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Joining and Splitting Models
with Markov Melding

Robert J. B. Goudie∗, Anne M. Presanis†, David Lunn‡,
Daniela De Angelis§, and Lorenz Wernisch¶

Abstract. Analysing multiple evidence sources is often feasible only via a modu-
lar approach, with separate submodels specified for smaller components of the
available evidence. Here we introduce a generic framework that enables fully
Bayesian analysis in this setting. We propose a generic method for forming a
suitable joint model when joining submodels, and a convenient computational al-
gorithm for fitting this joint model in stages, rather than as a single, monolithic
model. The approach also enables splitting of large joint models into smaller sub-
models, allowing inference for the original joint model to be conducted via our
multi-stage algorithm. We motivate and demonstrate our approach through two
examples: joining components of an evidence synthesis of A/H1N1 influenza, and
splitting a large ecology model.

Keywords: model integration, Markov combination, Bayesian melding, evidence
synthesis.

1 Introduction

The increasing availability of large amounts of diverse types of data in all scientific fields
has prompted an explosion in applications of methods that combine multiple sources
of evidence using (Bayesian) graphical models (for example, Moran and Clark, 2011;
Commenges and Hejblum, 2012; Shubin et al., 2016; Birrell et al., 2016). Such evidence
synthesis methods have several advantages (Ades and Sutton, 2006; Welton et al., 2012;
Jackson et al., 2015): resulting estimates are typically more precise, due to the increased
amount of information; they are consistent with all available knowledge; and the risk of
potential biases introduced if estimation relies on a ‘best quality’ subset is minimised.

However, dealing with joint models of several sources of evidence, including data and
expert opinion, may be inferentially imprudent, computationally challenging, or even
infeasible. It is often sensible to take a modular approach, where separate submodels
are specified for smaller components of the available data, facilitating computation and,
importantly, allowing insight into the influence of each submodel on the joint model
inference (Green et al., 2003; Liu et al., 2009). These submodels can originate in two
ways: either by first specifying submodels that, in a Bayesian framework, should be
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2 Joining and Splitting Models with Markov Melding

Figure 1: DAG representation of a joint hierarchical model linking M submodels.

joined in a single model to allow all information and uncertainty to be fully propagated;
or as a result of splitting an existing joint model.

Formally, consider M probability submodels pm(φ, ψm, Ym), m = 1, . . . ,M , for sub-
model-specific multivariate parameters ψm and observable random variables Ym, as
well as a multivariate parameter φ common to all submodels that acts as a ‘link’ be-
tween the submodels. The problem is then to join the submodels into a single model
pcomb(φ, ψ1, . . . , ψM , Y1, . . . , YM ) so that the posterior distributions for the link param-
eter φ and the submodel-specific parameters ψm account for all observations and uncer-
tainty. A suitable joint model for a collection of submodels naturally arises in some con-
texts from standard model constructs, such as a hierarchical model (Figure 1). However,
it is not immediately clear how to form such a joint model when either: the submodels
are not expressed in a form conditional upon the link parameter φ, particularly if the
link parameter is a non-invertible deterministic function of the other parameters; or the
prior marginal distributions pm(φ), m = 1, . . . ,M , for the link parameter φ differ in
the submodels. In applied research, convenient approximate two-stage approaches have
been widely used, where one submodel is fitted and an approximation of the resulting
posterior is provided to a second submodel (Jackson et al., 2009; Presanis et al., 2014).
However, the joint model that is implied by such an approach is unclear (Eddy et al.,
1992; Ades and Sutton, 2006).

Conversely, suppose a joint model p(φ, ψ1, . . . , ψM , Y1, . . . , YM ) exists that needs
splitting into M submodels pm(φ, ψm, Ym), m = 1, . . . ,M . The submodels should be
faithful to the original model in the sense that joining the submodels results in the
original model. In some contexts, suitable submodels arise naturally from the structure
of the joint model, resulting in splitting strategies used implicitly in the context of
hierarchical models (Lunn et al., 2013a; Tom et al., 2010; Liang and Weiss, 2007) and
of tall data (Scott et al., 2016; Neiswanger et al., 2014). However, neither the general
conditions stipulating when splitting is permissible nor a general framework for splitting
a model are immediately clear.

In this paper we introduce Markov melding , a simple, generic approach for joining
and splitting models that clarifies and generalises various proposals made in the liter-
ature under the umbrella of one theoretical framework. Markov melding builds on the
theory of Markov combination (Dawid and Lauritzen, 1993) and super Markov combina-
tion (Massa and Lauritzen, 2010; Massa and Riccomagno, 2017) and combines it with
ideas from Bayesian melding (Poole and Raftery, 2000), enabling evidence synthesis
(Ades and Sutton, 2006; Welton et al., 2012) and model expansion (Draper, 1995) in
realistic applied settings. Markov combination is a framework for combining submod-
els when the prior marginal distributions pm(φ), m = 1, . . . ,M , are identical. If the
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prior marginal distributions differ, the super Markov combination family of combined

models can be formed, each member of which adopts any one of the prior marginal

distributions pm(φ) in a combined model. However, in applied contexts, discarding all

but one of the prior marginal distributions would usually be unjustifiable, so we propose

instead to adopt a pooled prior marginal distribution that reflects all prior marginal dis-

tributions. Markov melding also accounts for contexts where the link parameter φ is a

non-invertible deterministic function of other parameters in a submodel. When joining

submodels, Markov melding aims to preserve the original submodels as faithfully as pos-

sible, and, in particular, always preserves the submodel-specific conditional distributions

pm(ψm, Ym | φ) for all m. Note that, while Markov melding is defined for any collection

of submodels, the results may be misleading if any evidence components (priors, sub-

models and data) strongly conflict (Presanis et al., 2013; G̊asemyr and Natvig, 2009).

Such conflict should be investigated and resolved, for example through bias modelling

(Turner et al., 2009), before proceeding with the synthesis. In terms of splitting, the

Markov melding framework proposed here clarifies the conditions required and the gen-

eral framework in which to conduct model splitting, facilitating the modular approach

advocated above. Notably, we generalise existing tall data splitting approaches (Scott

et al., 2016; Neiswanger et al., 2014) for independent, identically distributed data to

other types of data.

Finally, we also develop an algorithm for fitting the Markov melded model in stages,

for both joining and splitting models. This algorithm extends naturally that employed

in Lunn et al. (2013a) and is closely related to those proposed in Liang and Weiss (2007)

and Tom et al. (2010).

The paper is organised as follows: in Section 2 we introduce some examples motivat-

ing this work; Section 3 provides the conceptual framework underlying our approach; in-

ferential and computational aspects of the approach are presented in Section 4; Section 5

gives details and results for the motivating examples; we conclude with a discussion and

suggestions for further work in Section 6.

2 Motivating examples

We motivate and demonstrate our framework for joining and splitting models with two

examples, for which we provide here a brief high-level outline. We show how Markov

melding applies in each case in Section 3.3; and provide full details and results in

Section 5. For both examples, as in the rest of the paper, we use directed acyclic graphs

(DAGs) to represent the dependence structure between variables in a model (Figures 2

and 3). Each variable in the model is represented by a node with rectangular nodes

denoting observed variables and links between the nodes indicating direct dependencies.

Stochastic (distributional) dependencies are represented by solid lines and deterministic

(logical) relationships by dashed lines. The joint distribution of all nodes is the product

of the conditional distributions of each node given its direct parents, and conditional

independence relationships can be read from the graph (Lauritzen, 1996).
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Figure 2: High-level DAG representations of the influenza submodels. The double cir-
cle denotes the (highly) informative prior for χ, reflecting data from the full severity
submodel that is omitted here. Detailed DAGs of these submodels are shown in Figure 6.

