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Abstract:  

Solution-processable materials are becoming increasingly attractive due to their use in low cost, 

high throughput and relatively easy fabrications. In addition, the possibility of high-resolution 

patterning makes solution-based materials particularly suitable for integrated applications. The 

material that was investigated in this work is zinc oxide nanoparticles (ZnO NPs) dispersion, 

motivated by the highest resolution on record of optically addressed spatial light modulators 

(OASLMs) using solution-based ZnO NP as photoactive material. ZnO is a popular type of 

semiconductor compound from II-VI group and ZnO NPs are the nanocrystalline form of ZnO, 

which exhibit many unique and superior properties such as direct and wide bandgap, large 

surface-to-volume ratio, antibacterial and eco-friendly nature. Therefore, the investigation of 

ZnO NPs in terms of their physical properties, post processing effect, patterning techniques, 

and applications are of great significance.  

In this work, thin films made from ZnO NP dispersion in ethanol was characterized in detail 

including their structural, electrical, dielectric and optical properties. The post-processing effect 

such as thermal annealing and oxygen plasma treatment was also investigated. Then ZnO NP-

based OASLM was researched by simulation and device characterization regarding electrical 

and optical properties. More importantly, the optimization of ZnO NP-based OASLMs was 

conducted in terms of diffraction efficiency and response speed, which are two key factors 

limiting the development of ZnO NP-based OASLMs. The diffraction efficiency was improved 

by pinpointing the optimum parameters of the driving signal such as waveform, amplitude and 

frequency. And the response time was reduced by several methods such as thermal annealing, 

introducing an interfacial layer and replacing the photoconductive ZnO NP layer with ZnO NP-

based photodiode structure. The sensing of oxygen partial pressure in air by ZnO NP thin film 

was also observed and studied. Moreover, device miniaturization was achieved by the mould-

guided drying technique, indicating a promising future for integrated applications. This 

patterning technique was also used for another type of solution-based material: PEDOT:PSS. 

And PEDOT:PSS-based organic electrochemical transistors (OECTs) with nanoscale channel 

length and channel width were realized by including a lift-off process, which demonstrated a 

great high-frequency response.  
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Chapter 1 Introduction 

Solution-processable materials have been attracting more and more attention in recent years 

due to their advantages in low cost, large-scale production, tailorable properties, applicability 

for various post-processing techniques, compatibility with flexible substrates and low 

fabrication requirements [1], [2]. Furthermore, solution-based materials can also provide 

superior performance such as the highest resolution of OASLM on record (825 lp/mm) using 

colloidal ZnO NP dispersion [3], so they have become regarded as the next generation materials 

for a wide range of applications. In addition, the demand for transparent semiconductor 

materials with a wide bandgap is growing dramatically since applications such as wearable 

electronics, transparent displays, artificial organs and radio-frequency identification (RFID) are 

becoming unprecedentedly significant during the last decade [4], [5].  

Solution-processed zinc oxide nanoparticles (ZnO NPs) in ethanol is one of the main research 

topics in this work. ZnO is a popular semiconductive material with a direct and wide bandgap,  

high thermal conductivity, optical transparency, high electron mobility and tuned conductivity 

[6]. Recently, an increasing amount of research has been conducted into ZnO NPs since ZnO 

NPs have a large surface-to-volume ratio and are defect-rich, behaving differently from other 

forms of ZnO.  

In this chapter, fundamental properties of ZnO and ZnO NPs are discussed, followed by the 

introduction to the fabrication and patterning techniques for solution-processable materials. 

Furthermore, applications of ZnO NPs such as optically addressed spatial light modulators 

(OASLMs) and oxygen partial pressure sensors are introduced.            

1.1 Fundamentals of ZnO and ZnO Nanoparticles 

ZnO has been widely investigated over the past several years due to its semiconductive nature, 

low toxicity and availability in large bulk single crystals [6]. A broad range of potential 

applications of ZnO have been widely used. For instance, ZnO is a promising semiconductor 

material for electronic and photonic applications (UV sensors [7], LEDs [8], solar cells [9], 

photocatalyst [10] and lasers [11]) due to its wide bandgap (3.37eV) and high exciton binding 

energy (60meV) at room temperature [12].  

ZnO NPs normally have a particle diameter between 1nm~100nm, and they generally have a 

large surface-to-volume ratio, enhanced surface reactivity [13] and other size-dependent 
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features. Similar to ZnO, NPs of ZnO are also used in miscellaneous products such as ceramics 

and plastics etc [14]. In addition, the antibacterial properties of ZnO NPs make them particularly 

appealing in pharmaceutical and food industries [13], [15]. Although ZnO NPs exhibit 

antimicrobial and antibacterial activities, they are reported to be non-toxic to human cells [16], 

so they are also suitable for cosmetic products such as sunscreens and dental fillings.   

1.1.1 Basic properties of ZnO  

ZnO is a group II-VI compound with a natural n-type conductivity due to its intrinsic defects 

such as oxygen vacancies and zinc interstitials. There are normally three types of lattice 

structures for ZnO: wurtzite, zinc blende and rock-salt. Wurtzite structure is the most stable 

structure at room temperature because of the ionic behaviour of Zn-O bond [17], which comes 

from the large difference in electronegativity between Zn and O. In contrast, ZnO of zinc blende 

structure is more covalent in Zn-O bond. Wurtzite ZnO has a hexagonal lattice, indicating that 

every Zn atom is surrounded by 4 O atoms and vice versa, as is shown in figure 1.1 below. The 

lattice parameter a and c of wurtzite ZnO are about 3.24 Å and 5.20 Å respectively, having  a 

ratio (c/a) of 1.633 [18].  

 

Figure 1.1 Lattice structure of wurtzite ZnO.  

In general, ZnO crystal has a wide and direct bandgap of 3.37eV, which could be varied by 

adding Mg (increased bandgap) or Cd element (decreased bandgap) [6]. The electron mobility 

of bulk crystal ZnO has been reported to be between 205 and 298 cm2v-1s-1 at low electric field 

[19]. In contrast, thin-film ZnO has a relatively lower electron mobility from 120 to 155 cm2v-

1s-1 in a low electric field [20], [21]. Charge scattering is the dominant factor limiting electrical 
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mobility in a low electric field and the scattering results from the ionized impurities and lattice 

defects.  

Similar to most semiconductor materials, the properties of ZnO are strongly dependent on trap 

states and defects. For instance, the n-type conductivity of ZnO was attributed to oxygen 

vacancies (Vo) [22], [23] before this theory was overturned by the existence of hydrogen 

species because Vo is a deep donor (1eV below conduction band) and cannot affect the density 

of equilibrium charge [24], [25]. The optical absorption is also influenced by VO. It has been 

reported that the absorption range broadens as the concentration of VO increases [26]. It was 

also found that the absorption edge shifts towards a longer wavelength as the concentration of 

VO increases, which implies that the band gap decreases (from 3.2eV to 2.5eV for ZnO and 

ZnO0.952) [22]. In terms of photoluminescence (PL), two emission peaks are normally observed 

in ZnO. Near-UV peak (3.3eV) is generally considered to be associated with band-to-band 

recombination of electron-hole pairs from conduction band to valence band. The other peak 

(2.2eV) lies in the visible range (green) and the reason is still controversial. Some researchers 

claimed that it is due to the electrons trapped in deep VO states (1eV below conduction band) 

[27], [28], [29]. However, this is challenged by many researchers. Other mechanisms for green 

emission were also proposed such as zinc interstitials, Cu impurities, donor-acceptor transition 

and surface defects [30], [31]. 

ZnO also has other interesting features such as the large piezoelectric constant, which enable 

ZnO-based transducers and actuators. High thermal conductivity of ZnO also makes it valuable 

as an additive for heat dissipation [6]. Moreover, the radiation hardness of ZnO was reported to 

be high, which makes it suitable for aerospace applicants [32].  

1.1.2 Basic properties of ZnO NPs 

ZnO NPs are the nanocrystalline form of ZnO and they tend to show increasingly dominant 

quantum effect and surface effect as the size decreases, such as enlarged bandgap and enhanced 

chemical reactivity [15]. The surface reactivity of ZnO NPs has received considerable research 

interest from pharmaceutical and biological industries. In addition, ZnO NPs are rich in defects 

and the surface defects have a strong influence on their properties due to the larger surface-to-

volume ratio of ZnO NPs compared to bulk ZnO. Many types of defects exist in ZnO NPs such 

as oxygen vacancies (Vo), zinc vacancies (VZn), zinc interstitials (Zni), and dangling bonds. Vo 

and Zni are the most common defects. Although enormous efforts have been put into 

investigating the properties ZnO NPs, there are still several unresolved challenges such as the 
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origin of green emission (typically around 520nm) in photoluminescence (PL) and p-type 

doping [33], [34]. Among all the interesting features of ZnO NPs, two properties are of 

particular interest to this work: UV sensitivity and oxygen sensitivity.  

• UV sensitivity 

ZnO NPs are suitable for UV photodetectors due to the high UV absorption and high 

responsivity to UV light, while ZnO NPs have little sensitivity for visible light. UV illumination 

results in an increase in electrical conductivity, which is generally attributed to the desorption 

of oxygen molecules on ZnO NPs [7], [35]. Oxygen molecules tend to be adsorbed on the 

surface of ZnO NPs by capturing free electrons. As a result, ZnO NPs are surrounded by highly 

resistive depletion layers (oxygen ions). Free electron-hole pairs are generated upon UV 

radiation, releasing electrons from oxygen ions and increasing the electrical conductivity.   

On the other side, the large surface-to-volume ratio of ZnO NPs enhances this process compared 

to bulk ZnO and makes ZnO NPs particularly suitable for UV detectors. It has been reported 

that UV photodetectors, that were based on the solution-processed ZnO NPs, exhibited high 

dark resistance (>1TΩ) and fast response speed (characteristic rise time and fall time of <0.1s 

and ~1s respectively) [7]. Other researchers also achieved a current on/off ratio of 106 using 

ZnO NPs dispersions [35].  

• Oxygen sensitivity 

Similar to UV absorption, the oxygen sensing capability of ZnO NPs is generally ascribed to 

the adsorption and desorption of oxygen molecules on ZnO NPs by capturing or releasing 

electrons. Large surface-to-volume ratio increases the exposed area in the air and enhances the 

sensing performance such as sensitivity and stability compared to polycrystalline ZnO [36]. 

Researchers have been carrying out investigations of the oxygen sensing behaviour of ZnO NPs. 

For instance, electrochemically deposited ZnO NPs were used to fabricate oxygen sensors, 

which showed a reversible response to oxygen [36]. However, the response speed was slow 

(the fall time is about 16.5min). Other researchers also noticed the thermal stability of the ZnO 

NPs-based oxygen sensor and they demonstrated that the oxygen sensitivity of ZnO NPs 

remains until 350°C, which indicated a wide range of operation temperature for ZnO NPs-based 

oxygen sensors [37].  

It has also been reported that ZnO NPs are sensitive to the existence of other gas species. For 

example, ethanol sensitivity was observed and the researchers ascribed the sensing mechanism 
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to VO-dependent concentration of free charge carriers [28]. Other mechanisms were also 

reported in NO2 sensing, which was claimed to be a result of direct binding between NO2 

molecules and VO on the surface of ZnO NPs [38].   

A broad range of applications have incorporated ZnO NPs such as light emitting diodes (LEDs) 

with high brightness, UV lasers with extremely low thresholds, solar cells with efficient charge 

transport and UV detectors with high internal gain [22], [33], [34], [39]. ZnO NPs are also used 

in chemical and biological industries due to their antibacterial properties. Several antibacterial 

mechanisms have been reported such as the abrasive surface of ZnO NPs (edges and corners), 

the release of Zn2+ ions and the formation of reactive oxygen species (ROS) [13], [15]. However, 

the exact mechanism of antibacterial activity is still controversial.  

1.2 Solution-Based Fabrication Processes for Thin Films and Features 

Solution-based processes have several advantages over other fabrication techniques such as 

simple process, effective cost, high-yielding production and it is relatively easy to control their 

composition. Recently, low-temperature and solution-processed metal oxide semiconductor 

materials have been the centre of attention and researchers have attempted to fabricate 

transistors using InZnO, InGaZnO and ZnSnO from their solutions [40], [41]. Meanwhile, a 

wide range of applications have been reported using solution-processed metal oxide materials, 

such as UV photodetectors, biosensors and memory devices. [42]  

However, it was reported that solution-processed semiconductor materials generally have worse 

electrical performance than vacuum-processed materials due to the low charge carrier mobility 

and poor film uniformity [42]. In order to improve the device’s performance while maintaining 

a low processing temperature, attempts have been made such as using dual active layers, 

precursor optimization and high-pressure annealing.  

Various techniques have been developed to process solution-based materials during the past 

decade such as spin coating, inkjet printing and spray pyrolysis. Spin coating is the most popular 

method, though it is also limited by the choice of pattern. In this section, different techniques 

for solution-based fabrication processes are introduced.  

1.2.1 Spin coating 

Spin coating is the most popular fabrication technique for thin films. Liquid precursor thins 

itself during the spinning in order to balance the centrifugal force and viscous force. Spinning 

parameters such as rotation speed, time and acceleration all play a significant role in film 
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thickness and uniformity. As a general rule, the film thickness is inversely proportional to √𝜔, 

where 𝜔 is the angular speed of rotation. 

The spin coating has several advantages such as low cost and fast operation. More importantly, 

it is able to provide a great film uniformity and the film thickness tend to remain itself during 

the process [43], [44]. On the other side, spin coating has a requirement for substrate size as it 

is difficult to rotate large-size substrate at high speed. In addition, the material usage is very 

low (<5%) [43] and the cost rises due to material disposal.  

It has been reported that high-mobility transistors (5.25 cm2/Vs) based on ZnO precursor using 

spin coating was achieved [45]. The devices also showed a good stability over time. Highly 

reproducible transistors by spin-coating ZnO precursor were also realized and the transistors 

had a mobility of 6 cm2/Vs and current on/off ratio of around 106 [46]. 

1.2.2 Photopatterning 

Traditional photolithography is possible for solution-processed thin films. However, this might 

bring about issues such as contamination and chemical reactions with photoresists or developers. 

Direct photopatterning was proposed by adding acetylacetone or benzoylacetone (BzAc) into 

metal oxide solutions [42]. UV illumination results in the decomposition of BzAc into oxides 

or hydroxide, which makes BzAc insoluble in the solvent (such as 2-methoxyethanol) [47]. It 

has been reported that InZnO-based transistors fabricated with direct photopatterning had a 

mobility of 7.8 cm2/Vs and a current on/off ratio of more than 108 [48]. InGaZnO transistors 

fabricated with the same method were also reported [49]. Moreover, femtosecond laser is also 

a potential technique for direct photopatterning and it was noticed that laser annealing enhanced 

the charge carrier mobility [50].   

1.2.3 Printing 

Printing is also a direct patterning technique with little material waste and high reproducibility. 

It can be further classified into contact printing, inkjet printing and nanoimprint lithography etc.  

Contact printing has been widely used in the roll-to-roll process due to its high fabrication 

efficiency and capability in large-scale production. However, it is also limited by the pattern 

resolution and layer homogeneity. Moreover, contact printing requires high-viscosity inks. The 

most common type of contact printing is gravure printing, providing large throughput, low cost 

and large area. Researchers have used gravure printing to fabricate InGaZnO transistors with a 

field-effect mobility of 0.81 cm2/Vs and current on/off ratio of 1.36×106 [51].   
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Inkjet printing is the most promising technique to prevail in the real world. It is a direct and 

noncontact patterning method with a computer-controlled nozzle. The nozzle movement is 

predesigned and controlled by computer, and the ink in the nozzle is ejected on a drop-on-

demand basis. High-mobility transistor has been reported with a field-effect mobility of 16 

cm2/Vs [41]. Likewise, InGaZnO-based transistor array was reported with a spacing of 50 μm 

[52]. Fully-aqueous ink was reported to fabricate indium oxide transistors and the transistor 

showed a great electrical performance with field-effect mobility of 19 cm2/Vs and current on/off 

ratio of 107 [53]. However, inkjet printing has notable disadvantages such as nonuniformity and 

coffee ring effect [42].  

1.2.4 Mould-guided drying 

Deposition by liquid drying was recently reported by Shunpu Li et al. in 2018 [54]. A PDMS 

template with proper line patterns was formatted using pouring commercial silicone elastomer 

(Sylgard ®184, Dow Corning). The commercial silicone elastomer consisted of a two-part 

liquid component kit (a 10:1 mix ratio). The commercial silicone elastomer was poured onto a 

master defined by optical or e-beam lithography. Then the PDMS was annealed at 70 °C for 1h. 

The solution was dispensed between PDMS template and substrate, followed by gentle pressure 

between them. The pressured contact was achieved through a self-developed stainless-steel 

clamping platform, which enabled the proper alignment of the substrates and PDMS template, 

and the easy adjustment of the pressure between them, as is shown in figure 1.2 below.  

 

Figure 1.2 Illustration of mould-guided drying technique. 
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1.3 Introduction to Optically Addressed Spatial Light Modulators 

(OASLMs) 

Spatial light modulator (SLM) is a type of liquid crystal (LC)-based device that is able to 

modulate amplitude, phase and polarization of light. It has been extensively used in a variety 

of applications such as pulse shaping [1], holographic displays [56], optical tweezers [57] and 

laser processing [58] etc. In particular, optically addressed SLM (OASLM) is attractive to 

holographic displays, which is very promising for true 3-dimentaional displays. OASLMs based 

on ZnO NPs have been reported to be capable of high-resolution imaging (825 line pairs per 

millimetre) due to the trap states in ZnO NPs [3]. However, real-time 3D holographic displays 

based on OASLMs are still under development because of the stringent requirement for large 

spatial (size and diffraction angle) and temporal (refresh rate) bandwidth. Moreover,  the 

requirement for diffraction efficiency and aperture size is also challenging [59].  

SLMs can be classified into two types: electrically addressed SLMs (EASLMs) and optically 

addressed SLMs (OASLMs). The modulation of EASLMs is achieved by pixel matrix (CMOS 

circuitry) while OASLMs are controlled by the write light. A common type of EASLM is Liquid 

Crystal on Silicon (LCoS), with a layer of LCs sandwiched between integrated pixel circuit and 

ITO. On the contrary, there is no complex integrated circuit in OASLM, but it requires a layer 

of photoactive material so that the resistivity can be modulated by the write light. The structures 

of LCOS and OASLM are illustrated in figure 1.3 below.  

 

                                      (a)                                                                              (b) 

Figure 1.3 Structure of (a) LCOS. and (b) OASLM. 



21 

 

Phase-only LCOS is based on electrically controlled birefringence (ECB) effect of LCs, without 

any polarizers or light-absorbing material. Not only has it been used in real-time holography 

[60], it has also attracted attentions from wavelength selective switch (WSS) [61] and optical 

correlators [62] etc. However LCOS devices are still challenged by the large pixel size, small 

pixel fill factor and dead-space diffraction etc [63].  

In contrast, OASLMs are able to provide higher resolution without complicated pixel and 

addressing circuitry. This is particularly important for holographic displays as wider viewing 

angle can be realized by smaller pixel pitch. In addition, the absence of pixel also eliminates 

the dead space between pixels, which creates undesired diffraction pattern in the reconstructed 

image. Thirdly, large-area OASLMs are possible while LCOS devices are always limited by 

the panel size (a few inches in diagonal). More importantly, OASLMs are low-cost and easy-

fabrication devices because they have no pixel and CMOS backplanes.   

1.3.1 Working principles  

The light modulation in OASLMs is achieved by the photoactive material or structure 

(photodiode). The photoactive material is generally photoconductive, and its electrical 

conductivity increases dramatically once it is illuminated by the write light. As a result, the 

voltage drop across LCs increases and electrically controlled birefringence (ECB) occurs, as is 

shown in figure 1.4 below.  

 

Figure 1.4 Working principles of OASLMs. 

LCs rotates vertically when they are illuminated by the write light while LCs without write light 

illumination remain parallel to the alignment layer. Therefore, the read light propagating 



22 

 

through LCs is modulated by the write light. Transmissive and reflective architectures are both 

available in OASLMs.   

1.3.2 Fundamentals of liquid crystals 

Liquid crystals are a type of liquid-like crystalline mesogen, exhibiting liquid properties such 

as fluidity, and they also behave like crystals such as their optical, electrical, magnetic and 

mechanical anisotropies. Since the discovery in the late 19th century by Friedrich Reinitzer [64], 

liquid crystals have been developed into one of the most widely-used materials in the modern 

world. Particularly, LCs revolutionized the society in display applications (LCDs), which has 

been dominant in smartphones, tablets and laptops etc. In addition, LCs are still playing a key 

role in applications such as thin-film thermometers [65], organic field effects transistors 

(OFETs) [66] and organic solar cells [64] etc. Attempts have never been stopped by researchers 

to find out more applications such as templating nano-structured materials in material science 

[67], elastic actuators [68] and drug delivery in pharmaceutical industry [69].   

• Classifications of LCs 

Based on the molecular arrangement, LCs can be classified into several mesophases: nematic 

LCs, cholesteric LCs and smectic LCs, as is shown in figure 1.5 (a) ~ (e). Nematic LCs have 

uniaxially symmetric molecules with elliptical shapes. The most significant feature of nematic 

LCs is that the molecules (molecular long axes) tend to be parallel to each other in order to have 

the minimum free energy and the preferred direction is described by the director ( �⃗� ). 

Accordingly, the molecular long axis has long-range orientational order. However, the 

molecules have no positional order of their mass centre, which results in their fluidity. 

