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Abstract Dephosphorylation of translation initiation factor 2 (eIF2a) terminates signalling in the

mammalian integrated stress response (ISR) and has emerged as a promising target for modifying

the course of protein misfolding diseases. The [(o-chlorobenzylidene)amino]guanidines (Guanabenz

and Sephin1) have been proposed to exert protective effects against misfolding by interfering with

eIF2a-P dephosphorylation through selective disruption of a PP1-PPP1R15A holophosphatase

complex. Surprisingly, they proved inert in vitro affecting neither stability of the PP1-PPP1R15A

complex nor substrate-specific dephosphorylation. Furthermore, eIF2a-P dephosphorylation,

assessed by a kinase shut-off experiment, progressed normally in Sephin1-treated cells. Consistent

with its role in defending proteostasis, Sephin1 attenuated the IRE1 branch of the endoplasmic

reticulum unfolded protein response. However, repression was noted in both wildtype and

Ppp1r15a deleted cells and in cells rendered ISR-deficient by CRISPR editing of the Eif2s1 locus to

encode a non-phosphorylatable eIF2a (eIF2aS51A). These findings challenge the view that [(o-

chlorobenzylidene)amino]guanidines restore proteostasis by interfering with eIF2a-P

dephosphorylation.

DOI: 10.7554/eLife.26109.001

Introduction
Protein folding homeostasis (proteostasis) is achieved by balancing the rate of production, folding

and protein degradation. Proteostasis is strongly influenced by the phosphorylation state of serine

51 of the a subunit of eukaryotic translation initiation factor 2 (eIF2a) (Sonenberg and Hinnebusch,

2009). Diverse stress conditions activate kinases that phosphorylate eIF2a, resulting in attenuated

rates of translation initiation of most mRNAs and increasing translation of a small group of mRNAs

with special 50 untranslated regions (Hinnebusch, 2014). The latter encode potent transcription fac-

tors such as ATF4 that couple eIF2a phosphorylation to the Integrated Stress Response (ISR)

(Harding et al., 2003), a transcriptional and translational program that adapts cells to stress and

participates in diverse biological processes such as memory, immunity and metabolism (Baird and

Wek, 2012).

Signalling in the ISR is terminated by eIF2a-P dephosphorylation. This requires the presence of a

regulatory subunit, PPP1R15, to direct the catalytic, PP1 subunit, to its specific substrate. Two mam-

malian genes encode PPP1R15 regulatory subunits. Ppp1r15b (or CReP) encodes a constitutively

expressed regulatory subunit (Jousse et al., 2003), whereas Ppp1r15a (or GADD34) encodes an ISR

inducible regulatory subunit that contributes to a negative feed-back loop operative in the ISR

(Brush et al., 2003; Ma and Hendershot, 2003; Novoa et al., 2001, 2003). A minimal rate of
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eIF2a-P dephosphorylation is an essential cellular function, as reflected in the severe phenotypes of

Ppp1r15b mutation or deletion and in the very early lethality of compound Ppp1r15a;b deficient

mice (Abdulkarim et al., 2015; Harding et al., 2009).

Interestingly, whilst deletion of the inducible Ppp1r15a gene results in sluggish recovery of pro-

tein synthesis during the waning phase of stress (Kojima et al., 2003; Novoa et al., 2003), mice

lacking any PPP1R15A-directed eIF2a-P dephosphorylation (homozygous Ppp1r15atm1Dron) are

superficially indistinguishable from wildtype. Moreover, when challenged with tunicamycin, which

causes unfolded protein stress in the endoplasmic reticulum by inhibiting N-linked glycosylation,

homozygous Ppp1r15atm1Dron mice and cultured cells derived from them are relatively resistant to

the toxin’s lethal effects (Marciniak et al., 2004; Reid et al., 2016). This feature is plausibly attrib-

uted to sustained activity of the ISR in the Ppp1r15a mutant mice, which favours proteostasis by lim-

iting the production of unfolded proteins under stress conditions (Boyce et al., 2005; Han et al.,

2013).

The proteostasis-promoting features of interfering with PPP1R15A-mediated eIF2a-P dephos-

phorylation are also played out in the context of certain disease models associated with protein mis-

folding and proteotoxicity. Both the neuropathic phenotype associated with Schwann cell expression

of a mutant misfolding-prone myelin constituent, P0S63D, and a mutant superoxide dismutase

expressed in motor neurones are ameliorated by a concomitant dephosphorylation-defective

Ppp1r15atm1Dron mutation (D’Antonio et al., 2013; Wang et al., 2014), and similar amelioration of

eLife digest Most drugs work by tweaking the way that cells are regulated. Adding or removing

a phosphate group from proteins regulates many cellular decisions. There are known drugs that

bind to and inhibit the enzymes that add phosphate to proteins, thereby controlling various aspects

of cell behaviour. However, drug developers have been far less successful in finding drugs that

inhibit phosphatases, the enzymes that remove phosphate from proteins.

Genetically modified mice can be used as ‘models’ to investigate human diseases. In 2015 a drug

called Sephin1 was reported to suppress neurodegeneration in a group of these mice by inhibiting a

particular phosphatase. The phosphatase is made of three component proteins that come together

to create the active enzyme. Sephin1 was reported to disrupt the association between two of these

three components. This discovery was met with excitement; both for its potential therapeutic

implications in humans and as an important “first” in pharmacology.

To understand how Sephin1 and a related drug, Guanabenz, work at the molecular level,

Crespillo-Casado et al. reconstructed in a test tube the phosphatase that Sephin1 and Guanabenz

were reported to inhibit. To examine the effects the drugs have on the phosphatase, Crespillo-

Casado et al. developed assays to measure the association between the components that make up

the phosphatase. Further assays measured the removal of phosphate from the phosphatase’s target,

a protein called eIF2a.

The results of the assays show that Sephin1 did not affect the coming together of the

components that make up the active phosphatase. The drug also did not inhibit the removal of

phosphate from eIF2a in the test tube. To extend these findings Crespillo-Casado et al. exposed

cells to Sephin1 and observed features that are consistent with the drug’s reported ability to supress

neurodegeneration. However, these features were also observed both in cells lacking the

phosphatase that Sephin1 was reported to inhibit and in cells in which eIF2a never acquired a

phosphate in the first place.

The findings presented by Crespillo-Casado et al. do not challenge Sephin1’s role in supressing

neurodegeneration, but do question its ability to do so by inhibiting the phosphatase that

dephosphorylates eIF2a. This knowledge will be useful to drug developers and those interested in

molecular mechanisms of drug action. For those researchers who are interested in Sephin1, further

work is needed to discover alternative molecular mechanisms by which it suppresses

neurodegeneration. And for those researchers who are interested in eIF2a dephosphorylation, there

is a need to look further for inhibitors of this process, as Sephin1 is unlikely to serve in that role.

DOI: 10.7554/eLife.26109.002
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inflammatory-mediated central nervous system demyelination is observed in the Ppp1r15atm1Dron

mice (Lin et al., 2008).

These features have led to an interest in the therapeutic potential of targeting PPP1R15-mediated

eIF2a-P dephosphorylation with small molecule inhibitors. Early work led to discovery of salubrinal, a

small molecule that increases levels of eIF2a-P and retards its dephosphorylation. However, salubri-

nal is only known to work in vivo and its mechanism of action remains unclear (Boyce et al., 2005).

Limitations of in vitro assays for substrate-specific PPP1R15-mediated eIF2a-P dephosphorylation

(see below) have all but precluded a biochemical approach to the problem, but a cell based search

for proteostasis regulators suggested that the a2 adrenergic blocker Guanabenz, [(o,o-dichloroben-

zylidene)amino]guanidine, might exert its beneficial effects on proteotoxicity by interfering with

eIF2a-P dephosphorylation (Tsaytler et al., 2011). This theme was extended further by the discov-

ery of Sephin1, [(o-chlorobenzylidene)amino]guanidine, that had lost its a2 adrenergic blocking activ-

ity but retained its proteostasis promoting properties (Das et al., 2015). Importantly, biochemical

characterization of Guanabenz and Sephin1 suggested that both disrupt the complex between

PPP1R15A and PP1, providing strong support for a mechanism of action that involves interfering

with PPP1R15A-mediated eIF2a-P dephosphorylation (Das et al., 2015), Figure 1C therein).

Genetic analysis reveals that a regulatory PPP1R15 subunit is essential for eIF2a-P dephosphoryla-

tion in vivo, and over-expression of either PPP1R15A or PPP1R15B or merely their conserved C-ter-

minal portion, is sufficient to deregulate eIF2a-P dephosphorylation in vivo and inhibit the ISR

(Brown et al., 1997; Brush et al., 2003; Jousse et al., 2003; Novoa et al., 2001). Though PPP1R15

regulatory subunits stably bind the catalytic subunit (PP1), the resulting binary complex is devoid of

specificity towards eIF2a-P. However, G-actin joins the PPP1R15-PP1 binary complex as an ancillary

subunit to form a ternary complex endowed with substrate-specific eIF2a-P directed phosphatase

activity, both in cells (Chambers et al., 2015) and when constituted with pure components in vitro

(Chen et al., 2015).