Figure 3: High-level DAG representations of the ecology models. Detailed DAG repre-
sentations of these models are shown in Figure 9.

2.1 Joining: A/H1N1 influenza evidence synthesis

Public health responses to influenza outbreaks rely on knowledge of severity: the prob-
ability that an infection results in a severe event such as hospitalisation or death. One
method to estimate severity is by combining estimates of cumulative numbers of severe
events with estimates of cumulative numbers of infections obtained from synthesizing
different data sources. This approach is adopted in Presanis et al. (2014) for the A/H1N1
pandemic, where information from intensive care units (ICU) is integrated with several
other sources. Figure 2 provides a schematic representation of the submodels used for
each evidence component. A crucial ingredient is the cumulative number of ICU ad-
missions for the A/H1N1 strain, χ. A lower bound φ for χ is estimable through an
immigration-death model governed by transition rates θ, from time-dependent (weekly)
prevalence data y on suspected ‘flu cases in ICU (Figure 2(a)). The φ of Figure 2(a) is
a deterministic function (a sum) of latent quantities involving θ and other parameters
πpos. Indirect aggregate evidence on χ is also available from a severity submodel (Fig-
ure 2(b)), whose complexity is summarised here by an informative prior on χ. The lower
bound φ is related to χ through a binomial model with probability parameter πdet.

The two submodels imply two different prior models for the link quantity φ. A further
complication is that the deterministic function connecting φ to the ICU submodel pa-
rameters is a sum of products, which is not invertible, preventing the ICU submodel from
being expressed conditional on φ. Presanis et al. (2014) therefore transferred informa-
tion between the two separate submodels via an approximate approach (see Section 4.3
for details). We show in this paper how Markov melding can be used to join the two sub-
models formally into a single joint model, making all the assumptions involved explicit.
We also explain the relationship between our approach and the approximate approach.
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2.2 Splitting: large ecology model

As an example of splitting a large DAG model we consider a joint model (Besbeas
et al., 2002) for two distinct sources of data about British Lapwings (Vanellus vanellus).
These data sources are primarily collected to inform different aspects of studies of the
birds: census-type data provide a measure of breeding population size, while mark-
recapture-recovery data provide estimates of the annual survival probability of the birds
via observations of the survival of uniquely marked individuals. These data are related
and a joint model allows inference to account for all information available. In the joint
Bayesian model of Brooks et al. (2004) (Figure 3(a)), the mark-recapture-recovery data
y are modelled in terms of the recovery rate λ, and the survival rate φ for birds; and
the census data x are modelled in terms of the survival rate φ, and the productivity
rate γ of adult female birds. The joint model links the data sources using the common
survival rate parameter φ.

Brooks et al. (2004) considered fitting the census and mark-recapture-recovery mod-
els both separately and jointly using standard Markov chain Monte Carlo (MCMC)
algorithms, but considering the joint model simultaneously is cumbersome and MCMC
convergence is slow. We describe in this paper how, through Markov melding, inference
from such a joint model can be carried out in stages after splitting the model into two
separate submodels (Figure 3(b)), circumventing the need to directly fit the joint model
in a single MCMC procedure. The multi-stage fitting process is more computationally
efficient, and gives insight into the contribution of each submodel to the joint model.

3 Conceptual framework

3.1 Joining models

To combine probabilistic models in a principled way, we propose Markov melding as an
extension of Markov combination, which has been introduced by Dawid and Lauritzen
(1993) and discussed extensively with generalisations and applications in Massa and
Lauritzen (2010) and Massa and Riccomagno (2017).

Let p denote either a probability distribution for discrete random variables or a
probability density for continuous variables (we assume such a density exists). In both
cases we talk of p interchangeably as a probability or probability distribution and we
express conditional probabilities as p(ψ | φ) = p(ψ, φ)/p(φ), where p(φ) > 0. We will
assume that when conditioning on a variable its distribution has support in the relevant
region. For random variables X1, X2 and X3, X1⊥⊥X2 | X3 means that X1 and X2 are
conditionally independent given X3.

Markov combination

Dawid and Lauritzen (1993) define the submodels pm(φ, ψm, Ym), m = 1, . . . ,M , as
consistent in the link parameter φ if the prior marginal distributions pm(φ) = p(φ)
are the same for all m. They define the Markov combination pcomb of M consistent
submodels as the joint model
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pcomb(φ, ψ1, . . . , ψM , Y1, . . . , YM ) = p(φ)

M∏
m=1

pm(ψm, Ym | φ)

=

∏M
m=1 pm(φ, ψm, Ym)

p(φ)M−1
.

(1)

By construction, model (1) assumes that the submodels are conditionally-independent:
(ψm, Ym) ⊥⊥ (ψ�, Y�) | φ for m �= 	 (see Figure 1). All prior marginal distributions and
submodel-specific conditional distributions, given the link parameter, are preserved:
pcomb(φ, ψm, Ym) = pm(φ, ψm, Ym) and pcomb(ψm, Ym | φ) = pm(ψm, Ym | φ) for all
m. Furthermore, the model has maximal entropy among the set of distributions with
this marginal preservation property, and so can be viewed as the least constrained
among such distributions (Massa and Lauritzen, 2010). Only prior marginals are pre-
served in Markov combinations: the posterior distributions of φ and any ψ� under the
Markov combination model account for all data Ym, m = 1, . . . ,M , rather than just the
submodel-specific data Y�, and are not preserved.

Markov melding

If the submodels are not consistent in their link parameter φ, that is, if the prior marginal
distributions p1(φ), . . . , pM (φ) of the link parameter differ, a Markov combination can-
not be formed directly. However, the original submodels pm(φ, ψm, Ym), m = 1, . . . ,M ,
can be altered so that the marginals p1(φ), . . . , pM (φ) for the link parameter become
consistent. This is achieved by a procedure we term marginal replacement , where a new
model prepl,m(φ, ψm, Ym) is formed by replacing the marginal distribution pm(φ) of φ
in the original model pm(φ, ψm, Ym) by a new marginal distribution ppool(φ):

prepl,m(φ, ψm, Ym) = pm(ψm, Ym | φ) ppool(φ)

=
pm(φ, ψm, Ym)

pm(φ)
ppool(φ),

(2)

where the pooled density ppool(φ) = g(p1(φ), . . . , pM (φ)) is a function g of the individual
prior marginal densities. Here, and in what follows, we assume that such a pooled density
exists, that g has been chosen such that

∫
ppool(φ) dφ = 1, and that ppool reflects an

appropriate summary of the individual marginal distributions; we discuss options below.

Since prepl,m(φ, ψm, Ym), m = 1, . . . ,M , are consistent in the link parameter φ (that
is, they all have the same prior marginal ppool(φ)), we can form their Markov combina-
tion

pmeld(φ, ψ1, . . . , ψM , Y1, . . . , YM ) = ppool(φ)

M∏
m=1

prepl,m(ψm, Ym | φ)

= ppool(φ)

M∏
m=1

pm(φ, ψm, Ym)

pm(φ)
.