Cholesteric LCs are similar to nematic LCs as cholesteric LCs also have orientational order and 

no positional order in a certain plane, while the director of each plane changes continuously 

between adjacent planes. As a result, cholesteric LCs have a twisting and rotating director 

perpendicular to the director planes. Periodic rotation of cholesteric LCs is defined by pitch, 

which is twice the periodicity. Nematic LCs can be considered as a specific kind of cholesteric 

LCs with infinite pitch.  

Smectic LCs have a stratified molecular arrangement and sliding movement exists between 

layers. Smectic LCs are further categorised into smectic A, B and C mesophases based on their 

molecular orientation and position within each layer. Molecules of smectic A LCs are 

perpendicular to the layers and that of smectic C LCs are tilted to the layers. Besides the layered 

structure, Smectic B LCs also have positional order within each layer.  
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(a)                                                          (b) 

 

                                (c)                                           (d)                                            (e) 

Figure 1.5 Molecular arrangement of (a) nematic LCs. (b) cholesteric LCs. (c) smectic A LCs. (d) 

smectic C LCs and (e) smectic B LCs. 

LCs of a certain mesophase can be transformed into another. For instance, nematic LCs can be 

transformed into cholesteric LCs by adding chiral dopant. Temperature also influences the 

phase transition and lower temperature generally corresponds to a higher crystalline or 

positional order. Therefore, different mesophases of LCs occur in the order of smectic B, 

smectic C and smectic A as the temperature increases. Nematic LCs has the lowest crystalline 

order so they normally emerge at the highest temperature. Aforementioned LCs are also called 

thermotropic LCs, which indicates the temperature dependency of phase transitions. Other 

types of LCs such as lyotropic LCs are not discussed in this dissertation.  

In this work, nematic LCs were studied and used to fabricate OASLMs devices so nematic LCs 

will be discussed in detail in the following sections.   
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• Scalar order parameter 

In order to simplify the model, nematic LCs are regarded as elongated and rigid molecules (like 

rods) with uniaxial and central point symmetry, as is shown in figure 1.6. Macroscopic (still 

small volume) orientation order of LCs are described by second rank tensor, while microscopic 

orientation order is represented by scalar order parameter S. In the case of nematic LCs, 

molecular arrangement can be characterised by scalar order parameter (S) and director (�⃗� ). 

Although molecules of nematic LCs have a preferred and averaged direction (director), the 

orientation between each molecule is not exactly the same. Moreover, the orientation of each 

molecule also changes with time due to thermal motion and intermolecular force. Therefore, 

the molecule positioned in a certain angle (θ) to the director (�⃗� ) is probabilistic and this 

probability is represented by orientation distribution function 𝑓(𝜃). S is equal to 0 when LCs 

are in isotropic phase. Nematic LCs have a S less or equal to 1, where 1 represents ideal 

alignment of LCs.  

 

Figure 1.6 The orientation of nematic LCs molecules.  

• Elastic properties 

The distribution of nematic LCs under electric field is quantitatively explained by elastic 

continuum theory, which states that LCs always orient themselves in a way that the total free 

energy is the minimum. Deformation is generated under external electric field and elastic force 

arises to resist the deformation and brings the LCs back to the equilibrium position. The most 

common deformation inside nematic LCs are splay, twist and bend, as is shown in figure 1.7. 
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                         (a)                                                (b)                                                  (c) 

Figure 1.7 Three types of deformation of LCs: (a) splay, (b) twist, and (c) bend. 

Similar to Hooke’s law, the elastic stress or torque is proportional to the displacement of 

director and the proportionality is defined by elastic constant k, firstly developed by Frank [70]. 

The elastic constants for splay, twist and bend deformation are referred to as k1, k2 and k3 

respectively.  

The elastic free energy density (𝑓) is also a function of elastic constants and it is expressed as: 

𝒇𝒔𝒑𝒍𝒂𝒚 = 
𝟏

𝟐
𝑲𝟏（ 𝜵 ∙ 𝒏）

𝟐
 

𝒇𝒕𝒘𝒊𝒔𝒕 = 
𝟏

𝟐
𝑲𝟐（ 𝒏 ∙ 𝜵 × 𝒏）

𝟐
                                           (1.1) 

𝒇𝒃𝒆𝒏𝒅 = 
𝟏

𝟐
𝑲𝟑（ 𝒏 × 𝜵 × 𝒏）

𝟐
 

The total elastic free energy is determined by adding three types of elastic energy together. 

Generally, elastic constants are different in magnitude and k3 is the largest compared to k1 and 

k2 in nematic LCs.  

• Dielectric and optical anisotropy 

Dielectric anisotropy is the most important property of LCs, which is also the origin of optical 

anisotropy. Dielectric constant (𝜀) is to describe the response of dielectric materials to electric 

field (𝐸), and it is defined as: 

𝑫 = 𝜺𝑬                                                                (1.2) 

where 𝐷 is the electric displacement field. The lowest possible dielectric constant is in vacuum, 

which is called absolute dielectric constant or vacuum dielectric constant ( 𝜀0 ). Relative 

dielectric constant (𝜀𝑟) is the ratio of ε and 𝜀0.  

Relative dielectric constant (εr) is related to electric susceptibility (χ) by: 



26 

 

𝛆𝐫 = 𝛘 + 𝟏                                                            (1.3) 

Electric susceptibility (χ) is a measure of polarization of the dielectric material in an electric 

field. Therefore, electric displacement (D) can also be written as: 

𝑫 = 𝜺𝟎𝜺𝒓𝑬 = 𝜺𝟎(𝝌 + 𝟏)𝑬 = 𝜺𝟎𝑬 + 𝑷                                      (1.4) 

where P is the dielectric polarization density, and it represents the strength of polarizations 

within the dielectric material. Dielectric constant is also called permittivity, which is a scalar in 

isotropic medium and second rank tensor in anisotropic medium (LCs).  

For the purpose of simplification, LC molecules are generally assumed to be uniaxial and have 

the rotational symmetry, as is shown in figure 1.8. Refractive index (n) reflects the dielectric 

properties at light frequencies and the refractive index is related to the dielectric constant by: 

𝒏 = √𝜺                                                               (1.5) 

Like dielectric anisotropy, refractive index is also anisotropic. The most important property of 

nematic LCs is the birefringence (∆n). Birefringence can be defined as: 

∆𝒏 = 𝒏𝒆 − 𝒏𝒐                                                         (1.6) 

where ne is the extraordinary refractive index and no is the ordinary refractive index. 

Extraordinary refractive index (ne) is parallel to the director and ordinary refractive index (no) 

is perpendicular to the director. Nematic LCs have a typical 𝜀𝑒  of 2.89 and 𝜀𝑜  of 2.25 

(corresponding refractive indexes are 1.7 and 1.5) [70]. Most nematic LCs have a positive 

birefringence (∆n) and it is generally in the range of 0.05~0.45 [63].  

The discussion above assumes that the propagation direction of incident light (�⃗� ) is along the 

director, as is shown in figure 1.8 (a). In the case of tilted incident light as shown in figure 1.8 

(b), ordinary refractive remains consistent due to rotational symmetry. Based on the elliptic 

function of index ellipsoid, equivalent extraordinary refractive index (𝑛𝑒
′ ) can be re-written as: 

𝒏𝒆
′ =

𝟏

𝒄𝒐𝒔𝟐𝜽

𝒏𝒐
𝟐 +

𝒔𝒊𝒏𝟐𝜽

𝒏𝒆
𝟐

                                                           (1.7) 
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(a)                                                (b) 

Figure 1.8 Anisotropy of LCs when wave vector (k⃗ ) and director (n⃗ ) are (a) aligned and (b) not aligned. 

• Electro-optical effect 

The most important property of LCs is the response to electric field. Because of the uniaxial 

and elongated geometry of nematic LCs, they have dielectric anisotropy. In the presence of 

electric field (E), the free energy increases. Nematic LCs molecules (∆n>0) will reorient to 

reach the minimum free energy and as a result align with the direction of electric field, as is 

shown in figure 1.9. Dielectric response means little current is associated during operation, 

which makes LCs consume very little power and generate trivial amount of heat. However, 

impurities exist in practice, which enhances the conductivity of LCs, so AC voltage is used to 

prevent LCs degrading in this case.  

A simple model is shown below:  

 

(a)                                                         (b) 

Figure 1.9 Molecular orientation of LCs (a) without electric field and (b) under DC voltage.  

If the incident light propagates vertically through the LCs (electric polarization direction of the 

light is parallel to the director of LCs), the phase retardation (φ) due to electrically controlled 

birefringence (ECB) is defined as: 
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𝝋 =
𝟐𝝅∆𝒏𝒅

𝝀
𝒔𝒊𝒏𝟐𝜽                                                      (1.8) 

Assuming LCs molecules are parallel to each other along the propagation path. However, in 

real cases, orientation angle is position-dependent due to surface anchoring effect and elastic 

forces between molecules etc.  

Nematic LCs are often anchored at the substrates by micro-grooves (alignment layer), posing a 

small pre-tilt angle to the substrate. Once an electric field is applied, the LCs tend to align with 

the direction of electric field (∆n>0). The rotation of LCs is opposed by the anchoring effect 

near the substrates and the elastic force between molecules. As a result of competition, LCs 

start to rotate when the electric field reaches a certain threshold intensity (Eth), which is also 

called Freedericksz’s transition voltage. The anchoring effect is least significant in the middle 

of the cell so LCs molecules in the middle have the maximum rotation angle (θm).  

The phase shift in real cases is much more complicated and it requires a full rotation angle 

profile along the propagation direction to derive the overall phase shift. Therefore, this is carried 

out in simulations in the later part.  

1.3.3 Challenges  

OASLMs are also facing several challenges such as resolution and response time. Although 

OASLMs have no pixels, their resolution is limited by the electrical fringing field in the LCs 

layer and lateral diffusion of photo-excited charge carriers in the photosensitive layer. Moreover, 

electric field in the photosensitive layer also results in spatially varying distribution of charge 

carriers, which further degrades the resolution.  

The electrical fringing field in LCs is strongly affected by the thickness of LCs layer so thinner 

LCs layer is preferred. On the other side, the phase modulation depth is compromised as the 

thickness decreases. In the meanwhile, the electrical fringing field also exists in the photoactive 

layer, though it is less serious than that in the LCs layer because the photoactive layer is much 

thinner than LCs layer. There is also a compromise between the electrical fringing field and 

photo sensitivity since thinner photoactive layer helps to ease the fringing effect but also 

worsens the sensitivity such that the voltage drop across LCs is not large enough to switch LCs.      

The lateral diffusion of charge carriers is inevitable due to the concentration gradient. The 

diffusion length (L) is a function of mobility (μ) and charge carrier lifetime (τ), as is shown 

below in equation 1.9: 
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𝑳 = √𝝉
𝒌𝑩𝑻

𝒒
𝝁                                                         (1.9) 

where 𝑘𝐵  is the Boltzmann constant and T is temperature. Charge carrier lifetime can be 

decreased by introducing charge traps or defects (recombination centres). On the other hand, 

photogenerated charge carriers drift in the photoactive layer along the electric field from one 

side to the other and are accumulated at the interface. So, the carrier transit time is also 

important.  The transit time can be minimized by thinning the thickness of photoactive layer 

and increasing the applied voltage.  

Another limit on resolution comes from the charge spreading at the interface between the 

photoactive layer and LCs layer [71], [72]. The charge spreading at the interface is a result of 

gradient diffusion and lateral drift by electric fringing field. The charge accumulates after the 

write light is on. More importantly, the trap states at the interface also determines the resolution. 

The existence of trap states stops charge carriers from lateral diffusion, however, they also 

introduce other issues such as residual image and long turn-off time.   

The response time of OASLM is also challenging. It is jointly determined by LCs and the 

photoactive layer. The response time of LCs under electric field is dependent on the electric 

field intensity, elastic constant and viscosity of LCs. Stronger E-field results in larger dipole 

moments and torque, while smaller elastic constant and less viscosity weaken the rotating 

resistance.  

Different types of LCs have various response time. Ferroelectric LC (FLC) is a kind of fast-

switching LC and it responds to both the magnitude and polarity of electric field. In addition, 

FLC can be made bi-stable such that molecular orientation maintains itself without consuming 

electric power. Nematic LCs can generally provide a refresh rate up to 120Hz while 

ferroelectric LCs can be operated at a maximum rate of 1015Hz [63]. However, FLC can only 

provide binary phase modulation compared to continuous and multilevel phase modulation by 

nematic LCs. Moreover, FLC is limited by the low diffraction efficiency (light diffracted into 

zero order and conjugate image) and large quantization noise [63].     

Photoactive material is also a limiting factor since the photogenerated charge carriers are 

trapped at the interface with LCs, maintaining the voltage across the LCs (‘on’ state) and 

causing residual image. The charge trapping time can be much longer than the rise time 

(switching on and off time are typically ~100μs and ~20ms respectively for nematic LCs) [73]. 
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Crystalline or amorphous photosensitive material are often used because of less trap states. 

Photodiode is also an alternative to photoactive layer for high-speed OASLMs.  

1.3.4 Current progress 

The development of high-performance OASLMs has been progressive since the last century. 

The early version of OASLM was built up using a-Si:H p-i-n photodiode and Ferroelectric LC, 

providing a response time of 155μs and resolution of 40 lp/mm [74], [75]. Higher resolution 

(175 lp/mm) was then achieved by using a thinner photoactive layer [76]. By doping a-Si:H 

with carbon, the resolution was further enhanced to 370 lp/mm [77].  

Other photoactive materials were also attempted such as ZnO [78], BSO [79], AsSe [80], and 

a-As2S3 [81]. Using infrared (IR) light as the write light was reported for night vision 

applications using lead chalcogenides (PbS) [82]. Polymer photoconductive material was used  

to provide a resolution of 527 lp/mm [83]. The highest resolution of 825 lp/mm was reported 

using ZnO NPs due to the trap states in ZnO NPs.    

1.4 Sensor for Oxygen Partial Pressure in Air  

Oxygen sensors are playing an increasingly significant role in the 21st century since oxygen is 

one of the most crucial indicators in a wide range of applications such as air-fuel mixture 

controller in the combustion engine, exhaust emission monitor of industrial boiler and waste 

management industries [84]–[86]. Various oxygen sensing technologies have been invented 

such as potentiometric equilibrium sensors, limiting current amperometric sensor and 

semiconductor-based sensor etc. [87] Oxygen partial pressure sensors are evaluated by three 

criteria: sensitivity, selectivity and response time. Besides these, stability, reversibility and 

power consumption are also important factors to be considered.  

1.4.1 Semiconductor-based oxygen partial pressure sensor 

Semiconductor-based oxygen sensor is generally related to the defect states in the material. 

These oxygen sensitive materials are generally n-type metal oxide, whose physical properties 

(typically electrical conductivity) are strongly dependent on the oxygen vacancies [87]. Oxygen 

in air tends to be adsorbed onto the surface of these metal oxide by capturing free electrons. 

The electrical conductivity (𝜎) is normally related to the oxygen partial pressure in air (𝑃𝑂2
) by 

the following equation [87]: 

𝝈 = 𝑨𝒆𝒙𝒑(−
𝑬𝑨
𝒌𝑻

)𝑷𝑶𝟐
                                                      (1.10) 
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where 𝐴 is a constant, 𝐸𝐴 is the activation energy and 𝑇 is the temperature.  

Researchers have used different types of semiconductor materials such as CeO2 [88], Nb2O5 

[89], SrTiO3 [90] and TiO2 [91] etc. for oxygen sensing. It has been reported that TiO2-based 

oxygen sensor was capable of measuring the oxygen concentration from 10-23 Bar to 1 Bar [91]. 

Nb2O5 was also used to measure oxygen partial pressure under high temperature from 400°C to 

800°C and the minimum measurable oxygen pressure is 10-5 Bar [89]. Even higher 

measurement temperature of 1400°C was reported by using SrTiO3 and the lowest measurable 

oxygen pressure is 10-2 Bar [90]. Fast response time for oxygen pressure sensor was reported 

by using CeO2 nanoparticles and it was also found out that the response time decreased with 

smaller particle size (10 times faster for CeO2 nanoparticles with 200nm in diameter than that 

of 2μm in diameter).    

1.4.2 ZnO-based oxygen partial pressure sensor 

ZnO is also sensitive to the presence of oxygen in air. In the meanwhile, ZnO is particularly 

captivating because it is thermally stable and robust, able to provide a relatively fast response 

and a possibility for miniaturized size [92]. The oxygen sensing mechanism of ZnO has been 

investigated across the world. It has been widely accepted that oxygen in air is chemisorbed on 

the surface of ZnO, which depletes the electrons from conduction band and decreases the 

electrical conductivity. Depending on the measuring temperature, different oxygen species 

were identified in ZnO. Some researchers found that 𝑂2
− , 𝑂−  and 𝑂2−  were formed at 

temperatures below 100°C, between 100°C and 300°C, and above 300°C respectively [92].  

Polycrystal ZnO by sputtering has been reported to detect oxygen pressure with a slow response 

time of about 1h [92]. They also noticed that glass substrate was better than silicon substrate in 

terms of sensitivity due to the amorphous nature of glass surface. ZnO nanowire field-effect 

transistor was also reported as an oxygen sensor, with a minimal sensing limit for oxygen 

pressure of 1.3×10-5 Bar. Suspension of ZnO nanoparticles, along with graphite electrode were 

reported to be capable of detecting the minimal oxygen concentration of 27.6g/cm3 [93]. In 

addition, various methods have been attempted to improve the oxygen sensing performance. 

For instance, metal catalysts (such as Pt and Pd) was used to increase the sensitivity and to 

decrease the working temperature of ZnO-based oxygen sensor [94]. The use of compound 

oxide semiconductors and ZnO/CuO heterojunction was also reported to improve the selectivity 

[95].  
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Chapter 2 Preparation and Characterization of 

Solution-Processed ZnO NP Thin Films 

The unique and outstanding properties of solution-based ZnO NPs such as wide and direct 

bandgap, optical transparency in the visible range, rich and tuneable defect states, low-cost and 

large-scale production etc. have made ZnO NPs particularly promising for a wide range of 

future applications. Therefore, the fundamental physics of solution-processed ZnO NPs and the 

working principles of ZnO NPs-based devices are particularly significant. The purpose of this 

chapter is to investigate the fundamental properties of ZnO NPs and the effect of post-

processing on ZnO NPs. Sample preparation is discussed at the beginning of this chapter, and 

properties of ZnO NPs such as electrical conduction mechanisms, dielectric response and opto-

electronic behaviours are then characterized. The effect of thermal annealing and oxygen 

plasma is discussed at the end of this chapter.    

2.1 Sample Preparation 

The raw material of ZnO NPs was purchased from Sigma-Aldrich, in the form of colloidal 

dispersion in ethanol (product number: 721085, LOT number: MKBK0418V). The weight 

percentage of ZnO NPs dispersion is 41% and the density is 1.25g/ml. In addition, the average 

particle size of ZnO NPs is 89nm, measured by dynamic light scattering (DLS). These data are 

provided by the supplier (on the Certificate of Analysis).  

Thin-film ZnO NPs were prepared by spin-coating. The substrate is composed by an n-type 

silicon (Si) layer at the bottom and a 300nm-thick silicon dioxide (SiO2) layer at the top  

(insulating layer). Firstly, the substrate was cleaned by DI water, acetone and isopropyl alcohol 

(IPA) consecutively for 10min each in an ultrasonic bath, prior to oxygen plasma treatment 

(300s). The oxygen plasma was used to remove organic contaminations from the surface and 

to make the surface hydrophilic, which is very crucial to form a uniform thin film of ZnO NPs. 

The ZnO NPs dispersion was then spin-coated on the substrate with a rotation speed of 

4000RPM for 30s. The acceleration speed was 500RPM/s, which was proved experimentally 

to provide the best film quality. The sample was further baked on a hotplate at 100°C in air for 

10min to evaporate the solvent (the boiling point of ethanol is 78.37°C at atmospheric pressure). 

Finally, the sample was annealed in a furnace at 400°C in air for 3h to thoroughly remove the 

organic contaminations and to make ZnO NPs thin film better in crystallinity.  
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Figure 2.1 Surface of ZnO NPs thin films prepared by different ZnO NPs concentrations (a) 4.5mg/ml. 

(b) 125mg/ml. (c) 250mg/ml. (d) 1150mg/ml. (e) The histogram and distribution of film height. (f) 

Comparison of height distribution between films of 4.5mg/ml and 1150mg/ml. (g) Film thickness 

measured by surface profiler. (h) Film thicknesses of different ZnO NPs concentrations.  
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Dilution of ZnO NPs dispersion is necessary in order to form high-quality ZnO NPs thin films. 

Better uniformity in film thickness can be achieved through diluted dispersion due to less 

viscosity. ZnO NPs thin films prepared from different concentrations (4.5mg/ml, 25mg/ml, 

85mg/ml, 125mg/ml, 250mg/ml and 1150mg/ml) were inspected under optical microscope 

(these films were prepared with the same fabrication parameters), as is shown in figure 2.1 (a) 

to (d). It is evident that ZnO NPs dispersion of 4.5mg/ml could form a uniform ZnO NPs film 

(figure 2.1 (a)) while the film uniformity degraded at higher concentrations above 125mg/ml 

(figure 2.1 (b) to (d)). Patterns were generated during spin-coating and they became more 

prominent at higher concentrations as a result of higher viscosity. Dark-field microscopy was 

used in figure 2.1 (c) and (d) to provide a better contrast of the pattern.  

The film surface was also investigated by Dektak surface profiler. The histogram of film height 

and its distribution are shown in figure 2.1 (e). This is a good method to visually observe the 

height variation. The height distribution is compared between ZnO NPs films of 85mg/ml and 

1150mg/ml in figure 2.1 (f). It is evident that 85ml/ml film has a narrower height distribution 

while 1150mg/ml film has a wider spread over the height spectrum, signifying a larger height 

variation. The mode of height distribution is zeroed. In addition, the film thickness was also 

investigated for different concentrations of ZnO NPs, as is shown in figure 2.1 (g) and (h). A 

trench was drawn mechanically on the sample surface by a plastic sharp. The peak in figure 2.1 

(g) results from the debris at the edge. It can be concluded from figure 2.1 (h) that higher 

concentration results in a greater film thickness.   