To explore in detail the mechanism of action of the [(o-chlorobenzylidene)amino]guanidines we

reconstructed PPP1R15A-PP1-G-actin-mediated eIF2a-P dephosphorylation in vitro with pure com-

ponents. Using mutants that interfere with complex formation and function we established the corre-

lation of enzymatic activity with the kinetic parameters of complex formation to develop an assay

responsive to the stability of the core PPP1R15-PP1 binary interaction; the proposed target of Gua-

nabenz and Sephin1. The results of our inquiry, reported on below, question the role of destabiliza-

tion of the eIF2a-P directed holophosphatase in the proteostatic effects of these compounds.

Results

In vitro assay for selective eIF2a-P dephosphorylation sensitive to the
stability of the PPP1R15A-PP1 complex
PPP1R15A/GADD34 is a protein of >600 residues, but only the C-terminal 70 residues are necessary

for substrate-specific dephosphorylation of eIF2a-P (Figure 1A). This active fragment is also the

most conserved segment of the protein; both between homologues of PPP1R15A and with the

paralogous PPP1R15B (Figure 1B). This region of the protein is natively unfolded (Yu et al., 2004),

attaining its structure upon binding the PP1 catalytic and the G-actin ancillary subunits (Chen et al.,

2015; Choy et al., 2015).

For structural studies we found it convenient to co-express PPP1R15 and PP1 in bacteria

(Chen et al., 2015). However, the fixed 1:1 stoichiometry of the two subunits imparted by co-expres-

sion is unsuited to a detailed examination of the bimolecular affinities involved in complex formation

or to the design of an assay sensitive to the stability of PPP1R15A-PP1 complex. To circumvent this

limitation, we incorporated a highly soluble maltose-binding protein (MBP) moiety C-terminal to the

natively-unstructured human PP1R15A active fragment. When expressed in E. coli as a fusion protein

with a cleavable N-terminal glutathione S-transferase (GST) tag, GST-PPP1R15A-MBP remained solu-

ble and when added as a purified protein in vitro (after cleavage of the GST), imparted eIF2a-P

dephosphorylation activity to reactions containing purified PP1 and G-actin (Figure 1C, left panel).

Moreover, the solubilizing MBP tag enabled recovery not only of a human PPP1R15A active frag-

ment (residues 533–624) but also a much larger N-terminally extended fragment (residues 325–636).

The minimal active fragment and the much longer N-terminally-extended PPP1R15A had similar
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Figure 1. A tripartite assay for human PPP1R15A-dependent eIF2a-P dephosphorylation. (A) Cartoon representation of human PPP1R15A (GADD34).

The minimal C-terminal peptide required for eIF2a-P dephosphorylation is outlined (‘active fragment’) and key residues in the PP1 and G-actin binding

regions are annotated. (B) Alignment of C-terminal active fragments of mammalian PPP1R15A and PPP1R15B (CREP) using ClustalX. Grey highlighted

residues represent conserved or highly similar residues. Red asterisks highlight key residues that are analysed in further detail. (C) Image of Coomassie-

Figure 1 continued on next page
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activity in this assay (Figure 1C). Nonetheless the ability to purify a soluble, N-terminally extended

PPP1R15A regulatory subunit expanded the possibilities to study more physiological models of

PPP1R15A-mediated eIF2a-P dephosphorylation (a point we shall return to below).

We quantified the dependence of eIF2a-P dephosphorylation rates on both the concentration of

the regulatory human PPP1R15A subunit (EC50 = 7 nM) and on the ancillary G-actin subunit

(EC50 = 13 nM) (Figure 2). The latter values agreed with our previous measurements of G-actin’s

stimulation of enzymatic activity (in an assay using the murine PPP1R15A) (Chen et al., 2015),

whereas the EC50 of human PPP1R15A was within an order of magnitude of the affinity of human

PPP1R15A for PP1, as measured by isothermal titration calorimetry (Choy et al., 2015) (see below).

Previous studies have identified mutations in PPP1R15 that abolish substrate-specific dephos-

phorylation in vitro and block PPP1R15’s ability to repress the ISR, when expressed in vivo. The

human PPP1R15AV556E mutation alters a key residue, part of the RVxF motif involved in binding of

diverse regulatory subunits to PP1 (Egloff et al., 1997); its presence abolished all PPP1R15A-medi-

ated eIF2a-P dephosphorylation (Figure 3A). Two previously-identified mutations in the C-terminal

extension of PPP1R15A - the portion that interacts with the G-actin ancillary subunit (human

PPP1R15AW582A and PPP1R15AF592A) (Chen et al., 2015) - also abolished all PPP1R15A-mediated

eIF2a-P dephosphorylation (Figure 3B and C). These findings establish the dependence of the tri-

partite assay described above on features known to be important for PPP1R15 function.

A fourth mutation tested affects a residue whose counterpart in human PPP1R15BR658C results in

a syndromatic form of diabetes mellitus. Consistent with the destabilizing effect of this mutation on

PP1 binding (Abdulkarim et al., 2015), its presence in human PPP1R15AR578A resulted in a ~4 fold

increase in EC50 for eIF2a-P dephosphorylation (Figure 4A). The mutation also affected the maximal

stimulation afforded by human PPP1R15AR578A, as even at saturating concentrations of regulatory

subunit, eIF2a-P dephosphorylation reactions assembled with the mutant were three times slower

than those assembled with the wildtype (Figure 4B). The human PPP1R15AR578A mutation does not

appear to have a major effect on the stability of the G-actin containing ternary complex, as the EC50

for G-actin (20 nM) was relatively unaffected (Figure 4C).

Bio-Layer Interferometry measurement of the affinity of the
holophosphatase components for each other
The features of the human PPP1R15AR578A mutant noted above suggest that the tripartite assay is

sensitive not only to the affinity of the three components for one another but also to subtle structural

features of the holophosphatase. To explore this issue further, we used Bio-Layer Interferometry

(BLI) (Abdiche et al., 2008) to measure directly the affinity of the three components of the holophos-

phatase for each other. PPP1R15A533-624 was biotinylated on a single lysine residue of an AviTag

(Fairhead and Howarth, 2015) added between the cleavable GST tag and PPP1R15A peptide

(Figure 5A) and the biotinylated protein was immobilized on a streptavidin-derivatized BLI biosensor

tip. The biotinylated PPP1R15A533-624 ligand showed a robust 1:1 bimolecular interaction, with pure

PP1, yielding a koff = 0.21 ± 0.01 min�1 and a Kd = 20 ± 0.61 nM (Figure 5B). The higher affinity of

PPP1R15 for PP1 observed here, compared to isothermal titration calorimetry (ITC) measurements

of Choy et al. (2015) (Kd = 62 ± 14 nM) might reflect the contribution of contacts made by residues

C-terminal to PPP1R15AL567, which are present in the construct used here, but absent from the one

used in the ITC measurements (Choy et al., 2015). Cooperativity provided by G-actin (present in the

enzymatic assay, but absent from the BLI experiment) and steric hindrance from probe components

might have contributed to the 3–5 fold lower value of the PPP1R15A EC50 for eIF2a-P dephosphory-

lation in the enzymatic assay (7 nM, Figure 2B) compared to the Kd observed by BLI.

To gauge the affinity of the ancillary G-actin subunit for the complex, we first assembled a binary

complex between the biotinylated PPP1R15A533-624 ligand (described above) and a saturating

Figure 1 continued

stained PhosTag-SDS-PAGE on which phosphorylated (eIF2aP) and non-phosphorylated (eIF2a0) forms of eIF2a from 20 min dephosphorylation

reactions were resolved. The composition of the reaction, PPP1R15A533-624 [80 nM], PPP1R15A325-636 [400 nM], PP1c [12.5 nM] and G-actin [750 nM] are

noted above and the fraction of dephosphorylated eIF2a is noted underneath each lane (%dP). The migration of molecular weight markers and G-actin

are noted (the signal from the PPP1R15A and PP1c is undetectable on these gels).

DOI: 10.7554/eLife.26109.003
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Figure 2. eIF2a-P dephosphorylation kinetics as a function of human PPP1R15A533-624 and G-actin concentration. (A) Schema of the human

PPP1R15A533-624 construct used. The C-terminal Maltose Binding Protein (MBP) component, which stabilizes the fusion protein, is noted. (B) Upper

panel. Coomassie-stained PhosTag-SDS-PAGE tracking the dephosphorylation of eIF2aP to eIF2a0 in 20 min dephosphorylation reactions constituted

with eIF2aP [2 mM], PP1 [0.625 nM], G-actin [1.5 mM] and an escalating concentration of PPP1R15A533-624. Shown is a representative of three

independent experiments performed. Lower panel: Semi-log10 plot of the initial velocity of eIF2aP dephosphorylation as a function of PPP1R15A533-624

concentration derived from three repeats (one shown above). The EC50 for PPP1R15A
533-624 was calculated using the agonist fitting function on

Figure 2 continued on next page
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concentration of PP1 and then measured the BLI signal induced by addition of G-actin. A robust

association-dissociation signal was observed with purified G-actin (koff = 2.84 ± 0.11 min�1 and

Kd = 151 ± 14.3 nM) (Figure 5C).

The human PPP1R15AV556E mutation, affecting the RVxF motif, abolished all measureable associa-

tion with PP1, but had no effect on the kinetics of G-actin binding. Conversely, the human

PPP1R15AF592A mutation markedly enfeebled G-actin binding but had no effect on PP1 binding

(Figure 6A and B). Together, these observations confirm the ability of PPP1R15A to engage PP1

and G-actin independently, via the N- and C-terminal parts of its active portion. Despite their strong

detrimental effects on enzymatic activity (Figures 3C and 4), neither the PPP1R15AR578A nor the

PPP1R15AW582A mutations had a major effect on the kinetics of PP1 or G-actin binding (Figure 6).