(3)

We term this construction Markov melding of the submodels pm(φ, ψm, Ym) with pooled
density ppool(φ) = g(p1(φ), . . . , pM (φ)), which amounts to applying the Markov combi-
nation (1) to submodels satisfying the consistency condition after marginal replacement



R. J. B. Goudie, A. M. Presanis, D. Lunn, D. De Angelis, and L. Wernisch 7

as in (2). The submodel-specific conditional distributions, given the link parameter,
are preserved in the Markov melded model: pmeld(ψm, Ym | φ) = pm(ψm, Ym | φ) for
all m. However, in contrast to Markov combination, the prior marginal distributions
pm(φ, ψm, Ym) will, in general, not be preserved in the Markov melded model. Once
the new model pmeld(φ, ψ1, . . . , ψM , Y1, . . . , YM ) has been formed by Markov melding,
posterior inference conditioning on the data Y1 = y1, . . . , YM = yM can be performed
(see Section 4).

If ppool equals pm for a specific submodel m ∈ {1, . . . ,M} then, in the terminology of
Massa and Lauritzen (2010), marginal replacement (2) forms a member of a maximally
extended family and Markov melding (3) forms a member of the super Markov combina-
tion family. That is, rather than allowing a pooled prior marginal distribution ppool that
can reflect all the prior marginal distributions p1(φ), . . . , pM (φ), maximally extended
families and super Markov combination require the use of a single one of the original
prior marginal distributions; see Supplementary Material A (Goudie et al., 2018) for
details.

By extending a similar argument used in Poole and Raftery (2000), it can be
shown that marginal replacement has the attractive property that prepl,m minimises
the Kullback–Leibler divergence DKL of a distribution q(φ, ψ, Y ) to pm(φ, ψm, Ym) un-
der the constraint that the marginals on φ agree, q(φ) = ppool(φ):

prepl,m(φ, ψm, Ym) = argminq{DKL(q ‖ pm) | q(φ) = ppool(φ) for all φ}.

Marginal replacement can also be interpreted as a generalisation of Bayesian updating
in the light of new information. Details are provided in Supplementary Material B.

Markov melding with deterministic variables

Care is required when some of the dependencies in a submodel are deterministic, as
in the example in Section 2.1. The considerations are identical to those for Bayesian
melding (Poole and Raftery, 2000), where priors on the input and output of determin-
istic functions are combined. Specifically, assume the k-dimensional link parameter φ is
deterministically related to a 	-dimensional parameter θ, k ≤ 	, in a model p(φ, θ, ψ, Y ).
The probability model is effectively given by p(θ, ψ, Y ) and φ follows an induced distri-
bution. We assume φ is exclusively a deterministic function φ(θ) of the parameter θ.

To apply Markov melding, we need to ensure that the prior marginal distribution
on φ is well defined, and that we can apply marginal replacement to φ = φ(θ). We
must assume that φ(θ) is an invertible function or, in the case of k < 	, that φ(θ) can
be expanded into an invertible function φe(θ) = (φ(θ), t(θ)), with a 	 − k dimensional
deterministic function t(θ). We denote the inverse function by θ(φ, t). The function φe

induces a probability distribution on (φ, t, ψ, Y ) which can be represented as

p(φ, t, ψ, Y ) = p(θ(φ, t), ψ, Y ) Jθ(φ, t),

where Jθ(φ, t) is the Jacobian determinant for the transformation θ(φ, t). The marginal
distribution on φ can now be obtained as p(φ) =

∫
p(φ, t, ψ, Y ) dt dψ dY . We show in
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Supplementary Material C that p(φ) is independent of the chosen parametric exten-
sion t(θ) and so is well defined, and that we can apply marginal replacement, as defined
by (2), to replace p(φ) with ppool(φ):

prepl(θ, ψ, Y ) =
p(θ, ψ, Y )

p(φ(θ))
ppool(φ(θ)). (4)

Markov melding with prepl(θ, ψ, Y ) can now be applied as in (3).

Pooling marginal distributions

The pooling function g determines the prior marginal distributions pmeld(φ, ψm, Ym),
which, in general, will not match those in the original submodels. It must, therefore, be
chosen subjectively, ensuring that the pooled density ppool(φ) appropriately represents
prior knowledge of the link parameter φ. Various standard pooling functions have been
suggested in the multiple expert elicitation literature (see, for example, Clemen and
Winkler, 1999; O’Hagan et al., 2006). The difference here is that we propose to pool
prior marginal distributions of submodels, rather than directly-specified priors. A simple
option is linear pooling ,

ppool(φ) =
1

Klin(w)

M∑
m=1

wmpm(φ), Klin(w) =

∫ M∑
m=1

wmpm(φ) dφ,

where w = (w1, . . . , wM )�, with wm ≥ 0 to weight the submodel priors. An alternative
is log pooling ,

ppool(φ) =
1

Klog(w)

M∏
m=1

pm(φ)wm , Klog(w) =

∫ M∏
m=1

pm(φ)wm dφ,

with wm ≥ 0, a logarithmic version of the linear pooling (for reasons why logarithmic
pooling might be attractive see Supplementary Material D). A special case of log pooling
is product of experts (PoE) pooling (Hinton, 2002) when wm = 1 for all m

ppool(φ) =
1

Kpoe

M∏
m=1

pm(φ), Kpoe =

∫ M∏
m=1

pm(φ) dφ,

in which equal weight is given to each submodel prior. A further special case of linear or
log pooling is dictatorial pooling ppool(φ) = pm(φ) when one submodel m ∈ {1, . . . ,M}
is considered authoritative1. We shall assume throughout this paper that the weights w
are a fixed quantity, chosen subjectively, in contrast to some of the power prior literature
(Neuenschwander et al., 2009), where attempts have been made to treat the weight w
as an unknown parameter.

1Dictatorial pooling corresponds to left (or right) composition in the terminology of Massa and Lau-
ritzen (2010), and for M = 2 their upper Markov combination is the family comprising two distributions
namely the two possible directions for dictatorial pooling.
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Figure 4: Pooled densities under PoE, log and linear pooling, with w1 = 0.25, 0.5 and
0.75 (and w2 = 1 − w1), formed by pooling a N(0, 1) density ( ) and a N(μ2, σ

2
2)

density ( ) with μ2 = 1, 2, and σ2 = 0.5, 1.

Figure 4 shows the pooled density when combining two normal distributions under
three different pooling functions with three choices of weights. The PoE approach is
arguably the least intuitive pooling function due to the rather concentrated combined
distribution implied. However, the required computation is greatly simplified (see Sec-
tion 4), and so if (and only if) PoE adequately represents prior beliefs then PoE pooling
is an attractive option. The choice of pooling function is particularly important when
there is some disagreement between the priors, but if there is substantial conflict between
submodel priors we do not recommend the use of Markov melding, as mentioned above.

3.2 Splitting models

We may want to split up a larger model, for example, for computational efficiency or to
understand the influence of each submodel on the joint model. In this case we want to
split a large joint model p(φ, ψ1, . . . , ψM , Y1, . . . , YM ) into M submodels pm(φ, ψm, Ym),
m = 1, . . . ,M , in such a way that joining the submodels using Markov melding recovers
the original, joint model. If (ψm, Ym) ⊥⊥ (ψ�, Y�) | φ for m �= 	 in the original model,
then suitable submodels are

pm(φ, ψm, Ym) = p(ψm, Ym | φ)pm(φ), m = 1, . . . ,M,

where p1(φ), . . . , pM (φ) are new prior marginal distributions. These marginal distri-
butions and the pooling function g can chosen freely to enable efficient computation,
provided that the pooled distribution ppool(φ) = g(p1(φ), . . . , pM (φ)) is the same as the
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Figure 5: DAG representations of stylised situations where model splitting might be
desirable. Splitting the joint model is possible in (a) and (b), but not in (c).

original marginal distribution p(φ). An obvious choice is pm(φ) = p(φ)1/M with PoE
pooling, but there are many other options. For example, PoE pooling is suitable for any
factorisation of p(φ) into M factors.