By comparing the film quality of different ZnO NPs densities, 85mg/ml ZnO NPs dispersion 

was used to prepare samples for material characterization in the following section. The rest 

fabrication parameters were kept identical, as was described above.      

2.2 Characterization of ZnO NP Thin Films 

ZnO NPs were characterized in terms of physical, electrical, dielectric and optical properties. 

This part of work is significant to understand ZnO NPs and to customize ZnO NPs-based 

devices.      

2.2.1 Particle size 

The size of ZnO NPs was firstly investigated by scanning electron microscope (SEM). SEM is 

capable of providing high-resolution (in nanometre scale) images of the target by detecting the 

secondary electrons from the surface. Secondary electrons from the surface (5nm~10nm) have 
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relatively low energy (<50eV) and they are extremely sensitive to the surface structures. In 

order to have high-resolution images of ZnO NPs, the sample was coated with Au and Pd 

beforehand so that the electrons do not accumulate on the surface (ZnO NPs are semiconductive 

with low conductivity). Charge accumulation on the target surface could result in dark images. 

Zeiss LEO Variable Pressure SEM was used to observe the nanoparticles and the result is shown 

in figure 2.2 (a). It is clear that the film is composed by nanoparticles with ~30nm in diameter 

and gaps exist among nanoparticles.  

   

                                (a)                                                                            (b) 

                  

                               (c)                                                                                 (d) 

Figure 2.2 (a) SEM image of ZnO NPs. (b) Size distribution of ZnO NPs by DLS. (c) Surface profile 

measured by AFM. (d) 3D contour of ZnO NPs surface, generated by AFM measurement. 

Dynamic light scattering (DLS) was also performed on ZnO NPs dispersion (25mg/ml in 

ethanol, required by the equipment) using Malvern Zetasizer in order to determine the size 

variation and distribution. DLS is a technique that measures the Brownian motion of colloidal 

ZnO NPs by detecting the intensity of light scattered by ZnO NPs. The particle size is 

determined by the Stokes-Einstein relationship. The result is shown in figure 2.2 (b) and the 

average diameter of ZnO NPs is measured to be 73.2nm, which is slightly smaller than the data 
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from the supplier. In addition, the DLS analysis confirms that the particle size is ranging from 

25nm to 100nm, with a mode (the majority) of about 30nm. This is consistent with SEM images.    

The surface of ZnO NPs thin film was inspected by DI3100 Atomic Force Microscopy (AFM). 

Figure 2.2 (c) shows the surface profile in the tapping mode of AFM. The tip taps the sample 

surface and scans line by line throughout the 1μm×1μm area. The 3D height map is also shown 

in figure 2.2 (d). It is evident that the sample surface is not perfectly uniform, and the maximum 

variation in height is about 60nm, which is around twice the average particle diameter (30nm). 

In addition, the mean surface roughness is 5.8nm.       

2.2.2 Composition 

The composition of the sample was investigated by energy-dispersive X-ray spectroscopy 

(EDX). Similar to SEM, a beam of electrons with a high energy impact on the sample and excite 

its electrons from a low energy state (inner shell) to high energy state (outer shell), leaving 

holes at the inner shell. These holes are then filled by electrons from the high energy state (outer 

shell), which releases energy in the form of X-ray. The characteristic X-ray is unique for 

different elements with different atomic numbers and it is often used to identify compositional 

elements. 
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Figure 2.3 (a) EDX spectrum of ZnO NPs. (b) Atomic ratio of composing elements 

The EDX results are shown in figure 2.3 (a) and an area of about 15μm×15μm was investigated 

(inset on the top right). The EDX spectrum shows the compositional elements of Zn, O, Si, Au 

and Pd. The Y axis indicates the relative content of each element. The spectrum confirms the 

sample purity since there are no other elemental peaks. One thing to be noted is that there are 

two peaks for “Zinc” in the spectrum because electrons from different energy levels (1 keV and 
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8.6 keV corresponds to L line and Kα line respectively) are recombined with holes at the inner 

shell. The SiO2 substrate was also detected.   

The elemental percentage is further calculated by taking the atomic weight into account and the 

atomic ratio of these elements are shown in figure 2.3 (b). The atomic ratio of oxygen and zinc 

is 2.05, which implies that the sample is oxygen-rich. On one hand, the oxygen content comes 

from the adsorbed oxygen onto ZnO NPs. On the other hand, it might come from the organic 

surfactant of ZnO NPs dispersion. Surfactant is generally used to form liquid suspension with 

well separated nanoparticles.  

Oxygen plasma was used to verify the existence of organic surfactant. It is generally accepted 

that oxygen plasma treatment results in a decrease in conductivity because the dopant density  

(hydrogen and hydroxyl group) was reduced after oxygen plasma treatment [96]. Two identical 

ZnO NPs samples were fabricated and one ZnO NPs sample was treated with oxygen plasma 

(5% for 5min). The I-V characteristics were measured after a week and the results in figure 2.4 

(a) clearly show that oxygen plasma treatment results in a reduction in conductivity in the ohmic 

region.  
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Figure 2.4 (a) I-V characteristics of ZnO NPs with and without oxygen plasma treatment. (b) The 

conductance of ZnO NPs tracked after plasma treatment.  

The conduction of ZnO NPs after plasma treatment was tracked day by day, as is shown in 

figure 2.4 (b). Oxygen plasma treatment was conducted on day 1 and the conductance was 

measurement immediately. It is clearly shown that the electrical conductance increased 

dramatically by an order of 104 (opposite to the previous result). This is due to the elimination 

of organic surfactant since it forms a highly resistive shell around nanoparticles. Then the 

sample was left in the air and the conductance was measured daily. The conductance decreased 
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as the oxygen in the air was gradually adsorbed, forming a depleted boundary (shell) by 

capturing free electrons from ZnO NPs. The conductance reached a stabilized value after day 

3. Oxygen plasma treatment was performed again on day 6 and a decrease in conductance was 

noticed due to the annihilation of oxygen vacancies. This was also confirmed by EDX. The 

atomic ratio of O/Zn is 2.27 for plasma-treated ZnO NPs, compared to 2.05 for untreated ZnO 

NPs. Therefore, the organic surfactant contributes to the oxygen content in ZnO NPs sample.   

2.2.3 Lattice structure 

ZnO NPs can be regarded as a massive number of nano-sized ZnO crystallites, so ZnO NPs 

also possess lattice property. The lattice structure was investigated by X-ray diffraction (XRD). 

XRD is based on the Bragg’s law, from which the lattice parameters can be determined by the 

diffraction pattern. The result is shown in figure 2.5 below.   

 

Figure 2.5 XRD pattern of ZnO NPs 

The diffraction pattern in figure 2.5 confirms the crystalline nature of ZnO NPs and the pattern 

also shows a good consistency with hexagonal oxygen-rich ZnO (Zn0.98O, PDF 01-082-2975). 

In addition, the average size of ZnO crystallite (τ) can be determined by the wavelength(λ) of 

X-ray, full width at half maximum (FWHM) of the diffraction pattern (β) and the Bragg angle 

(θ), according to Scherrer equation: 

𝝉 =
𝑲𝝀

𝜷𝒄𝒐𝒔𝜽
                                                                            (2.1) 

where 𝐾 is the shape constant with a typical value of 0.9 [97], [98]. The average size of the 

crystalline domain is calculated to be 4.14nm, which is consistent with typical crystalline size.   

2.2.4 Electrical conduction mechanism 

Electrical conduction mechanism of ZnO NPs was investigated by I-V measurement. Agilent 

4156 (Yokogawa-Hewlett-Packard Ltd, Tokyo, Japan) semiconductor analyser was used to 
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measure the I-V characteristics. ZnO NPs sample was fabricated in a planar structure, as is 

shown in figure 2.6 (a). Only the source and drain electrodes were used in this case. ZnO NPs 

dispersion was spin-coated on the substrate (same as before) and Al electrodes (50nm in 

thickness) were deposited by thermal evaporation as electrodes (with a gap of 80μm). Al was 

selected as the electrode material because the Al-ZnO NPs contact is Ohmic [7] so that the I-V 

characteristics reflect the bulk properties of ZnO NPs.   
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Figure 2.6 (a) Schematic structure of ZnO NPs sample. (b) The I-V characteristics of ZnO NPs. (c) The 

I-V characteristics of ZnO NPs at high DC voltage. (d) The slope of Log (I)~V at different temperature.  

The I-V characteristics of ZnO NPs is illustrated in figure 2.6 (b) and it exhibits a linear slope 

(1.03) at low voltage (<0.5V), indicating that low-voltage conduction is Ohmic (slope of 1). 

Ohmic conduction is due to the movement of free electrons in the conduction band or holes in 

the valence band. The I-V relationship is always linear for Ohmic conduction and it is normally 

observed in the low-voltage region. As the voltage surpasses 1V, the slope reaches 2.81.  
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The conduction mechanism of ZnO NPs in air at room temperature is complicated since there 

are multiple factors in ZnO NPs such as traps, defects, impurities and adsorbed oxygen species 

etc. It has been reported that the electrical conduction in ZnO NPs is due to hopping [3]. 

Hopping conduction is a result of tunnelling effect from one trap site to another [99]. The 

current density (𝐽) can be represented by the following equation: 

𝑱 = 𝑨𝒆𝒙𝒑(
𝒒𝒅𝑬

𝑲𝑻
−

𝑬𝒂
𝑲𝑻

)
                                                        (2.2) 

where 𝑑 is the mean hopping distance, and 𝐴 is a constant, which is dependent on the density 

of free electrons and the thermal vibration frequency of electrons at trap sites. 𝐸𝑎 is the trap 

activation energy. The Log(I)~V relationship is plotted in figure 2.6 (c) and it shows a linear 

relationship at high voltages (>15V). This is consistent with the hopping conduction mechanism. 

It can be further confirmed by plotting the slope of Log(I)~V at different measuring 

temperatures, as is shown in figure 2.6 (d). According to equation 2.2, the slope of Log(I)~V is 

defined by 
𝑞𝑑

𝐾𝑇
, which is proportional to 1/temperature. The plot in figure 2.6 (d) fits well to a 

linear relationship (dashed line) so it is consistent with the definition of hopping conduction. 

The slope in figure 2.6 (d) can be used to determine the mean hopping distance, which is 

calculated to be 0.144nm.  

It can be concluded from this section that the electrical conduction mechanism of ZnO NPs at 

low DC voltage is Ohmic and it becomes hopping conduction at high voltage.  

2.2.5 Field effect mobility 

The charge carrier mobility is also an important indicator of electrical conduction as it 

determines the drift velocity of charge carriers under electric field and influences the electrical 

conductivity of ZnO NPs. Mobility is strongly affected by scattering such as ionized impurities 

(Coulomb’s force) and lattice vibration (phonon exchange). Mobility can be determined by 

many techniques such as Hall effect measurement (Hall mobility) and field effect measurement 

(field effect mobility). The Hall mobility is accurate for pure materials like single crystals, so 

the field effect mobility was measured in this case. 

ZnO NPs-based field effect transistors (FET) were fabricated and the structure is depicted in 

figure 2.6 (a). The image of ZnO NPs-based FET is shown in figure 2.7 (a), taken under optical 

microscope.  



41 

 

  

(a) 

-20 -10 0 10 20 30

1E-9

1E-8

1E-7

1E-6

C
u

rr
e
n

t 
(A

)

Voltage (V)

Ion/Ioff ratio = 4.6102

-13V

Linear region

180 200 220 240 260 280 300

4.0x10-5

8.0x10-5

1.2x10-4

M
o

b
il

it
y

 (
c

m
2
/V

s
)

Temperature (K)
 

                                         (b)                                                                            (c) 

Figure 2.7 (a) The image of ZnO NPs transistor under optical microscope. (b) The transfer characteristics 

of ZnO NPs transistor. (c) The field effect mobility under different measuring temperatures.  

Figure 2.7 (b) shows the transfer function of ZnO NPs-based FET. It is clear that the threshold 

voltage is -13V and the on/off current ratio is about 460. The field effect mobility is calculated 

in the linear region (grey area), where 𝐼𝐷𝑆 and 𝑉𝐺 have a linear relationship. The field effect 

mobility (𝜇) is determined by drain current (𝐼𝐷𝑆 ), drain voltage (𝑉𝐷𝑆 ), gate voltage (𝑉𝐺 ), 

threshold voltage (𝑉𝑇𝐻), channel with (𝑊) and length (𝐿) by the following equation: 

𝑰𝑫𝑺 = 𝝁𝑪𝒊
𝑾

𝑳
[(𝑽𝑮 − 𝑽𝑻𝑯)𝑽𝑫𝑺 −

𝑽𝑫𝑺
𝟐

𝟐
]                                     (2.3) 

where 𝑪𝒊 is the capacitance per unit area of SiO2 and it is calculated to be 1.16×10-4 F/m2. By 

choosing a point in the linear region, the charge carrier mobility is calculated as 2.95×10-3 

cm2/Vs. 

The temperature dependence of field effect mobility was also investigated by low-temperature 

I-V measurement. The measurement temperature was cooled down by liquid nitrogen. The 

result is shown in figure 2.7 (c) and it is clear that mobility increases as temperature rises. This 

indicates that the dominant scattering mechanism is ionized impurities or defects in the ZnO 
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NPs as electrons at higher temperature have larger thermal energy (speed) and their movement 

is less affected by the Coulomb scattering of ionized species.   

2.2.6 Trap activation energy 

ZnO NPs are rich in traps due to the existence of impurities, lattice defects and surface states 

etc. Trap states are extremely important to the electrical and optical properties of ZnO NPs since 

the density of free charge carriers and their lifetime are strongly affected by the trap states. This 

is particularly important for electro-optical applications because trap density and depth could 

heavily influence the responsivity and response time. For instance, the trap for majority carriers 

weakens the responsivity and lengthens the response time, while the trap for minority carriers 

enhances the responsivity.  

The trap activation energy (𝐸𝑎) is a measure of trap energy level in the bandgap. It can be 

extracted by the slope of Arrhenius plot (1/T, Log(σ)), according to equation (4) below: 

𝝈 = 𝝈𝟎(𝒆𝒙𝒑(
𝑬𝒂
𝒌𝑻

))                                    (2.4) 

where 𝜎0 is assumed to be constant and it is a function of charge carrier mobility and charge 

carrier density. Conductivity has an exponential relationship to the ratio of trap activation 

energy and measuring temperature (𝑇) (𝑘 is the Boltzmann constant). The low-temperature 

measurement was conducted by Lake Shore cryogenic probe station with liquid nitrogen 

cooling. The minimum measurement temperature was 80K (slightly above the boiling point of 

liquid nitrogen at 78K).  

The sample in figure 2.6 (a) was measured and the results are shown in figure 2.8 (a) and (b). 

The ohmic range was used to calculate the conductivity to avoid the contact effect. The I-V 

characteristics of ZnO NPs under different measuring temperatures (from 180K to 295K) is 

shown in figure 2.8 (a) and it is obvious that the current decreases as temperature drops because 

of decreased charge carrier mobility and charge carrier density. The conductivity at 1V was 

calculated based on the geometry of the sample. The Arrhenius plot is shown in figure 2.8 (b) 

and the trap activation energy is extracted by the slope. By converting the unit from Joule to 

eV, the trap activation energy is calculated to be 88meV.  
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Figure 2.8 (a) The I-V characteristics of ZnO NPs under different measuring temperatures. (b) The 

Arrhenius plot and trap activation energy. The (c) I-V characteristics and (d) Arrhenius plot of ZnO NPs 

annealed for 5h.  

A second ZnO NPs sample that was annealed in air for 5h was measured and the result is shown 

in figure 2.2.6 (c) and (d). The trap activation energy was calculated to be 121meV, which is 

larger than ZnO NPs annealed for 3h. This might be the result of defects created during the 

thermal annealing process.  

One thing to be noted is that the I-V characteristics at even lower temperatures (down to 80K) 

was also measured in this case. The conductivity has an opposite trend at very low temperatures 

(below 120K). This is probably due to the enhanced electron conduction in the band formed by 

surface states. ZnO NPs have a much larger surface-to-volume ratio compared to other forms 

of ZnO, which introduces a large number of defects at the surface such as dangling bonds and 

recombined bonds. These surface states could form a conductive band within the bandgap, 

which becomes dominant at very low temperatures. As the temperature continues to decrease, 

the conductivity increases because lower temperature weakens the lattice vibration and the 
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scattering to electrons, thus strengthening the electrical conductivity. Another possible reason 

is that the Fermi level drops as the temperature decreases, which makes the band of surface 

states partially filled by electrons and results in a stronger conductivity. More research needs to 

be carried out to pinpoint the cause of enhanced electrical conductivity at lower measuring 

temperatures.      

2.2.7 Dielectric properties 

ZnO NPs are highly resistive and they exhibit dielectric behaviours under electric field. Bound 

charges in ZnO NPs are displaced from equilibrium positions by electric force and dipole 

moments are therefore formed. As a result, external electric energy is transferred to ZnO NPs 

by electrical polarization and the energy transfer process can be quantitatively described by the 

dielectric constant (𝜀). Dielectric constant is often used as a measure of material polarization 

under electric field and is the most important parameter for dielectric materials. The dielectric 

constant has a complex form: 

𝜺 = 𝜺′ − 𝒋𝜺′′                                                         (2.5)                                               

The real part of dielectric constant (𝜀′ ) represents the energy storing capability while the 

imaginary dielectric constant (𝜀′′) indicates the energy dissipation due to energy-consuming 

processes such as relaxation and electrical conductivity.  

There are several types of polarization mechanisms such as atomic polarization, ionic 

polarization, dipolar polarization and interface polarization etc. The dielectric behaviour is 

generally a combined effect of different polarization mechanisms, and different polarization 

mechanisms are effective at different frequency ranges because it takes a certain time to 

establish the polarization and they cannot respond to electric field at high frequencies. Therefore, 

dielectric constant is frequency-dependent, and it generally decreases at higher frequencies.        

There are typically two types of polarization mechanisms in n-type semiconductor 

nanomaterials: ionic polarization due to positive oxygen vacancies and negative oxygen ions, 

and interface polarization due to interface defects such as dangling bonds and vacancy clusters 

[100]. Two polarization mechanisms are related to ZnO grain and nanoparticle boundary 

respectively. ZnO NPs are often represented by grain-boundary model as is illustrated in figure 

2.9 (a), with ZnO grain surrounded by highly-resistive boundary [3], which is a result of 

adsorbed oxygen ions, surface defects and organic surfactants etc.  
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Figure 2.9 (a) The grain-boundary model and double-well potential model of ZnO NPs. The (b) Bode 

plot. (c) Nyquist plot. of ZnO NPs. (d) Phase under different DC bias voltages from 1V to 5V. (e) RC 

time constants of grain and boundary under different DC bias voltages. (f) Boundary resistance and 

capacitance under different DC bias voltages. 

The dielectric properties of ZnO NPs was studied by impedance spectroscopy using Autolab 

PGSTAT302. A planar sample was used (same as the previous section). The Bode plot 
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(amplitude and phase of impedance against frequency) of ZnO NPs under 1V (DC bias) is 

shown in figure 2.9 (b). It is evident that there are two polarization mechanisms in ZnO NPs 

since there are two well-separated peaks in the phase plot (two peaks: one between 100~101 Hz 

and the other one between 104~105 Hz). There is a distortion on the second peak due to the 

transition of operation mode from high-speed mode to high-stability mode. Ideal dielectric 

materials have a phase of 90° while conductive dielectric materials have smaller phase as a 

result of dielectric loss.  

The Nyquist plot (real impedance against imaginary impedance) is also plotted in figure 2.9 (c). 

It is clear that the Nyquist plot of ZnO NPs is composed by two semi-circles, indicating two 

polarization mechanisms as well. The Nyquist plot is useful to determine the equivalent circuit 

and RC time constant. RC time constant (τ) indicates the frequency dependence of different 

polarization mechanisms, which is equivalent to the relaxation time (the time it takes to restore 

from polarized state to thermal equilibrium state). RC time constant can be determined by the 

equivalent circuit model. According to the Nyquist plot, the equivalent circuit model of ZnO 

NPs is two parallel RC circuits (R1C1 and R2C2) in series with a resistor (R0, resistance 

associated with electrodes and cables), as is shown in the inset of figure 2.9 (c). Each parallel 

RC circuit represents a polarization mechanism and the RC time constant (in seconds) is 

calculated by the product of R and C in SI unit. The R and C values are determined by curve 

fitting, which is achieved by the built-in function of Autolab.   

The measurement was also carried out under different DC bias voltages from 1V to 5V. The 

phase of Bode plot is illustrated in figure 2.9 (d) and it clearly shows that the low-frequency 

peak is supressed at higher voltages while the other peak at high frequency is barely affected 

by the DC bias voltages. Lower phase indicates larger dielectric loss due to electrical 

conduction. This can be explained by the enhanced charge hopping at the boundary.  

Moreover, the RC time constants for two polarization mechanisms are plotted against DC 

voltage in figure 2.9 (e). The polarization at the boundary (interface polarization) generally 

takes longer time to relax back because of the energy barriers. It is also noted that 𝜏𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

decreases (relax quicker) as voltage increases while 𝜏𝑔𝑟𝑎𝑖𝑛 stays relatively constant at 1.88ms. 