Together, these observations suggest that the tripartite enzymatic assay is sensitive both to muta-

tions that grossly interfere with complex stability (V556E and F592A) and to mutations that more

subtly affect the structure of the complex (R578A and W582A).

No measureable effect of [(o-chlorobenzylidene)amino]guanidines on
PPP1R15A-containing holophosphatases in vitro
Das and colleagues previously reported that addition of 50 mM Sephin1 to tissue culture media dis-

rupts the PPP1R15A-PP1 complex recovered from cells (Das et al., 2015). To determine if these

observations correlate with an effect of Sephin1 on the complex formed in vitro between

PPP1R15A533-624 and PP1, we sourced Sephin1 and confirmed its purity and identity by reverse

phase HPLC and mass spectrometry (Figure 7A). When added to the BLI assay at a concentration of

50 mM (before exposure to PP1), Sephin1 had no measureable effect on either the association or dis-

sociation phase of the assay (Figure 7B).

A biotinylated N-terminally extended PPP1R15A325-636, corresponding to the construct studied

by Das and colleagues, proved unsuited as a ligand in the BLI experiment. To circumvent this prob-

lem we biotinylated PP1 and exploited it as a BLI ligand. Addition of either the minimal active frag-

ment, human PPP1R15A533-624, or the longer human PPP1R15A325-636, gave rise to a robust BLI

signal but addition of Sephin1 affected neither the association nor dissociation phase of the experi-

ment (Figure 7C and D). The kinetics of the bimolecular PP1-PPP1R15A interaction were reproduc-

ibly different when one or the other was used as a ligand (summarized in Figure 7E). These may

reflect different distorting effect of other elements of the BLI biosensor on the kinetics of dissocia-

tion when PP1 or PPP1R15A were used as ligands, and/or a contribution of the N-terminal repeats

of PPP1R15A to its interactions with PP1, as suggested previously (Brush and Shenolikar, 2008).

However, reproducible inertness in all three assays lends confidence to the conclusion that in this

experimental system 50 mM Sephin1 does not directly interfere with assembly or stability of the

PPP1R15A-PP1 complex.

Next we sought to examine the effect of Sephin1 on the in vitro dephosphorylation activity of a

tripartite eIF2a-P holophosphatase assembled with the N-terminally extended PPP1R15A325-636 (cor-

responding to the construct studied by Das and colleagues). As Sephin1 is proposed to inhibit

eIF2a-P dephosphorylation by disrupting the binding of PPP1R15A to PP1, we sought to incorporate

the PPP1R15A325-636 component at or below its EC50, thereby maximizing the prospects of detect-

ing an inhibitory effect. Addition of purified PPP1R15A325-636 to PP1 and G-actin accelerated eIF2a-P

dephosphorylation with an EC50 of 5–10 nM (Figure 8A). However, Sephin1 had no effect on the

dephosphorylation reaction (Figure 8B), whilst tautomycin readily inhibited the reaction (IC50 = 2.4

nM) confirming the sensitivity of the assay to a known inhibitor (Figure 8C). These observations were

also confirmed in an assay set up with the corresponding murine PPP1R15A273-657 (Figure 8—figure

supplement 1A and B). The related compound Guanabenz also proved inert, even when added to

the enzymatic assay at the high concentration of 50 mM (Figure 8D). Salubrinal, added at 12 mM

(higher concentrations led to conspicuous precipitation) had a mild but highly reproducible inhibitory

Figure 2 continued

GraphPad Prism V7. (C) Upper panel. As in ‘B’ but dephosphorylation of eIF2aP to eIF2a0 was carried out in the presence of a fixed concentration of

PPP1R15A533-624 [50 nM] and an escalating concentration of G-actin. Shown is a representative of two independent experiments performed. Lower

panel: Semi-log10 plot of initial velocity as a function of G-actin concentration derived from two repeats (one shown above).

DOI: 10.7554/eLife.26109.004
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Figure 3. eIF2a-P dephosphorylation by ternary complexes constituted with human PPP1R15A(533-624)V556E,

PPP1R15A (533-624)W582A or PPP1R15A (533-624)F592A. (A) Coomassie-stained PhosTag-SDS-PAGE tracking the

dephosphorylation of eIF2aP to eIF2a0 as in Figure 2 above, but with PP1[32 nM], G-actin [400 nM] and an

escalating concentration of mutant human PPP1R15A(533-624)V556E. Shown is a representative of three independent

Figure 3 continued on next page
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effect (Figure 8E, inhibition = 22% ± 2.045, unpaired t test, p<0.0001, n = 6). The weakness of salu-

brinal’s inhibitory effect and the compound’s tendency to precipitate at higher concentrations in the

assay buffer frustrated our efforts to establish if inhibition was specific to the eIF2a-P directed ter-

nary complex. Nonetheless these observations showcase the sensitivity of our assay to even weak

inhibitors and strengthen the conclusion regarding Sephin1’s inertness in the same assay.

Sephin1 exerts proteostatic effects in vivo independently of PPP1R15A
or the eIF2a-P-dependent integrated stress response
Sephin1’s role as a proteostasis promoting agent was explored in cultured CHO-K1 cells containing

reporters for both the ISR (CHOP::GFP)(Novoa et al., 2001) and the branch of the endoplasmic

reticulum unfolded protein response (UPR) mediated by IRE1 (XBP1s::Turquoise)(Iwawaki et al.,

2004; Sekine et al., 2016). Previous studies have emphasized the dominance of translational recov-

ery in the physiological action of PPP1R15A, such that Ppp1r15aKO attenuates both the burden of

protein misfolding (Marciniak et al., 2004) and the response to it (Reid et al., 2016). In keeping

with these ideas and with the findings of Das and colleagues (Das et al., 2015), Sephin1 attenuated

the activity of both UPR pathways in cells exposed to tunicamycin; an inhibitor of N-linked glycosyla-

tion, that promotes misfolding of newly-synthesized proteins (Figure 9A). Though observed only

over a narrow concentration range of tunicamycin (Figure 9—figure supplement 1A) and at rela-

tively high concentrations of the drug (Figure 9—figure supplement 1B), Sephin1’s effects in this

assay can be reconciled with a mechanism involving a net reduction of protein synthesis; as sug-

gested by Das and colleagues. Sephin1 also inhibited induction of the ISR in response to histidinol

(Figure 9B), an agent that interferes with tRNA charging and thereby activates the eIF2a kinase

GCN2 (Zhang et al., 2002) without affecting protein folding.

To probe deeper into this matter, we exploited an in vivo assay that monitors eIF2a-P dephos-

phorylation in cells. In this kinase shut-off experiment (Chambers et al., 2015)(Figure 10A), cultured

cells are first exposed to a brief, 30 min pulse of thapsigargin, which rapidly activates the eIF2a

kinase PERK and builds levels of eIF2a-P, and then exposed to a PERK kinase inhibitor

(GSK260414A). The resulting decay in the eIF2a-P signal reflects its dephosphorylation. To minimize

the contribution of other kinases to the eIF2a-P signal, the experiment was performed in cells lack-

ing GCN2 (Chambers et al., 2015), which we inactivated in the CHO-K1 cells by CRISPR-Cas9 gene

editing. Normally, the dephosphorylation of eIF2a-P is a rapid process, complete in 60 min

(Figure 10B, lanes 2–6). It was markedly delayed by inclusion of jasplakinolide (Figure 10B lanes 7–

10), which depletes the pool of G-actin (by promoting its oligomerization), thereby depriving the

PPP1R15 subunits of an essential co-factor, as observed previously (Chambers et al., 2015).

Together, PPP1R15A and PPP1R15B account for the bulk of eIF2a-P dephosphorylation activity

of mammalian cells (Harding et al., 2009), but their relative contribution to the process in any given

circumstance is unknown. Therefore, to adapt this assay to measure Sephin1’s effect on PPP1R15A-

mediated eIF2a-P dephosphorylation, it was essential to inactivate the gene encoding PPP1R15B,

leaving PPP1R15A as the sole regulatory subunit of the eIF2a-P phosphatase. CRISPR-Cas9 medi-

ated gene editing was used to create two different GCN2KO; Ppp1r15bKO compound-mutant CHO-

K1 cells (Figure 10—figure supplement 1A and B). As expected, the GCN2KO; Ppp1r15bKO com-

pound-mutant CHO-K1 cells retained their responsiveness to Sephin1 (Figure 10—figure supple-

ment 1C). However, in this experimental system dependent solely on PPP1R15A, the time-

dependent decline of the eIF2a-P signal (fitted to an exponential decay curve) yielded a time con-

stant of 0.23 min�1 for the untreated and 0.19 min�1 for the Sephin1 treated sample, an insignificant

difference (Figure 10B lanes 11–15, Figure 10—figure supplement 1D and E and Figure 10C).