Note that a splitting strategy based on Markov melding is suitable only if (ψm, Ym)⊥⊥
(ψ�, Y�) | φ for m �= 	, that is, conditioning on the link variable φ makes the parts that
are intended for splitting conditionally independent.

Figure 5 shows a few stylised situations with M = 2 where splitting for computa-
tional purposes might be desirable. The joint distributions for all models is p(φ, ψ1, ψ2,
Y1, Y2). The model in Figure 5(a) can be split into p1(φ, ψ1, Y1) = p(φ, Y1 | ψ1)p(ψ1) and
p2(φ, ψ2, Y2) = p(ψ2, Y2 | φ)p2(φ), with a new prior distribution p2(φ), which could be
different and computationally simpler than p(φ) =

∫
p(φ, Y1 | ψ1)p(ψ1) dψ1 dY1. Markov

melding, with dictatorial pooling ppool(φ) = p1(φ), results in

pmeld(φ, ψ1, ψ2, Y1, Y2) = p1(φ)
p1(φ, ψ1, Y1)

p1(φ)

p2(φ, ψ2, Y2)

p2(φ)

= p(φ, Y1 | ψ1) p(ψ1)p2(ψ2, Y2 | φ) = p(φ, ψ1, ψ2, Y1, Y2),

leading to the original model, regardless of the choice of p2(φ). The case in Figure 5(b)
is similar to the example in Section 2.2 (see Section 3.3 for a definition of splitting in
this case). Note that in Figures 5(a) and 5(b), the dependencies between the nodes can
include deterministic (logical) dependence, provided (ψ1, Y1) ⊥⊥ (ψ2, Y2) | φ, as usual.
The case in Figure 5(c) cannot be split into p1(φ, ψ1, Y1) and p2(φ, ψ2, Y2) by Markov
melding model splitting because (ψ1, Y1)⊥⊥� (ψ2, Y2) | φ.

3.3 Markov melding in the motivating examples

Joining: A/H1N1 influenza evidence synthesis

Markov melding involves joining the ICU submodel (Figure 2(a)) with density p1(φ, θ,
πpos, Y ), where φ is a deterministic function of θ and πpos, and the severity sub-
model (Figure 2(b)) with density p2(φ, χ, π

det). These submodels involve independently-
collected data from different surveillance systems, and so it is reasonable to assume
conditional independence. Replacing the marginal distribution of φ with pooled density
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ppool(φ) in the ICU submodel, using (4), and in the severity submodel, using (2), and
then applying Markov melding, as in (3), results in

pmeld(φ, θ, π
pos, χ, πdet, Y ) = ppool(φ)

p1(θ, π
pos, Y )

p1(φ(θ, πpos))

p2(φ, χ, π
det)

p2(φ)
, (5)

where Y1 = Y , ψ1 = {θ, πpos}, Y2 = ∅ and ψ2 = {χ, πdet} in the notation of (3).

Splitting: large ecology model

The original, joint model (Figure 3(a)), with density p(φ, λ, γ, Y,X), can be split
into separate submodels (Figure 3(b)) with densities p1(φ, λ, Y ) and p2(φ, γ,X). Pro-
vided the priors p1(φ) and p2(φ) in the separate submodels are such that ppool(φ) =
g(p1(φ), p2(φ)) equals the original marginal distribution p(φ), for some choice of pooling
function g, then Markov melding the submodels recovers the joint model:

pmeld(φ, λ, γ, Y,X) = ppool(φ) p1(λ, Y | φ) p2(γ,X | φ)
= p(Y | λ, φ) p(λ) p(X | γ, φ) p(γ) p(φ),

with ψ1 = λ, Y1 = Y , ψ2 = γ, Y2 = X in the notation of (3).

4 Inference and computation

The joint posterior distribution, given data Ym = ym, m = 1, . . .M , under the Markov
melded model in (3) is

pmeld(φ, ψ1, . . . , ψM | y1, . . . , yM ) ∝ ppool(φ)
M∏

m=1

pm(φ, ψm, ym)

pm(φ)
. (6)

The degree of difficulty of inference for this posterior distribution depends on the spec-
ification of the submodels. Our focus is settings in which, considered separately, each of
the original collection of submodels is amenable to inference by standard Monte Carlo
methods (for example, Robert and Casella, 2004).

In Section 4.1 we first consider a standard Metropolis-within-Gibbs sampler, but
when the constituent submodels are complex, this sampler may be cumbersome and
slow. We thus propose a multi-stage Metropolis-within-Gibbs sampler, in which in-
ference for the full Markov melded model is generated iteratively in stages, starting
with standard inference on one of the submodels. This latter sampling scheme en-
ables a convenient modular approach to inference. Both approaches, in general, re-
quire the marginal prior densities pm(φ) of the link parameter under each submodel,
m = 1, . . . ,M , which will not usually be analytically tractable. In Section 4.2 we discuss
approaches to estimating these densities, although there is no need to estimate them
if PoE pooling is chosen. In Section 4.3 we show how approximate approaches, such as
those used by Presanis et al. (2014), relate to the Markov melded model.
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4.1 Metropolis-Hastings samplers

A general Metropolis-Hastings sampler for the posterior distribution (6) can be con-
structed in the usual way. Candidate values (φ�, ψ�

1 , . . . , ψ
�
M ) for each parameter of the

Markov melded model are drawn from a proposal distribution q(φ�, ψ�
1 , . . . , ψ

�
M | φ,

ψ1, . . . , ψM ), based on the current values (φ, ψ1, . . . , ψM ) of the Markov chain. The
candidate values are accepted with probability min(1, r), where r is in the form

r =
R(φ�, ψ�

1 , . . . , ψ
�
M , φ, ψ1, . . . , ψM )

R(φ, ψ1, . . . , ψM , φ�, ψ�
1 , . . . , ψ

�
M )

,

where, with common normalising constants cancelled, the target-to-proposal density ra-
tio is

R(φ�,ψ�
1 , . . . , ψ

�
M , φ, ψ1, . . . , ψM )

= ppool(φ
�)

M∏
m=1

pm(φ�, ψ�
m, ym)

pm(φ�)
× 1

q(φ�, ψ�
1 , . . . , ψ

�
M | φ, ψ1, . . . , ψM )

.
(7)

Metropolis-within-Gibbs sampler

A particular form of the above general sampler is a Metropolis-within-Gibbs sampling
scheme (Müller, 1991), in which samples are drawn from the full conditional distribution
of each latent parameter ψ1, . . . , ψM , and then the link parameter φ in turn.

Latent parameter updates Markov melding does not introduce any extra complexities
in sampling the parameters ψm in each submodel m = 1, . . . ,M (conditional on the link
parameter φ) beyond those inherent to the original submodels, considered separately.
Typically, they can be sampled using standard algorithms. For instance, a Metropolis-
Hastings algorithm, in which we draw a candidate value ψ�

m from a proposal distribution
q(ψ�

m | ψm) based upon the current value ψm, will be feasible whenever the correspond-
ing algorithm is feasible for estimation of the posterior distribution of the mth submodel
alone. In this case, since terms involving marginal densities for the link parameter φ
in (6) cancel, the target-to-proposal density ratio in (7) simplifies to

R(φ, ψ1, . . . , ψ
�
m, . . . , ψM , φ, ψ1, . . . , ψM ) = pm(φ, ψ�

m, ym)× 1

q(ψ�
m | ψm)

.