The decrease of RC time constant at the boundary can be explained by the double-well potential 

model as is shown in figure 2.9 (a). DC bias voltage raises the potential height of one potential 

well and effectively decreases the potential barrier height. Higher DC voltage results in a lower 

barrier height and reduces the RC time constant.   
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Furthermore, the resistance and capacitance of the boundary are also plotted under different DC 

voltages in figure 2.9 (f). It is evident that the boundary resistance decreases at higher DC 

voltage due to the strengthening of charge hopping across the boundary between ZnO NPs.       

Electrical hysteresis is a good way to visually represent the polarization of ZnO NPs. ZnO NPs 

are polarized in the opposite directions from the increasing voltage to the decreasing voltage. 

The electrical hysteresis of ZnO NPs was measured and the result is shown in figure 2.10 below. 

The current from 0V to 20V (Iup) is larger than that from 20V to 0V (Idown). This is the result of 

polarization because ZnO NPs are polarized as the voltage increases while the polarization 

remains when the voltage decreases (opposite direction), opposing the decreasing voltage. The 

key factor for electrical hysteresis is that the RC time constant of ZnO NPs is longer than the 

measuring interval (inverse of sampling frequency) so that the polarization state remains as the 

voltage decreases.   
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Figure 2.10 Electrical hysteresis of ZnO NPs. 

Electrical polarization is a good measure of polarization density of ZnO NPs. It can be 

quantified by calculating the ratio between the area enclosed by two current curves (yellow area) 

and the area under the increasing current (with X axis). This is discussed in the later sections.   

2.2.8 Optical absorption 

Optical absorption is significant for photosensitive materials since it provides information on 

the ‘active’ wavelength and the status of energy band. Optical absorption spectroscopy is often 

used to characterize the optical absorbance of light with different frequencies (wavelengths), 

and the energy bandgap ( 𝐸𝑔 ) can be therefore calculated. The optical absorption rises 

dramatically when the photon energy (ℎ𝜐) of the incident light reaches the bandgap of the 

material.  

𝒉𝝊 ≥ 𝑬𝒈                                                            (2.6) 
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where υ is the frequency of light.  

The optical absorption of ZnO NPs was studied using UV-Visible spectroscopy in the 

wavelength range from 350nm to 1000nm. The measurement was conducted in the transmission 

mode and ZnO NPs were prepared on a transparent glass substrate (spin coating, followed by 

thermal annealing in air at 400°C for 3h). The absorption spectrum of the glass substrate was 

measured firstly as a reference, after the dark environment measurement. Then ZnO NPs thin 

film was measured, as is shown in figure 2.11 below.  
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Figure 2.11 (a) UV-Vis spectroscopy of ZnO NPs. (b) The Tauc plot and energy bandgap. 

The result in figure 2.11 (a) shows that the absorbance increases drastically when the 

wavelength is below 400nm while there is little absorbance above 400nm. This indicates the 

electronic transition from valence band to conduction band and the photon energy corresponds 

to the energy bandgap. In addition, the UV-Vis spectroscopy demonstrates that ZnO NPs are 

particularly useful for UV-sensitive applications and they are not sensitive to light in the visible 

range (400nm~700nm). ZnO NPs have a direct bandgap, which makes the recombination of 

photogenerated charge carriers more efficient.   

The bandgap (𝐸𝑔) is determined by Tauc method based on the following equation: 

(𝜶𝒉𝝊)
𝟏

𝒏 = 𝑲(𝒉𝝊 − 𝑬𝒈)                                                  （2.7） 

where 𝛼  is the absorption coefficient and ℎ𝜐  is the photon energy. 𝐾  is a constant and 𝑛 is 

dependent on the type of bandgap. The bandgap can be determined by the intersection of the 

linear part of (𝛼ℎ𝜐)2 against ℎ𝜐, as is shown in figure 2.11 (b).  

The absorption coefficient is calculated by absorbance (A) according to: 
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𝜶 = 𝑨 × 𝒍𝒏(𝟏𝟎) /𝒅                                                     （2.8） 

where 𝑑 is the thickness of ZnO NPs film. In the case of direct bandgap of ZnO, 𝑛 is ½ [101]. 

The energy bandgap of ZnO NPs is determined to be 3.29eV.  

2.2.9 UV response 

It has been concluded by UV-Vis spectroscopy in the previous section that ZnO NPs are 

sensitive to UV (below 400nm) so ZnO NPs are suitable for UV-sensitive applications such as 

UV detectors and UV-writing optically addressed spatial light modulators (OASLMs). The 

absorbed UV excites electrons from the valence band to the conduction band, creating free 

charge carriers and enhancing the electrical conductivity. Therefore, ZnO NPs is a kind of 

photoconductor. The UV response of ZnO NPs was carried out on a planar sample and the UV 

light was incident from the top. The result is shown below in figure 2.12 (a). 
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Figure 2.12 (a) UV response of ZnO NPs. (b) External quantum efficiency (EQE) of ZnO NPs. 

The wavelength of the UV light is 365nm and the UV power was controlled by a current source. 

The power density was also measured with a power meter. Figure 2.12 (a) depicts that the 

current increases drastically (by an order of more than 3 in 2.27s) once the light is on. The on 

time is calculated by the time that current increases from 10% to 90% of the step current height. 

The off time is 7.67s, more than 3 times of the rise time. The fall time is longer than the rise 

time because ZnO NPs contain a large amount of trap states and part of photogenerated 

electrons are trapped in the trap states. The trapped electrons cannot recombine with holes and 

they have to be thermally excited to the conduction band before recombination. The time for 

thermal excitation is normally long and this extends the fall time. In addition, the existence of 

electron traps reduces the responsivity (maximum photocurrent) because some electrons are 
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attracted by the trap states (trap filling) and trapped electrons do not contribute to the 

photoconductivity.       

External quantum efficiency (EQE) is also an important parameter to measure the generation 

of photoexcited electron. EQE is defined as the ratio between the number of photo-generated 

free charge carriers and the number of incident photons. It can be determined by the relationship 

between the photocurrent (𝐼𝑝ℎ𝑜𝑡𝑜) and the UV power density (𝑃). The 𝐼𝑝ℎ𝑜𝑡𝑜~ 𝑃 relationship 

for ZnO NPs is plotted in figure 2.12 (b). The photocurrent (𝐼𝑝ℎ𝑜𝑡𝑜 ) can be expressed by 

elementary charge (𝑞), irradiated area (A), external quantum efficiency (𝜂) and photon energy 

(ℎ𝜐) based on the following equation: 

𝑰𝒑𝒉𝒐𝒕𝒐 = 𝒒𝜼
𝑷𝑨

𝒉𝝊
                                                      （2.9） 

By extracting the slope of 𝐼𝑝ℎ𝑜𝑡𝑜~ 𝑃 plot, EQE for ZnO NPs is 2.38×10-7. The EQE for ZnO 

NPs is low, which also indicates that a large portion of photogenerated charge carriers are 

trapped.  

2.3 Annealing Effect on ZnO NP Thin Films 

Annealing is an important post-processing method. It has been reported that annealing affects 

the size and morphology of nanoparticles, agglomeration, crystallinity, defect density and 

energy bandgap etc. [101]–[107] This section is concentrating on the effect of annealing on 

ZnO NPs, regarding the electrical, dielectric and optical properties. High-temperature annealing 

was performed in air on ZnO NPs by furnace.  

2.3.1 Lattice structure 

The lattice structure of ZnO NPs after annealing was studied by XRD and the result is shown 

below in figure 2.13. The characteristic XRD peaks of ZnO NPs annealed at 200°C and 500°C 

show that thermal annealing broadens the characteristic peaks. This is an indication of increased 

particle size. On the other hand, the height of characteristic peaks increases as temperature 

raises due to a better crystallinity of ZnO NPs. Therefore, high-temperature annealing increases 

the particles size and the crystallinity.  
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Figure 2.13 XRD pattern of ZnO NPs annealed at 200°C and 500°C.  

2.3.2 Electrical properties 

Electrical properties of ZnO NPs are strongly affected by thermal annealing. High-temperature 

annealing could evaporate organic surfactants surrounding the ZnO NPs, improve the 

crystallinity of ZnO NPs and decrease the trap activation energy. As a result, the electrical 

conductivity increases after thermal annealing.  

The I-V measurement was carried out for ZnO NPs annealed at 300°C, 400°C, 500°C and 

600°C in air for 3hs. The samples were also measured at lower temperatures and the results are 

shown in figure 2.14 (a). It is evident that higher annealing temperature results in a greater 

conductivity, which is consistent with theoretical expectation. On the other hand, the trap 

activation energy was also extracted for different annealing temperatures. It is evident that 

higher annealing temperature leads to shallower trap states from 113meV to 54meV. The 

shallower trap states could be a result of decreased impurities and defects (thermal annealing in 

air helps to diminish oxygen vacancies). ZnO NPs annealed at a longer annealing time of 5h 

were also measured and the result is shown in figure 2.14 (b). By comparing the trap activation 

energy of ZnO NPs annealed at the same temperature, it is noted that deeper trap states are 

created with longer annealing time (from 88meV to 121meV at 400°C, 76meV to 89meV at 

500°C, and 54meV to 60meV at 600°C). This indicates that stronger thermal annealing could 

generate new trap states. These trap states are possibly caused by defects because defects could 

be generated by thermal annealing or mechanical rubbing. This can be further confirmed by the 

trap state at 0.235eV for ZnO NPs annealed at 600°C for 5h.  
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Figure 2.14 Arrhenius plot pf ZnO NPs annealed at different temperatures for (a) 3h and (b) 5h in air. 

Annealing effect on (d) Transfer function and (e) Charge carrier mobility. 

The transfer function of ZnO NPs-based FET was also measured, and the charge carrier 

mobility was then calculated, as shown in figure 2.14 (c). It is evident that higher annealing 

temperature results in a larger charge carrier mobility. This can be explained by less scattering 

from impurities and trap states. The transfer function also shows that the on and off current ratio 

decreases with higher annealing temperature. Figure 2.14 (d) shows the field effect mobility at 

lower temperatures. The mobility exhibits an increasing trend with increasing measuring 

temperatures for all the ZnO NPs, which confirms that the mobility is mainly affected by ionic 

scattering.         

2.3.3 Dielectric properties 

The annealing effect on dielectric properties was investigated by impedance spectroscopy. 

Similarly, the RC time constants for gain and boundary are extracted by fitting the Nyquist plot. 

The RC time constants against annealing temperature are plotted in figure 2.15 (a).  
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Figure 2.15 (a) RC time constant and (b) Boundary resistance of ZnO NPs annealed at different 

temperatures. (c) Electrical hysteresis for ZnO NPs. (d) Hysteresis ratio (A2/A1) against different 

temperatures. 

It is clearly shown that the RC time constant of gain stays relatively constant. However, thermal 

annealing has a significant effect on the boundary. RC time constant decreases as annealing 

temperature rises, indicating a less amount of impurities and defects at the boundary or interface. 

Moreover, the boundary resistance is also plotted against annealing temperature in figure 2.15 

(b) and it clearly demonstrates an improved conductivity at higher annealing temperatures.  

The electrical hysteresis was used to reflect the effect of thermal annealing. As was mentioned 

previously, the hysteresis was quantified by the ratio of area A1 and A2, where A1 is the area 

enclosed by I1 and X axis and A2 is the area between I1 and I2, as is shown in figure 2.15 (c). 

The hysteresis ratio against annealing temperature is plotted in figure 2.15 (d) and it is obvious 

that the ratio decreases as annealing temperature increases. This is because of the reduced RC 

time constant, which makes ZnO NPs relax quicker to the equilibrium state and respond faster 

to the change of electrical voltage.    
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2.3.4 Optical properties 

The annealing effect on the optical properties of ZnO NPs is of great importance since this helps 

to locate the optimum annealing temperature for optical applications. The photogenerated (on) 

current and dark (off) current of ZnO NPs annealed at different temperatures are plotted in 

figure 2.16 (a). Both on and off current increase as annealing temperature raises. The current 

on/off ratio is further plotted in figure 2.16 (b). It is evident that the maximum on/off current 

ratio is achieved at 400°C (the ratio is about 4000), which means that the annealing temperature 

of 400°C is the best in terms of responsivity.   

The fall time is the time duration from 90% to 10% of the step height in current and it is also 

plotted against annealing temperature in figure 2.16 (c). It is observed that the temperature range 

of 300°C ~ 400°C is preferred in order to obtain a quick fall time. The fall time is determined 

by recombination. On one hand, higher annealing temperature results in lower trap activation 

energy, which enables easier thermal activation and hence faster recombination. On the other 

hand, the diminish of impurities or deep-level states by higher annealing temperature decreases 

the amount of recombination centres and prolongs the fall time. Therefore, the fall time 

decreases first and then increases as the annealing temperature rises.         

The UV-Vis spectroscopy was measured and the Tauc plot is shown in figure 2.16 (d). It clearly 

demonstrates that the energy bandgap (intersection point with X axis) is relatively constant 

regardless of the annealing temperature. This concludes that thermal annealing mainly affects 

the energy states within the bandgap while it has little effect on the bandgap.  

Figure 2.16 (e) shows the relationship between photocurrent and UV power density for ZnO 

NPs annealed from 200°C to 600°C. The external quantum efficiency of ZnO NPs is extracted 

from the slope and plotted in figure 2.16 (f). It is evident that the quantum efficiency increases 

at higher annealing temperature, indicating a larger amount of free charge carriers are generated 

as a result of shallower trap states.  
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Figure 2.16 The (a) On and off current, (b) On/off current ratio, (c) Fall time, (d) Energy bandgap, (e) 

Photocurrent against UV power density and (f) External quantum efficiency of ZnO NPs annealed at 

different temperatures.  
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2.4 Oxygen Plasma Effect on ZnO NP Thin Films 

Oxygen plasma is a mixture of various oxygen species such as ionized oxygen (𝑂2
+, 𝑂2

−, 𝑂+, 𝑂−), 

oxygen atoms, oxygen molecules and ozone etc., and it was used to prove the existence of 

organic surfactant in the previous section. Moreover, oxygen plasma is an effective method to 

reduce the amount of oxygen vacancies, which equivalently reduces the donor density and 

increases the resistivity of ZnO NPs. The I-V characteristics of ZnO NPs annealed at 400°C 

was shown in 2.4 (b), indicating that ZnO NPs after oxygen plasma treatment have a lower 

conductivity. Same measurement was carried out for ZnO NPs annealed at 600°C and the I-V 

characteristics is shown below in figure 2.17 (a). It is evident that plasma reduces electrical 

conductivity by filling the oxygen vacancies.  
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Figure 2.17 The (a) I-V characteristics and (b) Trap activation energy of ZnO NPs annealed at 600°C 

with and without oxygen plasma treatment. UV response of ZnO NPs annealed at (c) 400°C and (d) 

600°C.  



57 

 

In addition, the trap activation energy was also determined for ZnO NPs annealed at 600°C, as 

is shown in figure 2.17 (b) below. It is straightforward that ZnO NPs after plasma treatment 

have a smaller activation energy (8meV) than ZnO NPs without plasma treatment (54meV). 

The trap activation energy of 8meV is smaller than the room-temperature thermal energy 

(25.7meV) so these shallow traps are not effective at room temperature.    

The UV response was also investigated. Figure 2.17 (c) and (d) shows the on/off current ratio 

and fall time (off time) of ZnO NPs annealed at 400°C and 600°C respectively with the same UV 

power. It is clear that ZnO NPs without oxygen plasma treatment have a larger on/off ratio in 

both cases (9.6 times and 6.8 times larger for 400°C and 600°C respectively). This is because the 

photogenerated electrons are not recombined due to the existence of trap states for non-treated 

ZnO NPs. Therefore, a large number of free charge carriers are trapped and re-excited to the 

conduction band, leading to a larger photocurrent. On the contrary, photogenerated free charge 

carriers of treated ZnO NPs are recombined directly, leading to a larger recombination rate and 

smaller current.  

Figure 2.17 (c) and (d) also illustrates the falling time of ZnO NPs, which shows that ZnO NPs 

without oxygen plasma treatment have a shorter falling time in both cases (26% and 48% of the 

treated ZnO NPs annealed at 400°C and 600°C respectively). This is because there is a large 

number of recombination centres in non-treated ZnO NPs such as organic surfactants 

(impurities) and deep states (defects). Recombination centres are effectively eliminated after 

oxygen plasma treatment, leading to a longer falling time.  

One thing to be noted is the on current after it reaches its maximum. The rising current of non-

treated ZnO NPs encountered a decrease while the rising current for treated ZnO NPs gradually 

saturates. This is due to the charge trapping effect. Trapped charge carriers take a relatively 

long time to be thermally re-exited to the conduction band, before they are recombined. 

Therefore, the slight decrease of on current reflects the increased recombination rate as more 

trapped charge carriers are re-excited. The on current of non-treated ZnO NPs shows a gradual 

saturation, which is a typical behaviour of photocurrent without apparent trapping effect.    

 

 

 

 



58 

 

Chapter 3 The Characterization and Optimization of 

ZnO NPs-based OASLMs  

ZnO NPs are particularly promising for optical applications since they are sensitive to UV light 

and are barely sensitive to the visible light (380nm~740nm). The focus of this chapter is mainly 

on the application of optically addressed spatial light modulators (OASLMs) since ZnO NP-

based OASLM can provide a considerably high spatial resolution (825 lp/mm), which surpasses 

all the past record [108]. This is particularly valuable for large-size and large-viewing angle 

holographic displays. In addition, OASLMs have many advantages over electrically addressed 

SLMs such as no pixel limit, no deadspace between pixels, easy fabrication and large device 

size etc. However, ZnO NP-based OASLMs are also limited by the low diffraction efficiency 

and long response time, which is a significant challenge for dynamic holographic displays. 

Therefore, the optimization of ZnO NP-based OASLM is particularly valuable.  

This chapter starts with the simulation of OASLMs, from which the resolution limit by LC layer 

and ZnO NP layer was demonstrated. The effect of LC parameters (elastic constants, dielectric 

constants and thickness etc.) on phase profile was investigated so that a rule of thumb was 

established to achieve high resolution. Lateral diffusion in ZnO NP layer was also demonstrated 

by COMSOL. Then the characterization and optimization of OASLMs were presented. The 

diffraction efficiency was optimized by investigating the driving signal parameters (shape, 

amplitude and frequency). In the meanwhile, the fall time of OASLMs was shortened by 

increasing the annealing temperature of ZnO NPs, introducing a dielectric SiO2 layer between 

LC and ZnO NP, and replacing the ZnO NP photoconductor with ZnO NP-PEDOT:PSS 

heterojunction photodiode.             

3.1 Simulations of LCs in OASLMs 

A typical structure of OASLM is shown in figure 3.1 below. A LC layer is sandwiched between 

a ZnO NP layer and an alignment layer. Spherical spacers (not shown) are used to separate the 

substrates. LCs layer is highly influential to the performance of OASLMs. For instance, the 

response time of OASLMs is partly dependent on the RC time constant of LCs. Moreover, the 

resolution of OASLMs is limited by electrical fringing field in LCs layer [3], which is further 

dependent on the thickness and elastic constants LCs. This section investigates the effect of 

LCs on the resolution of OASLMs by computer simulation.   
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Figure 3.1 The typical structure of OASLMs.  

3.1.1 Electric fringing field in LCs 

Resolution of OASLMs is represented by the molecular orientation of LCs. The orientation of 

LCs can be mathematically determined by continuum elastic theory and this was carried out by 

computer simulations. The simulation was conducted using LCD Master and the LCs 

arrangement of the cross-section in the middle (plane x=0) is shown below in figure 3.2. Figure 

3.2 (a) clearly shows the molecular orientation of LCs (nails) and the phase retardation (red line) 

in plane x=0. The incident light is linearly polarized (polarization direction is parallel to the 

director of LCs) and has a wavelength of 550nm. Figure 3.2 (b) illustrates the potential 

distribution (equal-potential lines and colormap) and electric force (black arrows) inside LCs. 

The resolution of OASLMs can be indicated by phase retardation profile and it is evident that 

electric fringing field is degrading the resolution. The electric fringing field normally exists at 

the edge (fringe) as a result of boundary conditions. Extended electric field also results in the 

orientation of LCs and an enlarged effective area (decreased resolution). 

One thing to be noted is that there is a peak in the middle of retardation profile. This is caused 

by the symmetric electric field distribution in the middle, as is shown in figure 3.2 (c). LCs 

always orient themselves to align with the electric field (yellow arrow). Electric forces are also 

symmetric on the two sides of axis of symmetry, which means LCs on the two sides rotate in 

the opposite directions because they are pre-tilted at 3°. On the other hand, elastic force opposes 

the movement of LCs so there is a competition between elastic force (red arrows) and electric 

force (black arrows). The elastic force near the axis of symmetry is larger than that away from 

the middle so LCs tend to remain original orientation (do not rotate) in the middle unless electric 

force is large enough to surpass elastic force. As a result, there is a minimum peak for phase 

retardation near the axis of symmetry.  
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(a)                                                                              (b) 

 
(c) 

Figure 3.2 The simulated results for (a) Director (nail) and phase retardation profile (red line), (b) 

Electric force (arrow) and electric potential (colormap) of the cross-section. (c) Force analysis for LCs 

in the middle.  

Another important fact is that nematic LCs are anisotropic, so the electric field is different from 

that in isotropic media. Molecules of LCs orient themselves under electric field due to induced 

dipole moments and LCs in turn influence the distribution of electric field. Therefore, it is a 

dynamically interactive process between LCs and electric field.  