Figure 3 continued

experiments performed. The position of the mutation is provided in the schema above. The plot of initial velocity

as a function of PPP1R15A(533-624)V556E derived from three repeats (one shown) is below the SDS-PAGE image. (B)

As in ‘A’ above but using human PPP1R15A(533-624)W582A and G-actin [3.7 mM](Note: only the highest concentration

of PPP1R15A was repeated three times). (C) As in ‘A’ above but using human PPP1R15A(533-624)F592A and G-actin

[3.7 mM] (Note: only the highest concentration of PPP1R15A was repeated three times).
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Figure 4. eIF2a-P dephosphorylation by ternary complexes constituted with human PPP1R15A(533-624)R578A. (A)

Coomassie-stained PhosTag-SDS-PAGE tracking the dephosphorylation of eIF2aP in a 20 min reaction, as in

Figure 2 and 3 above, but with an escalating concentration of mutant human PPP1R15A(533-624)R578A. Shown is a

representative of three independent experiments performed. The position of the mutation is provided in the

Figure 4 continued on next page
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To mimic conditions used in the flow cytometry experiments (and those used by Das et al., 2015)

kinase shut-off experiments were carried out on tunicamycin-treated cells (Figure 10—figure sup-

plement 1F). eIF2a-P dephosphorylation proceeded rapidly in tunicamycin-treated cells. However,

Sephin1 had no inhibitory effect on the rate of dephosphorylation. This experiment reveals that

under conditions in which Sephin1 exerts its proteostasis-promoting activities, it does not affect

rates of eIF2a-P dephosphorylation.

To follow up on this matter, both copies of the gene encoding PPP1R15A were inactivated by

CRISPR-Cas9 in the reporter containing CHO-K1 cells (Figure 11—figure supplement 1A and B).

Inactivation was confirmed by loss of the PPP1R15A signal in immunoblot of lysates from stressed

mutant cells (Figure 11A). Sephin1 retained its ability to attenuate the response of both the XBP1s::

Turquoise and the CHOP::GFP reporter in tunicamycin treated PPP1R15A null cells (Figure 11B).

Similar observations were made in regard to the effect of Sephin1 in histidinol-treated cells

(Figure 11C). These observations suggest that Sephin1 also exerts its proteostatic effect(s) in cells

lacking PPP1R15A.

Next, we used CRISPR-Cas9-mediated homologous recombination to introduce a site-specific

mutation into the Eif2s1 locus, to encode an ISR-blocking eIF2aS51Amutation in the endogenous

gene (Figure 12A and B). Surprisingly, Sephin1 retained its ability to attenuate the XBP1s::Turquoise

reporter in tunicamycin-treated eIF2aS51Amutant cells (Figure 12C). As CHOP activation is highly

dependent on the ISR (Harding et al., 2000), activity of the CHOP::GFP reporter was strongly atten-

uated in mutant eIF2aS51Acells. Nonetheless, it is notable that residual activation of the reporter by

tunicamycin (likely a consequence of ATF6 action at the CHOP promoter [Yoshida et al., 2000]),

was also attenuated by Sephin1 (Figure 12C). These observations bring into question the primacy of

the ISR in Sephin1’s mechanism of action.

Discussion
The role of the eIF2a-P-dependent ISR in defending against unfolded protein stress is well sup-

ported by genetic and pharmacological experiments (Baird and Wek, 2012; Ron and Harding,

2007). By retarding its dephosphorylation, the primary consequence of eliminating PPP1R15A is to

prolong the duration of the eIF2a-P signal in stress response scenarios (Kojima et al., 2003;

Novoa et al., 2003) and to alter the repertoire of mRNA translation (Reid et al., 2016). Therefore,

the finding that cells and mice lacking PPP1R15A are relatively resistant to pharmacological and

genetic models associated with unfolded protein stress in the endoplasmic reticulum (ER stress) has

engendered a specific interest in targeting the PPP1R15A-containing phosphatase complex for inhi-

bition, as a means for accessing the therapeutic potential of enhanced ISR signalling.

Sephin1 and Guanabenz, compounds previously proposed to exert their proteostatic effects by

disrupting the essential PP1-PPP1R15A complex and inhibiting eIF2a-P dephosphorylation

(Das et al., 2015) are found here to have no effect in in vitro enzymatic assays dependent on the for-

mation of a PP1-PPP1R15A complex. Sephin1 likewise proved inert in a Bio-Layer Interferometry

assay that measured directly the affinity of PPP1R15A and PP1 for one another. Furthermore, we

find that Sephin1 does not interfere with eIF2a-P dephosphorylation in cells (as measured by a

kinase shut-off experiment) and that Sephin1 retains its ability to attenuate the impact of a challenge

Figure 4 continued

schema above the gel. The plot of initial velocity as a function of PPP1R15A(533-624)R578A derived from three repeats

(one shown) is below the SDS-PAGE image. The EC50 for PPP1R15A
(533-624)R578A was calculated using the agonist

fitting curve in GraphPad Prism V7. (B) Time-course of eIF2aP dephosphorylation using a low concentration of PP1

[0.625 nM], saturating concentrations of G-actin [400 nM], and wildtype [100 nM] or mutant human PPP1R15A(533-

624)R578A [100 nM in one assay and 200 nM in the two other assays]. Shown is a representative of three independent

experiments performed. Below the gel is a plot of the fraction of substrate dephosphorylated as a function of time

derived from three repeats (one shown). The slope of the reaction was derived by fitting the data to a linear model

in GraphPad Prism V7. (C) As in ‘A’ above but with saturating concentration of PPP1R15A(533-624)R578A [100 nM] and

escalating concentration of G-actin. Shown is a representative of three independent experiments performed. The

plot of initial velocity as a function of G-actin derived from three repeats (one shown) is below the SDS-PAGE

image. The EC50 for G-actin was calculated using the agonist fitting curve in GraphPad Prism V7.
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to proteostasis even in cells lacking PPP1R15A, or in ISR-defective Eifs1S51A cells. These observations

suggest that the previously-reported attenuation of the recovery of PP1 in complex with PPP1R15A,

when both were purified from lysates of cells treated with Sephin1 was unlikely to be a direct conse-

quence of Sephin1 interference with complex formation or of destabilization by Sephin1 of a pre-

existing complex and also call into question the importance of any indirect disruption of the PP1-

PPP1R15A complex that may occur in vivo and remain undetected by our assays.

Our findings, questioning whether Sephin1 attains its proteostatic activity by inhibiting the

PPP1R15A-containing eIF2a-P directed holophosphatase, and similar concerns raised by the Peti
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Figure 5. Affinity of the components of the tripartite holophosphatase for one another analysed by Bio-Layer Interferometry (BLI). (A) Schema of the

biotinylated human PPP1R15A533-624 immobilized onto the BLI biosensor tip. (B) Plot of Bio-Layer Interferometry (BLI) signal as a function of time in a

representative experiment (repeated three times) in which immobilized PPP1R15A533-624 was reacted with PP1 [40 nM] in solution (blue trace). The fitting

curve using ‘association then dissociation’ model in GraphPad Prism V7 is shown in red. Vertical dashed line marks the beginning of the dissociation

phase. Table summarizes kinetic parameters extracted from fitting curves of three repeats of the experiment shown in left panel (mean ± standard

deviation). (C) As in ‘B’ above, but the immobilized PPP1R15A533-624 was first exposed to PP1 [200 nM], before being exposed to a solution of both PP1

[200 nM] and G-actin [400 nM]. Shown is a representative of an experiment repeated three times.
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and Shenolikar labs (Choy et al., 2015), do nothing to diminish the attractiveness of PPP1R15A inhi-

bition as a potential means for defending proteostasis. Similarly, there is nothing in our study to

question the beneficial effects reported for Sephin1 in mouse models of neurodegeneration

(Das et al., 2015) nor we do not challenge the enhanced susceptibility of Ppp1r15bKO cells to the

[(o-chlorobenzylidene)amino]guanidine, Guanabenz (Tsaytler et al., 2011). However, our findings

that Sephin1 exerts its effects in CHO-K1 cells lacking PPP1R15A or in ISR-defective Eifs1S51A cells

raise doubts as to whether these phenomena were attained via inhibition of PPP1R15A or indeed

modulation of the ISR.

Crystal structures of the PPP1R15(A or B)-PP1 and the related PNUTS/PPP1R10-PP1 and spino-

philin/PPP1R9B-PP1 complexes reveal that both the residues corresponding to human

PPP1R15AV556 (of the RVxF motif) and the conserved arginine (human PPP1R15AR578) insert deeply

into the surface of the PP1 subunit (Chen et al., 2015; Choy et al., 2014, 2015). The contrast

between the dramatic effect of the PPP1R15AV556E mutation and the more modest effect of the

human PPP1R15AR578A mutation on the PPP1R15A-PP1 complex may reflect a role for the former

early in the pathway to complex assembly (a process that can be thought of as PPP1R15A folding on

the surface of PP1). It is therefore possible that inhibitors of the eIF2a-P holophosphatase might dis-

rupt complex assembly, without affecting the stability or activity of a preformed complex. However,

Sephin1 is unlikely to belong to such a category, as it failed to exert an inhibitory effect on enzymatic

activity or on the BLI signal even when added to pure PPP1R15A, before addition of PP1 and

G-actin. But other compounds that remain to be found might selectively disrupt the assembly of the

PPP1R15A-PP1 complex by binding to and stabilizing an intermediate step in its formation.