This target-to-proposal density ratio is identical to that required for a Metropolis-
Hastings update for the parameter ψm, conditional on the link parameter φ, when
the mth submodel alone is the target distribution.

Link parameter updates To update the link parameters, a candidate value φ� is drawn
from an appropriate proposal distribution q(φ� | φ), based upon the current value φ,
and is accepted according to the target-to-proposal density ratio

R(φ�, ψ1, . . . , ψM , φ, ψ1, . . . , ψM ) = ppool(φ
�)

M∏
m=1

pm(φ�, ψm, ym)

pm(φ�)
× 1

q(φ� | φ) . (8)
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When the prior marginal distributions pm(φ) or ppool(φ) are not analytically tractable,
we propose to use an approximation p̂m(φ) in their place, calculated using the methods
described in Section 4.2. Note that, under PoE pooling, the terms involving the marginal
distributions for the link parameter φ cancel in (8), leaving

R(φ�, ψ1, . . . , ψM , φ, ψ1, . . . , ψM ) =

M∏
m=1

pm(φ�, ψm, ym)× 1

q(φ� | φ) ,

removing the need to estimate the marginal prior distribution for the link parameter φ.

Multi-stage Metropolis-within-Gibbs sampler

When the constituent submodels are complex, an alternative, multi-stage approach may
be computationally preferable to the Metropolis-within-Gibbs sampler. The multi-stage
approach generalises the two stage approach in Lunn et al. (2013a). We assume a factori-

sation of the pooled prior ppool(φ) =
∏M

m=1 ppool,m(φ). A default factorisation for any
pooling function sets ppool,m(φ) = ppool(φ)

1/M , but there may be more computationally-
efficient factorisations. For example, when PoE pooling is used, the factorisation with
ppool,m(φ) = pm(φ) is more computationally efficient, as we describe below. The aim
then is to sample, iteratively in stages 	 = 1, . . . ,M , from

pmeld,�(φ, ψ1, . . . , ψ� | y1, . . . , y�) ∝
�∏

m=1

(
pm(φ, ψm, ym)

pm(φ)
ppool,m(φ)

)
. (9)

Since pmeld,M (φ, ψ1, . . . , ψM | y1, . . . , yM ) = pmeld(φ, ψ1, . . . , ψM | y1, . . . , yM ), after M
stages the samples obtained reflect the posterior distribution (6) of the full Markov
melded model. Note that each pm(φ) (and thus also ppool(φ)) can be estimated from
the submodels in advance and independently of the following sampling scheme, as we
describe in Section 4.2.

Stage 1 We obtain H1 samples (φ(h,1), ψ
(h,1)
1 ), h = 1, . . . , H1, drawn from pmeld,1(φ,

ψ1 | y1). The most appropriate method for obtaining such samples depends on the
nature of the submodel p1(φ, ψ1, Y1); typically, standard Monte Carlo methods, such as
MCMC, will be suitable.

Stage 	 After we have sampled up to stage 	− 1 from (9), we construct a Metropolis-
within-Gibbs sampler for stage 	 for the parameters (φ, ψ1, . . . , ψ�) given data (y1, . . . ,
y�). The parameter ψ� is updated, conditional on the link parameter φ and parameters
ψ1, . . . , ψ�−1 using a standard algorithm, such as a Metropolis-Hastings sampler, with
a target-to-proposal density ratio

R(φ, ψ1, . . . , ψ
�
� , φ, ψ1, . . . , ψ�) = p�(φ, ψ

�
� , y�)×

1

q(ψ�
� | φ, ψ�)

.

We use the samples from stage 	−1 as a proposal distribution when updating the param-
eters ψ1, . . . , ψ�−1 and the link parameter φ. Specifically, we draw an index d uniformly
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at random from {1, . . . , H�−1}, and set (φ�, ψ�
1 , . . . , ψ

�
�−1) = (φ(d,�−1), ψ

(d,�−1)
1 , . . . ,

ψ
(d,�−1)
�−1 ), so that

(φ(d,�−1), ψ
(d,�−1)
1 , . . . , ψ

(d,�−1)
�−1 ) ∼ pmeld,�−1(φ, ψ1, . . . , ψ�−1 | y1, . . . , y�−1).

The attraction of this particular proposal distribution is the resulting cancellation of
likelihood terms for the first 	− 1 submodels in the target-to-proposal density ratio,

R(φ�, ψ�
1 , . . . , ψ

�
�−1, ψ�, φ, ψ1, . . . , ψ�−1, ψ�) =

p�(φ
�, ψ�, y�)

p�(φ�)
ppool,�(φ

�), (10)

meaning this update step can be performed quickly. Once sampling in stage 	 has

converged, samples (φ(h,�), ψ
(h,�)
1 , . . . , ψ

(h,�)
� ), h = 1, . . . , H�, are obtained for use in

stage 	+ 1.

The density ratio (10) does not depend on parameters ψ1, . . . , ψ�−1, so if interest
focuses entirely on the parameters (φ, ψ�) then ψ1, . . . , ψ�−1 can be ignored in stage 	 of
the multi-stage sampling: they do not need to be monitored or updated by the sampling
algorithm. The multi-stage sampler is nevertheless still sampling from the joint target
distribution pmeld,�(φ, ψ1, . . . , ψ� | y1, . . . , y�). Stage 	 is influencing the acceptance or
rejection of samples of pmeld,�−1(φ, ψ1, . . . , ψ�−1 | y1, . . . , y�−1) from the previous stage,
thus adjusting this distribution according to the requirements of the joint model.

In general, evaluation of ratio (10) requires estimates of the prior marginal distribu-
tion of the link parameter under the 	th submodel, which can be obtained as described in
Section 4.2. However, if PoE pooling is used and ppool,m(φ) = pm(φ), m = 1, . . . ,M , the
ratio simplifies to R(φ�, ψ�

1 , . . . , ψ
�
�−1, ψ�, φ, ψ1, . . . , ψ�−1, ψ�) = p�(φ

�, ψ�, y�), meaning
that no estimates of the marginal distribution are required.

4.2 Estimating marginal distributions

The prior marginal densities pm(φ) of the link parameter under each of the M submod-
els are central to Markov melding, and in particular are required to evaluate the accep-
tance probability of proposals within the MCMC samplers we proposed above. However,
these marginals are not generally analytically tractable, except when the prior distri-
bution pm(φ) is directly-specified as a standard, tractable distribution, such as when
φ appears as a founder node in a DAG representation of the submodel. When not
available analytically, we can estimate the marginal density pm(φ) for each submodel
m by kernel density estimation (Henderson and Parmeter, 2015) with samples drawn
from pm(φ) =

∫∫
pm(φ, ψm, Ym) dψm dYm by standard (forward) Monte Carlo. Care is

required if φ has high dimension because the curse of dimensionality applies to kernel
density estimation; see Section 6 for further discussion.

4.3 Normal two-stage approximation method

Approximate approaches for joining submodels are widely used in applied research. In
this section, we show that approximate inference for the Markov melded model formed
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by joining submodels (with PoE pooling) can be produced using a standard normal
approximation approach.

Consider the case when the Markov melded model pmeld(φ, ψ1, ψ2, Y1, Y2) is formed
by joining M = 2 submodels p1(φ, ψ1, Y1) and p2(φ, ψ2, Y2). Suppose that ψ1 is not a
parameter of interest in the posterior distribution, so that it can be integrated over

pmeld(φ, ψ2, Y1, Y2) =

∫
pmeld(φ, ψ1, ψ2, Y1, Y2) dψ1

= ppool(φ)

∫
p1(ψ1, Y1 | φ) dψ1 p2(ψ2, Y2 | φ)

= ppool(φ) p1(Y1 | φ) p2(ψ2, Y2 | φ).