A simple model is built up using nematic LCs (5CB, ε⏊ = 6.9 and ε⫽  = 17.9, k1 = 6.37, k2 = 

3.81 and k3 = 8.60), as is shown in figure 3.3 (a). LCs are sandwiched by ITO electrodes on 

both sides and ZnO NPs are coated on the bottom. LCs are pre-tilted at 3° on both sides with 

parallel alignment configuration. A 3D model is established within the software, as is shown in 

figure 3.3 (b). The area of the top and bottom sides is 20μm×20μm and LCs layer has a thickness 

of 4μm. Illuminated area by the write light (1μm×1μm) is located in the centre (depicted with 

a red square in 3D model). The intensity profile of the write light is assumed to be square, 

providing a step change in conductivity of ZnO NPs. Furthermore, in order to simplify the 

calculation, it is assumed that the illuminated ZnO NPs are grounded (0V) while the un-
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illuminated ZnO NPs are insulating (large resistance). Moreover, the interface effect between 

LCs and ZnO NPs is also neglected. A DC voltage of 5V is applied across LCs. 

  

                                              (a)                                                                       (b) 

Figure 3.3 (a) Model of LCs cell. (b) 3D model in LCD Master. 

In order to see the effect of anisotropy in dielectric constant, isotropic media is used as a 

comparison. The magnitude and angle of electric force at z=2um is plotted, as is shown in figure 

3.4 (a) and (b) below. 
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                                        (a)                                                                              (b) 

Figure 3.4 The (a) magnitude and (b) angle of electric force in LCs.   

It is clearly shown that the amplitude and angle of electric force in two isotropic media with 

ε⏊ = ε⫽ = 17.9 and ε⏊ = ε⫽ = 6.9  are exactly identical (overlap). However, electric force is 

different both in amplitude and angle in anisotropic LCs due to the interaction between LCs 

and electric field. The interaction is based on the Coulomb force, which is defined by: 

𝑭 =
𝟏

𝟒𝝅𝜺𝟎𝜺𝒓

𝒒𝟏𝒒𝟐

𝒓𝟐                                                          (3.1) 
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where 𝒒𝟏 and 𝒒𝟐 are the charges with a distance of 𝒓. 𝜺𝟎 and 𝜺𝒓 are the absolute and relative 

permittivity (dielectric constant) LCs. Electric force at a certain point is equivalent to the 

superposition of Coulomb forces from all directions. The dielectric anisotropy of LCs 

molecules results in macroscopic non-uniformity of dielectric constant within LCs, leading to 

different electric field distribution in LCs.   

The electric potential at z=2um is also plotted in figure 3.5 below. This is consistent with 

electric force distribution since electric field (E) is the rate of change in electric potential (V).  
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Figure 3.5 Electric potential distribution in LCs.  

Moreover, the potential distribution is symmetric in isotropic media whereas it is asymmetric 

in LCs. This is related to the molecular orientation of LCs and this is discussed in the following 

section.   

3.1.2 Effect of driving voltage and thickness 

LCs are voltage-driven so the driving voltage across LCs affects the resolution of OASLMs. A 

DC voltage was used in the model and the result is shown in figure 3.6 below. It is clear that as 

the voltage raises from 1V to 5V, resolution degrades (phase retardation profile becomes wider) 

due to a stronger electrical fringing field. In the meanwhile, modulation depth also increases at 

the same position. Figure 3.6 (b) shows the phase retardation near the axis of symmetry under 

increasing driving voltages and it exhibits a decreasing trend as electric force becomes more 

and more dominant over elastic force with increasing voltage. This is consistent with previous 

analysis.  
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Figure 3.6 (a) The phase retardation profile under different driving voltages. (b) The distortion at the 

axis of symmetry under different voltages.  

The thickness of LCs layer is also affecting the resolution of OASLMs, as is shown in figure 

3.7 below. It is obvious that larger thickness results in a larger affected area as a result of electric 

fringing field. Simulation was carried out with LCs thickness from 1μm to 5μm and the 

resolution of OASLMs is defined here by the width of phase retardation profile at 90% of its 

maximum, as is shown in figure 3.7 (a). The resolution (phase width) and maximum modulation 

depth are shown in figure 3.7 (b) at different LCs thickness. The trend shows that larger 

thickness provides larger modulation depth though the resolution also degrades.  
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                                       (a)                                                                              (b) 

Figure 3.7 (a) Phase retardation profile of various LCs thickness. (b) The modulation depth and phase 

width at different LCs thickness.  

In summary, the resolution of OASLMs is strongly affected by the driving voltage and LCs 

thickness. It is preferred to use lowest driving voltage and thinnest LCs layer when designing 

OASLMs, however these also lead to a compromised phase modulation depth. Therefore, the 
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optimum design of OASLMs should be different for different applications depending on the 

requirement.  

3.1.3 Effect of elastic constants and dielectric constants 

It has been introduced in chapter 1 that elastic constants are intrinsic parameters of LCs that 

determine the elastic force. Therefore, elastic constants are extremely important to the 

orientation of LCs since elastic force always resists electric force. Based on the definitions of 

elastic constants for splay, twist and bend (k1, k2 and k3 respectively), it is clear that k1 and k3 

are dominant for LCs with parallel-alignment configuration or electrically controlled 

birefringence (ECB) configuration. 

In order to determine the effect of k1 and k3, LCs with various values of k1 and k3 are simulated. 

The simulation starts with small value so that LCs are mainly affected by one elastic constant 

only. It is found out that the phase retardation profile changes little when k1 and k3 are between 

0.01 and 0.1 so k1 = 0.01 and k3 = 0.01 are chosen as the starting values.  

Firstly, the effect of k1 (splay) is investigated by keeping k3 constant (0.01) and increasing k1 

from 0.01 to 9. The results are shown below in figure 3.8: 
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Figure 3.8 (a) Phase retardation profile for different k1 values. (b) The phase width (resolution) for 

different k1 values. 

It is evident from figure 3.8 (b) that the resolution decreases little when k1 is below 0.1 and it 

rapidly drops when k1 is above 1. Therefore, the resolution of OASLMs is strongly affected by 

k1 and LCs with larger k1 have better performance in resolution (narrower width). This is 

because higher k1 results in a larger elastic force, which prevents LCs from rotation by electric 

field and weakens the effect of electric fringing field. 
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Moreover, the peak in phase retardation profile near the axis of symmetry emerges when k1 

reaches 5. This is because higher elastic force is generated with larger k1 and electric force is 

not strong enough to orient LCs when k1 is above 5. As k1 increases from 5 to 9, the peak value 

also decreases since more LCs are restrained by elastic forces. Therefore, it can be concluded 

that splay contributes to the deformation of LCs at the axis of symmetry.   

Similarly, the effect of k3 is also studied by varying k3 from 0.01 to 9 (k1 = 0.01). From 

simulation results shown in figure 3.9 below, it is clear that k3 has very limited effect on 

resolution. Figure 3.9 (b) also shows that the phase width varies between 11~12 as k3 increases 

from 0.01 to 9.  
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Figure 3.9 (a) Phase retardation profile for different k3 values. (b) Phase width for different k3 values.  

To summarize the effect of k1 and k3, it can be concluded that k1 plays a dominant role in the 

resolution of OASLMs. LCs with larger k1 should be preferred since electric fringing field has 

a smaller effect in this case compared with LCs with smaller k1. Similarly, this also limits the 

modulation depth of LCs.  

Another important intrinsic parameter of LCs is dielectric constant, which determines the 

response of LCs to electric field. LCs molecules are polarized in the presence of electric field 

and dipole moments are generated. As a result, LCs rotate themselves due to the torque. The 

amount of dipole moments per unit volume (also called polarization density, 𝑷) is proportional 

to dielectric constant (𝜺𝒓) by the following equation (for isotropic media): 

𝑷 = (𝜺𝒓 − 𝟏)𝜺𝒐𝑬                                                    (3.2) 

Therefore, LCs with larger dielectric constant encounter larger polarization density, which 

means more torque is applied to LCs. In terms of anisotropic LCs, there are two induced torque 



66 

 

with opposite directions, corresponding to ε⏊ and ε⫽. In the case of horizontally aligned LCs 

with parallel-alignment configuration, ε⫽  is associated with the torque that aligns LCs with 

electric field while ε⏊ is related to the resisting torque, as is shown in figure 3.10 below.   

 
Figure 3.10 The torque of LCs under electric field.  

Based on the analysis above, LCs with higher ε⫽ or lower ε⏊ would experience larger torque to 

align with the electric field so this would lead to a wider phase retardation profile given the 

same elastic force. This is validated by the simulations shown below in figure 3.11. It is evident 

from figure 3.11 (a) and (b) that higher value of ε⫽ results in a larger width and on the contrary, 

larger ε⏊  brings about a decreasing width. This is because high ε⫽ or lower ε⏊ equivalently 

increases the torque exerted on LCs, strengthening the effect of electric field particularly at the 

fringing area. Therefore, higher ratio of ε⫽/ε⏊ will compromise the resolution of OASLMs.  

This section investigates the effect of intrinsic parameters of LCs such as elastic constant and 

dielectric constant in order to provide a guidance for choosing appropriate LCs materials. 

Elastic constants describe the internal force opposing any movement of LCs and dielectric 

constants determine the external force to rotate LCs. Better resolution can be achieved by 

selecting LCs with larger elastic constant (especially k1) and smaller ε⫽ /ε⏊  ratio. In the 

meanwhile, modulation depth would be decreased so appropriate thickness and voltage should 

be used.  

On the other side, LCs larger elastic constant (especially k1) and smaller ε⫽/ε⏊ ratio actually 

face less rotating force (or torque), which would slow the rotating speed and cause longer 

response time (‘turn on’). Although ‘turn off’ time (in the absence of electric field) is also 

shortened since elastic force is strengthened and RC time constant is shortened.   
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Figure 3.11 Phase retardation profile of different (a) ε⫽ and (b) ε⏊values. Phase width (resolution) of 

different (c) ε⫽ and (d) ε⏊values. 

3.2.4 Other effects 

There are several other factors that also affect the resolution of OASLMs. For instance, LCs in 

Y direction also affect the LCs in X-Z plane due to elastic force. The elastic force in Y direction 

was not considered in the previous sections and the bottom electrode was kept constant 

(1um×1um) for all the simulations. In order to visualize the effect of elastic force in Y-direction, 

a set of bottom electrodes with increasing length in Y direction from 1um to 5um until 20um 

are simulated while remaining the length of the other side. The results are shown below in figure 

3.12: 
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Figure 3.12 (a) The phase retardation profile for different bottom electrodes. (b) The phase width at 

different electrode lengths.  

It is evident that the phase width (resolution) increases with longer bottom electrode because of 

increased elastic force in Y direction, which results in a larger rotation in X-Z plane. This 

provides a reference in terms of the design of the write light pattern: larger gaps between excited 

area help with minimising this effect.   

Another approach to minimize the electric fringing field in LCs is to introduce a ‘guiding’ 

electrode on the other side of LCs. This can be achieved by adding a second ZnO NPs layer on 

the top electrode. Once the OASLM is illuminated by write light, ZnO NPs on both sides are 

photo-excited. As a result, the voltage drop across LCs is limited in the illuminated area.  
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Figure 3.13 (a) The potential distribution and electric force in LCs with two ZnO NPs layers. (b) The 

comparison in phase retardation profile for single and double ZnO NPs layers. 

This can be simulated by using an identical electrode on the top side instead of a large-area 

electrode. The potential distribution (colormap and equal potential lines) and electric force 
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(black arrows) for two ZnO NPs layer is shown in figure 3.13 (a) above. This is completely 

different from OASLMs with single ZnO NPs layer, as was shown in figure 3.2 (b). Moreover, 

the phase retardation profiles for single ZnO NPs layer and double ZnO NPs layer are illustrated 

in figure 3.13 (b). It is evident that the phase width is shortened in the case of double ZnO NPs 

layer due to the guiding effect for electric fringing field.  

It can be concluded that double-layer ZnO NPs enables a narrower phase retardation profile by 

shrinking the electric fringing field.  

3.2 Simulations of ZnO NP Thin Films in OASLMs 

The resolution of OASLMs is also affected by ZnO NPs due to the electric fringing field. The 

simulation is achieved by COMSOL and a simple model for ZnO NPs layer is established as is 

shown in figure 3.14 (a).  
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Figure 3.14 (a) Simulated electric field in ZnO NPs layer. (b) Comparison of electric field in X direction 

at the bottom for different light intensity profiles.  

A layer of ZnO NPs with 100nm in thickness is driven by a DC voltage of 5V and the write 

light is incident on the ZnO layer in the middle (X=0nm). The light intensity profile is Gaussian, 

and the total width is set to be 1000nm. The potential distribution (colormap) and electric force 
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(black arrows) are illustrated in figure 3.14 (a). It is evident that electric fringing field exists at 

the boundary of illuminated area, leading to the lateral drift of photogenerated charge carriers.  

Electric field in X direction at the bottom is plotted in figure 3.14 (b). The affected area of the 

Gaussian beam is defined here by the distance in x direction from FWHM to the point with zero 

electric field. The affected length on one side is measured to be around 283nm. This can be 

improved by using a write light with sharp intensity profile such as square wave. So, a square 

wave of 1000nm in width is also used to compare with Gaussian beam and the affected area is 

measured to be 196nm, which is 70% of that for Gaussian beam. Two peaks are noticed in 

figure 3.14 (b) for square wave. This is because the conductivity of ZnO NPs illuminated by a 

write light with square intensity profile is assumed to have square shape as well. So, the electric 

field at the step change is large. This is ideal only for simplification and as a matter of fact, the 

conductivity would change gradually due to the diffusion of photogenerated charge carriers and 

the affected area could be even larger.    

There are other factors coming from ZnO NPs that affect the resolution of OASLMs. For 

instance, the charge spreading at the interface between LCs and ZnO NPs would degrade the 

resolution. The charge spreading is caused by lateral electric field and diffusion (concentration 

gradient). A good way to mitigate the effect of lateral diffusion and drift is to introduce trap 

states such that photogenerated free charge carriers would be caught by traps in the dark area 

(not illuminated by write light). ZnO NPs contains a large amount of trap states and this is one 

of the biggest advantages of ZnO NPs as photoactive material.    

3.3 Fabrication Process of OASLMs 

The fabrication of OASLMs is significant since device optimization can be achieved by process 

optimization. In order to minimize contaminations, OASLMs were fabricated in the cleanroom 

(class 1000). The standard fabrication process is described below: 

1. Cleaning glass substrate 

a. Clean ITO-coated soda-lime glass substrates (1.5cm×1.5cm) with DI water, 

acetone and IPA respectively in ultrasonic bath for 10min each.  

b. Dry the substrates with IPA dryer. 

c. Treat the substrates with oxygen plasma for 5min (oxygen content 5%).  

2. Coating ZnO NPs  

a. Dispense ZnO NPs dispersion (85mg/ml) on one substrate (substrate A) by spin 

coating with a speed of 4000RPM for 30s (acceleration speed of 500RPM/s). 
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b. Anneal the substrate in air at 200°C for 1h.  

3. Coating alignment material 

a. Dispense the alignment material (AM1254) on the other substrate (substrate B) 

by spin-coating (3000RPM, 1500RPM/s, 50s).  

b. Pre-bake the substrate at 80°C for 2min on a hotplate, followed by baking at 

200°C for 30min.  

c. Rub the substrate with rubbing machine (roller speed of 400RPM, moving at 

10mm/s). 

4. Gluing the substrates 

a. Dispense the glue and spacer (5μm in diameter) mixture on two sides of 

substrate B with a syringe, as is shown in figure 3.15 (a). The syringe is 

pressured by air piston.  

b. Locate substrate A on top of substrate B (with coated side face to face), leaving 

a certain offset distance for external cabling, as is shown in figure 3.15 (b). 

Gently press the substrates until the mixture is fully expanded. 

c. UV curing for 3min.  

      

(a)                                                                                  (b) 

Figure 3.15 (a) Dispense the glue on two sides. (b) Offset for cabling.   

5. Filling LCs 

a. Put the cell on a hotplate (90°C). 

b. Feeding the filling gap with LCs until the cell is filled with LCs by capillary 

force. 

c. Cool down the cell. 

6. Sealing the cell 
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a. Seal the cell gaps with the same spacer and glue mixture. 

b. UV curing for 3min.  

In the end, the cell is cleaned by acetone and IPA, and external cables are soldered onto the 

offset area (expose the ITO with a plastic sharp).   

3.4 Characterization of OASLMs 

The simulation and fabrication of OASLMs have been introduced in the previous sections. This 

section is to characterize the OASLMs device by experiments. OASLMs were investigated in 

terms of dielectric properties and optical behaviour. RC time constant influences the response 

time and is affected by voltage. So, the voltage providing the shortest RC time constant is 

valuable. RC time constant of LC was determined by dielectric measurement, which was also 

used to determine the RC time constant of OASLM as a whole. Optical measurement was also 

carried out for the purpose of determining the diffraction efficiency and response time (fall time 

in particular).  

3.4.1 Dielectric properties LCs 

Theoretical introduction to the dielectric properties of LCs has been discussed in chapter 1 and 

experimental study of the dielectric response of LCs is investigated in this chapter by impedance 

spectroscopy. A LCs cell was fabricated using similar processes as OASLM. The alignment 

layer (AL1259) was spin-coated and baked, prior to gluing the substrates with spacer-glue 

mixture (4μm in diameter).  Alignment layer was spin-coated on both substrates (top and 

bottom). Nematic LCs (8CB) was filled at 90°C (on a hotplate) by capillary force and external 

cables were soldered in the end.  

Impedance spectroscopy was performed on the cell using Autolab PGSTAT302. The frequency 

range was 0.01Hz~1MHz. The Bode plot and Nyquist plot at 1V (DC) are shown below in 

figure 3.16 (a) and (b) respectively. It is evident that there are two relaxation mechanisms 

existing (two relaxation peaks in Bode plot and two semicircles in Nyquist plot). Therefore, 

two RC parallel circuits in series were used to simulate the cell. The simulated results for R and 

C values are shown in figure 3.16 (c) and (d). According to the actual structure of the cell, one 

RC represents LCs and the other one represents the alignment layer. The alignment layer is 

insulating and has larger resistivity while LCs layer is more conductive due to the existence of 

ionic impurities inside LCs. Moreover, the capacitance for LCs layer increases with higher DC 

voltage as LCs molecules rotate towards vertical direction under electric field and the effective 
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dielectric constant of the LCs layer increases. So R1/C1 represents LCs and R2/C2 represents the 

alignment layer.    
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(e)                                                                             (f) 

Figure 3.16 The (a) Bode plot and (b) Nyquist plot of the LCs cell. The simulated (c) Resistance and (d) 

Capacitance of LCs and alignment. The (e) RC time constants of LCs and alignment under different DC 

voltages. (f) The overall impedance of the cell under different DC voltages.  
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The RC time constants of LCs and alignment layer are also shown in figure 3.16 (e). Based on 

the analysis above, the RC time constant 𝜏1 stands for LCs while 𝜏2 stands for the alignment 

layer. The RC time constant of LCs is in the order of milliseconds while that of alignment layer 

is much larger (more than 4 orders). In addition, it is clear that higher DC voltage results in a 

larger RC time constant of LCs because LCs under higher DC voltages rotates more (more 

deviation from equilibrium position) and it takes a longer time (RC time constant) to relax back 

to the equilibrium position. Figure 3.16 (f) also shows the overall resistance and capacitance of 

the LCs cell. The imaginary impedance decreases at higher DC voltage because higher DC 

voltage results in the molecular orientation and increases the effective dielectric constant and 

capacitance. On the contrary, the real impedance increases with higher DC voltage, this might 

be associated with higher barrier for charge movement.  

Furthermore, another type of nematic LCs (E7) was also investigated with the same method. 

The E7 cell was fabricated with the same parameters (cell size and thickness) and the RC time 

constants are shown in figure 3.17 (a). Similarly, the RC time constant for E7 LCs also increases 

at higher DC voltages. The RC time constant for alignment layer in both cases are in the same 

order but not exactly the same. This might be caused by the error generated during fabrication 

or the different interaction with two types of LCs. The comparison of RC time constant between 

E7 and 8CB LCs is shown in figure 3.17 (b). It is clear that 8CB LCs are more suitable than E7 

LCs for high driving voltage (>3V) because they have less RC time constant, indicating a 

shorter time to relax back.   
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Figure 3.17 (a) RC time constants for E7 LCs. (b) Comparison between E7 and 8CB LCs under different 

DC voltages.  
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3.4.2 Dielectric properties of OASLMs 

The dielectric response of OASLMs was investigated. The dielectric response of OASLMs as 

a whole system is important because the dielectric response of LCs and ZnO NPs in the same 

system (OASLMs) is not necessarily identical (normally different) to the response of the 

individuals. The interaction between ZnO NPs and LCs could strongly affect their behaviour 

under electric field. For instance, the interface between LCs and ZnO NPs is extremely 

important as it is full of trap states, defect states and impurities, strongly affecting the charge 

carrier distribution and hence the electric field.  

The dielectric response OASLMs was characterized with the same method. The Bode plot of 

OASLM is shown below in figure 3.18 (a). It is clear that two apparent relaxation peaks exist, 

indicating two polarization mechanisms (LCs and ZnO NPs). By simulating and fitting the 

Nyquist plot, the R / C values of LCs / ZnO NPs were calculated. The RC time constants for 

LCs and ZnO NPs are shown in figure 3.18 (b). It is shown that the RC time constants are 

distinctive (almost 2 order of difference). According to the previous investigation, it is 

reasonable to conclude that ZnO NPs layer has a larger RC time constant than LCs layer, 

indicating that ZnO NPs layer is the main limiting factor for the response speed of OASLMs.  

The dielectric response of OASLMs under UV (write light) was also measured, as is shown in 

figure 3.18 (c). It is evident that the low-frequency peak disappeared (flattened) under UV 

because ZnO NPs became conductive under UV excitation. Conductive ZnO NPs have little 

dielectric behaviour so the phase plot (red axis) is close to zero. This confirmed the previous 

conclusion. In addition, the overall R and C values of OASLMs under UV are shown in figure 

3.18 (d). The capacitance increases with DC voltage as LCs molecules rotate, increasing the 

effective dielectric constant (same as the previous results). The resistance decreases with higher 

DC voltage and reaches a minimum at about 3V.  

