, 2019), forcats (version 0.5.1; Hadley 

Wickham, 2021), tidyr (version 1.1.3; Hadley Wickham, 2021), readxl (version 1.3.1; Hadley 

Wickham and Jennifer Bryan, 2019), readr (version 1.4.0; Hadley Wickham and Jim Hester, 

2020), dplyr (version 1.0.5; Hadley Wickham et al., 2021), tibble (version 3.1.0; Kirill Müller 

and Hadley Wickham, 2021), purrr (version 0.3.4; Lionel Henry and Hadley Wickham, 2020), 

sjPlot (version 2.8.7; Lüdecke D, 2021), performance (version 0.7.0; Lüdecke et al., 2020), 

glmmTMB (version 1.0.2.1; Mollie Brooks et al., 2017), openxlsx (version 4.2.3; Philipp 

Schauberger and Alexander Walker, 2020) and tidyverse (version 1.3.0; Wickham et al., 2019). 
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---End of report(sessionInfo()) output above---
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