(11)

An approximate two stage sampler that mimics the multi-stage sampler (above) can
then be constructed for this marginal distribution.

Stage 1 Fit the submodel p1(φ, ψ1, Y1) to obtain posterior samples from p1(φ | Y1),
and approximate the posterior by a (multivariate) normal distribution with mean

μ̂ and covariance Σ̂. With pN denoting the probability density function for a
(multivariate) normal distribution,

p1(φ | Y1) ≈ pN (φ | μ̂, Σ̂) = pN (μ̂ | φ, Σ̂).

Stage 2 Since p1(φ, Y1) ∝ p1(φ | Y1) ≈ pN (μ̂ | φ, Σ̂), we obtain an approximation

for (11) by replacing p1(φ | Y1) by pN (μ̂ | φ, Σ̂).

pmeld(φ, ψ2, Y1, Y2) ∝ ppool(φ)
p1(φ | Y1)

p1(φ)

p2(φ, ψ2, Y2)

p2(φ)

≈ ppool(φ)
pN (μ̂ | φ, Σ̂)

p1(φ)

p2(φ, ψ2, Y2)

p2(φ)
.

This two-stage approximate approach is commonly used in practice (see Section 6) in

the form pmeld(φ, ψ2, Y1, Y2) ≈ c pN (μ̂ | φ, Σ̂) p2(φ, ψ2, Y2), with c a data dependent
constant. In this case the likelihood of the second submodel is modified by a factor
pN (μ̂ | φ, Σ̂) (in a DAG representation a dependency of the constant μ̂ on φ and the

constant Σ̂ is added). This approach can be viewed as approximate Markov melding
with PoE pooling, in which one submodel is represented by a normal approximation.

If, instead of PoE pooling, one wishes to regard the marginal p2(φ) on the link
variable φ as authoritative and thus fully retain it, dictatorial pooling ppool(φ) = p2(φ)
leads to the variant

pmeld(φ, ψ2, Y1, Y2) ∝
p1(φ | Y1)

p1(φ)
p2(φ, ψ2, Y2) ≈

pN (φ | μ̂, Σ̂)
pN (φ | μ̂0, Σ̂0)

p2(φ, ψ2, Y2)

∝ pN (φ | μc,Σc) p2(φ, ψ2, Y2),
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Figure 6: DAG representations of the submodels of A/H1N1 influenza. Repeated vari-
ables are enclosed by a rounded rectangle, with the label denoting the range of repe-
tition. For simplicity the time domain is suppressed: parameters with subscripts T , U
and V are collections of parameters across the time range denoted by the subscript. For
example, ya,U = {ya,t : t ∈ U}.

where μ̂0 and Σ̂0 are an estimate of the mean and covariance of the prior marginal
p1(φ), which can be obtained at stage one in parallel to the posterior by sampling from
the prior submodel, and

Σ2
c =

(
Σ̂−1 − Σ̂−1

0

)−1

, μc = Σc

(
Σ̂−1μ̂− Σ̂−1

0 μ̂0

)
.

Adjusting according to μ̂0 and Σ̂0 removes the prior p1(φ) from approximate joint model.

5 Results

5.1 Joining: A/H1N1 influenza evidence synthesis

Figure 6 shows DAG representations of the two submodels outlined in Section 2.1.

ICU submodel

The main data source in the ICU submodel is prevalence-type data from the Department
of Health’s Winter Watch scheme (Department of Health, 2011), which records the total
number of patients in all ICUs in England with suspected pandemic A/H1N1 influenza
infection. Weekly observations ya,t taken at days t ∈ U = {8, 15, 22, . . . , 78} for age
group a ∈ {1, 2} (children and adults respectively) are available between December
2010 and February 2011. To estimate the link parameter φ = (φa) = (φ1, φ2), that is, a
lower bound for the cumulative number of ICU admissions over the period of observation
t ∈ T = {1, . . . , 78}, from such prevalence data requires an immigration-death model for
the system of admissions and exits from ICU. Assume that new ICU admissions follow
an inhomogeneous Poisson process with rate λa,t at time t, and the length of stay in ICU
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is exponentially distributed with rate μa. Then the number of patients admitted up to
time t who are still present in ICU at time t follows a thinned inhomogeneous Poisson
process and the observed number of prevalent patients is ya,t ∼ Po(ηa,t), a ∈ {1, 2},
t ∈ U , with expectation, under a discretised formulation with daily time steps, given by
ηa,t =

∑t
u=1 λa,u exp{−μa(t−u)}, t ∈ T . We assume ηa,1 = 0 to enforce the assumption

that no patients with suspected ‘flu were in ICU a week before observations began.

The product of the expected new admissions of suspected cases λa,t and the propor-
tion positive for A/H1N1 πpos

a,t gives the expected number of confirmed new admissions
on day t. The link parameter φa is the non-invertible sum of these products over time:

φa =
∑
t∈T

πpos
a,t λa,t, a = 1, 2.

We model the proportion positive πpos
a,t using weekly virological positivity data from

the sentinel laboratory surveillance system Data Mart (Public Health England, 2014),
which records the number zposa,v of A/H1N1-positive swabs out of the total number npos

a,v

tested during week v ∈ V = {1, . . . , 11} in age group a ∈ {1, 2}. We assume a uniform
prior πpos

a,t ∼ Unif(ωa,v, 1), t ∈ T , for the true positivity, where v = 1 for t = 1, . . . , 14
and v = �(t− 1)/7� for t = 15, . . . , 78, and where the lower bound ωa,v is informed by a
binomial model for the positivity data: zposa,v ∼ Bin(npos

a,v , ωa,v), v ∈ V . For the expected
new admissions λa,t, we assume a random-walk prior with log(λa,1) ∼ Unif(0, 250)
and log(λa,t) ∼ N(log(λa,t−1), γ

−2
a ) for t = 2, . . . , 78, with γa ∼ Unif(0.1, 2.7). For the

length of ICU stays we assume constant age-group specific exit rates μ1 = exp(−α)
and μ2 = exp(−{α + β}), with α ∼ N(2.7058, 0.07882) and β ∼ N(−0.4969, 0.20482)
(Presanis et al., 2014).

Severity submodel

We consider a simplified version of the full, complex severity submodel in Presanis et al.
(2014). The Winter Watch ICU data are only available for a portion of the time of the
‘third wave’ of the A/H1N1 pandemic, and so the cumulative number of confirmed new
admissions φa from the ICU submodel is a lower bound for the true number χa of ICU
admissions during the third wave. We thus assume φa ∼ Bin(χa, π

det), a ∈ {1, 2}, where
πdet is the age-constant detection probability, to which we assign a Beta(6, 4) prior. We
incorporate the remaining evidence in the full severity submodel of Presanis et al. (2014)
via informative priors χ1 ∼ Lognormal(4.93, 0.172) and χ2 ∼ Lognormal(7.71, 0.232).

Markov melded model

We joined the submodels as in (5). We considered linear and log pooling with pooling
weight w1 = 0.25, 0.5 and 0.75 (and w2 = 1− w1 ), and PoE pooling.