Similarly instructive is the human PPP1R15AW582A mutation, which eliminates all detectable selec-

tivity of PPP1R15-holophosphatases for eIF2a-P (Chen et al., 2015)(and Figure 3B here) without

affecting the kinetics of the bimolecular association of PPP1R15A with PP1 or G-actin. These features

suggest that the side chain of W582 - a residue conserved throughout the PPP1R15 family - may

have a special role in aligning PP1 and G-actin to form a composite surface with affinity for the sub-

strate, without contributing measurably to the stability of the tripartite holophosphatase. That the

side chain of single tryptophan residue can bias the complex towards activity (without affecting its

stability), suggests the possibility that small molecules might access this allosteric mechanism and

bias the tripartite holophosphatase towards or away from enzymatic activity without the need to dis-

rupt an extensive protein-protein interface.

Specific cellular dephosphorylation events are notoriously difficult to target with small molecules

(Sakoff and McCluskey, 2004). Here we presented evidence that the perception of Sephin1 as a

milestone in overcoming that challenge may need re-thinking. However, features of the PPP1R15A-

PP1-G-actin holophosphatase noted above suggest ways in which eIF2a-P dephosphorylation might

indeed be selectively targeted by small molecules. In vitro assays for selective eIF2a-P dephosphory-

lation, such as the one described here, might prove useful in discovery of small molecules with such

a mechanism of action.

Materials and methods

Plasmid construction
Diverse cloning techniques were used to create the bacterial and mammalian expression vectors

listed in Table 1. This table contains information about lab number, name, description and reference

for each plasmid used.

Figure 6 continued

phase. Table summarizes kinetic parameters extracted from fitting curves of three repeats of the experiment shown in left panel (mean ± standard

deviation). (B) As in ‘A’ above, but the immobilized wildtype and mutant PPP1R15A533-624 probes were first reacted with PP1 [200 nM], before being

exposed to a solution of both PP1 [200 nM] and G-actin [400 nM]. Shown is a representative of an experiment repeated three times.
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Protein expression and purification
Actin was purified from rabbit muscle according to (Pardee and Spudich, 1982) as modified by

(Chen et al., 2015).

Expression plasmids for PPP1R15A (GADD34) variants contained ampicillin resistance marker,

N-terminal GST tag and C-terminal maltose binding protein (MBP) tag (UK1677, UK1920)(Table 1).

They were transformed into BL21 T7 Express lysY/Iq E. coli (C3013, New England Biolabs) and colo-

nies that grew in LB-ampicillin plates (100 mg/ml ampicillin) were used to create a saturated over-

night culture. This saturated culture was used to inoculate 2–4 Litres of LB media supplemented with

100 mg/ml ampicillin. The cultures were incubated at 37˚C until OD600 = 0.6–0.8. At this point, they

were induced with 1 mM Isopropyl b-D-1-thiogalactopyranoside (IPTG) and cultured for 20 more

hours at 18˚C. It was followed by a centrifugation step to pellet bacteria and resuspension of the

ice-cold pellets in 3–4 pellet volumes of lysis buffer (50 mM Tris pH 7.4, 500 mM NaCl, 1 mM MnCl2,

1 mM MgCl2, 1 mM tris(2-carboxyethyl)phosphine (TCEP), 100 mM phenylmethylsulfonyl fluoride

(PMSF), 20 mTIU/ ml aprotinin, 2 mM leupeptin, and 2 mg/ml pepstatin in 10% glycerol). An Emulsi-

Flex-C3 homogenizer (Avestin, Inc, Ottawa, Ontario) was used to lyse the bacteria, which were then

clarified in a JA-25.50 rotor (Beckman Coulter) at 33,000�g for 30 min at 4˚C. These suspensions

were bound to pre-equilibrated glutathione sepharose 4B beads (17-0756-05, GE Healthcare) for 1–

2 hr at 4˚C. Beads were transferred to a 10 mL column after being batch-washed with 20 bed vol-

umes of lysis buffer. Proteins were eluted in glutathione elution buffer (50 mM Tris pH 7.4, 100 mM

NaCl, 40 mM glutathione, 0.5 mM MnCl2, 0.5 mM TCEP, 10% glycerol), and cleaved with Tobacco

Etch Virus protease (TEV) (12.5 mg TEV protease/mg protein) overnight at 4˚C to remove the N-ter-

minal GST tag. Cleaved proteins were bound to amylose beads (E8021S, New England Biolabs) for

1–2 hr at 4˚C. Twenty/thirty bed volumes of lysis buffer were used to batch-wash the amylose beads,

which were transferred to a 10 mL column and eluted with HEPES buffer (20 mM HEPES, 100 mM

NaCl, 0.2 mM CaCl2, 0.2 mM ATP, 0.2 mM TCEP, 0.5 mM MnCl2, 100 mM PMSF, 20 mTIU/ ml apro-

tonin, 2 mM leupeptin, and 2 mg/ml pepstatin) and 10 mM maltose.

PP1 (UK622) (Table 1) was purified as above, with the following modifications: LB media cultures

were supplemented with MnCl2, after TEV cleavage proteins were buffer exchanged using a 2 mL

desalting column in HEPES buffer and re-bound to glutathione sepharose 4B beads to remove free

GST tag.

Phosphorylated eIF2a was encoded by an expression plasmid containing N-terminal His-Tag and

kanamycin resistance marker (UK105) (Table 1). BL21 T7 Express lysY/Iq E. coli were co-transformed

with this plasmid and a GST-Tagged PERK plasmid carrying ampicillin resistance marker (UK168)

(Table 1). Colonies that grew in ampicillin (100 mg/ml) and kanamycin (50 mg/ml) LB-plates were

used to create a saturated over-night cultured with which 2L of ampicillin and kanamycin LB were

inoculated. Growth, induction and purification was as described for PPP1R15A, with the following

changes: beads used were Ni-NTA (30230, Qiagen) to bind His-tag, lysis buffer contained 20 mM

imidazole and elution buffer contained 500 mM imidazole instead of glutathione. This protein did

not require TEV cleavage but an additional size exclusion chromatography step was included. A

Superdex S200 (GE Healthcare) was used to gel filter the protein in 25 mM Tris, 100 mM NaCl, 0.1

mM EDTA, 1 mM DTT and 10% glycerol buffer.

All proteins were snap frozen and kept at �80˚C in small aliquots. Final concentration of proteins

was calculated from UV absorbance at 280 nm measurements in Nanodrop (Thermo Scientific, UK)

and based on their extinction coefficient values predicted by MacVector.

Figure 7 continued

Where indicated, the analyte was mixed with Sephin1 [50 mM) which was then present during the binding phase of the experiment. (C) As in ‘B’ above

but with biotinylated PP1 as the ligand and PPP1R15A533-624 as the analyte, in the absence or presence of Sephin1. (D) As in ‘B’ above but with

biotinylated PP1 as the ligand and PPP1R15A325-636 as the analyte, in the absence or presence of Sephin1. (E) Table summarizing data extracted from

fitting curves of three repeats of the experiments shown above (mean ± standard deviation).

DOI: 10.7554/eLife.26109.009
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Figure 8. Sephin1’s effect on the eIF2a-P dephosphorylation activity of the human PP1-PPP1R15A-G-actin holophosphatase in vitro. (A) Coomassie-

stained PhosTag-SDS-PAGE tracking the dephosphorylation of eIF2aP in 20 min reactions constituted with PP1 [0.625 nM], G-actin [1.5 mM] and an

escalating concentration of human PPP1R15A325-636. Shown is a representative of three independent experiments performed. A schema of the human

PPP1R15A325-635 construct is shown above the gel. A semi-log10 plot of the initial velocity of eIF2aP dephosphorylation as a function of PPP1R15A325-636

Figure 8 continued on next page
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In vitro biotinylation reactions
Biotin (B1595, Thermo Scientific) was added to the AviTagged specified proteins (encoded by

UK1897, 1920, 1921, 1992, 1993, 1994, 1995)(Table 1) using BirA. BirA was amplified by PCR reac-

tion from E. coli genomic DNA and inserted into an expression vector containing N-terminal GST

(TEV cleavable) and ampicilin resistance marker (UK1881) (Table 1). This protein was purified follow-

ing standard GST-tagged protocols, eluted in glutathione elution buffer, aliquoted and stored in this

buffer. All proteins were biotinylated and its biotinylation was checked as described (Fairhead and

Howarth, 2015)

Proteins in glutathione elution buffer were biotinylated and buffer exchanged into a HEPES buffer

to remove excess of biotin that would interfere with the Bio-Layer Interferometry measurements.

In vitro dephosphorylation of eIF2aP
Drugs used: Sephin1 (EN300-195090, Enamine), tautomycin (5805551, Calbiochem), Guanabenz

(D6270, Sigma-Aldrich), salubrinal (Sal003, S4451, Sigma-Aldrich)

Dephosphorylation reactions were conducted as described (Chen et al., 2015). In summary, reac-

tions were conducted by combining the different proteins for 20 min at 30˚C whilst shaking at 500

rpm and were stopped by addition of Laemmli buffer. A fraction of the reactions were loaded into

PhosTag SDS-PAGE, stained using Coomasie and scanned. ImageJ (NIH) was used to quantify signal

intensity.