The RC time constant of OASLM under UV is shown in figure 3.18 (e). It shows a decreasing 

trend from 0V to 3V and increases after 3V. The minimum RC time constant is about 4×10-5s 

at 3V. This finding is of great importance to the practical operation of OASLMs as this finds 

the optimum operating voltage of 3V that the OASLM has the quickest response time during 

the writing period.    
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Figure 3.18 The (a) Bode plot and (b) RC time constants of OASLM. The (c) Bode plot and (d) overall 

resistance / capacitance of OASLM under UV. (e) The RC time constant of OASLM under UV.  

3.4.3 Optical properties of OASLMs 

The optical characterization of OASLMs was carried out on an optical bench with the following 

optical setup (figure 3.19).  
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Figure 3.19 The optical setup for OASLM characterization.  

A 4-f configuration was used to write the grating pattern onto the OASLM. A write laser 

(405nm) was placed behind the grating and a read laser (635nm) was located near the lens. 

Light from the read laser was diffracted by OASLM because the grating was transferred onto 

OASLM by the write light. The first order of the diffraction pattern was recorded by a 

photodetector while the rest of the diffraction pattern was blocked by an aperture. The OASLM 

was driven by a signal generator, outputting a sinusoidal wave with the frequency of 0.5Hz and 

the peak-to-peak voltage of 2V. The photodetector was connected with an oscilloscope such 

that the first-order diffraction pattern could be recorded instantly. The position and orientation 

of the photodetector was adjusted such that the recorded light had the maximum intensity and 

the least interference from other diffraction orders.  

With the write laser always on (constant writing), the signal of the read light (first-order) was 

recorded in figure 3.20 (a) below. It is clear that there are 4 peaks in each driving cycle (2 

seconds): two peaks with large intensity and two peaks with small intensity. This is associated 

with the peak amplitude of the driving voltage, which is discussed in detail later. 

Figure 3.20 (b) shows the decrease of the signal after the write light was turned off. The ‘off’ 

time from 90% to 10% was measured to be 47.5s. This is the actual challenge for OASLMs 

because slow fall time means that there would be ghost images or sticking images if the write 

light is off.  
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Figure 3.20 (a) Recorded signal from photodetector. (b) The decrease of signal intensity after the write 

light was turned off.  

The long ‘fall’ time reveals that it is not applicable for dynamic applications like video-rate 3D 

holographic displays, however it might be suitable for static applications such as the exhibition 

in the museum. 

3.5 The Optimization of ZnO NPs-Based OASLMs 

As was mentioned before, a record-high resolution of 825 lp/mm has been successfully 

achieved by ZnO NP-based OASLM as a result of trap states in ZnO NP layer [108]. This is 

significant for the application of holographic displays since a larger size of the reconstructed 

image and a larger viewing angle can be realized with a higher spatial resolution from OASLM 

(hologram). However, ZnO NP-based OASLM also has weaknesses such as low diffraction 

efficiency (2.26%) and slow response time (tens of seconds), heavily limiting the development 

in dynamic holographic displays. Therefore, the optimization of ZnO NP-based OASLM is 

necessary and valuable. 

3.5.1 Improving the diffraction efficiency 

• Sinusoidal signal 

A sinusoidal driving signal was initially used to drive the OASLM with a peak voltage (VP) of 

2V and a driving frequency (fsine) of 0.5Hz. The first-order diffraction signal recorded by the 

photodetector is shown in figure 3.21 (a). It is clearly shown that there are four peaks during a 

full driving period (2s): two peaks (Vpeak and Vside) on both sides of the rising peak of the driving 

signal and two peaks (Vvalley) on two sides of the falling peak. The maximum intensity of the 
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first-order diffraction pattern is an indication of maximum diffraction efficiency (ηmax) 

according to equation 3.3: 

η =
𝐼1

𝐼0
                                                                   (3.3)    

where I1 and I0 are the intensity of first-order diffraction pattern and zeroth-order pattern 

without write light. It is also noted from figure 3.21 (a) that there is a shift in time between the 

peaks of the driving signal and ηmax. This can be explained by the nature of a phase grating. 

OASLM in this optical configuration is effectively acting as a binary phase grating and the 

diffraction efficiency (η) is dependent on the difference in phase retardation (Δδ) between 

adjacent phase levels, as is shown in figure 3.21 (c). This is based on the equation below: 

η = [
2

𝜋
× sin(Δδ)]2                                                         (3.4) 

Therefore, ηmax occurs when Δδ is π/2, 3π/2, 5π/2… etc. Moreover, the phase retardation is 

determined by the birefringence (Δn) of LCs based on: 

δ = ∆n × 2π
𝑑

𝜆
                                                             (3.5) 

where d is the thickness of the LC layer and λ is the wavelength of the read light. The 

birefringence of LCs is controlled by the amplitude of the driving signal (VP) so the diffraction 

efficiency is also controlled by VP. As sinusoidal VP rises from 0V to 2V, Δδ also increases 

from 0 to π/2 where diffraction efficiency reaches its maximum. However, the diffraction 

efficiency reduces when VP continues to rise since diffraction efficiency decreases after π/2 (V2 

in figure 3.21 (c)). Accordingly, VP of 2V results in Δδ>π/2, and this is the reason of four peaks 

generated in the diffracted signal on both sides of the driving peaks. The difference in height 

among four peaks might be a result of charge sticking at the interface between ZnO NP layer 

and LCs layer. This is verified by reducing VP to 1.2V and the result is shown in figure 3.21 

(b). The number of peaks within a full driving cycle is reduced to two, corresponding to the 

peaks of the driving signal. This situation is depicted in figure 3.21 (c) as V1. Peak height of 

Vpeak and Vside in the diffracted signal driven by various VP is depicted in figure 3.21 (d). It is 

evident that the maximum Vpeak is obtained at VP=1.6V, at which the side peak (Vpeak) stars to 

appear. It can be concluded that the diffraction efficiency of the OASLM driven by a sinusoidal 

signal reaches its maximum when the peak amplitude is 1.6V. 
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Figure 3.21 First-order diffraction signal when the driving voltage has an amplitude of (a) VP=2V and 

(b) VP=1.2V. (c) The relationship between diffraction efficiency and phase retardation. (d) The intensity 

of Vpeak and Vside at different voltage amplitudes.  

• Triangular signal 

Experiments were carried out for OASLMs driven by a triangular signal. The driving frequency 

is maintained at 0.5Hz and the results of VP=2V is shown in figure 3.22 (a). Similarly, fours 

peaks in the diffracted signal were detected in one period while the peak number is reduced to 

two when VP=1.4V, in alignment with the peaks in the driving signal (figure 3.22 (b)). Figure 

3.22 (c) shows the voltage dependence of the Vpeak and Vside. It can be concluded that the 

maximum diffraction efficiency is realized when VP=1.8V for a triangular driving signal. By 

comparing the intensity of the first-order diffraction pattern obtained by a sinusoidal and 

triangular driving signal (figure 3.22 (d)), it can be concluded that sinusoidal driving signal can 

provide a higher diffraction efficiency compared to triangular driving signal for OASLM under 

the same driving frequency.    
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Figure 3.22 First-order diffraction signal when the driving voltage has an amplitude of (a) VP=2V and 

(b) VPP=1.4V. (c) The intensity of Vpeak and Vside at different voltage amplitudes. (d) Comparison of 

first-order diffraction signal between sinusoidal and triangular driving signal under the same driving 

frequency (0.5Hz).   

Higher diffraction efficiency can be realized by a sinusoidal driving signal because the charge 

accumulation across LC layer is faster for a sinusoidal signal compared to a triangular signal. 

In the meanwhile, lateral diffusion of photogenerated charge carriers exists in both cases, 

increasing the phase retardation (δ) at the lower level of the phase grating, compromising the 

difference in phase retardation (Δδ) and thus diffraction efficiency. The charge leakage caused 

by diffusion was studied by a square driving signal. A square signal of 1V in peak amplitude 

and 0.5Hz in frequency was used to drive the OASLM, as is shown in figure 3.23 (a). It is clear 

that the diffraction efficiency increases after the driving voltage changes its sign and it then 

decreases within the period. The decay of diffraction efficiency results from the charge leakage. 

The voltage dependence of the diffracted signal is shown in figure 3.23 (b) and the maximum 

diffraction efficiency was achieved at 1.2V. It is also observed that the maximum intensity of 

the diffracted signal during the positive driving period and the negative driving period is 
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different due to the charge sticking. In addition, the diffraction efficiency in this case is only 

47.9% of that obtained by a sinusoidal driving signal.   

The charge sticking was also investigated by measuring the imaginary impedance of an 

OASLM cell (in dark condition) under positive and negative DC bias voltages, as shown in 

figure 3.23 (c). Impedance measurement was carried out by Autolab PGSTAT302 at a fixed 

frequency of 10Hz. Figure 3.23 (c) shows the decrease of imaginary impedance as the DC 

voltage increases because of the rotation of LCs. It is also observed that the imaginary 

impedance on the two sides of DC voltage is not symmetrical, which is a result of remaining 

charges across LC layer.  

The effect of driving frequency was also studied, as shown in figure 3.23 (d).  
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Figure 3.23 (a) The first-order diffraction signal driven by a square signal. (b) The height of the 

diffracted signal at different voltage amplitudes. (c) The imaginary impedance of an OASLM cell 

measured with positive and negative DC bias voltages. (d) The effect of driving frequency on diffraction 

efficiency.  
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It can be observed that the diffraction efficiency reaches its maximum at certain frequencies for 

both waveforms and it is illustrated that the OASLM can be operated at a higher frequency by 

a sinusoidal wave (1.5Hz) than triangular wave (0.3Hz). Moreover, the maximum diffraction 

efficiency is higher if the OASLM is driven by a sinusoidal wave.      

By comparing the diffraction efficiency of different waveforms, amplitudes and frequencies, it 

can be concluded that the maximum diffraction efficiency of ZnO NP-based OASLM can be 

obtained by a sinusoidal driving signal with a peak amplitude of 1.6V and frequency of 1.5Hz.  

In order to further confirm the existence of charge sticking and to investigate its effect on device 

performance, OASLMs with a SiO2 interface layer between ZnO NP layer and LC layer was 

investigated. A 50nm (in thickness) SiO2 layer was slowly deposited on top of ZnO NP layer 

by e-beam evaporation, followed by the same OASLM assembly processes. The signal of the 

first-order diffraction pattern was received and shown in figure 3.24 (a) and (b) below.  
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Figure 3.24 The first-order diffraction pattern generated by a sinusoidal wave with (a) Vpeak=1.6V, 

f=0.5Hz and (b) Vpeak=2.0V, f=0.5Hz. (c) The height of the diffracted signal at different voltage 

amplitudes. (d) The imaginary impedance of OASLM with and without SiO2 layer.  
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The OASLM was driven by a sinusoidal wave with a peak amplitude of 1.6V and 2.0V 

respectively while the driving frequency was kept at 0.5Hz for both cases. It is clearly 

demonstrated that the diffraction peaks in the positive and negative driving cycle have similar 

height, much less than the height difference of previous OASLMs (without SiO2 layer). This 

indicates that the charge sticking is suppressed by adding a SiO2 layer whereas it still exists. 

The diffraction efficiency is also dependent on the amplitude of driving voltage, as is shown in 

figure 3.24 (c). It also shows a difference between positive and negative driving voltages. Finely 

deposited SiO2 layer can protect the ZnO NPs layer from charge exchange with LCs layer. 

However, the charge sticking still exists at the interface between SiO2 layer and ZnO NPs layer.  

In addition, the imaginary impedance (Zimag) was compared by conducting impedance 

spectroscopy at 10Hz, as is illustrated in figure 3.24 (d). The Zimag decreases after introducing 

a SiO2 layer as a result of series capacitance. Moreover, the difference in Zimag between positive 

and negative driving voltages is reduced. The ratio of Zimag at -4.5V over Zimag at +4.5V is 1.1 

for OASLM with SiO2 compared to 1.5 for OASLM without SiO2.      

3.5.2 Improving the response time 

According to the previous analysis, the response speed of OASLMs is limited by the trap states 

at the interface between LCs and ZnO NPs. Photogenerated charge carriers are trapped at the 

interface and they stay at the interface after the write light is off. The trapped charge carriers 

maintain the voltage across LCs and ghost images are formed. Therefore, two approaches were 

taken in order to shorten the fall time: decrease the trap activation energy by raising the 

annealing temperature of ZnO NPs and introducing a layer of SiO2 (50nm in thickness) between 

the interface. The results are shown below in figure 3.25. It has been clearly shown that OASLM 

with low annealing temperature had a longer falling time (47.5s) while the falling time was 

shortened to 14.4s if ZnO NPs were annealed at higher temperature. This is because the trap 

activation energy is decreased after annealing so that photogenerated charge carriers are easily 

excited by thermal energy and recombined with holes.  

Figure 3.25 (b) also proves that the interface trapping can be further improved by introducing 

a SiO2 layer. A thin layer (50nm) of SiO2 was deposited by e-beam evaporation on top of ZnO 

NPs (annealed at 200°C for 1h). The falling time was recorded to be 2.9s, which is about 1/15 

of non-SiO2 OASLM. This indicates that the interface plays an extremely important role in 

falling time of OASLMs.  
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Figure 3.25 The signal falling after write light is off. (a) ZnO NPs were annealed in air at 400°C for 3h. 

(b) A layer of SiO2 was introduced between ZnO NPs and LCs.  

One thing to be noted is that high annealing temperature results in the deformation of substrate 

surface. This is illustrated in figure 3.26 below.  

 
Figure 3.26 The annealing effect on glass substrate. 

The surface profile of soda lime glass substrates after 600°C annealing for 3h was measured. It 

clearly showed a curved surface profile and the maximum variation in surface height is more 

than 3μm in 2mm×2mm area. In contrast, the surface variation without annealing is less than 

10nm. Undesired contact was generated during the assembly of OASLMs due to the surface 

curvature and this also led to the thickness non-uniformity of LCs layer. Quartz or sapphire 

glass substrate can be used for high-temperature treatment.     
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To summarize the conclusions so far, ZnO NP-based OASLM was optimized in terms of 

diffraction efficiency and response time. By investigating the driving signal of OASLM, the 

highest diffraction efficiency was achieved by a sinusoidal driving signal with a peak amplitude 

of 1.6V and frequency of 1.5Hz. And it was also found out that the introduction of a SiO2 layer 

can effectively improve the diffraction efficiency by mitigating the charge sticking effect. 

The response speed was also optimized by reducing the fall time. Two approaches were used: 

increasing the thermal annealing temperature of ZnO NP layer and introducing a SiO2 layer. The 

shortest fall time was achieved at 2.9s compared to 47.5s (non-optimized OASLM).   

3.5.3 Heterojunction Photodiode in OASLMs 

The photoconductive property of ZnO NP has been investigated and utilized for high-resolution 

OASLMs. However, photoconductors are susceptible to material imperfections such as trap 

states and defect states. Therefore, a photodiode structure was proposed in this section: ZnO 

NPs and PEDOT:PSS heterojunction.      

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is a type of organic 

conductor material with great potential, which is particularly suitable for optical applications 

due to its optical transparency and water-solubility. PEDOT:PSS is composed by conjugated 

conductive polymer, which can be further classified into two ionomers: poly(3,4-

ethylenedioxythiophene) (PEDOT) carrying positive charges and polystyrene sulfonate (PSS) 

with negative charges, as is shown in figure 3.27.  

 
Figure 3.27 The molecular structure of PEDOT and PSS ionomer. 

PEDOT:PSS has attracted a large amount of research interests due to its high electrical 

conductivity (up to 4000 S/cm depending on the processing conditions) [109][110], optical 

transparency in the visible range (up to 95%) [110] and chemical stability in air. PEDOT:PSS 

has been used in various applications such as light emitting diode as the hole injection layer,  
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solar cells as the interlayer, and supercapacitors and flexible devices as the electrode [109]. 

Water dispersion of PEDOT:PSS are available because PSS is playing the role of surfactant, 

dispersing and stabilizing the PEDOT. In addition, PSS increases the solubility, enabling the 

solution-based processes of PEDOT:PSS such as drop-casting, spin-coating, dip-coating, inkjet 

printing and roll-to-roll printing.      

 

Figure 3.28 The structure of ZnO NPs-PEDOT:PSS heterojunction and the energy band diagram. 

An organic-inorganic heterojunction is formed between ZnO NPs and PEDOT:PSS, which is 

effectively a photodiode instead of a photoconductor. Photodiode is expected to provide a better 

performance than photoconductor in terms of response time and responsivity. The structure of 

the sample is shown in figure 3.28. Samples were prepared by firstly spin-coating PEDOT:PSS 

solution (in water) on thoroughly cleaned glass substrates (covered with ITO electrodes). The 

substrate was then baked on a hotplate at 200°C in air for 1h. Next, ZnO NPs dispersion (85 

mg/ml in ethanol) was spin-coated on top of PEDOT:PSS film, and the substrate was baked 

again at 200°C in air for 1h. Finally, aluminium electrode was deposited on top by thermal 

evaporation.  

• Electrical properties  

The I-V characteristics of PEDOT:PSS and ZnO NPs heterojunction displayed a strong 

electrical rectification behaviour, as is shown in figure 3.29 (a). It is clear to see that the current 

ratio of forward bias and reversed bias at 2V is about 6700. The junction was able to operate at 

a maximum of 4V~5V. Samples of ZnO NPs sandwiched between ITO and Al was prepared 

and measured for comparison, as is shown in figure 3.29 (b). It is evident that the current shows 

no difference for both positive and negative voltages. In addition, the current for the 

heterojunction is lower than ZnO NPs because PEDOT:PSS in this case is resistive.    
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Figure 3.29 (a) The I-V characteristics of ZnO NPs and PEDOT:PSS heterojunction. (b) The comparison 

in I-V characteristics between heterojunction and ZnO NPs.  

• Junction barrier height  

The junction barrier height can be determined by two different methods: capacitance-voltage 

measurement (CV) and low-temperature measurement. Low-temperature measurement was not 

available in this case because the properties of ZnO NPs are strongly affected by vacuum 

ambient. Therefore, the potential barrier height was measured by CV method in this case. The 

CV measurement was performed by impedance spectroscopy at 120Hz. The imaginary 

impedance and 1/C2 at different reversed-bias voltages are shown in figure 3.30 below.  
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Figure 3.30 The imaginary impedance (black) and 1/C2 (red) at different reversed bias voltages. 

The energy band diagram of the sample structure was shown in figure 3.28, based on the values 

from literature. The practical barrier height can be different from theoretical value because the 

actual ZnO NPs and PEDOT:PSS prepared in this case are different from the ideal ZnO and 
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PEDOT:PSS. In addition, the other factors also result in the difference such as the surface states 

from ZnO NPs and tunnelling effect. Figure 3.30 clearly shows that the imaginary impedance 

increases as the reversed-bias voltage increases due to an enhanced width in depletion region. 

The barrier height is determined by the intersection of 1/C2 with X axis and it is 0.857eV.  

A full voltage scan was performed over -1V~1V, the result is shown below in figure 3.31: 
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Figure 3.31 The real and imaginary impedance of heterojunction at -1V~1V.  

It is evident that real impedance increases from -1V (forward bias) to 1V (reversed bias). There 

is a local peak at about 0V in imaginary impedance. This is highly possibly due to the existence 

of surface states or image force so that a second built-in potential exists near the surface and 

the direction of this electric field is opposite to that in the depletion region of the heterojunction. 

This was not investigated in detail. Moreover, it can be noticed that the imaginary impedance 

is negative at forward bias. This is related to the movement of ions in PEDOT:PSS and this is 

discussed in the following section.  

• Dielectric response  

The dielectric response of the heterojunction was carried out by impedance spectroscopy. The 

Bode plot and Nyquist plot for forward bias and reversed bias are plotted in figure 3.32 (a) and 

(b).  
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  (e)                                                                               (f) 

Figure 3.32 The (a) Bode plot and (b)Nyquist plot of the heterojunction under forward and reversed bias. 

The Nyquist plot under several (c) Forward bias and (d) Reversed bias voltages. (e) The intersection 

frequency under increasing forward bias voltages. (f) Pseudo-inductive behaviour. 

It is evident that the main difference between forward and reversed bias is at low-frequency 

range (near DC). In addition, there is a pseudo-inductive behaviour under forward bias in the 
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low-frequency range (0.1Hz~0.01Hz). This is confirmed by the negative phase in the Bode plot 

in figure 3.32 (a) and negative semicircle in the Nyquist plot in figure 3.32 (b). This could be 

related to the movement of ionic species [111]–[114]. The associated ions species and ionic 

movement was not investigated further because this is less relevant to OASLMs. The Nyquist 

plot at different forward and reversed bias voltages are shown in figure 3.32 (c) and (d). It is 

clearly shown that the pseudo-inductive behaviour exists in the forward-bias condition only 

while it disappears under the reversed bias. The pseudo-inductive behaviour is generally related 

to the ionic movement and the change of sign indicates that the ions reach the boundary. 

The frequency of the intersection points under different forward-bias voltages from figure 3.32 

(c) are extracted, as is plotted in figure 3.32 (e). One thing to be noted is that the frequencies 

are estimated values since the impedance measurement was made only for limited and discrete 

frequencies. However, it can be seen that the frequency increases at higher forward bias voltage, 

indicating a shorter time for ions to reach the boundary.      

Moreover, in order to verify the ionic movement in the PEDOT:PSS layer, the impedance 

spectroscopy was performed on an ITO-PEDOT:PSS-Al sample. The Nyquist plots are shown 

in figure 3.32 (f). It is convincing that the pseudo-inductive behaviour also exists. 