We estimated the marginal priors for φ = (φ1, φ2) under the ICU and severity
submodels using kernel density estimation with a bivariate t-distribution kernel, using
5×104 independent draws, sampled from the corresponding submodel by forward Monte
Carlo. The marginal priors are shown in Figure 7(a). Note that the ICU submodel prior
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Figure 7: Prior distributions for φa, the cumulative number of confirmed new admissions
in age group a, in the A/H1N1 influenza evidence synthesis: (a) under the ICU and
severity submodels; (b) pooled priors under three pooling functions with w1 = w2 = 0.5.

for φ is extremely flat, whereas the severity submodel prior is concentrated on a small
part of the parameter space. The combined density using each of the pooling functions
(with w1 = w2 = 0.5) is shown in Figure 7(b). Linear and PoE pooling in this case lead
to similar densities, whereas the log pooling prior is more dispersed.

We then estimated, in stage one, the posterior distribution of the link parameter φ
under the ICU submodel alone. We drew 5 million iterations from the ICU submodel
using JAGS (Plummer, 2015b), retaining every 100th iteration, after discarding 5× 104

iterations as burn-in. In stage two, for the Markov melded models under linear, log and
PoE pooling, we drew 2 × 106 samples using the multi-stage Metropolis-within-Gibbs
sampler, with the first 104 samples discarded as burn-in.

Figure 8 shows the results. There is a notable reduction in uncertainty in the poste-
riors from Markov melding compared to the ICU submodel posterior, especially in φ1,
demonstrating the benefit of joining the submodels. In the adult age group (a = 2),
the Markov melding results are robust to the choice of pooling function and pooling
weight: the likelihood from the ICU submodel dominates over the pooled prior. There is
considerable agreement between the various approaches in the child age group (a = 1)
as well, although the choice of pooling weight has some influence on the upper tail un-
der log pooling. As anticipated by Section 4.3, the normal approximation (fitted using
OpenBUGS) and PoE pooling posteriors are close, due to the near normality of the ICU
posterior distribution.

5.2 Splitting: large ecology model

Figure 9 is a DAG representation of the full, joint model outlined in Section 2.2.

Mark-recapture-recovery data

Mark-recapture-recovery data yt1,t2 record the number of ringed birds released before
May in year t1 = 1, . . . , 35, and recovered (dead) in the 12 months up to April in year
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Figure 8: Medians and 95% credible intervals for: the posterior distribution for the
link parameters φ1 and φ2 under the ICU submodel; the posterior distribution for each
parameter under the severity submodel; the posterior distribution for each parameter
according to the normal approximation and the Markov melded model under each pool-
ing function. The x-axis shows number of individuals, except for πdet, which shows
probabilities.

t2 = t1 + 1, . . . , 36. The years correspond to observations for releases from 1963 (t = 1)
to 1997 and recoveries from 1964 to 1998. The number of birds yt1,37 released in year
t1 and never recovered is also available. We assume

(yt1,t1+1, . . . , yt1,37) ∼ Mult(πt1,t1+1, . . . , πt1,37), t1 = 1, . . . , 35.

We model the probability πt1,t2 of recovery in year t2 following release in year t1 in
terms of the recovery rate λt, and the survival rates ηC,t and ηA,t for immature (1 year
old) and breeding (2 years or older) birds, respectively, up to April of year t:

πt1,t2 =

⎧⎪⎨
⎪⎩
λt2(1− ηC,t2) t1 = 1, . . . , 35, t2 = t1 + 1,

λt2ηC,t1+1(1− ηA,t2) t1 = 1, . . . , 34, t2 = t1 + 2,

λt2ηC,t1+1(1− ηA,t2)
∏t2−1

u=t1+2 ηA,u t1 = 1, . . . , 33, t2 = t1 + 3, . . . , 36.
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Figure 9: DAG representation of the joint ecology model. The recovery and census
submodels are connected via the common parameter φ = (φα,C , φα,A, φβ,C , φβ,A). For
simplicity the time domain is suppressed: y, x, π, μ, λ, ηC , ηA, γ and z represent the
collection of all quantities sharing the same variable name. For example, μ = {μG,t :
G ∈ {C,A}, t = 3, . . . , 36}.

The recovery rate is the probability that a bird that dies in year t is recovered. The prob-
ability of a bird released in year t1 being never recovered is πt1,37 = 1−

∑36
u=t1+1 πt1,u.

Census data

We assume that the observed census-type data xt, which are available for 1965 (t = 3)
to 1998, account for only breeding birds and that there is no emigration. We model
the census data via the true number of breeding females μA,t and immature females
μC,t, and the productivity rate γt, the average number of female offspring per breeding
female in year t, which could be greater than 1. Specifically we assume for t = 3, . . . , 36

xt ∼ N(μA,t, σ
2),

μC,t ∼ Po(μA,t−1γt−1ηC,t),

μA,t ∼ Bin(μC,t−1 + μA,t−1, ηA,t),

with the observation variance σ2 assumed constant.

Regression models and prior distributions

We model the parameters ηG,t, λt and γt with regression models, with zt denoting the
(observed) number of frost days in year t.

logit(ηG,t) = φα,G + φβ,Gzt G = C,A,

logit(λt) = αλ + βλt,

log(γt) = αγ + βγt.

We place lognormal priors on the number of immature females μC,2 and breeding females
μA,2 in the year prior to our data series, with scale parameter 1 and location param-
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Figure 10: Histograms of the posterior densities of the link parameters φα,C , φα,A, φβ,C

and φβ,A under the recovery submodel (Stage 1), and under the full joint model, as
estimated by Stage 2 of the two stage sampler and by a standard MCMC sampler for
the joint model.

eters μC = 200 and μA = 1000 respectively. We assume σ2 ∼ Inv-Gam(0.001, 0.001)
a priori, and independent N(0, 102) prior distributions for all 8 regression parameters
(φα,C , φα,A, αλ, αγ , φβ,C , φβ,A, βλ, βγ).

Results

We split the joint model, as described in Section 3.3, into two components: the mark-
recapture-recovery submodel and the census submodel. Denote by Ω0 = (ηC , ηA, φα,C ,
φα,A, φβ,C , φβ,A) the parameters shared by both submodels and by Ω1 = (π, λ, αλ, βλ)
the parameters specific to the recovery submodel. Under both the mark-recapture-
recovery submodel (stage one) and the census submodel (stage two), we use independent
normal priors, with mean 0 and standard deviation

√
200, for each component φα,C ,

φα,A, φβ,C and φβ,A of the link parameter. These priors were chosen so that PoE pooling
of these priors results in the original prior for the link parameters under the joint model.

In stage one we drew samples from the posterior distribution p1(Ω1,Ω0 | y) under
the recovery submodel, and retained these samples for use as a proposal distribution
in stage two, in which we drew samples under the full joint model. In stage one, we
drew 2.5×105 MCMC iterations from the posterior distribution of the mark-recapture-
recovery submodel, taking 7 hours on a single core of an Intel Xeon E5-2620 2.0GHz
CPU. In stage two, we discarded all but every 100th iteration, leaving 2.5× 105 MCMC
iterations for inference. This took 61

2 hours.

Figure 10 shows the results. We compare the two-stage estimates to the estimates
of the joint distribution based upon 6 × 105 MCMC iterations (retaining every 10th

iteration) drawn using a standard (one stage) MCMC sampler, which took 22 hours to
run in OpenBUGS. We regard these results as the ‘gold standard’ that we aim to match
with the two stage sampling approach. The components of the link parameters φα,C

and φβ,C corresponding to the immature birds have posterior distributions that closely
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agree under the joint model and mark-recapture-recovery submodel alone, but there are
differences in the parameters corresponding to mature birds. In particular there is a
sizeable difference for the regression parameter φβ,A, which is estimated to be notably
higher under the joint model than under the mark-recapture-recovery submodel alone.
The two-stage approach accurately captures this shift (Figure 10, right-hand panel).
The similarity of φα,C , φα,A and φβ,C in the stage 1 posterior (recovery model) and
the stage 2 posterior implies that the census submodel contains little information about
these parameters. In contrast, the census submodel does contain information about the
regression parameter φβ,A describing the relationship between the survival rate of adult
birds and the number of frost days. The census information suggests that φβ,A should
be less negative than implied by the recovery information, implying that adult survival
rate decreases only slightly in harsher winters.