Enzyme velocity, V was measured at substrate concentrations well below the enzyme’s Km and in

samples with less than 25% substrate depletion. Under these conditions, the instantaneous velocity

(i.e. rate of substrate conversion to product per molecule of enzyme) is proportional to instanta-

neous substrate concentration and the equivalent velocity is obtained with the equation below,

derived from the integrated rate equation for first order kinetics:

Vi¼
ln

S½ �
0

S½ �f
� S½ �

0

Dt � ENZ½ �

Where Vi is the initial velocity (the instantaneous velocity at t = 0, with the dimensions of 1/t), ½s�
0

and ½s�f are, respectively, the substrate concentrations at the beginning and end of the reaction, Dt is

the time interval of the reaction and ½ENZ� is the concentration of enzyme. The ‘agonist fitting’ or

‘inhibitor fitting’ functions of GraphPad Prism V7 (RRID: SCR_002798) were used to analyze the

effects of varying concentrations of reaction components on velocity.

Bio-Layer Interferometry (BLI) measurements
Proteins were diluted in HEPES buffer at the specified concentrations. Two-hundred microliters of

each diluted protein preparation was placed in a 96 well plate (655209, Greiner). Streptavidin sen-

sors (18–5019, ForteBio) were hydrated in this buffer for 2–5 min before the binding assay was per-

formed. The plate was placed in the ForteBio Octet RED96 System for data acquisition which was

performed at 25˚ C at a constant orbital flow of 600 rpm. The binding assays consisted of the mea-

surement of change in layer thickness (in nanometres) during a series of sequential steps. The sensor

was equilibrated in the buffer (240 s) and the ligand (biotyninated protein) was loaded on the sensor.

Figure 8 continued

concentration derived from three repeats of the experiment is shown below. The EC50 for PPP1R15A
325-636 was calculated using agonist fitting function

on GraphPad Prism V7. (B) As in ‘A’ above, but in the presence of a fixed concentration of PPP1R15A325-636 below the EC50 [2 nM] and escalating

concentrations of Sephin1. Shown is a representative of the two independent experiments performed. Plot contains data from the two repeats. (C) As in

‘B’ above, but in the presence of an escalating concentrations of the PP1 active site inhibitor tautomycin (Tau). Shown is a representative of the two

independent experiments performed. Plot contains data from the two repeats. (D) As above, triplicate reactions of eIF2a-P dephosphorylation

conducted in the absence or presence of Sephin1 or the related compound, Guanabenz. (E) As in ‘D’ using Sephin1, salubrinal or tautomycin. Shown is

a representative experiment, (of two repeats).

DOI: 10.7554/eLife.26109.010

The following figure supplement is available for figure 8:

Figure supplement 1. Sephin1’s effect on the eIF2a-P dephosphorylation activity of the mouse PP1-PPP1R15A-G-actin holophosphatase in vitro.

DOI: 10.7554/eLife.26109.011
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Ligand attachment to the sensor was checked by immersion of the sensor in buffer after loading

(400–2000 s). Finally, association and dissociation of the proteins studied was analysed by soaking

the sensor in analyte solutions and buffer, respectively. The duration of the ligand loading on the

sensor was set to a specific time (600 s) or a specific value (2 nm displacement) depending on the

experiment performed. The duration of the association and dissociation of the analyte to the ligand,
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Figure 9. Sephin1 broadly attenuates the ER stress response in cultured CHO cells. (A) Two-dimensional plot of the fluorescence signals derived from

CHO cells stably transduced with both a CHOP::GFP reporter (on the horizontal axis, Ex: 488 nm/ Em 530 ± 30 nm; reflecting mostly ISR activity) and a

XBP1::Turquoise reporter (on the vertical axis, Ex: 405 nm/ Em 450 ± 50 nm; reflecting IRE1a activity) analysed by flow cytometry. Color-coded signals

from untreated cells (blue) or cells exposed to a low concentration of tunicamycin (0.2 mg/mL; 20 hr) alone (green) or together with Sephin1 (50 mM, red)

are superimposed. Histograms of the distribution of the two reporter signals in the three cell populations are plotted on the corresponding axis and

the mean ± CV (coefficient of variation) of the fluorescence intensity of the two reporters is depicted in the bar diagram to the right. (B) As in ‘A’ above,

but the cells were exposed to histidinol, an ISR inducer that does not promote unfolded protein stress in the ER and does not activate the XBP1::

Turquoise reporter. Shown is one of three independent experiments.

DOI: 10.7554/eLife.26109.012

The following figure supplement is available for figure 9:

Figure supplement 1 . Concentration-dependence of the response of cultured cells to tunicamycin and Sephin1.

DOI: 10.7554/eLife.26109.013

Crespillo-Casado et al. eLife 2017;6:e26109. DOI: 10.7554/eLife.26109 19 of 29

Research article Biochemistry Cell Biology

http://dx.doi.org/10.7554/eLife.26109.012
http://dx.doi.org/10.7554/eLife.26109.013
http://dx.doi.org/10.7554/eLife.26109


A

C

TREATMENTS

eIF2aP

eIF2a

2 4 61 3 5

PERKi (min)

GCN2KO; Ppp1r15bKO (#1) 

0 7.5 15 30 60

87 9 10

7.5 15 30 60

Tg

11 12

0

 Pretreat 30min

13 14 15

Tg + SephinTg

0 7.5 15 30 60

Jasp (min) - - - - - 7.5 15 30 60- - - - - -

-

B

0 7.5 15 30 60-30-300

Thapsigargin (Tg)

PERKi

Jasplakinolide (Jasp)

Sephin1

HARVESTING

Decay rate (min-1)

0.23

0.19

R2

0.93

0.82

Time (min)

0 20 40 60
0

50

100

Time (min)

%
 e

IF
2
a

P

DMSO

Sephin1 

Figure 10. eIF2aP dephosphorylation in untreated and Sephin1-treated cells. (A) Schema of the kinase shut-off experiment used to evaluate the decay

of the eIF2aP signal in cells. Thapsigargin (300 nM) was added at t = �30 min to the media to activate PERK kinase and induce eIF2a phosphorylation.

Sephin1 (50 mM) was introduced either at t = �30 min (alongside thapsigargin, in the experiment shown in panel B below and in Figure 10—figure

supplement 1 panel C) or at t = �300 min (Figure 10—figure supplement 1 panel D). A PERK kinase inhibitor, PERKi/GSK260414A (2 mM), was added

Figure 10 continued on next page
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was adjusted in order to capture bindings that had not reached equilibrium phase. Data analysis

were performed using GraphPad V7 (RRID: SCR_002798) and curves were fitted to a receptor bind-

ing kinetics association then dissociation built-in model.

Gene editing
Ppp1r15a mutant cells
Dual reporter CHOP::GFP, XBP1::Turquoise CHO-K1 cell line (clone S21 a derivative of RRID: CVCL_

0214) (Sekine et al., 2015) were chosen to create Ppp1r15a knock out clones by CRISPR/Cas9 sys-

tem (Ran et al., 2013). The identity of the S21 cells and their mutant derivatives has been confirmed

by the persistence of the CHOP::GFP marker introduced into CHO-K1 cells (originally obtained from

ATCC, catalogue number CCL-61) by the presence of proline auxotrophy and by genomic sequenc-

ing, which confirms them to be of Cricetulus griseus origin. Mycoplasma contamination is monitored

frequently in our cell culture facility by cytoplasmic DAPI staining and by PCR

CRISPy database (URL: http://staff.biosustain.dtu.dk/laeb/crispy/) was used to select single guide

RNA sequences to target the PPP1R15A-encoding gene in exon 1 (upstream the PP1 binding motif).

The two sequences selected were CRISPy Target ID 1668683 and 1671391 and duplex DNAs of the

sequences were inserted into the pCas9-2A-GFP (UK1359) (Table 1) plasmid to create CHO_PP-

P1R15A_guide1_pSpCas9(BB)�2A-GFP (UK1599) and CHO_PPP1R15A_guide2_pSpCas9(BB)�2A-

GFP (UK1600),(Table 1), respectively.

CHO-K1 cells were transfected with either plasmid (UK1599 or UK1600) (Table 1) using Lipofect-

amine LTX (Invitrogen). Twenty-four hours later, cells were washed with PBS and resuspended in PBS

containing 4 mM EDTA. A MoFlo Cell Sorter (Beckman Coulter) was used to individually sort GFP-

positive cells (confirming plasmid transfection). Genomic analysis of the clones was performed using

a PCR-based assay. Primers were designed to amplify the Ppp1r15a region targeted by the RNA

guides. The reverse primer was labelled with 6-carboxyfluorescein (6-FAM) on the 5’ end, to create

fluorescently-labelled PCR products. The diluted PCR products were loaded on a 3130xl Genetic

Analyzer (Applied Biosystems) and analysed using the Gene Mapper software (Applied Biosystems)

to determine their length. Clones in which frame-shifting mutations were predicted by size of the

PCR product, were sequenced. PPP1R15AKO(clone #1) (from Guide 1) was identified as compound

heterozygous for two gene-disrupting alleles [1479_1492delGCTCAGGGTTGTCT/1491_1492ins

(440n)] and PPP1R15AKO (clone #2) (from Guide 2) as homozygote [1588_1589insA]. All three alleles

have a frame shift mutation 5’ of the PP1 binding motif with no intervening AUG codon for in frame

down-stream translation initiation of a fragment containing the PP1 binding motif.

Eif2ak4 (GCN2); Ppp1r15b compound-mutant cells
Same dual reporter CHOP::GFP, XBP1s::Turquoise CHO cell line (clone S21) was chosen to create

compound-mutant GCN2KO; Ppp1r15bKO knock out clones by CRISPR/Cas9 system.