• Optical response 

The optical response the heterojunction and the heterojunction-based OASLMs were also studied. 

The UV response of ZnO NPs and the heterojunction is shown in figure 3.33 (a). The ZnO NPs 

sample was prepared in a sandwiched structure (ITO-ZnO NPs-Al) with an annealing 

temperature of 200°C (1h in air) so that the ZnO NPs are identical to that in the heterojunction. 

It is evident that the heterojunction had a larger On/Off current ratio of more than 60, compared 

to 2.1 of ZnO NPs. On the other hand, the fall time of the heterojunction is 11.4s (under reversed 

bias), compared to 32.8s of ZnO NPs. The response time of the sample improved by 2/3 after 

introducing PEDOT:PSS heterojunction. Therefore, it is convincing that the heterojunction is 

providing a better optical response in terms of on/off current ratio and switch-off speed.  

The conductance of the heterojunction against increasing UV power is also plotted in figure 

3.33 (b). The heterojunction can provide a larger responsivity if it is operated under reversed 

bias. This implies that the heterojunction under reversed bias is more sensitive to UV light.  

The heterojunction was incorporated into the OASLMs and figure 3.33 (c) shows the intensity 

of the first-order diffraction pattern under different bias conductions. The OASLM was driven 

by a square wave in this case (0.5Hz) in order to keep the bias voltage constant. It is evident 
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that the signal remains constantly low under the forward bias while it shows high signal 

intensity under the reversed bias. This is because the heterojunction under forward bias has a 

large conductivity even without UV illumination so that the LCs are always switched on and 

the grating image is lost. On the contrary, the heterojunction under reversed bias has a large 

resistivity in the dark and it also has a large photosensitivity and photoconductivity. So, the 

signal received is distinctive under reversed bias. Figure 3.33 (d) presents the falling 

characteristic of the heterojunction-based OASLMs and the falling time is about 1.8s. This is a 

huge improvement compared to ZnO NPs-only OASLM (47.5s).  
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Figure 3.33 (a) The photo response of ZnO NPs and ZnO NPs - PEDOT:PSS heterojunction. (b) The 

photo conductance of ZnO NPs - PEDOT:PSS heterojunction at different bias conditions and light 

intensities. (c) The signal intensity of heterojunction-based OASLM. (d) The falling time of 

heterojunction-based OASLM after write light was off. 

In summary, a photodiode structure has been used in OASLM and it was also experimentally 

proved that a shorter fall time of 1.8s can be achieved by photodiode-based OASLM. In the 
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meanwhile, photodiode structure can also provide a larger on/off current ratio compared to 

photoconductor processed under the same conditions. This chapter also characterized electrical 

properties of ZnO NP-PEDOT:PSS heterojunction and determined the barrier height of 

solution-processed heterojunction, indicating a good electrical rectification behaviour.  

This chapter focuses on the optimization of ZnO NP-based OASLM in terms of resolution, 

diffraction efficiency and most importantly the response speed. Although the highest resolution 

has been achieved by ZnO NP-based OASLM, room for improvement still exists such as 

minimising the phase retardation (electrical fringing field) in LC layer and the lateral drift in 

ZnO layer, by selecting or tuning the material properties (elastic constants, dielectric anisotropy, 

trap states etc.). This was studied in detail by simulation. The diffraction efficiency was also 

optimized by determining the optimum driving signal (waveform, amplitude and frequency). 

In terms of the response time (fall time), three methods were used to enhance the response speed: 

raising the annealing temperature of ZnO NP, introducing a SiO2 layer between LC and ZnO 

NP, and replacing the ZnO NP with ZnO NP-PEDOT:PSS heterojunction. It has been proved 

that the fall time was reduced by more than 10 times after optimization.  

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

Chapter 4 ZnO NPs-based Sensor for Oxygen 

Partial Pressure in Air  

The sensitivity of ZnO NPs to oxygen partial pressure in air results from the adsorption and 

desorption of oxygen onto the surface of ZnO NPs, as was introduced in chapter 2. Adsorbed 

oxygen captures free electrons from ZnO NPs, forming a depleted ‘shell’ around ZnO NPs, as 

is shown in figure 4.1. Accordingly, the electrical conductivity of ZnO NPs decreases as oxygen 

adsorbs. Similarly, the decrease in oxygen partial pressure results in the desorption of oxygen 

species, releasing electrons and increasing the conductivity. In addition, ZnO NPs have a large 

surface-to-volume ratio, which enables a greater capacity for oxygen adsorption on ZnO NPs. 

So, ZnO NPs are advantageous for oxygen partial pressure sensing. Adsorbed oxygen can also 

be removed by UV illumination or heat and this could be used for sensor erasure (refreshing). 

Moreover, ZnO NPs are non-toxic to human cells and even shows antibacterial properties, 

which makes ZnO NPs-based sensors eco-friendly and suitable for bio-applications.  

 
Figure 4.1 Oxygen adsorption and desorption on ZnO NPs.  

This chapter mainly focuses on the behaviour of ZnO NPs in the low-pressure ambient. Then 

the fabrication and characterization of ZnO NPs-based oxygen partial pressure sensor are 

introduced. Moreover, the patterning of nanoscale ZnO NPs lines and their sensing behaviour 

are discussed in the end.  

4.1 Oxygen Partial Pressure Effect 

The electrical properties of ZnO NPs in vacuum was measured, as is shown in figure 4.2 below. 

In order to amplify the effect of oxygen partial pressure, high-concentration ZnO NPs 

suspension (1150mg/ml in ethanol) was used to fabricate the sample. A sandwiched structure 

(Al-ZnO NPs-ITO) was used. The ZnO NPs layer was formed by spin-coating and it was 
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annealed at 400°C in air for 3h. Al electrodes were deposited by thermal evaporation. The 

vacuum ambient was achieved by the roughing pump and turbo pump, and the minimum 

pressure was 10-5 mBar.  

Figure 4.2 (a) demonstrates the I-V characteristics of ZnO NPs in vacuum, which shows a linear 

relationship below 2.6V, indicating the Ohmic conduction mechanism (the slope is 1.09). The 

field effect of ZnO NPs in vacuum was also investigated, as is shown in figure 4.2 (b). The 

sample was fabricated in a planar structure.     
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Figure 4.2 (a) I-V characteristics of ZnO NPs in vacuum. (b) Field effect of ZnO NPs under different 

measuring conditions.  

It is evident that the field effect exists when ZnO NPs are in air while the field effect disappears 

when they are in vacuum. This is also because of the oxygen desorption in vacuum, which 

removes the depletion layer around ZnO NPs and enhances the electrical conductivity. As a 

result, the gate has little effect on the conduction between drain and source (like short circuit). 

In contrast, oxygen adsorbs and captures free electrons when ZnO NPs are in air, giving rise to 

the gate-controlled field effect. Figure 4.2 (b) also shows the low-temperature I-V 

characteristics (in vacuum) and the current decreases when the measuring temperature drops 

because of decreasing charge carrier mobility and density. 

4.2 Sensor Fabrication and Characterization 

An oxygen partial pressure sensor with heat-erasing capability was fabricated and the structure 

of the sensor is shown in figure 4.3 below. A layer of photoresist was patterned into a hollow 

rectangular shape by photolithography on a silicon substrate as a protector layer for etching. 

And the substrate was then etched by Reactive Ion Etching (RIE) with SF6 to form a platform 
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in the centre. This platform was designed to confine the generated heat (for erasing) in the target 

area. A thin layer of chromium (100nm) was deposited by E-beam evaporation. Cr was used 

because it has a relatively large resistivity (125 nΩ·m at 20°C) compared to other metals. So, 

Cr is an effective material for power heat. Cr was patterned like a ‘bottleneck’ so that the Cr 

layer could generate a massive amount of heat in a very short period on the etched platform. A 

thin layer of SiO2 (100nm) was further deposited by E-beam evaporation to electrically isolate 

Cr. Then ZnO nanoparticles dispersion was spin-coated on the platform and annealed at 400°C 

in air for 3hours. Finally, Al electrode (100nm) was deposited by thermal evaporation. A current 

source was connected to Cr to generate heat. 

  
Figure 4.3 The structure of ZnO NPs-based oxygen sensor.  

The electrical conductance of ZnO NPs under different pressure was measured by a probe 

station in a vacuum chamber, as is shown in figure 4.4 (a).  
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Figure 4.4 (a) The conductance of ZnO NPs under different air pressure. (b) The electrical response to 

the erasing heat.  

The pressure in the chamber can be controlled within the range from 10-5mBar to 103mBar. 

And the corresponding change in conductivity is more than 100. Figure 4.4 (a) also shows the 
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pressure-dependent conductance of ZnO NPs annealed at different temperatures (400°C, 500°C 

and 600°C in air for 3h). 

The relationship between oxygen partial pressure (𝑃𝑂2
) and electrical conductivity (σ) is defined 

by equation 4.1:  

𝝈 = 𝑨𝒆𝒙𝒑(−
𝑬𝒂
𝒌𝑻

)𝑷𝑶𝟐

𝒎                                                             (4.1) 

where 𝐸𝑎 is the trap activation energy and A is a constant.  

The power index 𝑚 is normally used to quantitatively describe the sensitivity to oxygen partial 

pressure and it is dependent on the charge carrier type and defects. It can be extracted by the 

slope of log(𝜎)~ 𝑃𝑂2
, and it is clear that the index 𝑚 is -0.22 for ZnO NPs annealed at 400°C. 

Furthermore, it is evident that the absolute value of power index |𝑚|  increases at higher 

annealing temperature. The highest power index of 0.3 is achieved at 600°C, indicating the best 

sensitivity of ZnO NPs to oxygen partial pressure. On one side, higher annealing temperature 

improves the purity by removing organic surfactants, providing larger capacity for oxygen 

adsorption. On the other side, greater number of free electrons are generated at higher annealing 

temperature because of the shallower trap states, which also leads to a larger capacity for 

adsorbed oxygen. Accordingly, a larger number of pressure-induced electrons are released, and 

a larger sensitivity is obtained. In conclusion, a better sensitivity to air pressure can be realized 

by raising annealing temperature. This is a valuable and practical conclusion for high-sensitivity 

oxygen partial pressure sensors.   

Figure 4.4 (b) shows the heat erasing feature of the sensor. The current surges dramatically once 

the power heat (Cr) is on because electrons from the valence band and adsorbed oxygen are 

excited by thermal energy, becoming free electrons and contributing to the current.  Current 

drops after the heat is off and the ‘off’ time is about 15.2s.  

4.3 Miniaturized Oxygen Sensor   

The demand for miniaturized sensors is increasingly high nowadays in integrated applications 

since they have lower cost in material, less power consumption and better space utilization. The 

size of ZnO NPs-based oxygen sensor can be minimized by patterning ZnO NPs into small 

features. ZnO NPs lines were fabricated by two approaches: photolithography and mould-

guided drying.  
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Photolithography is a traditional patterning method, which has been widely used in the 

fabrication of integrated circuits. Similar to the standard photolithography process, photoresist 

(AZ5214) was spin-coated on ZnO NPs film. The ZnO NPs film was prepared on a silicon 

substrate by spin-coating and the film was annealed at 400°C in air for 3h. A line mask was 

used to form protective lines on top of ZnO NPs. After exposing and developing, ZnO NPs film 

was immersed in diluted HCl acid (0.5% in DI water) for 2s to remove the unprotected ZnO 

NPs. Finally, the photoresist was removed by acetone. The optical image and SEM image of 

the patterned ZnO NPs lines are shown in figure 4.5 below. The average width of ZnO NPs 

lines are about 7um. However, the edges of ZnO NPs lines show variations due to the wet 

etching. The contact between ZnO NPs and silicon substrate is not sufficient (only the 

boundaries of NPs) so HCl could easily penetrate into protected ZnO NPs, causing various line 

widths.  

  

                                                         (a)                                                                     (b) 

Figure 4.5 The ZnO NPs lines fabricated by photolithography, observed by (a) Optical microscope and 

(b) SEM.  

Another method to pattern ZnO NPs is mould-guided drying. Mould-guided drying technique 

is extremely suitable for the patterning of solution-processable materials into lines. In addition, 

it is low in cost, reproducible and efficient for large-scale fabrication. The production process 

has been introduced in chapter 1. However, the direct patterning using mould-guided drying is 

not suitable for NPs because NPs could stay in the contact area between the stamp and substrate, 

leaving NPs residuals, as is shown in figure 4.6 (a). Therefore, two approaches were used to 

optimize this process.  
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Figure 4.6 (a) ZnO NPs lines by direct stamping. (b) The fabrication of ZnO NPs lines by PS ‘spacer’. 

(c) Patterning PS lines on top of ZnO NPs film. (d) SEM image of ZnO NPs lines. (e) The oxygen 

sensing performance of ZnO NPs lines. (f) The minimal line width achieved.                                                                               

The first method is to use another material (Polystyrene in this case) as spacer between the 

stamp and substrate, so that NPs are not trapped by the contact. Firstly, lines of polystyrene (PS) 
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were fabricated using the mould-guided drying technique from PS solutions in 1,2-

dichlorobenzen (DCB, 0.4 mg/ml). Then ZnO NPs lines were formed in the orthogonal 

direction, as is shown in figure 4.6 (b). This method is good to fabricate segments of ZnO NPs 

lines and the length of ZnO NPs lines is determined by the gap between PS lines.  

In order to pattern continuous and long ZnO NPs lines, PS lines were patterned on top of ZnO 

NPs as protective lines by mould-guided drying. To be more specific, a layer of ZnO NPs thin 

film was firstly spin-coated on a substrate, followed by thermal annealing in air at 400°C for 

3h. Next, polystyrene (PS) lines were formed on top of ZnO NPs film by mould-guided drying, 

as is shown in figure 4.6 (c). PS lines were then annealed in air at 100°C for 1h. The sample 

was immersed in diluted hydrochloric acid (HCl, 0.5%) for 2s to remove the uncovered ZnO 

NPs. Finally, the sample was treated in oxygen plasma for 5min to remove the PS. As a result, 

the PS pattern was transferred to ZnO NPs and the finished ZnO NPs lines are shown in figure 

4.6 (d). The line width is between 6~7um.  

Furthermore, the oxygen sensing properties of ZnO NPs lines was measured by depositing Al 

electrodes on top, and the result is shown in figure 4.6 (e). The inset image shows the ZnO NPs 

lines formed between Al electrodes. It is clear that the electrical conductance of ZnO NPs lines 

increases as the pressure drops. The slope of log(𝜎)~𝑃𝑂2
 is 0.034 which is much smaller than 

that of ZnO NPs thin films (0.22). This is due to the smaller number of NPs in lines compared 

to thin films, which results in a weaker capacity for adsorbed oxygen and thus smaller 

responsivity.  

Thinner ZnO NPs lines are also achievable by thinning the width of PS lines. Nanosized ZnO 

NPs lines can be obtained by reducing the concentration of PS solution. Figure 4.6 (f) 

demonstrates the nanoscale ZnO NPs lines and the line width is less than 190nm. Nano-

patterning of ZnO nanoparticles makes it suitable for miniaturized and integrated systems. 

Besides the low power consumption, integrated gas sensors offer low signal-to-noise ratio, 

therefore making them particularly attractive in biomedical and electronic devices.  

ZnO NPs were removed by wet etching in all the methods mentioned above. Wet etching is fast 

and effective. However, the etched edges are not uniform and ZnO NPs lines are susceptible to 

fall off the substrate, especially in the case of small line width. Therefore, dry etching by 

Reactive Ions Etching (RIE) is recommended for higher-resolution patterning.  

The mould-guided drying technique was also used for various solution-processable materials. 

For instance, indium oxide (In2O3) lines were also patterned from its solution in 2-
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Methoxyethonal (2-Me). The patterned In2O3 lines were further annealed in air at 200°C for 1h 

to remove the solvent and Al electrodes were deposited as electrodes. The In2O3 lines and 

electrical characteristics are shown below in figure 4.7 (a)~(c). The linewidth is about 1.64μm 

and the spacing is 126.29μm.  
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                                         (b)                                                                             (c) 

Figure 4.7 (a) In2O3 lines under optical microscope. The (b) Transfer function and (c) Output function 

of In2O3 lines transistor. 

The transfer function of In2O3 lines transistor shows that the turn-on voltage is about -7.5V and 

the on/off current ratio is more than 220. This opens the door for the nanofabrication of IGZO-

based transistors and it also shows a promising future for miniaturized applications with low-

cost and large-scale fabrication processes.   

Moreover, polymeric conductor PEDOT:PSS was successfully patterned into micro- and even 

nano-scale lines, which were used in organic electrochemical transistors (OECTs). The detailed 

fabrication process and its characterization are discussed in the following chapter.  
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Chapter 5 High-Resolution Patterning of 

PEDOT:PSS and PEDOT:PSS-based Organic 

Electrochemical Transistors (OECTs)  

The patterning of ZnO NPs by photolithography and mould-guided drying has been 

demonstrated in the previous chapter. The mould-guided drying technique has displayed a great 

potential for solution-processable materials. In fact, not only is this technique suitable for metal-

oxide materials, but it is also attractive to organic functional materials. The patterning of organic 

materials with traditional methods has been very challenging compared to the patterning of 

inorganic materials due to the potential contamination, chemical reaction and degradation 

during the process. Therefore, new approaches to pattern organic materials are demanded. In 

this chapter, mould-guided drying is used to pattern PEDOT:PSS, an attractive and promising 

organic conductor.  

Various patterning techniques for PEDOT:PSS have been reported such as spin-coating, 

photolithography, dry etching, laser ablation, inkjet printing and roll-to-roll printing [115]–

[117]. Direct spin-coating of PEDOT:PSS is difficult since Si or SiO2 substrate is hydrophobic. 

This is generally solved by oxygen plasma treatment or adding hydrophilic additives (Triton). 

Dry etching is normally achieved by Reactive Ion Etching (RIE), where oxygen, argon or 

fluorinated gases are used to chemically and physically etch PEDOT:PSS. Photolithography is 

not suitable for PEDOT:PSS patterning, because chemical reactions exist between acidic 

PEDOT:PSS and photoresist [118].  

In this chapter, PEDOT:PSS from its water suspension was patterned by mould-guided drying 

technique. Furthermore, the organic electrochemical transistors (OECTs) based on the patterned 

PEDOT:PSS and NaCl solution were fabricated and characterized. More importantly, the 

advantage and advance of this patterning technique was reflected by the nanoscale feature 

achieved, and OECTs with nanoscale channel width and length were successfully fabricated. 

Nanosized OECTs are undoubtedly captivating since high-resolution detection, low power 

consumption and integrated devices can be realized. In particular, nanoscale OECTs have a 

bright future in synaptic transistors for neuromorphic computing [119].      
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5.1 Electrical Properties of PEDOT:PSS Thin Film 

The electrical conduction mechanism in PEDOT:PSS has not been fully understood yet. Some 

researchers claimed that PEDOT:PSS is composed by conductive PEDOT-rich grains 

(20nm~70nm in diameter) [120] and insulating PSS-rich boundaries (weak ionic conduction)  

[121]. Therefore, the electrical conduction is ascribed to the hole transport in PEDOT polymers 

and charge hopping between PEDOT and PSS. The conductivity is represented by the following 

equation [120]–[122]: 

𝝈 = 𝝈𝟎𝒆𝒙𝒑[−(
𝑻𝟎
𝑻

)𝜶]
                                                         (5.1) 

where 𝜎0 is a constant and 𝑇0 indicates the potential barrier height of thermally activated charge 

hopping. The power index 𝛼 is dependent on the type of charge transport. A range of  𝛼 values 

(0.25~1) has been reported (1 for lateral and normal conduction) [122]. The typical 𝛼 value of 

0.25 was ascribed to variable range hopping (VRH) conduction [120]–[122]. Others also 

proposed the value of 0.5, representing the Coulomb interaction between the charges or the 

tunnelling between PEDOT grains [121], [122]. For solution-processed PEDOT:PSS thin films, 

electrical conduction is anisotropic (3 order of difference was reported [120]). Lateral and 

normal conduction are attributed to variable range hopping (VRH) and nearest-neighbour 

hopping respectively. Therefore, lateral conduction shows a larger conductivity while normal 

conduction has a much smaller conductivity. 

I-V measurement was conducted for PEDOT:PSS thin films. The PEDOT:PSS thin film was 

formed by spin-coating from its water dispersion on a SiO2 substrate with pre-deposited Al 

electrodes (85μm channel length), as is shown in figure 5.1 (a). The substrate was then annealed 

in air at 200°C for 1h to remove the solvent. The relation between ln(I)~V is plotted in figure 

5.1 (b). The slope of ln(I)~V plot is related to the hopping distance according to the definition 

of hopping conduction. It can be seen from figure 5.1 (b) that the hopping distance varies in 

different voltage ranges.    

This was further investigated by low-temperature I-V measurement as is shown in figure 5.1 

(c). It is evident that the conductance at 1V (in log scale) shows a linear relationship with 1/T. 

This confirms that the power index 𝛼 is 1, indicating the nearest-neighbour hopping conduction 

[120]. The Arrhenius-type relationship represents the thermally activated process so 𝑇0 in this 

case represents the energy barrier height between intersites. The value of activation energy is 

extracted by the slope and it is calculated to be 6.55meV. The conductance at 5V (red) is rather 

complicated. Figure 5.1 (c) shows a linear relationship between conductance (log) and 1/T at 
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high measuring temperatures while it has a low-order relationship at lower temperatures. This 

could be the result of variable-range hopping (VRH). VRH conduction is to describe the charge 

transport in disordered semiconductor system.       
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Figure 5.1 (a) The planar structure of Al-PEDOT:PSS-Al sample. (b) I-V characteristics of PEDOT:PSS. 

(c) Low-temperature conductance of PEDOT:PSS.  