6 Further work and discussion

We have presented a unifying view and a generic method for joining and splitting
probabilistic submodels that share a common variable. We have extended the notions of
Markov combination and super Markov combination to permit pooling of prior marginal
distributions, enabling a principled approach to joining models in realistic applied set-
tings, assuming that there is not strong conflict between evidence components and that
it is reasonable to assume that the submodels are conditionally independent. We also
introduced a computational algorithm that allows inference for submodels to be effi-
ciently conducted in stages, when considering either joining or splitting models. The
remainder of this section discusses related work, computational issues and alternative
approaches.

6.1 Related work

The key idea for a melding approach can be attributed to Poole and Raftery (2000), but
their presentation focuses on a limited set of models and is tied up with a deterministic
link parameter φ. This slightly obscures the key issues that we present more generally
in Section 3, where we clearly separate issues relating to marginal replacement from
issues related to deterministic transformation of random variables. A further influence
is Markov combination of submodels with consistent marginal distributions (Dawid and
Lauritzen, 1993), and the concept of super Markov combination (Massa and Lauritzen,
2010) of a pair of families of submodels, in which submodel-specific conditionals and
link-parameter marginal distributions (which must be marginals of members of one
of the original families) are “mixed-and-matched” to form a family of possible com-
bined models. Markov melding extends these approaches by permitting, via the pooling
function, the marginal distribution of the link parameter to reflect the prior marginal
distributions of all submodels, rather than just one. Markov combination forms part of
the literature on decomposable graphical models, where a key concept is the separator, a
subset of variables that splits the model into two parts that are independent conditional
on the separator. Separators correspond to link variables in Markov melding. The rich
literature on decomposable graphs and corresponding algorithms, such as junction tree
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algorithms (Lauritzen, 1996), suggests extensions of Markov melding to a series of link
variables (separators) for joining several submodels into chain or tree formations.

Evidence synthesis models (Eddy et al., 1992; Jackson et al., 2009; Albert et al.,
2011; Commenges and Hejblum, 2012) often employ the approximate approach of sum-
marising the results of a first-stage submodel via a Gaussian or other distribution, for
use in a second-stage submodel as a likelihood term. We demonstrated in Section 4.3
that this approach is an approximation to Markov melding under PoE pooling, therefore
justifying the approximation. Similar approximations are widely used in standard and
network meta-analysis (for example, Hasselblad et al., 1992; Ades and Sutton, 2006;
Welton et al., 2008). Similarly, in more general hierarchical models, splitting models to
make inference faster or easier has previously been considered (Liang and Weiss, 2007;
Tom et al., 2010; Lunn et al., 2013a). In this setting, posterior inference is first obtained
from independent unit-specific submodels, with flat, independent priors replacing all
hierarchical priors in the joint model. Inference for the joint model is recovered in stage
two through Markov melding of these unit-specific submodels with dictatorial pooling,
so that only the hierarchical prior is reflected in the final results. This can make cross-
validation more convenient (Goudie et al., 2015). Splitting models into conditionally
independent components at a set of separator or link parameters is also a key aspect of
cross-validatory posterior predictive methods, including “node-splitting”, for assessing
conflict across subsets of evidence (Presanis et al., 2013; G̊asemyr and Natvig, 2009).
Markov melding may provide a natural, computationally-efficient approach for system-
atic conflict assessment (Presanis et al., 2016).

Our framework can also be viewed as encapsulating a range of approaches proposed
in the big data literature for handling a large number of observations (‘tall data’). With
tall data it may be infeasible even to store all of the data on a single computer, nevermind
evaluate functions depending on the whole dataset thousands of times, as needed in
MCMC. Instead, a divide-and-conquer approach can be taken, in which the original
exchangeable data y are partitioned into B batches y1, . . . , yB , each of which contains
few enough observations that standard statistical methods can be applied without undue
trouble. The key observation is that the full posterior distribution p(φ | y) can be split
into a number of submodel posteriors pb(φ | yb) ∝ p(yb | φ)p(φ)1/B , b = 1, . . . , B.
This is a form of model splitting (Section 3.2), with PoE pooling and the original prior
apportioned equally among the batches. Various approaches for integrating the batch-
specific posteriors to approximate the overall posterior have been proposed (Huang and
Gelman, 2005; Scott et al., 2016; Neiswanger et al., 2014; Wang and Dunson, 2013;
Bardenet et al., 2017; Minsker et al., 2017). However, this literature has so far only
considered independent, identically distributed data, whereas we have considered more
general models and data.

6.2 Computational challenges

In our examples, the link variable φ is comparatively low dimensional and simple kernel
density estimation using a multivariate t-distribution kernel proved sufficient. Moreover,
the results were robust with respect to the choice of kernel and kernel bandwidth. For
higher-dimensional link variables more care in the choice of kernel estimation method
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might be required (Henderson and Parmeter, 2015), or, alternatively, we might wish to
estimate the ratio of densities directly to improve stability (Sugiyama et al., 2012).

The multi-stage sampler (Section 4.1) broadly falls into the category of a sequential
Monte Carlo sampler (Doucet et al., 2013), as described in Supplementary Material E.
While the Markov melding model is invariant to the ordering of the submodels used
(assuming the pooling function is also), the efficiency of the multi-stage algorithm may
not be in practice, due to the need to obtain sufficient stage one samples in the appropri-
ate region. If two submodels contain an approximately equal amount of non-conflicting
information, then the ordering is unlikely to be important. In other settings, more care
may be required. For example, suppose submodel M1 contains considerably more infor-
mation than M2. If stage one uses M1, then the stage one posterior may be so precise
that it is unable to be adjusted for the extra information in M2. In contrast, if M2 is
used first, then the estimate of the posterior distribution may be very coarse, due to a
lack of samples in the central part of the posterior distribution. Further research will
be needed to identify the best ordering to adopt in general.

6.3 Alternative approaches

We obtained consistency in the link parameter φ, as required by Markov combination,
through marginal replacement (Section 3.1). This approach assumes the priors differ in
substance across submodels. Alternatively, as we outline in Supplementary Material F,
we could assume that the priors differ only due to different scalings in each submodel,
and so can be made consistent through rescaling, similar to when deriving multivariate
distributions from copulas (Durante and Sempi, 2010). Yet another approach is a supra-
Bayesian approach (Lindley et al., 1979; Leonelli, 2015), in which the decision maker
models the experts’ opinions.

The prior pooling approach considered within our framework includes a judgement
as to how to weight the different submodels. Various other methods have been pro-
posed for weighting evidence, including the cut operator (Lunn et al., 2013b; Plummer,
2015a); the power prior approach in clinical trials (for example, Neuenschwander et al.,
2009); and modularisation in the computer models literature (Liu et al., 2009). Further
research is required to investigate the relationship of Markov melding to other weighting
approaches.

Supplementary Material

Supplementary Material for: “Joining and splitting models with Markov melding” (DOI:
10.1214/18-BA1104SUPP; .pdf).
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