A CRISPR guide was designed to target the region of exon 9 of Eif2ak4 (GCN2) that is upstream

of the kinase domain. As previously described, a duplex DNA of CRISPy Target ID 1051489 was

introduced in pCas9-2A-puro plasmid to create CHO_EIF2K4_guideA_pSpCas9(BB)�2A-Puro

(UK1497) (Table 1). Cell sorting was based on loss of the ISR (lost of CHOP::GFP signal) upon Histidi-

nol treatment. The Eif2ak4 genomic region from sorted cells was sequenced.

Figure 10 continued

at t = 0 to visualize eIF2aP dephosphorylation at specified times. (B) Immunoblot of the time-dependent changes in the eIF2aP signal of compound-

mutant Ppp1r15bKO; Gcn2KO CHO-K1 cells (clone #1) treated as in ‘A’. Where indicated, the cells were additionally exposed to Sephin1 (50 mM) or the

actin-polymerizing agent Jasplakinolide (1 mM), which inhibits eIF2aP-dephosphorylation by sequestering G-actin. The immunoblot of eIF2a (lower

panel) serves as a loading control. Shown is a representative experiment repeated five times. (C) Plot of the eIF2aP signal (normalised to the value at

t = 0 of the vehicle only (DMSO) sample) as a function of time derived from five independent experiments. The data have been fitted to an exponential

decay curve (grey solid line for the vehicle and blue solid line for the Sephin1-treated sample). The exponential decay rate and the R2 of the fit are

indicated.

DOI: 10.7554/eLife.26109.014

The following figure supplement is available for figure 10:

Figure supplement 1. Analysis of Sephin1 in a different Ppp1r15b mutant cell line.

DOI: 10.7554/eLife.26109.015

Crespillo-Casado et al. eLife 2017;6:e26109. DOI: 10.7554/eLife.26109 21 of 29

Research article Biochemistry Cell Biology

https://scicrunch.org/resolver/SCR_002798
https://scicrunch.org/resolver/CVCL_0214
https://scicrunch.org/resolver/CVCL_0214
http://staff.biosustain.dtu.dk/laeb/crispy/
http://dx.doi.org/10.7554/eLife.26109.014
http://dx.doi.org/10.7554/eLife.26109.015
http://dx.doi.org/10.7554/eLife.26109


10
3

10
4

CHOP::GFP (530nm)

10
4

X
B

P
1

s
::
T

U
R

Q
 (

4
5

0
n

m
)

0 10
3

10
4

CHOP::GFP (530nm)

0

-10
2

10
2

10
4

X
B

P
1

s
::
T

U
R

Q
 (

4
5

0
n

m
)

R15AKO(#1) R15AKO(#2)

0

0

-10
2

10
2

10
3

10
3

A
WT R15AKO(#1)

Tm (hours) 0 7 0 7 0 7

-eIF2a

-R15A

R15AKO(#2)

1 2 3 4 5 6

B

C

Tunicamycin (0.2µg/mL) + Sephin 1 (50µM)
Tunicamycin (0.2µg/mL) 
Untreated

M
e

a
n
 F

lu
o
re

s
c
e

n
c
e

 In
te

n
s
ity

 (
M

F
I)

u
t

T
m

T
m

 +
 S u

t

T
m

T
m

 +
 S

R15AKO(#2)R15AKO(#1)

Histidinol (0.5mM) + Sephin 1 (50µM)
Histidinol (0.5mM) 
Untreated

0 10
3

10
4

CHOP::GFP (530nm)

0

-10
2

10
2

10
3

10
4

X
B

P
1

s
::
T

U
R

Q
 (

4
5

0
n

m
)

0 10
3

10
4

CHOP::GFP (530nm)

0

-10
2

10
2

10
3

10
4

X
B

P
1

s
::
T

U
R

Q
 (

4
5

0
n

m
)

0

200

400

600

800

1000

M
e

a
n
 F

lu
o
re

s
c
e

n
c
e

 In
te

n
s
ity

 (
M

F
I)

u
t

H
is

H
is

 +
 S

0

200

400

600

800

1000

u
t

T
m

H
is

+
 S

R15AKO(#2)R15AKO(#1)

R15AKO(#1) R15AKO(#2)

10
2

10
2

10
2 10

2

CHOP::GFP

XBP1-s::TURQ

CHOP::GFP

XBP1-s::TURQ

 *

Figure 11. Cells lacking PPP1R15A remain responsive to Sephin1. (A) Immunoblot of endogenous PPP1R15A recovered by immunoprecipitation (using

an anti-PPP1R15A antibody conjugated to Protein A Sepharose) from untreated and tunicamycin exposed parental cells and cells from two different

Ppp1r15aKO CHO-K1 clones. The position of PPP1R15A is indicated and the immunoglobulin heavy-chain is marked with an asterisks. The immunoblot

of eIF2a (lower panel) serves as a loading control for the content of cellular protein in the lysates. (B) Two-dimensional plot and histograms of the

Figure 11 continued on next page
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The GCN2KO clone selected was identified as homozygous for a 36019_36020insG InDel that enc-

odes a truncated protein lacking the kinase domain.

CRISPR guides were designed to target Ppp1r15b at either the 5’ end (Guide A, CRISPy Target

ID 1315067) or 3’ end (Guide B, CRISPy Target ID 1315106) of exon1; both upstream of the catalytic

KVxF motif spanning the junction of exons 1 and 2. Guide DNA duplexes for each target were intro-

duced into pSpCas9(BB)�2A-mCherry_V2 (UK1610) (Table 1) to create CHO_PPP1R15B_gui-

deA_pSpCas9(BB)�2A-mCherry_V2 (UK2081) and CHO_PPP1R15B_guideB_pSpCas9(BB)�2A-

mCherry_V2 (UK2082) (Table 1). Positive CHO-K1 cell transfectants were sorted for mCherry expres-

sion by FACS. The Ppp1r15b genomic region from sorted cells was sequenced.

The selected clone targeted by guide A (clone #1) was heterozygous for a 45_52del and

48_49insC. The selected clone targeted by guide B (clone #2) was heterozygous for a 1724del and

1722_1725del (residue numbering based on NCBI Reference Sequence: NW_003614184.1). Both

clones encode only truncated PPP1R15B proteins, each lacking the KVxF containing catalytic

domain.

(note: the existing anti-PPP1R15B sera do not recognize the hamster protein, hence confirmation

of gene disruption was confined to genotypic analysis which revealed frame-shifting that precludes

expression of the active C-terminal fragment).

Eif2s1 (eIF2a) gene editing
High fidelity homology directed repair (HDR) CRISPR/Cas9 system was used to create Ser51Ala

mutation in eIF2a in dual reporter CHOP::GFP, XBP1s::Turquoise CHO-K1 cell line (clone S21).

Duplex DNAs of guide sequence [CRISPy Target ID: 1051485] was inserted into pCas9-2A-puro

vector to create CHO_Eif2s1_guideC_pSpCas9(BB)�2A-Puro (UK1507) (Table 1). CHO cells were

transfected with this plasmid and a 190 bp single-stranded DNA oligonucleotide (ssODN) that car-

ried the desired mutation (Ser51Ala) and a PAM mutation (to abolish the Cas9 cleavage site in

recombinant alleles). Cells that were CHOP::GFP negative upon histidinol treatment were single-cell

sorted. The genotypic analysis of the selected clone showed that it is heterozygous, one allele con-

tains the desired mutation [5307_T>G (Serine), 5321_C>T (PAM)] and the other allele has an inser-

tion that produces a truncated version of the protein (5326_5327insT), thus the only functional copy

of eIF2a in this cell has the S51A mutation.

Flow cytometry analysis
CHO cells were plated in six well plate at 3�105 cells/well density. Next day, they were treated for 20

hr with specified compounds. They were washed twice with PBS and suspended in PBS 4 mM EDTA

to be evaluated by flow cytometry. Flow cytometry data were analyzed using FlowJo (FlowJo,LLC,

RRID: SCR_008520) and GraphPad-Prism V7 (RRID: SCR_002798) was used to create bar graphs.

Replicates of flow cytometry experiments were analysed using Stata 14 StataCorp. (2015. Stata

Statistical Software: Release 14. College Station, TX: StataCorp LP, RRID: SCR_012763). The interac-

tion between treatments and genotypes in the different repeats was modeled using linear regres-

sion. The model was used to test whether the effect of different treatments differed between the

genotypes, allowing for different mean values of CHOP::GFP and XBP1s::Turquoise on each repeat.

The analysis showed non-significant differences between genotypes. However, for each cell type,

there were significant differences (p<0.02) between untreated cells versus stressed cells and also

between the latter and cells co-treated with Sephin1.

Figure 11 continued

fluorescent signal of the CHOP::GFP and XBP1s::Turquoise reporters in the two Ppp1r15aKO CHO-K1 clones. Where indicated, the cells were exposed

to a low concentration of tunicamycin (0.2 mg/mL; 20 hr) alone or together with Sephin1 (50 mM). The mean ± CV (coefficient of variation) of the

fluorescence intensity of the two reporters in each of the two clones is displayed in the bar diagram. Shown is one of three independent experiments.

(C) As in ‘C’ above, but cells were exposed to histidinol. Shown is one of three independent experiments.

DOI: 10.7554/eLife.26109.016

The following figure supplement is available for figure 11:

Figure supplement 1 . Mutant Ppp1r15a alleles.