The dielectric properties of PEDOT:PSS thin film was also studied using impedance 

spectroscopy. The Bode plot and Nyquist plot are shown below in figure 5.2 (a) and (b). The 

impedance spectroscopy was measured under 1V. It is clear from figure 5.2 that there are more 

than two polarization mechanisms in PEDOT:PSS and they have overlapped peaks in the Bode 

plot and overlapped semicircles in the Nyquist plot. Further approaches need to be taken to 

distinguish these mechanisms.  
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Figure 5.2 The (a) Bode plot and (b) Nyquist plot of PEDOT:PSS.  

The investigation of electrical conduction mechanism at high voltage and polarization 

mechanisms were not proceeded in this work since they are not significant in the application of 

OECTs. However, they are interesting topics for future research.    

5.2 The Patterning of PEDOT:PSS Lines  

Various techniques have been used to pattern PEDOT:PSS such as mask etching, soft-

lithography, nanoimprint, pulsed laser ablation and direct UV-patterning etc. These patterning 

techniques are generally associated with high power consumption (UV and plasma) and limited 

by insufficient resolution. Two patterning methods were attempted in this chapter: 

photolithography and mould-guided drying. Both techniques are based on the post-processing 

of PEDOT:PSS thin films. The film was formed by spin-coating PEDOT:PSS water dispersion 

on SiO2. Triton was added into the dispersion beforehand in order to increase the adhesion to 

SiO2 substrate. In addition, the patterned lines were characterized in terms of the electrical and 

optical anisotropy.    

5.2.1 The patterning process 

Traditional photolithography was firstly attempted. A substrate with pre-deposited Al 

electrodes was treated with oxygen plasma for 1min and PEDOT:PSS water dispersion was 

spin-coated on the SiO2 substrate (4000RPM for 30s). Then the sample was annealed in air at 

200°C for 1h to remove the solvent and to increase adhesion to the substrate. Higher annealing 

temperature could result in the degradation of PEDOT:PSS [123]. The sample is shown in 

figure 5.3 (a). 
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Photolithography was carried out after spin-coating photoresist (AZ5214E) on top of 

PEDOT:PSS thin film, leaving a 10μm gap between PDOT:PSS and Al. One thing to be noted 

is that the baking time before UV exposure was reduced to 1min in order to reduce the 

connection between PEDOT:PSS and photoresist. After UV exposure, the sample was rinsed 

in the developer and treated with low-power oxygen plasma (avoid high-power annealing) to 

remove the unprotected PEDOT:PSS. Eventually the sample was immersed in Acetone for 

1min to remove the photoresist and the result is shown in figure 5.3 (b).     

     

(a)                                                                      (b) 

Figure 5.3 (a) The PEDOT:PSS thin film formed on the SiO2 substrate. (b) A gap between PEDOT:PSS 

and Al was created by photolithography.  

However, it was also noticed that PEDOT:PSS after annealing still had a certain solubility in 

Acetone and this resulted in residual PEDOT:PSS in the gap. Therefore, photolithography is 

not a good method for PEDOT:PSS patterning, especially for electrical applications.  

The second approach is the mould-guided drying method, which possesses high resolution, 

inexpensive cost and applicability to a range of situations, which are not suitable by 

conventional lithography technologies since material could be damaged by UV irradiation and 

chemical reactions. The fabrication process has been introduced in chapter 1. To be more 

specific, a small amount of PEDOT:PSS suspension (~3μL) was drop-casted onto the surface 

of polydimethylsiloxane (PDMS) mould (~1cm2) with pre-defined patterns. Then, a SiO2 

substrate was gently brought into contact with the PDMS mould by a designed clamp under a 

small applied pressure (about 5 MPa). The clamp was left in air at room temperature for 4 hours. 

After the solution completely dried out, PDMS mould was removed from SiO2 substrate, 

leaving the patterned PEDOT:PSS lines on the substrate. The depth of the grooves on the PDMS 

mould was 1.5μm. In addition, 20% ethylene glycol was added into the PEDOT:PSS suspension 

to improve the conductivity. Triton X-100 (0.92mg/mL) was also added to modify the surface 
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tension of the solution and to make the solution hydrophilic. The pattern quality is particularly 

sensitive to the amount of Triton X-100 added to the solution. It was also found that a high-

quality pattern was obtained when 0.92mg/mL of Triton X-100 was added.  Insufficient amount 

of Triton resulted in the line discontinuity due to the high surface tension of the liquid, while 

higher concentrations of Triton often caused residual PEDOT:PSS between the patterned lines. 

The line width was dependent on the solution concentration. 
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Figure 5.4 The (a) Cross-section profile and (b) SEM image of a single PEDOT:PSS line. (c) 

PEDOT:PSS lines and (d) SEM image. (e) PEDOT:PSS grid and (f) SEM image.  
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As the solvent evaporated, capillarity bridges of PEDOT:PSS were formed and pinned by the 

stamp grooves. As a result, thin PEDOT:PSS lines were subsequently formed next to the groove. 

Figure 5.4 (a) and (b) shows the cross-section and the SEM image of one single PEDOT:PSS 

line. The cross-section was obtained by a profiler and the profile clearly confirms the triangle-

like shape.   

The patterned PEDOT:PSS lines are shown in figure 5.4 (c) and (d). The linewidth was 

measured to be 700nm. The PEDOT:PSS grid was also patterned by consecutive patterning in 

orthogonal directions and the grid is shown in figure 5.4 (e) and (f).  

5.2.2 Optical and electrical anisotropy of the patterned PEDOT:PSS lines 

Mould-guided drying of polymer solutions can result in polymeric alignment along the grooves 

during the drying process. This was confirmed by polarized UV-visible absorption spectroscopy 

and electrical conductivity measurements. In polarized UV-Vis spectroscopy, maximum 

absorption is expected when the transition dipole moments of polymers are parallel to the 

electrical polarization direction of light since the transition dipole moment components of 

conjugated polymers are oriented in the direction along the polymer backbone. Figure 5.5 (a) 

shows the absorbance anisotropy of the fabricated PEDOT:PSS lines. Larger absorbance was 

observed when the direction of PEDOT:PSS lines was oriented parallel to the light polarization 

direction which indicates that the PEDOT chains are aligned in the fabricated line direction. 

This is reasonable since polymer chains tend to align with the grooves in order to have minimum 

internal energy.   
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Figure 5.5 (a) Optical anisotropy. (b) Electrical conductivity of PEDOT:PSS thin film and lines. 
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The electrical conductivity of spin-coated PEDOT:PSS thin film and the patterned PEDOT:PSS 

lines with identical post thermal treatment (140°C for 1 hour) further confirmed this. The 

conductivity (𝜎) of PEDOT:PSS is defined by the following equation:  

𝑰 ×
𝑳

𝑨
= 𝑽 × 𝝈                                                         (5.2) 

where 𝐿 and 𝐴 are the conductive length and cross-section area of PEDOT:PSS respectively. 

So, the conductivity can be reflected by the slope of 𝐼 ×
𝐿

𝐴
~𝑉 plot. The conductivity anisotropy 

ratio (CAR) is defined here by σline/σfilm, where σline and σfilm are the conductivity of the 

PEDOT:PSS lines and film respectively. Figure 5.5 (b) shows the electric conductivity of the 

two samples. The CAR can reach σline/σfilm = 2.05, which indicates a better conductivity along 

the PEDOT chains.  

5.3 Organic Electrochemical Transistors (OECTs) Based on the Patterned 

PEDOT:PSS Lines 

Organic Electrochemical Transistors (OECTs) have captured numerous attentions during the 

last decade due to the synthetic tunability, bio-compatibility and easy fabrication. In addition, 

OECTs can achieve large modulations of current by low voltages as the doping process affects 

the whole volume of OECTs, compared to the interface of field effect transistors (FETs). OECTs 

have been used in a wide range of applications such as bioelectronic sensors, circuits requiring 

high transconductance and memory devices for neuro-systems [124]. Moreover, ion-based 

synaptic transistors with a proper dopant in the active layer could generate reprogrammable 

multiple stable conduction states which is promising for the next generation neuromorphic 

computing.  

The typical structure of an OECT is shown below in figure 5.6. The organic film (PEDOT:PSS 

in this case) is deposited on a SiO2 substrate with aluminium (Al) electrodes (drain and source). 

Organic film is immersed in electrolyte (NaCl in this case) and silver (Ag) is also immersed 

from the top as the gate electrode. The operation of OECTs is based on the doping and de-

doping (depletion) of organic materials by the ions from electrolyte, which directly determines 

the conductivity of organic channel. Choosing Ag as the gate material is because the interfacial 

voltage drop between Ag and electrolyte is negligible, providing an effective gating across the 

electrolyte. In comparison, electrical double layer will be formed around the gate if gold (Au) 

or platinum (Pt) is used. 
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OECTs are generally operated in two modes. Depletion mode relies on the de-doping effect 

(become resistive) once a positive gate voltage is applied while accumulation mode is based on 

the doping process (become conductive) under a negative gate voltage.      

 

Figure 5.6 Structure of OECT. 

However, OECTs have slow response, mainly due to the ionic conduction in the electrolyte 

[124]. Fast response can be achieved in miniaturized OECTs (in microseconds) as the response 

time is dependent on the film thickness.     

An OECT based on PEDOT:PSS lines and NaCl solution was fabricated and characterized. The 

channel width and channel length are 2.51mm 0.19mm respectively. The transfer function and 

output function are shown in figure 5.7 (a) and (b) below: 
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Figure 5.7 The (a) Transfer function and (b) Output function of the OECT based on the patterned 

PEDOT:PSS lines.  
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The drain-source voltage was maintained at -0.6V. It is clear that the drain current decreases as 

the gate voltage increases, indicating that the OECT is working in the depletion mode because 

Na+ from electrolyte de-dopes the negatively charged PSS, increasing the resistivity of 

PEDOT:PSS. It is evident that the turn on voltage is about 0.4V and the current on/off ratio can 

reach more than 103 at -2V, indicating a huge transconductance. 

5.4 Sub-Micron OECTs 

OECTs with nanoscale channel length and channel width are promising for integrated bio-

applications. Moreover, nanoscale OECTs can provide a faster response speed. Mould-guided 

drying technique provides the potential opportunity for nanostructured OECTs because the 

dimension can be scaled down by diluting solutions.   

 

                                                                              (a) 

 

(b)                                                                           

Figure 5.8 (a) The fabrication process of nanostructured OECTs. (b) The nanoscale channel width and 

channel length by SEM.  

The nanostructured OECTs were fabricated by firstly fabricating electrodes with small gaps 

using a similar process. Silicon with a 300 nm-thick SiO2 layer was used as the substrate. A 

250nm-thick polydimethylglutarimide (PMGI) layer was spin-coated on the substrate and 
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baked for 30 min at 200°C, and then a 10nm-thick Ge layer was deposited by thermal 

evaporation. Poly-4-vinylphenol (PVP) lines were formed on the Ge layer using the same 

method, as is shown in figure 5.8 (a.1). CF4 plasma was used to etch through the Ge layer with 

the patterned PVP lines as an etching mask and this was followed by oxygen plasma to etch 

through the PMGI using the thin Ge layer as an etching mask (figure 5.8 a.2). Then, Au/Cr 

(30nm/10nm) films were deposited by thermal evaporation and a lift-off was accomplished in 

a Microposit Remover (1165) at 60°C.  Eventually, PEDOT:PSS lines were created on top of  

the fabricated Au electrodes and annealed at 140°C for 1 hour in air, as shown in figure 5.8 

(a.3). 

An OECT was then fabricated by adding 0.1 M NaCl aqueous solution as electrolyte and a 

silver probe as the gate electrode. A plastic ring was placed above the sample to restrict the 

electrolyte, and the whole structure of the OECT is identical to the one shown in figure 5.6 in 

the previous section. Figure 5.8 (b) shows the  SEM image of the nanoscale channel length and 

channel width.  

5.4.1 Transistor characteristics  

The electrical characteristics of the nanostructured OECT were carried out. The transfer 

function and output function are shown below in figure 5.9.  
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Figure 5.9 The (a) Transfer function and (b) Output function of the nanostructured OECT. 

The drain-source voltage was maintained at -0.3V. It is evident that the on/off current ratio is 

about 21.4 when the device is operated within ±1V and the turn-on voltage is 0.82V. The 

nanostructured OECT device has a good amplifying behavior which is crucial for high-

resolution sensing, like bio-recording, where the ion concentration varies within the subcellular 

domain. Due to the short channel, the high current density was also achieved.  



113 

 

5.4.2 Frequency response 

The frequency response of the fabricated PEDOT:PSS wire transistors was also investigated. 

The frequency response was measured with an oscilloscope on a voltage drop between a resistor 

connected in series in the drain current loop. Figure 5.10 below shows the frequency response 

of different input signals. The left and tight column indicate the simulated input signal and 

actual output signal respectively. The device exhibited a good frequency response. Multiple 

input frequency responses were measured, which widely exist in the signal process of the 

neuron system and can potentially be applied for logical performance. The multiple inputs were 

realized by using multiple gates, each powered by a signal generator. Figure 5.10 (a) is the 

response of square inputs with 1KHz.  Figure 5.10 (b)~(d) show the multiple input responses 

of the transistor (on the right) and the modelled input (on the left). The resulting output spectra 

are well described by a summation of input signals and can be conveniently decomposed with 

high accuracy. In addition, a tiny phase change (of less than 0.01π) of the inputs can be 

responded in the output spectra, as is shown in figure 5.10 (e). 

It is evident that the nanostructured OECT has a good frequency response and it is capable of 

high-frequency applications. In addition, it is also responsive to small phase signals.  
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(a)

(b)

(c)

(d)

(e)

 

Figure 5.10 The frequency response of (a) Single square signal, f=1kHz. (b) Two sine signals, f1=500Hz 

(600mv), f2=100Hz(300mv). (c) Two sine signals, f1=500Hz (600mv), f2=100Hz(200mv). (d) Two sine 

signals, f1=500Hz (600mv), f2=100Hz(100mv). (e) A small phase change (<0.01 π) 
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5.4.3. Effect of electrode area  

The electrical performance of the OECT is influenced by the area of electrode. The electrical 

conduction is composed by two paths: PEDOT:PSS and NaCl ions. The conduction of 

PEDOT:PSS is dependent on the number of PEDOT:PSS lines. The ionic conduction of NaCl 

is heavily affected by the electrode area (exposed to NaCl solutions) and NaCl concentration. 

A set of samples with the same number of lines and different electrode area were prepared, and 

the electrical characteristics was compared. The results are shown in figure 5.11 below.   
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Figure 5.11 (a) The transfer function of OECT with different electrode area. (b) and (c) The influence 

of electrode area and gate voltages.  

Figure 5.11 (a) evidently shows that larger electrode area results in larger drain-source current 

(IDS). This is because larger exposed electrode area leads to a smaller resistance due to ionic 

conduction. Accordingly, the IDS increases as area increases. In addition, it is also found that 

larger electrode area leads to a larger current on/off ratio (Ion/Ioff).  
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The total resistance at different gate voltages is plotted in figure 5.11 (b). It is shown that the 

total resistance decreases as the electrode area increases. This is mainly due to the decrease in 

ionic resistance (RNaCl). In addition, the slope of total resistance against electrode area increases 

as the gate voltages increases. The relation between the slope in figure 5.11 (b) versus gate 

voltage is further plotted in figure 5.11 (c), which indicates that higher gate voltage is enhancing 

the sensitivity of total resistance to the change of electrode area.  
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Chapter 6 Conclusions and Future Work 

6.1 Conclusions 

Solution-processed ZnO NPs were thoroughly investigated in terms of the physical properties, 

post-processing effects and patterning techniques. In addition, applications of ZnO NPs such as 

optically addressed spatial light modulator (OASLM) and oxygen partial pressure sensor were 

characterized. Moreover, the patterning technique was also applied to water-based PEDOT:PSS 

to fabricate nanoscale organic electrochemical transistor (OECT). This thesis has recorded and 

demonstrated the promising future of solution-processable materials since they possess many 

advantages such as low requirement for fabrication conductions, economic cost, large scale and 

possibility for high-resolution patterning etc.  

• Chapter 1 was a general review of related topics such as the fundamentals of ZnO and 

ZnO NPs, fabrication methods for solution-processable materials, fundamentals of ZnO 

NPs-based OASLM and oxygen partial pressure sensor. OASLM combines the UV 

sensitivity of ZnO NPs and electrical modulation of liquid crystals (LCs). Oxygen 

partial pressure sensor utilizes the oxygen adsorption and desorption of ZnO NPs.  

• Chapter 2 systematically characterized the physical properties of ZnO NPs such as 

particle size, electrical conduction, dielectric response and optical response etc. The 

effect of measuring ambient, annealing temperature and oxygen plasma were also 

investigated. It was found that the electrical conductivity of ZnO NPs was strongly 

affected by the oxygen content in the measuring ambient. The conductivity of ZnO NPs 

could also be changed by oxygen plasma treatment. Moreover, the annealing 

temperature had a huge influence on trap activation energy and RC time constant.  

• Chapter 3 mainly focused on the characterization and optimization of ZnO NP-based  

OASLMs. Simulations were conducted to illustrate the resolution limit coming from 

LCs and ZnO NPs in OASLMs. OASLMs were then characterized in terms of dielectric 

properties and optical responses, from which the best operating voltage was determined 

in order to have the shortest RC time constant. Then the diffraction efficiency and 

response time were optimized. The diffraction efficiency was improved by determining 

the best driving signals (waveform, amplitude and frequency). In order to improve the 

response time, higher annealing temperature for ZnO NPs was used. In addition, the 
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introduction of a SiO2 interface layer and a heterojunction were proved to effectively 

reduce the fall time of OASLM.  

• Chapter 4 summarized ZnO NPs-based oxygen partial pressure sensor. The fabrication 

and performance of the sensor were discussed. The nano-patterning of ZnO NPs was 

also achieved by mould-guided drying technique. Moreover, oxygen partial pressure 

sensor was fabricated based on the patterned ZnO NPs. This is meaningful because this 

is promising for integrated and miniaturized applications.  

• Chapter 5 was focused on another solution-processed material: PEDOT:PSS. The 

electrical characterization was performed, and it was patterned with the same technique 

as ZnO NPs. The patterned PEDOT:PSS lines were characterized in terms of electrical 

and optical anisotropy. Organic electrochemical transistor (OECT) was fabricated with 

the patterned PEDOT:PSS. Furthermore, OECT with nanoscale channel length and 

channel width was successfully fabricated. This is particularly interesting since this is a 

good method to fabricate low-power  synaptic transistor, which is a step closer to build 

the real neural system.      

To summarize, solution-processed ZnO NPs were systematically researched in this work 

regarding their characterization, post processing, patterning, application and optimization etc. 

In particular, ZnO NPs-based OASLM and oxygen partial pressure sensor were investigated in 

terms of working principles, device characterization and performance optimization etc. In the 

meanwhile, solution-based PEDOT:PSS was also studied and its application in OECT was 

investigated in detail. This work also demonstrated that mould-guided drying technique is a 

promising method for nano-patterning and large-scale fabrication.  

6.2 Future Work 

This work has demonstrated the promising future of solution-based ZnO NPs and PEDOT:PSS 

as inorganic semiconductor and organic conductor. It also opens the door for more research 

opportunities that are interesting and meaningful. 

• ZnO NPs are unique for their large surface-to-volume ratio, which implies that the 

defects at the surface could be dominant. The defect at the interface could result from 

the dangling bonds, mismatched lattice and recombined bonds etc. The surface states 

could be influential to macroscopic properties of ZnO NPs such as low-temperature 

electrical conductivity, metal-like conductivity, higher recombination rate etc. The 
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enhanced electrical conductivity at low temperatures (<120K) has been observed in this 

work (discussed in chapter 2) and this can be further studied along with other techniques. 

The surface states are most likely deep-level states since they are related to the defects, 

and the deep-level states can be investigated by deep level transient spectroscopy (DLTS) 

and photoluminescence (PL). UV-vis spectroscopy is also a possible technique and it 

has already been found in this work that there are two absorbance peaks at around 

300nm and 360nm. The peak at 300nm was not clearly understood and this might be 

associated with the defect states.  

• The electrical properties of PEDOT:PSS thin films are of great significance to the 

understanding of electronic behavior. The electrical conduction mechanism has been 

discussed at low voltages whereas the high-voltage conduction mechanism has not been 

fully understood yet. In particular, the power index α which determines the relationship 

between log(𝜎)~1/T is yet to be determined. The dielectric behavior of PEDOT:PSS 

is also a valuable research topic. The impedance spectroscopy of PEDOT:PSS thin film 

has been carried out in this work and preliminary analysis showed that there are multiple 

polarization mechanisms. The investigation of polarization mechanisms is significant to 

the understanding of structural characteristics and electronic transport in the 

PEDOT:PSS polymers.  

• The pseudo-inductive behavior in the impedance spectroscopy of the heterojunction 

between PEDOT:PSS and ZnO NPs was observed and it was also noticed that it is 

dependent on the bias voltage. This behavior was attributed by some researchers to the 

ionic transportation and redox reactions at the interface. Further research could be 

carried out to pinpoint the ions species and other materials associated in the chemical 

reactions. This is meaningful because it helps to understand the behavior of PEDOT:PSS 

in air and this could be further used for sensing applications.  

• The mould-guided drying technique has been proved to be promising to pattern 

nanoscale ZnO NPs and PEDOT:PSS features. It was also demonstrated that large-area 

PEDOT:PSS grid is achievable using mould-guided drying technique. And the results 

showed that two crossed lines are in a good contact. This could be further extended by 

patterning two types of solution-based semiconductor materials (p-type and n-type) with 

orthogonal direction, forming a grid composed by PN diodes as LEDs. This is attractive 

because it offers a low-cost and high-yielding method to fabricate LEDs.     
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