DOI: 10.7554/eLife.26109.017
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Figure 12. ISR-deficient Eif2s1S51A (eIF2aS51A) cells retain their responsiveness to Sephin1. (A) Schematic representation of procedure used to create

dual reporter (CHOP::GFP, XBP1s::Turquoise) Eif2s1S51A (eIF2aS51A) CHO-K1 cells using CRISPR-Cas9 system. (B) Immunoblot of CHO-K1 cell lysates

using anti- eIF2aP (upper panel), anti- eIF2a (middle panel) and anti-BiP (lower panel) antibodies. Two-fold more cell lysate was loaded onto lanes 5

and 6 to compensate for the lower eIF2a content of the haploid mutant Eif2s1S51A cells. (C) Two-dimensional plot and histograms of the fluorescent

signal of the CHOP::GFP and XBP1s::Turquoise reporters in the Eif2s1S51A CHO-K1 cells. Where indicated, the cells were exposed to a low

concentration of tunicamycin (0.2 mg/mL; 20 hr) alone or together with Sephin1 (50 mM). The mean ± CV (coefficient of variation) of the fluorescence

intensity of the two reporters in each of the two clones is displayed in the bar diagram. Shown is representative experiment of two independent

experiments performed. Note the blunted expression of CHOP::GFP wrought by the ISR-defect imposed by the Eif2s1S51A mutation.

DOI: 10.7554/eLife.26109.018
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Cell treatment, immunoprecipitation and immunoblot
Antibodies used: rabbit anti-PPP1R15A (10449–1-AP, ProteinTech, RRID: AB_2168724), rabbit anti-

eIF2a-P (ab32157, Abcam, RRID: AB_732117), chicken anti-BiP (Avezov et al., 2013), mouse anti-

eIF2a (Scorsone et al., 1987)

Drugs used: tunicamycin (T2250, Melford), thapsigargin (586005, Calbiochem), L-Histidinol

(228830010, Acros Organics), PERKi (Gift from GSK, GSK2606414A) Sephin1 (EN300-195090,

Enamine)

CHO-K1 cells were plated in 10 cm dishes until they reached 80% confluency, at which point they

were treated with 2.5 mg/mL of tunicamycin or DMSO (vehicle) for 7 hr. Cells were washed twice

with ice-cold PBS, scraped in presence of PBS with 1 mM EDTA and centrifuged at 376 g for 5 min

at 4˚C (5424 R, Eppendorf). Four pellet-volume of harvest buffer (10 mM HEPES pH 7.9, 50 mM

Table 1. Plasmids used.

Lab
number Lab name Description Reference

UK105 eIF2a-NM_pET30a His6-tagged mouse eIF2a 1–185 pET-30a(+)" PMID
15341733

UK168 PerkKD-pGEX4T-1 Bacterial expression plasmid for mouse PERK kinase domain PMID
9930704

UK622 PGV_PP1G_1–323_V1 Bacterial expression plasmid forfull-length PP1 phosphatase
catalytic domain

PMID
25774600

UK1359 pSpCas9(BB)�2A-GFP Mammalian expression of GFP-tagged Cas9 and single guide RNA
to introduce double strand breaks (Addgene 48138)

PMID
24157548

UK1367 pSpCas9(BB)�2A-Puro Mammalian expression of Puror-tagged Cas9 and single guide
RNA to introduce double strand breaks (Addgene 48138)

PMID
24157549

UK1497 CHO_EIF2K4_guideA*_pSpCas9(BB)�2A-Puro Puro-tagged CRISPR for targeting human CHO GCN2(EIF2K4)
gene

This paper

UK1507 CHO_Eif2s1_guideC_pSpCas9(BB)�2A-Puro A single guide gRNA plasmid for eIF2a (EIF2S1) locus This paper

UK1599 CHO_PPP1R15A_guide1_pSpCas9(BB)�2A-GFP A single guide gRNA plasmid for GADD34 locus This paper

UK1600 CHO_PPP1R15A_guide2_pSpCas9(BB)�2A-GFP A single guide gRNA plasmid for GADD34 locus This paper

UK1610 pSpCas9(BB)�2A-mCherry_V2 modified pSpCas9(BB)�2A vector to express mCherry together
with guide RNA and Cas9

This paper

UK1645 GST_Myd116_273–657_malE_pGEX_TEV Bacterial expression of GST-mouse GADD34 273–657 -MBP This paper

UK1677 huPPP1R15A_325_636_malE_pGEX_TEV Bacterial expression of GST-human GADD34- MBP This paper

UK1881 EcBirA_WT_pGEX_TEV (MP1) Bacterial expression of fastidious E. coli BirA biotin ligase (R118
intact)

This paper

UK1897 mPP1G_1–323_pGEX_TEV_AviTag (MP2) Bacterial expression GST_TEV_AviTag_FL mPP1G with non-
tempaled C-term LE

This paper

UK1920 huPPP1R15A_533_624_malE_pGEX_TEV_AviTag (MP1) Bacterial-expression plasmid for N-tern AviTagged human
GADD34 533–624

This paper

UK1921 huPPP1R15A_325_636_malE_pGEX_TEV_AviTag (MP4) Bacterial-expression plasmid for N-tern AviTagged human
GADD34 325–624

This paper

UK1992 huPPP1R15A_I596A_533_624_malE_pGEX_TEV_AviTag Bacterial-expression plasmid for N-term AviTagged human
GADD34 533–624, I596A mutation

This paper

UK1993 huPPP1R15A_V556E_R578A_533_624_malE_pGEX_TEV_AviTag Bacterial-expression plasmid for N-term AviTagged human
GADD34 533–624, v556e R578A mutation

This paper

UK1994 huPPP1R15A_V556E_533_624_malE_pGEX_TEV_AviTag Bacterial-expression plasmid for N-term AviTagged human
GADD34 533–624, v556e mutation

This paper

UK1995 huPPP1R15A_F592A_533_624_malE_pGEX_TEV_AviTag Bacterial-expression plasmid for N-term AviTagged human
GADD34 533–624, F592A mutation

This paper

UK2081 CHO_PPP1R15B_guideA_pSpCas9(BB)�2A-mCherry_V2 guide targeting cgPPP1R15B (hamster CReP) gene 5’ end of exon1 This paper

UK2082 CHO_PPP1R15B_guideB_pSpCas9(BB)�2A-mCherry_V2 guide targeting cgPPP1R15B (hamster CReP) gene 3’ end of exon
1

This paper
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NaCl, 0.1 mM EDTA, 0.5% Triton, 0.5 M Sucrose, 1 mM DTT, 4 mg/mL Aprotinin, 1 mM PMSF, 2 mg/

mL Pepstatin, 17.5 mM b-Glycerophosphate, 10 mM Tetrasodium Pyrophosphate, 100 mM NaF) was

used to lyse the cells. After 5–10 min of incubation on ice, samples were clarified at 21130 g for 15

min at 4˚C (5424 R, Eppendorf). Protein quantification of the clarified supernatants was performed

using Bradford method.

For immunoprecipitation, 15 mL Protein A-Sepharose beads (Zymed, 10–1042) per sample where

preincubated with anti-PPP1R15A antibody. Equal amounts of protein extract (800 mg) were incu-

bated with the beads over night rotating at 4˚C. After four washes with 1 mL of TBS, 20 mL of 2X

Laemmli loading buffer were added to the samples. Once incubated at 70˚C, same volumes were

loaded into a 10% SDS-PAGE gel and transferred to a PVDF membrane.

Kinase shut-off experiment to assess eIF2a-P dephosphorylation in vivo
The experimental procedure was adapted from (Chambers et al., 2015). Briefly, CHO cells (Gcn2-/-;

Ppp1r15b-/-) were plated in 10 cm dishes at 40% confluency. Sixteen-twenty hours later, fresh media

was added and cells were incubated for 2 hr. Sephin1 (50 mM) or DMSO was added to the media for

either 30 min or 5 hr before application of thapsigargin (300 nM for 30 min) or tunicamycin (2.5 mg/

mL for 2 hr) to induce stress by activation of PERK kinase. GSK2606414A [2 mM] was added to inhibit

PERK. The PP1R15A-PP1-dependent decay of the eIF2a-P signal (by its dephosphorylation) was

tracked by stopping the reaction at different time points by addition of ice-cold PBS. eIF2a-P and

total eIF2a were detected by immunoblot. ImageJ (NIH) was used to quantify signal intensity and

one phase decay model was used (GraphPad-Prism V7, RRID: SCR_002798) to analyse the rate decay

of eIF2aP dephosphorylation.

LC-UV-MS analysis
A Shimadzu UFLCXR system coupled to an Applied Biosystems API2000 mass spectrometer was

used. Column: Phenomenex Gemini-NX, 3 mm,110 Å, C18, 50 � 2 mm (at 40˚C). Mobile phase: sol-

vent A: 0.1% formic acid in water; solvent B: 0.1% formic acid in acetonitrile. Gradient: pre-equilibra-

tion for 1 min at 5% solvent B in solvent A; then linear gradient 5–98% solvent B over 2 min, 98% B

for 2 min, 98–5% B over 0.5 min, then 5% B for 1 min. Flow rate: 0.5 mL/min. Detector: UV detection

at 254 nm (channel 1), 220 nm (channel 2). Mass spectrometer: positive ion mode.
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